

1 **Repeated Omicron exposures override ancestral SARS-CoV-2 immune imprinting**

2

3 Ayijiang Yisimayi^{1,2,3,#}, Weiliang Song^{1,2,3,#}, Jing Wang^{1,2,3,#}, Fanchong Jian^{1,2,4,#}, Yuanling Yu^{2,#},
4 Xiaosu Chen^{5,#}, Yanli Xu⁶, Sijie Yang^{1,7}, Xiao Niu^{1,3}, Tianhe Xiao^{1,8}, Jing Wang², Lijuan Zhao²,
5 Haiyan Sun², Ran An², Na Zhang², Yao Wang², Peng Wang², Lingling Yu², Zhe Lv⁹, Qingqing Gu²,
6 Fei Shao², Ronghua Jin⁶, Zhongyang Shen¹⁰, Xiaoliang Sunney Xie^{1,2}, Youchun Wang^{2,11}, Yunlong
7 Cao^{1,2,3*}

8

9 ¹Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, P.R. China.

10 ²Changping Laboratory, Beijing, P.R. China.

11 ³School of Life Sciences, Peking University, Beijing, P.R. China.

12 ⁴College of Chemistry and Molecular Engineering, Peking University, Beijing, P.R. China.

13 ⁵Institute for Immunology, College of Life Sciences, Nankai University, Tianjin, P. R. China.

14 ⁶Beijing Ditan Hospital, Capital Medical University, Beijing, P.R. China.

15 ⁷Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, P.R. China.

16 ⁸Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary
17 Studies, Peking University, Beijing, P.R. China.

18 ⁹Sinovac Biotech Ltd., Beijing, P.R. China.

19 ¹⁰Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central
20 Hospital, Nankai University, Tianjin, P. R. China.

21 ¹¹Institute of Medical Biotechnology, Chinese Academy of Medical Science & Peking Union
22 Medical College, Kunming, P. R. China

23 *Correspondence: Yunlong Cao (yunlongcao@pku.edu.cn).

24 #These authors contributed equally.

25

26 **Abstract**

27 The continuous emergence of highly immune evasive SARS-CoV-2 variants, like XBB.1.5^{1,2} and
28 XBB.1.16^{3,4}, highlights the need to update COVID-19 vaccine compositions. However, immune
29 imprinting induced by wildtype (WT)-based vaccination would compromise the antibody response
30 to Omicron-based boosters⁵⁻⁹. Vaccination strategies that can counter immune imprinting are
31 critically needed. In this study, we investigated the degree and dynamics of immune imprinting in
32 mouse models and human cohorts, especially focusing on the role of repeated Omicron stimulation.
33 Our results show that in mice, the efficacy of single Omicron-boosting is heavily limited by immune
34 imprinting, especially when using variants antigenically distinct from WT, like XBB, while the
35 concerning situation could be largely mitigated by a second Omicron booster. Similarly, in humans,
36 we found that repeated Omicron infections could also alleviate WT-vaccination-induced immune
37 imprinting and generate high neutralizing titers against XBB.1.5 and XBB.1.16 in both plasma and
38 nasal mucosa. By isolating 781 RBD-targeting mAbs from repeated Omicron infection cohorts, we
39 revealed that double Omicron exposure alleviates immune imprinting by generating a large
40 proportion of highly matured and potent Omicron-specific antibodies. Importantly, epitope
41 characterization using deep mutational scanning (DMS) showed that these Omicron-specific
42 antibodies target distinct RBD epitopes compared to WT-induced antibodies, and the bias towards
43 non-neutralizing epitopes observed in single Omicron exposures due to imprinting was largely
44 restored after repeated Omicron stimulation, together leading to a substantial neutralizing epitope
45 shift. Based on the DMS profiles, we identified evolution hotspots of XBB.1.5 RBD and
46 demonstrated the combinations of these mutations could further boost XBB.1.5's immune-evasion
47 capability while maintaining high ACE2 binding affinity. Our findings suggest the WT component
48 should be abandoned when updating COVID-19 vaccine antigen compositions to XBB lineages,
49 and those who haven't been exposed to Omicron yet should receive two updated vaccine boosters.

50 **Main**

51 SARS-CoV-2 continues to evolve, and new mutants constantly emerge under humoral immune
52 pressure¹⁰⁻¹⁴. New variants, such as the XBB lineages, are capable of evading antibodies induced by
53 vaccination or infection, resulting in repeated infections among populations^{5,7,15,16}. Therefore, it is
54 critical to develop updated vaccines that can elicit strong immune responses against the latest
55 variants.

56

57 mRNA vaccine platforms can quickly adapt to new SARS-CoV-2 variants¹⁷⁻²⁰. However, since the
58 majority of the population was vaccinated with the ancestral SARS-CoV-2 strain, immune
59 imprinting induced by WT vaccination presents a major challenge to the performance of updated
60 boosters^{21,22}. This is because boosting with a variant antigenically distinct from WT would majorly
61 recall memory B cells induced by WT vaccination and masks the *de novo* generation of variant-
62 specific B cells, which would hinder the generation of appropriate humoral immunity against new
63 and emerging variants^{6,7,9,23-27}.

64

65 It is crucial to explore vaccination strategies that can counter immune imprinting. In this paper, we
66 investigated the dynamics of immune imprinting in both mouse models and human cohorts, with a
67 particular focus on how repeated exposure to Omicron variants could alleviate immune imprinting.

68

69 **Alleviation of immune imprinting in mice**

70 First, we investigated the effects of WT-vaccination-induced SARS-CoV-2 immune imprinting in
71 mice. To accomplish this, two doses of 3 µg CoronaVac (an inactivated vaccine derived from the
72 wildtype SARS-CoV-2) were used as primary immunization, and variant Spike proteins were used
73 as boosters²⁸⁻³⁰. All SARS-CoV-2 Spike proteins contained six proline substitutions (S6P) and
74 alanine substitutions in the furin cleavage site to stabilize in prefusion conformation³¹.

75 Mice that received a single booster of 10 µg Spike protein, including BA.1, BA.5, BQ.1.1, XBB,
76 and SARS-CoV-1, showed decreased serum 50% neutralizing titers (NT50s) (VSV-based
77 pseudovirus) against the D614G as the antigenic distance between the boosting variant and the
78 wildtype increased, suggesting decreased cross-reactive B cell recall after the variant booster (Fig.

79 1a). Additionally, single dose boosted mice had significantly lower NT50 against the boosting
80 variants compared to D614G (Fig. 1a). These results revealed substantial ancestral strain immune
81 imprinting at the serum level, and are consistent with the observations in humans^{6,7,23,24,32,33}, as well
82 as previous findings of immune imprinting in influenza viruses^{34,35}.

83 To investigate whether prolonging the interval between the primary WT immunization and the
84 variant booster could alleviate immune imprinting, we further tested boosting mice 3-month and 6-
85 month after CoronaVac priming (Fig. 1b). It was observed that 3-month and 6-month intervals
86 between WT-priming and variant-boosting slightly increased overall NT50s, but the fold-change
87 between NT50s against D614G and XBB remained high (Fig. 1b). Moreover, no significant NT50s
88 difference among 1-month, 3month, and 6-month boosting groups was observed for BQ.1.1 and
89 XBB boosting(Extended Data Fig. 1a-b). This suggests that longer intervals between the priming
90 and Omicron-boosting, which would allow the maturation of WT-induced antibodies, may not be
91 sufficient to alleviate immune imprinting.

92 The efficacy of the first Omicron booster is heavily limited by immune imprinting. It's crucial to
93 examine how a second Omicron booster performs³⁶. We started by boosting CoronaVac-primed
94 mice with two doses of the variant Spike protein over a 1-month or 3-month interval (Fig. 1c).
95 Importantly, the second boosters resulted in increased NT50s against the corresponding variants
96 (Extended Data Fig. 2a), as well as substantially reduced fold-changes between the D614G and
97 variants (Extended Data Fig. 2b). However, the neutralizing titers induced by two boosters over one-
98 month interval after two doses of CoronaVac priming were still lower than those induced by two
99 doses of variant priming, clearly indicating the interference caused by immune imprinting (Fig. 1c).
100 Notably, compared to 1-month boosting interval, a 3-month interval between Omicron boosters
101 resulted in clear improvements in NT50s against all the corresponding boosting variants (Fig. 1c),
102 and the fold-change between the NT50s against D614G and the boosting variants also decreased
103 (Extended Data Fig. 2b). This indicates that the maturation of B cells induced by Omicron-boosting
104 are highly beneficial for immune imprinting mitigation.

105

106 Since mRNA vaccines encoding Spike have proved to be capable of quick adaptation to new

107 variants, it is critical to test how updated mRNA variant boosters perform, especially when the
108 higher immunogenicity of mRNA vaccine might help alleviate immune imprinting when served
109 as Omicron boosters. Therefore, we tested 1 μ g mRNA vaccines encoding BA.5, BQ.1.1, and
110 XBB Spike as boosters in replacement of protein boosters (Fig. 1d). As expected, 1 μ g mRNA
111 vaccine demonstrated higher immunogenicity than the protein vaccine (Extended Data Fig. 2c-
112 d, f). However, the performance of one-dose mRNA Omicron-boosters is still heavily interfered
113 by immune imprinting despite higher immunogenicity, while two mRNA Omicron-boosters
114 would significantly increase antibody titers and could achieve similar titers compare to the
115 priming groups (Fig. 1d and Extended Data Fig. 2c-e). This suggests raising the
116 immunogenicity of variant boosters could help to counter immune imprinting brought by WT
117 vaccination.

118 Notably, among the Omicron variants tested, XBB boosting exhibited the lowest overall titers (Fig.
119 1c-d). Indeed, these variant vaccines, whether protein or mRNA, exhibit different levels of
120 immunogenicity in mice, with XBB demonstrating the lowest (Extended Data Fig. 2f).

121 Together, our results observed in mice emphasize that the efficacy of the first Omicron boosters
122 is severely limited by immune imprinting while a second booster is almost mandatory to
123 alleviate immune imprinting and generate high antibody responses, especially for boosters
124 encoding variants that exhibit long antigenic distance from WT, such as XBB.

125

126 **Mitigating immune imprinting in humans**

127 To verify whether the findings obtained from mice also apply to humans, we recruited cohorts with
128 repeated Omicron breakthrough infections (BTIs), including individuals with post-vaccination
129 BA.1 or BA.2 BTI followed by BA.5/BF.7 reinfection (BTI+reinfection) and compared them to
130 previously reported BA.1, BA.2, BA.5, BF.7 one-time BTI cohorts^{7,32,37,38}. Importantly, we also
131 included individuals who had no history of SARS-CoV-2 vaccination before repeated infection
132 (vaccination-naïve reinfection) as controls. Detailed information about the cohorts can be found in
133 Supplementary Table 1. We first tested neutralizing titers against exposed variants of these cohorts
134 with pseudovirus and authentic virus neutralizing assays (Fig. 2a-b). Similar to mice immunization
135 results, plasma neutralizing titers induced by one-time Omicron BTIs against the corresponding

136 variant were significantly lower than those against D614G, consistent with our previous report⁷, and
137 the fold changes between the NT50 against D614G and those against corresponding variants also
138 increased as the antigenic distance increases (Fig. 2a-b). As expected, in the repeated Omicron
139 infection group, with or without SARS-CoV-2 vaccination history, the neutralizing titers against
140 Omicron variants significantly increased compared to one-time BTIs (Fig. 2a-b). More importantly,
141 BA.1 or BA.2 BTI followed by BA.5/ BF.7 reinfections demonstrate comparable NT50 between
142 exposed Omicron variants and D614G, indicating immune imprinting alleviation by the second
143 Omicron exposure (Fig. 2a-b). However, the NT50s of vaccination-naïve reinfection group against
144 Omicron variants were the highest among these cohorts (Fig. 2a-b), suggesting that repeated BTIs
145 were still subjected to WT-vaccination-induced immune imprinting. Compared to one-time BTIs,
146 repeated Omicron infection also led to an increase in the neutralizing titers against highly immune-
147 evasive CH.1.1, BQ.1.1, XBB, FL.8 (XBB.1.9.1.8), XBB.1.5, XBB.1.16, and XBB.1.5+F456L (Fig.
148 2c-d and Extended Data Fig. 3a-c), indicating that repeated Omicron infections may broaden the
149 breadth of antibody response. In addition, we found that the nasal swab samples from individuals
150 with repeated Omicron infection exhibited higher neutralizing titers against Omicron variants than
151 one-time breakthrough infection, suggesting strong nasal mucosal humoral immunity has been
152 established after repeated infection (Extended Data Fig. 4).

153 Neutralization data from both mice and human studies underscore the crucial role of secondary
154 Omicron exposure in mitigating immune imprinting and generating potent antibody responses to
155 immune-evasive variants such as XBB and its sublineages. We propose that this is largely
156 attributable to the further expansion of Omicron-specific memory B cells *de novo* generated by the
157 first Omicron exposure. To assess this hypothesis, we first analyzed the Omicron specificity of
158 RBD-specific memory B cells from BTIs, BTIs+reinfection, and vaccine-naïve reinfection cohorts
159 through fluorescence-activated cell sorting (FACS). As we previously reported, in one-time
160 Omicron BTI cohorts, more than 70% of the RBD-binding memory B cells also bound to WT,
161 indicating that post-vaccination Omicron infection mainly recalls cross-reactive memory B cells
162 elicited by WT-based vaccination, but rarely contains BA.1/BA.2-specific B cells (Fig. 3a).
163 Subsequently, following an extended duration of time (8 months) after the first Omicron BTI, the
164 proportion of cross-reactive cells declined while that of Omicron-specific cells increased,

165 suggesting that longer B cell maturation periods elevated the proportion of Omicron-specific
166 memory B cells (Fig. 3b). Nevertheless, at 8 months post-BA.1 BTI, the plasma neutralizing titers
167 were very low due to antibody waning, and thus required a secondary Omicron boosting via either
168 vaccination or infection to increase the antibody levels (Extended Data Fig. 3d). Importantly, for
169 Omicron BTI+reinfection cohorts, the proportion of cross-reactive cells declined further but still
170 remained higher than that observed in the vaccination-naïve reinfection cohort (Fig. 3c-d). These
171 results are highly correlated with the plasma NT50s of the cohorts, which suggests that Omicron-
172 specific antibodies are a major contributor for the increased antibody breadth and neutralization
173 capability after repeated Omicron infection.

174 To further investigate the potency, breadth, and epitopes of these antibodies, the BA.1 RBD-binding
175 cells and BA.2 RBD-binding cells from above various BA.1/BA.2 infection cohorts were sorted and
176 sequenced by high throughput single-cell V(D)J sequencing. Antibodies were then expressed *in*
177 *vitro* as human IgG1 monoclonal antibodies (mAbs) (Supplementary Table 2). For one-time
178 Omicron BTI cohorts, enzyme-linked immunosorbent assay (ELISA) confirmed that only
179 approximately 20% of the isolated mAbs specifically bind to the BA.1/BA.2 RBD and were not
180 cross-reactive to the WT RBD, which was consistent with FACS results (Fig. 3e). Furthermore,
181 long-term sampling (8 months) after BA.1 BTI yielded an increased proportion of BA.1 RBD-
182 specific mAbs compared to short-term (2 months) sampling. Moreover, reinfection with BA.5/BF.7
183 further increased the proportion of BA.1/BA.2 RBD-specific mAbs to around 50%, but this was still
184 lower than that in vaccination-naïve reinfection groups (Fig. 3e). Notably, the somatic
185 hypermutation (SHM) rates of BA.1/BA.2 specific antibodies in BTI+reinfection cohorts were
186 higher than that in one-time BTI cohorts (Fig. 3f), and the increased affinity maturation of
187 BA.1/BA.2-specific antibodies contributes to their increased potency against Omicron variants (Fig.
188 3g-h). Together, these data indicate that long-term maturation after one-time Omicron BTI and
189 repeated Omicron infections could significantly raise the proportion and maturation of Omicron-
190 specific antibodies, greatly contributing to the increased plasma neutralization potency against
191 Omicron variants.

192

193 **Epitope analyses of Omicron-specific mAbs**

194 To further interrogate the composition of antibodies elicited by Omicron BA.5/BF.7 BTI and
195 reinfection, and deciphering the molecular mechanism behind the broadly neutralizing capability of
196 convalescent plasma from reinfection, we determined the binding sites and escaping mutations on
197 RBD of these mAbs using deep mutational scanning (DMS)^{39,40}. As the proportion of Omicron-
198 specific antibodies is indispensable in reinfection cohorts, and the last exposure of all cohorts
199 involved in this study is BA.5/BF.7, we built a yeast display mutant library based on BA.5 RBD and
200 performed DMS for these mAbs in a high-throughput manner, akin to our previously described WT-
201 based methods⁴⁰. To enhance the sampling of Omicron-specific NAbS to facilitate the epitope
202 characterization of these unprecedented antibodies, we specifically isolated an additional panel of
203 RBD-targeting mAbs that do not cross-bind to WT according to the feature barcode counting during
204 the 10x VDJ sequencing and determined their BA.5-based DMS data. We also determined the BA.5-
205 based DMS data for all BA.5-RBD binding mAbs from previous collections isolated from various
206 immune backgrounds ([Supplementary Table 2](#)). In total, a comprehensive panel consisting of 1350
207 mAb BA.5-based DMS is collected.

208

209 By graph-based unsupervised clustering on the determined escape scores over sites on RBD, we
210 identified 12 major epitope groups on BA.5 RBD and embedded the mAbs using UMAP for
211 visualization ([Fig. 4a](#)). Names of the epitope groups are generally assigned in line with the epitope
212 groups on WT RBD defined previously^{7,32}. Neutralizing activities against SARS-CoV-2 D614G,
213 BA.1, BA.2, BA.5, BA.2.75, BQ.1.1, and XBB.1.5 are determined using VSV-based pseudovirus
214 neutralization assays. In general, neutralization is highly correlated with targeting epitopes of mAbs.
215 Antibodies in epitope groups F3, A1, A2, B, C/D1, D2, D3, D4, and E1/E2.1 target neutralizing
216 epitopes, while antibodies in the other three groups, E2.2, E3, F1, exhibit weak or no neutralization
217 activity ([Fig. 4b](#) and [Extended Data Fig. 5b](#)). Consistent with the plasma neutralization results, BA.5
218 or BF.7 BTI exhibited substantially imprinted antibody response, leading to over 50% antibodies
219 that target conserved weakly neutralizing epitopes. In contrast, convalescent individuals who
220 experienced BA.5 or BF.7 reinfection after prior BA.1 or BA.2 BTI induce only ~20% antibodies
221 targeting such epitopes, indicating striking alleviation of immune imprinting ([Fig. 4c](#) and [Extended](#)
222 [Data Fig. 5a](#)). Interestingly, prior BA.1 or BA.2 BTI leads to Omicron-specific antibodies targeting

223 distinct epitopes after reinfection. Prior BA.1 BTI induces a higher level of Group D3, while BA.2
224 BTI cohorts consist of more antibodies in Group F3, indicating that the Omicron infection history
225 during repeated Omicron infections would also introduce new Omicron-based immune imprinting.

