

Retention of ES cell-derived 129S genome drives NLRP1 hypersensitivity and transcriptional deregulation in *Nlrp3*^{-/-} mice

Felix D. Weiss^{1,*}, Yubell Alvarez¹, Anshupa Sahu^{2,3}, Farhad Shakeri^{2,3}, Hye Eun Lee¹, Anne-Kathrin Gellner^{4,5}, Andreas Buness^{2,3}, Eicke Latz^{1,6}, Felix Meissner^{1,*}

1. Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany

2. Institute for Medical Biometry, Informatic and Epidemiology, Medical Faculty, University Hospital Bonn, Bonn, Germany.

3. Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany

4. Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany

5. Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany

6. Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany

* co-corresponding authors

F.D.W: fweiss@uni-bonn.de

F.M: felix.meissner@uni-bonn.de

1 **Abstract**

2

3 Immune response genes are highly polymorphic in humans and mice, with
4 heterogeneity amongst loci driving strain-specific host defense responses. The
5 inadvertent retention of polymorphic loci can introduce confounding phenotypes,
6 leading to erroneous conclusions, and impeding scientific advancement. In this study,
7 we employ a combination of RNAseq and variant calling analyses and identify a
8 substantial region of 129S genome, including the highly polymorphic *Nlrp1* locus
9 proximal to *Nlrp3*, in one of the most commonly used mouse models of NLRP3
10 deficiency. We show that increased expression of 129S NLRP1b sensitizes *Nlrp3*^{-/-}
11 macrophages to NLRP1 inflammasome activation. Furthermore, the presence of 129S
12 genome leads to altered gene and protein regulation across multiple cell-types,
13 including of the key tissue-resident macrophage marker, TIM4. To address the
14 challenge of resolving NLRP3-dependent phenotypes, we introduce and validate a
15 conditional *Nlrp3* allele, enabling precise temporal and cell-type-specific control over
16 *Nlrp3* deletion. Our study establishes a generic framework to identify functionally
17 relevant SNPs and assess genomic contamination in transgenic mice. This allows for
18 unambiguous attribution of phenotypes to the target gene and advances the precision
19 and reliability of research in the field of host defense responses.

20 **Introduction**

21

22 Evolutionary pressure results in the emergence of gene paralogs and polymorphisms
23 that shape protein function and regulation. Due to strong selection pressure, immune
24 genes are disproportionately hyperpolymorphic across inbred mouse strains¹,
25 resulting in strain-specific host defense mechanisms, subsequently maintained
26 through generations of inbreeding.

27

28 The retention of embryonic stem cell (ESC)-derived genetic material in transgenic
29 mice, especially of polymorphic immune loci, can lead to confounding phenotypes
30 independent of the target gene²⁻⁵, as well as the identification of novel immune
31 defense mechanisms⁶.

32

33 Inflammasomes are key innate immune signaling hubs that when activated induce a
34 lytic form of cell death known as pyroptosis, and the release of the inflammatory
35 cytokines IL-1 β and IL-18. While the inflammasome protein NLRP3 is activated by
36 danger signals including viral infection, potassium efflux and excessive extracellular
37 ATP, the murine NLRP1 inflammasome can be activated by Anthrax lethal toxin,
38 *Toxoplasma gondii* (*T. gondii*) infection, and inhibition of dipeptidyl proteases (DPP)
39 8/9. Whether an endogenous murine NLRP1 activator exists remains unknown.

40

41 While, NLRP3 is largely conserved across inbred laboratory mouse strains, the
42 neighboring *Nlrp1* locus is highly variable^{7,8}. There are five *Nlrp1* genes of which,
43 *Nlrp1a*, *Nlrp1b* and *Nlrp1c* are present in C57B6 strains, and *Nlrp1b* and *Nlrp1c* in
44 129S strains⁸. Furthermore, five distinct *Nlrp1b* alleles, distributed across 14

45 laboratory mouse strains, display differential sensitivities to a diverse range of stimuli⁷,
46 and may be subject to alternative methods of regulation. Studying strain-specific
47 sequence differences in *Nlrp1b* that may contribute to its alternative sensitivities or
48 regulation has relied largely on the generation of overexpressing cell lines, or whole
49 animals where genetic differences are not limited just to *Nlrp1b*, and can contribute to
50 observed phenotypes. A maximally genetically homogeneous model system, where
51 functionally relevant cells such as macrophages, express different *Nlrp1b* alleles,
52 controlled by their endogenous regulatory elements, would provide a valuable tool to
53 further our understanding of NLRP1 biology.

54

55 NLRP3 has been implicated in a large number of diseases. Murine models of NLRP3
56 deficiency have shown NLRP3's causal contribution to the pathogenesis of gout⁹ and
57 atherosclerosis¹⁰, through activation by uric acid crystals and cholesterol crystals
58 respectively, however its mechanistic contribution to diseases including multiple
59 sclerosis^{11,12}, Alzheimer's disease^{13,14}, and diet induced inflammation¹⁵ remains to be
60 clarified. Previous research has shown beneficial effects on disease phenotypes in
61 *Nlrp3*^{-/-} mice even in the absence of clear evidence for NLRP3 inflammasome
62 activation *in vivo*¹²⁻¹⁸, and with limited pharmacological validation. This suggests a
63 potential inflammasome independent role for NLRP3, or an animal model effect
64 independent of NLRP3 deficiency.

65

66 Our study identifies a substantial region of 129S ESC-derived genome in a frequently
67 used model of *Nlrp3* deficiency (Nlrp3KO^{129ES}, Ref. ¹⁹). The ~40Mb region on
68 chromosome 11 contains several hundred genes critical for cell function and
69 identification, and key immune genes, including the *Nlrp1* locus. We leverage this

70 unexpected occurrence to identify strain-specific differences that influence the NLRP1
71 inflammasome response and its post-translational regulation, in a largely genetically
72 homogenous model. Differences in protein coding sequences identified in this study
73 impact innate immune responses independently of the loss of NLRP3 expression, and
74 need to be considered when ascribing mechanistic phenotypes in Nlrp3KO^{129ES} mice.
75 Validation of a novel inducible *Nlrp3* allele allowing for temporal and cell-type specific
76 control of *Nlrp3* deletion will provide greater clarity on the mechanistic contribution of
77 NLRP3 to disease pathology, in the absence of confounding effects. Finally, our
78 analytical strategy to identify coding variants in relevant expressed genes is applicable
79 to historic and newly generated datasets, enabling a straight-forward analysis of
80 coding variants and genetic heterogeneity in transgenic mice currently considered
81 congeneric.

82 **Nlrp3KO^{129ES} mouse macrophages display increased sensitivity to NLRP1
83 activation by Talabostat**

84

85 DPP8/9 inhibition by Talabostat activates the NLRP1 inflammasome (**Fig 1A**, Ref. 20–
86 23). We compared the dose-dependent activation of NLRP1 by Talabostat in bone
87 marrow derived macrophages (BMDMs), generated from C57B6/J and Nlrp3KO^{129ES}
88 mice, backcrossed >10 generations to C57B6/J and defined by Charles River as
89 congenic.

90

91 Nlrp3KO^{129ES} versus C57B6/J BMDMs showed a significant increase in IL-1 β secretion
92 at low doses of Talabostat stimulation (**Fig 1B**). Consistent with a lower threshold of
93 NLRP1 inflammasome formation, the supernatant LDH levels – indicative of cell
94 membrane rupture by pyroptotic cell death – were also significantly higher in
95 Nlrp3KO^{129ES} BMDMs (**Fig 1C**). These data show that Nlrp3KO^{129ES} BMDMs are
96 hypersensitive to DPP8/9 inhibition induced IL-1 β release and pyroptosis compared to
97 C57B6/J controls.

98

99 Activation of the NLRP1 inflammasome leads to ASC speck formation, where
100 Caspase-1 is recruited and activated. The frequency of ASC speck positive cells was
101 significantly higher at lower doses of Talabostat treatment in Nlrp3KO^{129ES} BMDMs
102 (**Fig 1D, E**). These results mirror those observed by IL-1 β and LDH release, and show
103 a lower threshold for inflammasome assembly upon NLRP1 activation in Nlrp3KO^{129ES}
104 versus C57B6/J BMDMs. Caspase-1 inhibition by VX-765 significantly rescued cell
105 death, as measured by LDH, in both genotypes (**Fig 1F**), showing that increased IL-
106 1 β and LDH release is due to the formation of a functional inflammasome.

107 **NLRP1b protein, but not transcript, is upregulated in Nlrp3KO^{129ES} BMDMs**

108

109 In order to determine whether the increased sensitivity to NLRP1 activation in
110 Nlrp3KO^{129ES} BMDMs was related to NLRP1b protein expression levels, we measured
111 protein abundance by LC-MS/MS. As expected, NLRP3 was not detected in
112 Nlrp3KO^{129ES} BMDMs (**Fig 2A; Supplemental Table 1**). Conversely, the NLRP1
113 inflammasome forming protein, NLRP1b, was not detected in Nlrp3WT^{129ES} BMDMs,
114 but was robustly expressed at baseline, and upregulated in response to 24 hours of
115 LPS stimulation, in Nlrp3KO^{129ES} BMDMs (**Fig 2A**).

116

117 In order to understand if NLRP1b protein upregulation in Nlrp3KO^{129ES} BMDMs was
118 transcriptionally dependent, we performed RNA sequencing (RNAseq) on polyA-RNA
119 from BMDMs from Nlrp3KO^{129ES} and Nlrp3WT^{129ES} littermate controls. Gene
120 expression analysis showed minor changes between Nlrp3KO^{129ES} and Nlrp3WT^{129ES}
121 BMDMs at baseline and after LPS stimulation (**Fig 2B, Supplemental Fig 1**;
122 **Supplemental Table 2**). Unexpectedly, *Nlrp1b* was slightly upregulated in
123 Nlrp3WT^{129ES} BMDMs at baseline, however this differential expression was not
124 observed following LPS stimulation (**Fig 2B**). The remaining deregulated genes
125 showed no statistically significant shared functional enrichment as determined by
126 Gene Ontology analysis of biological process or molecular function (adj. $P < 0.05$),
127 and included genes related to annexins (*Anxa6*), apoptosis regulation (*Xaf1*), cell cycle
128 (*Pttg1*) and histones (*H2aw*) among others (**Fig 2C**).

129

130 These data show that Nlrp3KO^{129ES} BMDMs upregulate NLRP1b protein expression,
131 independently of an increase in *Nlrp1b* transcript. Furthermore, Nlrp3KO^{129ES} BMDMs

132 show a limited number of differentially expressed genes with no enriched pathways or
133 functions.

134

135

136 **Gene expression changes are shared between BMDMs and granulocyte
137 monocyte progenitors in Nlrp3KO^{129ES} mice**

138

139 Next, we asked whether gene expression changes also occur in non-differentiated
140 myeloid cells. BMDMs are a model of monocyte-derived macrophages that arise from
141 precursors in the bone marrow, including granulocyte-monocyte progenitors (GMPs).

142 We performed gene expression analysis on Nlrp3KO^{129ES} and Nlrp3WT^{129ES} litter-mate
143 control GMPs, isolated by FACS from murine bone marrow (**Supplemental Fig 2A**).
144 Similar to Nlrp3KO^{129ES} BMDMs, there was a limited number of significantly
145 differentially expressed genes (**Supplemental Fig 2B, C; Supplemental Table 3**).

146

147 Strikingly, despite the limited number of significantly differentially expressed genes,
148 there was highly significant overlap between the two cell-types (48% of DE genes in
149 GMPs, 38% of DE genes in BMDMs, **Fig 2D**). Commonly deregulated genes included
150 but were not limited to *Xaf1*, *Anxa6*, *Pttg1*, *H2aw* and *Nlrp1b* (**Supplemental Fig 2D**).

151

152

153 **Genes differentially expressed in Nlrp3KO^{129ES} BMDMs and GMPs, including
154 *Nlrp1b*, are predominantly located on chromosome 11, and are of 129S origin**

155

156 Analysis of chromosomal location of deregulated genes in *Nlrp3*^{KO}^{129ES} BMDMs and
157 GMPs, revealed that deregulated genes were highly enriched on Chromosome 11,
158 with 45 out of 47 (95.7%) significantly deregulated genes in BMDMs and 35 out of 37
159 (94.6%) in GMPs (**Fig 3A**). Strikingly, deregulated genes in BMDMs on chromosome
160 11 were located within a confined region +/- 25Mb proximal to *Nlrp3*. The *Nlrp3*^{KO}^{129ES}
161 mice used in this study were originally generated in 129SvEvBRD Lex1 ESCs¹⁹,
162 backcrossed for >10 generations to C57B6/J using speed congenics, and validated as
163 congenic based on a standardized SNP analysis by Charles River. Considering the
164 129S ESC origin, the differential expression of genes on chromosome 11 may be a
165 result of the unintended retention of 129S genome proximal to *Nlrp3* during
166 backcrossing.

