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Abstract 

The tRNA epitranscriptome has been recognized as an important player in mRNA translation 

regulation. tRNA modifications, tRNA expression, and tRNA derived small RNAs (tsRNAs) 

all play important roles in physiology as well as in multiple pathologies. While the decoding 

capacity of tRNA is generally understood, there remains gaps in our knowledge of the role of 

various tRNA processes in fine-tuning translation at the codon level. Specifically, how 

tRNAs regulates codon usage and bias at the tissue or cell levels remain unexplored. Here, 

we analyzed seven tissues from mice for the expression of tRNA modifications, mature 

tRNAs, and tsRNAs. We combined our analysis with Ribo-seq and evaluated various metrics 

for codon usage and optimality between tissues. Our analysis revealed distinct enrichment 

patterns of tRNA modifications in tissues. For example, queuosine and mcm5U modifications 

were most enriched in the brain. In addition, we observed lower levels of tRNAs and tsRNAs 

in the spleen with higher levels of snRNAs and snoRNAs compared to other tissues. Using 

three different metrics for codon analysis; isoacceptors frequencies, total codon frequencies, 

and A-site pausing, we revealed a strong A/T vs G/C ending codons bias in most tissues. The 

brain was the least biased tissue and was unique compared to all other tissues on multiple 

levels. Finally, we observed a strong concordance between the expression of queuosine 

modifications and the optimality of their decoded codons. Our results reveal that tRNA 

modifications are master regulators of translation and codon usage and optimality across 

tissues. 

Keywords: tRNA modifications; Queuosine; Codon optimality; Ribosome profiling; 

translation. 
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Introduction 

The translation of the gene code to functional protein is at the heart of all processes of life. 

This multistep process that starts from transcription all the way to post-translational protein 

modifications is under heavy regulation at each step. At the heart of this process lies mRNA 

translation, which is one of the most complex and heavily regulated processes. mRNA 

modifications and structure(Mao et al., 2019; Mauger et al., 2019), ribosome assembly and 

modifications(Sharma et al., 2018), and tRNA epitranscriptome(Suzuki, 2021) are few of the 

factors that interplay to regulate proper mRNA translation and proteostasis. In recent years, 

there has been an increased interest in the complexity and regulatory roles of tRNA 

epitranscriptome on mRNA translation(Nedialkova and Leidel, 2015; Suzuki, 2021). 

Importantly, alteration of tRNA expression(Goodarzi et al., 2016; Torrent et al., 2018), tRNA 

derived small non-coding RNAs (tsRNAs)(Liu et al., 2022a), and tRNA 

modifications(Rosselló-Tortella et al., 2020) were shown to impact mRNA translation and 

play roles in diseases such as cancer, metabolic disorders, and neuropsychiatric 

disorders(Dedon and Begley, 2022; Goodarzi et al., 2016; Liu et al., 2022a; Matsumura et al., 

2023; Rosselló-Tortella et al., 2020; Zuko et al., 2021). However, our understanding of how 

tRNA epitranscriptome regulates mRNA translation, while substantially improved over the 

past years, is far from complete.  

An interesting aspect of tRNA is that only 48 tRNA anticodons, in humans, decode 64 

codons in the mRNA(Chan and Lowe, 2016). To compensate for this mismatch, non-cognate 

codon recognition at the wobble position, in accordance with Crick’s rules, allows the 

decoding of the codons via the limited available tRNA pool(Crick, 1966; Suzuki, 2021). This 

process is regulated heavily by tRNA modifications at the wobble position, position 

34(Huber et al., 2022; Nedialkova and Leidel, 2015; Suzuki, 2021). For example, tRNA 

modifications can expand or restrict the codon decoding by anticodons(Suzuki, 2021). A 
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famous example is Adenosine-to-Inosine conversion (A-to-I) which expands the recognition 

of NNU codons by ANN anticodons to NNU, NNC, and NNA by INN anticodons(Murphy 

and Ramakrishnan, 2004; Suzuki, 2021). 

While several efforts have elucidated the dynamic nature of tRNA epitranscriptome in 

regulating processes such as the stress response(Endres et al., 2015; Huber et al., 2022; 

Rashad et al., 2020a; Rashad et al., 2021; Torrent et al., 2018) and growth conditions(Deng et 

al., 2015) and how these dynamic changes impact codon recognition(Chan et al., 2012; 

Torrent et al., 2018), much remains to be elucidated on the role of tRNA epitranscriptome in 

regulating physiologic mRNA translation in various tissues and cells and how such regulation 

can impact the function of these tissues. Several groups analyzed tRNA modifications(Guo et 

al., 2023) and tRNA expression(Pinkard et al., 2020; Yu et al., 2022) in mice tissues in order 

to elucidate such regulation. While these efforts did reveal important phenomena on tissue 

specific expression of tRNA epitranscriptome and its potential links to mRNA translation, 

they were limited in focusing on only one aspect of tRNA epitranscriptome at a time or not 

providing direct correlation with mRNA translation and codon decoding. In addition, the 

codon metrics used for the analysis in some works still require revisiting.  

Here, we analyzed tRNA epitranscriptome (modifications, mature tRNA expression, and 

tsRNAs) from 7 mouse tissues using various methods [Figure 1a]. We combined our analysis 

with Ribo-seq analysis and applied various codon metrics to our dataset to reveal that tRNA 

modifications are master regulators of codon usage and optimality in various tissues. Our 

work also reveals interesting differences in the expression of tRNA modifications, tsRNAs, 

and other non-coding small RNAs between tissues that can be traced back to specific 

functional or physiological aspects of said tissues.   
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Results 

⮚ Tissue specific tRNA modification patterns  

We first began by exploring the tRNA modifications landscape in each of the 7 tissues 

used in this study [Figure 1a]. Using high throughput LC-MS/MS, we were able to 

detect 45 known mammalian modifications that occur in the tRNA or in other small 

non-coding RNAs (such as m6A and m66A(Oerum et al., 2021; Suzuki, 2021)) 

[Supplementary figure 1a, supplementary table 1](Suzuki, 2021). Our results revealed 

significant tissue specific enrichment of certain modifications as well as tissue and 

modification clustering patterns [Figure 1b, supplementary table 2]. In addition, a 

cluster of related modifications, mcm5U, mcm5Um, and ncm5Um, which are 

regulated by the same enzyme system(Suzuki, 2021; van den Born et al., 2011) were 

also most enriched in the brain as well as queuosine (tRNA-Q) and its derivative 

mannosyl queuosine (manQ) but not its galactosyl derivative (galQ). We also 

observed that f5C and f5Cm, which exist in mitochondrial tRNA-Met and cytosolic 

tRNA-LeuCAA (Kawarada et al., 2017) were most enriched in the heart and muscle. On the 

other hand, the liver and spleen had lower levels of almost all modifications, albeit the 

spleen showed an enrichment in a specific set of modifications that include 2’O-ribose 

modified nucleotides such as Cm, Gm, and Am, as well as several modifications not 

known to occur in the tRNA such as m66A and m6Am(Oerum et al., 2021; Suzuki, 

2021) but occur in other small non-coding RNAs that elute with the tRNA enriched 

fraction as per the method used herein.  