226

227 Among the 12 identified epitope groups, A1, D2, E1/E2.1, E2.2, E3, and F1 are similar to their
228 corresponding WT-based groups and mainly consist of WT-reactive antibodies ([Fig. 4d-e](#) and
229 [Extended Data Fig. 5c-d](#))^{32,41}. As expected, BA.5-based epitope landscape also defines novel groups
230 that mainly comprise Omicron-specific mAbs, including Group A2, D3, D4, and F3. Notably, most
231 antibodies in Group F3 here are not cross-reactive to WT RBD as well, which is different from the
232 rare sarbecovirus-neutralizing broad NAbs in Group F3 from SARS convalescents described
233 previously, such as SA55 and BD55-3372⁴². Compared to A1, which mainly contains IGHV3-53/3-
234 66 public antibodies (also known as class 1 or site Ia)^{43,44}, mAbs in Group A2 are susceptible to
235 mutations on 417 and 505, including the reversions. Group D3 and D4 target an epitope near Group
236 D2 (targeted by LY-CoV1404), but exhibited distinct escape profiles or interacting residues⁴⁵. D3 is
237 susceptible to N439 and K440 mutations, and thus escaped by WT due to N440, while the footprint
238 of D4 is closer to the receptor-binding motif (RBM), interacting with G447, Y449, and R498 ([Fig.](#)
239 [4d-e](#)). Antibodies in WT-based Group B, C, and D1 have been mostly escaped by L452R, E484A,
240 and F486V in BA.5. B and C/D1 here comprise both WT-reactive and Omicron-specific antibodies,
241 where Group B is more focused on N487 and Y489, and C/D1 mainly focus on F490, which is
242 largely escaped by F490S in XBB variants ([Fig. 4d-e](#) and [Extended Data Fig. 5c-d](#)). Among the 12
243 groups, A1, A2, B, D3, especially D4 and F3 consist of a substantial proportion of NAbs exhibiting
244 broad neutralization against BQ.1.1 and XBB.1.5 ([Fig. 4f](#)). C/D1, D2, and E1/E2.1 also consist of
245 a small proportion of XBB.1.5-neutralizing mAbs ([Extended Data Fig. 5f](#)). Considering the recent
246 emergence and prevalence of XBB subvariants harboring F456L (XBB.1.5.10) or K478R
247 (XBB.1.16), which are crucial sites for NAbs in Group A1 and A2, or B and C/D1, respectively, we
248 tested the neutralization of XBB.1.5-neutralizing antibodies from these groups against these two
249 mutants. As expected, F456L escapes or dampens the neutralization of most XBB.1.5-neutralizing
250 antibodies in Group A1 or A2, and XBB.1.16 (E180V+K478R) also escapes a large proportion of
251 NAbs in B and C/D1 ([Extended Data Fig. 5e](#)). Overall, these results demonstrate that Omicron

252 repeated infection stimulates a higher level of Omicron-specific neutralizing antibodies targeting
253 neutralizing epitopes compared to one-time Omicron BTI, indicating substantial alleviation of
254 immune imprinted on antibody epitope level. And that these Omicron-specific mAbs have distinct
255 RBD epitopes and escaping mutations compared to WT-induced mAbs would introduce a large
256 neutralizing epitope shift, contributing majorly to the broadly neutralizing capability against
257 XBB.1.5.

258

259 **Evolutionary hotspots on XBB.1.5 RBD**

260 Encouraged by the successful rationalization of the prevalence of F456L and K478R based on DMS,
261 we desire to systematically investigate the evolutionary preference of other RBD mutations. To
262 integratively evaluate the preference of each mutation considering their impacts on neutralizing
263 antibody escape, hACE2 binding, RBD stability, and codon constraints, we previously calculated a
264 weighted preference score for RBD mutations using WT-based DMS profiles and neutralizing
265 activities against BA.5 to predict the convergent evolution of BA.5 RBD⁷ ([Extended Data Fig. 6](#)).
266 We desire to utilize similar approach with BA.5-based profiles and neutralization against XBB.1.5
267 to identify the evolutionary trends of XBB.1.5 RBD. When considering antibodies from BA.5/BF.7
268 BTI only, the most significant sites include R403S/K, N405K, N417Y, Y453S/C/F, L455W/F/S,
269 F456C/V/L, and H505Y/D, corresponding to escape hotspots of Group A1, A2, and F3 ([Fig. 5a](#)).
270 With antibodies from repeated Omicron infection included in the analysis, scores of N439K,
271 K440N/E, K444N/E, and P445S/H/R/L become higher, corresponding to Group D3 and D4, which
272 are consistent with the epitope distributions of mAbs from each cohort ([Fig. 5b](#)). Notably, N405D
273 and N417K reversions should hardly appear in the real world due to the potential recovery of
274 previously escaped NAbS in Group F2 and A, respectively. K478 mutations are not identified in the
275 calculation, which is also a limitation of our model due to the low proportion of XBB-neutralizing
276 antibodies in Group B or C/D1 in our cohorts.

277

278 Based on the analysis above, we wonder if the combination of multiple escape mutations against
279 major XBB.1.5-effective epitope groups could essentially evade the broadly neutralizing capability

280 of plasma from repeated Omicron infection while retaining high ACE2 binding affinity. Besides the
281 two emerging mutations K478R and F456L, we selected seven additional substitutions, including
282 H505Y, R403K, K444T, K440N, A484P, Y453F, and N405K, which are sequentially added to
283 XBB.1.5, and constructed seven pseudoviruses named XBB.1.5-S1 to XBB.1.5-S7 ([Fig. 6a](#)). The
284 mutations are selected from a larger set of mutation candidates considering their impacts on hACE2-
285 binding affinity as determined by surface plasmon resonance (SPR) and the capability of escaping
286 the neutralization of a panel of 131 potent XBB.1.5-neutralizing antibodies from 8 epitope groups
287 ([Fig. 6b-c and Extended Data Fig. 7a](#)). XBB.1.5-S7 successfully escapes the most of Nabs in the
288 panel, except for a small group of broad Nabs from Group F3, A1, and D4, including SA55, a
289 therapeutic antibody under clinical development⁴². Then, we evaluated the neutralization titers of
290 convalescent plasma from individuals who experienced Omicron BTI or repeated Omicron infection
291 against the designed escape mutants. As expected, XBB.1.5-S7 could significantly escape plasma
292 samples from all tested cohorts. Plasma from BA.5 or BF.7 BTI are significantly escaped upon the
293 inclusion of F456L, and nearly negative against XBB.1.5-S7 ([Extended Data Fig. 7b](#)). Plasma from
294 repeated Omicron infections is much more resistant to escape mutations. Interestingly, plasma from
295 BA.5/BF.7 reinfection with prior BA.1 BTI or BA.2 BTI exhibited distinct neutralization to different
296 escape mutants. The former samples are largely evaded by K444T and K440N, but not strongly
297 affected by H505Y, while the latter samples are significantly evaded by H505Y ([Fig. 6d-e](#)). This is
298 consistent with the observation that reinfection with prior BA.1 BTI elicits more Group D3
299 antibodies, while reinfection with prior BA.2 BTI elicits more Group F3 antibodies ([Fig. 4c](#)).
300 Unvaccinated reinfection cohorts exhibited higher neutralization against XBB.1.5 compared to
301 vaccinated cohorts, but equivalently escaped by XBB.1.5-S7. The most significant reduction occurs
302 upon the inclusion of H505Y, K440N, and N405K, indicating a high proportion of Omicron-specific
303 antibodies in Group D3 and F3 ([Fig. 6f](#)).

304

305 In summary, our findings suggest that secondary Omicron exposure is necessary to mitigate the
306 immune imprinting conferred by previous ancestral virus exposure and to elicit higher levels of
307 Omicron-specific antibodies. Accordingly, our recommendation is to administer two booster doses
308 of Omicron-based vaccines to individuals who have not received prior Omicron-based vaccinations

309 or who have not been previously infected with the Omicron variant. Moreover, administering the
310 second booster shot after a prolonged interval can provoke a wider and more efficient immune
311 response, while incorporating the wildtype virus into subsequent vaccine designs may worsen
312 immune imprinting²⁶. Furthermore, it is imperative to incorporate the XBB variants into vaccine
313 design to achieve broad-spectrum protection, given its potential to mutate and evade vaccines based
314 on previous Omicron variants.

315 Recently, several fast-growing XBB lineages, such as the variant of interest (VOI) XBB.1.16
316 (K478R), XBB.2.3.5 (K478N), and XBB.2.3.4 (K478Q), have acquired RBD mutations on K478.
317 However, the K478 mutation did not emerge in our prediction of evolutionary trends for XBB.1.5
318 RBD. This contradiction may be attributed to the fact that our mutational prediction model primarily
319 relies on the cohorts we recruited, and we haven't captured the immune background that introduced
320 K478 mutation. One possible background that may give rise to K478 is repeated BA.5/BQ.1.1/XBB
321 exposure, as F486 could mask the immunogenicity of K478. Another potential source of K478 is
322 Delta-imprinted convalescents who experienced BA.5/BQ.1.1/XBB infections, which could result
323 in the generation of abundant K478X-sensitive mAbs, given that Delta carries T478K. This may
324 explain why K478X is mostly observed in India^{4,46}.

325 The degree of immune imprinting might be different between mRNA and inactivated vaccination.
326 Recent studies have shown that subsequently exposed to Omicron twice after two doses of WT-
327 based mRNA vaccines still produce significantly low levels of Omicron-specific antibodies, despite
328 the enhanced neutralization breadth against BQ.1.1 and XBB variants^{47,48}. Additionally, individuals
329 who have received two doses of mRNA vaccines and experienced two rounds of Omicron infection
330 also have low levels of Omicron-specific antibodies⁴⁷. This indicates that mRNA vaccines may
331 generate a stronger immune imprinting effect compared to inactivated vaccines, potentially due to
332 its stronger primary humoral immune response^{8,49}. However, a head-to-head comparison is needed
333 for validation.

334

335 **References**

336 1 Yue, C. *et al.* ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. *The
337 Lancet Infectious Diseases* **23**, 278-280 (2023). [https://doi.org/10.1016/S1473-3099\(23\)00010-](https://doi.org/10.1016/S1473-3099(23)00010-)

338 5

339 2 Uraki, R. *et al.* Antiviral and bivalent vaccine efficacy against an omicron XBB.1.5 isolate. *The Lancet Infectious Diseases* **23**, 402-403 (2023). [https://doi.org/10.1016/S1473-3099\(23\)00070-1](https://doi.org/10.1016/S1473-3099(23)00070-1)

340 3 Yamasoba, D. *et al.* Virological characteristics of the SARS-CoV-2 Omicron XBB.1.16 variant. *bioRxiv*, 2023.2004.2006.535883 (2023). <https://doi.org/10.1101/2023.04.06.535883>

341 4 Karyakarte, R. P. *et al.* Chasing SARS-CoV-2 XBB.1.16 Recombinant Lineage in India and the Clinical Profile of XBB.1.16 cases in Maharashtra, India. *medRxiv*, 2023.2004.2022.23288965 (2023). <https://doi.org/10.1101/2023.04.22.23288965>

342 5 Kurhade, C. *et al.* Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. *Nat Med* **29**, 344-347 (2023). <https://doi.org/10.1038/s41591-022-02162-x>

343 6 Park, Y. J. *et al.* Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. *Science* **378**, 619-627 (2022). <https://doi.org/10.1126/science.adc9127>

344 7 Cao, Y. *et al.* Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. *Nature* **614**, 521-529 (2023). <https://doi.org/10.1038/s41586-022-05644-7>

345 8 Kaku, C. I. *et al.* Evolution of antibody immunity following Omicron BA.1 breakthrough infection. *bioRxiv*, 2022.2009.2021.508922 (2022). <https://doi.org/10.1101/2022.09.21.508922>

346 9 Davis-Gardner, M. E. *et al.* Neutralization against BA.2.75.2, BQ.1.1, and XBB from mRNA Bivalent Booster. *New England Journal of Medicine* **388**, 183-185 (2022). <https://doi.org/10.1056/NEJMc2214293>

347 10 Cox, M. *et al.* SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies. *Nature Reviews Microbiology* **21**, 112-124 (2023). <https://doi.org/10.1038/s41579-022-00809-7>

348 11 Carabelli, A. M. *et al.* SARS-CoV-2 variant biology: immune escape, transmission and fitness. *Nat Rev Microbiol* **21**, 162-177 (2023). <https://doi.org/10.1038/s41579-022-00841-7>

349 12 Cui, Z. *et al.* Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. *Cell* **185**, 860-871 e813 (2022). <https://doi.org/10.1016/j.cell.2022.01.019>

350 13 Cao, Y. *et al.* Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75. *Cell Host Microbe* **30**, 1527-1539 e1525 (2022). <https://doi.org/10.1016/j.chom.2022.09.018>

351 14 Jian, F. *et al.* Further humoral immunity evasion of emerging SARS-CoV-2 BA.4 and BA.5 subvariants. *Lancet Infect Dis* **22**, 1535-1537 (2022). [https://doi.org/10.1016/S1473-3099\(22\)00642-9](https://doi.org/10.1016/S1473-3099(22)00642-9)

352 15 Wang, Q. *et al.* Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. *Cell* **186**, 279-286 e278 (2023). <https://doi.org/10.1016/j.cell.2022.12.018>

353 16 Uraki, R. *et al.* Humoral immune evasion of the omicron subvariants BQ.1.1 and XBB. *Lancet Infect Dis* **23**, 30-32 (2023). [https://doi.org/10.1016/S1473-3099\(22\)00816-7](https://doi.org/10.1016/S1473-3099(22)00816-7)

354 17 Choi, A. *et al.* Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis. *Nature Medicine* **27**, 2025-2031 (2021). <https://doi.org/10.1038/s41591-021-01527-y>

355 18 Zhang, N.-N. *et al.* Rapid development of an updated mRNA vaccine against the SARS-CoV-2 Omicron variant. *Cell Research* **32**, 401-403 (2022). <https://doi.org/10.1038/s41422-022-0180-1>

382 19 [00626-w](#)
383 19 Scheaffer, S. M. *et al.* Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization
384 and protect against the BA.5 Omicron variant in mice. *Nature Medicine* **29**, 247-257 (2023).
385 <https://doi.org/10.1038/s41591-022-02092-8>
386 20 Collier, A.-r. Y. *et al.* Immunogenicity of BA.5 Bivalent mRNA Vaccine Boosters. *New England
387 Journal of Medicine* **388**, 565-567 (2023). <https://doi.org/10.1056/NEJMc2213948>
388 21 Aguilar-Bretones, M., Fouchier, R. A. M., Koopmans, M. P. G. & van Nierop, G. P. Impact of
389 antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. *The Journal of
390 Clinical Investigation* **133** (2023). <https://doi.org/10.1172/JCI162192>
391 22 Chemaitelly, H. *et al.* Immune imprinting and protection against repeat reinfection with SARS-
392 CoV-2. *N Engl J Med* **387**, 1716-1718 (2022). <https://doi.org/10.1056/NEJMc2211055>
393 23 Kaku, C. I. *et al.* Recall of preexisting cross-reactive B cell memory after Omicron BA.1
394 breakthrough infection. *Science Immunology* **7**, eabq3511 (2022).
395 <https://doi.org/doi:10.1126/sciimmunol.abq3511>
396 24 Quandt, J. *et al.* Omicron BA.1 breakthrough infection drives cross-variant neutralization and
397 memory B cell formation against conserved epitopes. *Science Immunology* **7**, eabq2427 (2022).
398 <https://doi.org/doi:10.1126/sciimmunol.abq2427>
399 25 Miller, J. *et al.* Substantial Neutralization Escape by SARS-CoV-2 Omicron Variants BQ.1.1
400 and XBB.1. *New England Journal of Medicine* **388**, 662-664 (2023).
401 <https://doi.org/10.1056/NEJMc2214314>
402 26 Wang, Q. *et al.* SARS-CoV-2 neutralising antibodies after bivalent versus monovalent booster.
403 *The Lancet Infectious Diseases* **23**, 527-528 (2023). [https://doi.org/10.1016/S1473-3099\(23\)00181-0](https://doi.org/10.1016/S1473-
404 3099(23)00181-0)
405 27 Alsoussi, W. B. *et al.* SARS-CoV-2 Omicron boosting induces de novo B cell response in
406 humans. *Nature* **617**, 592-598 (2023). <https://doi.org/10.1038/s41586-023-06025-4>
407 28 Gao, Q. *et al.* Development of an inactivated vaccine candidate for SARS-CoV-2. *Science* **369**,
408 77-81 (2020). <https://doi.org/10.1126/science.abc1932>
409 29 Cao, Y. *et al.* Humoral immune response to circulating SARS-CoV-2 variants elicited by
410 inactivated and RBD-subunit vaccines. *Cell Res* **31**, 732-741 (2021).
411 <https://doi.org/10.1038/s41422-021-00514-9>
412 30 Cao, Y. *et al.* Humoral immunogenicity and reactogenicity of CoronaVac or ZF2001 booster
413 after two doses of inactivated vaccine. *Cell Res* **32**, 107-109 (2022).
414 <https://doi.org/10.1038/s41422-021-00596-5>
415 31 Hsieh, C.-L. *et al.* Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. *Science*
416 **369**, 1501-1505 (2020). <https://doi.org/doi:10.1126/science.abd0826>
417 32 Cao, Y. *et al.* BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection.
418 *Nature* **608**, 593-602 (2022). <https://doi.org/10.1038/s41586-022-04980-y>
419 33 Reynolds, C. J. *et al.* Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-
420 CoV-2 exposure. *Science* **377**, eabq1841 (2022). <https://doi.org/10.1126/science.abq1841>
421 34 Arevalo, C. P. *et al.* Original antigenic sin priming of influenza virus hemagglutinin stalk
422 antibodies. *Proceedings of the National Academy of Sciences* **117**, 17221-17227 (2020).
423 <https://doi.org/doi:10.1073/pnas.1920321117>
424 35 Gostic, K. M., Ambrose, M., Worobey, M. & Lloyd-Smith, J. O. Potent protection against H5N1
425 and H7N9 influenza via childhood hemagglutinin imprinting. *Science* **354**, 722-726 (2016).