167
168 We performed variant calling analysis on polyA RNAseq reads from *Nlrp3*^{KO}^{129ES}
169 BMDMs and identified 1111 SNPs matching the 129S1 genome in at least 3 out of 4
170 biological replicates, with 1096 SNPs located on chromosome 11 (**Fig 3B**,
171 **Supplemental Fig 3A**). By contrast, only 51 such SNPs matching the 129S1 genome
172 were found in RNAseq data from *Nlrp3*WT^{129ES} BMDMs, with 3 SNPs on chromosome
173 11 (**Fig 3B, Supplemental Fig 3B**). The vast majority of SNPs identified on
174 chromosome 11 in *Nlrp3*^{KO}^{129ES} BMDMs were located in close proximity of *Nlrp3* (**Fig**
175 **3C**).

176
177 As variant calling was performed using RNAseq reads generated from polyA enriched
178 mature RNA, all SNPs identified are located in the coding regions of mRNA from genes
179 expressed in BMDMs. In total, 124 genes located on Chromosome 11 in *Nlrp3*^{KO}^{129ES}
180 BMDMs contained ≥ 2 SNPs, in at least 3 out of 4 biological replicates (**Fig 3D**;

181 **Supplemental Table 4**). These genes spanned a region of ~40Mb, home to a total of
182 715 genes. No genes matching to 129S1 were identified on chromosome 11 of
183 Nlrp3WT^{129ES} BMDMs using the same criteria (**Fig 3D; Supplemental Table 5**).
184 Genes of 129S origin expressed in Nlrp3KO^{129ES} BMDMs included those previously
185 identified as significantly deregulated, including *Anxa6*, *Xaf1*, and *H2aw* (**Fig 3D**).
186 Furthermore, multiple genes critical for immune cell function were found to contain
187 129S1 SNPs, including *C1qbp*, *Ccl9*, *Igtp*, *Timd4*, and critically, *Nlrp1b*, defining them
188 as of 129S mouse strain origin (**Fig 3D, E**). Similar results were observed in GMPs,
189 where 956 SNPs matching the 129S1 genome were observed, with ≥ 2 129S1 SNPs
190 within 120 genes (**Supplemental Table 6**).

191
192 We extended our analysis to elucidate whether expression changes of genes located
193 on chromosome 11 in Nlrp3KO^{129ES} mice were not just limited to cultured BMDMs and
194 their precursors. Gene expression analysis of microglia purified from adult mouse
195 brains of Nlrp3KO^{129ES} and Nlrp3WT^{129ES} litter-mate controls also revealed a
196 significant deregulation of multiple genes located on Chromosome 11, including *Ubb*,
197 *Ccl4*, *Ccl3*, *Pttg1*, *Xaf1* and again *Nlrp1b* (**Supplemental Fig 4; Supplemental Table**
198 **7**).

199
200 These data show that Nlrp3KO^{129ES} mice contain a substantial region of 129S mouse
201 strain genome on chromosome 11, in the region surrounding *Nlrp3*, as a result of their
202 production in 129S ESCs, despite extensive backcrossing and validation as congenic.
203 The presence of any identified SNP in protein coding regions may affect the regulation
204 of gene and/or protein expression as well as affect protein function, especially if they

205 are located in functionally critical sites such as at the interfaces of protein-protein
206 interactions.

207

208

209 **NLRP1 hypersensitivity is caused by the 129S *Nlrp1b* allele, and not *Nlrp3***
210 **deficiency**

211

212 In order to determine whether the NLRP1 hypersensitivity observed in *Nlrp3*^{KO^{129ES}}
213 BMDMs was due to NLRP3 deficiency or the presence of the 129S *Nlrp1b* allele, we
214 evaluated NLRP1 inflammasome activation in alternative models of NLRP3 deficiency
215 or loss of function.

216

217 MCC950 is a highly selective and potent inhibitor of NLRP3 activation. We treated
218 BMDMs with MCC950 for 7 days in order to mimic long-term loss of NLRP3 function,
219 but did not observe an increase of cell death in response to LPS and Talabostat
220 induced NLRP1 activation (**Fig 4A**). In contrast, cell death in response to NLRP3
221 activation by LPS and Nigericin was completely abrogated (**Fig 4A**).

222

223 While MCC950 treatment prevents NLRP3 activation, as of yet undescribed
224 inflammasome independent NLRP3 functions may not be affected. In order to
225 eliminate NLRP3 expression we utilized a previously unpublished conditional *Nlrp3*
226 allele in combination with tamoxifen inducible ERt2Cre²⁴ (Rosa26^{ERT2CRE} *Nlrp3*^{f/f}).
227 Critically, *Nlrp3*^{f/f} mice were generated using C57B6/N ESCs, and as such have a
228 C57B6 *Nlrp1b* allele, unlike the previously described *Nlrp3*^{KO^{129ES}} mice.

229

230 NLRP3 protein expression was significantly reduced in BMDMs following Ert2Cre
231 activation by 4-hydroxytamoxifen (4-OHT) both at steady-state and after LPS
232 treatment (**Fig 4B**). As expected, *Nlrp3* deficient Rosa26^{Ert2Cre} *Nlrp3*^{fl/fl} BMDMs showed
233 a highly significant reduction in LDH and IL-1 β release in response to LPS priming and
234 Nigericin stimulation (**Fig 4C**). However, they did not display any differences in LDH
235 release in response to Talabostat (**Fig 4C**). In contrast, BMDMs purified from 129S2
236 mice, containing the 129S *Nlrp1b* allele, released significantly higher amounts of LDH
237 upon NLRP1 activation, phenocopying the hypersensitivity observed in *Nlrp3KO*^{129ES}
238 BMDMs (**Fig 4D**).

239

240 Furthermore, HEK cells expressing ASC-GFP and equal amounts of either C57B6/J
241 or 129S NLRP1b (Ref. ²⁵) showed minor or no differences in ASC speck formation in
242 response to Talabostat (**Fig 4E**). However, as previously reported²⁵, C57B6/J NLRP1b
243 expressing HEK cells displayed spontaneous speck formation even in the absence of
244 any triggers.

245

246 We conclude that the hypersensitivity observed in *Nlrp3KO*^{129ES} BMDMs is not due to
247 NLRP3 deficiency or an intrinsic increase in 129S NLRP1b sensitivity, but likely due
248 to increased NLRP1b protein expression in *Nlrp3KO*^{129ES} BMDMs. Furthermore, strain
249 specific sequence differences may cause C57B6/J NLRP1b to more readily form
250 inflammasomes in the absence of stimulation, requiring its expression to be restricted.

251

252

253 ***Nlrp3KO*^{129ES} mice misexpress the canonical macrophage marker TIM4**

254

255 The peritoneal cavity macrophage population can be broadly separated into two
256 functionally distinct subsets: short-lived monocyte-derived macrophages and long-
257 lived tissue resident macrophages. Monocyte-derived macrophages are inflammatory
258 and invade the peritoneum during inflammation, while long-lived tissue resident
259 macrophages regulate tissue homeostasis. In multiple organs including the peritoneal
260 cavity, the cell surface protein TIM4 is used to distinguish long-lived tissue resident
261 macrophages (TIM4+) from short-lived monocyte derived macrophages (TIM4-, **Fig**
262 **5A, Supplemental Fig 5, Ref. 26–31**). As such TIM4 is a critical tool in understanding
263 tissue biology and the role of myeloid cells in inflammation.

264

265 Analysis of peritoneal macrophage subtypes revealed that, despite having the same
266 total number of macrophages in the peritoneum (**Fig 5B**), TIM4- macrophages
267 appeared to be virtually absent from Nlrp3KO^{129ES} peritoneal cavity (**Fig 5C**).
268 Quantification of TIM4+ and TIM4- macrophages as a percentage of total
269 macrophages (CD11b+ F4/80+) revealed a significant decrease in the percentage of
270 TIM4- macrophages in the Nlrp3KO^{129ES} peritoneal cavity compared to C57B6/J
271 (16.4% to 0.8%, adj. $P < 0.0001$, **Fig 5D**).

272

273 The absence of TIM4- macrophages in Nlrp3KO^{129ES} was not due to the loss of tonic
274 NLRP3 signalling as Casp1/11^{-/-} mice showed no significant difference in percent
275 frequency of TIM+ and TIM4- macrophages relative to C57B6/J control mice, and
276 significantly more TIM4- macrophages than Nlrp3KO^{129ES} mice as a percent of total
277 macrophages (14.9% to 0.8%, adj. $P < 0.0001$, **Fig 5D**). Strikingly, TIM4-
278 macrophages were also absent from 129S2 mice (**Fig 5E**), suggesting that the lack of

279 TIM4- macrophages in Nlrp3KO^{129ES} mice could be another strain specific effect
280 caused by the retention of 129S ESC derived genome.

281

282 RNAseq analysis of Nlrp3ko^{129ES} BMDMs, which are monocyte derived, revealed that
283 the TIM4 coding gene *Timd4* is highly significantly upregulated between Nlrp3KO^{129ES}
284 and Nlrp3WT^{129ES} BMDMs (baseline: \log_2 FC = 7.2, LPS 3h: \log_2 FC = 6.9, LPS 24h:
285 \log_2 FC = 5.0, **Fig 5F**). *Timd4* is located on chromosome 11 (Chr11: 46,808,799) in
286 close proximity to *Nlrp3* (Chr11: 59,539,569). Variant analysis of RNAseq data
287 identified 3 SNPs in *Timd4*, defining it as of 129S origin.

288

289 Therefore, monocyte derived macrophages are not absent from the Nlrp3KO^{129ES}
290 peritoneum, but instead aberrantly upregulate the normally tissue resident
291 macrophage restricted marker TIM4 as a result of the presence of 129S genome,
292 confounding cell identification by FACS.

293 **Discussion**

294

295 In this study we combine RNAseq and variant calling analysis to identify genetic
296 variation in one of the most frequently used mouse models of NLRP3 deficiency. We
297 found the retention of a ~40Mb of 129S ESC-derived genomic material proximal to
298 *Nlrp3*, leading to changes in gene regulation, the differential expression of polymorphic
299 proteins, and the NLRP1 inflammasome response.

300

301 Post-transcriptional and -translational regulation of NLRP proteins is critical for
302 immune homeostasis, and the upregulation of inflammasome proteins is a key priming
303 step before activation and pyroptosis. We show that the presence of the 129S *Nlrp1b*
304 allele in *Nlrp3*^{KO^{129ES}} macrophages results in the upregulation of the NLPR1b protein,
305 independently of an increase in *Nlrp1b* gene regulation, sensitizing them to NLRP1
306 activation by Talabostat. Conversely, *Nlrp3*^{KO^{129ES}} microglia significantly
307 downregulate *Nlrp1b*. This raises the possibility that microglial phenotypes ascribed to
308 NLRP3 deficiency may be influenced by altered *Nlrp1* expression, especially given
309 that it remains unknown if endogenous murine NLRP1 triggers exist in disease settings
310 such as neurodegeneration.

311

312 We further show that C57B6 NLRP1b can form inflammasomes in the absence of any
313 triggers when expressed at the same level as 129S NLRP1b. This suggests that
314 through evolutionary pressure, C57B6 NLRP1b has accrued single nucleotide
315 polymorphisms (SNPs) that restrict its expression in a post-translational manner,
316 protecting mice from spontaneous inflammasome formation. While 129S mice can

317 therefore tolerate higher expression levels of NLRP1b at baseline, this subsequently
318 sensitizes them to NLRP1 inflammasome triggers.

319

320 Our findings illustrate a paradigm that can be extended more broadly into the
321 immunology field. X-linked diseases in females, such as Rett Syndrome, display a
322 broad spectrum of severity due to the mosaicism of X inactivation^{32,33}.
323 Autoinflammatory skin diseases can arise from heterozygous gain-of-function
324 mutations to NLRP1³⁴. Given that immune genes are biased to monoallelic
325 expression³⁵, immune related diseases arising from genetic defects may be caused
326 by cells preferentially expressing dominant alleles, undergoing competition that results
327 in the reduction of cells expressing wild-type alleles, or that the expression of a small
328 amount of hyperactive protein is sufficient to drive a phenotype. Heterozygous
329 *Nlrp3*KO^{129ES} mice, which contain both C57B6 and 129S *Nlrp1* loci, could provide a
330 model for the analysis of allelic bias and dominant inflammatory signalling responses
331 in the context of NLRP1, as well as elucidate novel differences between 129S and
332 C57B6 NLRP1 as described here.

333

334 Changes in expression of immune genes are not limited to the *Nlrp1* locus. The
335 upregulation of 129S *Timd4* in *Nlrp3*KO^{129ES} monocyte-derived macrophages results
336 in their misidentification as tissue-resident macrophages due to increase surface
337 expression of TIM4. As a result, TIM4 cannot be used to determine frequencies of
338 monocyte-derived versus tissue-resident macrophages, and heterogenous cell
339 populations are obtained when purifying cells for molecular analysis such as RNAseq
340 or LC-MS/MS, as well as confounding population analyses by FACS.