Next, we directed our attention to how tissues cluster and correlate with each other, 

which can give an idea about the fine-tuning of tRNA modifications towards tissue 

specific functions. To that end, we conducted Pearson’s correlation [Figure 1c] and 

partial least square regression discriminant analysis (PLS-DA) [Figure 1d] to 
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understand such relations between tissues. Peason’s correlation revealed that the brain 

had higher correlation with the kidney while it had a negative correlation with the 

spleen and lungs and no correlation with the liver [Figure 1c]. PLS-DA analysis 

[Figure 1d] confirmed the relationship between tissues, revealing that the brain 

clusters closely with the kidney while the lung, spleen, muscles, and heart formed 

another cluster. Further analysis of the distribution of modifications in the PLS-DA 

plot [Supplementary figure 1b], revealed how clusters of modifications correlated 

with tissue clusters. In addition, VIP analysis [Supplementary figure 1c] revealed 

important contributors to each tissue cluster expression pattern. For example, m66A 

contributed to the Spleen and Lung clustering patterns while tRNA-Q contributed to 

the brain followed by kidneys as discussed above. In addition to tissue clustering, we 

analyzed the correlation between tRNA modifications [Figure 1e]. Our analysis 

revealed clusters of modifications that follow the same expression patterns. For 

example, methylation modifications, such as m1A, m5C, m3C, etc., generally 

clustered together, while 2’O-ribose modifications clustered together and so on.  

⮚ Tissue specific tRNA and anticodon patterns. 

In this step, we directed our attention to the expression of mature tRNAs and their 

respective anticodons as well as other small non-coding RNAs, in particular; tsRNAs. 

We utilized ARM-tRNA-seq(Cozen et al., 2015) with few modifications, which 

revealed tissue specific variations in the expression of various non-coding RNAs. For 

example, the spleen showed very low levels of tRNAs compared to other tissues, 

while it has significantly higher snRNAs and snoRNAs [Figure 2a]. This pattern was 

also evident when RNA samples were analyzed using Bioanalyzer [Supplementary 

figure 2]. The lung also showed higher levels of snRNAs. This pattern can explain the 

enrichment of non-tRNA modifications in the spleen and lung compared to other 
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tissues. In addition, mitochondrial tRNAs (Mt_tRNA) were expressed in the heart at 

much higher levels, consistent with the enrichment of mitochondria related tRNA 

modifications observed above. We also observed notable differences in the ratios of 

tRNAs pertaining to particular amino acids within each tissue. Notably, 

Selenocysteine (SeC) representation was higher in spleen and lung, which can be 

related to the known immune functions of SeC and selenium intake27. Next, we 

collapsed the mature tRNA counts by anticodon and calculated the z-scores for the 

expression of different tRNAs across tissues [Figure 2d] and within each tissue 

[Figure 2c]. As reported previously(Pinkard et al., 2020), the relative expression of 

different tRNA isodecoders within each tissue were relatively stable. However, when 

comparing the relative expression of each isodecoder across tissues [Figure 2d] 

differences start to appear. Indeed, given the low expression of tRNAs in the spleen, 

almost all isodecoders were expressed at lower levels compared to other tissues, 

except for SerCGA. Further, despite the representation of SeC amino acid related 

counts in the spleen and lungs [Figure 2b], the isodecoder for SeC (SeCTCA) was most 

expressed in the kidney. This might be attributed to how the tRAX software used in 

this analysis attributes the amino acid counts where tsRNAs are also incorporated in 

such counting process(Li et al., 2022). We also analyzed the expression of tRNA-Q 

modified tRNAs. AspGTC was most enriched in the kidneys, while AsnGTT was equally 

enriched in both the Kidney and brain. On the other hand, HisGTG was equally 

expressed across tissues except in lung and spleen where it was expressed at lower 

levels. Paradoxically, TyrGTA was most expressed in the liver and underrepresented in 

the brain. This can be explained, however, by the lower expressed of galactosyl-

queuosine modification in the brain which occurs in TyrGTA (Suzuki, 2021). Pearson’s 

correlation analysis [Figure 2e] revealed a different pattern of clustering compared to 
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what was observed at the level of tRNA modifications. For example, the brain had 

modest positive correlation with the heart and liver, while it correlated negatively 

with the kidneys. These changes, however, remain subtle, as when analyzing the 

correlation between tissues using normalized read counts, there is near perfect 

correlation [Figure 2f].  

While the isoacceptors cytosolic tRNAs expression were nearly uniform across 

tissues, mitochondrial tRNAs revealed a difference picture, where the heart showed 

much higher normalized read counts compared to all other tissues for almost all 

detected Mt-tRNAs with only a few exceptions [Supplementary figures 3a and 3b] 

and tissue specific clustering was observed [Supplementary figure 3c].  

⮚ Tissue specific expression of tsRNAs 

We next directed our attention to another layer in the tRNA epitranscriptome. We 

evaluated the expression of various tsRNAs subtypes, namely tRNA halves (tiRNAs) 

and tRNA derived fragments (tRFs) which are processed via different enzymes and 

have different modes of action(Rashad et al., 2020b) [Figure 3a]. Analysis of the 

expression of various tsRNAs (tiRNAs and tRFs) revealed that the kidneys have the 

highest expression level of tsRNAs while the spleen had the lowest [Figure 3b]. 