426 <https://doi.org:doi:10.1126/science.aag1322>

427 36 Schiepers, A. *et al.* Molecular fate-mapping of serum antibody responses to repeat
428 immunization. *Nature* **615**, 482-489 (2023). <https://doi.org:10.1038/s41586-023-05715-3>

429 37 Chen, X. *et al.* Protective effect of plasma neutralization from prior SARS-CoV-2 Omicron
430 infection against BA.5 subvariant symptomatic reinfection. *Lancet Reg Health West Pac* **33**,
431 100758 (2023). <https://doi.org:10.1016/j.lanwpc.2023.100758>

432 38 Zheng, H. *et al.* Disease profile and plasma neutralizing activity of post-vaccination Omicron
433 BA.1 infection in Tianjin, China: a retrospective study. *Cell Research* (2022).
434 <https://doi.org:10.1038/s41422-022-00674-2>

435 39 Greaney, A. J. *et al.* Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-
436 Binding Domain that Escape Antibody Recognition. *Cell Host Microbe* **29**, 44-57 e49 (2021).
437 <https://doi.org:10.1016/j.chom.2020.11.007>

438 40 Cao, Y. *et al.* Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies.
439 *Nature* **602**, 657-663 (2022). <https://doi.org:10.1038/s41586-021-04385-3>

440 41 Starr, T. N. *et al.* SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape.
441 *Nature* **597**, 97-102 (2021). <https://doi.org:10.1038/s41586-021-03807-6>

442 42 Cao, Y. *et al.* Rational identification of potent and broad sarbecovirus-neutralizing antibody
443 cocktails from SARS convalescents. *Cell Rep* **41**, 111845 (2022).
444 <https://doi.org:10.1016/j.celrep.2022.111845>

445 43 Barnes, C. O. *et al.* SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies.
446 *Nature* **588**, 682-687 (2020). <https://doi.org:10.1038/s41586-020-2852-1>

447 44 Corti, D., Purcell, L. A., Snell, G. & Veesler, D. Tackling COVID-19 with neutralizing
448 monoclonal antibodies. *Cell* **184**, 3086-3108 (2021). <https://doi.org:10.1016/j.cell.2021.05.005>

449 45 Westendorf, K. *et al.* LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants.
450 *Cell Rep* **39**, 110812 (2022). <https://doi.org:10.1016/j.celrep.2022.110812>

451 46 Mlcochova, P. *et al.* SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion.
452 *Nature* **599**, 114-119 (2021). <https://doi.org:10.1038/s41586-021-03944-y>

453 47 Addetia, A. *et al.* Therapeutic and vaccine-induced cross-reactive antibodies with effector
454 function against emerging Omicron variants. *bioRxiv*, 2023.2001.2017.523798 (2023).
455 <https://doi.org:10.1101/2023.01.17.523798>

456 48 Hoffmann, M. *et al.* Effect of hybrid immunity and bivalent booster vaccination on omicron
457 sublineage neutralisation. *The Lancet Infectious Diseases* **23**, 25-28 (2023).
458 [https://doi.org:10.1016/S1473-3099\(22\)00792-7](https://doi.org:10.1016/S1473-3099(22)00792-7)

459 49 Lim, W. W., Mak, L., Leung, G. M., Cowling, B. J. & Peiris, M. Comparative immunogenicity
460 of mRNA and inactivated vaccines against COVID-19. *The Lancet Microbe* **2**, e423 (2021).
461 [https://doi.org:10.1016/S2666-5247\(21\)00177-4](https://doi.org:10.1016/S2666-5247(21)00177-4)

462

463

464 **Figure Legends**

465 **Fig. 1 | Humoral immune imprinting in mice.**

466 **a**, Neutralizing antibody response after priming with 2 doses of 3 µg CoronaVac followed by
467 boosting with 10 µg SARS-CoV-1 Spike protein or SARS-CoV-2 variant Spike proteins in mice. **b**,

468 Neutralizing antibody response after immunization with 2 doses of 3 μ g CoronaVac followed by
469 boosting with 10 μ g SARS-CoV-2 variant Spike proteins with 3-month or 6-month time intervals in
470 mice. The variants labeled on x-axis of the graphs indicate the NT50 against that variant in (a, b).
471 The variants marked at the bottom of the figure are the variants used for boosting in (a, b). c,
472 Neutralizing antibody response after priming with 2 doses of 3 μ g CoronaVac followed by boosting
473 twice with 10 μ g SARS-CoV-2 variant Spike proteins with 1-month or 3-month intervals in mice.
474 d, Neutralizing antibody response after priming with 2 doses of 3 μ g CoronaVac followed by
475 boosting twice with 1 μ g SARS-CoV-2 variant Spike mRNAs. The variants marked at the bottom
476 of the figure are the variants used for priming or boosting in (c, d). Red, blue, yellow circuls indicate
477 the NT50s against BA.5, BQ.1.1, and XBB in (c, d). 10 mice were immunized and analyzed in each
478 group (n= 10). Sera were collected four weeks after the last dose. Geometric mean titers (GMT)
479 were labeled. For paired samples in a-b, statistical significance was determined using two-tailed
480 Wilcoxon signed-rank tests. For independent samples in c-d, statistical significance were
481 determined using two-tailed Wilcoxon rank sum tests. *p < 0.05, **p < 0.01, ***p < 0.001, ****p
482 < 0.0001, and not significant (NS) p > 0.05. All neutralization assays were conducted in at least two
483 independent experiments.

484

485 **Fig. 2 | Humoral immune imprinting after repeated Omicron infections in humans.**

486 a, Examination of immune imprinting after Omicron breakthrough infections and repeated Omicron
487 infections. Plasma antibody titers against pseudotyped D614G and variants were measured. b,
488 Plasma antibody titers against authentic virus variant. For (a, b), fold changes between titers against
489 variants and D614G were calculated and shown above the line. Statistical significance was
490 determined using the Wilcoxon signed-rank test. c, Plasma antibody titers against authentic FL.8
491 (XBB.1.9.1.8) after repeated Omicron infections and BA.5 or BF.7 breakthrough infections. Fold
492 changes between titers of different cohorts were calculated and shown above the line. Statistical
493 significance was determined using the Wilcoxon rank sum tests. d, Plasma antibody breadth after
494 one-time breakthrough infection and repeated Omicron infections. Plasma antibody titers against
495 circulating pseudotyped variants were measured. Fold changes between titers of different cohorts
496 were calculated and shown above the line. Statistical significance was determined using the
497 Wilcoxon rank sum tests. BA.1, BA.2, BA.5, BF.7 BTI: post-vaccination Omicron breakthrough

498 infection (BTI). BA.1, BA.2 BTI+ BA.5/BF.7 infection: post-vaccination Omicron breakthrough
499 infection followed by BA.5/BF.7 reinfection. BA.1/BA.2+ BA.5/BF.7 infection: BA.1/BA.2
500 infection followed by BA.5/BF.7 reinfection with no vaccination history. Blood samples were
501 collected 1-2 months after the last infection. Detailed information about the cohorts is in
502 Supplementary Table 1. Geometric mean titers (GMT) are labeled in **(a, b)**. Geometric mean \pm SD
503 are labeled in **(c-d)**. Dashed lines indicate the limit of detection (LOD, NT50 = 20). *p < 0.05,
504 **p < 0.01, ***p < 0.001, ****p < 0.0001, and not significant (NS) p > 0.05. All neutralization assays
505 were conducted in at least two independent experiments.

506

507 **Fig. 3 | B cell immune imprinting after repeated Omicron infections.**

508 **a-d**, Flow cytometry analysis of pooled B cells from Omicron infection convalescent individuals.
509 BA.1 (up) and BA.2 (down) RBD double-positive CD20+, IgM-, IgD-, CD27+ B cells were isolated
510 for paired-single-cell V(D)J sequencing. Flow cytometry analyses were performed in cohorts of the
511 following: **(a)** 2 months after BA.1 (up) or BA.2 (down) breakthrough infections, **(b)** 8 months after
512 BA.1 (up) or BA.2 (down) breakthrough infections, **(c)** 1 month after BA.5/BF.7 reinfection after
513 BA.1 (up) and BA.2 (down) breakthrough infections, **(d)** 2-3 months after BA.5/BF.7 reinfection
514 after BA.1 (up) or BA.2 (down) infection without SARS-CoV-2 vaccination history. APC,
515 allophycocyanine; FITC, fluorescein isothiocyanate; PE, phycoerythrin. BV605, Brilliant Violet
516 605. **e**, Proportions of WT-binding and non-WT-binding antibodies from Omicron breakthrough
517 infection and repeated Omicron infection cohorts. Binding specificity was determined by ELISA.
518 The antibodies were expressed in vitro using the sequence of the RBD-binding memory B cells from
519 various cohorts. **f**, The heavy-chain variable domain somatic hypermutation rate of the mAbs from
520 various cohorts. Statistical tests were determined using two-tailed Wilcoxon rank-sum tests. Boxes
521 display the 25th percentile, median and 75th percentile, and whiskers indicate median \pm 1.5 times
522 the interquartile range. Violin plots show kernel density estimation curves of the distribution. The
523 numbers and ratios of samples in each group are labeled above the violin plots. **g-h**, The BA.1(g)
524 or BA.2(h) pseudovirus neutralizing ability(IC50) of the mAbs from various cohorts. Detection limit
525 is denoted as dashed line, and geometric mean is denoted as black bar. Geometric mean, fold
526 changes and the number of antibodies are labeled above the plots. Statistical tests were determined
527 using two-tailed Wilcoxon rank-sum tests in **(f-h)**. *p < 0.05, **p < 0.01, ***p < 0.001,

528 ****p<0.0001, and not significant (NS) p > 0.05.

529

530 **Fig. 4 | Epitope distribution and characterization of mAbs elicited by Omicron BTI and**
531 **reinfection**

532 **a**, UMAP embedding of epitope groups of monoclonal antibodies (mAbs) binding BA.5 RBD
533 isolated from convalescent individuals who experienced BA.5/BF.7 BTI or reinfection (n=1350). **b**,
534 Neutralization activities, denoted as IC50 values, against SARS-CoV-2 D614G (n = 1349), BA.4/5
535 (n = 1322), and XBB.1.5 (n = 1346) spike-pseudotyped vesicular stomatitis viruses (VSV), as well
536 as ACE2 competition levels determined by ELISA (n = 1344), are projected onto the UMAP
537 embedding space. **c**, Distribution of mAbs across epitope groups is shown for BA.5 Breakthrough
538 Infection (BTI), BF.7 BTI, BA.1 BTI with reinfection, and BA.2 BTI with reinfection. Epitope
539 groups predominantly comprising non-neutralizing or weakly neutralizing mAbs (E2.2, E3, and F1)
540 are highlighted with dashed boxes. The percentage of antibodies in these three groups is labeled on
541 each bar. **d**, Average DMS escape scores of the crucial epitope groups contributing to neutralization
542 against XBB.1.5 are illustrated on the structure model of the SARS-CoV-2 BA.5 RBD (PDB:
543 7XNS). Key residues with high escape scores for each group are labeled. **e**, The average DMS
544 escape scores for the key epitope groups are represented as sequence logos; residues are depicted
545 using the standard one-letter code and colored based on their chemical properties. The height of
546 each letter corresponds to the escape score of the respective mutation. **f**, Pseudovirus-neutralization
547 activities of mAbs within the six crucial epitope groups (A1 [n = 170], A2 [n = 60], B [n = 33], F3
548 [n = 129], D3 [n = 155], and D4 [n = 80]) are shown against SARS-CoV-2 D614G, BA.5, BQ.1.1,
549 and XBB.1.5. Geometric mean IC50 values are displayed as bars and labeled above each group of
550 data points.

551

552 **Fig. 5 | Estimate the evolutionary trends of XBB.1.5 RBD from DMS profiles.**

553 Normalized average DMS escape scores weighted by IC50 against XBB.1.5 using DMS profiles of
554 mAbs from BA.5/BF.7 BTI (**a**), and mAbs from BA.5/BF.7 BTI and BA.1/BA.2 BTI with
555 BA.5/BF.7 reinfection (**b**). The impacts of each mutation on ACE2 binding and RBD expression,
556 and the codon constraints on each residue, are also considered (see Methods). Residues with high
557 estimated preferences are labeled, and their corresponding mutation scores are shown as logos.

558

559 **Fig. 6 | Combination of escape mutations evades XBB.1.5-neutralizing antibodies from**
560 **reinfection.**

561 **a**, SARS-CoV-2 XBB.1.5-based pseudoviruses harboring combinations of critical mutations
562 identified through analysis of DMS profiles are generated. **b**, hACE2-binding affinity for various
563 RBD mutants of SARS-CoV-2 is assessed using SPR. Geometric mean dissociation constants (KD)
564 from at least four independent replicates are shown, with statistical significance in comparison to
565 XBB.1.5 RBD's KD labeled above the bars. P-values are determined using a two-tailed t-test on
566 log-transformed KD values. **c**, IC₅₀ values for representative potent XBB.1.5-neutralizing
567 antibodies from different epitope groups against XBB.1.5 variants carrying individual or multiple
568 escape mutations are displayed. Fold changes in IC₅₀ against the mutants relative to XBB.1.5 are
569 presented as a heatmap. **d-f**, Pseudovirus 50% neutralization titers (NT₅₀) for SARS-CoV-2
570 XBB.1.5-based mutants are shown using plasma from convalescent individuals who experienced
571 BA.5 or BF.7 reinfection: BA.1 BTI prior to BA.5/BF.7 reinfection (n = 26) (**d**); BA.2 BTI prior to
572 BA.5/BF.7 reinfection (n = 19) (**e**); and reinfection with BA.5 or BF.7 after BA.1 or BA.2 infection
573 without vaccination (n = 12) (**f**). Key mutations diminishing neutralization are labeled above their
574 corresponding lines. Dashed lines indicate the limit of detection (LOD, NT₅₀ = 20). Geometric
575 mean titers are labeled above data points. Statistical tests are performed between neighboring
576 mutants. P-values are calculated using two-tailed Wilcoxon signed-rank tests on paired samples. *p
577 < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and not significant (NS) p > 0.05.

578

579 **Methods**

580 **Isolation of PBMCs and plasma**

581 Blood samples from vaccinated or unvaccinated individuals who had recovered from Omicron
582 breakthrough infection or reinfection were obtained under study protocols approved by Beijing
583 Ditan Hospital, Capital Medical University (Ethics committee archiving No. LL-2021-024-02) and
584 the Tianjin Municipal Health Commission, and the Ethics Committee of Tianjin First Central
585 Hospital (Ethics committee archiving No. 2022N045KY). All participants have provided written
586 informed consent for the collection of information, storage and use of their clinical samples for
587 research purposes, and publication of data generated from this study.

588 Samples from one-time breakthrough infection and the first infections in repeat-infection cohorts
589 were collected during the "zero COVID" period in China. During that period, the total number of
590 infected individuals was small and there were clear epidemiological correlations between confirmed
591 cases. BA.1 breakthrough infections occurred in Tianjin in January and a cumulative count of 430
592 individuals tested positive for Omicron BA.1 by February 7, 2022, with no additional infections
593 identified in the subsequent 16 days³⁸. BA.2 breakthrough infections occurred in Beijing between
594 April and July 2022. From April 22 to Nov 14, a total of 2,230 cases of local infections were reported
595 in Beijing, and BA.2.2.1 (BA.2+I1221T in spike) was the most prevalent subvariant in Beijing
596 between April and July⁵⁰. BA.5 breakthrough infections occurred in Beijing and Tianjin between
597 September and October 2022⁵⁰. BF.7 breakthrough infections occurred in Inner Mongolia in
598 November 2022, and BF.7 accounted for 100% of the sequences⁵¹. These samples of infection were
599 confirmed by PCR, and the majority of them also underwent sequencing to determine the viral
600 strains. The unsequenced samples, which make up only a small proportion of the total samples,
601 showed strong epidemiological correlations with the sequenced samples.

602 Reinfections were confirmed by PCR or antigen testing. While the viral strain types for these
603 infections were not confirmed through sequencing, it is important to note that these samples were
604 confirmed in December 2022 in Beijing and Tianjin. At that time, these regions were predominantly
605 undergoing the BA.5/BF.7 wave⁵⁰. Among the sequences from samples collected between
606 12/01/2022-02/01/2023, >98% of them were designated as BA.5* (excluding BQ*). Specifically,
607 the major subtypes circulating in China at that time were BA.5.2.48* (DY*) and BF.7.14*, which
608 do not harbor additional mutations on RBD, and thus can be generally considered as BA.5/BF.7 in
609 this study (<https://cov-spectrum.org/explore/China/AllSamples/from%3D2022-12-01%26to%3D2023-02-01/variants?&>).

611 The whole blood samples were 1:1 diluted with 2% fetal bovine serum (FBS) (Hyclone,
612 SH30406.05) in phosphate buffered saline (PBS) (Invitrogen, C10010500BT) and subjected to
613 Ficoll (Cytiva, 17-1440-03) gradient centrifugation to isolate plasma and PBMCs. Plasma was
614 collected from upper layer after centrifugation. PBMCs were collected at the interface and further
615 prepared through centrifugation, red blood cell lysis (Invitrogen™ eBioscience™ 1X RBC Lysis
616 Buffer, 00-4333-57) and washing steps. If not used for downstream process immediately, samples
617 were stored in FBS with 10% DMSO (Sigma-Aldrich, D4540) in liquid nitrogen. All PBMC

618 samples were shipped on dry ice and cryopreserved PBMCs were thawed in PBS + 1mM EDTA
619 (Invitrogen, AM9260G) + 2% FBS before use.