341

342 Other immune genes identified as containing 129S SNPs include *Igtp*, an interferon
343 induced gene critical for host defense³⁶, *C1qbp*, a complement family member that
344 aids the clearance of apoptotic cells³⁷, *Itgae*, which codes for the dendritic³⁸ and T
345 cell³⁹ marker CD103, *Xaf1*, an antagonist of the anti-apoptosis protein XIAP⁴⁰ and the
346 chemokine *Ccl9*, amongst others. Further investigations in *Nlrp3KO*^{129ES} mice are
347 required to assess the contribution of these differences to immune responses.

348

349 Genes required for conserved functions across multiple cell-types were also found to
350 contain 129S SNPs including but not limited to genes related to cell cycle (*Pttg1*,
351 *Aurkb*, *Ccng1*), trafficking (*Gosr1*), histones (*H2aw*), metabolism (*Mat2b*, *Guk1*,
352 *Srebf1*, *Galnt10*) translation (*Larp1*, *Mm3*) and transcription (*Cnot8*, *Top3a*, *Chd3*,
353 *Pol2ra*, *Ncor1*, *Mnt*).

354

355 Finally, the region around *Nlrp3* that we detect as being of 129S origin contains genes
356 not expressed in macrophage or GMPs, but of importance in functions such as
357 neuronal signalling (*Gabrg2*, *Gabra1*, *Gabra6*, *Gria1*), olfaction (80 olfactory receptor
358 genes), and development (*Wnt3a*), among others. Further variant calling analysis
359 either on DNA sequencing data or RNAseq from relevant cell-types would be needed
360 to determine the full scale of 129S contamination and the effect on cell function, which
361 could have significant knock-on effects due to alterations in paracrine signalling.

362

363 The retention of 129S chromosome 11, including the hypersensitive NLRP1, may
364 affect other *Nlrp3* targeting transgenic mice produced in 129S ESCs. *Nlrp3*^{A350V} mice,
365 modelling *NLRP3* human gain-of-function mutations⁴¹, display skin inflammation in the
366 absence of *Nlrp3*^{A350V} expression⁴¹. Gain-of-function mutations in human *NLRP1*

367 leads to inflammatory skin disease³⁴. The unexplained skin inflammation in *Nlrp3*^{A350V}
368 mice may therefore be due in part to the presence of 129S-derived hypersensitive
369 NLRP1b.

370

371 In transgenic mice, ESC-derived genome retention represents a minority, but
372 potentially functionally important, proportion of the genome. Whole exome sequencing
373 does not inform researchers on which mutated genes are expressed, and to what
374 degree. Our approach to identify genetic heterogeneity in transgenic mice using
375 variant calling analysis on RNAseq data allows for the detection of SNPs in coding
376 regions of functionally relevant expressed genes. Furthermore, it allows for the post
377 hoc analysis of genetic heterogeneity in historical samples that utilized RNAseq. Our
378 identification of 129S1 genome in *Nlrp3*^{KO}^{129ES} mice, and changes in gene expression
379 and protein function, highlights the careful consideration that should be given to
380 ascribing phenotypes in *Nlrp3*^{KO}^{129ES} mice to NLRP3 deficiency. Further work should
381 evaluate the full scale of disruption caused by 129S genomic retention, as many other
382 cell-types may be altered by genetic differences or paracrine activities from affected
383 cells. Use of the conditional *Nlrp3* allele we describe here will enable cell-type specific
384 studies of NLRP3 function in homeostasis and disease, independently of confounding
385 SNPs and other polymorphisms.

386

387 **Acknowledgements**

388 We would like to thank Florian I. Schmidt (University Hospital Bonn), Lea Jenster
389 (University Hospital Bonn) and Dagmar Wachten (University Hospital Bonn) for their
390 manuscript proof reading. We would like to thank Dr. Tobias Dierkes (University
391 Hospital Bonn), Dr. Susanne Schmidt (University Hospital Bonn) and the NGS Core
392 Facility of the Medical Faculty at the University of Bonn/WGGC-Bonn for providing
393 support and instrumentation for the 3'mRNA Seq. We would like to thank the Flow
394 Cytometry Core Facility of the Medical Faculty at the University of Bonn for providing
395 support and instrumentation funded by the Deutsche Forschungsgemeinschaft (DFG,
396 German Research Foundation) – Project # 216372545.

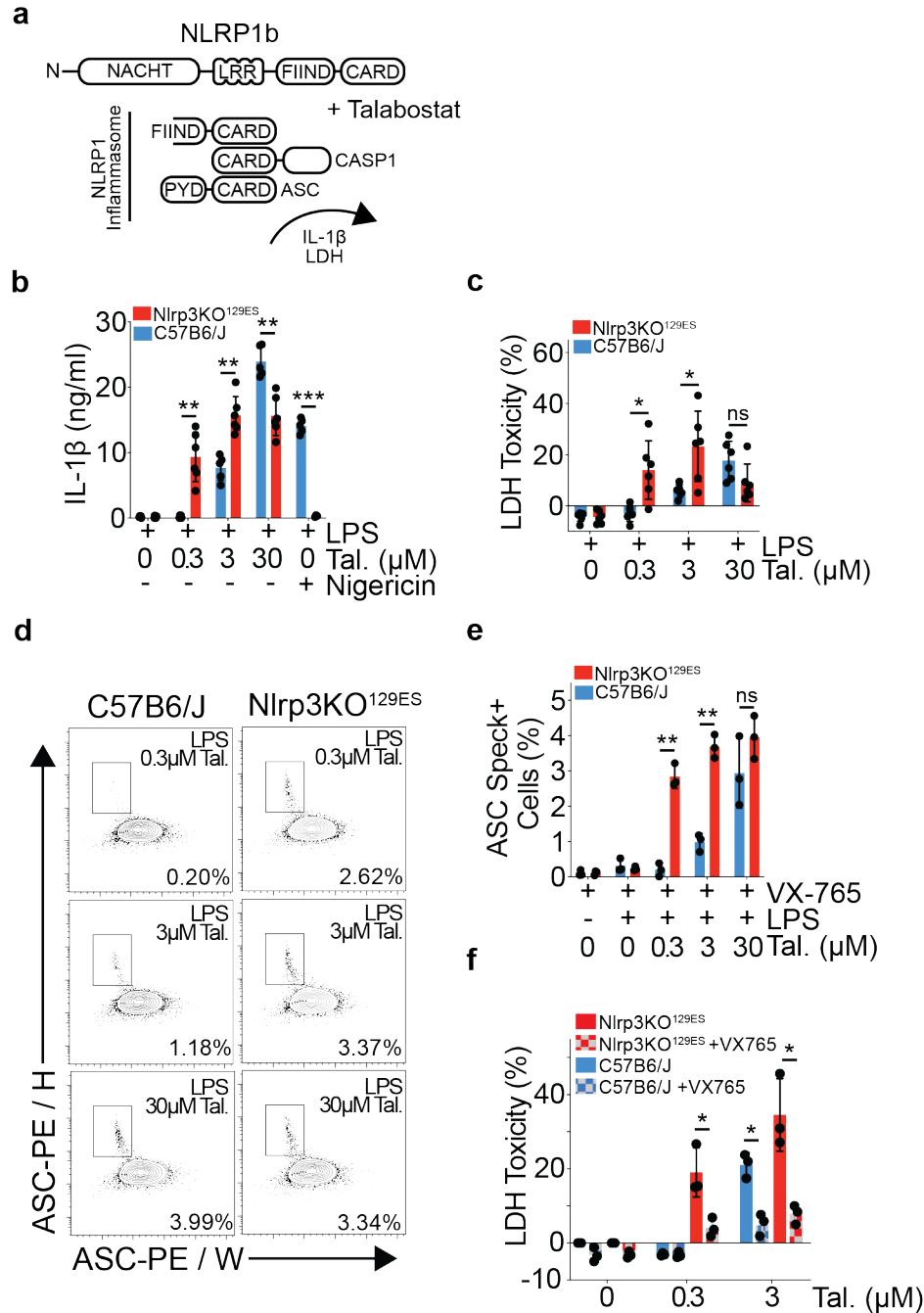
397

398 This work was funded by the European Union's Horizon 2020 research and innovation
399 program under grant agreement No. 848146 (To_Aition) (to E.L.), by the Deutsche
400 Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's
401 Excellence Strategy – EXC2151 – 390873048 (to E.L. and F.M.), by the DFG SFB1454
402 - 432325352 (to E.L. and F.M.), SFB1402 – 414786233 (to E.L.), TRR237 –
403 369799452 (to E.L.), GRK2168 – 272482170 (to E.L.), the Helmholtz-Gemeinschaft,
404 Zukunftsthema 'Immunology and Inflammation' (ZT-0027), and the Faculty of Medicine
405 at the University of Bonn BONFOR 1B Postdoc Fellowship Project ID: O-187.0008.1.

406

407 **Author Contributions**

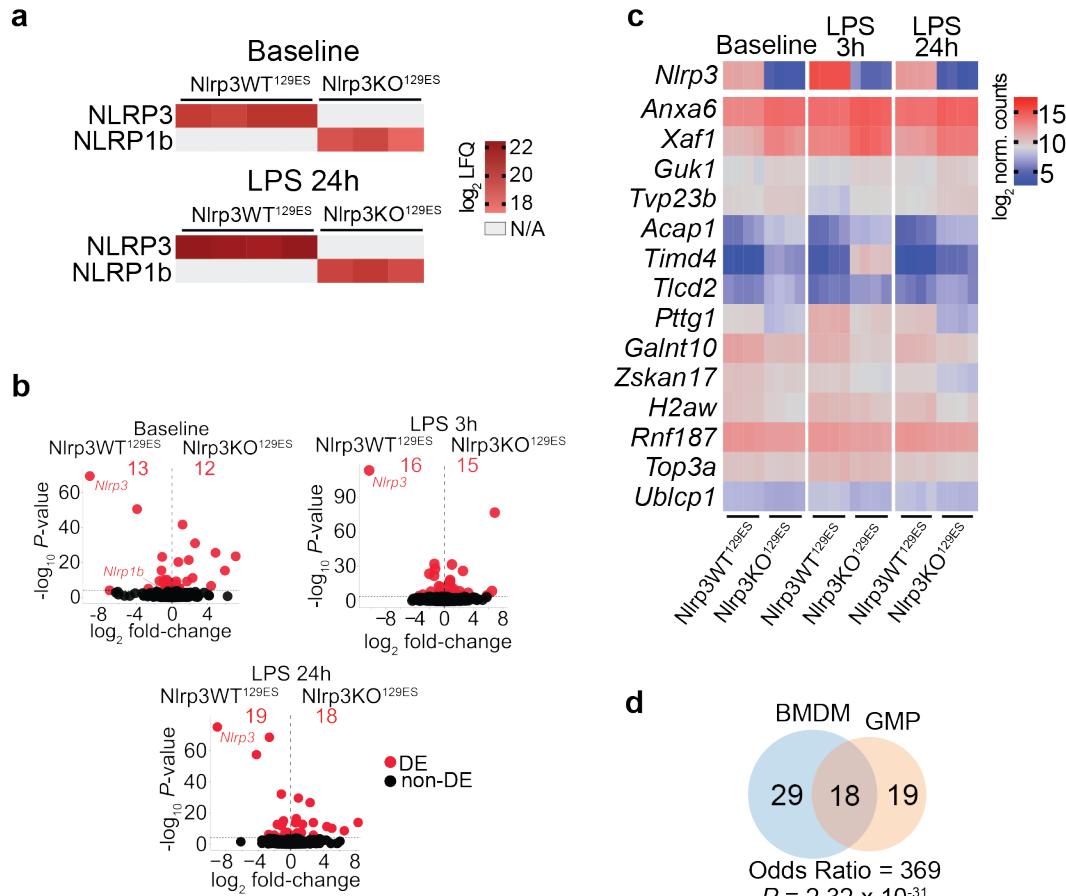
408 F.D.W, E.L and F.M conceived the study. F.D.W and Y.A designed experiments. F.D.W,
409 Y.A, H.E.L and A-K.G performed experiments. F.D.W, A.S, F.S and A.B performed data
410 analysis and visualization. F.D.W, E.L and F.M acquired funding. F.W and F.M wrote
411 the manuscript. All authors reviewed and edited the manuscript.


412

413 **Declaration of Interests**

414 E.L. is cofounder and consultant of IFM Therapeutics and Odyssey Therapeutics as
415 well as a cofounder and board member of Dioscure Therapeutics and a Stealth
416 Biotech. F. M. is a cofounder and shareholder of Odyssey Therapeutics. The other
417 authors declare no competing interests.

