

1 **The proximity-based protein interaction landscape of the transcription factor p65 NF-κB / RELA**
2 **and its gene-regulatory logics**

3
4
5
6
7 Lisa Leib^{1*}, Jana Juli^{1*}, Liane Jurida¹, Johanna Meier-Soelch¹, Christin Mayr-Buro¹, M. Lienhard
8 Schmitz², Daniel Heylmann¹, Axel Weber¹, Argyris Papantonis³, Marek Bartkuhn^{4, 8}, Jochen Wilhelm⁵,
9 ^{7, 8}, Uwe Linne⁶, and Michael Kracht^{1, 7, 8**}

10
11 ¹ Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany
12 ² Institute of Biochemistry, Justus Liebig University, Giessen, Germany
13 ³ Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
14 ⁴ Biomedical Informatics and Systems Medicine, Science Unit for Basic and Clinical Medicine, Institute
15 for Lung Health, Justus Liebig University Giessen, Giessen, Germany
16 ⁵ Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
17 ⁶ Mass Spectrometry Facility of the Department of Chemistry, Philipps University, Marburg, Germany
18 ⁷ German Center for Lung Research (DZL) and Universities of Giessen and Marburg Lung Center
19 (UGMLC)
20 ⁸ Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany

21
22
23
24 *both authors contributed equally

25 ** Correspondence: michael.kracht@pharma.med.uni-giessen.de

26
27
28
29
30 Key words: p65 NF-κB, RELA, miniTurboID, proximity-based interactome, genetic networks

31
32
33
34
35 Highlights

36

- Identification of > 350 largely dimerization-dependent interactors of p65 / RELA by miniTurboID
- The interactome is dominated by transcription factors and epigenetic regulator complexes
- Functional validation of 38 high confidence interactors by targeted siRNA screen
- Identification of genetic networks regulated by RELA and six of its interactors in the IL-1 α response

41 **Abstract**

42 The protein interactome of p65 / RELA, the most active subunit of the transcription factor (TF) NF- κ B,
43 has not been previously determined in living cells. Using p65-miniTurbo fusion proteins, we identified
44 by biotin tagging > 350 RELA interactors from untreated and IL-1 α -stimulated cells, including many
45 TFs (47 % of all interactors) and > 50 epigenetic regulators belonging to different classes of chromatin
46 remodeling complexes. According to point mutants of p65, the interactions primarily require intact
47 dimerization rather than DNA binding properties. A targeted RNAi screen for 38 interactors and
48 subsequent functional transcriptome and bioinformatics studies identified gene regulatory
49 (sub)networks, each controlled by RELA in combination with one of the TFs ZBTB5, GLIS2, TFE3 /
50 TFEB or S100A8 / A9. The remarkably large, dynamic and versatile high resolution interactome of
51 RELA and its gene-regulatory logics provides a rich resource and a new framework for explaining how
52 RELA cooperativity determines gene expression patterns.

53 **Introduction**

54 Transcription factors (TFs) comprise a large family of proteins that read and interpret the genome to
55 decode the DNA sequence. TFs are defined by their sequence-specific DNA binding domains (DBD)
56 and by the ability to induce or repress transcription (Fulton et al., 2009; Vaquerizas et al., 2009). A
57 recent combinatorial survey catalogued a total of 1639 human TFs (<http://humantfs.ccb.utoronto.ca>)
58 (Lambert et al., 2018).

59 TFs are key components of gene regulatory networks in which the spatio-temporal expression patterns
60 of TFs and their auto-regulatory loops determine cell identity, developmental processes, and disease
61 states (Almeida et al., 2021; Fuxman Bass et al., 2015).

62 So far, for only a limited number of TFs the (direct) binding to chromatin has been mapped
63 comprehensively using ChIPseq or related techniques. However, bioinformatics analyses of sequence
64 motifs deduced from genome-wide DNA footprints in open chromatin regions suggest that transcription
65 factors generally bind cooperatively to enhancers or promoters to execute their gene regulatory functions
66 (Funk et al., 2020; Neph et al., 2012; Vierstra et al., 2020).

67 In contrast to the wealth of information on (predicted) DNA binding of TFs, we currently lack a global
68 understanding of TF protein–protein interactions (PPIs) and their functional contributions to TF
69 cooperativity within transcriptional networks. A recent, large-scale study examined the basal
70 interactomes of 109 common TFs to find, depending on the method applied, 1538 to 6703 PPI,
71 respectively. This new evidence suggests that TF cooperativity may be largely determined through the
72 repertoire of (dynamic) PPI (Goos et al., 2022).

73 The REL DBD is found in only 10 (0.6%) of all human TFs, including the five members of the nuclear
74 factor of kappa light polypeptide gene enhancer in B-cells (NF- κ B) family of TFs (Lambert et al., 2018).
75 The five NF- κ B subunits are evolutionary conserved, inducible regulators of development and disease
76 conditions and are particularly important in regulating innate and adaptive immune responses (Williams
77 and Gilmore, 2020; Zhang et al., 2017).

78 The p65 NF- κ B/ RELA transcription factor contains a highly structured and conserved N-terminal REL
79 homology domain (RHD) that is involved in DNA binding and dimerization, as shown by the crystal
80 structure of the p65 / p50 NF- κ B heterodimer bound to DNA (Chen et al., 1998; Williams and Gilmore,
81 2020). The C-terminal half of p65 / RELA contains two potent transactivation domains (TA₁, TA₂) and
82 is inducibly phosphorylated at multiple residues (Christian et al., 2016; Viatour et al., 2005). In contrast
83 to the RHD, the C-terminus is highly unstructured as revealed originally by NMR and supported by
84 bioinformatics predictions (Jumper et al., 2021; Schmitz et al., 1994; Schmitz et al., 1995; Varadi et al.,
85 2022). This phenomenon may also underly the previously reported cytokine–dependent conformational
86 switches of p65 / RELA (Milanovic et al., 2014).

87 Both, post-translational modifications and structural flexibility of the p65 / RELA C-terminus are
88 features that have very likely evolved to expand the repertoire of PPI under changing conditions and
89 within subcellular compartments. However, the p65 / RELA interactome has not yet been determined

90 comprehensively with methods that also cover labile, transient or sub-stoichiometric interactions of p65
91 / RELA with cellular proteins as they occur in living cells.

92 Accordingly, we have limited understanding of how exactly p65 / RELA cooperates with partner TFs
93 (*in cis* at overlapping DNA elements or *in trans* across chromosomes), chromatin modifiers, the
94 transcription machinery, and other nuclear cofactors to regulate transcription of specific groups of genes
95 (Bacher et al., 2021).

96 Biotin-proximity labeling is a relatively new approach by which cells, expressing a bait protein fused to
97 an engineered bacterial biotin ligase (such as BirA* used for BioID), are incubated with biotin for
98 several hours to biotinylate all proteins in close vicinity (i.e. a radius of 1-10 nm) to the fusion protein.
99 After cell lysis, biotinylated proteins are captured on streptavidin affinity matrices and subsequently
100 identified by liquid chromatography-tandem mass spectrometry (LC-MS / MS) (Qin et al., 2021; Roux
101 et al., 2012). Key advantages of this approach include its ability to capture weak or transient interactions
102 from both soluble and insoluble proteins, or subcellular organelles, and the possibility to use high-
103 stringency protein purification methods to reduce background contaminants (Zhou and Zou, 2021).
104 MiniTurbo (mTb, used for miniTurboID) is a recently improved small 28 kDa variant of BirA that more
105 efficiently biotinylates intracellular proteins within minutes in the presence of exogenously added biotin
106 (Branon et al., 2018).

107 The pro-inflammatory cytokine interleukin-1 (IL-1) rapidly activates p65 / RELA in a broad range of
108 cell types (Meier-Soelch et al., 2021). Numerous studies, including our own work, have shown the
109 importance of p65 / RELA for the expression of IL-1-target genes, rendering this system an ideal model
110 to study the dynamic p65 / RELA interactome (Barter et al., 2021; Jurida et al., 2015; Weiterer et al.,
111 2020).

112 Here, we report the first proximity-based p65 / RELA interactome using inducible wild type, or mutant
113 p65-miniTurbo fusion proteins devoid of either DNA binding or dimerization properties, to identify 366
114 high confidence p65 / RELA interactors (HCI) of which 87 % are novel. The p65 / RELA interactome
115 is highly enriched for nuclear proteins, including 172 TFs (47 % of all p65 / RELA interactors) and 74
116 epigenetic regulators (20% of all interactors). A targeted siRNA screen for 38 interactors and subsequent
117 functional gene expression studies identify new gene regulatory (sub)networks, each activated or
118 repressed by p65 / RELA in combination with one of the TFs ZBTB5, GLIS2, TFE3 / TFEB or S100A8
119 / S100A9.

120 Taken together, these data reveal a remarkably large, dynamic and versatile (transcription factor and
121 epigenetic regulator) interactome of p65, which determines gene expression patterns mainly via DNA-
122 independent protein-protein interactions (PPIs).

123

124

125 **Results**

126 **Identification of new p65 / RELA interactors using miniTurbo-based proximity labeling**

127 Point mutations in the RHD of p65 / RELA, such as glutamate 39 to isoleucine (E / I), inhibit DNA
128 binding, while mutations of two other amino acids, phenylalanine 213 and leucine 215, to aspartic acid
129 (FL / DD), prevent dimerization as previously shown by co-immunoprecipitation and EMSA
130 experiments (Riedlinger et al., 2019) (**Fig.1A, left image**). In contrast, the C-terminal half of p65 /
131 RELA is highly unstructured as revealed by alphafold (Jumper et al., 2021; Varadi et al., 2022) (**Fig.1A,**
132 **right image**). We reasoned that these features of the RHD and the p65 / RELA C-terminus very likely
133 evolved to expand the repertoire of possible protein interactions of p65 / RELA under changing
134 conditions and within subcellular compartments.

135 To comprehensively determine the p65 / RELA interactome as it occurs in intact cells, we constructed
136 expression vectors containing wild type p65 / RELA or the E / I and FL / DD mutants fused in frame to
137 a C-terminal HA-tag and a modified miniTurbo biotin ligase (Branon et al., 2018) (**Fig. 1B**). The fusion
138 proteins were expressed under the control of a tetracycline-sensitive promoter using a single vector
139 system (**Fig. 1B**). Parental HeLa cells and stable HeLa cell lines genetically edited by CRISPR-Cas9 to
140 have strongly reduced p65 / RELA levels were reconstituted with the constructs and showed
141 doxycycline-dependent expression, nuclear translocation of NF- κ B and basal as well as IL-1 α -inducible
142 transcriptional activity sensitive to the aforementioned mutations, demonstrating that the fusion proteins
143 were functional in the NF- κ B system (**Supplementary Fig. 1A-C**).

144 Following intracellular expression, proteins in the vicinity of p65 / RELA were supposed to be modified
145 with biotin in a distance-dependent manner by the miniTurbo part, as shown schematically in Fig. 1C.
146 Wild type p65 / RELA or the two mutant versions were expressed at comparable levels (**Fig. 1D, left**
147 **panel**). Biotinylated proteins were purified from extracts of untreated cells or cells exposed to IL-1 α for
148 1 h and visualized by streptavidin-HRP conjugates (**Fig. 1D, right panel**). Biotinylation was strictly
149 dependent on the simultaneous addition of doxycycline and biotin to the cell cultures, as no signals were
150 detected with doxycycline or biotin alone (**Fig. 1D, right panel**). The latter conditions, together with
151 samples from cells expressing HA-miniTurbo alone (EV), served as important negative controls to
152 define specific p65 / RELA interactors in the bioinformatics analyses later on (**Fig. 1D, gray colors**).

153 Across all conditions, a total of 3,928 protein IDs were identified from purified biotinylated proteins by
154 LC-MS / MS from the two biological replicates (**Supplementary Table 1**). Volcano plot analyses show
155 that many of these proteins are labeled by the small and presumably more mobile HA-miniTurbo protein
156 (**Fig. 1E, samples labeled EV**). In contrast, p65 / RELA was highly enriched along with its canonical
157 interaction partners p50 (NFKB1), p52 (NFKB2), I κ B α (NFKBIA), and NEMO (IKBKG) in samples
158 expressing the fusion proteins (**Fig. 1E**). Based on a significant at least fourfold enrichment compared
159 with all negative controls, we found 279 specific p65 / RELA interactors in untreated cells and 310 in
160 IL-1 α -treated cells (**Fig. 1E, Supplementary Fig. 2A-B**). With the E / I mutant, 251 interactors were
161 identified in comparison, compared with only 176 after IL-1 treatment (**Fig. 1E**). Striking was the
162 significantly reduced number of p65 / RELA interactors in the FL / DD mutant, which amounted to 95
163 in untreated cells and only 31 after IL-1 treatment (**Fig. 1F**). Since, as shown in **Fig. 1D**, a comparable
164 enrichment and thus (auto)biotinylation of the RELA (FL / DD) fusion protein was measured, we
165 consider this effect to be specific. Of 401 specific interactors in untreated cells, only 16 (4%) were
166 associated with all p65 / RELA bait proteins, and these numbers (13 or 4%) were similar after IL-1 α
167 treatment (**Fig. 1F**).

168 To investigate the extent to which these differences were also reflected at the functional level,
169 comparative overrepresentation analyses were performed for all six protein groups shown in **Fig. 1G** to
170 identify the 100 most enriched pathways. These data show that the p65 / RELA wild type and the E / I
171 mutant, but not the FL / DD mutant, behave largely similarly in terms of biological function of the
172 interacting proteins (**Fig. 1G, Supplementary Table 1**), whereas the FL / DD mutant is essentially
173 associated with a loss of pathway terms (**Fig. 1G**). This is particularly evident when considering the 15
174 most enriched pathways, which include processes such as chromatin organization, histone
175 modifications, transcription, NF- κ B signal transduction, and various developmental and differentiation
176 steps (**Fig. 1H**).

177

178 Next, particularly in light of the many molecular functions in gene regulation attributed to p65 / RELA
179 (Martin et al., 2020), we focused on a detailed analysis of the composition of the p65 / RELA
180 interactome, primarily concerning proteins with a role in chromatin-associated processes or
181 transcription.

182 In total, we found 46 proteins for which an interaction with p65 / RELA had already been documented
183 in the STRING database at different experimental levels of evidence (**Fig. 2A**). For the most part, these
184 factors were strongly enriched by miniTurboID and included many well-characterized transcription
185 factors (e.g. NFATC2, IRF1, FOSL1, CEBPa/d, JUN), histone-modifying enzymes (e.g. EP300,
186 CREBBP, KAT2A), chromatin remodelers (e.g. DPF1/2, NCOR2), nuclear cofactors (e.g. MED15,
187 BCL6) and signaling factors (e.g. IRAK1) (**Fig. 2A**).

188 Because the total number of p65 / RELA interactors in untreated and IL-1-treated cells, respectively,
189 comprised 366 proteins, we conclude that 87% of the proximity-based p65 / RELA interactome consists
190 of novel interactors (**Fig. 2B**).

191 When compared to the list of 1639 TFs documented in the human genome by Lambert et al. (Lambert
192 et al., 2018), 172 (47 %) of all p65 / RELA interactors are classified as DBD-containing TF proteins
193 (**Fig. 2C**). Based to 801 epigenetic regulators contained in the newest version of the Epifactors data base
194 (Marakulina et al., 2023), a further 74 (20 %) of all p65 / RELA interactors are chromatin writers,
195 readers, erasers or remodelers (**Fig. 2C**).

196 The interaction of p65 / RELA with these nuclear cofactors was completely abolished by the FL / DD
197 (but not the EI) mutant in almost every case, as shown in **Fig. 2D** using the top10 strongest p65 / RELA
198 interactors as an example. Based on annotations in the Epifactors database, 50 of the epigenetic
199 regulators are subunits of a total of 19 established nuclear multiprotein complexes, with components of
200 the BAF complex being most abundant in the p65 / RELA interactome (**Fig. 2E, Supplementary Table**
201 **1**). Particularly prominent were four to eight subunits each of the BAF, TFC-HAT, BHC and CHD8
202 complexes. A total of 9 factors were assigned to the canonical BRG / BRM-associated BAF (BAF or
203 cBAF), polybromo-associated BAF (PBAF), non-canonical BAF (ncBAF) and mammalian SWI/SNF
204 (short for SWItch/sucrose nonfermentable) complexes (**Fig. 2D, highlighted in light blue**). Four factors
205 belonged to the CHD8 or COMAPSS (short for proteins associated with Set1C) complexes (**Fig.2D,**
206 **highlighted in turquoise**).

207 Of the 172 TFs that interacted with p65 / RELA in total, 137 were already enriched under basal
208 conditions (**Fig. 2F**). Of this group, 91 (66 %) were still present with the E / I mutant and only 4 (3 %)
209 with the FL / DD mutant, indicating that only about 1/3 of the TF interactions of p65 / RELA require
210 DNA binding, whereas virtually all TF interactions require dimerization. (**Fig. 2G**). 117 of the 172 TFs
211 found in basal or IL-1 α -stimulated conditions, were distributed among 7 TF classes, with C2H2 ZF and
212 homeodomain TFs being the most abundant and accounting for 40% of all p65 / RELA interactors (**Fig.**
213 **2H**). bZIP TFs were the third most abundant and contained a number of already known p65 / RELA
214 interactors such as JUN, ATF2 and FOSL2, among others (**Fig. 2A and Fig. 2H**). The remaining 55 TFs
215 represented 31 different TF classes (**Fig. 2H**). Overall, we found that in IL-1 α stimulated cells, 13 ZBTB
216 and 12 ZNF transcription factors, both from the C2H2 ZF class, were the most frequently identified p65
217 / RELA interactors among all enriched TF families (**Fig. 2I**).

218 In terms of molecular functions, the 366 p65 / RELA interactors shown in **Fig. 2B** are almost exclusively
219 associated with RNA polymerase II-regulated transcription processes (**Fig. 2J, left panel**) and are
220 localized largely in the nucleus, in membrane-less organelles, and in chromatin (**Fig. 2J, right panel**).

221 Taken together, these data demonstrate that proximity labeling reveals a much larger p65 / RELA
222 interactome and its dynamics than previously appreciated. Through this approach, we find a complex
223 DNA-binding, dimerization-, and IL-1 α -dependent remodeling of the p65 / RELA interactome, with
224 mutation of only two dimerization-related amino acids in RHD exerting the strongest influence,
225 consistent with the interpretation that most p65 / RELA interactions with other cellular proteins do not
226 require direct or stable interactions with DNA but rely primarily on intact dimerization functions. Half
227 of the p65 / RELA interactome is dominated by a large number of TFs distributed across many different

228 classes, of which about one third also require an intact RELA DBD in addition to dimerization. The
229 second largest group, besides TFs, is represented by components from protein complexes that affect
230 chromatin modifications and remodeling and whose interaction with p65 / RELA appears to be largely
231 independent of DNA-binding. Overall, based on bioinformatic analyses, 87% of the p65 / RELA
232 interactors are novel, defining a previously unknown dimension of the extensive interaction of p65 /
233 RELA with other transcriptional regulators and cofactors.

234

235 **Functional validation of 38 p65 / RELA high confidence interactors by a targeted siRNA screen**

236 Based on greater than 8-fold enrichment in both replicates in untreated or IL-1 α -stimulated cells and
237 lack of published evidence for clearly defined functions in the NF- κ B system, we finally extracted a list
238 of 38 "high confidence" p65 / RELA interactors (HCI) (**Fig. 3A**).

239 As before, these proteins were highly associated with transcriptional functions (**Fig. 3B**). Because they
240 had almost no known interactions with each other and only two had a documented interaction with p65
241 / RELA (CEBPD and FOSL1) in the STRING data base, this set defines a new, previously unknown
242 part of the p65 / RELA interactome that we selected for follow-up validation (**Fig. 3B**).

243 We then performed a targeted siRNA screen to investigate all 38 HCI concerning their relevance for
244 NF- κ B-mediated gene expression. Specifically, we used commercial siRNAs to suppress all 38 factors
245 individually in untreated and in IL-1 α -stimulated cells and then assessed the effects on the expression
246 levels of endogenous NF- κ B target genes. The screen was performed in a miniaturized format, by which
247 RT-qPCRs were performed in total cell lysates with an intermediate linear pre-amplification PCR step,
248 using gene-specific primers / Taqman probes for all of the targeted genes (38 plus p65 / RELA), three
249 IL-1 α -inducible genes (*CXCL8*, *NFKBIA*, *CXCL2*) and two housekeeping genes (*GUSB*, *GAPDH*)
250 (**Supplementary Fig. 3A**).

251 Results from three independent screens were normalized and expressed as mean difference between the
252 siRNA target and a control siRNA directed against luciferase. The mRNA levels of 38 HCI were
253 successfully suppressed by the siRNAs, while there was little effect on *GUSB* and *GAPDH*
254 (**Supplementary Fig. 3B**, **Supplementary Table 2**).

255 As expected, the strongest suppression of IL-1 α -inducible expression of *CXCL8*, *NFKBIA* and *CXCL2*
256 was observed with p65 / RELA knockdown (**Fig. 3C**). However, we found that for all tested genes and
257 conditions the knockdown of a single HCI affected at least one NF- κ B target gene in basal or IL-1 α -
258 stimulated conditions, or both (**Fig. 3C**).

259 Hierarchical clustering of the expression patterns revealed three clusters (3-6) of HCI whose suppression
260 resulted in relatively uniform and strong suppression of IL-1 α target genes, while cluster 2 comprised a
261 set of genes whose suppression had a strong effect on the basal expression of *CXCL8* and *CXCL2* (**Fig.**
262 **3C**).

263 While p65 / RELA seemed to be essential, these data showed a functional contribution of all 38 top HCI
264 to NF- κ B-dependent gene expression and suggest that each interacting protein in a (gene-)specific
265 manner shapes the basal and inducible state of p65 / RELA-dependent genes.

266 To further investigate the contribution of HCI to the regulatory functions of p65 / RELA, we selected
267 six transcription factors for more detailed and genome-wide follow-up studies, namely zinc finger and
268 BTB domain containing 5 (ZBTB5, encoded by KIAA0354), Zinc finger protein GLI-similar 2 (GLIS2,
269 also called Neuronal Krueppel-like protein, NKL), S100A8 (also called CAGA, CFAG, MRP8), and
270 S100A9 (also called CAGB, CFAG, MRP14), and transcription factors E3 (TFE3, BHLHE33) and EB
271 (TFEB, BHLHE35) (**Fig. 3C**). All six proteins clearly interacted with p65 / RELA in the miniTurboID
272 screen (**Fig. 3D**). The interactions of TFE3, TFEB, GLIS2 and ZBTB5 with p65 / RELA were also
273 confirmed for the endogenous proteins at single cell level by proximity-ligation assays (PLA) and were
274 significantly reduced in p65-deficient cells (**Supplementary Fig. 4**).

275 This selection of factors provided an opportunity to validate the p65 interactors using the example of
276 two poorly characterized transcription factors with completely unknown relationships to p65 / RELA
277 (ZBTB5, GLIS2) and two pairs of related factors (S100A8 / A9, TFE3 / TFEB) that play a role in
278 inflammation but do not have a well-established mechanistic link to the NF- κ B system.

279 **Crosstalk of lysosomal transcription factors TFE3 / TFEB and GLIS2 with the (inducible) NF- κ B
280 system**

281 The miniTurboID data showed that 3 out of 4 MiT-TFE family members, i.e. TFE3, TFEB and
282 microphthalmia-associated transcription factor (MITF) and all three GLIS family members (GLIS1-3)
283 bound to p65 / RELA wt (**Fig. 4A**) This interaction was largely abolished in the FL / DD dimerization
284 –deficient p65 / RELA mutant for all six factors and reduced in the E / I DNA-binding deficient mutant
285 mainly after cytokine stimulation (**Fig. 4A**).

286 TFE3 and TFEB proteins appeared as multiple bands in cell extracts in the absence of nutritional stress
287 and their dephosphorylated, faster-migrating forms rapidly accumulated in the nuclear fraction upon
288 starvation as described before (**Fig. 4B and Supplementary Fig. 5**) (Martina et al., 2016; Martina et
289 al., 2014; Settembre et al., 2011). Under non-starved conditions, considerable amounts of both
290 phosphorylated TFE3 and TFEB were present in the nucleus (**Fig. 4B and Supplementary Fig. 5**). IL-
291 1 α treatment did not change the phosphorylation patterns and the subcellular distributions of TFE3 /
292 TFEB, but caused transient nuclear translocation of p65 and p50 between 0.5 and 1 h as expected (**Fig.**
293 **4B and Supplementary Fig. 5**).

294 Silencing of p65 / RELA, TFE3 / TFEB and GLIS2 by siRNA revealed their profound suppression at
295 the protein levels (**Fig. 4C**). We also observed that p65 / RELA knockdown reduced TFE3 levels, TFE3
296 knockdown reduced TFEB and GLIS2 levels, and GLIS2 knockdown reduced p65 / RELA and TFE3
297 levels, suggesting a mutual regulation of the three factors at the protein level (**Fig. 4D**).

298 RT-qPCR analysis of six prototypical TFE3 / TFEB autophagy and lysosomal target genes with a
299 conserved cis-element in the regulatory region, the so-called Coordinated Lysosomal Expression and
300 Regulation (CLEAR) element (Martina et al., 2016; Martina et al., 2014; Sardiello et al., 2009), revealed
301 no effect of silencing p65 / RELA on mRNA expression of any of these genes (**Supplementary Fig. 6**).
302 These CLEAR genes were also not regulated by IL-1 α (**Supplementary Fig. 6**).

303 In contrast, knockdown of TFE3 or TFEB strongly suppressed the IL-1 α -mediated expression of five
304 prototypical inflammatory IL-1 α target genes (*IL8/CXCL8, CSF2, CCL2, TNFAIP3, NFKBIA*), while
305 GLIS2 knockdown suppressed the IL-1 α -mediated expression of *CSF2, CCL2* and *NFKBIA* (**Fig. 4E**).

306 These data provided additional functional validation of three of the p65 / RELA interactors and
307 suggested a unidirectional crosstalk of lysosomal transcription factors TFE3 / TFEB with the IL-1 α -NF-
308 κ B system.

309 **ZBTB5, GLIS2, S100A8 / A9 and TFE3 / TFEB are co-regulators of the p65 / RELA gene response**

310 We then assessed genome-wide roles of the six selected factors. In a first series of transcriptome analyses
311 using 48,000-probe microarrays, we compared silencing of p65 / RELA with silencing of ZBTB5 and
312 S100A8 / A9, whereas in a second series we compared silencing of p65 / RELA with silencing of GLIS2,
313 TFE3, and TFEB. Differentially expressed genes (DEGs) in the seven knockdowns were defined based
314 on a Log₂ fold change (LFC) ≥ 1 with a -Log₁₀ p value ≥ 1.3 compared to luciferase siRNA transfections.

315 Each knockdown affected more than 1000 target genes in untreated cells across the entire expression
316 range of all genes, illustrating the broad role of RELA and its HCI in homeostatic cell functions
317 (**Supplementary Fig. 7A-B, Supplementary Table 3**).

318 Next, we addressed the question of the extent to which the six factors are involved in (co)regulation of
319 the IL-1 α -regulated NF- κ B response (**Fig. 5A**).

320 Of the 756 (series 1) and 617 (series 2) IL-1 α -induced genes, 230 (30%) and 168 (27%) genes,
321 respectively, were expressed in a p65 / RELA-dependent manner (**Fig. 5B**).

322 Each individual knockdown affected a comparable number of IL-1 α target genes, which partially
323 overlapped with the p65 / RELA-regulated sets of genes as indicated by red colors in the Venn diagrams
324 shown in **Fig. 5B**.

325 Similar to RELA, suppression of ZBTB5, GLIS2, S100A8 / A9, and TFE3 / TFEB overall resulted in a
326 significant reduction in expression of their respective sets of IL-1 α target genes, consistent with them
327 acting primarily as coactivators in the IL-1 system (**Fig. 5C**).

328 This phenomenon was not observed for the large number of genes expressed in basal conditions, the
329 majority of which did not overlap with RELA target genes and thus appeared to be induced or repressed
330 by the knockdowns in comparable proportions (**Supplementary Fig. 7C**, **Supplementary Table 3**).

331 Correlation analyses of the effects of p65 / RELA knockdowns with the respective knockdown of a p65
332 / RELA interactor showed a pronounced coregulation of jointly regulated IL-1 α target genes, which are
333 represented by the red sets of genes in **Fig. 5B** and **Fig. 5D**, into the same direction. This means, if a
334 gene was suppressed or induced with the p65 / RELA siRNA relative to the luciferase siRNA, this was
335 also the case with the knockdown of the respective interactor (**Fig. 5D**).

336 This effect was also observed for the relatively small sets of genes specifically overlapping with p65 /
337 RELA targets in basal gene expression (**Supplementary Fig. 7D**, **Supplementary Table 3**).

338 These data emphasize the broader relevance of the new p65 / RELA interactors at the functional level,
339 by showing that all representatively selected factors affect specific sets of RELA target genes in
340 homeostatic conditions and profoundly participate in the regulation of inducible subsets of the IL-1 α
341 gene response.