620

621 **mRNA and protein vaccine preparation and mouse immunization**

622 For mRNA vaccine preparation, 5' untranslated region (UTR), target sequence, and 3'UTR were
623 sequentially inserted after T7 promoter in an empty PSP73 plasmid firstly. The plasmid was then
624 subjected to double digestion to obtain linearized DNA. This DNA served as a template for an in
625 vitro transcription reaction mediated by T7 RNA polymerase to synthesize RNA encoding the
626 SARS-CoV-2 S6P (F817P, A892P, A899P, A942P, K986P, V987P, R683A and R685A) protein
627 according to the manufacturer's instructions (Vazyme, DD4201). Uridine was fully replaced by N1-
628 methyl-pseudouridine in this process. Transcription products were treated with DNase I to remove
629 DNA templates, and purified using VAHTS RNA Clean Beads (Vazyme, N412-02). Cap 1 structure
630 was added using Vaccinia Capping Enzyme (Vazyme, DD4109) and mRNA Cap 2'-O-
631 Methyltransferase (Vazyme, DD4110), followed by magnetic bead purification. Poly(A) tails were
632 added using E.coli Poly(A) Polymerase (Vazyme, N412-02) and the product was purified again.

633

634 The mRNA was encapsulated in a functionalized lipid nanoparticle as described previously⁵². In
635 brief, ionizable lipid, DSPC, cholesterol, and PEG2000-DMG were dissolved in ethanol at the mole
636 ratio of 50:10:38.5:1.5, respectively. mRNA was diluted in RNase free 50 mM citrate buffer (pH
637 4.0) to obtain a final lipid:mRNA weight ratio of 6:1. The aqueous and ethanol solutions were mixed
638 in a 3:1 volume ratio using a microfluidic apparatus and the obtained LNPs were dialyzed overnight.
639 All of the samples were stored within a week at 2~8 °C of use to ensure the chemical stability of the
640 components. The size of LNPs, the particle size distributions, and the encapsulation and
641 concentration of mRNA were determined. The encapsulation in all of the samples was typically 90–
642 99%.

643 The spike proteins, including D614G (ACROBiosystems, SPN-C52H9), XBB (ACROBiosystems,
644 SPN-C5248), BQ.1.1 (ACROBiosystems, SPN-C522s), BA.1 (ACROBiosystems, SPN-C522a),
645 BA.5 (ACROBiosystems, SPN-C522e) were used for mouse immunization. All of these proteins
646 were modified to incorporate 6P2A mutations (F817P, A892P, A899P, A942P, K986P, V987P,
647 R683A, R685A) and a T4 fibritin foldon domain at the C-terminus to improve the stability of the

648 trimeric structure.

649 Animal experiments were carried out under study protocols approved by Institute of Biophysics,

650 Chinese Academy of Sciences (SYXK2023300) and HFK Biologics (HFK-AP-20210930). Mice

651 were immunized according to schemes in figure 1. All inactivated vaccines were administered

652 intraperitoneally at a dose of 3 μ g per mouse, while mRNA vaccines were administered

653 intramuscularly at a dose of 10 μ g per mouse. Protein subunit vaccines were administered

654 subcutaneously at six sites on the back at a dose of 10 μ g per mouse, where complete Freund's

655 adjuvant was used for the prime immunization, and incomplete Freund's adjuvant was used for

656 booster immunizations, with a 1:1 volume ratio of protein subunit and adjuvant. The second

657 immunizations were given 2 weeks after the first dose, with subsequent doses administered at 1-

658 month intervals, unless stated otherwise. Blood samples were collected 1 week after the final

659 immunization.

660

661 **BCR sequencing, analysis and recombinant antibody expression**

662 CD19⁺ B cells were enriched from PBMCs using EasySep Human CD19 Positive Selection Kit II

663 (STEMCELL, 17854). Following enrichment, 1x10⁶ B cells in 100 μ l buffer were incubated with a

664 panel of antibodies including 3 μ l FITC anti-human CD20 antibody (BioLegend, 302304), 3.5 μ l

665 Brilliant Violet 421 anti-human CD27 antibody (BioLegend, 302824), 2 μ l PE/Cyanine7 anti-

666 human IgD antibody (BioLegend, 348210) and 2 μ l PE/Cyanine7 anti-human IgM antibody

667 (BioLegend, 314532). Additionally, fluorophore or oligonucleotide conjugated RBD were added.

668 For FACS, 0.013 μ g of biotinylated BA.1 (Sino Biological, 40592-V49H7-B) or BA.2 (customized

669 from Sino Biological) RBD protein conjugated with PE-streptavidin (BioLegend, 405204) and

670 APC-streptavidin (BioLegend, 405207), and 0.013 μ g of WT biotinylated RBD protein (Sino

671 Biological, 40592-V27H-B) conjugated with BV605-streptavidin (BioLegend, 405229) were added.

672 For sequencing, BA.1 or BA.2 biotinylated RBD protein conjugated with TotalSeqTM-C0971

673 Streptavidin (BioLegend, 405271) and TotalSeqTM-C0972 Streptavidin (BioLegend, 405273), WT

674 biotinylated RBD protein conjugated with TotalSeqTM-C0973 Streptavidin (BioLegend, 405275)

675 and TotalSeqTM-C0974 Streptavidin (BioLegend, 405277) and biotinylated Ovalbumin (Sino

676 Biological) conjugated with TotalSeqTM-C0975 Streptavidin (BioLegend, 405279) were added.

677 After incubation and washing steps, 5 μ l of 7-AAD (Invitrogen, 00-6993-50) was included for dead

678 cell exclusion.

679

680 Cells negative for 7-AAD, IgM and IgD, but positive for CD20, CD27 and BA.1 or BA.2 were
681 sorted using a MoFlo Astrios EQ Cell Sorter (Beckman Coulter). FACS data were collected by
682 Summit 6.0 (Beckman Coulter) and analyzed using FlowJo v10.8 (BD Biosciences).

683

684 The sorted B cells were processed using the Chromium Next GEM Single Cell V(D)J Reagent Kits
685 v1.1 according to the manufacturer's user guide (10x Genomics, CG000208). Briefly, the cells were
686 resuspended in PBS after centrifugation and then processed to obtain gel beads-in-emulsion (GEMs)
687 using the 10X Chromium controller. The GEMs were subjected to reverse transcription and the
688 products were further purified with a GEM-RT clean up procedure. Preamplification was then
689 performed on the products which were subsequently purified using the SPRIselect Reagent Kit
690 (Beckman Coulter, B23318). The paired V(D)J BCR sequences were enriched with 10X BCR
691 primers, followed by library preparation. Finally, the libraries were sequenced using the Novaseq
692 6000 platform, running either the Novaseq 6000 S4 Reagent Kit v1.5300 cycles (Illumina,
693 20028312) or the NovaSeq XP 4-Lane Kit v1.5 (Illumina, 20043131).

694

695 10X Genomics V(D)J sequencing data were assembled as BCR contigs and aligned using the Cell
696 Ranger (v6.1.1) pipeline according to the GRCh38 BCR reference. To ensure high quality, only the
697 productive BCR contigs and cells with one heavy chain and one light chain were retained. The
698 IgBlast program (v1.17.1) was utilized to identify and annotate the germline V(D)J genes. The
699 Change-O toolkit (v1.2.0) was employed to detect somatic hypermutation sites in the variable
700 domain of the antibodies.

701

702 For expression optimization in human cells, heavy and light chain genes were synthesized by
703 GenScript, inserted separately into plasmids (pCMV3-CH, pCMV3-CL or pCMV3-CK) via
704 infusion (Vazyme, C112), and co-transfected into Expi293F cells (Thermo Fisher, A14527) using
705 polyethylenimine transfection. The cells were cultured at 36.5°C in 5% CO₂ and 175 r.p.m. for 6-
706 10 days. The cell expression fluid was collected and centrifuged. After centrifugation, supernatants
707 containing the monoclonal antibodies were purified using protein A magnetic beads (Genscript,

708 L00695). The purified samples were determined by SDS-PAGE.

709

710 **Pseudovirus-neutralization assay**

711 Codon-optimized SARS-CoV-2 S gene was inserted into the pcDNA3.1 vector to construct
712 plasmids encoding the spike proteins of SARS-CoV-2. The 293T cell line (ATCC, CRL-3216) was
713 transfected with the spike protein-expressing plasmids and then infected with G*ΔG-VSV virus
714 (Kerafast, EH1020-PM). After culturing, the pseudovirus-containing supernatant was collected,
715 filtered, aliquoted, and frozen at -80 °C for future use. Pseudovirus-neutralization assays were
716 conducted on the Huh-7 cell line (Japanese Collection of Research Bioresources (JCRB), 0403).

717

718 Monoclonal antibodies or plasma were serially diluted in DMEM (Hyclone, SH30243.01) and
719 incubated with pseudovirus in 96-well plates at 5% CO₂ and 37°C for 1 h. Digested Huh-7 cell
720 (JCRB, 0403) or 293T-hACE2 cells (ATCC, CRL-3216) were seeded and cultured for 24h. Half of
721 the supernatant was then discarded and D-luciferin reagent (PerkinElmer, 6066769) was added to
722 react in the dark. The luminescence value was detected using a microplate spectrophotometer
723 (PerkinElmer, HH3400). IC₅₀ was determined by a four-parameter logistic regression model using
724 PRISM (version 9.0.1).

725

726 **Authentic virus neutralizing assay**

727 The serum samples obtained from Convalescent individuals were heat-inactivated at 56°C for 0.5
728 hours and subsequently diluted in two-fold steps with cell culture medium. These diluted sera were
729 mixed with a virus suspension (SARS-CoV-2 Wuhan, BA.1, BA.5.2.1, BF.7.14, FL.8 (XBB.1.9.1.8)
730 containing 100 CCID₅₀ and added to 96-well plates at a 1:1 ratio. The plates were then incubated at
731 36.5°C in a 5% CO₂ incubator for 2 hours. Following the incubation period, Vero cells (Gifted from
732 WHO, (ATCC, CCL-81)) were added to each well containing the serum-virus mixture. The plates
733 were further incubated for 5 days at 36.5°C in a 5% CO₂ incubator. Microscopic observation of
734 cytopathic effects (CPE) was performed, and the neutralizing titer was determined based on the
735 highest dilution that showed 50% protection against the virus-induced CPE.

736

737 **ELISA**

738 ELISA assays were conducted by pre-coating ELISA plates with RBD (SARS-CoV-2 wild type,
739 SARS-CoV-2 BA.1, SARS-CoV-2 BA.2 RBD, Sino Biological) at concentrations of $0.03 \mu\text{g ml}^{-1}$
740 and $1 \mu\text{g ml}^{-1}$ in PBS overnight at 4°C . The plates were then washed and blocked, after which $100 \mu\text{l}$
741 of $1 \mu\text{g ml}^{-1}$ antibodies were added to each well and incubated at room temperature for 2 hours.
742 Following incubation, the plates were washed and incubated with $0.25 \mu\text{g ml}^{-1}$ Peroxidase-
743 conjugated AffiniPure goat anti-human IgG (H+L) (JACKSON, 109-035-003) for 1 hour at room
744 temperature. The reaction was developed using tetramethylbenzidine (TMB) (Solarbio, 54827-17-
745 7), and stopped by adding H_2SO_4 . The absorbance was measured at 450 nm using a microplate
746 reader (PerkinElmer, HH3400) and the negative control used was the H7N9 human IgG1 antibody
747 HG1K. (Sino Biological, HG1K).

748

749 **Surface plasmon resonance**

750 Human ACE2 with Fc tag was immobilized onto Protein A sensor chips using a Biacore 8K (GE
751 Healthcare). Purified SARS-CoV-2 mutants RBD were prepared in serial dilutions, ranging from
752 100 to 6.25nM , and injected over the sensor chips. The response units were recorded at room
753 temperature using BIACore 8K Evaluation Software (v3.0.12.15655; GE Healthcare). The obtained
754 data were then analyzed using BIACore 8K Evaluation Software (v3.0.12.15655; GE Healthcare)
755 and fitted to a 1:1 binding model.

756

757 **DMS Library construction**

758 Duplicate single site saturated mutant libraries spanning all 201 amino acids of BA.5 RBD (position
759 N331-T531 by Wuhan-Hu-1 reference numbering) were constructed based on previously reported
760 method¹, in order to ensure the reproducibility and reliability of results. A unique N26 barcode was
761 PCR appended to each RBD variant as an identifier, and the correspondence of variant and N26
762 barcode was obtained by PacBio sequencing on Sequel II platform in Peking University throughput
763 sequencing center (HTSC). The BA.5 RBD mutant libraries were assembled into pETcon 2649
764 vector and amplified in DH10B cells. Above plasmids products were then transformed into
765 *Saccharomyces cerevisiae* EBY100. Yeasts were screened on SD-CAA plates and further enlarged
766 in SD-CAA liquid media, the resulted libraries were preserved at -80°C after flash frozen in liquid
767 nitrogen.

768

769 **MACS-based mutation escape profiling**

770 The high-throughput mutation escape profiling for every single antibody was performed as
771 previously described^{7,32}. Briefly, unexpressed and non-functional RBD variants were first
772 eliminated from BA.5 mutant libraries by magnetic-activated cell sorting (MACS). The selected
773 yeasts were inoculated into SG-CAA media to induce RBD surface expression by overnight culture.
774 To capture yeast cells that escape specific antibody binding, two rounds of sequential negative
775 selection and one round of positive selection were carried out based on MACS. After overnight
776 amplification, plasmids were extracted from the sorted yeasts using the 96 Well Plate Yeast Plasmid
777 Preps Kit (Coolaber, PE053), then used as template for N26 barcode amplification by PCR. Final
778 PCR products were purified, quantified, and sequenced on Nextseq 550 or MGISEQ-2000 platform.
779

780 **DMS data analysis and antibody clustering**

781 DMS raw sequencing data were processed as described previously^{7,32}. In brief, the detected barcode
782 sequences of both the antibody-screened and reference library were aligned to the barcode-variant
783 dictionary generated using dms_variants (v0.8.9) from PacBio sequencing data of the BA.5 DMS
784 library. Only barcodes that are detected more than 5 times in the reference library are included in
785 the calculation to avoid large sampling error. The escape scores of a variant X that are detected both
786 in the screened and reference library were defined as $F \times (n_{X,ab} / N_{ab}) / (n_{X,ref} / N_{ref})$, where F is a scale
787 factor to normalize the scores to the 0-1 range, while n and N are the number of detected barcodes
788 for variant X and total barcodes in antibody-screened (ab) or reference (ref) samples, respectively.
789 To assign an escape score to each single substitution on RBD, an epistasis model is fitted using
790 dms_variants (v0.8.9) as described previously^{53,54}. For antibodies with multiple replicates of DMS,
791 the final escape score of each mutation is the average over all replicates.

792 We used graph-based unsupervised clustering and embedding to assign an epitope group for each
793 antibody and visualize them in a two-dimensional space. First, site escape scores (the sum of
794 mutation escape scores on a residue) of each antibody are first normalized to a sum of one and
795 considered as a distribution over RBD residues. The dissimilarity of two antibodies is defined by
796 the Jessen-Shannon divergence of the normalized escape scores. Pair-wise dissimilarities of all

797 antibodies in the dataset are calculated using the SciPy module
798 (scipy.spatial.distance.jensenshannon, v1.7.0). Then, a 12-nearest-neighbor graph is built using
799 python-igraph module (v0.9.6). Leiden clustering is performed to assign a cluster to each antibody
800 ⁵⁵. The name of each cluster is annotated manually based on the featured sites on the average escape
801 profiles of a cluster to make it consistent with the definition of our previously published DMS
802 dataset using WT-based library in general⁷. To project the dataset onto a 2D space for visualization,
803 we performed UMAP based on the constructed k-nearest-neighbor graph using umap-learn module
804 (v0.5.2). Figures were generated by R package ggplot2 (v3.3.3).

805 **Estimate the preference of RBD mutations**

806 Similar to the approach in our previous study⁷, we incorporated four types of weights in our
807 calculations to account for the impact of each mutation on hACE2-binding affinity, RBD expression,
808 neutralizing activity, and the codon constraints on each residue. The weights for ACE2 binding and
809 RBD expression are determined by $\tanh(S_{\text{bind}}) + 1$ and $\tanh(\min(0, S_{\text{expr}})) + 1$, respectively,
810 where the S_{bind} and S_{expr} values are from the BA.2-based DMS on ACE2 binding and RBD
811 expression⁵⁶. The function $\tanh(x)$ is employed as a sigmoidal curve to constrain the weights
812 between 0 and 2. For codon constraint weights, mutations that cannot be accessed through single
813 nucleotide mutation are first assigned a weight of zero. To address the intrinsic disparities in the
814 frequency of distinct nucleotide substitutions in SARS-CoV-2, we assign different weights for
815 mutations corresponding to various nucleotide substitutions⁵⁷. Specifically, the weight of the most
816 frequent substitution (C>T) is assigned a value of 0.1, while weights for G>T and G>A are 0.041
817 and 0.035, respectively. To retain the potential of rare mutations, all other substitutions are assigned
818 a weight of 0.03. We use BA.4/5 (EPI_ISL_11207535) and XBB.1.5 (EPI_ISL_17054053) to define
819 weights for codon usage. Regarding the neutralizing activities, the weight is calculated as -
820 $\log_{10}(\text{IC}_{50})$. IC₅₀ values ($\mu\text{g/mL}$) less than 0.0005 or greater than 1.0 are considered as 0.0005 or 1.0,
821 respectively. As the dataset specifically enriches for Omicron-specific antibodies, potentially
822 introducing bias when estimating mutation preferences. An additional weighting strategy is applied
823 that assigns higher weights to cross-reactive mAbs, resulting in 89% cross-reactive mAbs for
824 BA.5/BF.7 BTI cohorts and 51% for reinfection cohorts, as determined by unbiased characterization
825 of mAbs using ELISA. The raw escape scores for each antibody are first normalized by the

826 maximum score among all mutants. The weighted score for each antibody and each mutation is
827 obtained by multiplying the normalized scores with the corresponding four weights, and the final
828 mutation-specific weighted score is the sum of scores for all antibodies in the designated set, which
829 is then normalized once more to produce a value between 0 and 1. To visualize the calculated escape
830 maps, sequence logos were created using the Python module logomaker (v0.8).