418

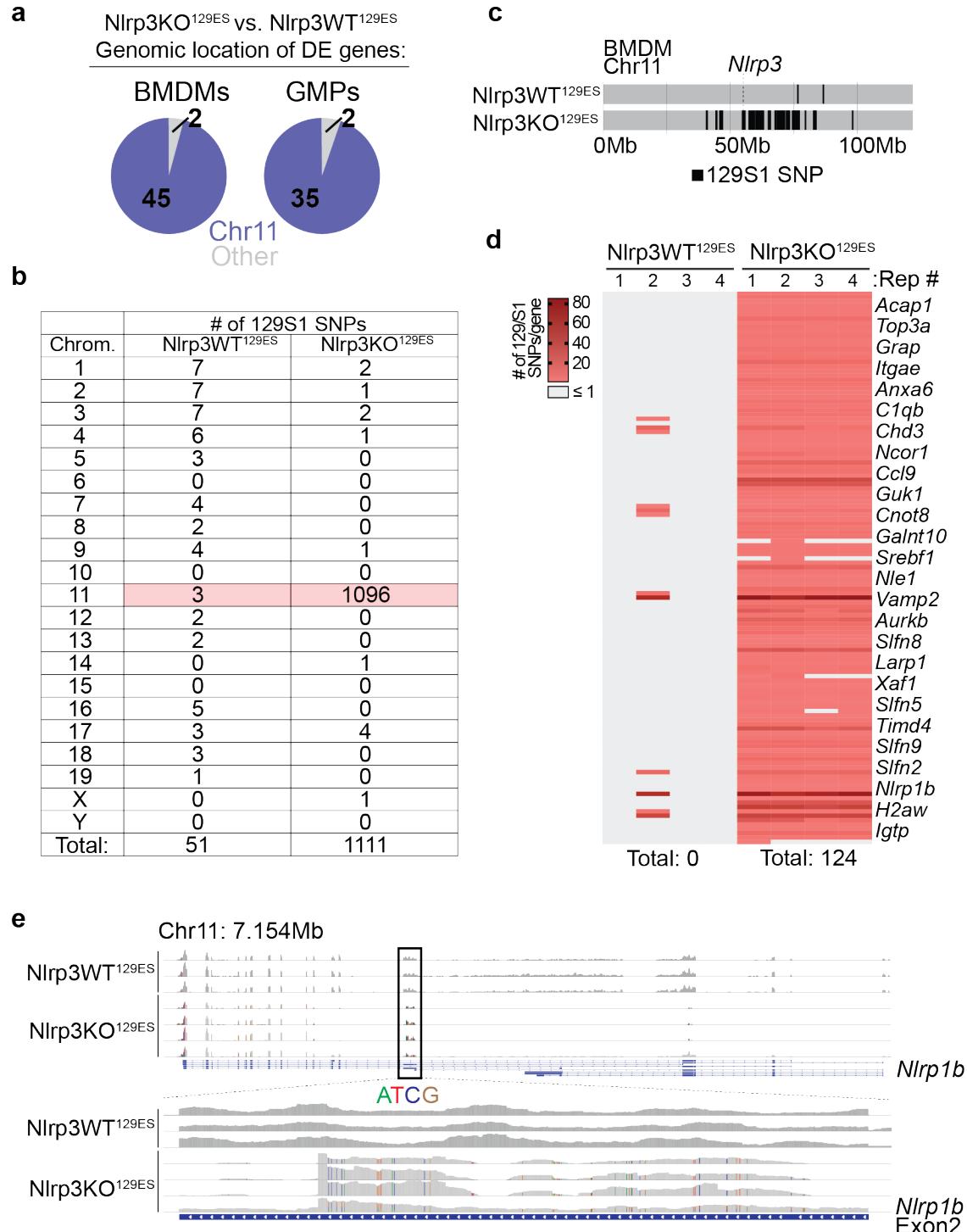

419

420
421
422 **Figure 1. Nlrp3KO^{129ES} mouse macrophages are hypersensitive to NLRP1
423 inflammasome activation by Talabostat**
424

425 **a.** Schematic showing murine NLRP1 inflammasome formation in response to
426 Talabostat treatment.
427
428 **b.** IL-1 β release from C57B6/J and Nlrp3KO^{129ES} mouse BMDMs stimulated with LPS
429 (10 ng/ml) and Talabostat (0.3 μ M, 3 μ M or 30 μ M) for 24 hours, or primed with LPS
430 (10 ng/ml) for 3 hours and then stimulated with Nigericin (8 μ M) for 90 minutes
431 (C57B6/J, n = 5, Nlrp3KO^{129ES}, n = 6.)
432

433 **c.** LDH release, relative to untreated total lysis controls, measured from C57B6/J and
434 Nlrp3KO^{129ES} mouse BMDMs stimulated with LPS (10 ng/ml) and Talabostat (0.3 μ M,
435 3 μ M or 30 μ M) for 24 hours (C57B6/J, n = 6, Nlrp3KO^{129ES}, n = 6).
436
437 **d.** Representative flow cytometry plots showing identification of ASC speck positive
438 cells in C57B6/J and Nlrp3KO^{129ES} mouse BMDMs, pre-gated on live single cells,
439 stimulated with LPS (10 ng/ml) and Talabostat (0.3 μ M, 3 μ M or 30 μ M) for 16 hours,
440 in the presence of VX-765 (50 μ M). Percentages represent % of ASC Speck+ cells in
441 the representative plot.
442
443 **e.** Bar plot showing % of ASC speck positive BMDMs from C57B6/J and Nlrp3KO^{129ES}
444 mice stimulated with LPS (10ng/ml) and Talabostat (0.3 μ M, 3 μ M or 30 μ M) for 16
445 hours, in the presence of VX-765 (50 μ M, C57B6/J, n = 3, Nlrp3KO^{129ES}, n = 3).
446
447 **f.** LDH release, relative to total lysis controls, measured from C57B6/J and
448 Nlrp3KO^{129ES} mouse BMDMs stimulated with Talabostat (0.3 μ M or 3 μ M) in the
449 presence or absence of VX-765 (50 μ M) for 24 hours (C57B6/J, n = 3, Nlrp3KO^{129ES},
450 n = 3).
451
452 **b - f.** All P values were calculated using multiple unpaired parametric t-tests. FDR (q)
453 was calculated using Benjamini Hochberg correction. * = $q < 0.05$, ** = $q < 0.01$, *** =
454 $q < 0.001$, **** = $q < 0.0001$, ns = not significant ($q > 0.05$). Error bars represent
455 standard deviation.
456

457
458
459 Figure 2. Nlrp3KO^{129ES} macrophages have increased NLRP1b protein
460 expression, with limited global gene expression changes
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480


Figure 2. Nlrp3KO^{129ES} macrophages have increased NLRP1b protein expression, with limited global gene expression changes

a. Heatmap of log₂ LFQ values of NLRP3 and NLRP1b proteins from LC/MS-MS of Nlrp3WT^{129ES} and Nlrp3KO^{129ES} BMDMs at baseline and after 24 hours of LPS (10 ng/ml) stimulation. Grey spaces indicate samples where NLRP3 or NLRP1b were not detected.

b. Volcano plots of gene expression fold-change vs. P-value in RNA-seq of Nlrp3WT^{129ES} and Nlrp3KO^{129ES} BMDMs. Total number of differentially expressed (DE, adj. P < 0.05, Benjamini-Hochberg adjusted) genes, and individual DE genes, are shown in red. Left: Comparison at baseline. Right: Comparison after 3 hours of LPS (10 ng/ml) stimulation. Bottom: Comparison after 24 hours of LPS (10 ng/ml) stimulation.

c. Heatmap of log₂ normalised counts of genes commonly differentially expressed (adj P < 0.05, Benjamini-Hochberg adjusted) in all three comparisons above.

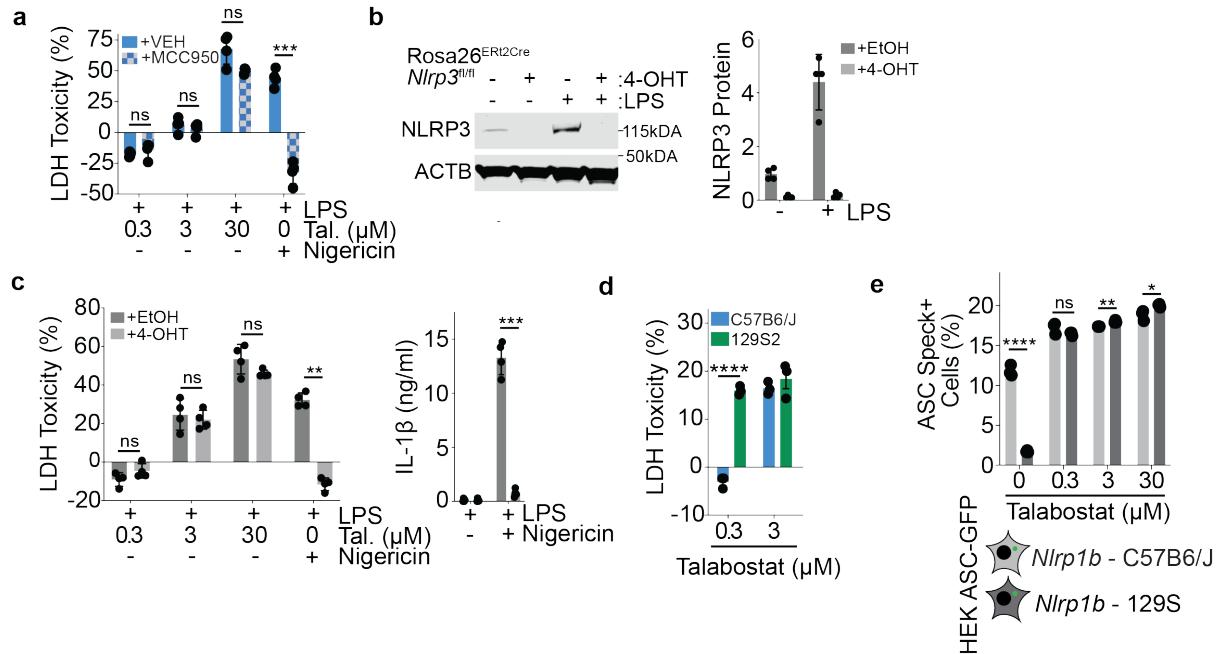
d. Venn diagram showing enrichment of shared DE genes (adj. P < 0.05) between Nlrp3WT^{129ES} and Nlrp3KO^{129ES} in BMDMs and GMPs. One-sided Fisher's exact test was applied for the odds ratio and P value.

481
482
483
484
485
486
487
488
489

Figure 3. Differentially expressed genes in Nlrp3^{KO}^{129ES} mice are enriched on chromosome 11 and align to the 129S1 mouse strain genome, including Nlrp1b

a. Pie charts showing the number of differentially expressed (DE) genes (adj. $P < 0.05$) in BMDMs and GMPs between Nlrp3^{WT}^{129ES} and Nlrp3^{KO}^{129ES} mice, and whether they are located on chromosome 11 (blue) or an alternative chromosome (grey).

490 **b.** Table showing the number of identified 129S1 SNPs in at least 3 out of 4 replicates
491 in both *Nlrp3WT*^{129ES} and *Nlrp3KO*^{129ES} BMDMs. Values for chromosome 11 are
492 highlighted in red.


493
494 **c.** Line plot showing every identified SNP mapping to the 129S1 genome compared to
495 the reference genome in RNAseq data from *Nlrp3WT*^{129ES} and *Nlrp3KO*^{129ES} BMDMs
496 on chromosome 11. Based on presence in 3 out of 4 biological replicates in each
497 genotype.

498
499 **d.** Heatmap showing number of 129S1 SNPs in genes located on chromosome 11
500 from both *Nlrp3WT*^{129ES} and *Nlrp3KO*^{129ES}.

501 Right: subset of genes identified as containing ≥ 2 129S1 SNPs. Bottom: total number
502 of genes containing ≥ 2 129S1 SNPs in both *Nlrp3WT*^{129ES} and *Nlrp3KO*^{129ES} BMDMs.

503
504 **e.** Snapshot from the Integrative Genomics Viewer (IGV) showing RNAseq reads of
505 *Nlrp1b* from *Nlrp3KO*^{129ES} and *Nlrp3WT*^{129ES} mouse BMDMs at baseline. Top: read
506 coverage over the whole *Nlrp1b* gene (expression range: 0 – 300). Bottom: zoom view
507 of reads at exon 2 of *Nlrp1b* (expression range: 0 – 100). SNPs are highlighted in
508 separate colours (adenine (A) = green, thymine (T) = red, cytosine (C) = blue, guanine
509 (G) = brown).