342 **p65 / RELA, ZBTB5, GLIS2, S100A8 / A9, and TFE3 / TFEB engage in complex multilayer gene 343 regulatory networks**

344 To identify additional functional connections between all of the groups of genes deregulated by siRNA
345 knockdowns in the IL-1 α response as shown in **Fig. 5B**, we used their STRING entries of functional
346 protein-protein interactions to construct multidimensional interaction networks.

347 The basic idea of this analysis is that the gene products regulated by RELA or a RELA interactor may
348 themselves have many other direct or functional protein interactions, providing the cell with a much
349 larger and ultimately interconnected gene regulatory network as shown schematically in **Fig. 6A**.

350 To test this hypothesis, we used the gene sets defined via Venn diagrams in **Fig. 5B** and constructed
351 four separate PPI networks for the ZBTB5 / RELA (325 genes), S100A8 / S100A9 / RELA (405 genes),
352 GLIS2 / RELA (243 genes), and TFE3 / TFEB / RELA (318 genes) groups. Noteworthy, only 69-77 %
353 of the genes affected by siRNA knockdown had a PPI entry in STRING, corroborating the notion that
354 the combined miniTurboID / transcriptome analysis effectively revealed many new components of novel
355 genetic networks (**Fig. 6B**).

356 The known interactions of factors retrieved from STRING are shown by grey lines, whereby edge width
357 corresponds to the underlying evidence (**Fig. 6C**). As highlighted by the light pink colors of the edges,
358 RELA interacts with a relatively small number of proteins in all four networks. S100A8 / 9 and TFE3 /
359 TFEB strongly interacted with each other (as expected from literature (Raben and Puertollano, 2016;
360 Vogl et al., 2018)) and with very few other proteins, whereas ZBTB5 and GLIS2 had no known
361 interactions at all.

362 The coloring of network nodes according to their dependence on RELA, ZBTB5, GLIS2, S100A8 / 9,
363 or TFE3 / TFEB links the known levels of connectivity deposited in STRING to the novel patterns of
364 regulation of the corresponding genes observed in our study and reveals a multitude of experimentally
365 determined new relations between the different groups of siRNA target genes (**Fig. 6C**).

366 Taken together, this refined analysis, using the IL-1 response as an example, demonstrates that RELA
367 controls large genetic networks composed of gene regulatory subnetworks which are assembled from
368 specific interactions of p65 / RELA with ZBTB5, GLIS2, S100A8 / 9, and TFE3 / TFEB and their target
369 genes.

370 **Chromatin recruitment of RELA and its interactors**

371 We next extended the functional analysis of selected p65 / RELA interactors to the chromatin level. For
372 this purpose, we used our published p65 / RELA ChIPseq data from the HeLa subclone KB and screened
373 the experimentally determined binding regions of p65 / RELA for underlying significantly enriched
374 DNA motifs of TFE3, TFEB or GLIS2 within a range of \pm 500 base pairs around the p65 / RELA peaks
375 (**Fig. 7A, Supplementary Table 4**) (Jurida et al., 2015; Weiterer et al., 2020).

376 First, we found that 42% of all 35,024 p65 / RELA peaks were associated with motifs specific for either
377 p65 / RELA or for any REL (NF- κ B) transcription factor (**Fig. 7B**). Second, 7 % or 12 % of all 35,024
378 p65 / RELA ChIPseq peaks contained a RELA motif and a TFE3 or GLIS2 motif, respectively,
379 suggesting that RELA chromatin recruitment occurs at composite DNA binding elements which would
380 facilitate direct binding of RELA and either TFE3 or GLIS2 to DNA (**Fig. 7C**). 24 % or 19 % of all
381 RELA peaks contained a RELA motif, but no motif for TFE3 or GLIS2 (**Fig. 7C**). Vice versa, 15 % or
382 25 % of all RELA ChIPseq peaks contained a motif for TFE3 or GLIS2, respectively, but no RELA
383 motif, suggesting indirect recruitment to DNA by PPI (**Fig. 7C**). As indicated by p values, TFE3 and
384 GLIS2 motifs under p65 / RELA peaks were highly significantly overrepresented, compared to their
385 distribution across the whole genome sequence (**Fig. 7C**). This was not the case for TFEB motifs, of
386 which 2% were found together with RELA motifs and 5% without RELA motifs at p65 / RELA peaks
387 (**Fig. 7C**).

388 Around 50% of all genes which were deregulated by RELA siRNAs in basal or IL-1 α -stimulated
389 conditions (**as shown in Fig. 5 and Supplementary Fig. 7**) were associated with at least one motif for
390 either RELA, TFE3 / TFEB, GLIS2 (**Fig. 7D**). In most instances, gene sets contained 1-3 motifs alone
391 or in combination, in line with the notion of RELA genetic subnetworks as described before (**Fig. 6C**).
392 Only 9 genes were annotated with all four motifs, such as TNFAIP3 (**Fig. 7E**). The highly IL-1 α -
393 inducible TNFAIP3 gene locus contains two major p65 / RELA peaks within the promoter region that
394 are associated with multiple TFE3, TFEB and GLIS2 binding sites (**Fig. 7F**). As a proof of concept, we
395 chose this gene to demonstrate the IL-1 α -inducible recruitment of p65 and TFE3 to the promoter of
396 TNFAIP3 (**Fig. 7G**). Notably, this recruitment was increased by long-term starvation for 24 h, the
397 condition known to increase translocation of TFE3 to the nucleus (**Fig. 7G**).

398 Similar results were obtained from the analyses of available motifs for various ZBTB family members
399 that, in addition to ZBTB5, were identified in our p65 / RELA interactomes as shown in **Fig. 2H**. While
400 the DNA-binding motif for ZBTB5 is unknown, ZBTB33, ZBTB7A and ZBTB7B motifs were clearly
401 enriched under p65 / RELA ChIPseq peaks (**Supplementary Fig. 8**). Interestingly, ZBTB7A is the only
402 ZBTB factor, for which a role in the NF- κ B system has been described. It was found to bind to p65 /
403 RELA and control the accessibility of promoters for p65 / RELA (Ramos Pittol et al., 2018).

404 These combined experimental and bioinformatics analyses suggest that a considerable part of p65 /
405 RELA chromatin recruitment could occur indirectly, through interactions with one of its many TF
406 binding partners as defined in this study by proximity labeling.

407 **Discussion**

408 Transcription factors, which account for approximately 8% of all human genes, are defined by their
409 ability to interact with DNA and stimulate or repress gene transcription, but their experimentally
410 determined binding sites are not necessarily predictors of the genes that they actively regulate
(Cusanovich et al., 2014; Lambert et al., 2018). It has been suggested that this relative lack of specificity
411 is compensated for by cooperativity and synergy between TFs and by their interactions with other
412 nuclear proteins. However, understanding of these interactions and relationships is still very limited
(Lambert et al., 2018). Here, we used proximity labeling to investigate the interactome of the REL family
413 member p65 / RELA at high resolution. The data reveal hundreds of p65 / RELA interactors in a single
414 cell type, demonstrating the enormous extent of intermolecular connectivity of a single mammalian TF.
415 Taken together with the exemplary functional study of selected TF partners, the results have far-reaching
416 implications for interpreting p65 / RELA-driven processes in homeostatic and diseased states.
417

419 Limited evidence exists for p65 / RELA interactors (or any other NF- κ B protein) from large-scale
420 studies. Bouwmeester et al. reported 92 p65 / RELA interactors in HEK293 cells using tandem affinity
421 purification / mass spectrometry (TAP-MS) (Bouwmeester et al., 2004) (**Supplementary Table 5**). By
422 TAP-MS 2,156 high-confidence protein-protein interactions were identified from soluble and
423 chromatin-associated complexes of 56 TFs, including 71 unique interactions for NFKB1 in HEK293
424 cells (Li et al., 2015) (**Supplementary Table 5**). Goos et al. recently surveyed the PPIs of 109 human
425 TFs using BirA fusions in HEK293 cells, finding an average of 61.5 PPIs per TF. Notably, they
426 identified only 16 interactors for NFKB1 (p50) (Goos et al., 2022) (**Supplementary Table 5**). The
427 Gilmore group lists 115 RELA-interacting proteins derived from various models and systems
428 (<https://www.bu.edu/nf-kb/physiological-mediators/interacting-proteins/>) (**Supplementary Table 5**),
429 while, as shown in Fig. 2, the STRING data base currently documents less than 50 p65 / RELA
430 interactors (Szklarczyk et al., 2019). Thus, our results significantly exceed the number of reported p65
431 / RELA interactors and provide in depth functional validation, which is lacking in the large scale screens
432 cited above.

433 About one fifth of the p65 / RELA interactome consisted of chromatin regulators. Our data reproduced
434 interactions of p65 / RELA with the histone acetyltransferases (HATs) p300 / CBP (also called EP or
435 CREBBP), TIP60 (KAT5) and the histone deacetylases HDAC1 / 2 (Ashburner et al., 2001; Brockmann
436 et al., 1999; Merika et al., 1998; Perkins et al., 1997), which were later also confirmed in the chromatin
437 text, e.g. at H3K27-marked enhancers and promoters (Garber et al., 2012; Kim et al., 2012; Mukherjee
438 et al., 2013; Raisner et al., 2018).

439 Beyond this, miniTurboID greatly advances our understanding of the complexity of the p65 / RELA
440 nuclear cofactor interactome as with this method we detected more than 50 subunits of chromatin
441 complexes associated with p65 / RELA. The data suggest that p65 / RELA preferentially interacts with
442 complexes that promote active gene expression and counteract repressive programs mediated by
443 Polycomb proteins, such as COMPASS, SWI/SNF or BAF (Cenik and Shilatifard, 2021) (Kadoch and
444 Crabtree, 2015; Mashtalir et al., 2020) (Hodges et al., 2016; Varga et al., 2021) (Schick et al., 2021).
445 Further p65 / RELA interactors (KDM6A, KMT2D, NCOA6, PAGR1, PAXIP1) are subunits of
446 COMPASS-like or CHD8 complexes that regulate H3K4 methylation or chromatin remodeling at
447 promoters and enhancers during transcriptional activation (Manning and Yusufzai, 2017;
448 Schuettengruber et al., 2017). However, how different subunits of these complexes are assembled and
449 recruited to chromatin for stimulus-specific functions remains an open question. Our data shed light on
450 a possible role of the p65 / RELA interactome to coordinate these events.

451 In this context, it was remarkable that half of the p65 / RELA interactors represented other TFs. This
452 result supported earlier studies showing p65 / RELA's interaction with basic leucine zipper domain
453 (bZIP) TFs (e.g., JUN, ATF1/2/3/7, FOSL1/2, CEBPA/D) or IRF1 (Jurida et al., 2015; Merika et al.,
454 1998; Stein et al., 1993; Wolter et al., 2008). The sheer number of possible TF interactions suggested
455 an extraordinary level of p65 / RELA cooperativity with this class of proteins.

456 NF- κ B subunits are known to dimerize, potentially contributing to transcriptional selectivity (Saccani
457 et al., 2003; Siggers et al., 2012; Smale, 2012). Testing two p65 / RELA mutants that disrupt chromatin
458 recruitment and activation of TNF α response genes to a similar extent (Riedlinger et al., 2019), we found
459 that dimerization played a larger role in interactions with epigenetic regulators and TFs than DNA
460 binding. This behavior can be reconciled with the observation that, in living cells, promoter-bound NF- κ B
461 exists in dynamic, oscillating equilibrium with nucleoplasmic dimers, with short residence times at
462 high-affinity DNA binding sites (Bosisio et al., 2006). We suggest that miniTurboID, being crosslink-
463 free and rapid, appears to provide a snapshot of the consequences of this dynamic equilibrium. The
464 distinct interactomes of the E / I or the FL / DD mutants imply that, on average in the cell population
465 studied, the majority of the p65 / RELA interactome does not require stable interactions with DNA and
466 the complexes are (pre)assembled outside the chromatin, presumably in the nucleoplasm. These
467 interactions are determined by dimerization properties of p65 / RELA which were diminished by FL /
468 DD mutations. Proximity-based labeling thus informs on additional layers of TF cooperativity beyond
469 the coordinated formation of p65 / RELA complexes on accessible chromatin templates. Such a behavior
470 is unlikely to be captured by crosslinking-dependent techniques such as ChIPseq.

471 From a genome-wide perspective, the miniTurboID-based interactome suggested a model where p65 /
472 RELA, in cooperation with its TF partners and associated epigenetic regulator complexes, instructs the
473 cell to execute specific transcriptional programs. To test this hypothesis, we extended our analysis to
474 three functional levels: (i) a targeted siRNA screen of a panel of high confidence interactors, (ii) a
475 detailed identification of overlapping sets of target genes and (iii) the analysis of TF motifs under p65 /
476 RELA peaks.

477 RNAi-mediated suppression of the 38 most enriched novel p65 / RELA interactors, demonstrated the
478 gene-specific, functional contributions of 24 TFs, spanning multiple families, in regulating three
479 canonical NF- κ B target genes. These TFs exhibit varying quantitative contributions to basal and IL-1 α -
480 inducible gene expression, highlighting TF cooperativity in fine-tuning NF- κ B responses.

481 For genome-wide loss-of-function analyses, we focused on candidates from the C2H2 (GLIS2, ZBTB5)
482 and bHLH (TFE3, TFEB) TF families, and S100A8 / A9 as non-TF interactors with p65/RELA. GLIS2
483 and ZBTB5, poorly characterized TFs, are implicated in processes like epithelial-mesenchymal
484 transition and nephronophthisis but not in the NF- κ B system (Attanasio et al., 2007; Cheng et al., 2021b;
485 de Dieuleveult and Miotto, 2018; Wilson et al., 2021). S100A8 / A9 are typical, secreted drivers of the
486 innate immune responses, but with no role in p65 / RELA-mediated transcription (La Spina et al., 2020;
487 Pruenster et al., 2016; Wang et al., 2018). TFEB and TFE3 are known for lysosomal gene regulation
488 under conditions of starvation (Tan et al., 2022; Yang and Wang, 2021), but have also been suggested
489 to contribute to LPS-mediated inflammatory gene secretion in macrophages by unknown mechanisms
490 (La Spina et al., 2020; Pastore et al., 2016). Here, we found that the constitutively phosphorylated forms
491 of TFE3 and TFEB contributed to IL-1 α -NF- κ B-regulated inflammatory gene expression in non-starved
492 conditions. Additional data at the protein level suggest mutual regulation between p65 / RELA, TFE3 /
493 TFEB, and GLIS2.

494 By intersecting transcriptome-wide analyses of cells with reduced TF levels, we identified gene sets co-
495 regulated by p65 / RELA and six of its interactors, differing in basal conditions compared to IL-1 α -
496 activated cells. The combinatorial actions of multiple TFs and associated epigenetic regulators, as
497 indicated by the p65 / RELA interactome, are reminiscent of gene-regulatory networks (GRN) (Spitz
498 and Furlong, 2012). GRNs can consist of several subnetworks, each of which executes individual
499 segments of a complex biological process (Davidson, 2010; Peter and Davidson, 2011). We tested this
500 concept for the p65 / RELA-driven IL-1 α -response by bioinformatics analyses to find that, at the systems
501 level, a large part of the genes affected by RNAi form subnetworks with dense functional interactions.
502 Genome-wide ChIPseq data revealed multiple motifs for TFE3 / TFEB and GLIS2 coinciding with
503 35,000 p65 / RELA peaks. A recent study reported a similar scale of p65 binding events across different
504 mammalian species (31,602 to 90,570 p65/RELA peaks) (Alizada et al., 2021). NF- κ B binds to both
505 accessible and nucleosome-occluded chromatin in a TNF α -dependent manner, with defined chromatin
506 states regulated by p65 / RELA that distinguish conserved and constitutive functions from specific pro-

507 inflammatory functions of NF- κ B (Alizada et al., 2021). Our data suggest that these chromatin states
508 may, at least in part, be established by basal or IL-1 α -regulated multi protein complexes associated with
509 p65 / RELA.

510 Identifying p65 / RELA genetic subnetworks driven by p65 / RELA and its TF interactors provides a
511 novel explanation for the NF- κ B response's stimulus-specificity and its impact on the epigenome which,
512 in macrophages, was recently attributed to fluctuations in cellular NF- κ B activity (Adelaja et al., 2021;
513 Cheng et al., 2021a). Combining proximity-based p65 / RELA interactomics with RNAi experiments,
514 as demonstrated in our study, thus complements and extends approaches that sought to combine ChIPseq
515 with RNAseq to unveil the regulation of context-dependent NF- κ B target genes by the two p65 / RELA
516 TAD domains (Ngo et al., 2020).

517 The p65 / RELA subunit is the only NF- κ B subunit whose deletion leads to embryonic lethality in mice
518 (Beg and Baltimore, 1996). In most cells, it comprises the predominant NF- κ B transcriptional activity
519 and regulates a plethora of processes during development, the immune response and cancer (Mitchell
520 and Carmody, 2018; Zhang et al., 2017). Consequently, the p65 / RELA pathway is tightly regulated to
521 adjust nuclear p65 / RELA concentration and kinetics (Meier-Soelch et al., 2021). Despite significant
522 mechanistic insights from genetically altered cells or organisms with altered p65 / RELA expression
523 and improved knowledge of p65 / RELA-driven genetic changes, our understanding of this pathway has
524 not yet advanced enough to yield specific and effective anti-p65 / RELA drugs. In line with a recent
525 evaluation of NF- κ B component copy numbers in various immune cells (Kok et al., 2021), our study
526 demonstrates that quantitative proteomics can significantly contribute to understanding the NF- κ B
527 pathway's connectivity. Assuming that stable, physically connected protein complexes are more often
528 labeled with biotin compared to transient or indirect interactions, proximity-labeling also informs on
529 interaction strength and frequency, which will allow further classification of p65 / RELA networks.

530 In summary, the high resolution novel p65 / RELA interactome and its gene-regulatory logics reported
531 in this study provide a rich resource and a new framework for explaining p65 / RELA function in living
532 cells.

533 **Limitations:**

534 Our study was restricted to a single cell type in order to standardize and integrate the different levels of
535 molecular analyses. HeLa cells express all core components of the NF- κ B pathway and have a fully
536 functional IL-1 system (Weiterer et al., 2020). They represent one of the most widely used cellular
537 models to date (Adey et al., 2013). Thus, we expect that p65 / RELA interactomes of other cell types
538 will show some overlap but will also differ. A further limitation is the necessity to ectopically express a
539 p65 / RELA fusion protein that, although performed in a p65 / RELA-deficient background using a
540 conditional system, could influence the stoichiometry of some of the interactions we discovered.
541 Proximity labeling generates a cumulative snapshot of protein-protein interactions, but does not allow
542 inference of physical interactions. Because the analyses were performed on whole cell extracts, no
543 information is available on the subcellular regulation of the interactions, although bioinformatics
544 analyses revealed a clear predominance of nuclear p65 / RELA interactors. Despite the short labeling
545 times (70 minutes of biotinylation), miniTurboID does not resolve the time wise sequence of interactions
546 and rather reports cumulatively on all interactions that happened within this period of time. The
547 generation of a specified list of 366 RELA / p65 interactors resulted from the adoption of relatively
548 rigorously defined filtering criteria based on a combination of negative controls, levels of enrichment
549 and T-test criteria. The same applied to the definition of p65 / RELA target genes. As with any
550 bioinformatics analysis, it is clear that weakening or tightening these filtering criteria would increase or
551 decrease the number of p65 / RELA interactors or genes affected by siRNA knockdown. Similarly, the
552 annotation of factors to gene ontologies or protein networks depends on the underlying databases and
553 the parameters set. Here, we chose to use the default settings of current versions of Metascape and
554 STRING, respectively. However, publication of the entire raw dataset and all source data will allow
555 colleagues in the field to (i) track all analysis results and (ii) generate alternative p65 / RELA interactors
556 lists and GRN under their own chosen criteria.

557 **Methods**

558 **Cell lines, cytokine treatment, and starvation**

559 HeLa and KB cells were maintained in Dulbecco's modified Eagle's medium (DMEM; PAN Biotech; #P04-03550), complemented with 10% filtrated bovine serum (FBS Good Forte; PAN Biotech; #P40-47500) or tetracycline-free FBS (PAN Biotech; #P30-3602), 2 mM L-glutamine, 100 U/ml penicillin 560 and 100 µg/ml streptomycin. Cells were tested for mycoplasma with PCR Mycoplasma Test Kit 561 (Applichem; #A3744) and their identity was confirmed by commercial STR testing at the DSMZ- 562 German Collection of Microorganisms and Cell Cultures; <https://www.dsmz.de/dsmz>). Stable pools of 563 p65-depleted cells (HeLa Δp65), generated by transfections of pX459-based CRISPR/Cas9 constructs 564 (Weiterer et al., 2020), were selected and maintained in puromycin (1 µg/ml). Prior to all experiments, 565 puromycin was omitted for 24 h. Human recombinant IL-1 α was prepared in our laboratory as described 566 (Rzeczkowski et al., 2011) and used at 10 ng/ml final concentration in all experiments by adding to the 567 cell culture medium for the indicated time points. Starvation of cells was induced by washing the cells 568 four times with Hanks' Balanced Salt solution (HBSS; PAN Biotech; #P04-32505) for the indicated 569 time points. Starved cells were compared to non-treated control cells or cells washed four times with 570 HBSS and then supplemented with their own culture medium to exclude effects caused by the washing 571 procedure.

572 **Reagents and antibodies**

573 Leupeptin hemisulfate (Carl Roth, #CN33.2; solved in ddH₂O), microcystin (Enzo Life Sciences, 574 #ALX-350-012-M001; solved in EtOH), pepstatin A (Applichem, #A2205; solved in EtOH), PMSF 575 (Sigma-Aldrich, #P-7626; solved in EtOH), protease inhibitor cocktail tablet (Roche; #11873580001; 576 solved in ddH₂O), DTT (Serva; #20710.04; solved in ddH₂O), E-64 (Sigma-Aldrich; #324890), 577 doxycycline (Sigma-Aldrich; # D9891; solved in ddH₂O), puromycin (Merck Millipore; #540411; 578 solved in ddH₂O), Biotin (Sigma-Aldrich; #B4501; solved in DMEM as 20x stock solution and sterile 579 filtrated). Primary antibodies against the following proteins or peptides were used: Anti-β-actin (Santa 580 Cruz; #sc-4778), anti-HA (Roche; #11583816001), anti-Phospho-I κ B α Ser32 (Cell Signaling; #2859), 581 anti-I κ B α (Cell Signaling; #9242), anti-NF-κB p65 (Santa Cruz; #sc-372; #sc-8008; Bethyl Lab.; 582 #A303-945A), anti-NF-κB p50 (Santa Cruz; #sc-8414), anti-TFE3 (Sigma-Aldrich; #HPA023881), 583 anti-TFEB (Cell Signaling; #4240), anti-GLIS2 (Invitrogen; #PA5-40314), anti-RNA-Pol II (Millipore 584 #17-620), anti-tubulin (Santa Cruz #sc-8035), anti-ZBTB5 (Sigma; #HPA021521), normal rabbit IgG 585 (Cell Signaling #2729). Secondary antibodies: Dylight 488-coupled anti-mouse IgG (ImmunoReagent, 586 #DkxMu-003D488NHSX), HRP-coupled anti-mouse IgG (DakoCytomation, #P0447), HRP-coupled 587 anti-rabbit IgG (DakoCytomation, #P0448), HRP-Streptavidin (PerkinElmer; #NEL750001EA).

588 **Cloning of pTet-on-Puro-HA-miniTurbo plasmids**

589 For generating pTet-on-Puro-HA-miniTurbo (EV, empty vector), the linker-HA-miniTurbo sequence 590 was synthesized by General Biosystems and provided in donor vector pUC57-Bsal-Free. To obtain the 591 linker-HA-miniTurbo insert, the donor vector and the target plasmid pTet-on-Puro-Myc-BirA were 592 subjected to a restriction digestion reaction with FastDigest MluI and BshTI (Agel) and subsequently 593 ligated by T4 DNA ligase. The PCR for cloning p65 gene variants into the pTet-on-Puro-HA-miniTurbo 594 (EV) vector was based on the donor vectors pEF-Puro-hu p65 WT-HA, p65 E/I-HA, and p65 FL/DD- 595 HA (Riedlinger et al., 2019). FusionTM high-fidelity DNA polymerase (Thermo Fisher Scientific; #F- 596 530XL) generated the amplicons with restriction site overhangs (BshTI and Bsp1407I) and the 3-step 597 PCR program (98°C for 30 sec, 35 x (98°C for 10 sec, 69°C for 30 sec, 72°C for 25 sec) followed by 598 72°C for 10 min, 4°C hold). The resulting PCR amplicons as well as the target vector pTet-on-Puro- 599 HA-miniTurbo (EV) were digested by FastDigest BshTI (Agel) and Bsp1407I (BsrGI) and ligated. All 600 PCR or vector digestion products were purified using the NucleoSpin® Gel and PCR Clean-Up Kit 601 (Macherey-Nagel; #740609.50). The final plasmids were transformed into competent *E.coli* *XL1-Blue*, 602 extracted by using the NucleoSpin® Plasmid or NucleoBond® Xtra Midi Kit (Macherey-Nagel; 603 #740588.250 and #740410.50) and controlled by Sanger Sequencing (Eurofins Genomics or Seqlab 604 Microsynth).

605 **Transfection of cells with branched Polyethyleneimine (PEI)**

606 We optimized transfection conditions of the miniTurbo constructs as follows. For transient transfection 607 of cells with expression vectors, branched polyethyleneimine (PEI; Sigma-Aldrich; #408727) was used. 608 For T145 cell culture dishes 1 ml of pre-warmed Opti-MEMTM (serum-reduced medium; Gibco; 609

611 #31985070) was mixed with 50 µg Plasmid-DNA and 120 µl ice-cold branched PEI (1 mg/ml, pH 7.0),
612 vortexed, and incubated for 10 min at room temperature. DMEM supplemented with 10% FBS or Tet-
613 free FBS (w/o Pen./Strep.) was added to the mixture (filled-up to 20 ml), vortexed and carefully spread
614 over the cell layer (~70% confluency) after the culture medium was aspirated. Cells were further
615 incubated overnight (24 h). For other cell culture dish sizes, the volumes were adjusted accordingly.

616 **miniTurboID proximity labeling and purification**

617 For each experimental condition, 5×10^5 parental HeLa and HeLa Δp65 cells were seeded in a T145 cell
618 culture dish and grown for 4 days. On day three, cells were transfected with pTet-On-Puro expression
619 vectors encoding HA-miniTurbo (EV), p65(wt)-HA-miniTurbo, p65(E/I)-HA-miniTurbo or
620 p65(FL/DD)-HA-miniTurbo using branched PEI. Following transfection, cDNA expression was
621 induced with 1 µg/ml doxycycline for 17 h. On the next day (24 h post transfection), medium was
622 supplemented with 50 µM exogenous biotin (Sigma-Aldrich; #B4501) 10 min prior to IL-1 α treatment
623 (10 ng/ml) for 1 h enabling biotinylation of p65 interacting proteins during inflammatory cytokine
624 treatment. After a total of 17 h of treatment with doxycycline, cells were washed with PBS and harvested
625 on ice by scraping and centrifugation (900 x g/4°C/5 min). Cell pellets were resuspended in 475 µl
626 Tris/HCl (50 mM; pH 7.5) and 50 µl Triton X-100 (10% w/v). Cells were lysed by addition of 250 µl
627 lysis buffer (50 mM Tris/HCl, 500 mM NaCl, 2% w/v SDS, add freshly 1 mM DTT, 1x Roche inhibitor
628 cocktail) followed by incubation on ice for 10 min. Cells were sonicated (settings: 3 – 4 x 30 sec on /30
629 sec off, 4°C, power high; Bioruptor, Diagenode) and lysates were cleared by centrifugation at 16,000 x
630 g at 4°C for 15 min. For validation of cDNA expression and induced biotinylation 1% of the pulldown
631 input of the lysates (7 µl) were analyzed by SDS-Page and immunoblotting. For the pulldown of
632 biotinylated proteins 700 µl of the lysate was added to 60 µl of streptavidin-agarose beads (Thermo
633 Scientific; #20349) equilibrated in lysis buffer and rotated end over end overnight (16 – 18 h) at 4°C.
634 Beads were collected by centrifugation at 1,000 x g for 2 min and were washed once with 0.5 ml wash
635 buffer I (2% w/v SDS), twice with 0.5 ml wash buffer II (50 mM HEPES, 0.5 M NaCl, 1 mM EDTA,
636 0.1% w/v sodium deoxycholate, 1% v/v Triton X-100; pH 7.5), twice with 0.5 ml wash buffer III (10
637 mM Tris/HCl, 1 mM EDTA, 250 mM LiCl, 0.5% w/v sodium deoxycholate, 0.5% w/v NP-40; pH 7.4),
638 twice with 0.5 ml wash buffer IV (50 mM Tris/HCl, 50 mM NaCl, 0.1% v/v NP-40; pH 7.4) and once
639 with 0.5 ml wash buffer V (50 mM Tris/HCl; pH 7.4). The beads were resuspended in 1 ml buffer V, of
640 which 80% were used for mass spectrometry analysis. For the validation of affinity purifications, the
641 remaining 20% of the beads (supplemented with 40 µl of 2X ROTI®Load and boiled at 95°C for 10
642 min) were subjected to SDS-PAGE for immunoblotting together with 1% input samples using HRP-
643 streptavidin conjugate (PerkinElmer; #NEL750001EA) or anti-p65 (Santa Cruz Biotechnology; #sc-
644 8008), anti-HA (Roche; #11583816001), anti-β-actin (Santa Cruz Biotechnology; #sc-4778).