However, the ratios of each subtype of tsRNAs within each tissue were comparable, 

with the bulk of expression being attributed to 3’tRFs followed by i-tRFs and tRF-1 

[Figure 3c]. tiRNAs and 5’tRFs constituted a small fraction of the reads. Next, we 

examined the expression of 3’tRFs [Figure 3d], i-tRFs [Supplementary figure 4a], and 

tRF-1 [Supplementary figure 4b]. In all three subtypes, significant clustering patterns 

were observed between tissues as well as unique tsRNAs clusters enriched in various 

tissues were observed, with the kidney standing out with multiple unique tRFs 

clusters. Pearson’s correlation across all three datasets revealed that most tissues had 
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moderate to excellent positive correlations [Figure 3e-g]. However, the spleen was 

standing out in all comparisons. All these data pointed out different clustering patterns 

compared to those observed at the levels of tRNA modifications and tRNA 

expression. This was confirmed when we conducted PLS-DA analysis using the entire 

tsRNAs dataset [Supplementary figure 5], which revealed a unique cluster for the 

kidneys as well as another cluster for the spleen and lung while the heart, brain, and 

liver clusters overlapped.  

Given that unique clustering patterns were observed, we asked whether the expression 

of tsRNAs in different tissues is derived by certain motifs or lead to certain motif 

enrichments that can give clues as to the function of such tsRNAs. First, we started by 

analyzing the top 20 3’tRFs, i-tRFs, and tRF-1s, by normalized read counts, in all 

tissues. 3’tRFs showed enrichment of motifs containing TTCG in all tissues except 

the spleen, which had unique motifs [Figure 4]. Moreover, the lung and the brain also 

had unique motifs in their 3’tRFs that were not evident in other tissues. Analysis of i-

tRF motifs revealed a different set of motif enrichment in all tissues, which can reflect 

functional differences between tsRNAs, and also, more motif sequence diversity as to 

what was observed in 3’tRFs [Supplementary figure 6]. Certain motif sequences were 

observed in more than one tissues, such as the motifs YWGGATTC in kidney and 

YWGRATTC in liver or TAGGATTC in both lungs and muscle which can reflect 

functional similarities between these tissues or common shared regulatory processes. 

tRF-1, on the other hand, had very strong motif sequence similarity between tissues, 

with TCGA sequence being present in all top motifs in all tissues [Supplementary 

figure 7].  

⮚ Unique translational patterns observed in various tissues. 

To understand the impact of tRNA epitranscriptome on tissues specific translational 
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patterns, we conducted Ribosome profiling (Ribo-seq) on each tissue. We were 

mainly interested in observing the clustering patterns at the translational level as well 

as conducting codon analytics to corroborate these data with our observations at the 

tRNA level. We used various ways to cluster tissues at the translational level; 

heatmap clustering [Figure 5a, supplementary figure 8a], tSNE [Figure 5b], and Gene 

level UMAP [Figure 5c], all revealed unique clustering of the brain vs other tissues. It 

was also evident that the clustering patterns observed at the translational level could 

faithfully replicate those observed at the tRNA modifications level [Figures 1c and 

1d], where the brain was somewhat unique but closer to kidneys and liver, while the 

spleen and lung clustered closely together as well as the heart and muscles. We next 

analyzed the differentially translated genes (DTGs) in each tissue versus all the others 

[Figure 5d] and observed various gene translational patterns. The brain showed the 

largest number of significant DTGs versus other tissues followed by the liver and 

heart. Indeed, this was also evident when we conducted detailed DTG analysis for 

tissue pairs [Supplementary table 3]. Using the DTGS from each tissue versus all 

others, we conducted gene ontology biological processes (GOBP) pathway analysis, 

which showed using clustering for each tissue in terms of enriched pathways, with 

significant overlaps between closely related tissues (Heart and muscle or lung and 

spleen) [Supplementary figure 8b]. In addition, the activation matrix of GOBP 

pathways showed unique pathway enrichment that also followed the clustering 

patterns of tissues. Moreover, pathways related to mitochondrial function and muscle 

contraction were enriched in the heart and muscles, in agreement with the enrichment 

of f5C and f5Cm modifications and Mt-tRNAs for example. Finally, we evaluated 

whether the clustering and gene translation patterns in different tissues can be used to 

accurately annotate such tissues [Supplementary figure 9]. We observed a large 
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degree of agreement between the annotated tissues and the actual tissues analyzed, 

indicating the robustness of our sequencing in mapping, and discriminating the tissues 

and their translational patterns. We further explored our Ribo-seq data for the 

expression of known tRNA and small RNA modifying enzymes, with a focus on 

tRNA-Q and mcm5U related enzymes(Suzuki, 2021) [Supplementary figure 10a]. 

While we observed differences in expression across tissues, clustering, enzyme 

expression, as well as PLS-DA analysis did not correlate with what we observed at 

the level of tRNA modifications themselves [Supplementary figure 10b], indicating 

that the changes observed at the modifications levels are not mainly driven by 

differences in enzyme expression between tissues. 

⮚ Tissue codon usage and optimality is governed by tRNA modifications levels.  

tRNA modifications are known to drive mRNA translation by altering codon 

recognition, usage, and optimality(Chan et al., 2012; Cirzi et al., 2023; Suzuki, 

2021). To elucidate the potential for such regulatory fine-tuning on tissue specific 

mRNA translation, we analyzed three metrics for codon analysis; isoacceptors codon 

frequency (which measures the ratio of expression between codons belonging to the 

same amino acids, i.e., isoacceptors), total codon frequency (which measures the 

ratio of expression between each codon and all other codons, i.e., mRNA codon 

composition)(Rashad et al., 2022; Tumu et al., 2012), and A-site pausing (which 

measures the ribosome stalling at each codon)(Liu et al., 2020) [Supplementary 

figure 11]. 

First, we started by analyzing the codon isoacceptors frequencies in each tissue using 

the top and bottom 200 expressed genes by normalized read counts [Figure 6]. 