510

511
512

513 **Figure 4. Expression of the 129S mouse strain NLRP1b, not NLRP3 deficiency, 514 drives Nlrp3KO^{129ES} hypersensitivity to Talabostat stimulation**

515

516 **a.** LDH release, relative to media only total lysis controls, in BMDMs from C57B6/J
517 mice +/- MCC950 after stimulation with Talabostat (0.3 μM, 3 μM or 30 μM) for 24
518 hours.

519

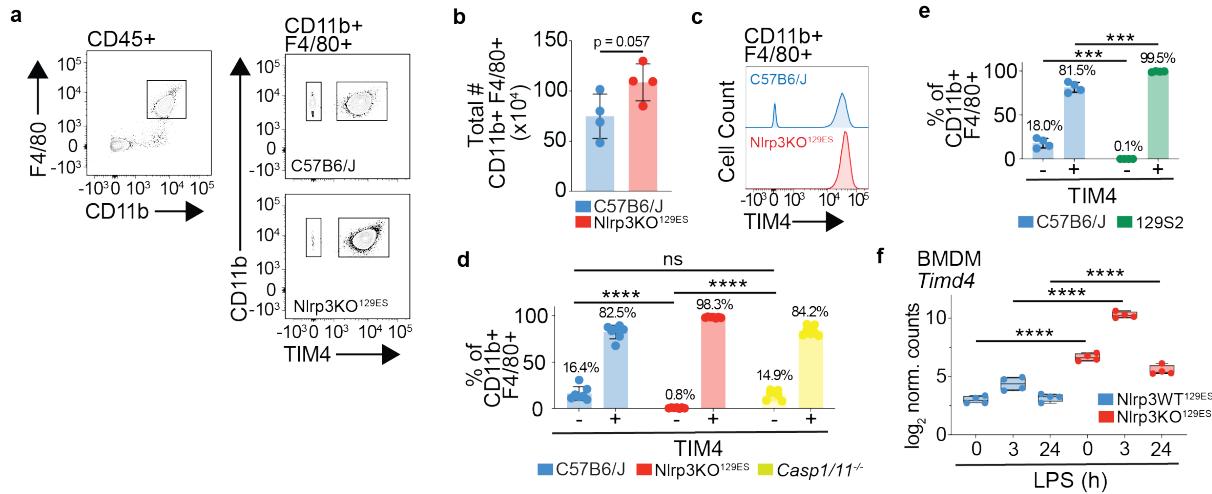
520 **b.** Analysis of NLRP3 expression in Rosa26^{ERT2Cre} Nlrp3^{fl/fl} BMDMs treated with EtOH
521 or 4-OHT, +/- LPS. Left: Western blot of NLRP3 and ACTB. Right: quantification of
522 NLRP3 protein expression relative to ACTB.

523

524 **c.** Analysis of LDH and IL-1β release in Rosa26^{ERT2Cre} Nlrp3^{fl/fl} BMDMs treated with
525 EtOH or 4-OHT, and co-stimulated with LPS and Talabostat, or LPS + Nigericin. Left:
526 LDH release, relative to total lysis controls. Right: Quantification of IL-1β supernatant
527 concentration.

528

529 **d.** LDH release, relative to total lysis controls, in BMDMs from C57B6/J (blue) and
530 129S2 (green) mice after stimulation with Talabostat (0.3 μM or 3 μM) for 24 hours.


531

532 **e.** Bar plot showing % of ASC speck positive HEK 293 cells stably expressing either
533 129S or C57B6/J NLRP1b stimulated with Talabostat (0.3 μM, 3 μM or 30 μM) for 16
534 hours.

535

536 **a – c.** *P* values were calculated using multiple paired parametric t-tests. FDR (*q*) was
537 calculated using Benjamini Hochberg correction. **d, e.** *P* values were calculated using
538 multiple unpaired parametric t-tests. FDR (*q*) was calculated using Benjamini
539 Hochberg correction. **a – e.** * = *q* < 0.05, ** = *q* < 0.01, *** = *q* < 0.001, **** = *q* <
540 0.0001, ns = not significant (*q* > 0.05). Error bars represent standard deviation.

541

542

543

544 **Figure 5. Monocyte derived peritoneal macrophages from Nlrp3KO^{129ES} mice**
545 **overexpress TIM4**

546

547 **a.** Representative flow cytometry plots showing identification of TIM4- and TIM4+
548 macrophages (F4/80+ CD11b+) in C57B6/J and Nlrp3KO^{129ES} mouse peritoneum.
549 Cells were pre-gated on single, live and CD45+ populations.

550

551 **b.** Bar plot of the total number of macrophages (CD11b+ F4/80+) in each peritoneum
552 of each mouse (Nlrp3KO^{129ES}, n = 4; C57B6/J, n = 4). *P* value was calculated using
553 an unpaired t test. Error bars represent standard deviation.

554

555 **c.** Representative histogram of distribution of TIM4- and TIM4+ macrophages (F4/80+
556 CD11b+) in C57B6/J and Nlrp3KO^{129ES} mouse peritoneum.

557

558 **d.** Bar plot of TIM4- and TIM4+ macrophages (F4/80+ CD11b+) in C57B6/J,
559 Nlrp3KO^{129ES} and Casp1/11^{-/-} mouse peritoneum. Percentages above bars show the
560 mean value for each group. (Nlrp3KO^{129ES}, n = 7; C57B6/J, n = 7; Casp1/11^{-/-}, n = 8).
561 Adj. *P* values were calculated using a 2-way ANOVA with Turkey's multiple comparison
562 testing. * = adj. *P* < 0.05, ** = adj. *P* < 0.01, *** = adj. *P* < 0.001, **** = adj. *P* < 0.0001,
563 ns = not significant (adj. *P* > 0.05). Error bars represent standard deviation.

564

565 **e.** Bar plot of TIM4- and TIM4+ macrophages (F4/80+ CD11b+) in C57B6/J and 129S2
566 mouse peritoneum. Percentages above bars show the mean value for each group
567 (C57B6/J, n = 4; 129S2, n = 4). *P* values were calculated using multiple unpaired
568 parametric t-tests. FDR (*q*) was calculated using Benjamini Hochberg correction. * =
569 *q* < 0.05, ** = *q* < 0.01, *** = *q* < 0.001, **** = *q* < 0.0001, ns = not significant (*q* > 0.05).
570 Error bars represent standard deviation.

571

572 **f.** log₂ normalised counts of *Timd4* from RNAseq of Nlrp3KO^{129ES} and Nlrp3WT^{129ES}
573 BMDMs at baseline and after 3h and 24h of LPS (10ng/ml) stimulation (Nlrp3WT^{129ES},
574 n=4; Nlrp3KO^{129ES}, n=4). * = adj. *P* < 0.05, ** = adj. *P* < 0.01, *** = adj. *P* < 0.001, ****
575 = adj. *P* < 0.0001, ns = not significant. Wald Test, Benjamini-Hochberg corrected.

576

577 **Methods**

578

579 **Mice**

580 Mice were housed in specific-pathogen-free conditions. C57B6/J and
581 129S2/SvPPasCrl mice were obtained from Charles River Laboratories.
582 *Nlrp3*^{KO}^{1293ES} mice have been previously described¹⁹, and were maintained in-house
583 on a C57B6/J background, *Casp11*^{-/-} mice have been previously described⁶, and
584 were maintained in-house on a C57B6/J background. *Nlrp3*^{f/f} (strain ID: 12809) mice
585 were obtained from Taconic. Rosa26ERt2Cre mice have been previously described²⁴,
586 and were obtained from Jackson Laboratories (strain ID: 008463) . All animal
587 experiments requiring ethical approval were performed under the ethics license AZ.
588 81-02/04.2019.A336, approved by the ethics committee of North Rhein Westphalia.
589 Male and female mice were used, all experiments were sex matched.

590

591 **Cell Culture**

592 For bone marrow derived macrophage (BMDM) production, femurs and tibias were
593 obtained from 8 – 12-week-old mice and flushed with DMEM + 10% FBS through a 70
594 µm filter. Isolated cells were centrifuged (350g, 5 minutes) and resuspended in DMEM
595 + Glutamax, supplemented with 10% FBS, 1% P/S and 15-20% L929 cell-conditioned
596 medium. BMDMs were then differentiated over a period of 7 days (d) in a cell culture
597 incubator (37°C, 5% CO₂). Cell culture media was supplemented with an additional
598 10% of L929 cell-conditioned media on day 3. On the final day of differentiation
599 BMDMs were harvested by cell scraping and resuspended at the desired
600 concentration in DMEM + Glutamax, supplemented with 10% FBS and 1% P/S. For

601 stimulation experiments BMDMs were plated in 96-well plates at a density of 10×10^5
602 per well.

603

604 HEK293 cells stably expressing GFP fused ASC and murine Nlrp1b alleles (a kind gift
605 from Florian I. Schmidt, University Hospital Bonn, DE) were cultured in DMEM +
606 Glutamax, supplemented with 10% FBS and 1% P/S.

607

608 **Cell Stimulation**

609 BMDMs were plated at a density of 1×10^5 cells per well of a 96 well plate, or 1×10^6
610 cells per well of a 6 well plate. For RNAseq and LC-MS/MS experiments, BMDMs were
611 cultured in DMEM + Glutamax supplemented with 1% P/S and 10% FCS, and
612 stimulated with LPS-EB Ultrapure (10 ng/ml, Invivogen) for 0, 3 or 24 hours. For
613 NLRP1 and NLRP3 inflammasome activation, BMDMs were cultured in DMEM +
614 Glutamax supplemented with 1% P/S and 2% FCS. NLRP1 inflammasome activation
615 by Talabostat (Hoelzel) was induced in BMDMs by the simultaneous treatment with
616 LPS (10 ng/ml) and Talabostat (0.3 μ M, 3 μ M or 30 μ M) or a DMSO control, for 16 or
617 24 hours, either in presence or absence of VX-765 (50 μ M), all as indicated. For long-
618 term inhibition of MCC950 treated BMDMs, cells were cultured in DMEM + Glutamax
619 supplemented with 1% P/S and 10% FCS, supplemented every 48 hours with
620 MCC950 (5 μ M, Invivogen). NLRP3 inflammasome activation by Nigericin in BMDMs
621 required a priming step where BMDMs were incubated with LPS (10 ng/ml) for 3 hours.
622 Subsequently, BMDMs were further incubated with Nigericin (8 μ M, Invivogen) for an
623 additional 90 minutes.

624

625 HEK cells were plated at a density of 5×10^5 per well of a 12 well plate. NLRP1
626 inflammasome formation was activated by incubation with Talabostat (0.3 μ M, 3 μ M or
627 30 μ M) or a DMSO control for 16 hours in DMEM + Glutamax, supplemented with 10%
628 FBS and 1% P/S.

629

630 **Immunoblot**

631 Whole cell extracts were lysed in 1X NuPage LDS Sample Buffer (ThermoFisher), and
632 Protein was loaded in each lane of a 4 – 12% Bolt Bis-Tris Plus gel (ThermoFisher),
633 and was then electrophoretically separated, immunoblotted, and visualised on a LI-
634 COR Odyssey Instrument. Primary antibodies used were NLRP3 (Cryo-2, AdipoGen
635 Life Sciences) and β -Actin (926-42210, LI-COR) were used. Secondary antibodies
636 IRDye 800CW and IRDye 680RD (LI-COR) were used.

637

638 **Mouse IL-1 β Measurements by HTRF**

639 IL-1 β concentrations in cell supernatants were measured by a homogenous time-
640 resolved fluorescence (HTRF) ‘sandwich’ antibody-based assay, following
641 manufacturer’s instructions (62MIL1BPEG, CisBio). Briefly, the anti-mouse IL-1 β
642 solutions were mixed at a 1:1 ratio. A portion of 4 μ l per well of this mixture was
643 distributed in white low-volume medium-binding HTRF-adapted 384-well assay plates
644 (784075, Greiner Bio-One). This was followed by the addition of the samples (tissue
645 culture supernatants; 16 μ l per well). The plates were centrifuged at RT, 1,000 g for
646 5 minutes, followed by a 3h incubation at RT. HTRF signals were measured using
647 Spectramax i3.

648

649 **LDH Cytotoxicity Assay**

650 LDH in cell supernatants was measured using the LDH Cytotoxicity Kit (TaKaRa)
651 according to manufacturer's instructions. LDH values were normalized to a total lysis
652 control after subtraction of spontaneous background signal. Samples were measured
653 on a SpectraMax i3.

654

655 **Peritoneal Cavity Cell Isolation for FACS Analysis**

656 Mice were sacrificed by cervical dislocation, and the peritoneal cavity filled with 10ml
657 PBS + 2 mM EDTA. Mice were subsequently shaken to dislodge residing cells, before
658 the PBS + 2mM EDTA was removed. Cells were then centrifuged (350g, 5 minutes)
659 and resuspended in 1X Red Blood Cell Lysis solution (555899, BD Bioscience) for 15
660 minutes at RT. Cells were then centrifuged again (350g, 5 minutes) and processed for
661 staining.