831

832 **Methods references**

833 50 Pan, Y. *et al.* Characterisation of SARS-CoV-2 variants in Beijing during 2022: an
834 epidemiological and phylogenetic analysis. *Lancet* **401**, 664-672 (2023).
835 [https://doi.org:10.1016/S0140-6736\(23\)00129-0](https://doi.org:10.1016/S0140-6736(23)00129-0)

836 51 Sun, Y., Wang, M., Lin, W., Dong, W. & Xu, J. Evolutionary analysis of Omicron variant BF.7
837 and BA.5.2 pandemic in China. *J Biosaf Biosecur* **5**, 14-20 (2023).
838 <https://doi.org:10.1016/j.jobb.2023.01.002>

839 52 Yanez Arteta, M. *et al.* Successful reprogramming of cellular protein production through mRNA
840 delivered by functionalized lipid nanoparticles. *Proceedings of the National Academy of
841 Sciences* **115**, E3351-E3360 (2018). <https://doi.org:doi:10.1073/pnas.1720542115>

842 53 Starr, T. N. *et al.* Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals
843 Constraints on Folding and ACE2 Binding. *Cell* **182**, 1295-1310 e1220 (2020).
844 <https://doi.org:10.1016/j.cell.2020.08.012>

845 54 Otwinowski, J., McCandlish, D. M. & Plotkin, J. B. Inferring the shape of global epistasis. *Proc
846 Natl Acad Sci U S A* **115**, E7550-E7558 (2018). <https://doi.org:10.1073/pnas.1804015115>

847 55 Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-
848 connected communities. *Scientific Reports* **9**, 5233 (2019). [https://doi.org:10.1038/s41598-019-41695-z](https://doi.org:10.1038/s41598-019-
849 41695-z)

850 56 Starr, T. N. *et al.* Deep mutational scans for ACE2 binding, RBD expression, and antibody
851 escape in the SARS-CoV-2 Omicron BA.1 and BA.2 receptor-binding domains. *PLOS
852 Pathogens* **18**, e1010951 (2022). <https://doi.org:10.1371/journal.ppat.1010951>

853 57 Bloom, J. D. & Neher, R. A. Fitness effects of mutations to SARS-CoV-2 proteins. *bioRxiv*,
854 2023.2001.2030.526314 (2023). <https://doi.org:10.1101/2023.01.30.526314>

855

856

857 **Acknowledgments**

858 We would like to express our gratitude to Jesse D. Bloom and Tyler N. Starr for their invaluable
859 insights and discussions during the construction of our deep mutation scanning libraries. We thank
860 all volunteers for providing the blood samples. We gratefully acknowledge the assistance of the
861 High-throughput Sequencing Center at Peking University and Annoroad Gene Technology Co., Ltd.

862 in sample sequencing. This project is financially supported by the Ministry of Science and
863 Technology of China and Changping Laboratory (2021A0201; 2021D0102), and National Natural
864 Science Foundation of China (32222030).

865

866 **Author contributions**

867 Y.C. designed and supervised the study. A.Y., F.J., W.S., Q.G., X.S.X, and Y.C. wrote the manuscript
868 with inputs from all authors. A.Y., W.S., S.Y., R.A., Yao W., and X.N. performed B-cell sorting,
869 single-cell VDJ sequencing, and antibody sequence analyses. J.W. (BIOPIC), F.J., H.S. and L.Z.
870 performed and analyzed the DMS data. Y.Y. and Youchun W. constructed the pseudotyped virus.
871 N.Z., P.W., L.Y., T.X. and F.S. performed the pseudotyped virus neutralization assays, ELISA, and
872 SPR. Z.L. performed authentic virus neutralization assays. W.S. and A.Y. analyzed the neutralization
873 data. Y.X., X.C., Z.S. and R.J. recruited the SARS-CoV-2 vaccinees and convalescents. J.W.
874 (Changping Laboratory), L.Y. and F.S. performed the antibody expression.

875

876 **Conflicts of interest**

877 X.S.X. and Y.C. are inventors on the provisional patent applications of BD series antibodies, which
878 include BD55-5514 (SA55) and mAbs from Omicron infection convalescents. X.S.X. and Y.C. are
879 founders of Singlomics Biopharmaceuticals. Other authors declare no competing interests.

880 **Data and code availability**

881 Information of SARS-CoV-2 RBD-targeting mAbs is included in [Supplementary Table 2](#). Processed
882 mutation escape scores, and custom scripts for processing and analyzing DMS data can be
883 downloaded at <https://github.com/jianfcpku/SARS-CoV-2-reinfection-DMS>. Raw sequencing data
884 of DMS are available on China National GeneBank with Project accession CNP0004294. PDB
885 7XNS is used for the structural model of SARS-CoV-2 RBD.

886

887 **Extended Data Figure Legends**

888

889 **Extended Data Fig. 1 | Neutralizing antibody response after CoronaVac priming and one-dose
890 variant spike boosting**

891 **a, b**, Comparison of neutralizing titers among different groups of mice immunized with 2 doses of
892 CoronaVac followed by one-dose BA.5/BQ.1.1/XBB Spike protein boosters administered with one-
893 month, three-month, or six-month intervals between the second and third dose. **a**) Neutralizing titers
894 against D614G; **b**) Neutralizing titers against variants that the mice boosted with. Statistical
895 significance was determined using the Wilcoxon rank sum test. *p < 0.05, **p < 0.01, ***p < 0.001,
896 ****p < 0.0001, and not significant (NS) p > 0.05.

897

898 **Extended Data Fig. 2 | Neutralizing antibody response after CoronaVac priming and two-dose**
899 **variant spike booster or two-dose variant spike priming**

900 **a**, Comparison of neutralizing titers after CoronaVac priming and one-dose or two-dose variant
901 spike boosting. **b**, D614G and boosting variant neutralizing titers after CoronaVac priming and two-
902 dose variant spike boosting. **c-d**, Comparison of neutralizing titers after CoronaVac priming and
903 variant spike protein or mRNA boosting. one-dose boosting in **c** and two-dose boosting in **d**. **e**,
904 Neutralizing antibody titers after CoronaVac priming and one-dose or two dose variant spike mRNA
905 boosters. **f**, Neutralizing antibody titers after two-dose variant spike mRNA or protein boosters.
906 Statistical significance was determined using the Wilcoxon rank sum test (a, c, d and f) or Wilcoxon
907 signed-rank test (b and e). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and not significant
908 (NS) p > 0.05.

909

910 **Extended Data Fig. 3 | Antibody breadth of plasma after repeated Omicron infections.**

911 **a-d**, Plasma antibody titers against pseudotyped D614G and variants after (a) BA.1 BTI +
912 BA.5/BF.7 infection (n = 26), (b) BA.2 BTI + BA.5/BF.7 infection (n = 19), (c) BA.1/BA.2 +
913 BA.5/BF.7 infection (n = 12), d) 8 month post BA.1 BTI (n = 22). Fold changes between titers
914 against variants and D614G were calculated and shown above the line. Statistical significance was
915 determined using the Wilcoxon signed-rank test.

916

917 **Extended Data Fig. 4 | Neutralizing titers of nasal swabs after repeated Omicron infections.**

918 **a**, Comparison of nasal swab neutralizing titers among repeated Omicron infection cohorts. Nasal
919 swab antibody titers against pseudotyped variants were measured. Fold changes between titers of
920 different cohorts were calculated and shown above the line. Statistical significance was determined

921 using the Wilcoxon rank sum test. **b-d**, Nasal swab antibody titers against pseudotyped D614G and
922 variants after **(b)** BA.1 BTI + BA.5/BF.7 infection (n = 26), **(c)** BA.2 BTI + BA.5/BF.7 infection (n
923 = 19), **(d)** BA.1/BA.2 + BA.5 infection (n = 12). Fold changes between titers against variants and
924 D614G were calculated and shown above the line. Statistical significance was determined using the
925 Wilcoxon signed-rank test in (b-d). **e**, Comparison of nasal swab antibody titers against pseudotyped
926 D614G and variants among one-time breakthrough infection and repeated infection cohorts.
927 Statistical significance was determined using the Wilcoxon rank sum test in (e). *p < 0.05, **p <
928 0.01, ***p < 0.001, ****p < 0.0001, and not significant (NS) p > 0.05.

929

930 **Extended Data Fig. 5 | Characteristics of BA.5-reactive mAbs elicited by BA.5/BF.7 BTI or**
931 **reinfection.**

932 **a**, Source of the antibodies are projected onto the UMAP embedding space. Antibodies from BA.5
933 BTI (n=445), BF.7 BTI (n=243), BA.1 BTI with reinfection (n=284), and BA.2 BTI with reinfection
934 (n=232) are colored blue in the corresponding panel, and other antibodies are gray. **b**, Neutralization
935 activities, denoted as IC50 values, against SARS-CoV-2 BA.1 (n = 1260), BA.2 (n = 1238), BA.2.75
936 (n=1238), BQ.1.1 (n = 1335) and XBB (n = 1341) spike-pseudotyped VSV are projected onto the
937 UMAP embedding space. **c**, Average escape scores of epitope groups that are not shown in Fig. 4d
938 (C/D1, D2, E1/E2.1, E2.2, E3, and F1) are illustrated on the structure model of the SARS-CoV-2
939 BA.5 RBD (PDB: 7XNS). Key residues with high escape scores for each group are labeled. **d**,
940 Average DMS escape scores for these epitope groups are represented as sequence logos; residues
941 are depicted using the standard one-letter code and colored based on their chemical properties. The
942 height of each letter corresponds to the escape score of the respective mutation. **e**, Pseudovirus-
943 neutralization activities of XBB.1.5-neutralizing mAbs in groups A1 (n=70) and A2 (n=23) against
944 XBB.1.5 and XBB.1.5.10; and mAbs in groups B (n=15) and C/D1 (n=13) against XBB.1.5 and
945 XBB.1.16. Fold changes in IC50 are labeled. P-values are calculated using two-tailed Wilcoxon
946 signed-rank test of paired samples. **f**, Pseudovirus-neutralization activities of mAbs within the six
947 crucial epitope groups (C/D1 [n = 76], D2 [n = 86], E1/E2.1 [n = 100], E2.2 [n = 124], E3 [n = 101],
948 and F1 [n = 236]) are shown against SARS-CoV-2 D614G, BA.5, BQ.1.1, and XBB.1.5. Geometric
949 mean IC50 values are displayed as bars and labeled above each group of data points.

950

951 **Extended Data Fig. 6 | Workflow of calculating weighted escape scores of each mutation on**
952 **RBD.**

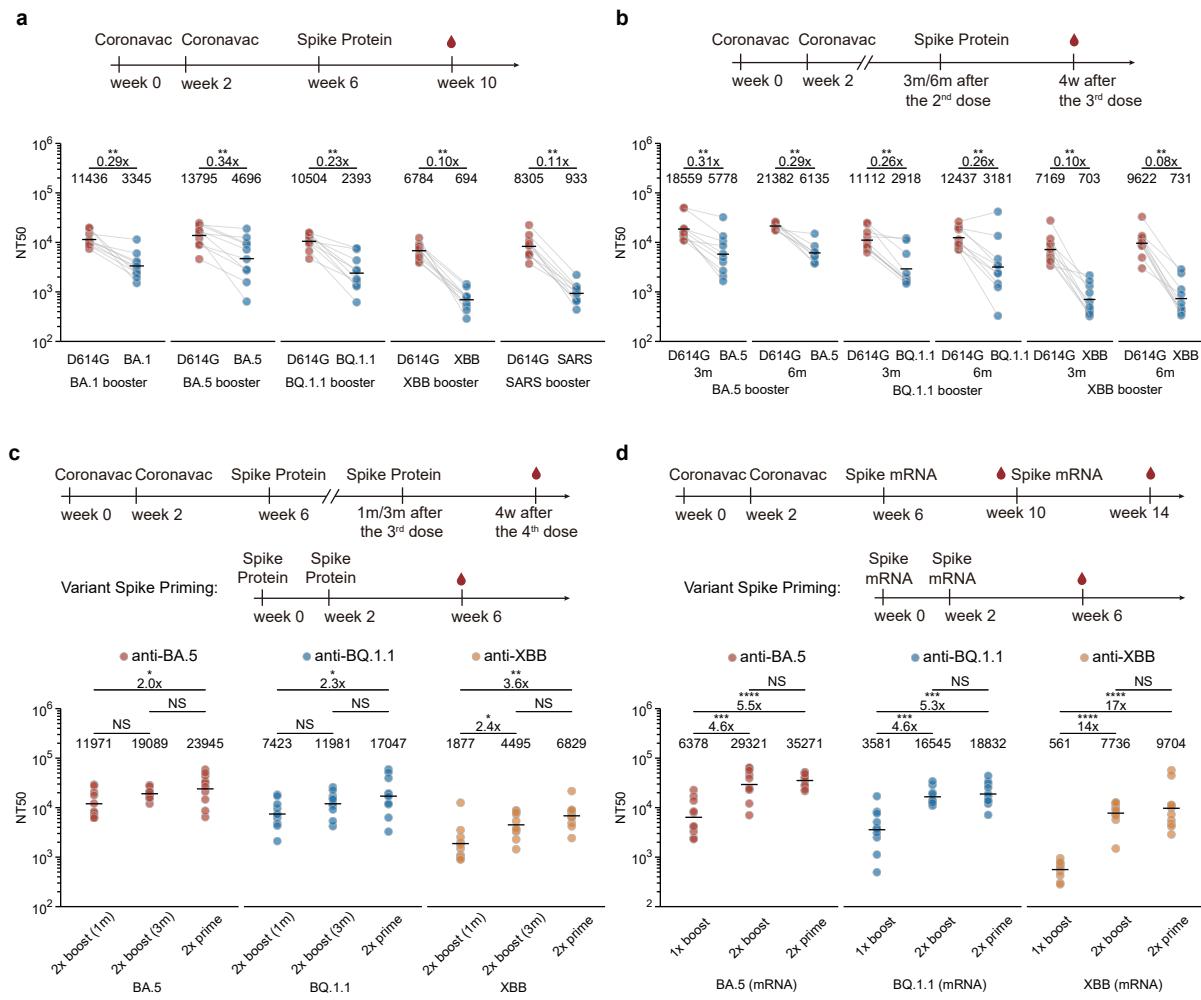
953 Weights for ACE2 binding and RBD expression, neutralization activity, and codon usage are
954 sequentially applied on the calculation to achieve informative results. Mutation preferences of BA.5
955 RBD under the pressure of NAbs from BA.5 or BF.7 BTI are shown.

956

957 **Extended Data Fig. 7 | SPR sensograms for affinity of hACE2 and SARS-CoV-2 mutants**
958 **RBD**

959 Representative sensorgram of at least four replicates is shown for each RBD. Geometric mean
960 kinetic constants k_a , k_d , and dissociation equilibrium constant K_D are labeled in each panel.

961


962 **Extended Data Fig. 8 | NAbs from BTI and reinfection are escaped by constructed mutants**
963 **a**, IC50 values for representative potent XBB.1.5-neutralizing antibodies from different epitope
964 groups against XBB.1.5 variants carrying individual or multiple escape mutations are shown. The
965 order of antibodies is the same as that in Fig. 6c. **b**, Pseudovirus NT50 for SARS-CoV-2 XBB.1.5-
966 based mutants are shown using plasma from convalescent individuals who experienced BA.5 (n=36)
967 or BF.7 BTI (n = 30). Statistical tests are performed between neighboring mutants. P-values are
968 calculated using two-tailed Wilcoxon signed-rank tests on paired samples. *p < 0.05, **p < 0.01,
969 ****p < 0.0001, and p > 0.05 (NS).

970

971

972

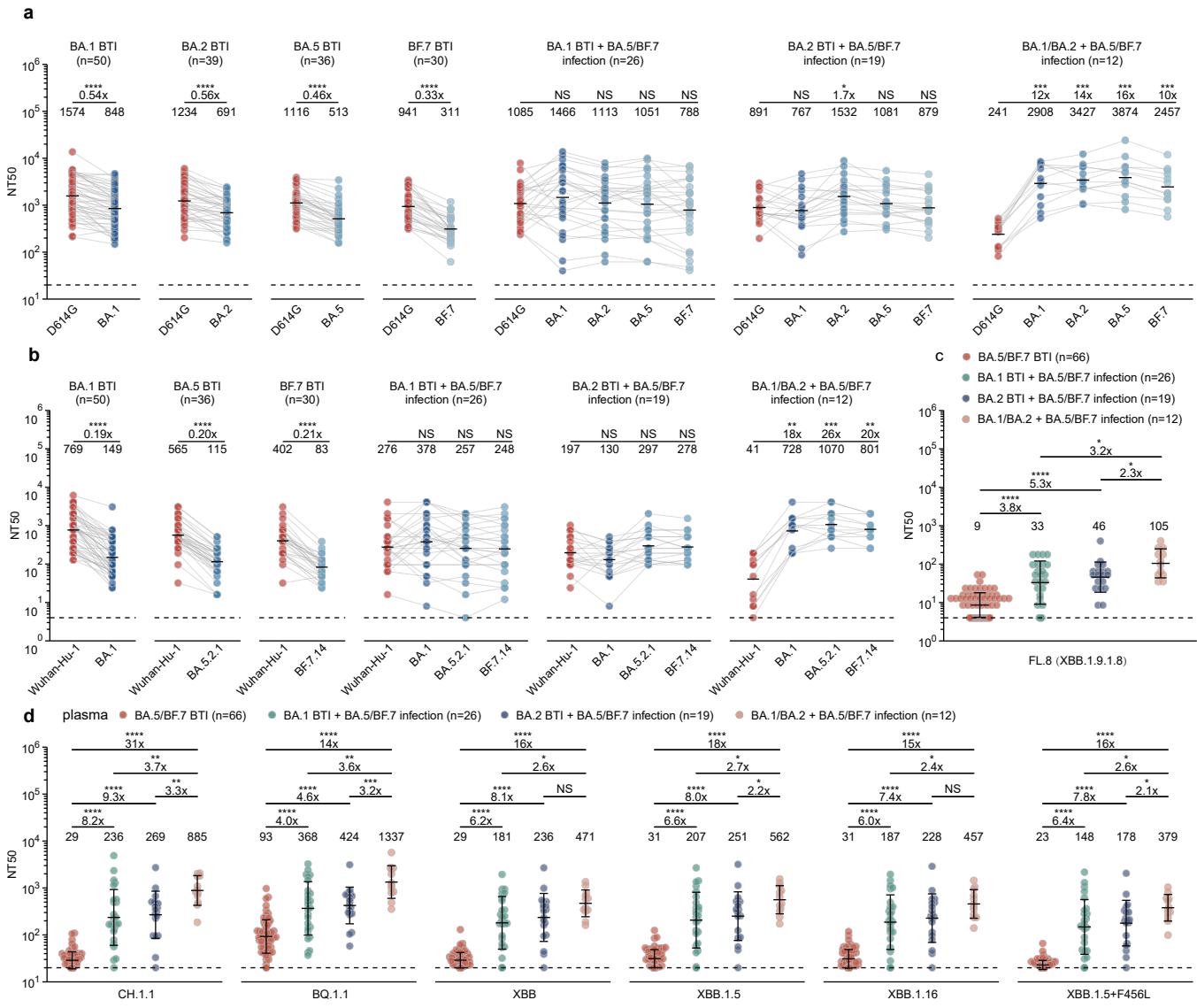

Figure 1

Fig. 1 | Humoral immune imprinting in mice.

a, Neutralizing antibody response after priming with 2 doses of 3 µg CoronaVac followed by boosting with 10 µg SARS-CoV-1 Spike protein or SARS-CoV-2 variant Spike proteins in mice. b, Neutralizing antibody response after immunization with 2 doses of 3 µg CoronaVac followed by boosting with 10 µg SARS-CoV-2 variant Spike proteins with 3-month or 6-month time intervals in mice. The variants labeled on x-axis of the graphs indicate the NT50 against that variant in (a, b). The variants marked at the bottom of the figure indicate the variants used for boosting in (a, b). c, Neutralizing antibody response after priming with 2 doses of 3 µg CoronaVac followed by boosting twice with 10 µg SARS-CoV-2 variant Spike proteins with 1-month or 3-month intervals in mice. d, Neutralizing antibody response after priming with 2 doses of 3 µg CoronaVac followed by boosting twice with 1 µg SARS-CoV-2 variant Spike mRNAs. The variants marked at the bottom of the figure are the variants used for priming or boosting in (c, d). Red, blue, yellow circuls indicate the NT50s against BA.5, BQ.1.1, and XBB in (c, d). 10 mice were immunized and analyzed in each group (n= 10). Sera were collected four weeks after the last dose. Geometric mean titers (GMT) were labeled. For paired samples in a-b, statistical significance was determined using two-tailed Wilcoxon signed-rank tests. For independent samples in c-d, statistical significance were determined using two-tailed Wilcoxon rank sum tests. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and not significant (NS) p > 0.05. All neutralization assays were conducted in at least two independent experiments.