645

646 **Mass spectrometry analysis of miniTurboID**

647 Samples bound to streptavidin-agarose beads were washed three times with 100 µl 0.1 M ammonium
648 bicarbonate solution. Proteins were digested "on-bead" by the addition of sequencing grade modified
649 trypsin (Serva) and incubated at 37 °C for 45 min. Subsequently, the supernatant was transferred to fresh
650 tubes and incubated at 37°C overnight. Peptides were desalted and concentrated using Chromabond
651 C18WP spin columns (Macherey-Nagel; #730522). Finally, Peptides were dissolved in 25 µl of water
652 with 5% acetonitrile and 0.1% formic acid. The mass spectrometric analysis of the samples was
653 performed using a timsTOF Pro mass spectrometer (Bruker Daltonics). A nanoElute HPLC system
654 (Bruker Daltonics), equipped with an Aurora C18 RP column (25 cm x 75 µm) filled with 1.7 µm beads
655 (IonOpticks) was connected online to the mass spectrometer. A portion of approximately 200 ng of
656 peptides corresponding to 2 µl was injected directly on the separation column. Sample Loading was
657 performed at a constant pressure of 800 bar. Separation of the tryptic peptides was achieved at 50°C
658 column temperature with the following gradient of water/0.1% formic acid (solvent A) and
659 acetonitrile/0.1% formic acid (solvent B) at a flow rate of 400 nl/min: Linear increase from 2% B to
660 17% B within 60 minutes, followed by a linear gradient to 25% B within 30 min and linear increase to
661 37% B in additional 10 min. Finally B was increased to 95% within 10 min and held for additional 10
662 min. The built-in "DDA PASEF-standard_1.1sec_cycletime" method developed by Bruker Daltonics
663 was used for mass spectrometric measurement. Data analysis was performed using MaxQuant (version
664 1.6.17.0) with the Andromeda search engine and all amino acid sequences of the Uniprot database

665 (Uniprot Human reviewed proteins, database version 2021_03) were used for annotating and assigning
666 protein identifiers (Tyanova et al., 2016a). Perseus software (version 1.6.14) was used for further
667 analyses of protein intensity values (Tyanova et al., 2016b). For calculation of ratio values between
668 conditions, biological and technical replicates from each condition were assigned to one analysis group
669 using tools for categorical annotation rows. All values were \log_2 -transformed and missing values were
670 imputed using a \log_2 intensity value of 9, which was below the lowest intensity value measured across
671 all samples. No further normalization of the pulldown experiments was performed to preserve the
672 anticipated differences between samples. Enriched proteins between pair-wise comparisons were
673 identified by Student's T-tests using Perseus functions and were visualized by Volcano plots. Interesting
674 groups of enriched p65 / RELA interactors were defined by \log_2 fold change (LFC) and statistical
675 significance of changes based on $-\log_{10} p$ values ≥ 1.3 as indicated in the legends. Subsequent filtering
676 steps and heatmap visualizations were performed in Excel 2016 according to the criteria described in
677 the figure legends. Venn diagrams were created with tools provided at
678 <http://bioinformatics.psb.ugent.be/webtools/Venn/>. Overrepresentation analyses of gene sets were done
679 using the majority protein IDs or gene IDs of differentially enriched proteins or mRNAs uploaded to
680 Metascape software and processed with the predefined express settings (Zhou et al., 2019). Protein
681 networks were inferred from filtered gene ID lists using information of the most current version of the
682 STRING data base (<https://string-db.org/>) and networks were visualized and annotated with enriched
683 pathway terms using Cytoscape, version 3.8.0 or higher and the STRING plugin (Shannon et al., 2003;
684 Szklarczyk et al., 2019).

685 **Transfection of cells with siRNAs**

686 Cells were seeded in 60 mm cell culture dishes and grown overnight. The medium was reduced to 3 ml
687 and a transfection mixture was prepared as follows: 187.5 μ l Opti-MEM™, 15 μ l Hi-PerFect
688 Transfection Reagent (Qiagen; #301705) and 60 μ l of siRNA mixture (1 μ M, finally 20 nM). The
689 reaction mixture was vortexed and incubated for 10 min at room temperature, subsequently dripped on
690 the culture dish, and gently mixed. After 6 h of incubation, the transfection mixture was aspirated and
691 replaced by 4 ml fresh complete DMEM medium. Cells were then incubated for 48 h until they were
692 further processed. The following FlexiTube GeneSolution siRNAs (Qiagen) were used: RELA/p65
693 (#GS5970), TFE3 (#GS7030), TFEB (#GS7942), GLIS2 (#GS84662), ZBTB5 (#GS9925), S100A8
694 (#GS6279), S100A9 (#GS6280). As a non-targeted control siRNA against Firefly luciferase was
695 synthesized (Eurofins Genomics).

696 **mRNA expression analysis by RT-qPCR**

697 1 μ g of total RNA was prepared by column purification using the NucleoSpin® RNA Kit (Macherey-
698 Nagel; #740955.250) and transcribed into cDNA using 0.5 μ l RevertAid Reverse Transcriptase (Fisher
699 Scientific #EP0441), 4 μ l 5x reaction buffer, 0.5 μ l Random Hexamer Primer, 0.5 mM dNTP mix (10
700 mM) in a total volume of 20 μ l at 25°C for 10 min, 42°C for 1 h and 70°C for 10 min. 1 μ l of the reaction
701 mixture was used to amplify cDNA using Taqman® Gene Expression Assays (0.25 μ l) (Applied
702 Biosystems) primarily for *ACTB* (#Hs99999903_m1), *GUSB* (#Hs99999908_m1), *GAPDH*
703 (#Hs02758991_g1), *IL8* (#Hs00174103_m1), *NFKBIA* (#Hs00153283_m1), *CXCL2*
704 (#Hs00236966_m1), *RELA* (#Hs01042019_g1) and TaqMan® Fast Universal PCR Master Mix
705 (Applied Biosystems; #4352042). All PCRs were performed as duplicate reactions on an ABI7500 Fast
706 real time PCR instrument. The cycle threshold value (ct) for each individual PCR product was calculated
707 by the instrument's software and Ct values obtained for inflammatory/target mRNAs were normalized
708 by subtracting the Ct values obtained for *GUSB* or *ACTB* or *GAPDH*. The resulting Δ Ct values were
709 then used to calculate relative fold changes of mRNA expression according to the following equation:
710 $2^{-(\Delta\text{Ct stim.})-(\Delta\text{Ct unst.})}$ or $2^{-(\Delta\text{Ct siRNA target.})-(\Delta\text{Ct siRNA Luciferase})}$.

711 **Targeted siRNA screen**

712 For the siRNA screens, cDNA was synthesized in cell lysates and amplified using the TaqMan® PreAmp
713 Cells-to-Ct Kit™ (Applied Biosystems; #4387299) and TaqMan® Gene Expression Assays (Applied
714 Biosystems) following an adapted miniaturized protocol. The kit enables to perform gene expression
715 analysis directly from small numbers of cultured cells without RNA purification by an intermediate pre-
716 amplification step between reverse transcription and qPCR. 3×10^3 HeLa cells were seeded in 48-well
717 plates and cultured overnight (24 h). Transfection occurred as described above with downscaled reagent
718 volumes as follows: 12.5 μ l Opti-MEM™, 1 μ l Hi-PerFect Transfection Reagent and 4 μ l of siRNA

719 mixture (1 μ M, finally 20 nM). 38 HCl and RELA were targeted by pools of 3-4 gene-specific siRNAs
720 and compared to siLuciferase, Hi-PerFect only (HP), or untreated control samples. 48 h after
721 transfection, half of the cells per plate were treated for 1 h with IL-1 α (10 ng/ml). Cells were harvested
722 by trypsinization and transferred to RNase-free reaction tubes on ice. Cells were washed twice with ice-
723 cold PBS and lysed in 12.5 μ l lysis solution (DNase I was diluted at 1:100). After vortexing, the lysates
724 were incubated for 5 min at room temperature. The reaction was stopped by adding 1.25 μ l stop solution.
725 After repeated mixing, samples were incubated for 2 min at room temperature. The reverse transcription
726 was directly conducted on the lysates by mixing 4.5 μ l lysate (or nuclease-free water as a control) with
727 a 5.5 μ l RT mixture that was prepared as follows: 5 μ l of 2 \times RT-buffer and 0.5 μ l of 20 \times RT enzyme
728 mix. The reaction tubes were incubated in a thermal cycler at 37°C for 60 min, then at 95°C for 5 min
729 to inactivate the RT enzyme. In the following step, the cDNA was pre-amplified using gene-specific
730 primers contained in TaqMan® Gene Expression Assays. The Assays of interest were diluted 1:100 in
731 TE buffer. Therefore, two pools of Assays were prepared, with pool 1 for target genes 1-19 and pool 2
732 for target genes 20-38. Both pools were additionally supplemented with Assays for three prototypical
733 NF- κ B target genes *IL8* (#Hs00174103_m1), *NFKBIA* (#Hs00153283_m1) and *CXCL2*
734 (#Hs00236966_m1), two housekeeping genes *GUSB* (#Hs99999908_m1) and *GAPDH*
735 (#Hs02758991_g1) and the positive control *RELA* (#Hs01042019_g1). The pre-amplification PCR
736 mixtures of pool 1 or pool 2 were prepared as follows: 2.5 μ l pool 1/pool 2 were used in a 10 μ l reaction
737 volume with 5 μ l 2 \times TaqMan PreAmp MasterMix and 2.5 μ l cDNA. Samples with siRNA targets 1-19
738 were supplemented with the mixture of pool 1 and samples with siRNA targets 20-38 were
739 supplemented with the mixture of pool 2. Controls were supplemented with each of the two pre-
740 amplification mixtures. The pre-amplification occurred in a thermal cycler at 95°C for 10 min, following
741 15 cycles at 95°C for 15 sec/60°C for 4 min. Prior to real-time PCR, the pre-amplification products were
742 diluted 1:5 with TE buffer. The expression of the indicated target genes was determined by real-time
743 PCR using the TaqMan® Fast universal PCR master mix and 7500 Fast Real-Time PCR System from
744 Applied Biosystems. Based on Ct values, mRNA levels were quantified and normalized against *GUSB*.
745 The effects of knockdowns were calculated separately for basal and IL-1 α -inducible conditions against
746 the luciferase siRNA.

747 **Microarray transcriptomics**

748 HeLa cells were transiently transfected for 48 h with 20 nM siRNA mixtures against *RELA*, *ZBTB5*,
749 *S100A8*, *S100A9* (series 1) or *RELA*, *GLIS2*, *TFE3*, *TFEB* (series 2) and a siRNA against *luciferase*
750 (siLuc) as control as described above. Half of the cells were treated with IL-1 α (10 ng/ml) for 1 h at the
751 end of the incubation, and Agilent microarray analyses were performed from isolated total RNA using
752 the NucleoSpin® RNA Kit (Macherey-Nagel; #740955.250). Per reaction 200 ng RNA was amplified
753 and Cy3-labeled using the LIRAK kit (Agilent; #5190-2305) following the kit instructions. The Cy3-
754 labeled aRNA was hybridized overnight to 8 x 60K 60-mer oligonucleotide spotted microarray slides
755 (Agilent Technologies; # G4851C design ID 072363). Hybridization and subsequent washing and drying
756 of the slides were performed following the Agilent hybridization protocol. The dried slides were scanned
757 at 2 μ m/pixel resolution using the InnoScan is900 (Innopsys, Carbone, France). Image analysis was
758 performed with Mapix 9.0.0 software, and calculated values for all spots were saved as GenePix results
759 files. Stored data were evaluated using the R software and the limma package from BioConductor. Mean
760 spot signals were background corrected with an offset of 1 using the NormExp procedure on the negative
761 control spots. The logarithms of the background-corrected values were quantile-normalized. The
762 normalized values were then averaged for replicate spots per array. From different probes addressing
763 the same NCBI gene ID, the probe showing the maximum average signal intensity over the samples was
764 used in subsequent analyses. Genes were ranked for differential expression using a moderated t-statistic.
765 Pathway analyses were done using gene set tests on the ranks of the t-values. Pathway annotations were
766 obtained from KEGG (Kanehisa et al., 2016). The genes assigned to these annotations, including the
767 signal intensity values (E values) and the differential expression between samples (log₂ fold change,
768 LFC) with the associated significance (-Log₁₀ p value) were listed in an Excel file and used for further
769 filtering steps as mentioned in the figure legends.

770 **Cell lysis and immunoblotting**

771 For whole cell extracts cells were lysed in Triton cell lysis buffer (10 mM Tris, pH 7.05, 30 mM NaPPi,
772 50 mM NaCl, 1% Triton X-100, 2 mM Na₃VO₄, 50 mM NaF, 20 mM β -glycerophosphate and freshly

773 added 0.5 mM PMSF, 2.5 µg/ml leupeptin, 1.0 µg/ml pepstatin, 1 µM microcystin) and incubated for 15
774 min on ice. Lysates were cleared by centrifugation at 10,000 x g/4°C/15 min.

775 For preparation of nuclear and cytosolic extracts, cells were suspended and pelleted (800 x g/4°C/5 min)
776 in buffer A (10 mM Hepes, pH 7.9, 10 mM KCl, 1.5 mM MgCl₂, 0.3 mM Na₃VO₄, 20 mM β-
777 glycerophosphate, freshly added 200 µM leupeptin, 10 µM E-64, 300 µM PMSF, 0.5 µg/ml pepstatin, 5
778 mM DTT and 1 µM microcystin). The pellet was resuspended in buffer A containing 0.1% NP-40 and
779 incubated for 10 min on ice. After centrifugation at 10,000 x g for 5 min at 4°C, supernatants were taken
780 as cytosolic extracts. Nuclear pellets were resuspended in buffer B (20 mM Hepes, pH 7.9, 420 mM
781 NaCl, 1.5 mM MgCl₂, 0.2 mM EDTA, 25% glycerol, 0.3 mM Na₃VO₄, 20 mM β-glycerophosphate,
782 freshly added 200 µM leupeptin, 10 µM E-64, 300 µM PMSF, 0.5 µg/ml pepstatin, 5 mM DTT, and 1
783 µM microcystin). After 30 min on ice, nuclear extracts were cleared at 10,000 x g for 5 min at 4°C, and
784 supernatants were collected.

785 For preparation of cytosolic, nuclear soluble and chromatin extracts, cells were washed, suspended and
786 pelleted (500 x g / 4°C / 5 min) in PBS. Pellets were suspended in fractionated lysis buffer I (20 mM
787 HEPES (pH 8.0), 10 mM KCl, 1 mM MgCl₂, 0.1% (v/v) Triton X-100, 20% (v/v) glycerol, freshly
788 added 50 mM NaF, 1 µM microcystin, 1 mM Na₃VO₄, 1 x Roche protease inhibitor cocktail) on ice for
789 10 min. After centrifugation for 1 min at 2300 x g at 4 °C, supernatants were taken as cytosolic extracts
790 (C). The pellet was resuspended in fractionated lysis buffer II (20 mM HEPES, 2 mM EDTA, 400 mM
791 NaCl, 0.1% (v/v) Triton X-100, 20% (v/v) glycerol, freshly added 50 mM NaF, 1 µM microcystin, 1
792 mM Na₃VO₄, 1 x Roche protease inhibitor cocktail), incubated on ice for 20 min, and briefly mixed
793 twice during this time. Centrifugation for 5 min at 20,400 x g and 4 °C separated the nuclear soluble
794 fraction (N1) in the supernatant. The remaining pellet was resuspended in fractionated lysis buffer III
795 (20 mM Tris (pH 7.5), 2 mM EDTA, 150 mM NaCl, 1% (w/v) SDS, 1% (w/v) NP-40, freshly added 50
796 mM NaF, 1 µM microcystin, 1 mM Na₃VO₄, 1 x Roche protease inhibitor cocktail) and sonicated (6
797 cycles, high power for 30 s on and 30 s off at 4 °C, Bioruptor NextGen (Diagenode)). This was followed
798 by incubation for 30 min on ice and centrifugation for 5 min at 20,400 xg and 4 °C. The supernatant
799 contained the chromatin bound nuclear fraction (N2).

800 Protein concentrations of all cell extracts were determined by the Bradford method (Carl Roth;
801 ROTI®Quant; #K929.3), and ~20-50 µg protein per sample was supplemented with reducing gel-
802 loading buffer 4xRotiLoad (Carl Roth; #K929.3). Immunoblotting was performed essentially as
803 previously described (Hoffmann et al., 2005). Proteins were separated on SDS-PAGE and
804 electrophoretically transferred to PVDF membranes (Roti-PVDF (0,45µm); Carl Roth; #T830.1). After
805 blocking with 5% dried milk in Tris/HCl-buffered saline/0.05% Tween (TBST) for 1 h, membranes
806 were incubated for 12-24 h with primary antibodies (diluted 1:500-1:10,000 in 5% milk or BSA in
807 TBST), washed in TBST and incubated for 1-2 h with the peroxidase-coupled secondary antibody (HRP-
808 coupled anti-rabbit IgG (Dako, #P0448), HRP-coupled anti-mouse IgG (Dako; #P0447). After washing
809 in TBST, proteins were detected by using enhanced chemiluminescence (ECL) systems from Merck
810 Millipore (Immobilon Western Chemiluminescent HRP Substrate; #WBKLS0500) or GE Healthcare
811 (Amersham ECL Western Blotting Detection Reagent; #RPN2106). Images were acquired and
812 quantified using the ChemiDoc TouchImaging System (BioRad) and the software ImageLab V_5.2.1
813 (Bio-Rad). For visualization of biotinylated proteins, membranes were blocked with 5% BSA in Tris /
814 HCl-buffered saline / 0.05% Tween (TBST) for 24 h at 4 °C and afterwards membranes were incubated
815 for 1 h with HRP-Streptavidin (PerkinElmer; #NEL750001EA; diluted 1:5000 in 5 % BSA in TBST).

816 Immunofluorescence coupled to *in situ* proximity ligation assay (Immuno-PLA)

817 Immunofluorescence (IF) was coupled to *in situ* proximity ligation assay (Immuno-PLA). For PLA the
818 Duolink® PLA reagents were used (Sigma-Aldrich; #DUO92007, #DUO92006, #DUO92002). 9000
819 cells per channel, of parental or p65-deficient cells, were seeded in ibiTreat µ-Slides VI 0.4 (Ibidi;
820 #80606). On the next day, cells were washed twice with 150 µl PBS for 5 min and fixed with 100 µl of
821 4% paraformaldehyde (in PBS) for 10 min at room temperature. Afterwards, 100 µl 0.1 M Tris/HCl pH
822 7.4 were added and incubated for 10 min at room temperature. Permeabilization was performed by
823 adding 100 µl of a 0.005% saponin/0.1% Triton X-100/PBS solution for 10 min at room temperature.
824 Permeabilized cells were washed twice with 150 µl PBS for 5 min and incubated overnight (24 h) with
825 40% glycerol/ PBS at room temperature. On the next day, nuclei were permeabilized by three cycles of
826 freeze-and-thaw. Ibidi-slides were therefore kept in liquid nitrogen for 1 min and thawed until glycerol

827 cleared up. After nuclear permeabilization, cells were washed twice with PBS for 5 min and embedded
828 in 100 μ l blocking solution which was incubated in a humidity chamber for 30 min at 37°C. The blocking
829 solution was discarded and cells were incubated with 50 μ l of the appropriate primary antibody mixture
830 in a humidity chamber for 1 h at 37°C. The primary antibody mixture contained PLA and IF antibodies
831 (anti-NF- κ B p65 (Santa Cruz Biotechnology; #sc-8008, ms and Bethyl Lab.; #A303-945A, gt), anti-
832 TFE3 (Sigma-Aldrich; #HPA023881, rb), anti-TFEB (Cell Signaling; #4240, rb), anti-GLIS2 (Thermo
833 Fisher Scientific; #PA5-40314, rb) and anti ZBTB5 (Sigma, #HPA021521, rb) was diluted in antibody
834 diluent. Cells were washed three times with 150 μ l buffer A for 5 min and then incubated with 50 μ l of
835 a secondary antibody mixture in a humidity chamber for 1 h at 37°C. The secondary antibody mixture
836 contained PLA probes which were diluted 1:5 in antibody diluent but also the Dylight 488-coupled
837 secondary anti ms IF antibody. From the time of incubation, all further steps were carried out in the
838 dark. Cells were washed three times with 150 μ l buffer A for 5 min and incubated with 50 μ l ligase
839 solution in a humidity chamber for 30 min at 37°C. The ligase was therefore diluted 1:60 in ligase
840 solution (stock solution was diluted 1:5 in nuclease-free water). Cells were washed three times with 150
841 μ l buffer A for 2 min and then incubated with 50 μ l polymerase solution in a humidity chamber for 100
842 min at 37°C. The polymerase was therefore diluted 1:80 in amplification solution (stock solution was
843 diluted 1:5 in nuclease-free water). Cells were first washed three times with 150 μ l buffer B for 5 min
844 followed by two HBSS washes for 1 min. Nuclear DNA was then stained with 1 μ M Hoechst 33342 for
845 5 min at room temperature and washed twice with 150 μ l HBSS for 5 min. Cells were finally embedded
846 in 50 μ l 30% glycerol/HBSS and stored in the dark until microscopic documentation. Fluorescence
847 imaging of Immuno-PLA samples was carried out using the inverse fluorescence microscope
848 THUNDER imager DMi8 (Leica Microsystems CMS GmbH; HC PL APO 20x/0.8 DRY objective,
849 camera Leica-DFC9000GT-VSC13705) was used with filter cubes suited for Hoechst (excitation 391/32
850 and emission 435/30) and DyLight488 (excitation 506/21 and emission 539/24) with the Leica LASX
851 software (version 3.7.4.23463). The Quantification of protein-protein interaction (PPI) complexes was
852 performed using the Blobfinder software from the Centre for Image Analysis (Uppsala University,
853 Sweden) and Olink Bioscience (Allalou and Wahlby, 2009). The software configuration was adjusted
854 to HeLa cells with a nucleus size of 100 pixels² and cytoplasm size of 100 pixels. For the blob size, the
855 3x3 default setting was applied whereas the blob threshold of 15 was determined by a test image.

856 **Chromatin immunoprecipitation (ChIP)**

857 1.25-2.5x10⁷ KB cells were seeded in T175 cell culture flask per condition. At the next day they were
858 starved for 24 h in HBSS or left untreated. After 23 h of starvation cells were stimulated with IL-1 α (10
859 ng/ml) for 1 h or left unstimulated. Proteins bound to DNA were cross-linked *in vivo* with 1%
860 formaldehyde added directly to the medium. After 10 min incubation at room temperature, 0.1 M glycine
861 was added for 5 min to stop the cross-linking. Then, cells were collected by scraping and centrifugation
862 at 1,610 x g (5 min, 4°C), washed in cold PBS containing 1 mM PMSF and centrifuged again. Cells
863 were lysed for 10 min on ice in 3 ml ChIP lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris pH 8.1, 1
864 mM PMSF, 1.5x Roche protease inhibitor mix). The DNA was sheared by sonication (4x 7 cycles, 30s
865 on / 30s off, power high; Bioruptor, Diagenode) at 4°C and lysates cleared by centrifugation at 16,100
866 x g at 4°C for 15 min. Supernatants were collected and stored in aliquots at -80°C. For determination
867 of DNA concentration 20 μ l of sheared lysate was diluted with 100 μ l TE buffer including 10 μ g/ml
868 RNase A. After 30 min at 37°C, 3.8 μ l proteinase K (20 mg/ml) and 1% SDS was added and incubated
869 for at least 2 h at 37°C followed by overnight incubation at 65°C for re-crosslinking. Samples were
870 resuspended in two volumes of buffer NTB (Macherey-Nagel; #740595.150) and DNA was purified
871 using the NucleoSpin® Gel and PCR Clean-Up Kit (Macherey-Nagel; #740609.50) according to the
872 manufacturer's instructions. DNA was eluted with 50 μ l 5 mM Tris pH 8.5 and concentration was
873 determined by Nano Drop. For ChIP, the following antibody amounts were used: anti-NF- κ B p65 (3 μ g,
874 Santa Cruz; #sc-372), anti-TFE3 (2 μ g, Sigma-Aldrich; #HPA023881) and IgG (3 μ g, Cell Signaling;
875 #2729). Antibodies were added to precleared lysate volumes equivalent to 15 μ g of chromatin. Then,
876 900 μ l of ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 167 mM NaCl, 16.7
877 mM Tris/HCl pH 8.1) were added and the samples were rotated at 4°C overnight. Thereafter, 30 μ l of a
878 protein A/G sepharose mixture (GE Healthcare; #17-0780-01 and #17-0618-01), pre-equilibrated in
879 ChIP dilution buffer was added to the lysates and incubation continued for 2 h at 4°C. Beads were
880 collected by centrifugation, washed once in ChIP low salt buffer (0.1% SDS, 1% Triton X-100, 2 mM
881 EDTA, 20 mM Tris pH 8.1, 150 mM NaCl), once in ChIP high salt buffer (0.1% SDS, 1% Triton X-

882 100, 2 mM EDTA, 20 mM Tris pH 8.1, 500 mM NaCl), once in ChIP LiCl buffer (0.25 M LiCl, 1%
883 NP40, 1% desoxycholate, 1 mM EDTA, 10 mM Tris pH 8.1) and twice in ChIP TE buffer (10 mM Tris
884 pH 8.1, 1 mM EDTA) for 5 min at 4°C end over end rotating. Beads were finally resuspended in 100 µl
885 TE buffer including 10 µg/ml RNase A. In parallel, 1/10 volume of the initial lysate (10% input
886 samples) were treated accordingly. After 30 min at 37°C, 3.8 µl proteinase K (20 mg/ml) and 1% SDS
887 were added and both, input and immunoprecipitates were incubated for at least 2 h at 37°C followed by
888 overnight incubation at 65°C for re-crosslinking. Samples were resuspended in two volumes of buffer
889 NTB and DNA was purified using the NucleoSpin® Gel and PCR Clean-Up Kit. DNA was eluted with
890 50 µl 5 mM Tris pH 8.5 and stored at -20°C until further use. PCR products derived from ChIP-DNA
891 were quantified by real-time PCR using the Fast ABI 7500 instrument (Applied Biosystems). The
892 reaction mixture contained 2 µl of ChIP or input DNA (diluted 1:10 to represent 1% of input DNA),
893 0.25 µM of specific primers and 10 µl of Fast SYBR™ Green PCR Master Mix (Applied Biosystems;
894 #4385612) in a total volume of 20 µl. PCR cycles were as follows: 95°C (20 sec), 40x (95°C (3 sec),
895 60°C (30 sec)). Melting curve analysis revealed a single PCR product. Calculation of enrichment by
896 immunoprecipitation relative to the signals obtained for 1% input DNA was performed based on the
897 equation % input = $2^{-(Ct\text{ IP} - Ct\text{ 1\% input})}$. A list of oligonucleotides is provided in Supplementary Table 1.

898 **Motif analyses of ChIPseq data sets**

899 NF-κB p65 ChIPseq peaks were compiled from four previously described data sets (Jurida et al., 2015)
900 and were searched for enrichment of position-weight TF matrices using MEME-ChIP ([https://meme-
901 suite.org/](https://meme-suite.org/)) (Ma et al., 2014). Overrepresentation of TF motifs within \pm 500 bp flanking the
902 experimentally determined p65 / RELA ChIPseq peaks were calculated against the background of the
903 whole human genome sequence (HG19) and is indicated by p value. The 1 kb windows were further
904 searched for motifs of the TFs RELA, REL, TFE3, TFEB, GLIS2 and various ZBTB factors and
905 predicted binding regions were annotated to genomic features to localize the next adjacent gene. The
906 resulting matrices were filtered to assign motifs to the genes affected by siRNA knockdowns of TFs as
907 indicated in the legends.

908 **Quantification and statistical analysis**

909 Protein bands detected by Western blotting were quantified using Bio-Rad Image Lab, version 5.2.1
910 build 11. Statistics (t-tests, Mann-Whitney-Rank Sum Test, one-way ANOVA, correlations) were
911 calculated using GraphPadPrism 9.5.1, Perseus 1.6.14.0 or Microsoft Excel 2016. PLA spots were
912 quantified by Blobfinder (Allalou and Wahlby, 2009).

913

914 **Data availability**

915 The proteomic data sets of this study have been submitted to the ProteomeXchange Consortium via the
916 PRIDE partner repository (Perez-Riverol et al., 2022) with the dataset identifier PXD045888.