662

663 **Isolation of Bone Marrow Cells for GMP Isolation**

664 In order to isolate GMPs, femurs and tibias were obtained from 8 – 12-week-old mice
665 and flushed with PBS supplemented with 0.5% BSA and 2 mM EDTA (FACS buffer)
666 through a 70 μ m filter. Isolated cells were centrifuged (350g, 5 minutes) and
667 resuspended in 1X Red Blood Cell Lysis solution (555899, BD Bioscience) for 15
668 minutes at RT. Cells were then centrifuged again (350g, 5 minutes) and processed for
669 staining.

670

671 **Cell Staining for FACS Sorting and Analysis**

672 All staining was performed at 4°C in PBS + 1% BSA + 2mM EDTA. Bone marrow was
673 stained with the following markers for the isolation of GMPs. Lineage markers, all FITC
674 (B220 (11-0452-85, eBioscience) CD19 (11-0193-85, eBioscience), CD11b (11-0112-

675 82, eBioscience), CD3e (11-0033-82, eBioscience), TER-119 (11-5921-85,
676 eBioscience), CD2 (11-0021-85, eBioscience), CD8b (11-0083-85, eBioscience), CD4
677 (11-0042-85, eBioscience), Ly-6G (553127, BD Pharmingen)), Sca1-Pacific Blue
678 (108120, BioLegend), c-Kit-APC/Cy7 (47-1172-82, eBioscience), CD16/32-
679 PerCP/Cy5.5 (560540, BD Pharmingen), and CD34-AF647 (128606, BioLegend).

680

681 For identification of peritoneal cavity cell subsets the following markers were used:
682 CD45-PE/Cy7 (552848, BD Biosciences), CD11b-BV510 (101245, BioLegend),
683 F4/80-APC (123116, BioLegend), and TIM4-PE (130005, BioLegend). Cells were
684 stained in the presence of Fc Block (553142, BD Biosciences).

685

686 For ASC speck staining the following markers were used: ASC-PE (653903,
687 BioLegend). Cells were permeabilized with the FoxP3 Transcription Factor Staining
688 Set (00-5523-00, ThermoFisher) according to manufacturer's instructions before
689 staining. Cells were stained in the presence of Fc Block (553142, BD Biosciences).

690

691 For viability staining in peritoneal cavity populations, cells were incubated with 7-AAD
692 15 minutes prior to FACS analysis or sorting. For viability staining in BMDMs
693 LIVE/DEAD Fixable Aqua Dead Cell Stain Kit was used (L34957, ThermoFisher). For
694 cell number analysis, Precision Plus Counting Beads (Biolegend) were used according
695 to manufacturer's instructions.

696

697 FACS analysis was performed on a BD Canto, sorting was performed on a BD Aria III.

698

699 **Microglia Purification**

700 Microglia were purified from adult brain tissue using the Neural Tissue Dissociation Kit
701 (130-092-628, Miltenyi Biotec), Myelin Removal Beads II (130-096-433, Miltenyi
702 Biotec) and CD11b Microglia Microbeads (130-093-636, Miltenyi Biotec) according to
703 manufacturer's instructions. Briefly, mice were deeply anesthetized (Ketamine 240
704 mg/kg and Xylazine 32 mg/kg bodyweight) and the organs were transcardially
705 perfused with 50 ml cold phosphate-buffered saline (PBS, pH 7.4). The brain was
706 removed and the two hemispheres separated, only one hemisphere was used for
707 downstream sample preparation. Brain tissue was subsequently digested, myelin was
708 removed and microglia isolated by bead-based positive selection.

709

710 **RNA Extraction and Sequencing**

711 For BMDMs and GMPs RNA was extracted using Picopure RNA Isolation Kit
712 (Thermofisher) according to manufacturer's instructions. For microglia, RNA was
713 extracted using RNeasy Mini Kit (Qiagen). Residual DNA was removed using RNase-
714 Free DNase Set (Qiagen). RNA was assessed for quality and quantity (TapeStation,
715 Agilent).

716 For GMPs and BMDMs, RNA sequencing libraries were prepared using the NEBNext
717 Ultra RNA Library Prep Kit for Illumina following manufacturer's instructions (NEB,
718 Ipswich, MA, USA). Briefly, mRNAs were first enriched with Oligo(dT) beads. Enriched
719 mRNAs were fragmented for 15 minutes at 94 °C. First strand and second strand
720 cDNAs were subsequently synthesized. cDNA fragments were end repaired and
721 adenylated at 3'ends, and universal adapters were ligated to cDNA fragments,
722 followed by index addition and library enrichment by limited-cycle PCR. Sequencing
723 libraries were validated using NGS Kit on the Agilent 5300 Fragment Analyzer (Agilent

724 Technologies, Palo Alto, CA, USA), and quantified by using Qubit 4.0 Fluorometer
725 (Invitrogen, Carlsbad, CA).

726 The sequencing libraries were multiplexed and loaded on the flowcell on the Illumina
727 NovaSeq 6000 instrument according to manufacturer's instructions. The samples
728 were sequenced using a 2x150 Pair-End (PE) configuration v1.5. Image analysis and
729 base calling were conducted by the NovaSeq Control Software v1.7 on the NovaSeq
730 instrument. Raw sequence data (.bcl files) generated from Illumina NovaSeq was
731 converted into fastq files and de-multiplexed using Illumina bcl2fastq program version
732 2.20. One mismatch was allowed for index sequence identification.

733 For microglia, 3'mRNA Seq was performed using the QuantSeq 3'mRNA-Seq Library
734 Prep Kit FWD (Lexogen). Final libraries were pooled and sequenced on an Illumina
735 NovaSeq 6000 device with 1x100bp and 10M reads per sample.

736

737 **RNAseq Analysis**

738 RNA-seq datasets were processed with nf-core RNA-seq v3.6⁴² pipeline using
739 STAR⁴³ for alignment and salmon for gene quantification⁴⁴. The library strandedness
740 parameter was set to forward and the reference was set to GRCm38. Statistical
741 analysis was performed in the R environment⁴⁵ with the Bioconductor R-package
742 DESeq2^{46,47}. The Benjamini-Hochberg method was used to calculate multiple testing
743 adjusted p-values. For Microglia dataset, only genes with at least 3 read counts in at
744 least 2 samples and at least 5 read counts in total across all samples were considered
745 for analysis. For granulocyte-monocyte progenitor dataset, only genes with at least 20
746 read counts in at least 3 samples and at least 60 read counts in total across all samples
747 were considered for analysis. For BMDM dataset, only genes with at least 50 read

748 counts (minCount) in at least 3 samples and at least 150 read counts in total across
749 all samples were considered for analysis. Data visualisation, such as volcano plots
750 and heatmaps, were generated upon VST transferred data⁴⁸, using R-packages
751 ggplot2⁴⁹, ComplexHeatmap⁵⁰ and on Graphpad Prism (v10.0.2).

752

753 Mutation calling was done on RNA-seq data with nf-core RnaVar v1.0.0⁴² pipeline
754 using STAR⁴³ for alignment and GATK4⁵¹ for variant calling. The group-specific
755 mutations were then identified using isec command from bcftools utilities⁵². Unknown
756 group-specific mutations were removed by overlaying the group-specific mutations
757 with known 129S mutations (Accession Nr: GCA_001624185.1). Gene ontology
758 analysis was performed using gProfiler. Statistical domain scope was defined as all
759 genes or proteins expressed in the given dataset. Significance was determined by
760 Bonferroni correction.

761

762 **Sample preparation for mass spectrometry**

763 For proteomics analysis without Anl-enrichment, cells were lysed in SDC buffer (1%
764 sodium deoxycholate (SDC), 10 mM tris(2-carboxy(ethyl)phosphine) (TCEP), 40 mM
765 2-chloroacetamide (CAA), 100 mM Tris-HCl pH 8.5) heated at 95 °C for 10 min and
766 sonicated to shear DNA. Proteins were digested with trypsin and LysC (1:100
767 enzyme/protein ratio, w/w) at 37 °C, 1000 rpm overnight. Digests were desalting using
768 in-house-made SDB-RPS StageTips.

769

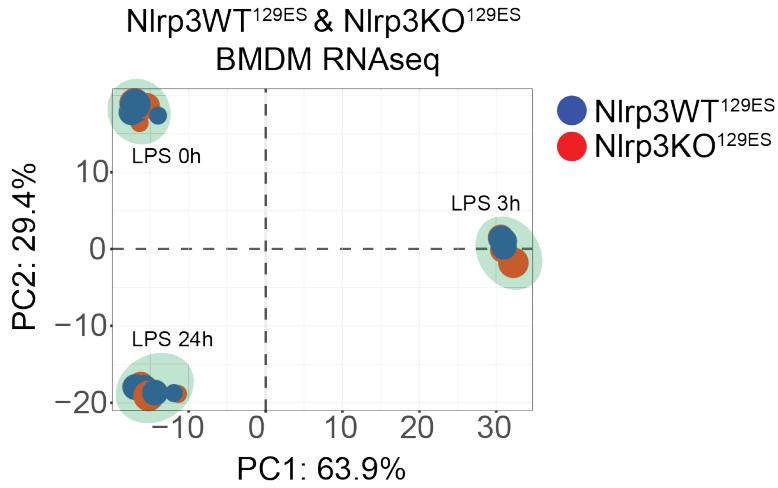
770 Desalting peptides were dried in a vacuum concentrator and resolubilized in 0.1%
771 formic acid. Concentrations were determined using a NanoDrop spectrophotometer
772 and normalized between samples for equal peptide injection.

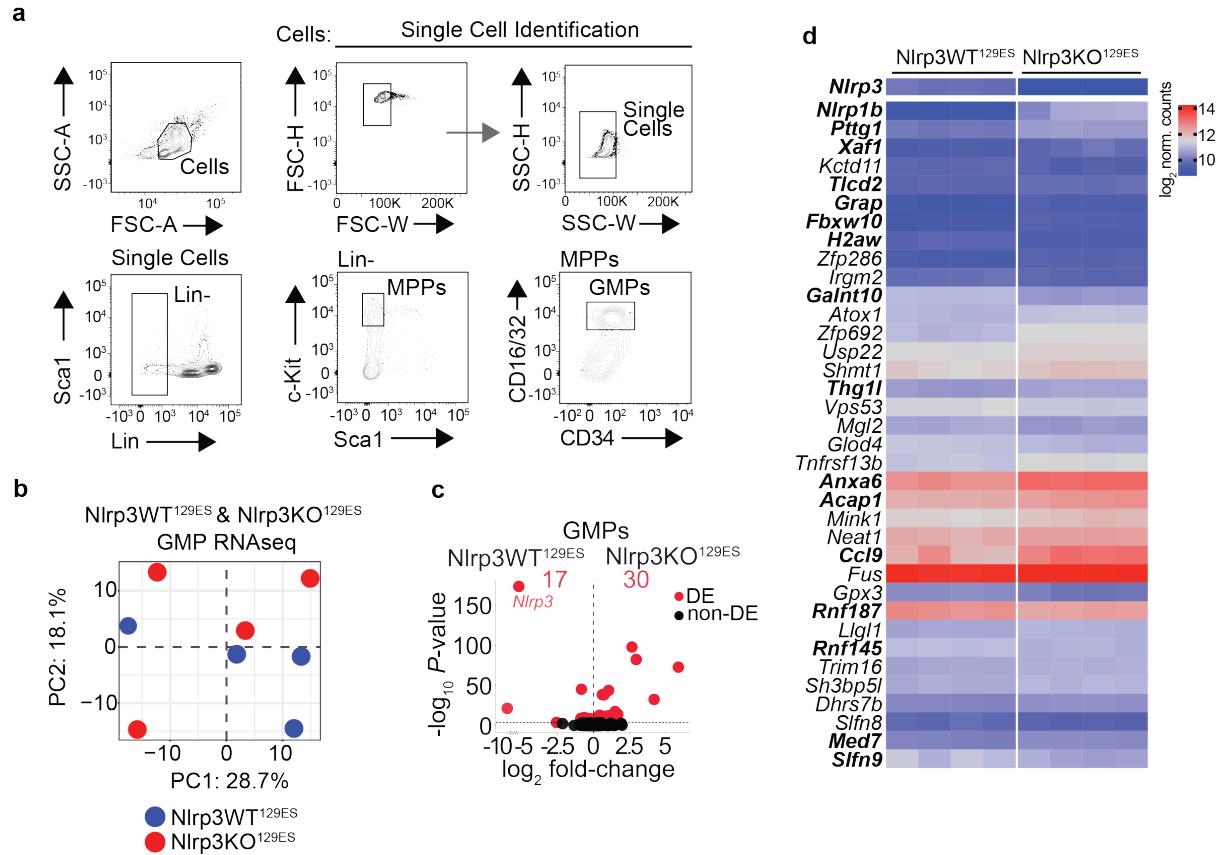
773

774 **LC-MS/MS**

775 LC-MS/MS measurements were performed as previously described⁵³. Briefly, peptide
776 mixtures were analyzed with an EASY-nLC 1000 coupled to a Orbitrap Exploris 480
777 (ThermoFisher Scientific). 300ng of peptides were separated on 50 cm in-house-made
778 75 μ m inner diameter columns, packed with 1.9- μ m ReproSil C18 beads (Dr. Maisch
779 GmbH) at a flow rate of 300 nl min⁻¹ and 60 °C maintained by an in-house-made
780 column oven.