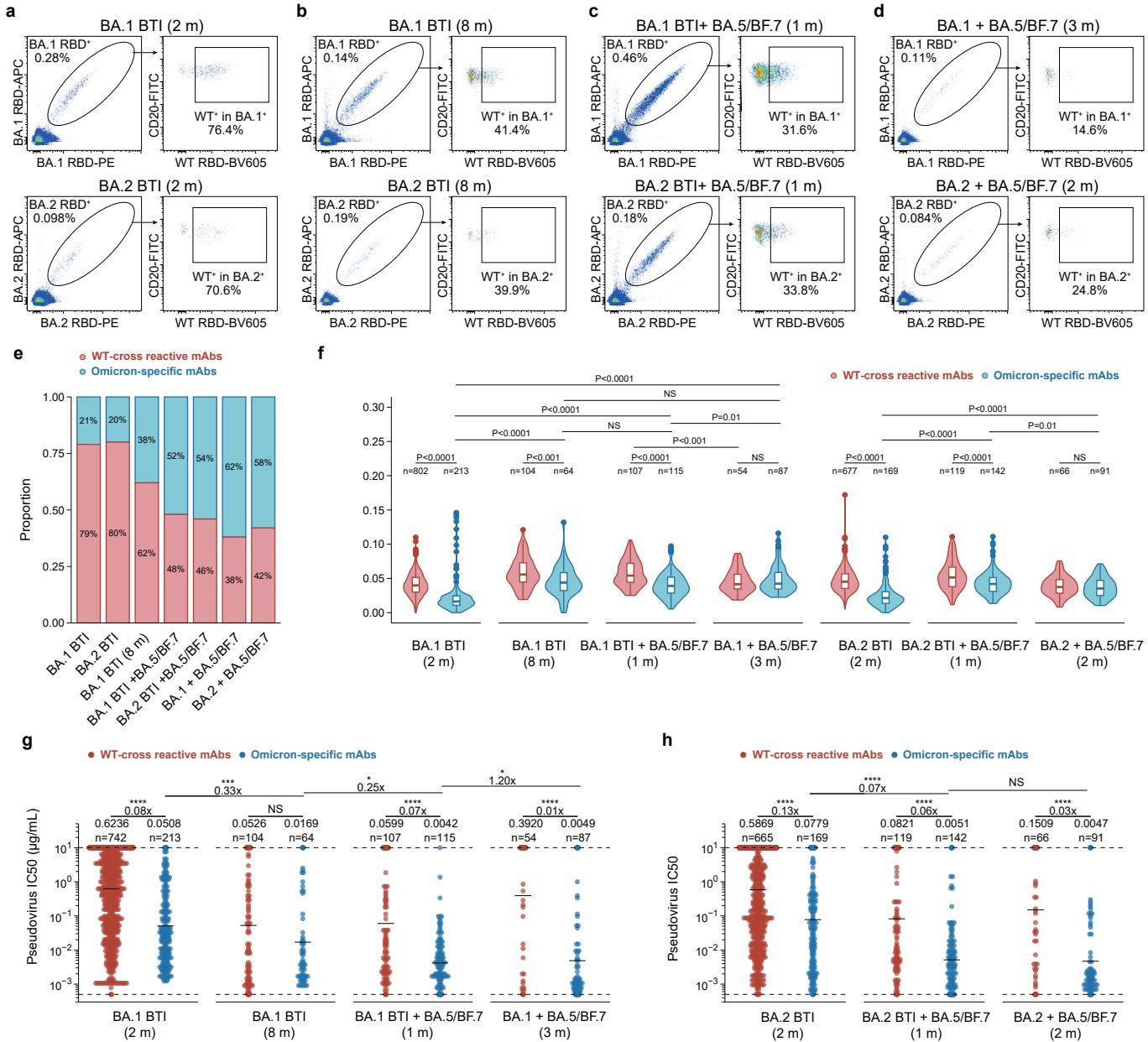

Figure 2

Fig. 2 | Humoral immune imprinting after repeated Omicron infections in humans.

a, Examination of immune imprinting after Omicron breakthrough infections and repeated Omicron infections. Plasma antibody titers against pseudotyped D614G and variants were measured. b, Plasma antibody titers against authentic virus variant. For (a, b), fold changes between titers against variants and D614G were calculated and shown above the line. Statistical significance was determined using the Wilcoxon signed-rank test. c, Plasma antibody titers against authentic FL.8 (XBB.1.9.1.8) after repeated Omicron infections and BA.5 or BF.7 breakthrough infections. Fold changes between titers of different cohorts were calculated and shown above the line. Statistical significance was determined using the Wilcoxon rank sum tests. d, Plasma antibody breadth after one-time breakthrough infection and repeated Omicron infections. Plasma antibody titers against circulating pseudotyped variants were measured. Fold changes between titers of different cohorts were calculated and shown above the line. Statistical significance was determined using the Wilcoxon rank sum tests. BA.1, BA.2, BA.5, BF.7 BTI: post-vaccination Omicron breakthrough infection (BTI). BA.1, BA.2 BTI+ BA.5/BF.7 infection: post-vaccination Omicron breakthrough infection followed by BA.5/BF.7 reinfection. BA.1/BA.2+ BA.5/BF.7 infection: BA.1/BA.2 infection followed by BA.5/BF.7 reinfection with no vaccination history. Blood samples were collected 1-2 months after the last infection. Detailed information about the cohorts is in Supplementary Table 1. Geometric mean titers (GMT) are labeled in (a, b). Geometric mean \pm SD are labeled in (c-d). Dashed lines indicate the limit of detection (LOD, 20 for pseudovirus NT50, 4 for authentic virus NT50). * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$, and not significant (NS) $p > 0.05$. All neutralization assays were conducted in at least two independent experiments.

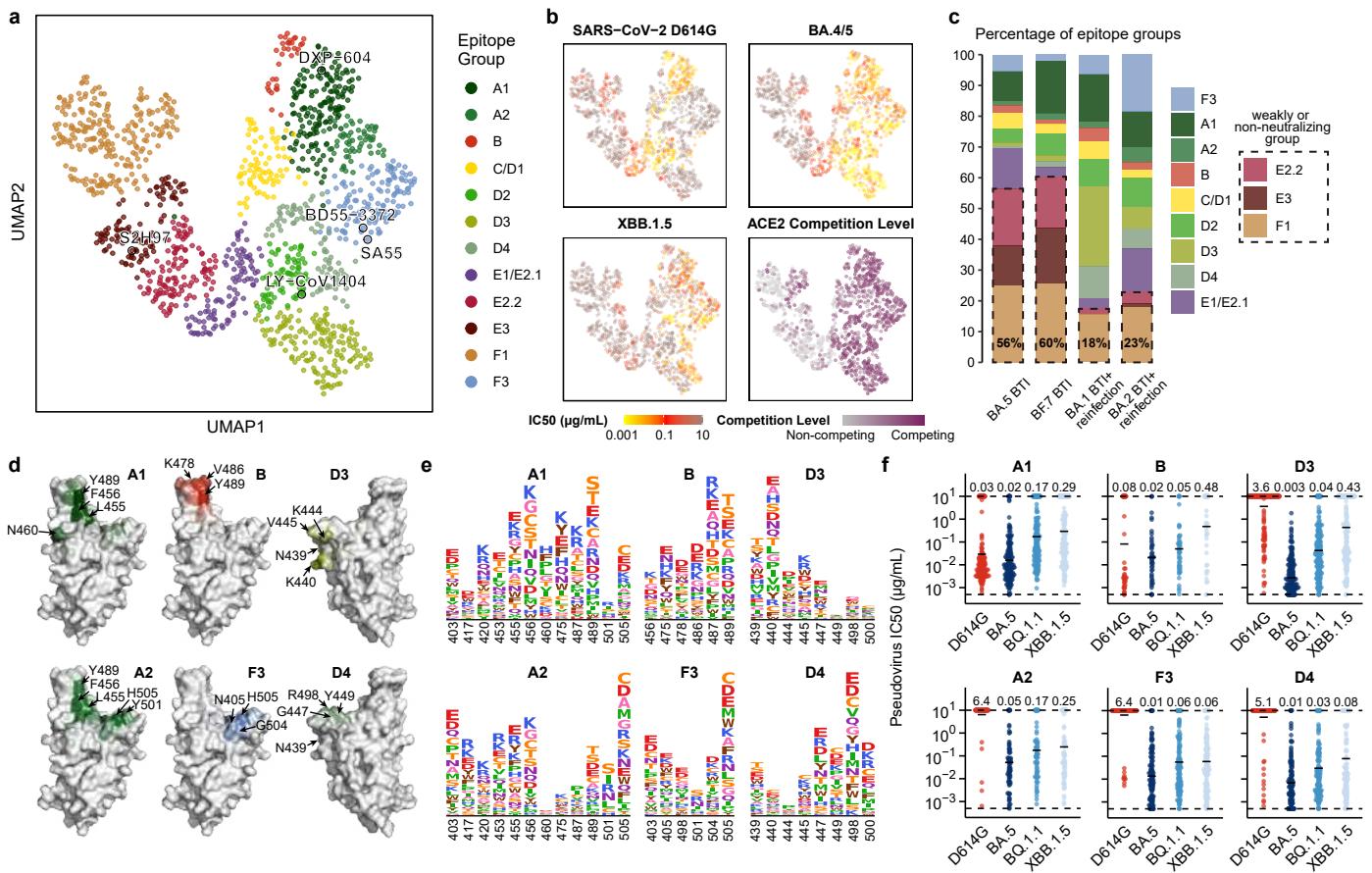

Figure 3

Fig. 3 | B cell immune imprinting after repeated Omicron infections.

a-d, Flow cytometry analysis of pooled B cells from Omicron infection convalescent individuals. BA.1 (up) and BA.2 (down) RBD double-positive CD20+, IgM-, IgD-, CD27+ B cells were isolated for paired-single-cell V(D)J sequencing. Flow cytometry analyses were performed in cohorts of the following: (a) 2 months after BA.1 (up) or BA.2 (down) breakthrough infections, (b) 8 months after BA.1 (up) or BA.2 (down) breakthrough infections, (c) 1 month after BA.5/BF.7 reinfection after BA.1 (up) and BA.2 (down) breakthrough infections, (d) 2-3 months after BA.5/BF.7 reinfection after BA.1 (up) or BA.2 (down) infection without SARS-CoV-2 vaccination history. APC, allophycocyanine; FITC, fluorescein isothiocyanate; PE, phycoerythrin. BV605, Brilliant Violet 605. e, Proportions of WT-binding and non-WT-binding antibodies from Omicron breakthrough infection and repeated Omicron infection cohorts. Binding specificity was determined by ELISA. The antibodies were expressed in vitro using the sequence of the RBD-binding memory B cells from various cohorts. f, The heavy-chain variable domain somatic hypermutation rate of the mAbs from various cohorts. Statistical tests were determined using two-tailed Wilcoxon rank-sum tests. Boxes display the 25th percentile, median and 75th percentile, and whiskers indicate median \pm 1.5 times the interquartile range. Violin plots show kernel density estimation curves of the distribution. The numbers and ratios of samples in each group are labeled above the violin plots. g-h, The BA.1(g) or BA.2(h) pseudovirus neutralizing ability(IC50) of the mAbs from various cohorts. Detection limit is denoted as dashed line, and geometric mean is denoted as black bar. Geometric mean, fold changes and the number of antibodies are labeled above the plots. Statistical tests were determined using two-tailed Wilcoxon rank-sum tests in (f-h). *p < 0.05, **p < 0.01, ***p<0.001, ****p<0.0001, and not significant (NS) p > 0.05.

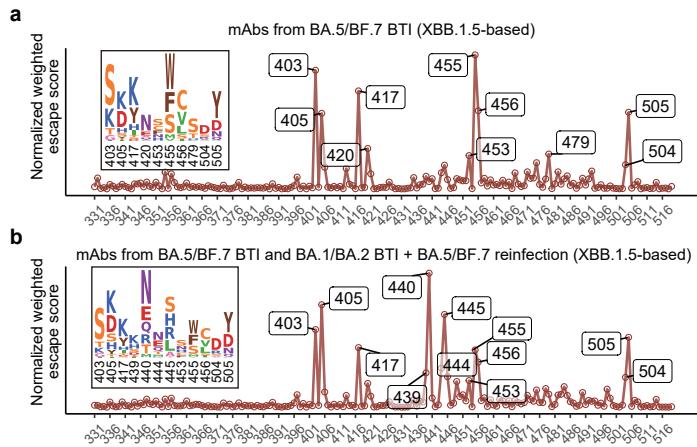

Figure 4

Fig. 4 | Epitope distribution and characterization of mAbs elicited by Omicron BTI and reinfection

a, UMAP embedding of epitope groups of monoclonal antibodies (mAbs) binding BA.5 RBD isolated from convalescent individuals who experienced BA.5/BF.7 BTI or reinfection (n=1350). b, Neutralization activities, denoted as IC50 values, against SARS-CoV-2 D614G (n = 1349), BA.4/5 (n = 1322), and XBB.1.5 (n = 1346) spike-pseudotyped vesicular stomatitis viruses (VSV), as well as ACE2 competition levels determined by ELISA (n = 1344), are projected onto the UMAP embedding space. c, Distribution of mAbs across epitope groups is shown for BA.5 Breakthrough Infection (BTI), BF.7 BTI, BA.1 BTI with reinfection, and BA.2 BTI with reinfection. Epitope groups predominantly comprising non-neutralizing or weakly neutralizing mAbs (E2.2, E3, and F1) are highlighted with dashed boxes. The percentage of antibodies in these three groups is labeled on each bar. d, Average DMS escape scores of the crucial epitope groups contributing to neutralization against XBB.1.5 are illustrated on the structure model of the SARS-CoV-2 BA.5 RBD (PDB: 7XNS). Key residues with high escape scores for each group are labeled. e, The average DMS escape scores for the key epitope groups are represented as sequence logos; residues are depicted using the standard one-letter code and colored based on their chemical properties. The height of each letter corresponds to the escape score of the respective mutation. f, Pseudovirus-neutralization activities of mAbs within the six crucial epitope groups (A1 [n = 170], A2 [n = 60], B [n = 33], F3 [n = 129], D3 [n = 155], and D4 [n = 80]) are shown against SARS-CoV-2 D614G, BA.5, BQ.1.1, and XBB.1.5. Geometric mean IC50 values are displayed as bars and labeled above each group of data points.