917 The microarray data sets of this study have been deposited in NCBI's Gene Expression Omnibus (Edgar
918 et al., 2002) and are accessible through GEO Series accession number GSE244637
919 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE244637>).

920 For KB cells, RNA-seq, ChIP-seq and ATACseq data are available via our previous NCBI GEO
921 submissions with the accession numbers GSE64224, GSE52470 and GSE134436
922 (<https://www.ncbi.nlm.nih.gov/geo>) (Jurida et al., 2015; Weiterer et al., 2020).

923 The remaining data generated in this study are provided in the Supplementary Information / Source Data
924 sections. Source data are provided with this paper.

925 **Competing interests**

926 The authors declare no competing interests.

927 **Author contributions**

928 L.L. and J.J. designed, performed and analysed TurboID, RNAi and the follow-up validation
929 experiments and prepared graphs and tables, L.J. performed, analysed and visualized ChIP-qPCR

930 experiments, L.L., J.J., L.J. and J.M-S. assembled the method section, C.M-B. helped with design and
931 evaluation of PLAs, M.L.S. helped with p65-HA-mTb cloning, D.H. helped with cell selection
932 experiments, A.W. processed LC-MS / MS raw data, U.L. performed LC-MS / MS analyses, M.B. re-
933 analyzed ChIPseq data from L.J., J.W. performed microarray experiments and processed raw data, A.P.
934 edited the first version of the manuscript, M.K. conceived the study, performed bioinformatics analyses,
935 prepared figures and tables and wrote the initial draft, all authors contributed to the final version.

936 **Acknowledgments**

937 This work was supported by the following grants from the Deutsche Forschungsgemeinschaft (DFG,
938 German Research Foundation):

939 SFB1213/2 (B03 [to M.K., S.R., project 268555672]; TRR81/3 (A07 (to M.L.S.), B02 (to M.K.), project
940 109546710); KR1143/9-2 (KFO309, P3, project 284237345);

941 SFB1021/3 (C02 [to M.K.], Z03 [to M.K., U.L], project 197785619);

942 and GRK2573 (RP5 [to M.K.], project 416910386).

943 Work in the laboratories of M.K. is also supported by the LOEWE program of the state of Hesse
944 (Coropan, P4 to MK), the IMPRS program of the Max Planck Society and the Excellence Cluster
945 CardioPulmonary Institute (EXC 2026: Cardio-Pulmonary Institute (CPI), project 390649896) and the
946 DZL/UGMLC/ILH program.

947

948 **References**

949 Adelaja A, Taylor B, Sheu KM, Liu Y, Luecke S and Hoffmann A (2021) Six distinct NFkappaB
950 signaling codons convey discrete information to distinguish stimuli and enable appropriate
951 macrophage responses. *Immunity* **54**:916-930 e917.

952 Adey A, Burton JN, Kitzman JO, Hiatt JB, Lewis AP, Martin BK, Qiu R, Lee C and Shendure J
953 (2013) The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line.
954 *Nature* **500**:207-211.

955 Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappaport J, Issaeva I, Canaani E, Salcini AE
956 and Helin K (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene
957 regulation and development. *Nature* **449**:731-734.

958 Alizada A, Khyzha N, Wang L, Antounians L, Chen X, Khor M, Liang M, Rathnakumar K, Weirauch
959 MT, Medina-Rivera A, Fish JE and Wilson MD (2021) Conserved regulatory logic at
960 accessible and inaccessible chromatin during the acute inflammatory response in mammals.
961 *Nature Communications* **12**.

962 Allalou A and Wahlby C (2009) BlobFinder, a tool for fluorescence microscopy image cytometry.
963 *Comput Methods Programs Biomed* **94**:58-65.

964 Almeida N, Chung MWH, Drudi EM, Engquist EN, Hamrud E, Isaacson A, Tsang VSK, Watt FM and
965 Spagnoli FM (2021) Employing core regulatory circuits to define cell identity. *EMBO J*
966 **40**:e106785.

967 Ashburner BP, Westerheide SD and Baldwin AS, Jr. (2001) The p65 (RelA) subunit of NF-kappaB
968 interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to
969 negatively regulate gene expression. *Mol Cell Biol* **21**:7065-7077.

970 Attanasio M, Uhlenhaut NH, Sousa VH, O'Toole JF, Otto E, Anlag K, Klugmann C, Treier AC, Helou
971 J, Sayer JA, Seelow D, Nurnberg G, Becker C, Chudley AE, Nurnberg P, Hildebrandt F and
972 Treier M (2007) Loss of GLIS2 causes nephronophthisis in humans and mice by increased
973 apoptosis and fibrosis. *Nat Genet* **39**:1018-1024.

974 Bacher S, Meier-Soelch J, Kracht M and Schmitz ML (2021) Regulation of Transcription Factor NF-
975 kappaB in Its Natural Habitat: The Nucleus. *Cells* **10**.

976 Barter MJ, Cheung K, Falk J, Panagiotopoulos AC, Cosimini C, O'Brien S, Teja-Putri K, Neill G,
977 Deehan DJ and Young DA (2021) Dynamic chromatin accessibility landscape changes
978 following interleukin-1 stimulation. *Epigenetics* **16**:106-119.

979 Beg AA and Baltimore D (1996) An essential role for NF-kappaB in preventing TNF-alpha-induced
980 cell death. *Science* **274**:782-784.

981 Bosisio D, Marazzi I, Agresti A, Shimizu N, Bianchi ME and Natoli G (2006) A hyper-dynamic
982 equilibrium between promoter-bound and nucleoplasmic dimers controls NF-kappaB-
983 dependent gene activity. *EMBO J* **25**:798-810.

984 Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard
985 D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J,
986 Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G,
987 Neubauer G, Rick J, Kuster B and Superti-Furga G (2004) A physical and functional map of
988 the human TNF-alpha/NF-kappa B signal transduction pathway. *Nat Cell Biol* **6**:97-105.

989 Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA, Feldman JL, Perrimon N and
990 Ting AY (2018) Efficient proximity labeling in living cells and organisms with TurboID. *Nat
991 Biotechnol* **36**:880-887.

992 Brockmann D, Putzer BM, Lipinski KS, Schmucker U and Esche H (1999) A multiprotein complex
993 consisting of the cellular coactivator p300, AP-1/ATF, as well as NF-kappaB is responsible
994 for the activation of the mouse major histocompatibility class I (H-2K(b)) enhancer A. *Gene
995 Expr* **8**:1-18.

996 Cenik BK and Shilatifard A (2021) COMPASS and SWI/SNF complexes in development and disease.
997 *Nat Rev Genet* **22**:38-58.

998 Chen LF and Greene WC (2004) Shaping the nuclear action of NF-kappaB. *Nat Rev Mol Cell Biol*
999 **5**:392-401.

1000 Chen LF, Mu Y and Greene WC (2002) Acetylation of RelA at discrete sites regulates distinct nuclear
1001 functions of NF-kappaB. *EMBO J* **21**:6539-6548.

1002 Chen YQ, Ghosh S and Ghosh G (1998) A novel DNA recognition mode by the NF-kappa B p65
1003 homodimer. *Nat Struct Biol* **5**:67-73.

1004 Cheng QJ, Ohta S, Sheu KM, Spreafico R, Adelaja A, Taylor B and Hoffmann A (2021a) NF-kappaB
1005 dynamics determine the stimulus specificity of epigenomic reprogramming in macrophages.
1006 *Science* **372**:1349-1353.

1007 Cheng ZY, He TT, Gao XM, Zhao Y and Wang J (2021b) ZBTB Transcription Factors: Key
1008 Regulators of the Development, Differentiation and Effector Function of T Cells. *Front*
1009 *Immunol* **12**:713294.

1010 Christian F, Smith EL and Carmody RJ (2016) The Regulation of NF-kappaB Subunits by
1011 Phosphorylation. *Cells* **5**.

1012 Cusanovich DA, Pavlovic B, Pritchard JK and Gilad Y (2014) The functional consequences of
1013 variation in transcription factor binding. *PLoS Genet* **10**:e1004226.

1014 Davidson EH (2010) Emerging properties of animal gene regulatory networks. *Nature* **468**:911-920.

1015 de Dieuleveult M and Miotto B (2018) DNA Methylation and Chromatin: Role(s) of Methyl-CpG-
1016 Binding Protein ZBTB38. *Epigenet Insights* **11**:2516865718811117.

1017 De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G and Natoli G (2007) The histone H3
1018 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene
1019 silencing. *Cell* **130**:1083-1094.

1020 Edgar R, Domrachev M and Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and
1021 hybridization array data repository. *Nucleic Acids Res* **30**:207-210.

1022 Fulton DL, Sundararajan S, Badis G, Hughes TR, Wasserman WW, Roach JC and Sladek R (2009)
1023 TFCat: the curated catalog of mouse and human transcription factors. *Genome Biol* **10**:R29.

1024 Funk CC, Casella AM, Jung S, Richards MA, Rodriguez A, Shannon P, Donovan-Maiye R, Heavner
1025 B, Chard K, Xiao Y, Glusman G, Ertekin-Taner N, Golde TE, Toga A, Hood L, Van Horn JD,
1026 Kesselman C, Foster I, Madduri R, Price ND and Ament SA (2020) Atlas of Transcription
1027 Factor Binding Sites from ENCODE DNase Hypersensitivity Data across 27 Tissue Types.
1028 *Cell Rep* **32**:108029.

1029 Fuxman Bass JI, Sahni N, Shrestha S, Garcia-Gonzalez A, Mori A, Bhat N, Yi S, Hill DE, Vidal M
1030 and Walhout AJM (2015) Human gene-centered transcription factor networks for enhancers
1031 and disease variants. *Cell* **161**:661-673.

1032 Garber M, Yosef N, Goren A, Raychowdhury R, Thielke A, Guttman M, Robinson J, Minie B,
1033 Chevrier N, Itzhaki Z, Blecher-Gonen R, Bornstein C, Amann-Zalcenstein D, Weiner A,
1034 Friedrich D, Meldrim J, Ram O, Cheng C, Gnrke A, Fisher S, Friedman N, Wong B,
1035 Bernstein BE, Nusbaum C, Hacohen N, Regev A and Amit I (2012) A high-throughput
1036 chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in
1037 mammals. *MolCell* **47**:810-822.

1038 Goos H, Kinnunen M, Salokas K, Tan Z, Liu X, Yadav L, Zhang Q, Wei GH and Varjosalo M (2022)
1039 Human transcription factor protein interaction networks. *Nat Commun* **13**:766.

1040 Greulich F, Wierer M, Mechtidou A, Gonzalez-Garcia O and Uhlenhaut NH (2021) The
1041 glucocorticoid receptor recruits the COMPASS complex to regulate inflammatory
1042 transcription at macrophage enhancers. *Cell Rep* **34**:108742.

1043 Hodges C, Kirkland JG and Crabtree GR (2016) The Many Roles of BAF (mSWI/SNF) and PBAF
1044 Complexes in Cancer. *Cold Spring Harb Perspect Med* **6**.

1045 Hoffmann E, Thiebes A, Buhrow D, Dittrich-Breiholz O, Schneider H, Resch K and Kracht M (2005)
1046 MEK1-dependent delayed expression of Fos-related antigen-1 counteracts c-Fos and p65 NF-
1047 kappaB-mediated interleukin-8 transcription in response to cytokines or growth factors. *J Biol*
1048 *Chem* **280**:9706-9718.

1049 Hong S, Cho YW, Yu LR, Yu H, Veenstra TD and Ge K (2007) Identification of JmjC domain-
1050 containing UTX and JMJD3 as histone H3 lysine 27 demethylases. *Proc Natl Acad Sci U S A*
1051 **104**:18439-18444.

1052 Jolma A, Yin Y, Nitta KR, Dave K, Popov A, Taipale M, Enge M, Kivioja T, Morgunova E and
1053 Taipale J (2015) DNA-dependent formation of transcription factor pairs alters their binding
1054 specificity. *Nature* **527**:384-388.

1055 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R,
1056 Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-
1057 Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M,

1058 Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW,
1059 Kavukcuoglu K, Kohli P and Hassabis D (2021) Highly accurate protein structure prediction
1060 with AlphaFold. *Nature* **596**:583-589.

1061 Jurida L, Soelch J, Bartkuhn M, Handschick K, Muller H, Newell D, Weber A, Dittrich-Breiholz O,
1062 Schneider H, Bhuju S, Saul VV, Schmitz ML and Kracht M (2015) The Activation of IL-1-
1063 Induced Enhancers Depends on TAK1 Kinase Activity and NF-kappaB p65. *Cell Rep* **10**:726-
1064 739.

1065 Kadoch C and Crabtree GR (2015) Mammalian SWI/SNF chromatin remodeling complexes and
1066 cancer: Mechanistic insights gained from human genomics. *Sci Adv* **1**:e1500447.

1067 Kanehisa M, Sato Y, Kawashima M, Furumichi M and Tanabe M (2016) KEGG as a reference
1068 resource for gene and protein annotation. *Nucleic Acids Res* **44**:D457-D462.

1069 Kim JW, Jang SM, Kim CH, An JH, Kang EJ and Choi KH (2012) New molecular bridge between
1070 RelA/p65 and NF-kappaB target genes via histone acetyltransferase TIP60 cofactor. *J Biol
1071 Chem* **287**:7780-7791.

1072 Kok FO, Wang H, Riedlova P, Goodyear CS and Carmody RJ (2021) Defining the structure of the
1073 NF-kB pathway in human immune cells using quantitative proteomic data. *Cell Signal*
1074 **88**:110154.

1075 La Spina M, Contreras PS, Rissone A, Meena NK, Jeong E and Martina JA (2020) MiT/TFE Family
1076 of Transcription Factors: An Evolutionary Perspective. *Front Cell Dev Biol* **8**:609683.

1077 Lagunas-Rangel FA (2021) KDM6B (JMJD3) and its dual role in cancer. *Biochimie* **184**:63-71.

1078 Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR and
1079 Weirauch MT (2018) The Human Transcription Factors. *Cell* **172**:650-665.

1080 Li H, Wittwer T, Weber A, Schneider H, Moreno R, Maine GN, Kracht M, Schmitz ML and Burstein
1081 E (2012) Regulation of NF-kappaB activity by competition between RelA acetylation and
1082 ubiquitination. *Oncogene* **31**:611-623.

1083 Li X, Wang W, Wang J, Malovannaya A, Xi Y, Li W, Guerra R, Hawke DH, Qin J and Chen J (2015)
1084 Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor
1085 complexes. *Mol Syst Biol* **11**:775.

1086 Ma W, Noble WS and Bailey TL (2014) Motif-based analysis of large nucleotide data sets using
1087 MEME-ChIP. *Nat Protoc* **9**:1428-1450.

1088 Manning BJ and Yusufzai T (2017) The ATP-dependent chromatin remodeling enzymes CHD6,
1089 CHD7, and CHD8 exhibit distinct nucleosome binding and remodeling activities. *J Biol Chem*
1090 **292**:11927-11936.

1091 Marakulina D, Vorontsov IE, Kulakovskiy IV, Lennartsson A, Drablos F and Medvedeva YA (2023)
1092 EpiFactors 2022: expansion and enhancement of a curated database of human epigenetic
1093 factors and complexes. *Nucleic Acids Res* **51**:D564-D570.

1094 Martin EW, Pacholewska A, Patel H, Dashora H and Sung MH (2020) Integrative analysis suggests
1095 cell type-specific decoding of NF-kappaB dynamics. *Sci Signal* **13**.

1096 Martina JA, Diab HI, Brady OA and Puertollano R (2016) TFEB and TFE3 are novel components of
1097 the integrated stress response. *EMBO J* **35**:479-495.

1098 Martina JA, Diab HI, Lishu L, Jeong AL, Patange S, Raben N and Puertollano R (2014) The nutrient-
1099 responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and
1100 clearance of cellular debris. *Sci Signal* **7**:ra9.

1101 Mashtalir N, Suzuki H, Farrell DP, Sankar A, Luo J, Filipovski M, D'Avino AR, St Pierre R, Valencia
1102 AM, Onikubo T, Roeder RG, Han Y, He Y, Ranish JA, DiMaio F, Walz T and Kadoch C
1103 (2020) A Structural Model of the Endogenous Human BAF Complex Informs Disease
1104 Mechanisms. *Cell* **183**:802-817 e824.

1105 Meier-Soelch J, Mayr-Buro C, Juli J, Leib L, Linne U, Dreute J, Papantonis A, Schmitz ML and
1106 Kracht M (2021) Monitoring the Levels of Cellular NF-kB Activation States. *Cancers* **13**.

1107 Merika M, Williams AJ, Chen G, Collins T and Thanos D (1998) Recruitment of CBP/p300 by the
1108 IFN beta enhanceosome is required for synergistic activation of transcription. *Mol Cell* **1**:277-
1109 287.

1110 Milanovic M, Kracht M and Schmitz ML (2014) The cytokine-induced conformational switch of
1111 nuclear factor kappaB p65 is mediated by p65 phosphorylation. *Biochem J* **457**:401-413.

1112 Mitchell JP and Carmody RJ (2018) NF-kappaB and the Transcriptional Control of Inflammation. *Int
1113 Rev Cell Mol Biol* **335**:41-84.

1114 Mukherjee SP, Behar M, Birnbaum HA, Hoffmann A, Wright PE and Ghosh G (2013) Analysis of the
1115 RelA:CBP/p300 interaction reveals its involvement in NF-kappaB-driven transcription. *PLoS*
1116 *Biol* **11**:e1001647.

1117 Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E and Stamatoyannopoulos JA (2012)
1118 Circuitry and dynamics of human transcription factor regulatory networks. *Cell* **150**:1274-
1119 1286.

1120 Ngo KA, Kishimoto K, Davis-Turak J, Pimplaskar A, Cheng Z, Spreafico R, Chen EY, Tam A, Ghosh
1121 G, Mitchell S and Hoffmann A (2020) Dissecting the Regulatory Strategies of NF-kappaB
1122 RelA Target Genes in the Inflammatory Response Reveals Differential Transactivation
1123 Logics. *Cell Rep* **30**:2758-2775 e2756.

1124 Osorio J (2016) Gene regulation: Landscape and mechanisms of transcription factor cooperativity. *Nat*
1125 *Rev Genet* **17**:5.

1126 Pastore N, Brady OA, Diab HI, Martina JA, Sun L, Huynh T, Lim JA, Zare H, Raben N, Ballabio A
1127 and Puertollano R (2016) TFEB and TFE3 cooperate in the regulation of the innate immune
1128 response in activated macrophages. *Autophagy* **12**:1240-1258.

1129 Perez-Riverol Y, Bai J, Bandla C, Garcia-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu
1130 DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A and Vizcaino
1131 JA (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based
1132 proteomics evidences. *Nucleic Acids Res* **50**:D543-D552.

1133 Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH and Nabel GJ (1997) Regulation of NF-
1134 kappaB by cyclin-dependent kinases associated with the p300 coactivator. *Science* **275**:523-
1135 527.

1136 Peter IS and Davidson EH (2011) Evolution of gene regulatory networks controlling body plan
1137 development. *Cell* **144**:970-985.

1138 Pruenster M, Vogl T, Roth J and Sperandio M (2016) S100A8/A9: From basic science to clinical
1139 application. *Pharmacol Ther* **167**:120-131.

1140 Qin W, Cho KF, Cavanagh PE and Ting AY (2021) Deciphering molecular interactions by proximity
1141 labeling. *Nat Methods* **18**:133-143.

1142 Raben N and Puertollano R (2016) TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to
1143 Stress. *Annu Rev Cell Dev Biol* **32**:255-278.

1144 Raisner R, Kharbanda S, Jin L, Jeng E, Chan E, Merchant M, Haverty PM, Bainer R, Cheung T,
1145 Arnott D, Flynn EM, Romero FA, Magnuson S and Gascoigne KE (2018) Enhancer Activity
1146 Requires CBP/P300 Bromodomain-Dependent Histone H3K27 Acetylation. *Cell Rep*
1147 **24**:1722-1729.

1148 Ramirez-Carrozzi VR, Nazarian AA, Li CC, Gore SL, Sridharan R, Imbalzano AN and Smale ST
1149 (2006) Selective and antagonistic functions of SWI/SNF and Mi-2beta nucleosome
1150 remodeling complexes during an inflammatory response. *Genes Dev* **20**:282-296.

1151 Ramos Pittol JM, Oruba A, Mittler G, Saccani S and van Essen D (2018) Zbtb7a is a transducer for the
1152 control of promoter accessibility by NF-kappa B and multiple other transcription factors.
1153 *PLoS Biol* **16**:e2004526.

1154 Riedlinger T, Liefke R, Meier-Soelch J, Jurida L, Nist A, Stiewe T, Kracht M and Schmitz ML (2019)
1155 NF-kappaB p65 dimerization and DNA-binding is important for inflammatory gene
1156 expression. *FASEB J* **33**:4188-4202.

1157 Roux KJ, Kim DI, Raida M and Burke B (2012) A promiscuous biotin ligase fusion protein identifies
1158 proximal and interacting proteins in mammalian cells. *J Cell Biol* **196**:801-810.

1159 Rzeczkowski K, Beuerlein K, Muller H, Dittrich-Breiholz O, Schneider H, Kettner-Buhrow D,
1160 Holtmann H and Kracht M (2011) c-Jun N-terminal kinase phosphorylates DCP1a to control
1161 formation of P bodies. *J Cell Biol* **194**:581-596.

1162 Saccani S, Pantano S and Natoli G (2003) Modulation of NF-kappaB activity by exchange of dimers.
1163 *Mol Cell* **11**:1563-1574.

1164 Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy
1165 F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E and Ballabio A (2009) A gene
1166 network regulating lysosomal biogenesis and function. *Science* **325**:473-477.

1167 Schick S, Grosche S, Kohl KE, Drpic D, Jaeger MG, Marella NC, Imrichova H, Lin JG, Hofstatter G,
1168 Schuster M, Rendeiro AF, Koren A, Petronczki M, Bock C, Muller AC, Winter GE and

1169 Kubicek S (2021) Acute BAF perturbation causes immediate changes in chromatin
1170 accessibility. *Nat Genet* **53**:269-278.

1171 Schmitz ML, dos Santos Silva MA, Altmann H, Czisch M, Holak TA and Baeuerle PA (1994)
1172 Structural and functional analysis of the NF-kappa B p65 C terminus. An acidic and modular
1173 transactivation domain with the potential to adopt an alpha-helical conformation. *J Biol Chem*
1174 **269**:25613-25620.

1175 Schmitz ML, dos Santos Silva MA and Baeuerle PA (1995) Transactivation domain 2 (TA2) of p65
1176 NF-kappa B. Similarity to TA1 and phorbol ester-stimulated activity and phosphorylation in
1177 intact cells. *J Biol Chem* **270**:15576-15584.

1178 Schuettengruber B, Bourbon HM, Di Croce L and Cavalli G (2017) Genome Regulation by Polycomb
1179 and Trithorax: 70 Years and Counting. *Cell* **171**:34-57.

1180 Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T,
1181 Medina D, Colella P, Sardiello M, Rubinsztein DC and Ballabio A (2011) TFEB links
1182 autophagy to lysosomal biogenesis. *Science* **332**:1429-1433.

1183 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker
1184 T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction
1185 networks. *Genome Res* **13**:2498-2504.

1186 Siggers T, Chang AB, Teixeira A, Wong D, Williams KJ, Ahmed B, Ragoussis J, Udalova IA, Smale
1187 ST and Bulyk ML (2012) Principles of dimer-specific gene regulation revealed by a
1188 comprehensive characterization of NF-kappaB family DNA binding. *Nat Immunol* **13**:95-102.

1189 Smale ST (2012) Dimer-specific regulatory mechanisms within the NF-kappaB family of transcription
1190 factors. *ImmunolRev* **246**:193-204.

1191 Smale ST, Tarakhovsky A and Natoli G (2014) Chromatin contributions to the regulation of innate
1192 immunity. *AnnuRevImmunol* **32**:489-511.

1193 Sonmezer C, Kleinendorst R, Imanci D, Barzaghi G, Villacorta L, Schubeler D, Benes V, Molina N
1194 and Krebs AR (2021) Molecular Co-occupancy Identifies Transcription Factor Binding
1195 Cooperativity In Vivo. *Mol Cell* **81**:255-267 e256.

1196 Spitz F and Furlong EE (2012) Transcription factors: from enhancer binding to developmental control.
1197 *NatRevGenet* **13**:613-626.

1198 Stampfel G, Kazmar T, Frank O, Wienerroither S, Reiter F and Stark A (2015) Transcriptional
1199 regulators form diverse groups with context-dependent regulatory functions. *Nature* **528**:147-
1200 151.

1201 Stein B, Baldwin AS, Jr., Ballard DW, Greene WC, Angel P and Herrlich P (1993) Cross-coupling of
1202 the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological
1203 function. *EMBO J* **12**:3879-3891.

1204 Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT,
1205 Morris JH, Bork P, Jensen LJ and Mering CV (2019) STRING v11: protein-protein
1206 association networks with increased coverage, supporting functional discovery in genome-
1207 wide experimental datasets. *Nucleic Acids Res* **47**:D607-D613.

1208 Tan A, Prasad R, Lee C and Jho EH (2022) Past, present, and future perspectives of transcription
1209 factor EB (TFEB): mechanisms of regulation and association with disease. *Cell Death Differ*
1210 **29**:1433-1449.

1211 Tyanova S, Temu T and Cox J (2016a) The MaxQuant computational platform for mass spectrometry-
1212 based shotgun proteomics. *Nat Protoc* **11**:2301-2319.

1213 Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M and Cox J (2016b) The
1214 Perseus computational platform for comprehensive analysis of (prote)omics data. *Nat Methods*
1215 **13**:731-740.

1216 Vaquerizas JM, Kummerfeld SK, Teichmann SA and Luscombe NM (2009) A census of human
1217 transcription factors: function, expression and evolution. *Nat Rev Genet* **10**:252-263.

1218 Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G,
1219 Laydon A, Zidek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R,
1220 Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis
1221 D and Velankar S (2022) AlphaFold Protein Structure Database: massively expanding the
1222 structural coverage of protein-sequence space with high-accuracy models. *Nucleic Acids Res*
1223 **50**:D439-D444.

1224 Varga J, Kube M, Luck K and Schick S (2021) The BAF chromatin remodeling complexes: structure,
1225 function, and synthetic lethaliities. *Biochem Soc Trans* **49**:1489-1503.

1226 Viatour P, Merville MP, Bours V and Chariot A (2005) Phosphorylation of NF-kappaB and IkappaB
1227 proteins: implications in cancer and inflammation. *Trends Biochem Sci* **30**:43-52.

1228 Vierstra J, Lazar J, Sandstrom R, Halow J, Lee K, Bates D, Diegel M, Dunn D, Neri F, Haugen E,
1229 Rynes E, Reynolds A, Nelson J, Johnson A, Frerker M, Buckley M, Kaul R, Meuleman W and
1230 Stamatoyannopoulos JA (2020) Global reference mapping of human transcription factor
1231 footprints. *Nature* **583**:729-736.

1232 Vogl T, Stratis A, Wixler V, Voller T, Thurainayagam S, Jorch SK, Zenker S, Dreiling A,
1233 Chakraborty D, Frohling M, Paruzel P, Wehmeyer C, Hermann S, Papantonopoulou O, Geyer
1234 C, Loser K, Schafers M, Ludwig S, Stoll M, Leanderson T, Schultze JL, Konig S, Pap T and
1235 Roth J (2018) Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts
1236 sterile inflammation. *J Clin Invest* **128**:1852-1866.

1237 Wang L and Shilatifard A (2019) UTX Mutations in Human Cancer. *Cancer Cell* **35**:168-176.

1238 Wang S, Song R, Wang Z, Jing Z, Wang S and Ma J (2018) S100A8/A9 in Inflammation. *Front
1239 Immunol* **9**:1298.

1240 Weiterer SS, Meier-Soelch J, Georgomanolis T, Mizi A, Beyerlein A, Weiser H, Brant L, Mayr-Buro
1241 C, Jurida L, Beuerlein K, Muller H, Weber A, Tenekeci U, Dittrich-Breiholz O, Bartkuhn M,
1242 Nist A, Stiewe T, van IWF, Riedlinger T, Schmitz ML, Papantonis A and Kracht M (2020)
1243 Distinct IL-1alpha-responsive enhancers promote acute and coordinated changes in chromatin
1244 topology in a hierarchical manner. *EMBO J* **39**:e101533.

1245 Williams LM and Gilmore TD (2020) Looking Down on NF-kappaB. *Mol Cell Biol* **40**.

1246 Wilson MM, Callens C, Le Gallo M, Mironov S, Ding Q, Salamagnon A, Chavarria TE, Viel R,
1247 Peasah AD, Bhutkar A, Martin S, Godey F, Tas P, Kang HS, Juin PP, Jetten AM, Visvader JE,
1248 Weinberg RA, Attanasio M, Prigent C, Lees JA and Guen VJ (2021) An EMT-primary
1249 cilium-GLIS2 signaling axis regulates mammogenesis and claudin-low breast tumorigenesis.
1250 *Sci Adv* **7**:eabf6063.