Heatmap clustering revealed a distinctive A/T vs G/C ending codon bias with few 

exceptions [Figure 6a, supplementary figure 12a]. In addition, the liver, lung, kidney, 
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spleen, and muscle showed strong underusage of the G/C ending codons given the 

enrichment of such codons in the downregulated genes and relative underusage in the 

upregulated genes. On the other hand, the brain and heart were not strongly biased in 

that sense. Pearson’s correlation coefficient analysis was done on the isoacceptors 

frequencies of the top and bottom 200 genes separately [Figure 6b]. It was evident 

that the differences in tissues were mainly apparent in the downregulated genes, with 

the brain being furthest from all tissues except the heart. Further, PLS-DA analysis 

revealed unique clustering patterns reminiscent of what was observed at the level of 

tRNA modifications and translation, with few exceptions. For example, the spleen 

and lung clustered together and were far from the brain [Figure 6c, supplementary 

figure 12b]. Based on the impression from our data that the brain is unique compared 

to other tissues, we focused our attention on 2 tRNA modifications clusters which 

were highly expressed in the brain; tRNA-Q and its derivatives mannosyl-queuosine 

(manQ) and galactosyl-queuosine (gal-Q) and the mcm5U cluster and its related 

modifications and their corresponding codons. First, we explored the usage of Q-

decoded codons and their correlation with the expression of tRNA-Q [Figure 6d]. 

tRNA-Q decodes NAC codons(Huber et al., 2022), which includes Asn-AAC, Asp-

GAC, His-CAC, and Tyr-TAC. manQ decodes Asp-GAC while galQ decodes Tyr-

TAC. We observed a positive correlation between Q-codons and Q modifications, 

except for Tyr-TAC. It is notable that Q and manQ were enriched in the brain but 

galQ did not show such enrichment [Figure 1b]. In addition, Tyr-TAC did not show a 

strong bias in our analysis as compared to other Q-codons [Figure 6a]. Next, we 

analyzed the correlation between Q-codons and anticodons [Figure 6e], which 

revealed a weaker correlation that what was observed at the modifications level as 

well as some negative correlation. It is also notable to mention that the Q-codons, 
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NAC codons, were negatively correlated with their isoacceptors in our analysis, 

signifying strong codon bias and selection [Figure 6f]. On the other hand, for 

mcm5U and mcm5s2U modifications, which are considered to be related to NAA 

codons recognition, mcm5U showed a positive correlation trend with GlnCAA and 

LysAAA, while mcm5s2U showed a negative correlation trend with LysAAA 

[Figure 6g], and the correlation coefficient for the other NAA codons was generally 

low, compared to Q codon. mcm5U codons also did not show strong correlation with 

their anticodons [Figure 6h], however, the NAA and their isoacceptors were showing 

clear bias in their usage [Figure 6i]. To further elucidate these clustering patterns, we 

analyzed the Q and mcm5U codons correlation with all modifications and anticodons 

detected in our analysis [Supplementary figure 13]. Indeed, distinct clustering 

patterns at each level were observed for Q codons [Supplementary figure 13a-c], 

while mcm5U codons showed weaker clustering and paradoxical correlations in 

some instances [Supplementary figure 13d-f]. These clustering patterns signifies that 

not only the usage of these codons are driven by their modifications, but the global 

translational and epitranscriptional dynamics also plays important role in dictating 

codon usage and biases. 

Next, we repeated our analysis at the level of total codon usage, which can give us 

clues as to the mRNA amino acids and sequence preferences [Figure 7]. In this 

analysis, we observed strong bias in all tissues between codon frequencies in the top 

and bottom expressed mRNAs [Figure 7a], but with weaker A/T vs G/C ending 

codon bias. Differences between tissues were apparent in the bottom 200 genes and 

not the top 200 genes when we conducted Pearson’s correlation coefficient analysis 

[Figure 7b]. In addition, PLS-DA analysis, while the tissues showed different 

clustering patterns compared to isoacceptors frequencies, still showed the brain to be 
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unique while the lung and spleen clustered together [Figure 7c and supplementary 

figure 14]. The correlation between Q-codons and mcm5U-codons with their 

respective modifications or anticodons was weaker or disappeared altogether, and 

there was no bias observed between isoacceptors in their total codon frequencies 

counts [Figure 7d-i].  

Finally, we examined the ribosomal A-site pausing, which gives an indicator of the 

speed of decoding and codon optimality [Figure 8]. Q-codons, except for Asp-GAC, 

were readily decoded in the brain compared to other tissues, indicating increased 

optimality [Figure 8a and b]. While mcm5U codons showed variable optimality, with 

NAA mcm5U codons being readily decoded, while Gly-GGA and Ala-GCA having 

variable optimality or being suboptimal altogether [Figure 8a and c]. Pearson’s 

correlation coefficient between tissues using the A-site pausing revealed good 

positive correlation between all tissues, in terms of their comparison to the brain, 

except for the liver and lung, which had modest negative correlation [Figure 8d]. 

This can also be an indicator of the uniqueness of codon optimality in the brain 

versus all other tissues.  
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⮚ Discussion 

In this work we present a comprehensive analysis of the tRNA epitranscriptome and identify 

its role in regulating codon usage and optimality across tissues. Importantly, our work 

highlights tRNA modifications as master regulators of codon usage across tissues. While 

several previous works have attempted to tackle this subject from various angles(Guo et al., 

2023; Pinkard et al., 2020; Yu et al., 2022), our work represents the first comprehensive 

analysis of the various layers of the tRNA epitranscriptome and their direct correlation to 

translatomes to the best of our knowledge.  

At the tRNA modification levels, previous works by Guo et al(Guo et al., 2023) showed 

tissue specific enrichment levels but did not include the analysis of many modifications that 

are of great importance in fine-tuning codon optimality in tissues, such as tRNA queuosine. 

Further, previous works did not directly correlate tRNA epitranscriptome with codon 

decoding and translation(Guo et al., 2023; Pinkard et al., 2020) or used limited metrics for 

codon analysis(Yu et al., 2022). Here, we directly analyzed the impact of tRNA 

epitranscriptome on mRNA translation and codon decoding using multiple metrics. We 

observed that tRNA modifications play a critical and clear role in dictating codon optimality 

across tissues, thus positioning them as master regulators of tissue specific mRNA 

translation. We also observed that tRNA modifications impacted codon usage and bias on 

two metrics: isoacceptors frequencies, and ribosome A-site pausing, both of which reflects 

codon bias and optimality. However, such strong correlation between modifications and 

codons was significantly diminished when total codon frequencies were considered. Total 

codon frequencies reflect mRNA sequence preferences, and not codon bias per se. This 

observation could be attributed to the fact that the modifications focused on herein, queuosine 

and its derivatives and mcm5U and its derivatives, both regulate codon bias via impacting 

isoacceptors codons decoding fidelity(Endres et al., 2015; Suzuki, 2021; Tuorto et al., 2018). 
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tRNA modifications have been recognized as important players in many diseases and 

conditions(Dedon and Begley, 2022; Delaunay et al., 2022; Rosselló-Tortella et al., 2020). 