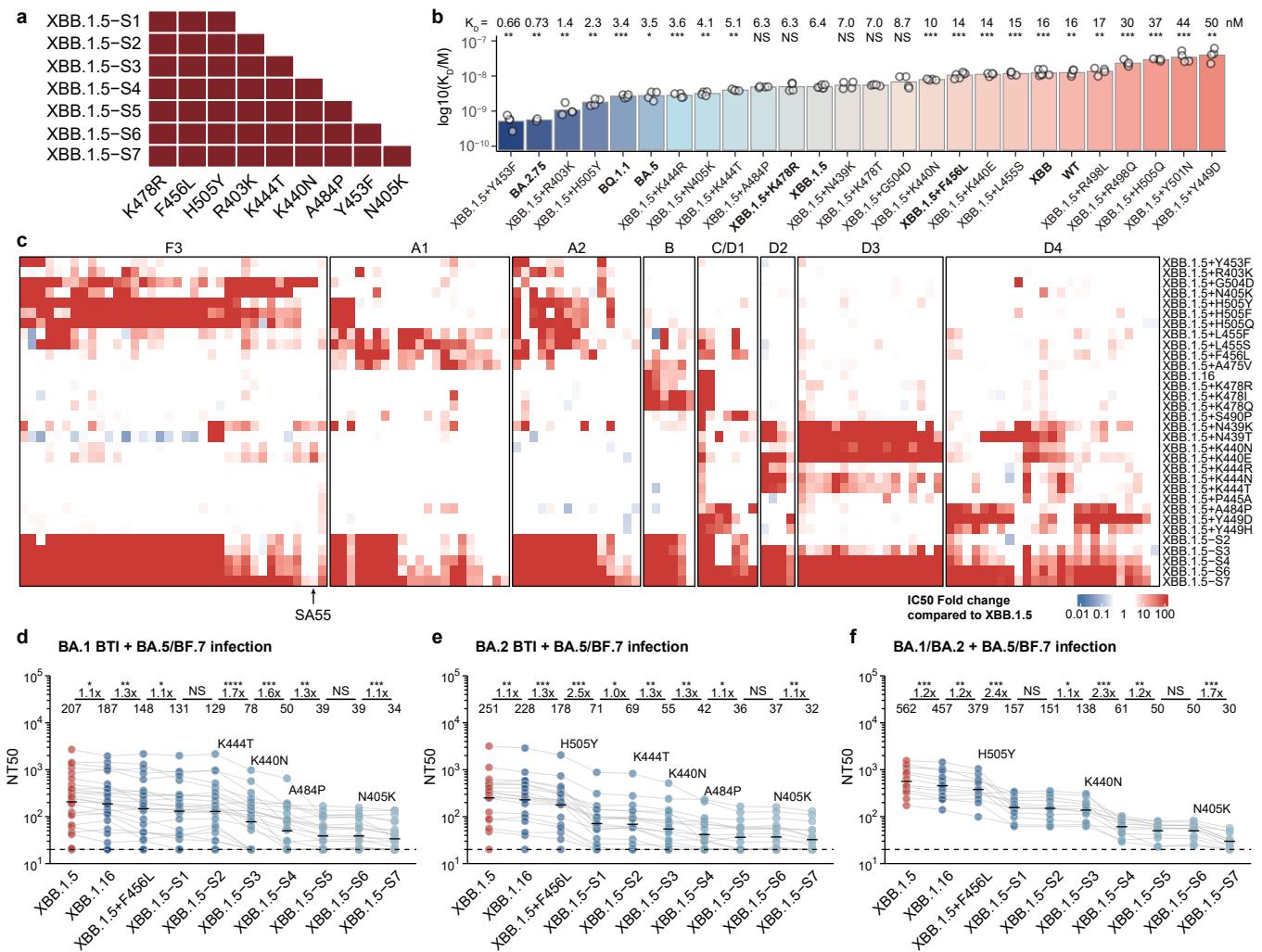

Figure 5

Fig. 5 | Estimate the evolutionary trends of XBB.1.5 RBD from DMS profiles.

Normalized average DMS escape scores weighted by IC50 against XBB.1.5 using DMS profiles of mAbs from BA.5/BF.7 BTI (a), and mAbs from BA.5/BF.7 BTI and BA.1/BA.2 BTI with BA.5/BF.7 reinfection (b). The impacts of each mutation on ACE2 binding and RBD expression, and the codon constraints on each residue, are also considered (see Methods). Residues with high estimated preferences are labeled, and their corresponding mutation scores are shown as logos.

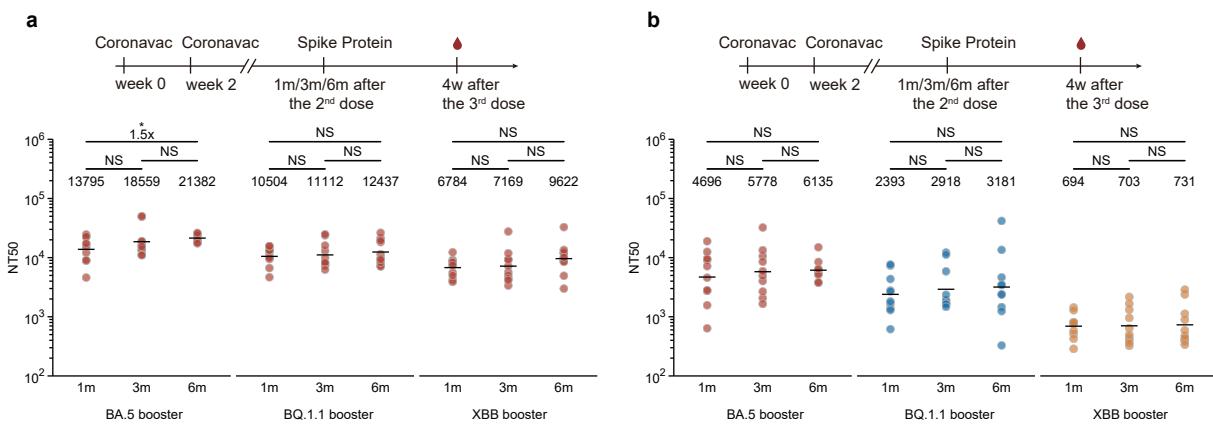
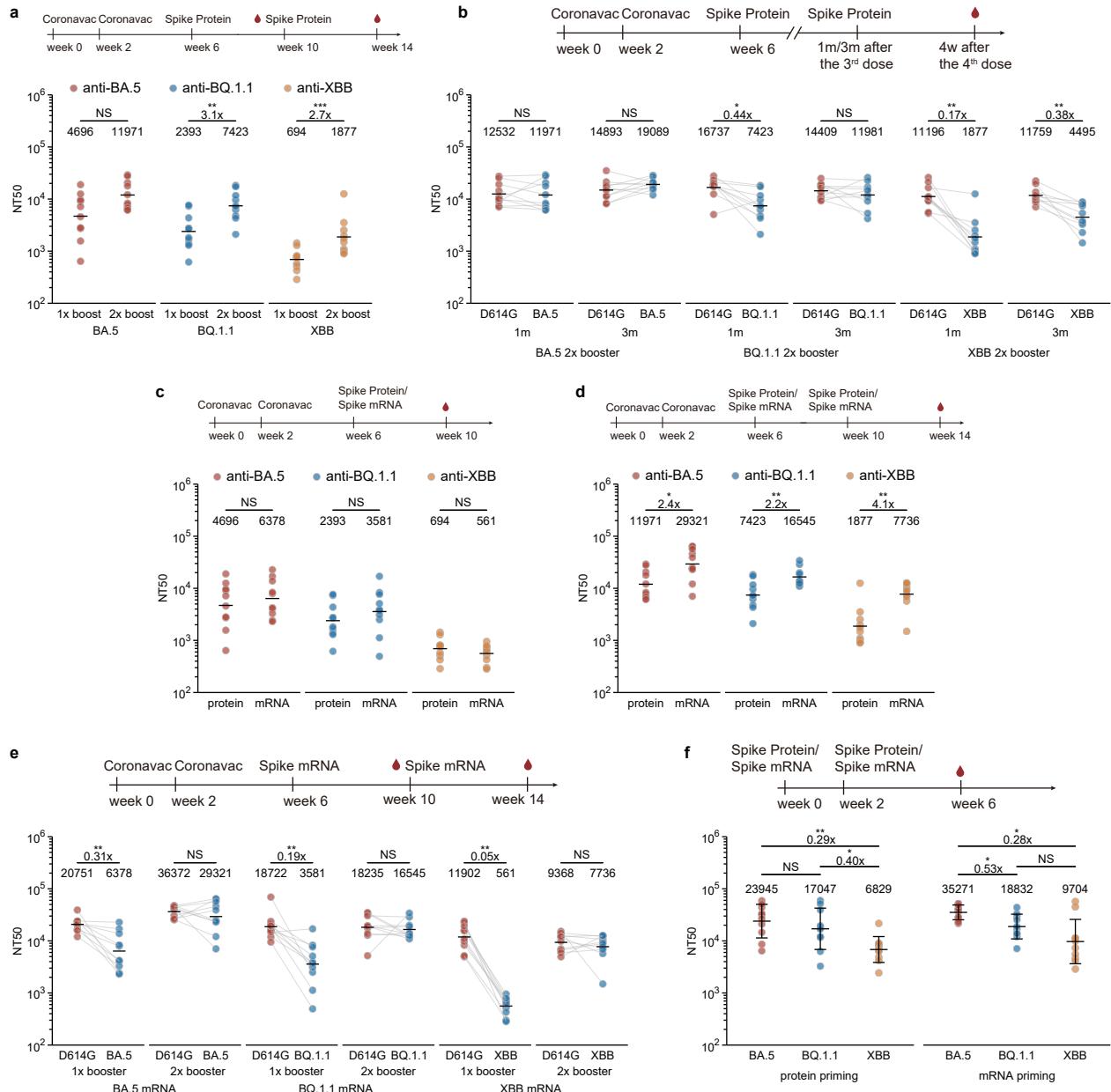

Figure 6

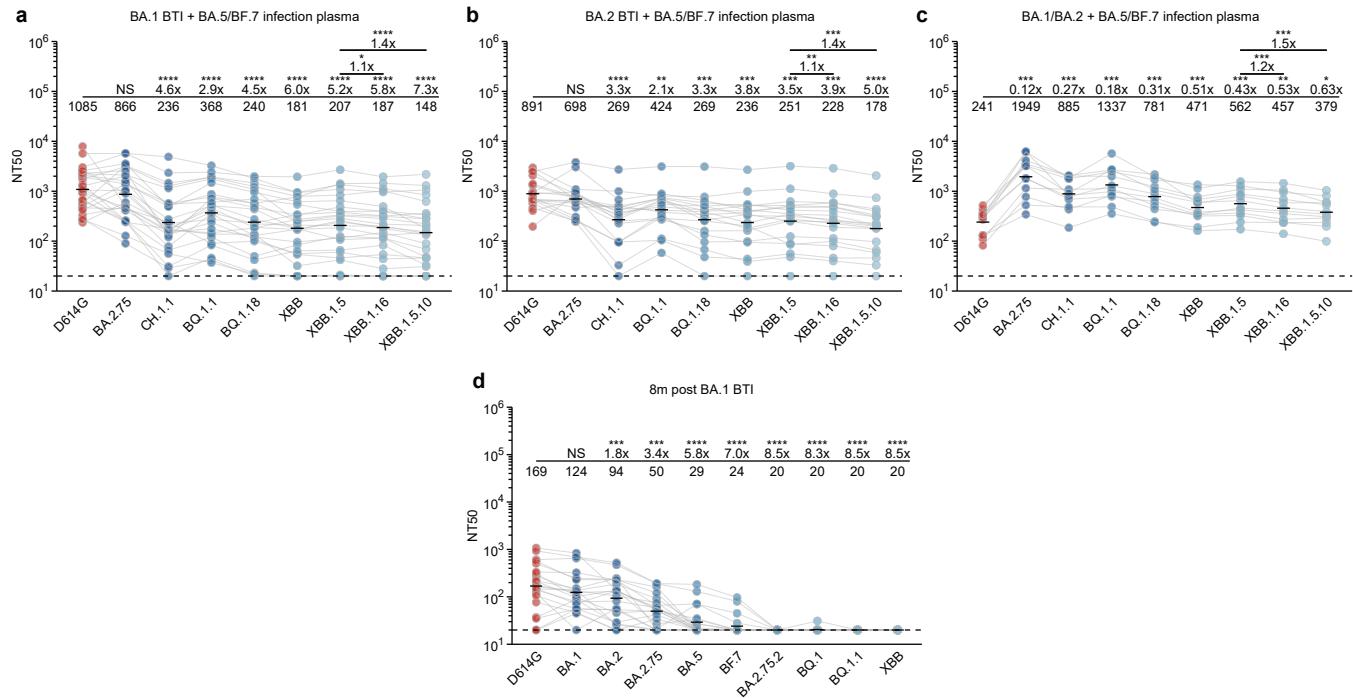
Fig. 6 | Combination of escape mutations evades XBB.1.5-neutralizing antibodies from reinfection.

a, SARS-CoV-2 XBB.1.5-based pseudoviruses harboring combinations of critical mutations identified through analysis of DMS profiles are generated. b, hACE2-binding affinity for various RBD mutants of SARS-CoV-2 is assessed using SPR. Geometric mean dissociation constants (KD) from at least four independent replicates are shown, with statistical significance in comparison to XBB.1.5 RBD's KD labeled above the bars. P-values are determined using a two-tailed t-test on log-transformed KD values. c, IC50 values for representative potent XBB.1.5-neutralizing antibodies from different epitope groups against XBB.1.5 variants carrying individual or multiple escape mutations are displayed. Fold changes in IC50 against the mutants relative to XBB.1.5 are presented as a heatmap. d-f, Pseudovirus 50% neutralization titers (NT50) for SARS-CoV-2 XBB.1.5-based mutants are shown using plasma from convalescent individuals who experienced BA.5 or BF.7 reinfection: BA.1 BTI prior to BA.5/BF.7 reinfection (n = 26) (d); BA.2 BTI prior to BA.5/BF.7 reinfection (n = 19) (e); and reinfection with BA.5 or BF.7 after BA.1 or BA.2 infection without vaccination (n = 12) (f). Key mutations diminishing neutralization are labeled above their corresponding lines. Dashed lines indicate the limit of detection (LOD, NT50 = 20). Geometric mean titers are labeled above data points. Statistical tests are performed between neighboring mutants. P-values are calculated using two-tailed Wilcoxon signed-rank tests on paired samples. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and not significant (NS) p > 0.05.


Extended Data Figure 1

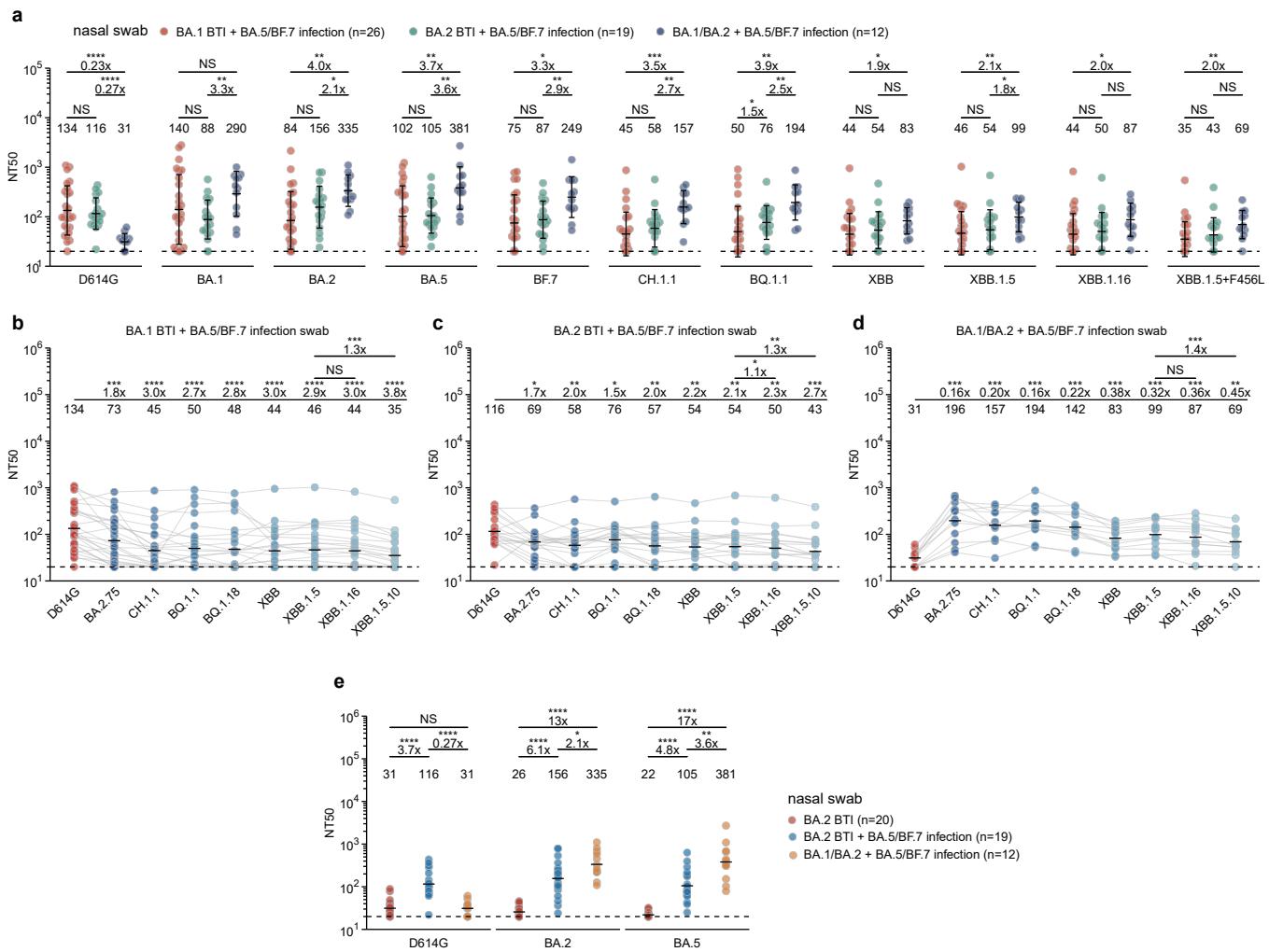
Extended Data Fig. 1 | Neutralizing antibody response after CoronaVac priming and one-dose variant spike boosting

a, b, Comparison of neutralizing titers among different groups of mice immunized with 2 doses of CoronaVac followed by one-dose BA.5/BQ.1.1/XBB Spike protein boosters administered with one-month, three-month, or six-month intervals between the second and third dose. a) Neutralizing titers against D614G; b) Neutralizing titers against variants that the mice boosted with. Statistical significance was determined using the Wilcoxon rank sum test. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$, and not significant (NS) $p > 0.05$.