1251 Wolter S, Doerrie A, Weber A, Schneider H, Hoffmann E, von der Ohe J, Bakiri L, Wagner EF, Resch
1252 K and Kracht M (2008) c-Jun controls histone modifications, NF-kappaB recruitment, and
1253 RNA polymerase II function to activate the ccl2 gene. *Mol Cell Biol* **28**:4407-4423.

1254 Yang C and Wang X (2021) Lysosome biogenesis: Regulation and functions. *J Cell Biol* **220**.

1255 Yang XD, Tajkhorshid E and Chen LF (2010) Functional interplay between acetylation and
1256 methylation of the RelA subunit of NF-kappaB. *Mol Cell Biol* **30**:2170-2180.

1257 Zhang Q, Lenardo MJ and Baltimore D (2017) 30 Years of NF-kappaB: A Blossoming of Relevance
1258 to Human Pathobiology. *Cell* **168**:37-57.

1259 Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C and Chanda SK
1260 (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level
1261 datasets. *Nat Commun* **10**:1523.

1262 Zhou Y and Zou P (2021) The evolving capabilities of enzyme-mediated proximity labeling. *Curr
1263 Opin Chem Biol* **60**:30-38.

1264 Ziesche E, Kettner-Buhrow D, Weber A, Wittwer T, Jurida L, Soelch J, Muller H, Newel D, Kronich
1265 P, Schneider H, Dittrich-Breiholz O, Bhaskara S, Hiebert SW, Hottiger MO, Li H, Burstein E,
1266 Schmitz ML and Kracht M (2013) The coactivator role of histone deacetylase 3 in IL-1-
1267 signaling involves deacetylation of p65 NF-kappaB. *Nucleic Acids Res* **41**:90-109.

1268

1269 **Legends**

1270 **Fig. 1. Proteome-wide identification of the dimerization- or DNA-binding dependent p65 / RELA**
1271 **interactomes by proximity-labeling.**

1272 (A) The left graph shows the X-ray crystal structure of a p50 / p65 heterodimer bound to DNA as
1273 published in (Chen et al., 1998) (PDB 1kvx), while the right graph shows the entire p65 protein structure
1274 including the disordered C-terminal half as calculated by alphafold
1275 (<https://alphafold.ebi.ac.uk/entry/Q04206>). Residues required for dimerization (Phe (F) 213, Leu (L)
1276 215) or DNA binding (Glu (E) 39) are indicated in both structures.

1277 (B) Scheme of the HA-tagged p65-miniTurbo fusion proteins that were used to reconstitute p65-
1278 deficient HeLa cells under the control of a tetracycline-sensitive promoter. F213 and L215 in p65
1279 wildtype (wt) were mutated to Asp (FL / DD) for dimerization-deficient p65 or E39 to Ile (E / I) for
1280 DNA-binding-deficient p65.

1281 (C) Principle of proximity-based biotin tagging.

1282 (D) Pools of HeLa cells with CRISPR / Cas9-based suppression of endogenous p65 / RELA (Δ p65)
1283 were transiently transfected (using branched Polyethyleneimine, PEI) with the constructs shown in (B)
1284 and their expression was induced with doxycycline (1 μ g / ml) for 17 h. At the end of this incubation,
1285 intracellular biotinylation was induced by adding 50 μ M biotin for 70 minutes as indicated. Additionally,
1286 half of the samples were treated with IL-1 α (10 ng / ml) for the last 60 minutes. Cell cultures expressing
1287 HA-miniTurbo only (empty vector, EV) or receiving only doxycycline or biotin served as negative
1288 controls (indicated by gray font). Parental HeLa cells (p) were included as further controls. Left panel:
1289 Cells were lysed and proteins were analyzed by Western blotting for the expression of p65-HA-
1290 miniTurbo and HA-miniTurbo using anti p65 and anti HA antibodies. Equal loading was confirmed by
1291 probing the blots with anti β -actin antibodies. Right panel: Biotinylated proteins from the same samples
1292 were purified on streptavidin agarose beads and biotinylation patterns were visualized by Western
1293 blotting using streptavidin-horseradish peroxidase (HRP) conjugates (representative images from two
1294 independent experiments).

1295 (E) Biotinylated proteins from the experiment shown in (C) and from a second biological replicate were
1296 identified by mass spectrometry. Volcano plots show the ratio distributions of Log₂-transformed mean
1297 protein intensity values on the X-axes obtained with wild type p65 or the p65 mutants compared to the
1298 empty vector controls in the presence or absence of IL-1 α treatment. Y axes show corresponding p
1299 values from t-test results. Strong enrichment of the bait p65 / RELA proteins together with the core
1300 canonical NF- κ B components is shown in red and blue colors, respectively (two biologically
1301 independent experiments and three technical replicates per sample).

1302 (F) Specific proteins binding to p65 / RELA wild type were defined by significant enrichment (LFC \geq
1303 2, $-\log_{10} p \geq 1.3$) compared to HA-miniTurbo only and to cells exposed to doxycycline or biotin only
1304 (see Supplementary Fig. 2). This set of proteins was intersected with proteins enriched in cells
1305 expressing p65 mutant proteins (LFC \geq 2, $-\log_{10} p \geq 1.3$). Venn diagrams show the numbers of p65 /
1306 RELA interactors and their overlaps before and after IL-1 α -treatment, with values in the lower left
1307 corners indicating total numbers of interactors.

1308 (G) The six protein sets shown in (E) were subjected to parallel overrepresentation pathway analysis
1309 using Metascape software (Zhou et al., 2019). The Venn diagrams show the overlap of the top 100
1310 enriched pathway terms. For IL-1 α samples, only 92 terms were enriched. Values in the lower left
1311 corners indicate total numbers of unique pathways.

1312 (H) The table shows the most strongly enriched pathway categories associated with the p65 / RELA
1313 wild type or mutant interactomes. Numbers in brackets indicate the total numbers of p65 / RELA
1314 interactors per condition that were subjected to overrepresentation analysis according to (E, F).
1315 The mass spectrometry data and bioinformatics analysis results are provided in Supplementary Table 1.
1316 See also Supplementary Fig. 1 and 2. rtTA, reverse tetracycline-controlled transactivator.

1317 **Fig. 2. Protein composition of the p65 / RELA interactome.**

1318 (A) Protein interaction network of the 46 known p65 / RELA interactors found by miniTurboID. Edge
1319 widths visualize the evidence for experimental interactions deposited in the STRING database
1320 (Szklarczyk et al., 2019). Nodes are colored in red and are arranged according to the enrichment found
1321 by proximity labeling in our study.

1323 (B) Venn diagram of p65 / RELA interactors in IL-1 α or untreated cells revealing a total of 366 unique
1324 p65 / RELA interactors, of which 320 (87.4 %) have no documented protein interaction entries in
1325 STRING.
1326 (C) Overlap of the RELA interactome with 1639 human TFs (Lambert et al., 2018) and 801 epigenetic
1327 regulators (Marakulina et al., 2023).
1328 (D) Graphs visualizing the top 10 enriched epigenetic regulators. Volcano plots show the ratio
1329 distributions of Log₂ transformed mean protein intensity values obtained with wild type p65 / RELA
1330 (wt) or with p65 / RELA mutants (FL/DD, E/I) compared to empty vector controls (EV). Only 9 reader
1331 proteins were found.
1332 (E) Association of enriched epigenetic regulators with known epigenetic complexes according to the
1333 annotation provided by (Marakulina et al., 2023). Numbers in brackets show identified components per
1334 complex.
1335 (F) Venn diagram showing the overlap of enriched TFs in basal or IL-1 α -stimulated conditions.
1336 (G) Volcano plots visualizing all TFs significantly enriched with wt p65 / RELA (LFC \geq 2, -log₁₀ p \geq
1337 1.3) compared with empty vector control (EV) and the changes obtained with p65 mutants in basal
1338 conditions.
1339 (H) Distribution of TF families found to be associated with p65 / RELA in basal and IL-1 α -stimulated
1340 conditions according to the annotation provided by (Lambert et al., 2018)
1341 (I) IL-1 α -dependent enrichment of all TF belonging to ZBTB and ZNF families as identified by
1342 miniTurboID.
1343 (J) The top 10 pathway terms according to GO (BP, CC, MF), KEGG, Reactome, STRING clusters and
1344 WikiPathways data base entries and the top 10 subcellular localizations associated with the 366 p65 /
1345 RELA interactors. Annotations, number of components and false discovery rates (FDR) were retrieved
1346 using the STRING plugin of Cytoscape (Shannon et al., 2003).
1347 The mass spectrometry data sets and bioinformatics analysis results are provided in Supplementary
1348 Table 1.
1349

1350 **Fig. 3. A targeted siRNA screen of 38 novel high confidence interactors (HCI) of p65 / RELA**
1351 **shows their function in regulation of prototypical NF- κ B target genes.**

1352 (A) Final list of top ranking high confidence interactors p65 / RELA selected for further studies. The
1353 heatmap shows the Log₂ transformed mean protein intensity values from technical triplicates of the two
1354 biological independent miniTurboID experiments, the enrichment ratio values compared to the empty
1355 vector (HA-miniTurbo) control (EV) and the regulation by IL-1 α . With the exception of N4BP3, all
1356 proteins were identified by at least two peptides.
1357 (B) Graph showing that the top 38 p65 / RELA interactors are largely devoid of known protein
1358 interactions based on STRING entries. According to STRING, only two factors (CEBPD and FOSL1)
1359 interact with p65 / RELA. Node borders visualize the main functional annotations.
1360 (C) HeLa cells were transiently transfected for 48 h with 20 nM of siRNAs mixtures for 38 HCI and
1361 p65 / RELA, a siRNA targeting luciferase, transfection reagent alone or were left untreated (untr.). Half
1362 of the cells per plate were treated for 1 h with IL-1 α (10 ng / ml) at the end of the incubation. cDNAs
1363 were transcribed in lysates and amplicons for three NF- κ B target genes, two housekeeping genes and all
1364 38 HCI p65 / RELA interactors were pre-amplified by linear PCR and then quantified by qPCR. Based
1365 on Ct values, mRNA levels were quantified and normalized against GUSB. The effects of knockdowns
1366 were calculated separately for basal and IL-1 α -inducible conditions against the luciferase siRNA. The
1367 heatmap shows hierarchically Kmeans clustered mean ratio values derived from three biologically
1368 independent siRNA screens. As a positive control, RELA knockdowns were performed in parallel.
1369 Green colors highlight p65 / RELA interactors selected for further analysis.
1370 (D) The miniTurboID enrichment of six p65 / RELA interactors (green colors) chosen from (C) is
1371 shown.

1372 The complete set of data of the screen is provided in Supplementary Table 2.
1373 See also Supplementary Fig. 3.

1374 **Fig. 4. Interdependent regulation of NF- κ B-target genes by TFE3, TFEB and GLIS2**

1375 (A) Volcano plots revealing the basal and IL-1 α -dependent enrichment of all MiT / TFE and GLIS
1376 family members in the miniTurboID experiments. For details see Fig. 1D.
1377

1378 (B) The subcellular distribution of phosphorylated (P) and dephosphorylated forms of TFE3 and TFEB
1379 was evaluated by Western blotting in cell extracts from HeLa cells stimulated with IL-1 α or subjected
1380 to starvation (HBSS) for the indicated times. “W” indicates samples washed four times with HBSS and
1381 then supplemented with their previous cell culture medium to control for effects caused by the washing
1382 procedure prior to addition of starvation medium. Antibodies against RNA polymerase (pol II), tubulin
1383 or β -actin served as control for fractionation and equal protein loading. Shown is one out of three
1384 biologically independent experiments. See Supplementary Fig. 5 for quantification of replicates.
1385 (C) Parental HeLa cells or cells transfected with siRNAs (20 nM) against TFs or luciferase (as a negative
1386 control) were cultivated for 48 h. Then, half of the cells were stimulated for 1 h with IL-1 α (10 ng / ml)
1387 or were left untreated. Total cell extracts were examined for the expression of the indicated proteins by
1388 Western blotting. Antibodies against β -actin served as loading controls. Shown is one out of three
1389 biologically independent experiments.
1390 (D) Quantification of the basal expression levels of the indicated TFs in extracts of cells transfected as
1391 in (C). Data show mean values relative to parental cells \pm s.d. from six biologically independent
1392 experiments. Asterisks indicate p values (* $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, **** $p \leq 0.0001$) obtained
1393 by two-tailed unpaired t-tests.
1394 (E) Total RNA isolated from cells treated as in (C) was analyzed for mRNA expression of the indicated
1395 NF- κ B target genes by RT-qPCR. Data show mean values relative to cells transfected with luciferase
1396 siRNA \pm s.d. from three biologically independent experiments. siTFE3 / B indicates double knockdown
1397 of TFE3 and TFEB. Asterisks indicate p values (* $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, **** $p \leq 0.0001$)
1398 obtained by one-way ANOVA.
1399

1400 **Fig. 5. ZBTB5, GLIS2, S100A8 / S100A9 and TFE3 / TFEB co-regulate IL-1 α -inducible subsets
1401 of RELA target genes.**

1402 (A) Schematic illustrating the strategy to analyze the influences of novel p65 / RELA interactors on IL-
1403 1 α -regulated p65 / RELA target genes by combining siRNA-mediated knockdown with transcriptome
1404 analysis.
1405 (B) HeLa cells were transiently transfected for 48 h with 20 nM siRNA mixtures against RELA, ZBTB5,
1406 S100A8, S100A9 (series 1) or RELA, GLIS2, TFE3, TFEB (series 2) and an siRNA against luciferase
1407 (siLuc) as control. Half of the cells were treated with IL-1 α (10 ng/ml) for 1 hour at the end of incubation,
1408 and Agilent microarray analyses were performed from total RNA. Normalized data were used to identify
1409 DEGs based on an LFC ≥ 1 with a $-\log_{10}$ p value ≥ 1.3 . Venn diagrams show the overlap of all DEGs
1410 that were affected at least twofold by siRNA knockdown in IL-1 α -treated samples, with the ratio of
1411 siLuc to individual knockdown determined in each case. Red colors mark genes jointly regulated by
1412 knockdown of RELA and one of its interactors (two biologically independent experiments).
1413 (C) Violin plots show the distribution, medians, and interquartile ranges of normalized expression levels
1414 for all IL-1 α -regulated genes and the corresponding changes in the gene subsets defined in Fig. 5B that
1415 were affected by siRNA knockdown. The number of these genes is indicated in parentheses. Asterisks
1416 indicate significant changes as determined by a two-tailed Mann-Whitney test (* $p \leq 0.05$, ** $p \leq 0.01$,
1417 *** $p \leq 0.001$, **** $p \leq 0.0001$).
1418 (D) Superimposed pairwise correlation analyses of the mean ratio changes of all genes (gray), IL-1 α -
1419 regulated genes (blue), and gene sets significantly up- or down-regulated by siRNA knockdown (red).
1420 Ratio values from RELA knockdown conditions were compared with the knockdown of a RELA
1421 interactor in each case. Genes that are jointly regulated by knockdown of RELA and one of its interactors
1422 correspond to the Venn diagrams of (B) and are marked in red. Coefficients of correlation (Pearson's r),
1423 corresponding p values and coefficients of determination (r^2) rare indicated for all comparisons.
1424 The complete set of data is provided in Supplementary Table 3.
1425

1426 **Fig. 6. IL-1 α -regulated RELA genetic networks derived from genome-wide loss of function
1427 analysis of its interaction partners.**

1428 (A) Schematic illustrating the strategy to project the protein interactions of all target genes defined by
1429 knockdowns of p65 / RELA or its interactors in IL-1 α -stimulated cells into combined functional
1430 networks.
1431 (B) Table summarizing the numbers of mapped IDs (= nodes) corresponding to the gene groups shown
1432 in Fig. 5B, their protein interactions (= edges) and the protein interaction network enrichment p values
1433 as derived from STRING.

1434 (C) Cytoscape-derived PPI networks. Nodes are colored and arranged according to the deregulation of
1435 the corresponding genes by knockdown of p65 / RELA or its interactors. Edges visualize known protein
1436 interactions, including the small number of interactions reported for p65 / RELA, S100A8 / 9, and TFE3
1437 / TFEB. No interactions were found for ZBTB5 and GLIS2.

1438 **Fig. 7. Motif analysis predicts chromatin recruitment of RELA interactors to p65 / RELA ChIPseq
1439 peaks**

1440 (A) Schematic illustrating the strategy to use p65 / RELA ChIPseq data for delineating chromatin
1441 recruitment of RELA together with its interactors on the basis of DNA motifs and three possible
1442 scenarios of interactions.

1443 (B) Windows of 1000 base pairs surrounding experimentally determined p65 / RELA ChIPseq peaks
1444 (Jurida et al., 2015) were searched for motifs of RELA and REL using matrices from the JASPAR data
1445 base. P values indicated significant enrichment compared to the whole genome. The Venn diagram
1446 shows the overlap and inserts show motif compositions.

1447 (C) Venn diagrams indicating the overlap of motifs found for RELA or the RELA interactors TFE3,
1448 TFEB or GLIS2 in chromosomal regions assigned to p65 / RELA ChIPseq peaks. P values indicated
1449 significant enrichment compared to the whole genome. Inserts show motif compositions.

1450 (D) All target genes that were significantly up- or downregulated under basal or IL-1 α -stimulated
1451 conditions as shown in Fig. 5 or supplementary Fig. 7 were collected and were examined for their
1452 association with a p65 / RELA ChIPseq peak. The pie charts show the numbers of RELA, TFE3, TFEB
1453 and GLIS2 motifs detected in siRNA RELA target genes with an annotated p65 / RELA peak in their
1454 promoters or enhancers.

1455 (E) Overlap of all genes with a p65 / RELA peak in promoters or enhancers and at least one motif for
1456 the indicated transcription factors in IL-1 α -stimulated conditions.

1457 (F) Genome browser view of the TNFAIP3 locus with p65 / RELA ChIPseq peaks, activated enhancers
1458 and promoters (H3K27ac), accessible chromatin (ATACseq) and mRNA production (RNAseq) before
1459 and after 1 h of IL-1 α stimulation. Data sets were from GSE64224, GSE52470 and GSE134436 and are
1460 aligned to HG19 (Jurida et al., 2015; Weiterer et al., 2020). p65 / RELA binding regions of 1000 bp
1461 under p65 / RELA peaks and identified TF motifs are indicated by horizontal lines.

1462 (G) HeLa cells were left untreated or were starved for 24 h in HBSS. Half of the cells was treated with
1463 IL-1 α (10 ng / ml) for 1 h before the end of the experiment. ChIP-qPCR was performed with the indicated
1464 antibodies or IgG controls and a primer pair covering the TNFAIP3 promoter region (marked with an
1465 arrow in Fig. 7F). Floating bar plots show percent input plus the mean of all values from three
1466 independent biological replicates performed with two technical replicates.

1467 The complete set of data is provided in Supplementary Table 4.

1469 **Supplementary Fig. 1. The p65-HA-miniTurbo fusion protein is inducibly expressed and**
1470 **functional.**

1471 (A) Parental HeLa cells or pools of HeLa cells with CRISPR / Cas9-based suppression of endogenous
1472 p65 / RELA (Δ p65) were transiently transfected with empty vector (EV) encoding HA-miniTurbo (HA-
1473 mTb) or with p65 / RELA wild type (wt) fused C-terminally to HA-mTb (p65(wt)-HA-mTb) as
1474 described in the legend of Fig. 1A. The expression of the constructs was induced with increasing
1475 concentrations of doxycycline for 17 h as indicated. At the end of the incubation, half of the cell cultures
1476 were treated with IL-1 α (10 ng / ml) for 1 h. Cell extracts were analyzed by Western blotting for the
1477 expression of the p65-HA-mTb fusion protein or HA-mTb using polyclonal antibodies raised against
1478 the C-terminus of p65 / RELA (sc-372) or a monoclonal antibody raised against N-terminal amino acids
1479 1-286 of p65 / RELA (sc-8008), or an anti HA antibody, respectively. Note that the fusion protein is
1480 better recognized with the N-terminal antibody preparations.

1481 (B) HeLa cells with CRISPR / Cas9-based suppression of endogenous p65 / RELA (Δ p65) were
1482 transiently transfected with the indicated constructs and their expression was induced with doxycycline
1483 at 1 μ g / ml for 17 h. On the next day, half of the cell cultures were treated with IL-1 α (10 ng / ml) for
1484 1 h. Total RNA was isolated and analyzed by RT-qPCR for expression of the indicated genes. Bar graphs
1485 show means \pm s.d. from two biologically independent experiments.

1486 (C) Cells were transfected as in (A) and expression of the p65 / RELA fusion protein was induced 20 h
1487 later with doxycycline (10 ng / ml) for 4 h. In last period of this incubation, half of the cell cultures were
1488 treated with IL-1 α (10 ng / ml) for 1 h. Cells were lysed and cytosolic (C), soluble nuclear (N1) and
1489 insoluble, chromatin nuclear fractions (N2) were analyzed by Western blotting for the expression and
1490 distribution of p65(wt)-HA-mTb. Antibodies against RNA polymerase II, tubulin and β -actin were used
1491 to control purity of fractions and equal loading.

1492 **Supplementary Fig. 2. Identification of p65 / RELA high confidence interactors.**

1493 (A) Biotinylated proteins from the experiments shown in Fig. 1C and from a second biological replicate
1494 were identified by mass spectrometry in the presence or absence of IL-1 α treatment of cells. Volcano
1495 plots show the ratio distributions of Log₂ transformed mean protein intensity values obtained with wild
1496 type p65 in the presence of doxycycline and biotin (wt) compared to the empty vector control (EV) or
1497 compared with conditions in which only biotin (wt(bio)) or doxycycline (wt(dox)) were added to the
1498 cell cultures, to determine false positive values in the absence of expression of fusion protein but
1499 facilitated biotinylation, or in the absence of biotinylation but induced expression of the fusion protein,
1500 respectively. X-axes show mean ratio value and Y-axes show p values from t-test results. Strong
1501 enrichment of the bait p65 / RELA proteins together with the core canonical NF- κ B components is
1502 shown in red and blue colors, respectively (two biologically independent experiments and three
1503 technical replicates per sample).

1504 (B) Specific proteins binding to p65 / RELA wild type were defined by significant enrichment (LFC \geq
1505 2, $-\log_{10} p \geq 1.3$) compared to HA-miniTurbo only and to cells exposed to doxycycline or biotin only as
1506 shown in (A). Venn diagrams show the total numbers of specific p65 / RELA interactors and their
1507 overlaps before and after IL-1 α -treatment. The intersecting 279 (without IL-1 α) and 310 (with IL-1 α)
1508 interactors were pooled, resulting in the set of 366 specific p65 / RELA interactors that was used for
1509 further downstream analyses. Numbers in the left lower corner of the boxes indicate the total number of
1510 detected interactors.

1511 **Supplementary Fig. 3. Targeted siRNA screen of 38 p65 / RELA high confidence interactors.**

1512 (A) Scheme illustrating the arrangement of siRNAs and controls on individual cell culture plates and
1513 the performance of RT-qPCR measurements in cell extracts without prior RNA purification. A linear
1514 PCR amplification step was included to pre-amplify specific transcripts.

1515 (B) Confirmation of knockdown of 38 HCl and of RELA mRNAs by RT-qPCR as shown in (A). Bar
1516 graphs show mean changes \pm s.d. relative to the luciferase siRNA controls (siLuci) from three
1517 biologically independent experiments.

1518 **Supplementary Fig. 4. Proximity ligation assays confirm endogenous protein-protein interactions**
1519 **of p65 / RELA with interactors.**

1520 Proximity-ligation assays coupled to immunofluorescence (IF) were performed with HeLa cells or Δ p65
1521 HeLa cells lacking endogenous p65 / RELA to demonstrate interactions of p65 / RELA with TFE3 (A),

1525 TFEB (B), GLIS2 (C) and ZBTB5 (D) using pairs of antibodies as indicated. PLA-spots are colored in
1526 red, while p65 IF is colored in green. Nuclear DNA is counterstained with Hoechst (blue signals). The
1527 images show representative fluorescence raw data and the violin plots on the right show quantification
1528 from the numbers of cells indicated in brackets. Samples omitting one of the two antibodies or both
1529 primary antibodies (ctr) served as negative controls. Solid lines indicate medians and dashed lines
1530 indicate 1st and 3rd quartiles. Asterisks indicate results from Kruskal-Wallis tests compared to the
1531 parental control (****p ≤ 0.0001), obtained by one-way ANOVA.
1532

1533 **Supplementary Fig. 5. Quantification of subcellular distributions of p65 / RELA, TFE3 and TFEB.**
1534 Cells were treated and cell extracts were analyzed by Western blotting as described in the legend of Fig.
1535 4B. Bar graphs show mean changes ± s.d. relative to untreated controls from three independent
1536 experiments. Asterisks indicate p values (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001) obtained
1537 by one-way ANOVA. C = cytosol; N = nucleus.
1538

1539 **Supplementary Fig. 6. CLEAR gene expression does not depend on p65 / RELA.**
1540 Total RNA isolated from cells treated as in Fig. 4C was analyzed for mRNA expression of the indicated
1541 CLEAR target genes by RT-qPCR. Data show mean values relative to cells transfected with luciferase
1542 siRNA ± s.d. from three biologically independent experiments. DK indicates double knockdown of
1543 TFE3 and TFEB. Asterisks indicate p values (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001)
1544 obtained by one-way ANOVA.
1545