However, the cell-specific physiological roles are not explored for most known 

modifications. In our work, we identified tRNA queuosine to be preferentially enriched in the 

brain and drive NAC codon recognition. Queuosine modifications were shown to play 

important role in regulating cellular response to arsenite induced oxidative stress and 

mitochondrial dysfunction(Huber et al., 2022), as well as playing a role in hippocampal 

neurons function and cognition(Cirzi et al., 2023). Interestingly, despite the reported 

importance of queuosine in codon decoding in vitro(Tuorto et al., 2018), Knockout mice 

were phenotypically normal apart from cognitive and memory dysfunction(Cirzi et al., 2023). 

In addition, the presence of a neural only phenotype indicates the importance of tRNA-Q in 

brain function, in line with previous works that showed that queuine, the precursor for 

queuosine, is protective against neurodegenerative diseases(Richard et al., 2021) and our 

observation of queuosine enrichment in the brain. This neural-specific phenotype sheds light 

as well on tissue and cell specific physiological functions of tRNA modifications that are 

rarely addressed. In the case of queuosine, it appears that the enrichment in the brain is vital 

for proper neuronal functioning, evident by Cirzi et al work(Cirzi et al., 2023). Such 

observations highlight the importance of understanding cell and tissue specific dependencies 

on tRNA modifications for proper translation in understanding tissue development, 

physiology, and pathologies. 

Another important observation in our work was the significant enrichment of f5C and f5Cm 

in the heart and muscles, two modifications with reported links to mitochondrial 

function(Delaunay et al., 2022; Kawarada et al., 2017). The heart and muscles, also, have 

higher mitochondrial content that other tissues(Fernandez-Vizarra et al., 2011). This 

correlation brings about an interesting possibility of using f5C and f5Cm tRNA levels as 
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biomarkers for mitochondrial content and bioenergetics at the tissue and cell levels. We also 

observed an interesting trend of enrichment of a cluster of modifications in the spleen, 

namely m6A, m6Am, m227G, and 2’O-ribose methylations. m6A, m6Am, and m227G were 

not described previously in the tRNA(Suzuki, 2021), but do exist in other RNAs that co-elute 

in the small RNA fractions extracted. Further, this cluster of modifications was also enriched 

in the lung, making a compelling case of immune linked function of these 

modifications(Ardain et al., 2020). It is notable to mention that other modifications, such as 

m1A, were reported to play important roles in immune cell function(Liu et al., 2022b). m1A 

was also enriched in the lungs as well as the heart followed by the spleen, in agreement with 

these notions. Indeed, both the lung and spleen had lower tRNA levels and higher snRNA 

and other small non-coding RNA levels (such as rsRNAs)(Shi et al., 2021). This opens the 

possibility of using small RNA modifications levels as a probe for the relative content of 

various small non-coding RNAs in various tissues and cell types in physiology and 

pathology. It is imperative to note that methods that isolate only mature tRNA for analysis 

would not capture such phenomena, which highlights the importance of various steps in the 

analytical process of RNA modifications in shaping the final results and conclusions. It is 

notable that many of the observed modifications are not studied in tissue or cell specific 

physiologic or pathologic contexts, and thus we cannot extrapolate our findings further. 

Another interesting observation was the near uniformity of tRNA isoacceptors (anticodon) 

expression across tissues, which was previously reported(Pinkard et al., 2020). While it was 

shown previously by Pinkard et al(Pinkard et al., 2020) that there are tissue specific 

isodecoder tRNA level differences, tRNA isoacceptors expression were very stable across 

tissues. This agreement between our work and Pinkard et al(Pinkard et al., 2020) work 

despite using very different tRNA sequencing techniques validates their data greatly, as well 

as ours. Importantly, while tRNA isoacceptors were shown to dynamically change in 
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pathologies such as oxidative stress(Torrent et al., 2018) and cancer(Goodarzi et al., 2016) to 

impact codon decoding, it appears that this role is more or less stable in physiology. This also 

highlights the role of tRNA modifications as the main regulator of codon usage and 

optimality in physiological states across tissues and cells.  

While our analysis focused heavily on tRNA modifications and their impact on codon 

optimality, we were also able to extract information on tsRNAs, which play important 

epitranscriptional roles and have been recognized as regulators of many diseases and 

processes(Kuhle et al., 2023; Rashad et al., 2020b). Here, we were interested in the 

expression of different tsRNAs in various tissues and also what regulates such expression. 

We observed various tissue specific enrichment patterns in multiple tRF subtypes. 

Importantly, we report for the first-time tissue specific motif enrichment in multiple tRF 

subtypes that was not previously reported to the best of our knowledge. Such motif 

enrichment was observed previously to regulate microRNA export via extracellular 

vesicles(Garcia-Martin et al., 2022). Indeed, tRFs are known to exist in the blood and to be 

exported from cells(Li et al., 2022). In our analysis, we identified tRF subtype specific 

motifs. We also identified that different tRFs show different patterns of motif sequence 

diversity between tissues. While i-tRF showed strong motif diversity between tissues, tRF-1, 

which is generated from pre-tRNAs(Zhang et al., 2020), exhibited strong motif similarity. 

tRFs were previously shown to interact with ribosomes and proteins as well as acting via 

microRNA-like mechanisms to regulate translation(Gong et al., 2023). Whether such the 

discovered tRFs motifs play a role in their functions, such as in regulating their export or 

interaction with proteins, remain to be explored.  