781


782 Samples were analyzed without prefractionation in a single shot measurement with a
783 nonlinear 90 minute gradient. Spectra were acquired with data-independent
784 acquisition using full scans with a range of 300–1650 m/z. Data acquisition was
785 controlled by Xcalibur (version 4.4.16.14, Thermo Fisher Scientific).


786

787 **LC-MS/MS Analysis**

788 DIA MS raw files were processed by DIA-NN⁵⁴ (version 1.8) with FASTA digest for
789 library-free search and deep learning-based spectra, RTs, and IMs prediction enabled.
790 Precursor FDR was set to 1%, and default parameters were used with the following
791 changes: The precursor range was restricted to 300–1650 m/z, and the fragment ion
792 range to 200 – 1650 m/z. The “--relaxed-prot-inf” option was enabled via the command
793 line. MBR was enabled, neural network classifier was set to “double-pass mode,” and
794 the quantification strategy to “robust LC (high accuracy).” Spectra were matched
795 against the mouse December 2022 UniProt FASTA database. Protein intensities were
796 normalised by the MaxLFQ⁵⁵ algorithm using an in-house script. Bioinformatic
797 analyses were performed with Perseus⁵⁶ (version 1.6.15.0) and R (version 4.1.2).

798 Before statistical analysis, quantified proteins were filtered for at least four valid values
799 in at least one group of replicates. Samples “805_ko_b” and “812_ko_24” were
800 identified as outliers by principal component analysis and subsequently. The remaining
801 missing values were imputed by random draw from a normal distribution with a width
802 of 0.3 and a downshift of 1.8 relatives to the standard deviation of measured values.
803 Statistical tests and parameters used to evaluate annotation enrichment and
804 significant abundance differences of quantified proteins are specified in the figure
805 legends.

813
814

815 **Supplemental Figure 2. FACS isolation and RNAseq of GMPs from Nlrp3WT^{129ES}
816 and Nlrp3KO^{129ES} mice**

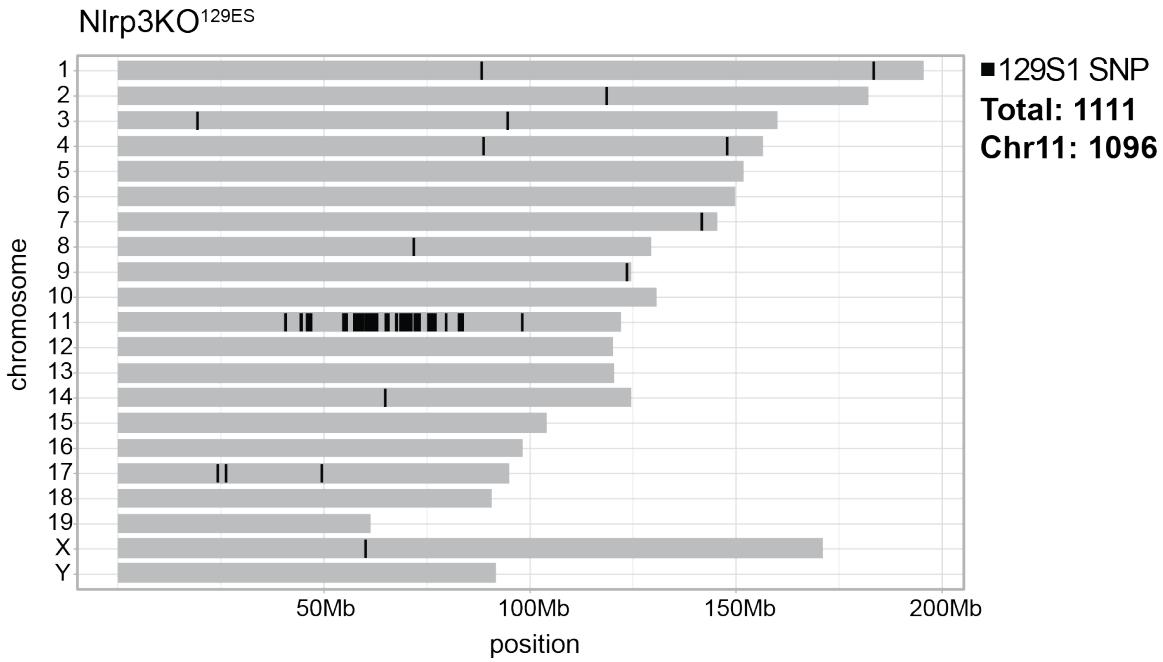
817

818 **a.** Flow cytometry plots representing gating strategy for sorting of GMPs from mouse
819 bone marrow.

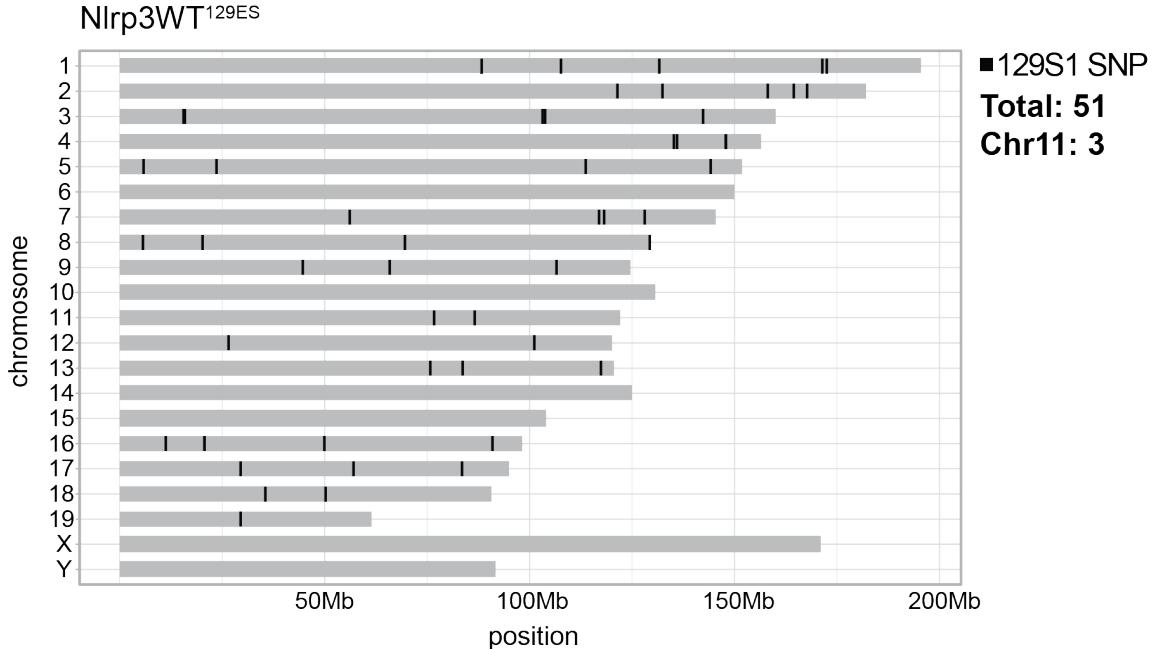
820

821 **b.** Principal component analysis of RNAseq analysis of Nlrp3WT^{129ES} and
822 Nlrp3KO^{129ES} GMPs.

823


824 **c.** Volcano plot of gene expression fold-change vs. P -value in RNA-seq of
825 Nlrp3WT^{129ES} and Nlrp3KO^{129ES} GMPs. Total number of differentially expressed (DE,
826 adj. $P < 0.05$, Benjamini-Hochberg adjusted) genes, and individual DE genes, are
827 shown in red.

828


829 **d.** Heatmap of \log_2 normalised counts of significantly differentially expressed (adj. P
830 < 0.05) protein coding genes in Nlrp3KO^{129ES} GMPs. Differentially expressed genes
831 shared with Nlrp3KO^{129ES} BMDMs are shown in bold.

832

a

b

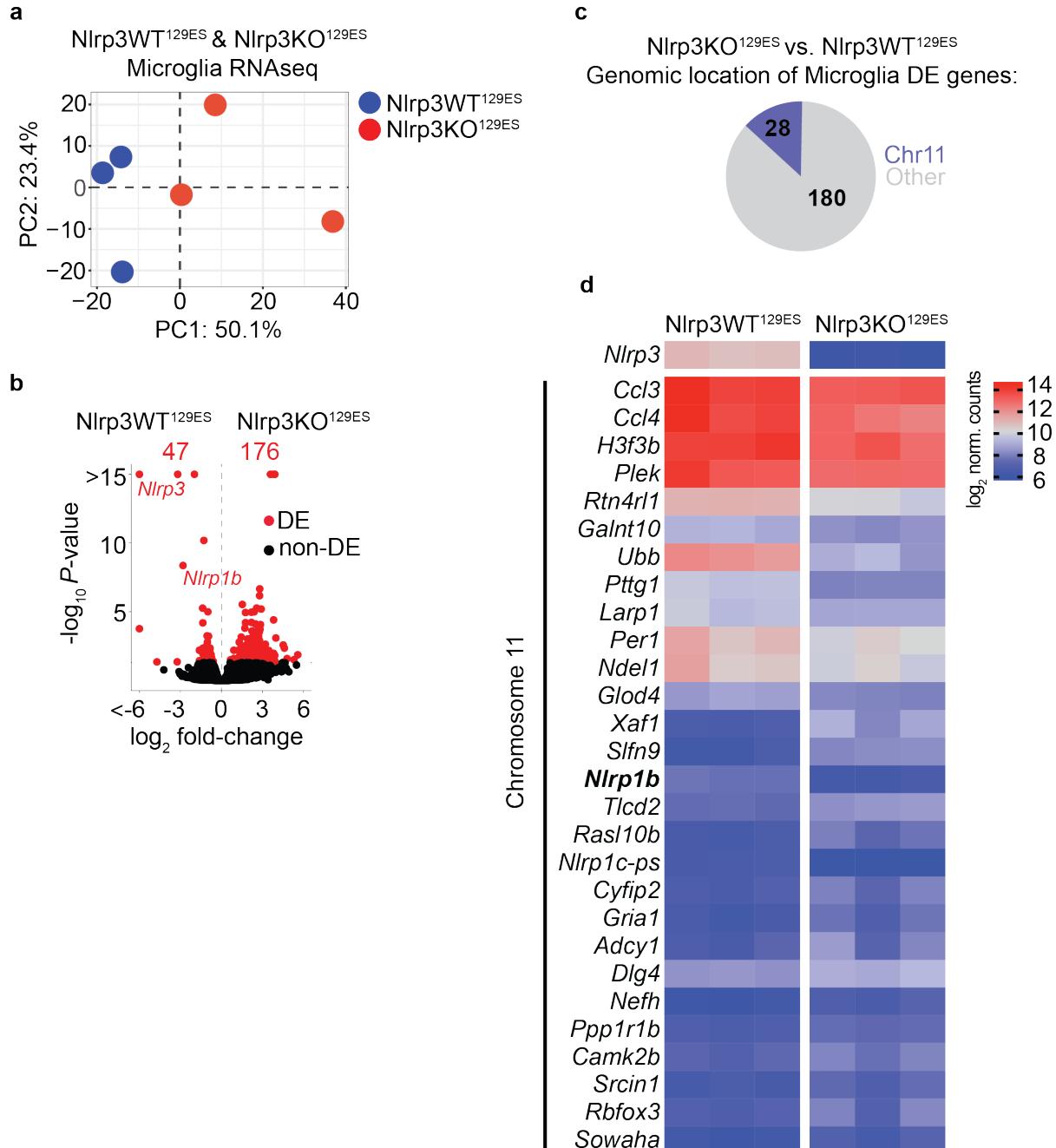
833

834

835 Supplemental Figure 3. **Genomic position of identified 129S1 SNPs in**
836 **Nlrp3KO^{129ES} and Nlrp3WT^{129ES} BMDMs**

837

838 **a.** Line plot showing every identified SNP mapping to the 129S1 genome compared to
839 the reference genome in RNAseq data from Nlrp3KO^{129ES} BMDMs on.


840

841 **b.** Line plot showing every identified SNP mapping to the 129S1 genome compared
842 to the reference genome in RNAseq data from Nlrp3WT^{129ES} BMDMs on.

843

844 **a-b.** Presence of SNPs based on identification in at least 3 out of 4 biological
845 replicates. Total number of identified SNPs shown on righthand side.