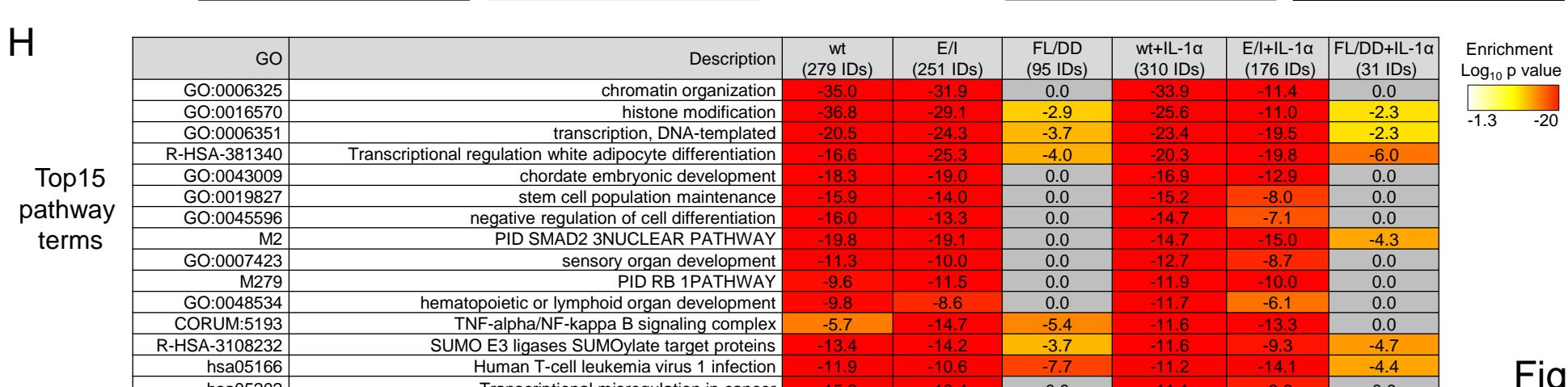
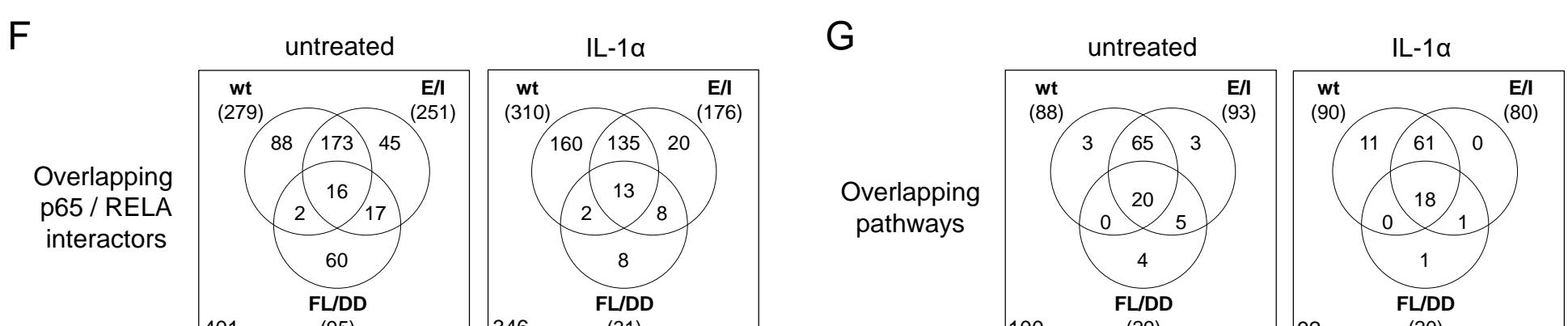
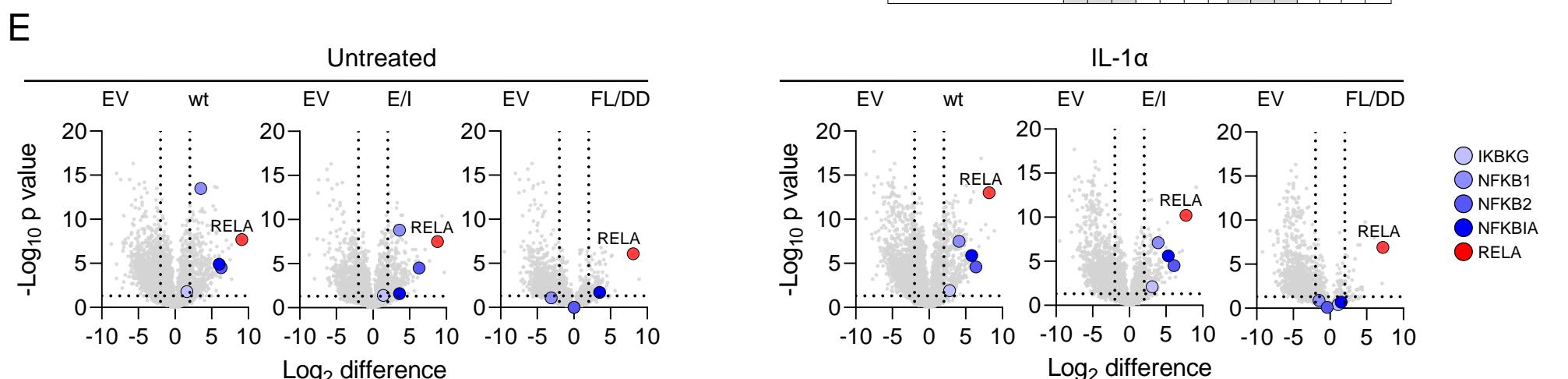
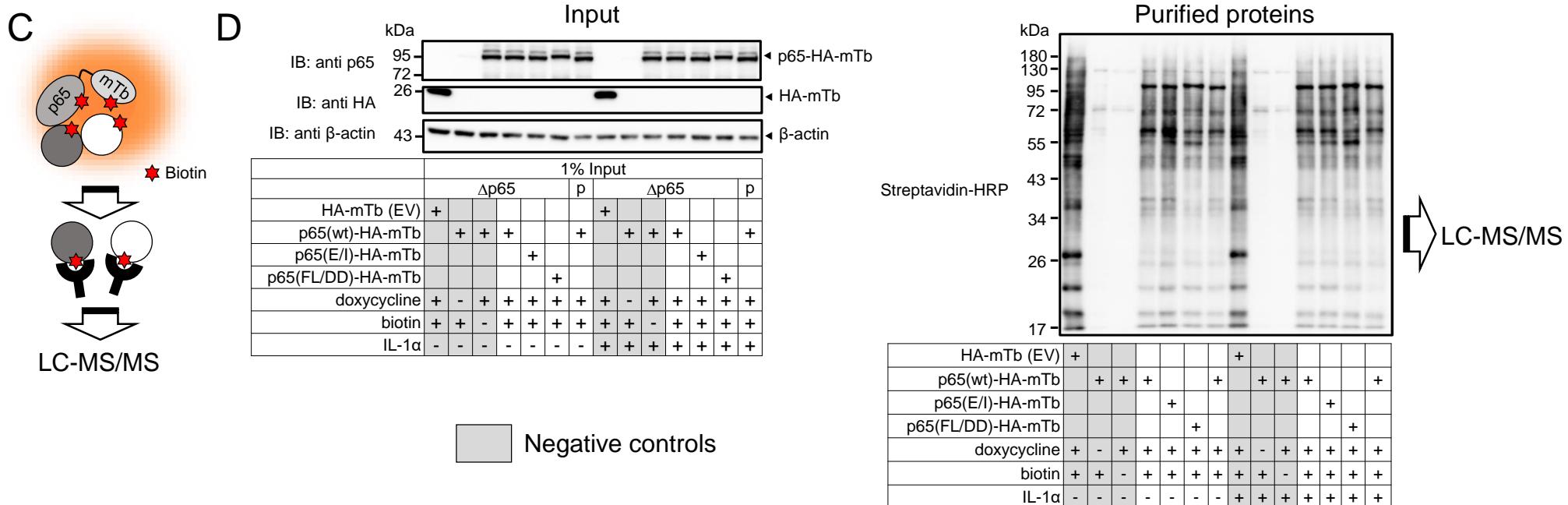
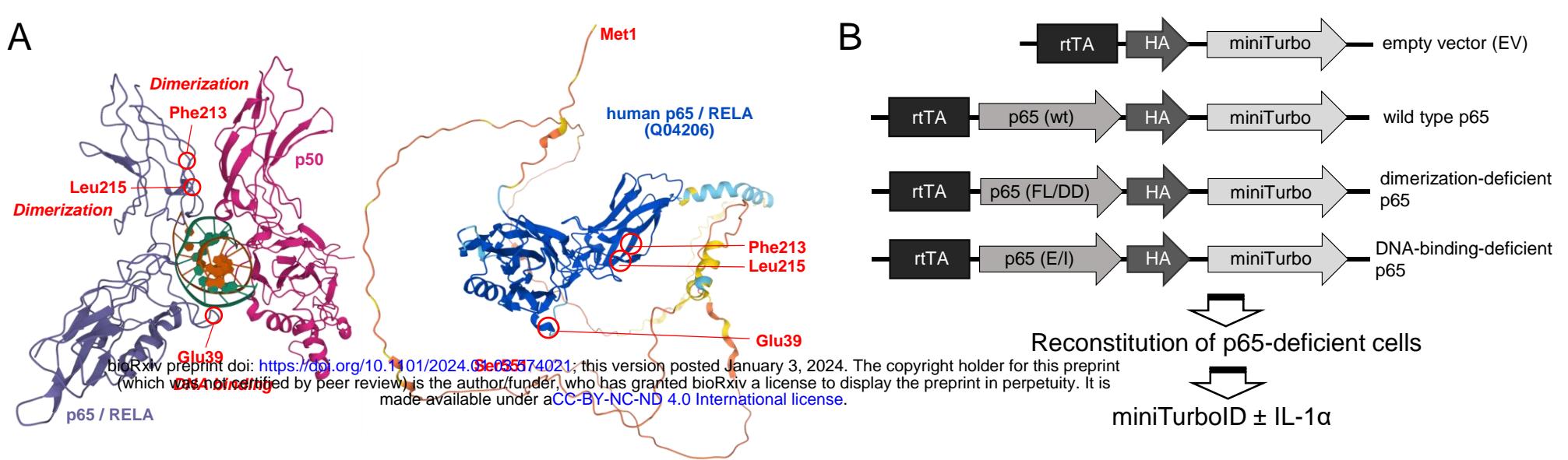
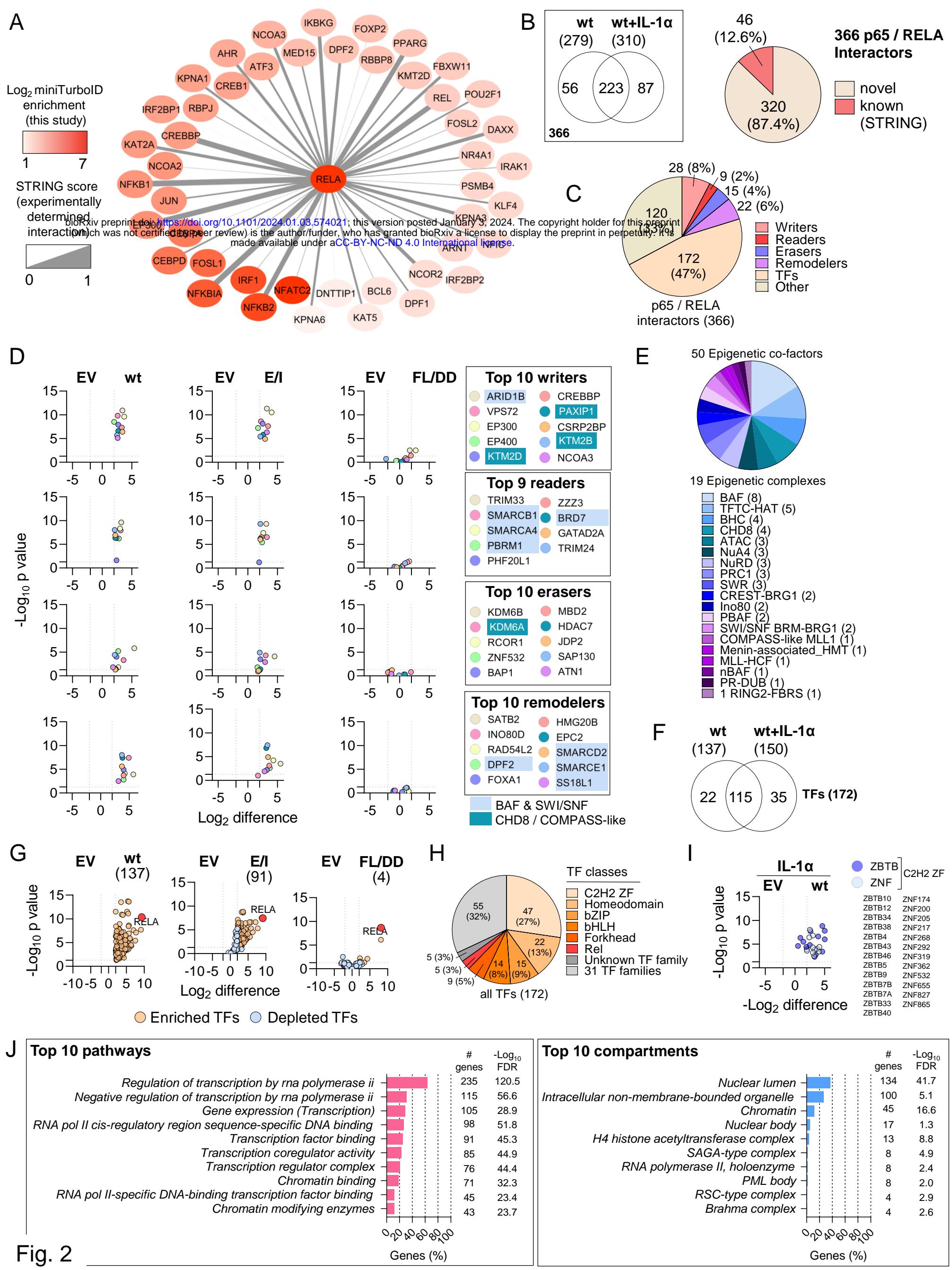
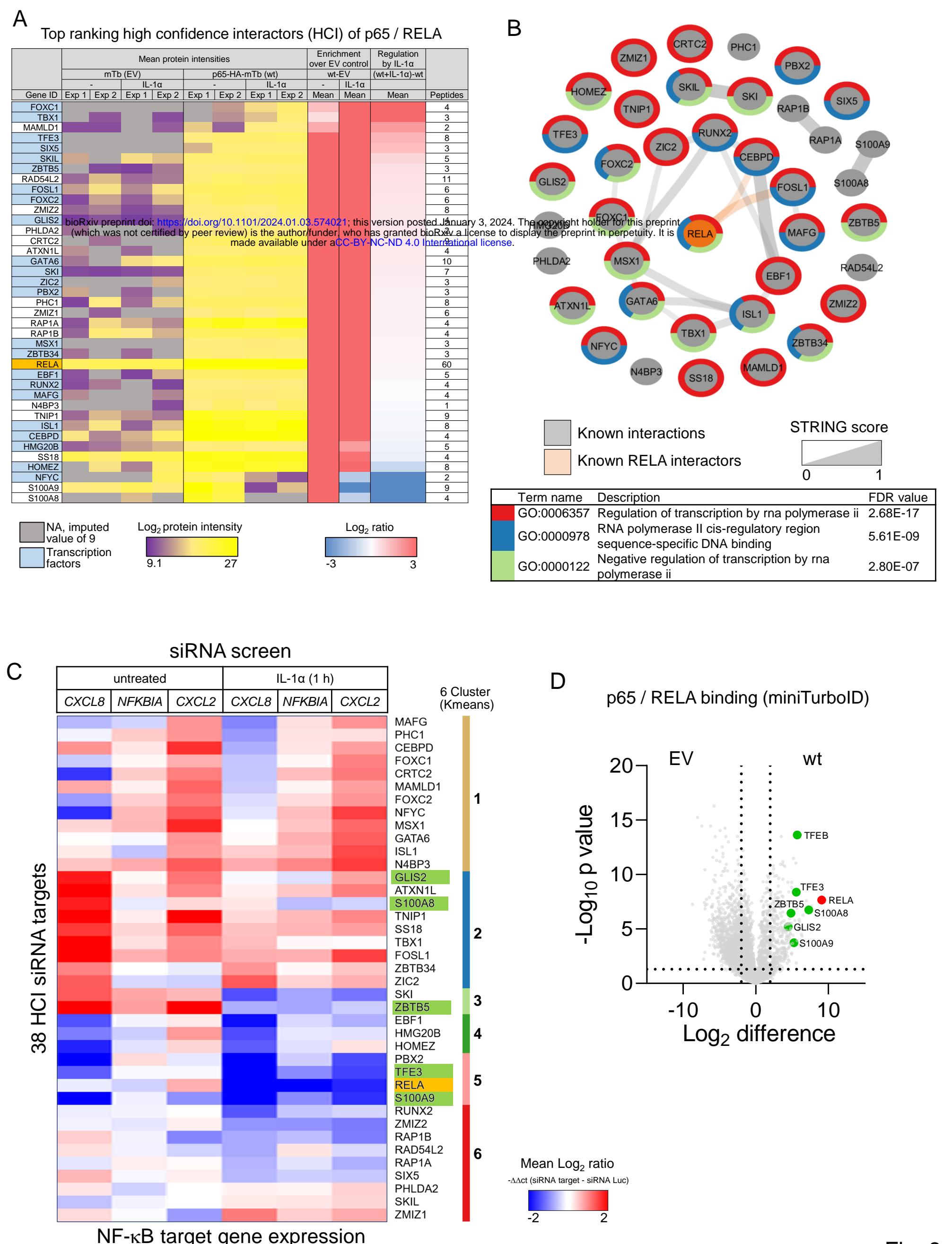
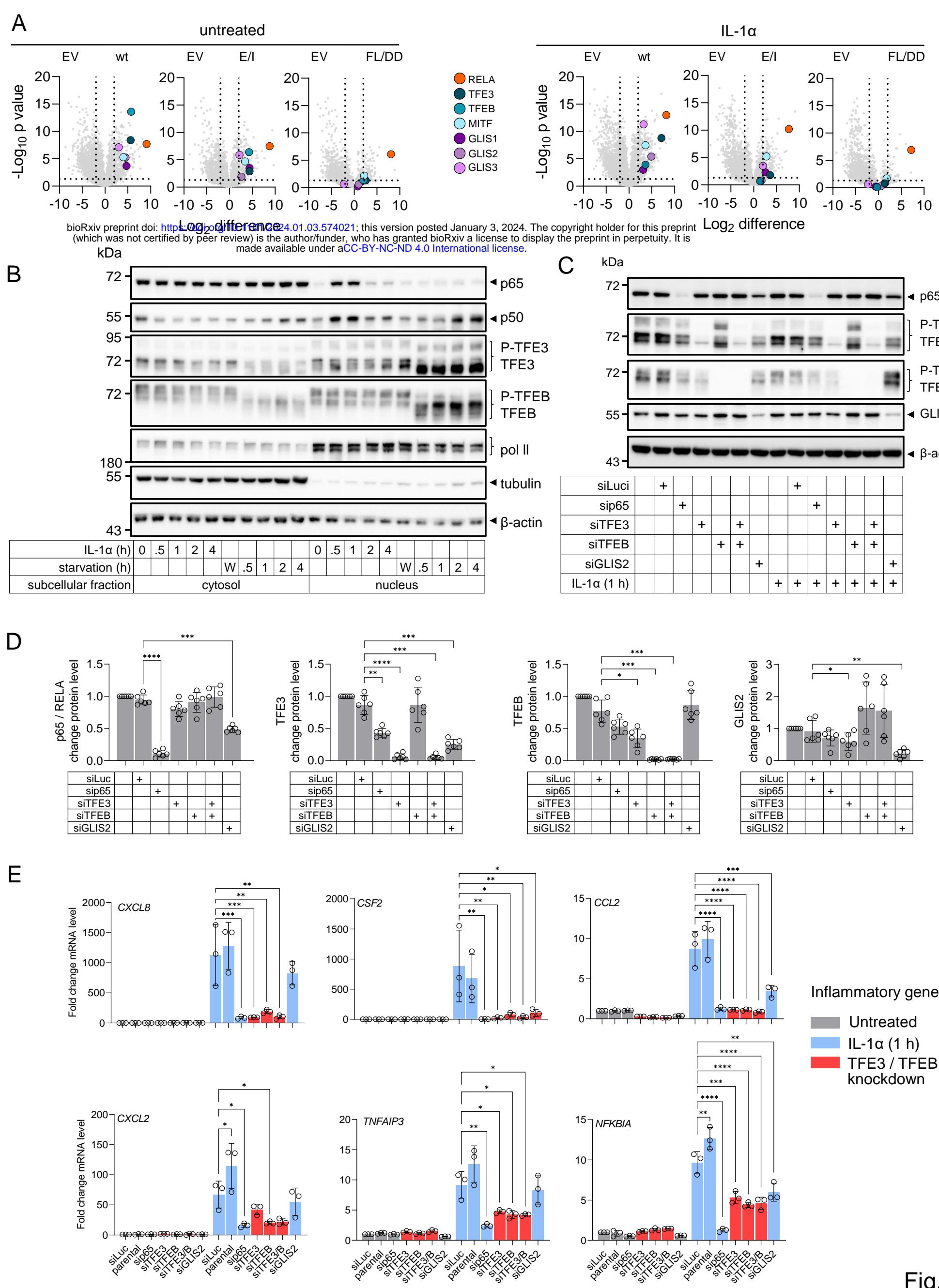
1546 **Supplementary Fig. 7. ZBTB5, GLIS2, S100A8 / S100A9 and TFE3 / TFEB co-regulate
1547 constitutively expressed subsets of p65 / RELA target genes.**

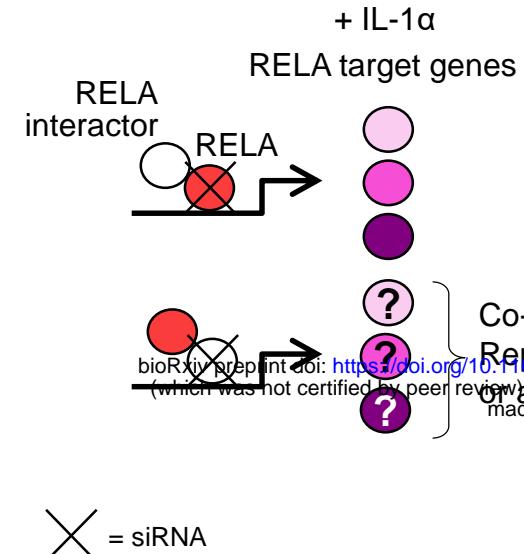
1548 (A) Schematic illustrating the strategy to analyze the influences of novel p65 / RELA interactors on
1549 basal p65 / RELA target genes by combining siRNA-mediated knockdown with transcriptome analysis.
1550 (B) HeLa cells were transiently transfected for 48 hours with 20 nM siRNA mixtures against RELA,
1551 ZBTB5, S100A8, S100A9 (series 1) or RELA, GLIS2, TFE3, TFEB (series 2) and an siRNA against
1552 luciferase (siLuc) as control. Half of the cells were treated with IL-1 α (10 ng/ml) for 1 hour at the end
1553 of incubation, and Agilent microarray analyses were performed from total RNA. Normalized data were
1554 used to identify DEGs based on an LFC ≥ 1 with a -log₁₀ p value ≥ 1.3. Venn diagrams show the overlap
1555 of all DEGs that were affected at least twofold by siRNA knockdown in untreated, basal conditions,
1556 with the ratio of siLuc to individual knockdown determined in each case. Red colors mark genes jointly
1557 regulated by knockdown of RELA and one of its interactors (two biologically independent experiments).
1558 (C) Violin plots show the distribution, medians, and interquartile ranges of normalized expression levels
1559 for all constitutively expressed genes and the corresponding changes in the gene subsets defined in
1560 Supplementary Fig. 7B that were affected by siRNA knockdown. The number of these genes is indicated
1561 in parentheses.
1562 (D) Superimposed pairwise correlation analyses of the mean ratio changes of all genes (gray), and gene
1563 sets significantly up- or down-regulated by siRNA knockdown (red). Ratio values from RELA
1564 knockdown conditions were compared with the knockdown of a RELA interactor in each case. Genes
1565 that are jointly regulated by knockdown of RELA and one of its interactors correspond to the Venn
1566 diagrams of (B) and are marked in red. Coefficients of correlation (Pearson's r), corresponding p values
1567 and coefficients of determination (r^2) are indicated for all comparisons.
1568 The complete set of data is provided in Supplementary Table 3.
1569

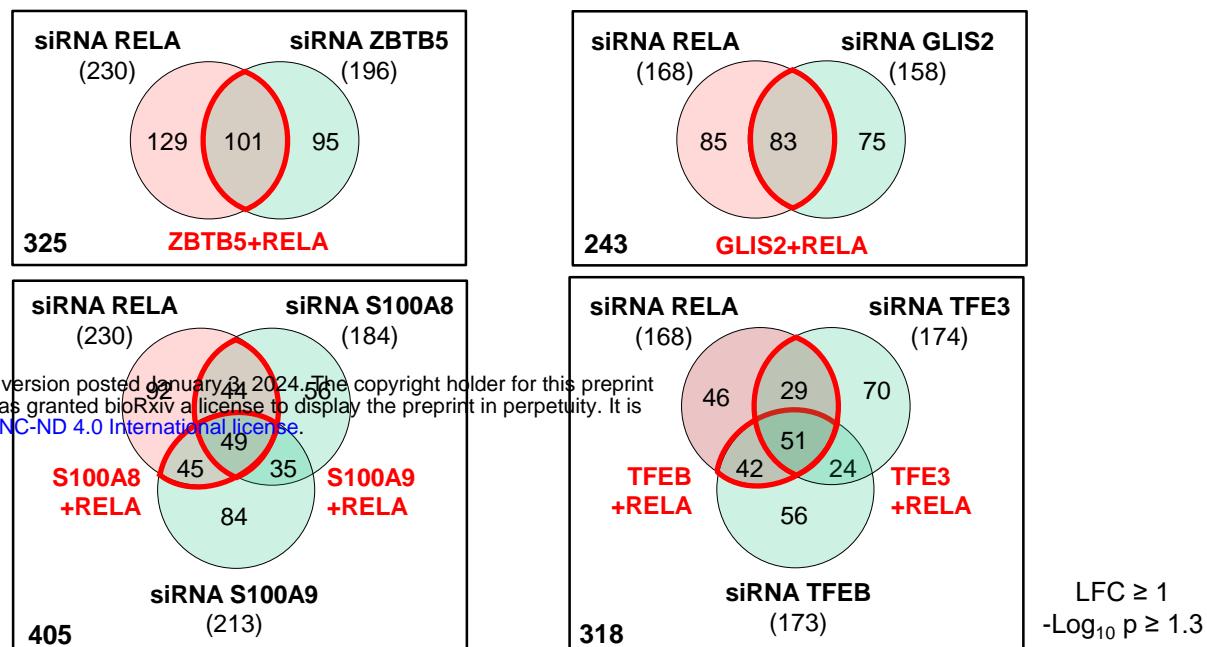
1570 **Supplementary Fig. 8. Motif analyses of ZBTB factors.**

1571 Venn diagrams indicating the overlap of RELA motifs with motifs of ZBTB factors that were found by
1572 miniTurboID to interact with RELA, in chromosomal regions assigned to p65 / RELA ChIPseq peaks.
1573 P values indicated significant enrichment compared to the whole genome. Inserts show motif
1574 compositions.
1575

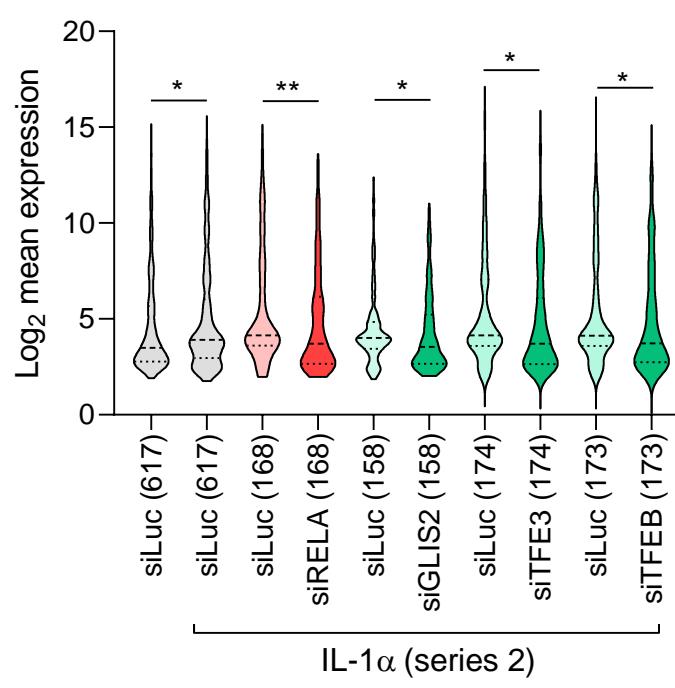
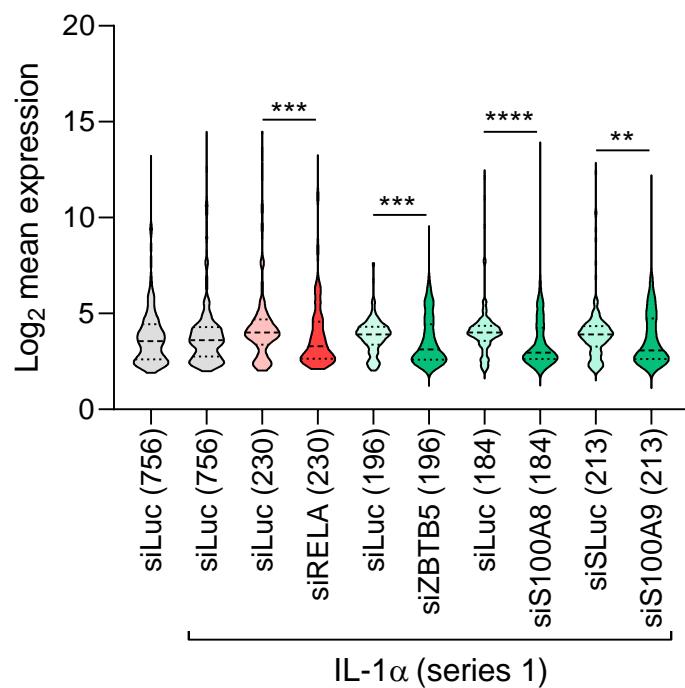
1576 **Supplementary Table 1. Source_data_of_LC-MS_MS_experiments.**
1577
1578 **Supplementary Table 2. Source_data_of_targeted_siRNA_screen.**
1579
1580 **Supplementary Table 3. Source_data_of_microarray_experiments.**
1581
1582 **Supplementary Table 4. Source_data_motif_analyses_under_p65_RELAT_ChIPseq_peaks.**
1583
1584 **Supplementary Table 5. NF-kB_interactors_from_published_large_scale_screens.**


Fig. 1



A

bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.03.574021>; this version posted January 3, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