Codon usage and optimality have been a subject of immense interest, given their role in 

regulating many molecular processes such as mRNA stability and decay(Bae and Coller, 

2022; Presnyak et al., 2015), ribosome decoding fidelity(Buschauer et al., 2020), and mRNA 
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translation efficiency(Hanson and Coller, 2018; Nedialkova and Leidel, 2015). Previous 

works revealed a plasticity of codon optimality that adapts to cell states. For example, during 

oxidative stress, tRNA modifications and tRNA expression dynamically change to alter 

codon optimality and drive translation of antioxidant proteins(Huber et al., 2022; Torrent et 

al., 2018). This also occurs during cell proliferation and differentiation(Bornelov et al., 2019; 

Guimaraes et al., 2020). Such findings made it more likely that tissue-specific codon 

optimality can regulate mRNA translation and local proteostasis. Such idea was challenged 

previously in Drosophila tissues by Allen et al(Allen et al., 2022). In their work, Allen et 

al(Allen et al., 2022) used codon mutated probes to evaluate the expression of rare codons in 

various tissues. In their work, they found that the testis and brain are capable of expressing 

rare codons compared to other tissues. Attempts to elucidate tissue-specific codon optimality 

in mammalian tissues have been limited to date, and mostly relied on published datasets(Sun 

and Zhang, 2022) and public databases(Benisty et al., 2023), thus the analysis was usually 

limited by the data available. For example, no formal correlation between tRNA pools or 

tRNA modifications was made to explain codon optimality patterns or specific phenomena 

observed at the codon level in such published works(Benisty et al., 2023; Sun and Zhang, 

2022), especially that the reliance on tRNA genes does not reflect actual tRNA transcript 

expression(Chan and Lowe, 2016). In addition, the reliance on codon adaptation index (CAI) 

or tRNA adaptation index (tAI) might also not be ideal in such contexts where tissue specific 

metrics are needed, given that these two metrics depend on genomic information and not 

actual mRNA or tRNA levels(Sabi et al., 2017; Sharp and Li, 1987). This work presented 

herein represents the first analysis of mammalian codon usage and optimality that relies on 

tissue specific translational levels to deduce codon optimality. While many important works 

have shown the role of tRNA modifications in regulating codon optimality and the decoding 

fidelity of ribosomes(Chan et al., 2012; Nedialkova and Leidel, 2015; Rossello-Tortella et al., 
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2020; Suzuki, 2021; Tuorto et al., 2018), this work represents evidence of such regulation at 

the tissue level in mammals. Our work, supported by previous work from Pinkard et 

al(Pinkard et al., 2020), also shows that actual tRNA transcript expression does not appear to 

play important roles in driving codon optimality, given the uniformity across tissues. In our 

work, we also show an important feature of the strong correlation between tRNA 

modifications and their decoded codons at the level of isoacceptors frequencies and A-site 

pausing, while this correlation weakens when we analyzed total codon frequencies across 

mRNAs. This further indicates that tRNA modifications drive mRNA translation via 

synonymous codon usage and bias.  

Despite our best efforts to provide a comprehensive analysis of tRNA epitranscriptome and 

tissue-specific translatomes, there are certain limitations that should be taken into 

consideration when viewing this work. Firstly, the impact of tRNA modifications on tissue 

specific codon recognition needs further validation. While knockout mouse models for 

example can be used to systematically study such links, as done in previous works(Cirzi et 

al., 2023; Endres et al., 2015), there are many modifications that were not studied in cell 

specific context. Secondly, an issue that wasn’t discussed herein is the potential role of 

tsRNAs motifs in regulating their function. However, we believe that this process should be 

addressed separately. Thirdly, we conducted our analysis using only male mice at a certain 

age, thus sex specific differences, which were reported previously to have an impact on small 

non-coding RNAs expression(Isakova et al., 2020), were not addressed. Nonetheless, we 

contended with such a limitation to focus our work on the correlation between tRNA 

epitranscriptome and codon usage and bias. 

In summary, our study offers a comprehensive view of the tRNA epitranscriptome and 

translatome across various mouse tissues. The identification of tissue-specific modification 

patterns, their potential functional roles, and their impact on codon bias provide valuable 
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insights into the intricate regulatory mechanisms governing translation in response to 

environmental cues. These findings significantly contribute to our understanding of the 

complex interplay between tRNA modifications, tRNA pools, codon recognition, and 

translation efficiency in a tissue-specific context. Future works should aim to address the 

impact of sex and age on the reported phenomena as well as to try and replicate such findings 

in higher mammals or humans if possible.  
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Methods 

Animals and sample collection, RNA isolation 

Eight-week-old male C57BL/6J mice purchased from Kumagai Sigeyasu Shoten (Sendai, 

Japan) were maintained on a 12-hour light-dark cycle. For LC-MS/MS analysis, four mice 

were perfused with ice-cold PBS and tissues (brain, lung, heart, liver, spleen, kidney, and 

muscle) were extracted immediately after perfusion and flash-freeze until RNA extraction. 

Tissues were homogenized with QIAzol  (QIAGEN, Hilden, Germany, catalog # 79306) and 

isolate small RNA using Purelink miRNA Isolation Kit (Thermo Fisher,  catalog # K157001). 

For small RNA sequencing and Ribosome profiling, three mice were perfused using ice-cold 

phosphate buffered saline with 100 µg/ml cycloheximide (Sigma, MO, catalog # 01810). 

Tissues were extracted immediately after perfusion and flash-freeze until RNA extraction. 

Tissues were homogenized with lysis buffer (20 mM Tris-Cl pH 7.5, 150 mM NaCl, 5 mM 

MgCl2, 1 mM dithiothreitol (Sigma, catalog # D9779), 100 µg/ml Cycloheximide, and 1% 

Triton X-100) and centrifuge at 13000 x g at 4°C for 15 min. For small RNA sequencing, 100 

µl of supernatants were transferred to fresh tubes, and then 900 µl of QIAzol was added. 

Subsequently, small RNA was isolated using Purelink miRNA Isolation Kit, according to the 

manufacture’s protocol. For Ribosome profiling, 500 µl of supernatant was kept for 

downstream procedure. All animal experiments were conducted according to the procedures 

approved by the animal care facility of Tohoku University and according to the ARRIVE 

(Animal Research: Reporting In Vivo Experiments) guidelines. Ethical board approval was 

acquired prior to the commencement of this project.  

Small RNA quality control 
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Nanodrop one was used to analyze RNA concentration and purity. RNA integrity was 

analyzed using Bioanalyzer 2100 and the Agilent bioanalyzer small RNA kit (Agilent, 

#5067-1548). Example bioanalyzer traces are provided in supplementary figure 2. 