846

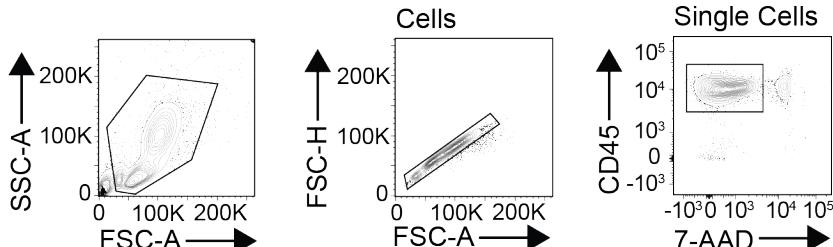
847

848

849 Supplemental Figure 4. Gene expression analysis of Nlrp3KO^{129ES} and
850 Nlrp3WT^{129ES} microglia

851

852 a. Principal component analysis of RNAseq analysis of Nlrp3WT^{129ES} and
853 Nlrp3KO^{129ES} microglia.


854

855 b. Volcano plot of gene expression fold-change vs. P-value in RNA-seq of
856 Nlrp3WT^{129ES} and Nlrp3KO^{129ES} microglia. Total number of differentially expressed
857 (DE, adj. P < 0.05, Wald Test, Benjamini-Hochberg adjusted) genes, and individual DE
858 genes, are shown in red.

859

860 **c.** Pie chart showing the number of differentially expressed (DE) genes (adj. $P < 0.05$)
861 in microglia between Nlrp3WT^{129ES} and Nlrp3KO^{129ES} mice, and whether they are
862 located on chromosome 11 (blue) or an alternative chromosome (grey).
863

864 **d.** Heatmap of log₂ normalised counts of significantly differentially expressed genes
865 (adj. $P < 0.05$) located on Chromosome 11 between Nlrp3WT^{129ES} and Nlrp3KO^{129ES}
866 microglia.
867

868
869
870 Supplemental Figure 5. FACS identification of live CD45+ cells in the peritoneum
871
872 Flow cytometry plots representing gating strategy for identification of CD45+ Live cells
873 from peritoneal cavity
874

875 **References**

876

877 1. Lilue, J. *et al.* Sixteen diverse laboratory mouse reference genomes define strain-specific
878 haplotypes and novel functional loci. *Nat. Genet.* **50**, 1574–1583 (2018).

879 2. Chisolm, D. A. *et al.* Defining Genetic Variation in Widely Used Congenic and Backcrossed
880 Mouse Models Reveals Varied Regulation of Genes Important for Immune Responses.
881 *Immunity* **51**, 155–168.e5 (2019).

882 3. Rissiek, B., Heeren, J., Koch-Nolte, F., Mittrücker, H.-W. & Magnus, T. Comment on “Mice
883 Lacking the Purinergic Receptor P2X5 Exhibit Defective Inflammasome Activation and
884 Early Susceptibility to *Listeria monocytogenes*”. *J. Immunol.* **206**, 667 (2021).

885 4. Elinav, E., Henao-Mejia, J., Strowig, T. & Flavell, R. NLRP6 and Dysbiosis: Avoiding the
886 Luring Attraction of Over-Simplification. *Immunity* **48**, 603–604 (2018).

887 5. Gerlic, M. *et al.* NLRP1a Expression in Srebp-1a-Deficient Mice. *Cell Metab.* **19**, 345–346
888 (2014).

889 6. Kayagaki, N. *et al.* Non-canonical inflammasome activation targets caspase-11. *Nature*
890 **479**, 117–121 (2011).

891 7. Taabazuing, C. Y., Griswold, A. R. & Bachovchin, D. A. The NLRP1 and CARD8
892 inflammasomes. *Immunol. Rev.* **297**, 13–25 (2020).

893 8. Boyden, E. D. & Dietrich, W. F. Nalp1b controls mouse macrophage susceptibility to
894 anthrax lethal toxin. *Nat. Genet.* **38**, 240–244 (2006).

895 9. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid
896 crystals activate the NALP3 inflammasome. *Nature* **440**, 237–241 (2006).

897 10. Duewell, P. *et al.* NLRP3 inflammasomes are required for atherogenesis and activated by
898 cholesterol crystals. *Nature* **464**, 1357–1361 (2010).

899 11. Coll, R. C. *et al.* A small-molecule inhibitor of the NLRP3 inflammasome for the
900 treatment of inflammatory diseases. *Nat. Med.* **21**, 248–255 (2015).

901 12. Inoue, M. *et al.* An interferon- β -resistant and NLRP3 inflammasome-independent
902 subtype of EAE with neuronal damage. *Nat. Neurosci.* **19**, 1599–1609 (2016).

903 13. Ising, C. *et al.* NLRP3 inflammasome activation drives tau pathology. *Nature* **575**, 669–
904 673 (2019).

905 14. Heneka, M. T. *et al.* NLRP3 is activated in Alzheimer’s disease and contributes to
906 pathology in APP/PS1 mice. *Nature* **493**, 674–678 (2013).

907 15. Christ, A. *et al.* Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming.
908 *Cell* **172**, 162-175.e14 (2018).

909 16. van Deenter, H. W. *et al.* The Inflammasome Component Nlrp3 Impairs Antitumor
910 Vaccine by Enhancing the Accumulation of Tumor-Associated Myeloid-Derived
911 Suppressor Cells. *Cancer Res.* **70**, 10161–10169 (2010).

912 17. Gris, D. *et al.* NLRP3 Plays a Critical Role in the Development of Experimental
913 Autoimmune Encephalomyelitis by Mediating Th1 and Th17 Responses. *J. Immunol.* **185**,
914 974–981 (2010).

915 18. Irrera, N. *et al.* Lack of the Nlrp3 Inflammasome Improves Mice Recovery Following
916 Traumatic Brain Injury. *Front. Pharmacol.* **8**, (2017).

917 19. Sutterwala, F. S. *et al.* Critical Role for NALP3/CIAS1/Cryopyrin in Innate and Adaptive
918 Immunity through Its Regulation of Caspase-1. *Immunity* **24**, 317–327 (2006).

919 20. Chui, A. J. *et al.* N-terminal degradation activates the NLRP1B inflammasome. *Science*
920 **364**, 82–85 (2019).

921 21. Zhong, F. L. *et al.* Human DPP9 represses NLRP1 inflammasome and protects against
922 autoinflammatory diseases via both peptidase activity and FIIND domain binding. *J. Biol.*
923 *Chem.* **293**, 18864–18878 (2018).

924 22. Vasconcelos, N. M. de *et al.* DPP8/DPP9 inhibition elicits canonical Nlrp1b
925 inflammasome hallmarks in murine macrophages. *Life Sci. Alliance* **2**, (2019).

926 23. Okondo, M. C. *et al.* Inhibition of Dpp8/9 Activates the Nlrp1b Inflammasome. *Cell Chem.*
927 *Biol.* **25**, 262-267.e5 (2018).

928 24. Ventura, A. *et al.* Restoration of p53 function leads to tumour regression *in vivo*. *Nature*
929 **445**, 661–665 (2007).

930 25. Jenster, L.-M. *et al.* P38 kinases mediate NLRP1 inflammasome activation after ribotoxic
931 stress response and virus infection. *J. Exp. Med.* **220**, (2023).

932 26. Zhou, T.-A. *et al.* Thymic macrophages consist of two populations with distinct
933 localization and origin. *eLife* **11**, e75148 (2022).

934 27. Thornley, T. B. *et al.* Fragile TIM-4-expressing tissue resident macrophages are migratory
935 and immunoregulatory. *J. Clin. Invest.* **124**, 3443–3454 (2014).

936 28. Silva, H. M. *et al.* Vasculature-associated fat macrophages readily adapt to inflammatory
937 and metabolic challenges. *J. Exp. Med.* **216**, 786–806 (2019).

938 29. Tran, S. *et al.* Impaired Kupffer Cell Self-Renewal Alters the Liver Response to Lipid
939 Overload during Non-alcoholic Steatohepatitis. *Immunity* **53**, 627-640.e5 (2020).

940 30. Shaw, T. N. *et al.* Tissue-resident macrophages in the intestine are long lived and defined
941 by Tim-4 and CD4 expression. *J. Exp. Med.* **215**, 1507–1518 (2018).

942 31. Louwe, P. A. *et al.* Recruited macrophages that colonize the post-inflammatory
943 peritoneal niche convert into functionally divergent resident cells. *Nat. Commun.* **12**,
944 1770 (2021).

945 32. Huppke, P. *et al.* Very mild cases of Rett syndrome with skewed X inactivation. *J. Med. Genet.* **43**, 814–816 (2006).

947 33. Knudsen, G. P. S. *et al.* Increased skewing of X chromosome inactivation in Rett syndrome patients and their mothers. *Eur. J. Hum. Genet.* **14**, 1189–1194 (2006).

949 34. Zhong, F. L. *et al.* Germline NLRP1 Mutations Cause Skin Inflammatory and Cancer Susceptibility Syndromes via Inflammasome Activation. *Cell* **167**, 187–202.e17 (2016).

951 35. Kravitz, S. N. *et al.* Random allelic expression in the adult human body. *Cell Rep.* **42**, (2023).

953 36. Collazo, C. M. *et al.* Inactivation of LRG-47 and IRG-47 reveals a family of interferon γ -inducible genes with essential, pathogen-specific roles in resistance to infection. *J. Exp. Med.* **194**, 181–187 (2001).

956 37. Mukundan, L. *et al.* PPAR- Δ senses and orchestrates clearance of apoptotic cells to promote tolerance. *Nat. Med.* **15**, 1266–1272 (2009).

958 38. Coombes, J. L. *et al.* A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF- β -and retinoic acid-dependent mechanism. *J. Exp. Med.* **204**, 1757–1764 (2007).

961 39. MacKay, L. K. *et al.* The developmental pathway for CD103+ CD8+ tissue-resident memory T cells of skin. *Nat. Immunol.* **14**, 1294–1301 (2013).

963 40. Liston, P. *et al.* Identification of XAF1 as an antagonist of XIAP anti-caspase activity. *Nat. Cell Biol.* **3**, 128–133 (2001).

965 41. Brydges, S. D. *et al.* Inflammasome-Mediated Disease Animal Models Reveal Roles for Innate but Not Adaptive Immunity. *Immunity* **30**, 875–887 (2009).

967 42. Ewels, P. A. *et al.* The nf-core framework for community-curated bioinformatics pipelines. *Nat. Biotechnol.* **2020** *38*, 276–278 (2020).

969 43. Dobin, A. *et al.* STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21
970 (2013).

971 44. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon: fast and bias-
972 aware quantification of transcript expression using dual-phase inference. *Nat. Methods*
973 (2017) doi:10.1038/nmeth.4197.

974 45. R Core Team. R: The R Project for Statistical Computing. <https://www.r-project.org/>
975 (2019).

976 46. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
977 for RNA-seq data with DESeq2. *Genome Biol.* (2014) doi:10.1186/s13059-014-0550-8.

978 47. Huber, W. *et al.* Orchestrating high-throughput genomic analysis with Bioconductor. *Nat.*
979 *Methods* **2015** **122** **12**, 115–121 (2015).

980 48. Anders, S. & Huber, W. Differential expression analysis for sequence count data. *Genome*
981 *Biol.* **11**, 1–12 (2010).

982 49. Wickham, H. *Elegant Graphics for Data Analysis*. <https://ggplot2-book.org/> (2016).

983 50. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in
984 multidimensional genomic data. *Bioinformatics* **32**, 2847–2849 (2016).

985 51. Heldenbrand, J. R. *et al.* SOFTWARE Open Access Recommendations for performance
986 optimizations when using GATK3.8 and GATK4. *BMC Bioinformatics* (2019)
987 doi:10.1186/s12859-019-3169-7.

988 52. Li, H. & Barrett, J. A statistical framework for SNP calling, mutation discovery, association
989 mapping and population genetical parameter estimation from sequencing data.
990 *Bioinformatics* **27**, 2987–2993 (2011).

991 53. Swietlik, J. J. *et al.* Cell-selective proteomics segregates pancreatic cancer subtypes by
992 extracellular proteins in tumors and circulation. *Nat. Commun.* **14**, 2642 (2023).

993 54. DIA-NN: neural networks and interference correction enable deep proteome coverage in
994 high throughput | *Nature Methods*. <https://www.nature.com/articles/s41592-019-0638-x>.

995

996 55. Cox, J. *et al.* Accurate Proteome-wide Label-free Quantification by Delayed
997 Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. *Mol. Cell.*
998 *Proteomics MCP* **13**, 2513–2526 (2014).

999 56. Tyanova, S. *et al.* The Perseus computational platform for comprehensive analysis of
1000 (prote)omics data. *Nat. Methods* **13**, 731–740 (2016).

1001