IL-1 α response genes

C

D

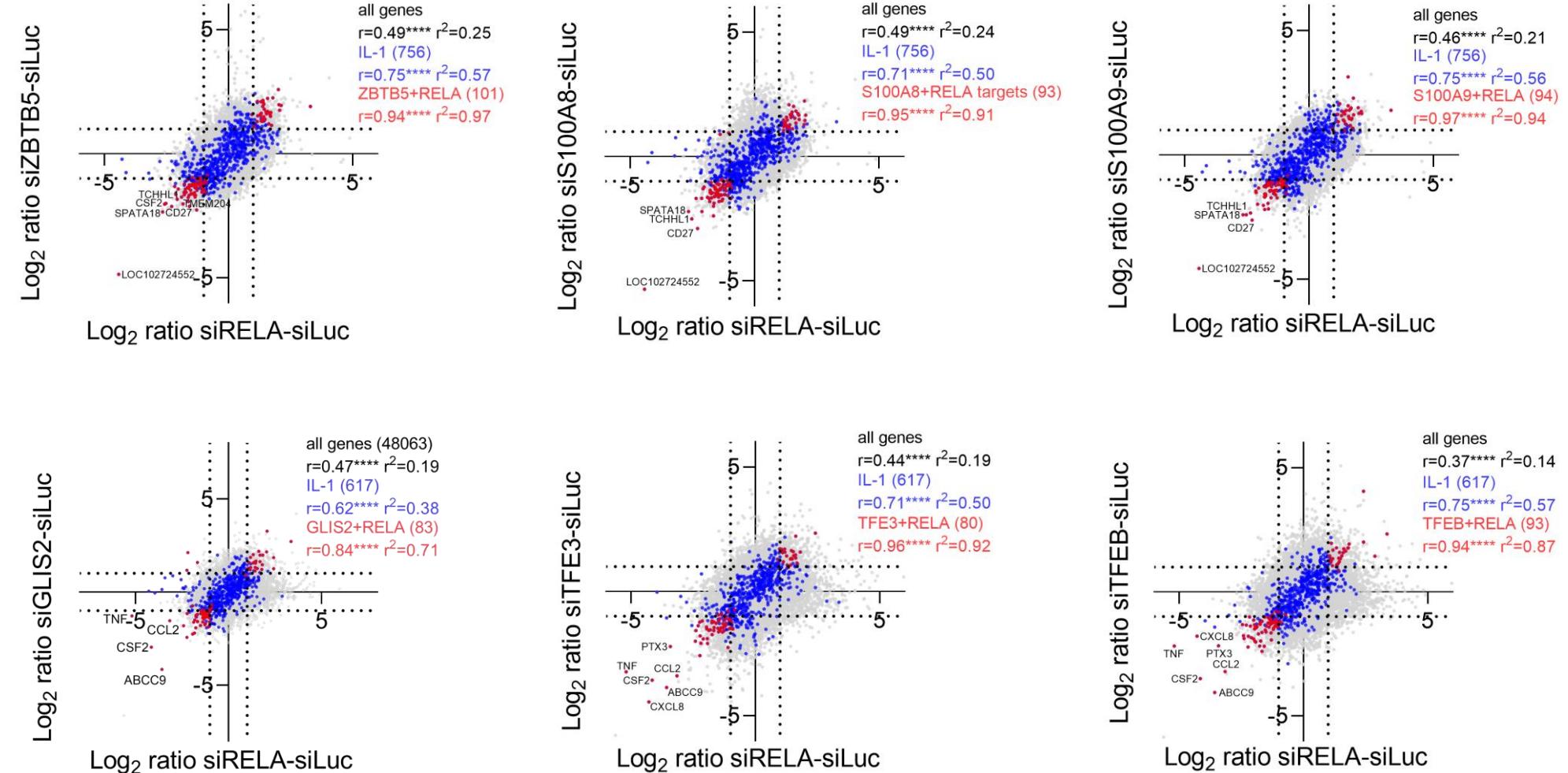


Fig. 5

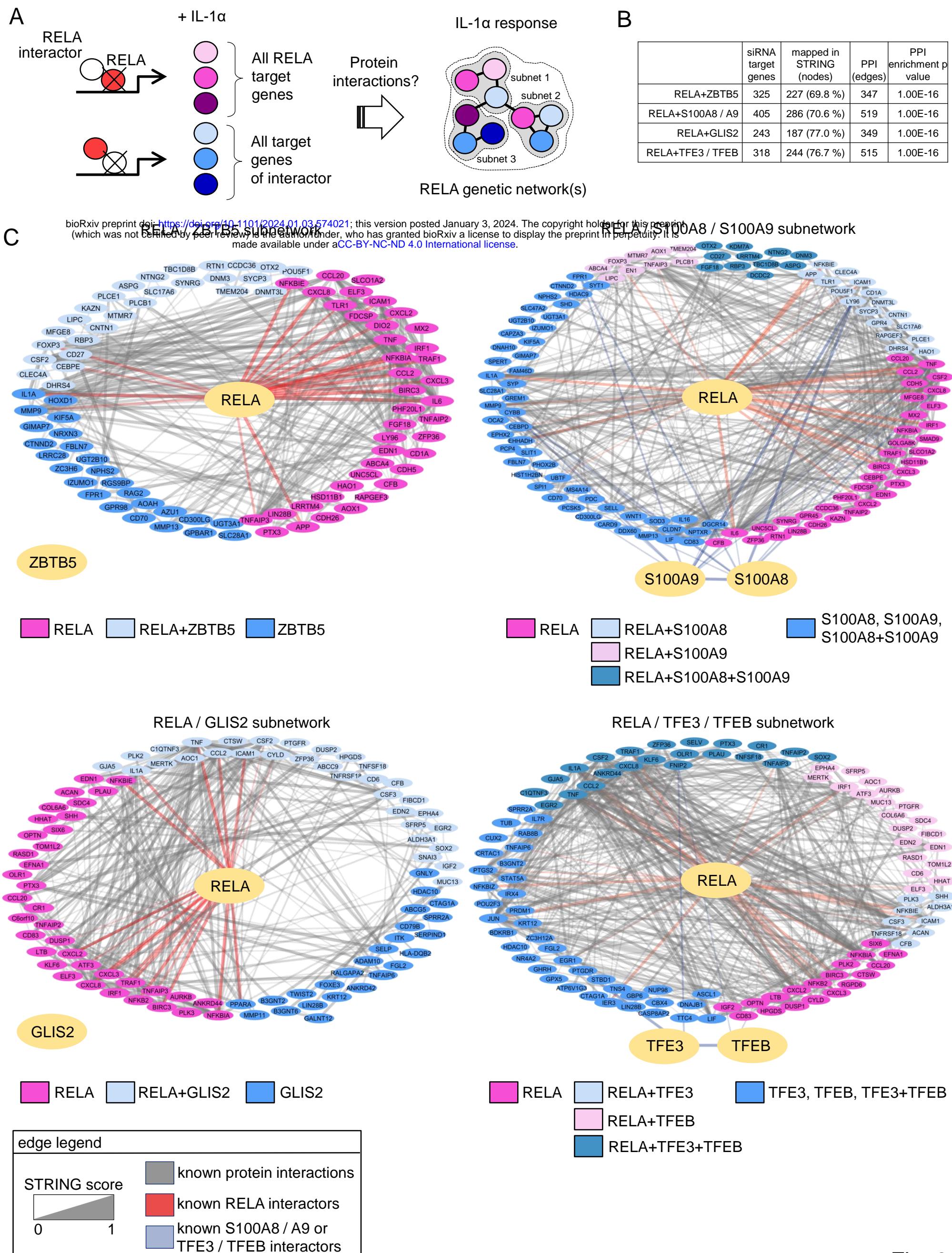


Fig. 6

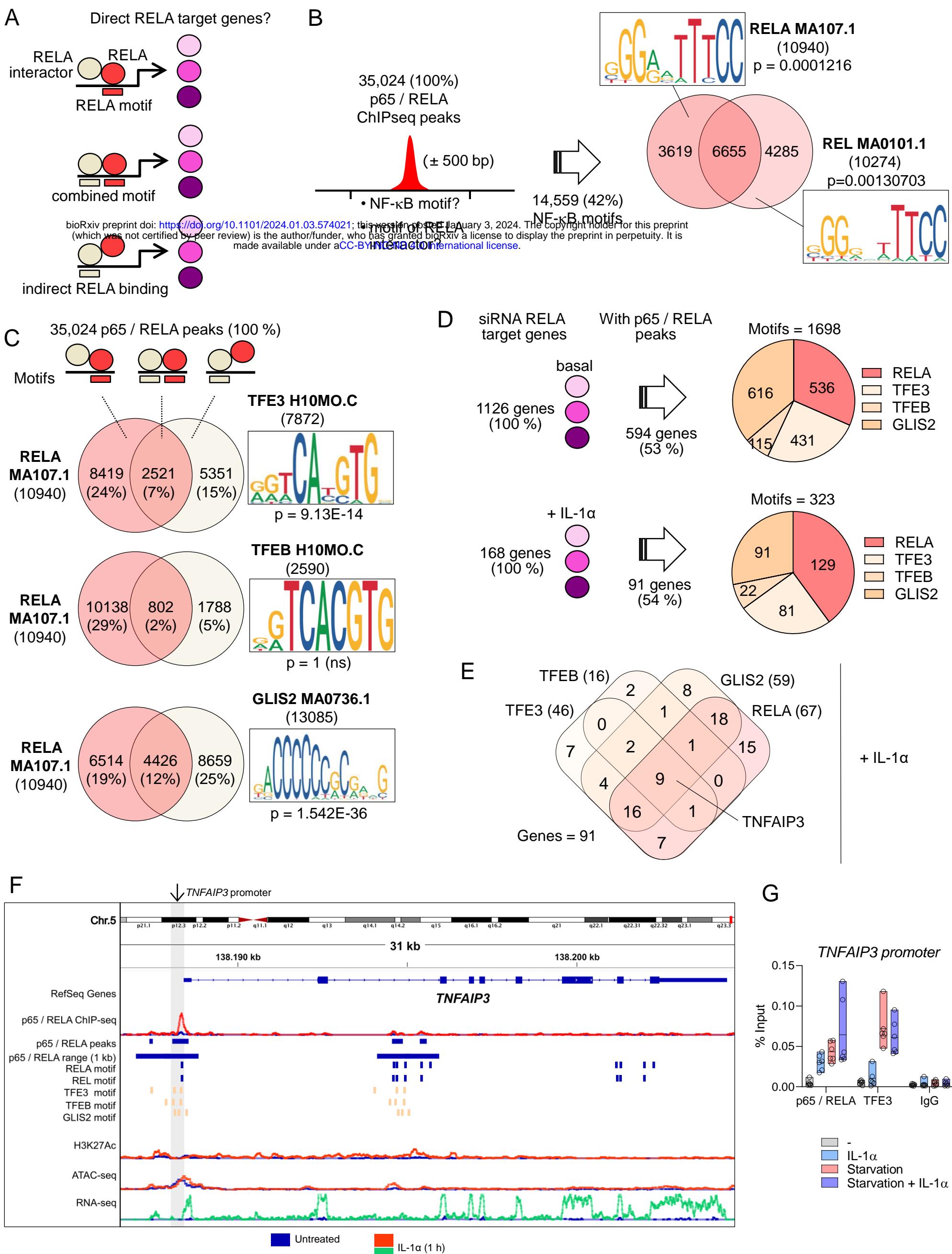
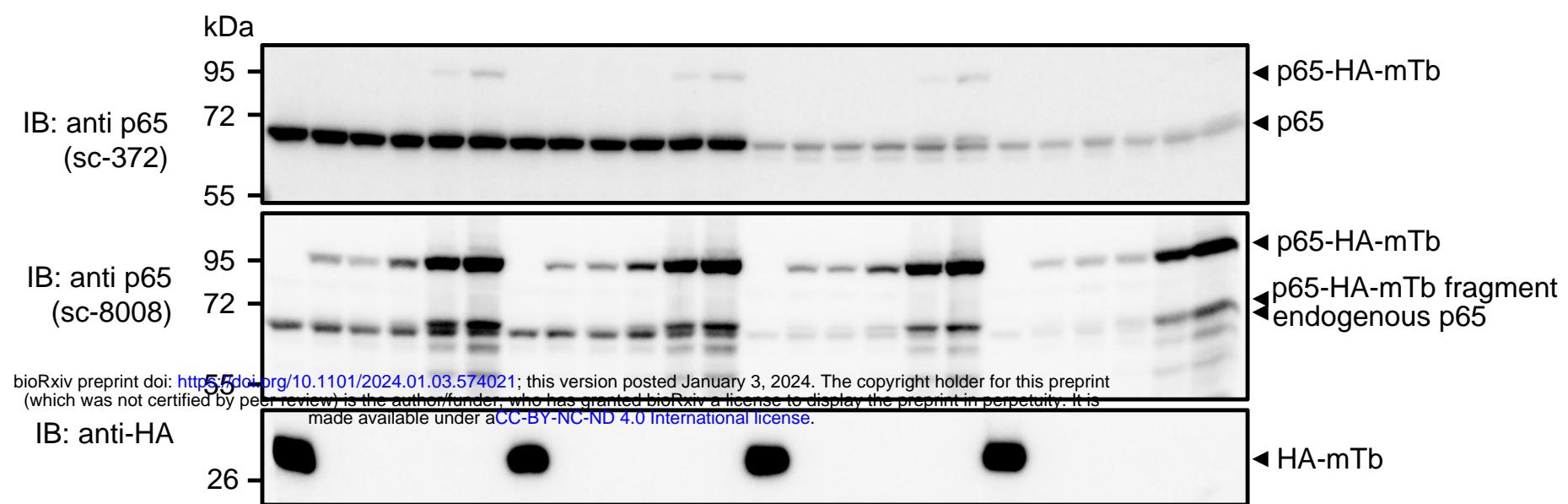
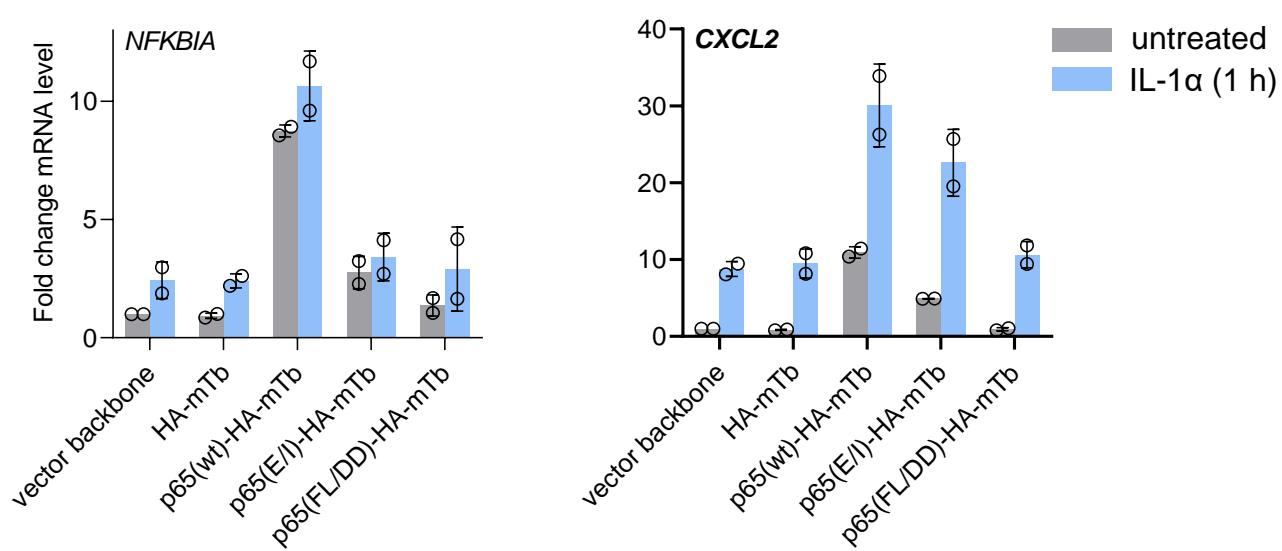
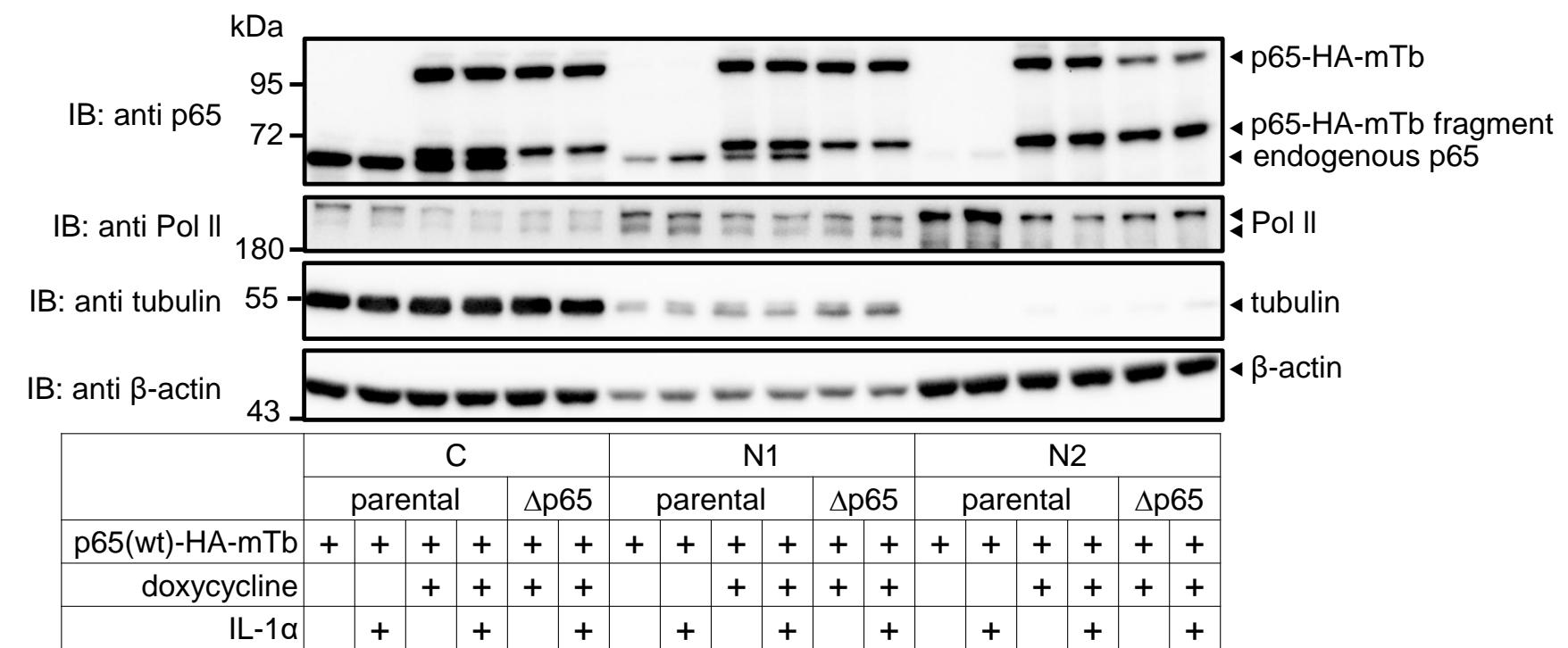
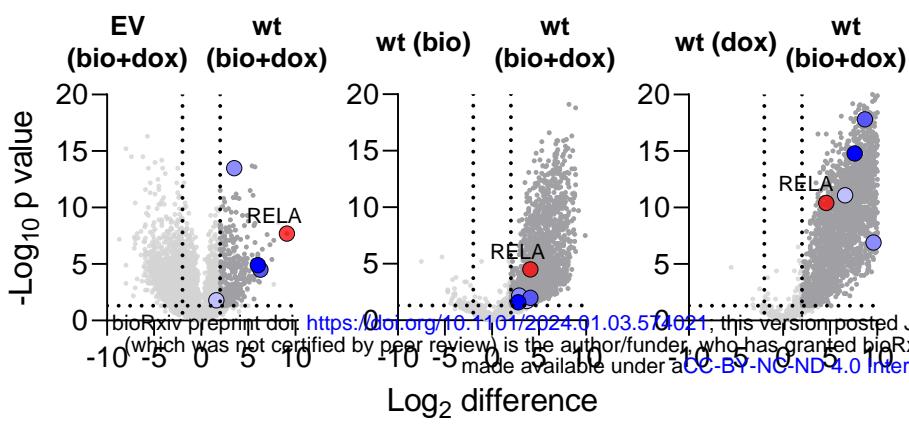
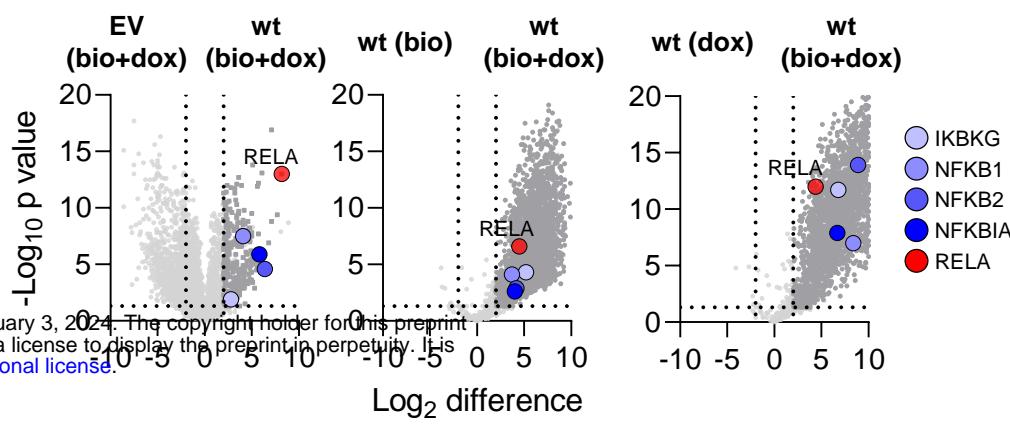
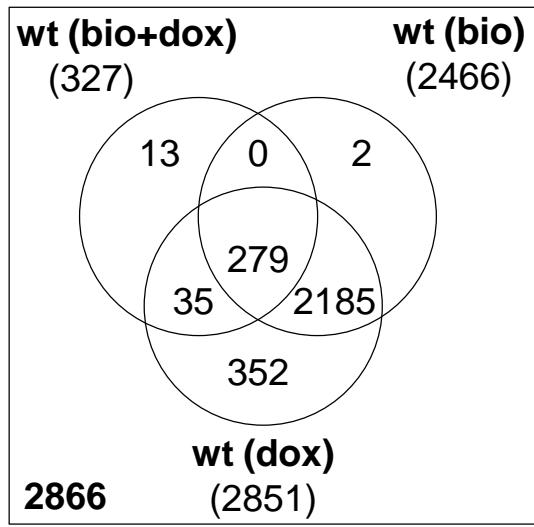
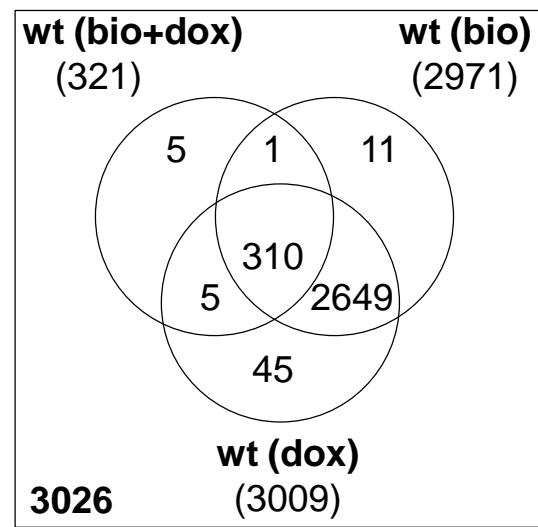
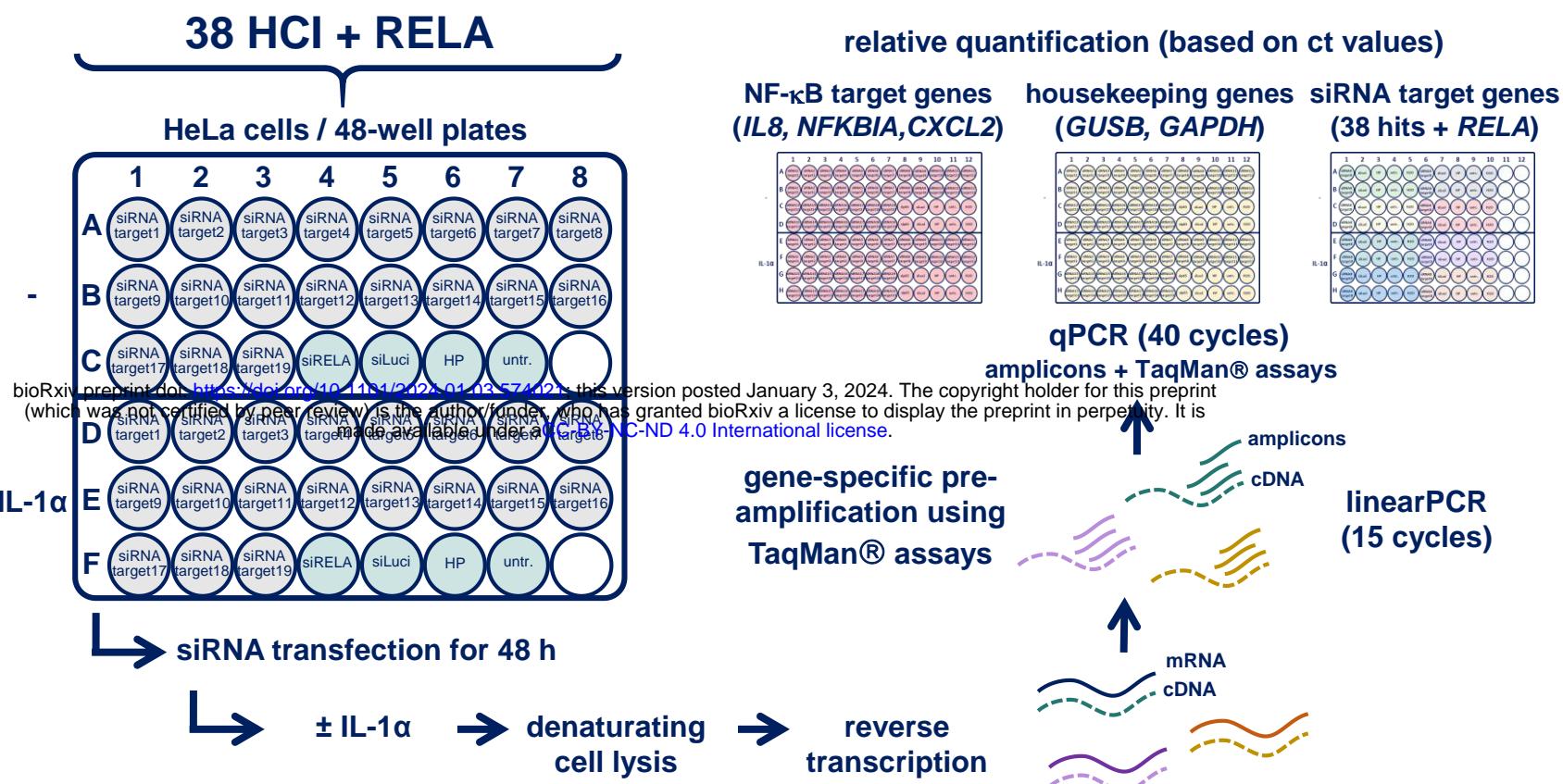