Quantitative analysis of tRNA modifications by Mass spectrometry 

Quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of 

RNA modifications was done as reported previously with modifications(Su et al., 2014). 

Small RNA enriched RNA fractions, which contained around 90% mature tRNA, were 

digested for 6 hours at 37°C using a digestion mixture of: MgCl2 2.5mM, Tris (pH 8) 5mM, 

Coformycin 0.1μg/ml, deferoxamine 0.1mM, Butylated hydroxytoluene 0.1mM, Benzonase 

0.25U/μl, Calf intestinal alkaline phosphatase (CIAP) 0.1U/μl, and Phosphodiesterase I (PDE 

I), 0.003U/μl. Samples and standards were injected into Waters BEH C18 column (50 × 2.1 

mm, 1.7 µm) coupled to an Agilent 1290 HPLC system and an Agilent 6495 triple-quad mass 

spectrometer. The LC system was conducted at 25 °C and a flow rate of 0.3 mL/min. Buffer 

A was composed of 0.02% formic acid (FA) in DDW. Buffer B was composed of 0.02% FA 

in 70% Acetonitrile. The buffer gradient is shown in supplementary table 4. The UPLC 

column was coupled to an Agilent 6495 triple quad mass spectrometer with an electrospray 

ionization source in positive mode with the following parameters: gas temperature, 200 °C; 

gas flow, 11 L/min; nebulizer, 20 psi; sheath gas temperature, 300 °C; sheath gas flow, 12 

L/min; capillary voltage, 3000 V; nozzle voltage. Dynamic MRM was used to detect 

modifications using transitions and collision energies listed in supplementary table 5. Peak 

areas were normalized to the sum of UV signal of the canonical nucleotides (U, C, G, and A) 

and expressed as area ration. Four biological replicates were used per group. 

Small RNA sequencing 
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We used Arm-seq method as described previously(Cozen et al., 2015) with some 

modifications. Briefly, to remove 3’ conjugated amino acids, 500 ng RNA sample was 

deacylated in 0.1 M pH 9.0  Tris-HCl buffer at 37℃ for 1 hour. Deacylated RNA was treated 

with AlkB demethylase (rtStar tRNA-optimized First-Strand cDNA Synthesis Kit, ArrayStar, 

catalog # AS-FS-004) at ambient temperature for 2 hours to reduce tRNA methylation. RNA 

was purified using Zymo Directzol RNA micro kit (Zymo reserch, catalog # R2060) and end 

repaired with T4 Polynucleotide Kinase (T4 PNK; NEB, catalog # M0201) at 37°C for 30 

min. All treated RNA samples were used for library preparation using NEBNext Multiplex 

Small RNA Library Prep Set for Illumina (NEB catalog # E7300/7580) according to the 

manufacturer protocol. Size selection of amplified cDNA library was performed using 6% 

TBE PAGE in a range of 140 to 210 bp (microRNA to mature tRNA). Library concentration 

and quality were assessed by Bioanalyzer 2100 using DNA 1000 chip (Agilent, #5067-1504). 

All the samples were pooled and sequenced by Illumina Hiseq-X ten instrument in a pair-end, 

150 bp read. Three biological replicates were used per group. 

Small RNA sequencing data analysis 

Small RNA libraries were first processed by tRAX software(Li et al., 2022) to perform 

adaptor trimming and alignment to mouse tRNA reference (mm10 genome) as well as quality 

control. tRAX was used to analyze mature tRNA and anticodons expression. For tsRNAs, 

trimmed fastq files were analyzed using MINTmap software using MINTbase database 

reference(Pliatsika et al., 2016). tsRNAs were divided into tRNA halves (tiRNAs) and tRNA 

derived fragments (tRFs) as per naming conventions [Figure 3a]. tsRNAs reads were 

normalized to all the reads in each sample and the normalized reads were used for 

downstream analysis. Motif analysis was conducted on tRFs using Meme-suite(Bailey et al., 

2015) with the parameters: ZOOPS, minimum width = 6, maximum width = 8, minimum 

sites = 2, and maximum number of motifs = 3.  
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Ribosome profiling 

Ribosome profiling was performed as we previously reported(Zhou et al., 2023), which was 

based on another protocol with few modifications(Vu et al., 2017). Ribosome foot-printing 

was performed on samples collected as mentioned above by adding 1.25U/μl RNase I (NEB 

Catalog# M0243L) to 500μL clarified lysate and incubating samples on rotator mixer for 

45min at room temperature. TRIzol reagent was added, and RNA extracted using Qiagen 

miRNeasy kit. Ribosome protected fragments (RPFs) were selected by isolating RNA 

fragments of 27-35 nucleotides (nt) using TBE-Urea gel. rRNA depletion was conducted 

using NEBNext rRNA depletion kit v2 (NEB, # E7400L) followed by end-repair using T4 

PNK after purification of the rRNA depleted samples using zymo oligo clean and 

concentrator kit (Zymo research, # D4060). The preparation of sequencing libraries for 

ribosome profiling was conducted via the NEBNext Multiplex Small RNA Library Prep kit 

for Illumina according to the manufacturer’s protocol (NEB, # E7300S). Pair-end sequencing 

reads of size 150bp were produced for Ribo-seq on the Ilumina Hiseq X-ten system. Three 

biological replicates were prepared per group.  

Ribosome profiling data analysis 

Quality control for Raw Fastq was performed using FastQC. Next, adapter trimming and 

collapsing the pair-end reads into one was done using Seqprep. Trimmomatic(Bolger et al., 

2014) was used to further clean low quality reads. Bowtie2(Langmead and Salzberg, 2012) was 

used to align the reads to a reference of rRNA and tRNA genes (mm10) to remove 

contaminants. After that, reads were aligned to the genome (mm10 downloaded from UCSC), 

reads counted using FeatureCounts(Liao et al., 2014), and differential expression conducted 

using Limma(Ritchie et al., 2015). Omics playgroud(Akhmedov et al., 2020) was used for 

Ribo-seq data visualization and clustering as well as read normalization. Of note, we also used 
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Stringtie(Pertea et al., 2016) to generate TPKM normalized read counts which were 

comparable to the log2CPM generated from Omics Playground, thus we performed 

downstream analysis using the Omics playground output. 