Fig. 7

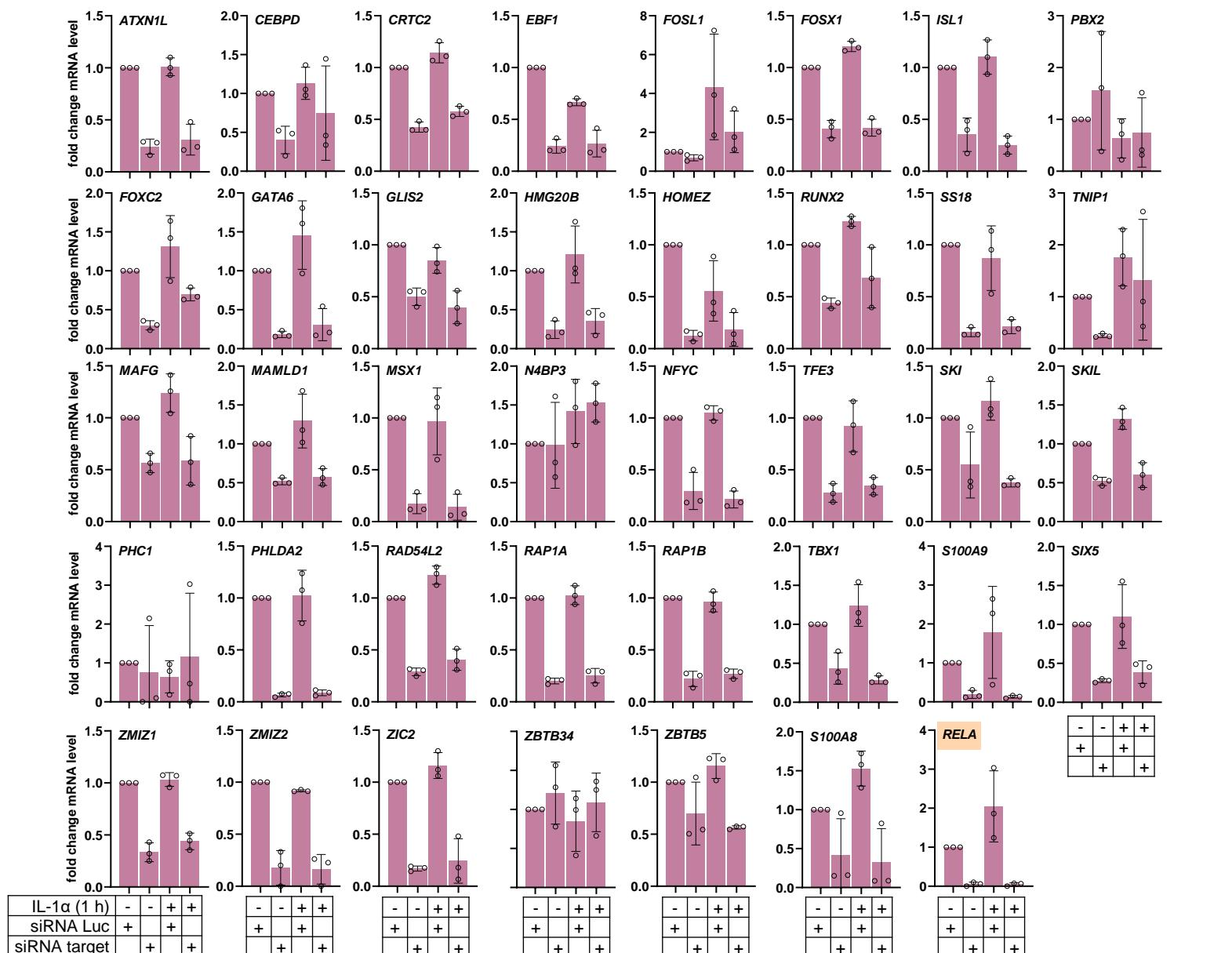

A

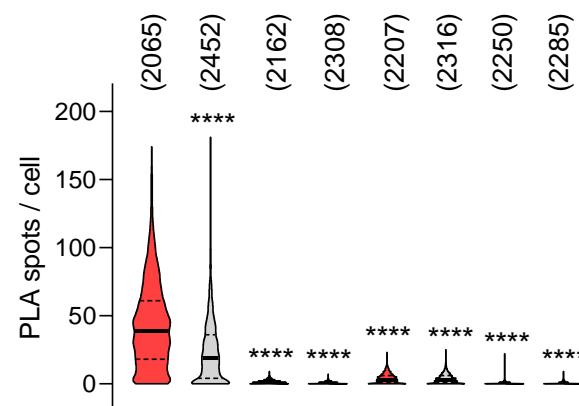
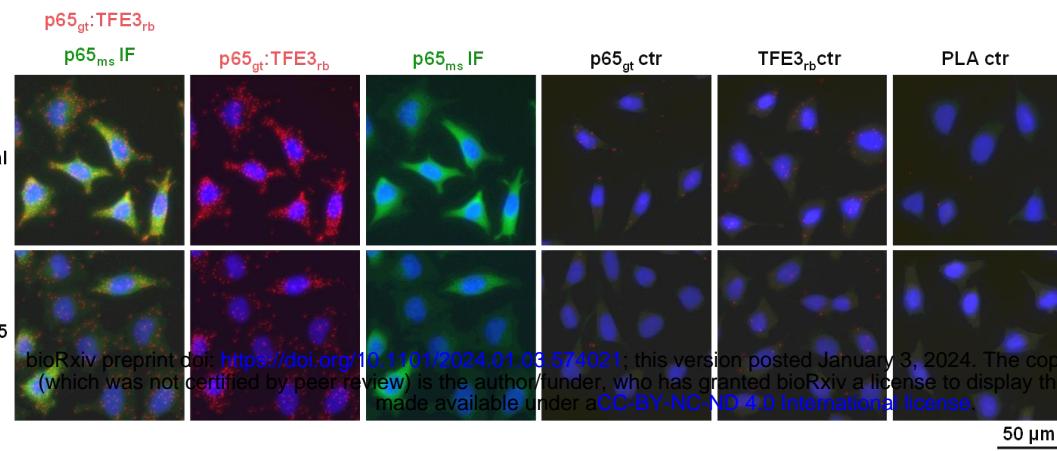
B

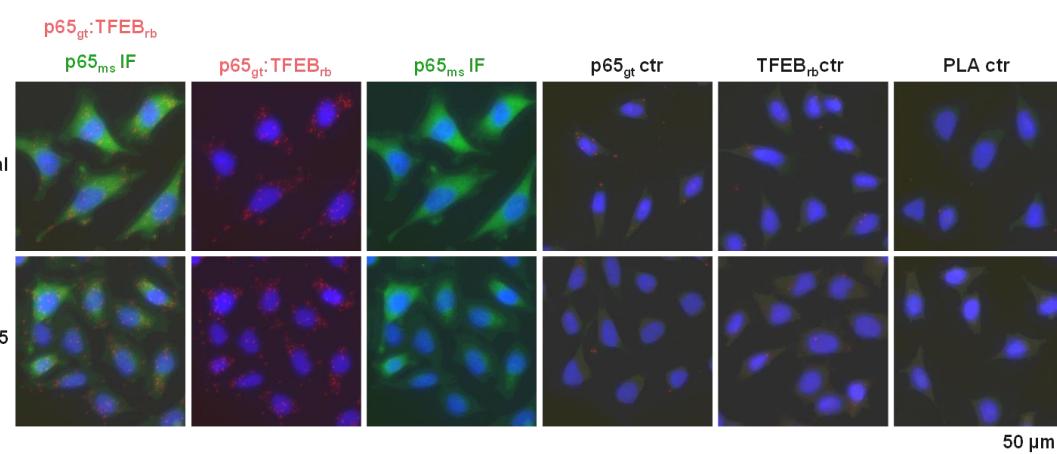


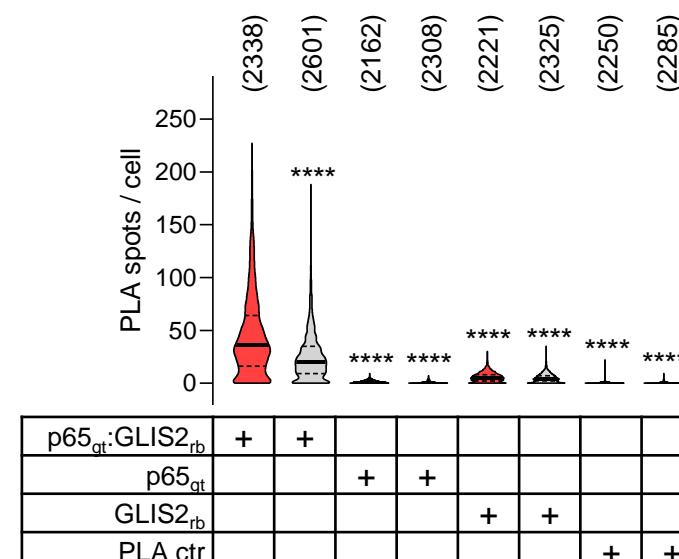
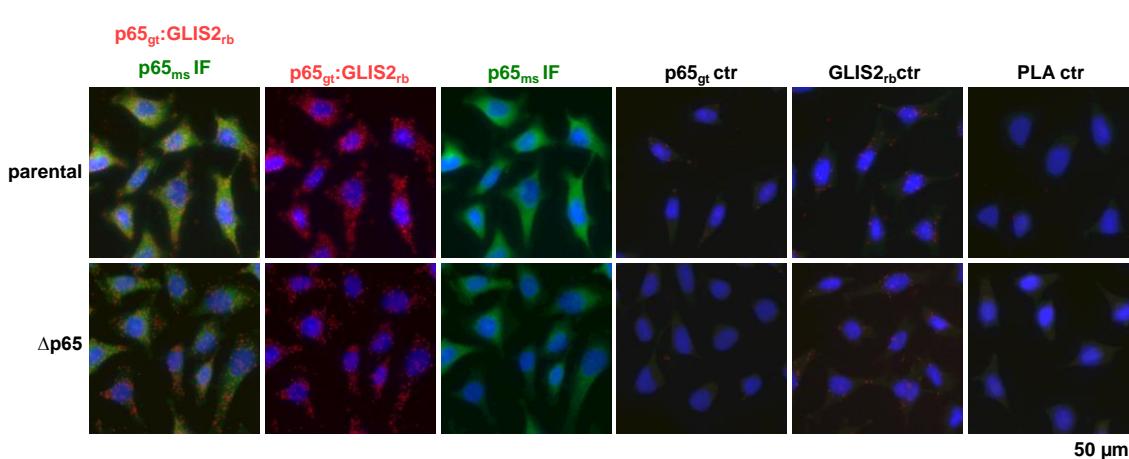
C

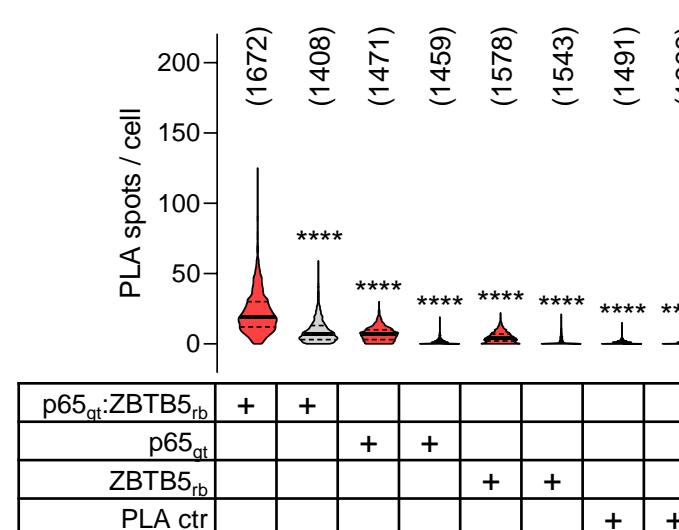
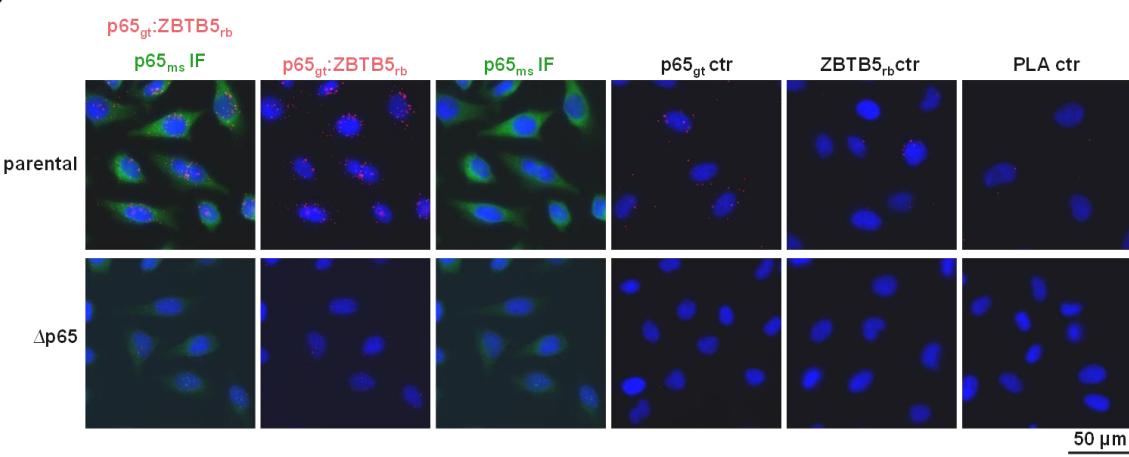


A**untreated****IL-1 α** **B****untreated****IL-1 α**

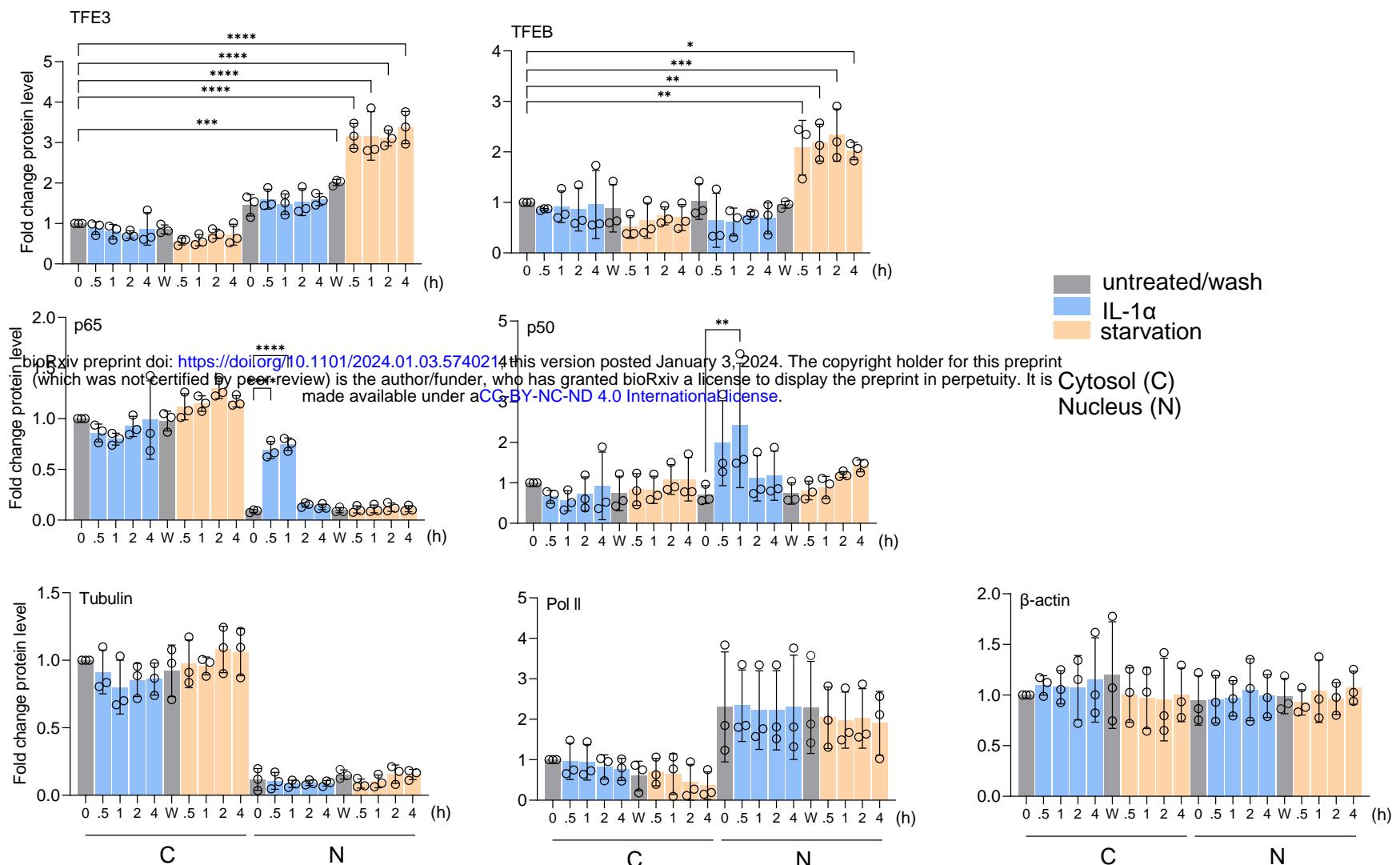


A


B

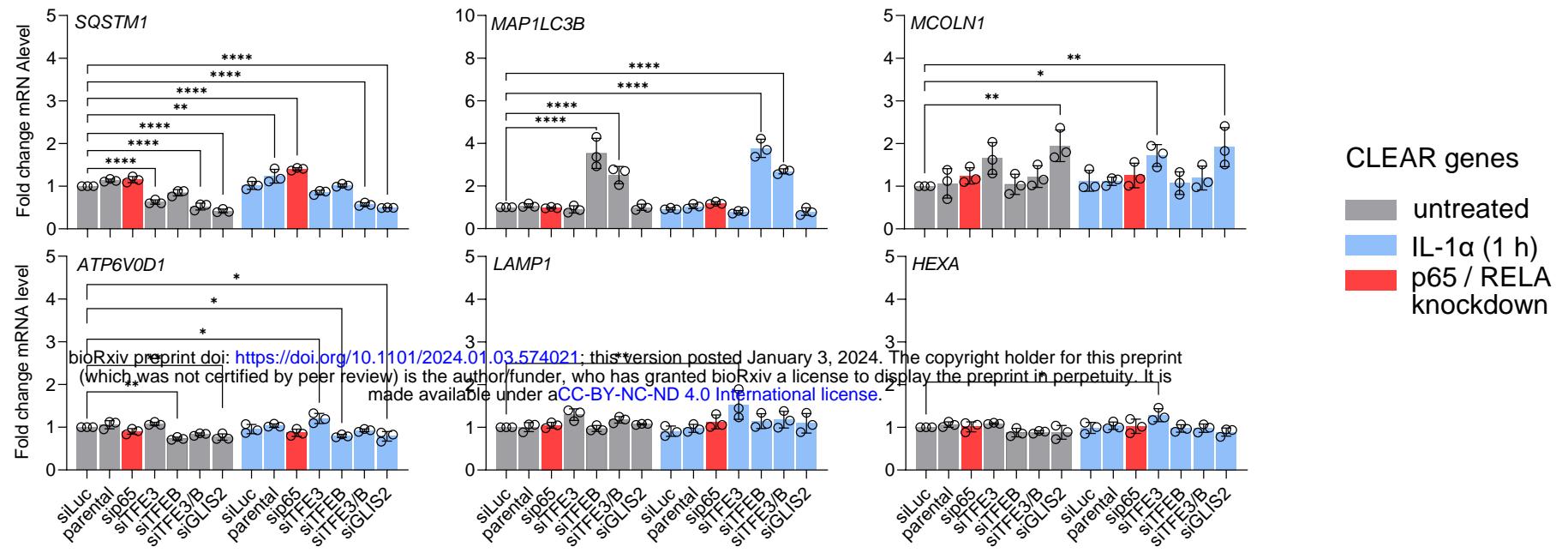


A



B

C

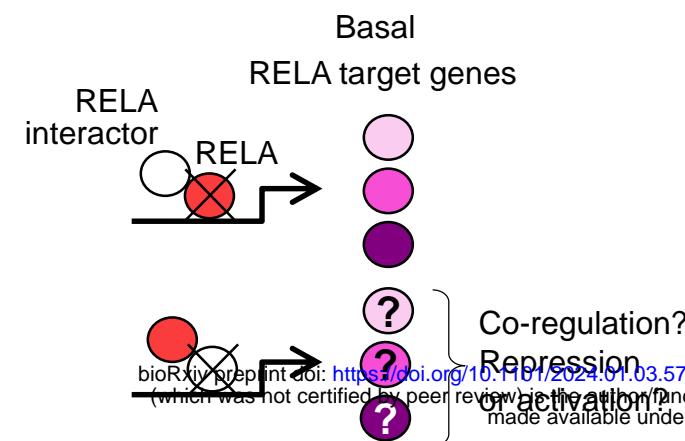


D

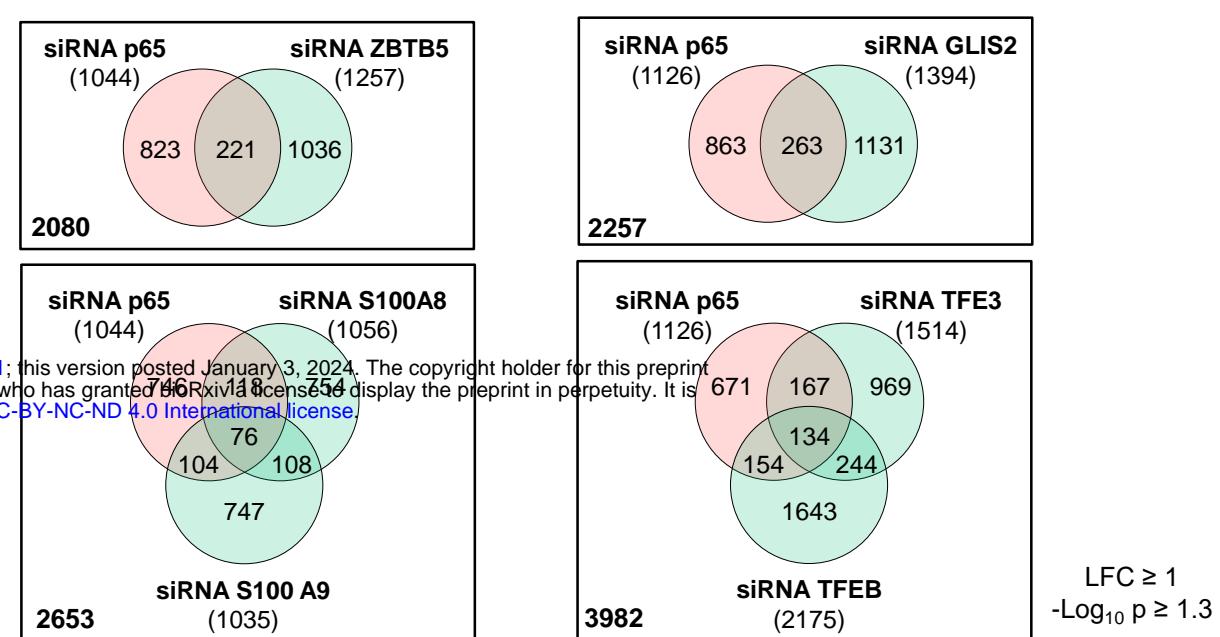


■ parental
■ Δp65 / RELA

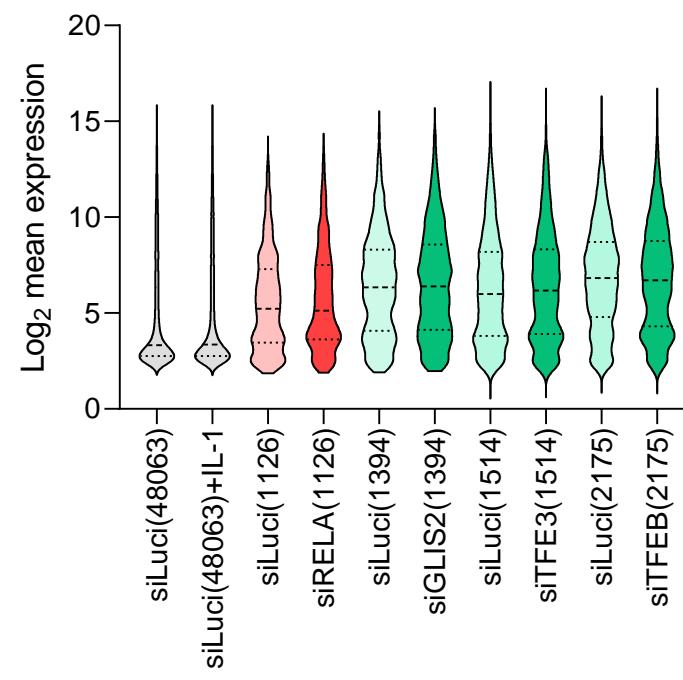
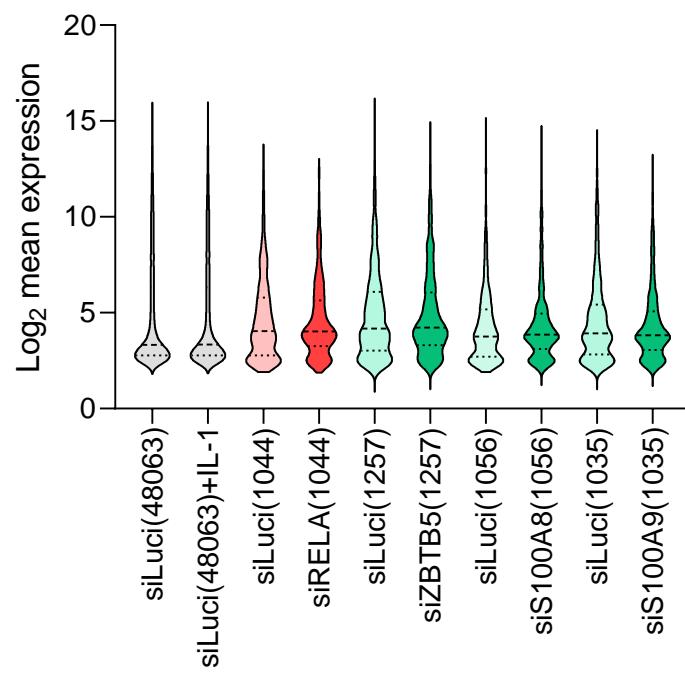
Supplementary Fig. 4

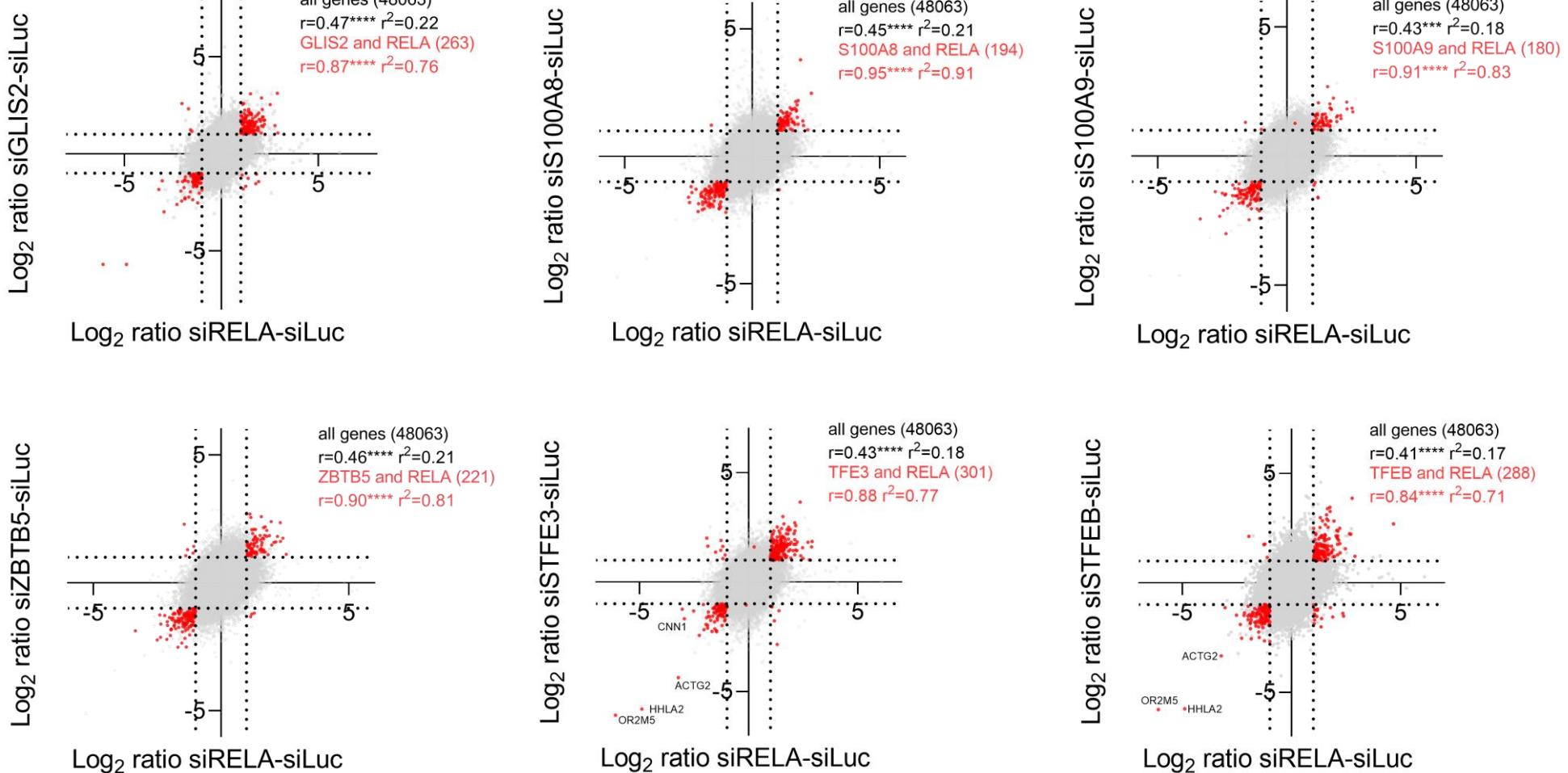


Supplementary Figure 5



Supplementary Figure 6

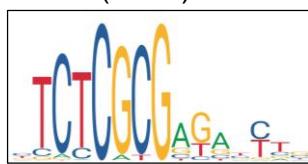


A


B

C

D

35,024 p65 / RELA peaks (100 %)

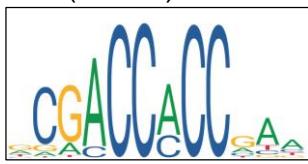


RELA
MA107.1
(10940)

8659 2281 (7%) 47981

ZBTB33 MA0527.1

(7079)


bioRxiv preprint doi: <https://doi.org/10.1101/2024.01.03.574021>; this version posted January 3, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

RELA
MA107.1
(10940)

7670 3270 (9%) 6861

ZBTB7B MA0694.1

(10131)

ZBTB7A MA0750.1

(10221)

RELA
MA107.1
(10940)

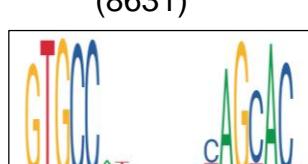
7637 3303 (9%) 6918

ZBTB40 UN0146.1

(6147)

RELA
MA107.1
(10940)

9245 1695 (5%) 4452


$p = \text{na}$

ZBTB43 UN0148.1

(8631)

RELA
MA107.1
(10940)

8150 2790 (8%) 5841

$p = 1$