Codon analysis 

Isoacceptors frequency and total codon frequency were analyzed as we previously 

reported(Rashad et al., 2022; Tumu et al., 2012). The amino acid normalized codon frequency is 

calculated as: 

frequency of codon i in gene j = 
number of occurrences of codon 𝑖 in gene 𝑗

∑ number of occurrences of isoacceptor ij
n
i=1

 

where isoacceptors refers to the synonymous codons for the amino acid encoded by codon i and n 

refers to the number of isoacceptors for a given amino acid (2 ≤ n ≤ 6).  

The total codon frequency is calculated as:  

Total frequency of codon i in gene j = 
number of occurrences of codon 𝑖 in gene 𝑗

∑ number of occurrences of codon 𝑖 in gene 𝑗n
i=1

 

where n refers to the total number of codons used in the gene. 

The t-statistic describing the codon frequency was calculated as: 

T-statistic for codon i = 
𝑥𝑖−µ𝑖

𝑠𝑖 √𝑛⁄
 

Where xi refers to the mean frequency for codon i in the sample, µ𝑖 refers to the mean 

frequency for codon i across the Mus musculus genome, si refers to the standard deviation of 

the frequency for codon i in the sample, and n refers to the sample size.  

A-site pausing was calculated using Ribotoolkit(Liu et al., 2020) where the brain was 

compared to each tissue to deduce the relative ribosome pausing at each codon. Next, the 

output was converted into log2 fold change for representation. 

Data visualization and statistical analysis 
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Heatmaps and clustering and Pearson’s correlation analysis were conducted using Morpheus 

(https://software.broadinstitute.org/morpheus). Hierarchical clustering was performed using 

the “one minus Pearson correlation” metric and “average” as the linkage method. PLS-DA 

was conducted using the R language package mixOmics(Rohart et al., 2017). Z-score analysis 

was conducted in R. ANOVA with Turkey’s post hoc analysis was conducted using SPSS 

v20 (IBM corp.). 

Data availability 

Raw sequencing data were deposited in the sequence read archive (small RNA-seq: 

PRJNA1003133. Ribo-seq: PRJNA1004093). All other data are presented in the 

supplementary files. Further data can be provided by the corresponding author upon 

reasonable request.  
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Figure legends: 

Figure 1: Analysis of tRNA modifications landscape across tissues. a: Schematic showing 

the tissues analyzed and methods used in this study. b: Expression of 45 different 

modifications across the 7 tissues. c: Pearson’s correlation between different tissues. d: PLS-

DA analysis of tissue clustering patterns. e: Pearson’s correlation across modifications.  
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Figure 2: Analysis of mature tRNA expression across tissues. a: Distribution of detected 

small non-coding RNAs in our sequencing. b: Distribution of different amino acids 

representing tRNAs in the dataset. c: Expression of different mature tRNAs in our dataset 

normalized by their normalized read counts and represented as Z-score. d: Z-scores of mature 

tRNA expression across different tissues. e: Pearson’s correlation coefficient between tissues 

based on Figure 2d. f: Pearson’s correlation coefficient analysis between tissues based on 

figure 2c. 
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Figure 3: Analysis of tRNA derived small non-coding RNAs (tsRNAs) in different tissues. a: 

Schematic of different tsRNAs detected in our analysis. b: tsRNAs detected expression in 

each tissue represented as normalized read counts. c: Distribution of different tsRNAs in each 

tissue. d: Heatmap of 3’tRF expression. e: Pearson’s correlation analysis between tissues 

using 3’tRFs as input. f: Pearson’s correlation analysis using i-tRF expression. g: Pearson’s 

correlation analysis using tRF-1 expression.  
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Figure 4: Motif analysis using top 20 expressed 3’tRFs from each tissue as input.  
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Figure 5: Ribo-seq analysis of tissue specific translational patterns. a: Heatmap clustering 

between tissues (Cluster annotation is in Supplementary figure 8a). b: Gene-level UMAP 

analysis. c: tSNE clustering analysis. d: Differentially translated genes (DTGs) analysis for 

each tissue versus all other tissues. e: Activation matrix of pathway enrichment using input 

from d at the GOBP level. 
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Figure 6: Analysis of isoacceptors codon usage. a: Heatmap of codon frequency in each 

tissue. Isoacceptors frequencies T-stats were calculated using top 200 counted genes (up) or 

bottom 200 genes (down) in each tissue. b: Heatmap of Pearson’s correlation coefficients 

among 7 tissues by codon frequency from top (left) and bottom (right) 200 genes. c: PLS-DA 

analysis of tissue clustering patterns using the top 200 genes. d, e: Pearson’s correlation 

analysis of codon frequency and Q modification enrichment (d) or Q related anticodons (e). f: 

Pairwise correlation analysis of Q codon from figure 6a. g, h: Pearson’s correlation analysis 

of codon frequency and mcm5U and similar modification enrichment (g) or mcm5U related 

anticodons (h). i: Pairwise correlation analysis of mcm5U codon from figure 6a. 
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Figure 7: Analysis of total codon frequency. a: Heatmap of codon frequency in each tissue. 

T-stats were calculated using frequency of total codon counts in the top 200 counted genes 

(up) or bottom 200 genes (down). b: Heatmap of Pearson’s correlation coefficients among 7 

tissues by codon frequency from top (left) and bottom (right) 200 genes. c: PLS-DA analysis 

of tissue clustering patterns. d, e: Pearson’s correlation analysis of codon frequency and Q 

modification enrichment (d) or Q related anticodons (e). f: Pairwise correlation analysis of Q 

codon from figure 7a. g, h: Pearson’s correlation analysis of codon frequency and mcm5U 

and similar modification enrichment(g) or mcm5U related anticodons. i: Pairwise correlation 

analysis of mcm5U codon from figure 7a. 
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Figure 8: a: Heatmap of A-site ribosome pausing analysis. The relative dwelling time in the 

brain compared to other tissues is represented as log 2-fold change (log2FC). b, c: Picked up 

the codons related to Q modifications (c) or mcm5U modifications (d) from figure 8a. d: 

Pearson’s correlation coefficient analysis between tissues from figure 8a. 
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