Extended Data Figure 2

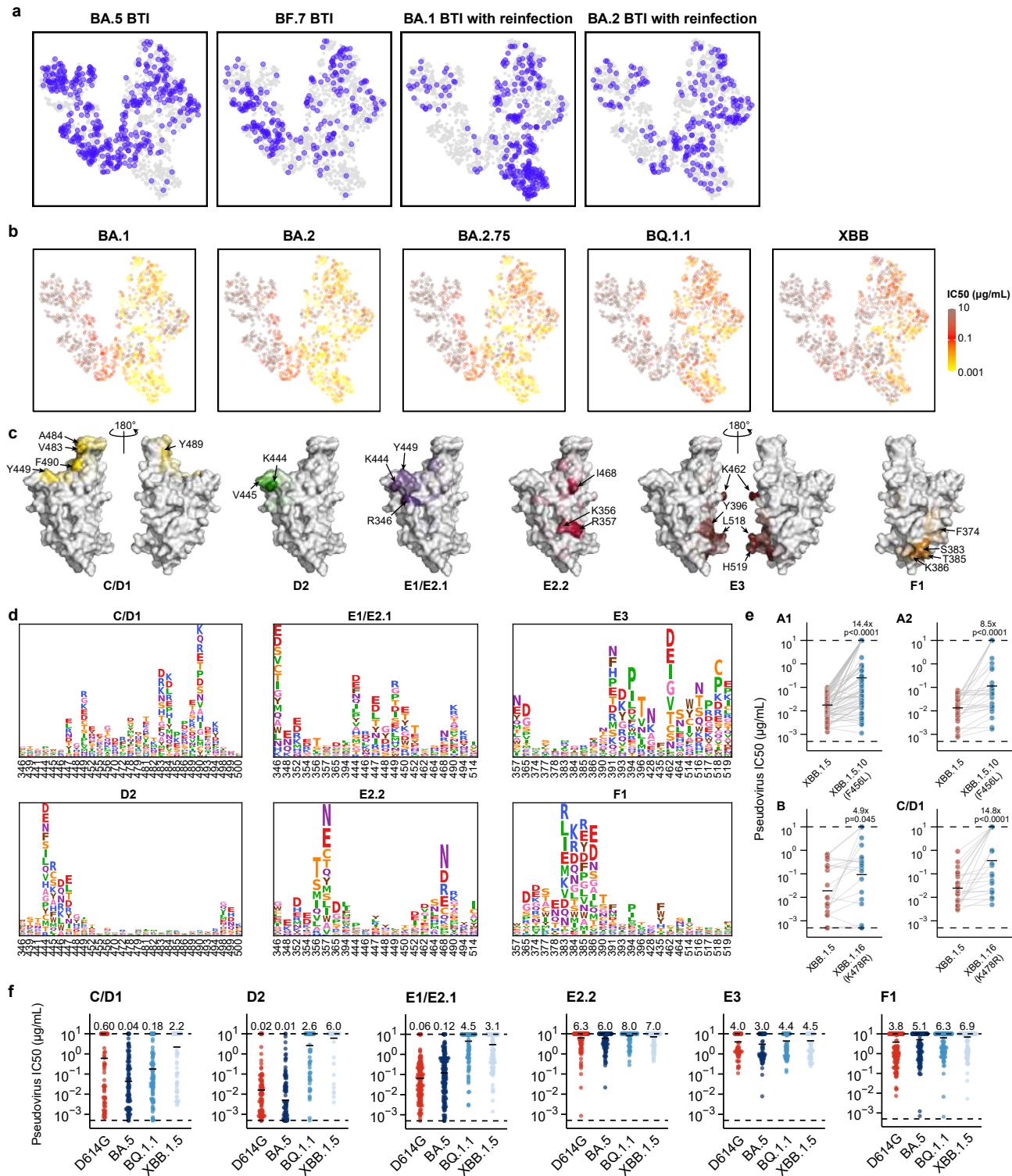
Extended Data Fig. 2 | Neutralizing antibody response after CoronaVac priming and two-dose variant spike booster or two-dose variant spike priming

a, Comparison of neutralizing titers after CoronaVac priming and one-dose or two-dose variant spike boosting. b, D614G and boosting variant neutralizing titers after CoronaVac priming and two-dose variant spike boosting. c-d, Comparison of neutralizing titers after CoronaVac priming and variant spike protein or mRNA boosting. one-dose boosting in c and two-dose boosting in d. e, Neutralizing antibody titers after CoronaVac priming and one-dose or two dose variant spike mRNA boosters. f, Neutralizing antibody titers after two-dose variant spike mRNA or protein boosters. Statistical significance was determined using the Wilcoxon rank sum test (a, c, d and f) or Wilcoxon signed-rank test (b and e). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and not significant (NS) p > 0.05.


Extended Data Figure 3

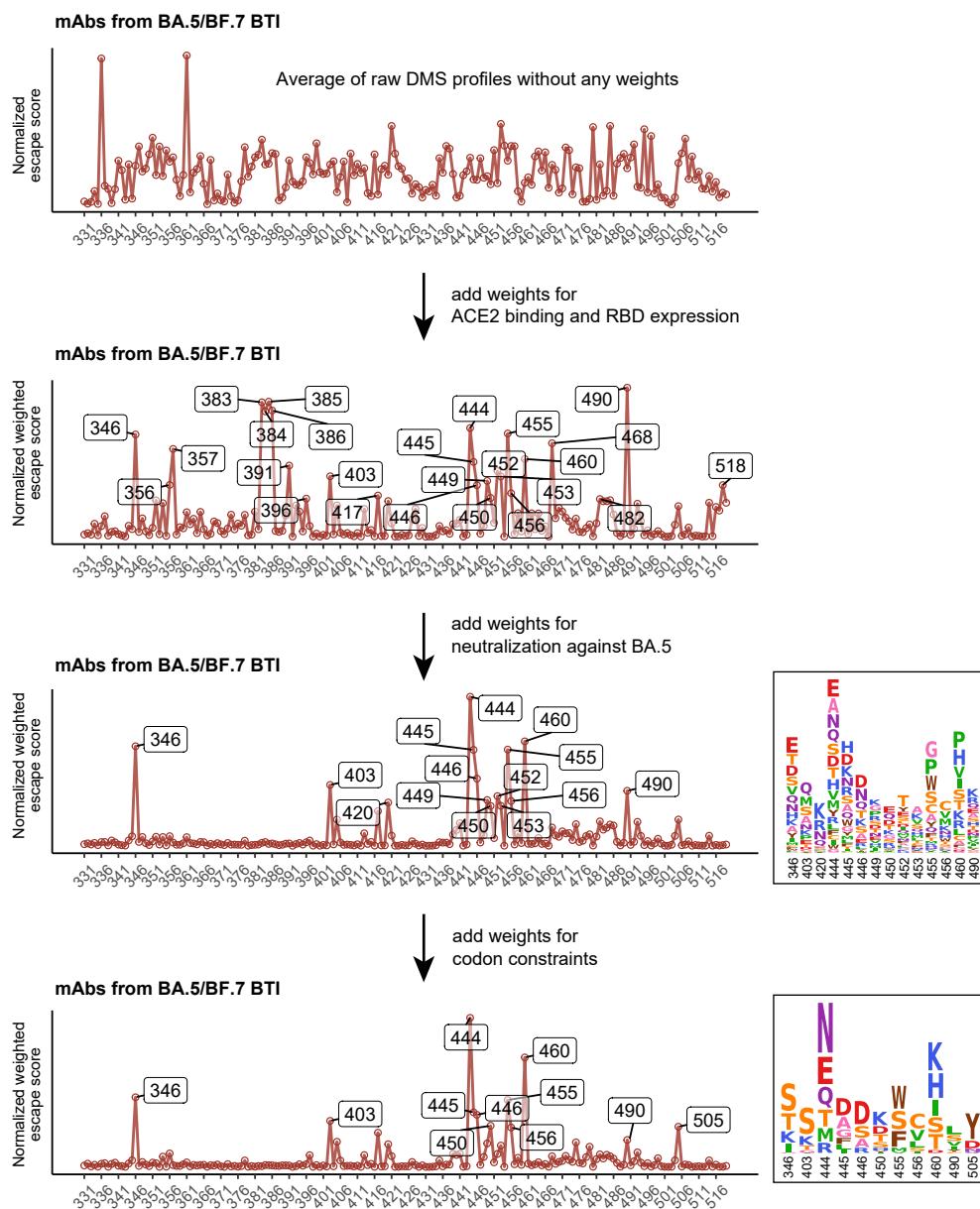
Extended Data Fig. 3 | Antibody breadth of plasma after repeated Omicron infections.

a-d, Plasma antibody titers against pseudotyped D614G and variants after (a) BA.1 BTI + BA.5/BF.7 infection (n = 26), (b) BA.2 BTI + BA.5/BF.7 infection (n = 19), (c) BA.1/BA.2 + BA.5/BF.7 infection (n = 12), d) 8 month post BA.1 BTI (n = 22). Fold changes between titers against variants and D614G were calculated and shown above the line. Statistical significance was determined using the Wilcoxon signed-rank test.


Extended Data Figure 4

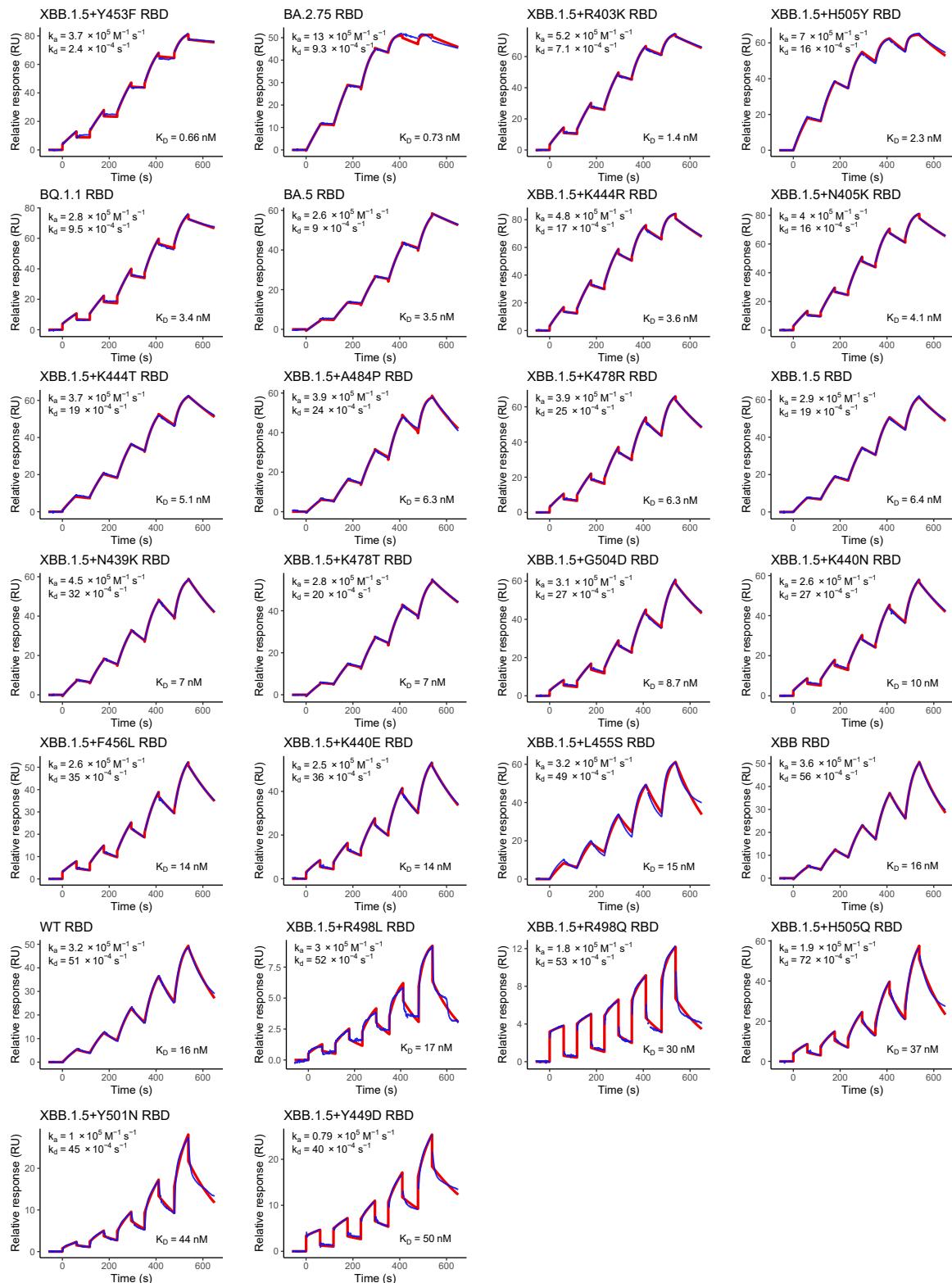
Extended Data Fig. 4 | Neutralizing titers of nasal swabs after repeated Omicron infections.

a, Comparison of nasal swab neutralizing titers among repeated Omicron infection cohorts. Nasal swab antibody titers against pseudotyped variants were measured. Fold changes between titers of different cohorts were calculated and shown above the line. Statistical significance was determined using the Wilcoxon rank sum test. b-d, Nasal swab antibody titers against pseudotyped D614G and variants after (b) BA.1 BTI + BA.5/BF.7 infection (n = 26), (c) BA.2 BTI + BA.5/BF.7 infection (n = 19), (d) BA.1/BA.2 + BA.5 infection (n = 12). Fold changes between titers against variants and D614G were calculated and shown above the line. Statistical significance was determined using the Wilcoxon signed-rank test in (b-d). e, Comparison of nasal swab antibody titers against pseudotyped D614G and variants among one-time breakthrough infection and repeated infection cohorts. Statistical significance was determined using the Wilcoxon rank sum test in (e). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and not significant (NS) p > 0.05.


Extended Data Figure 5

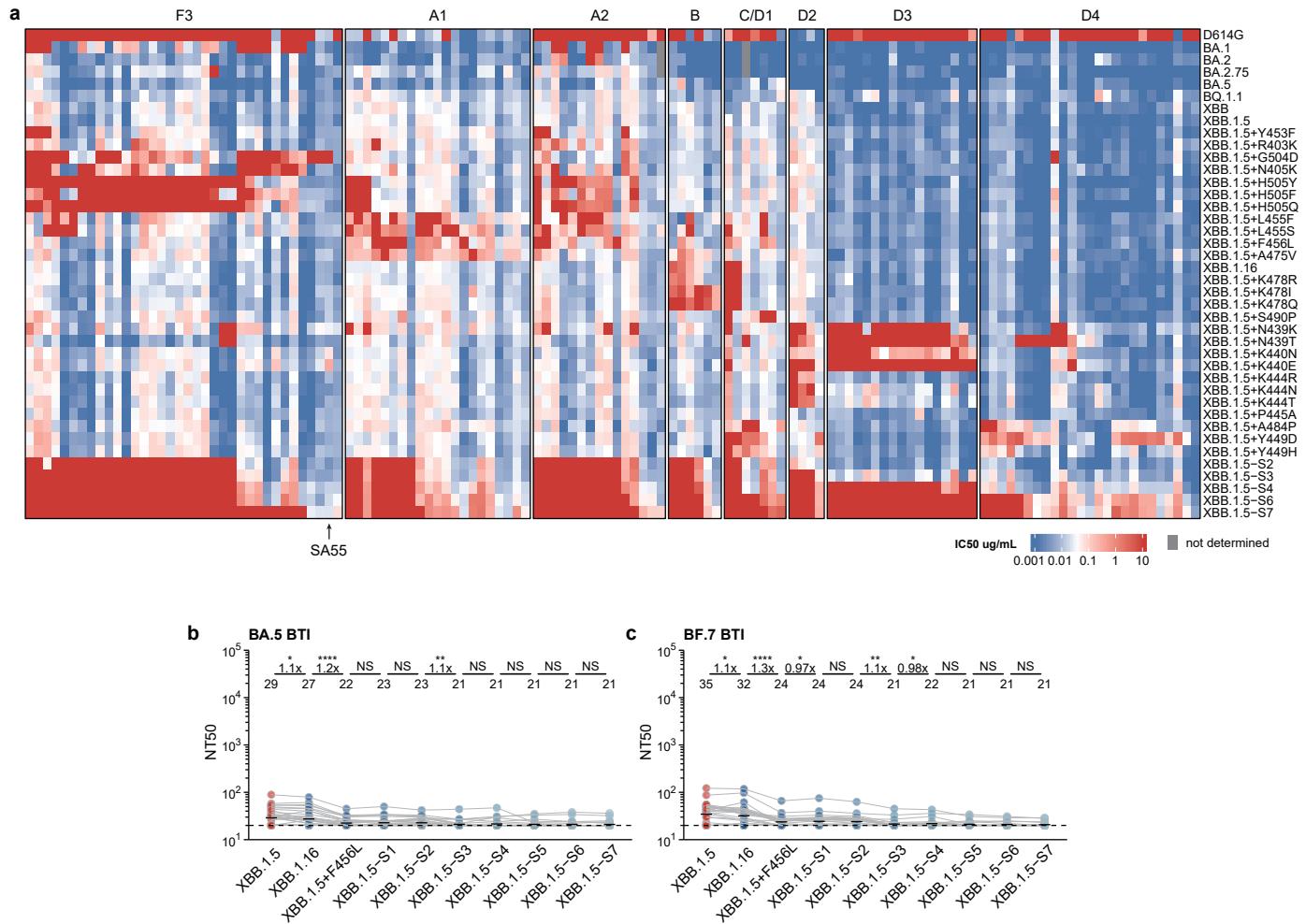
Extended Data Fig. 5 | Characteristics of BA.5-reactive mAbs elicited by BA.5/BF.7 BTI or reinfection.

a, Source of the antibodies are projected onto the UMAP embedding space. Antibodies from BA.5 BTI (n=445), BF.7 BTI (n=243), BA.1 BTI with reinfection (n=284), and BA.2 BTI with reinfection (n=232) are colored blue in the corresponding panel, and other antibodies are gray. b, Neutralization activities, denoted as IC50 values, against SARS-CoV-2 BA.1 (n = 1260), BA.2 (n = 1238), BA.2.75 (n=1238), BQ.1.1 (n = 1335) and XBB (n = 1341) spike-pseudotyped VSV are projected onto the UMAP embedding space. c, Average escape scores of epitope groups that are not shown in Fig. 4d (C/D1, D2, E1/E2.1, E2.2, E3, and F1) are illustrated on the structure model of the SARS-CoV-2 BA.5 RBD (PDB: 7XNS). Key residues with high escape scores for each group are labeled. d, Average DMS escape scores for these epitope groups are represented as sequence logos; residues are depicted using the standard one-letter code and colored based on their chemical properties. The height of each letter corresponds to the escape score of the respective mutation. e, Pseudovirus-neutralization activities of XBB.1.5-neutralizing mAbs in groups A1 (n=70) and A2 (n=23) against XBB.1.5 and XBB.1.5.10; and mAbs in groups B (n=15) and C/D1 (n=13) against XBB.1.5 and XBB.1.16. Fold changes in IC50 are labeled. P-values are calculated using two-tailed Wilcoxon signed-rank test of paired samples. f, Pseudovirus-neutralization activities of mAbs within the six crucial epitope groups (C/D1 [n = 76], D2 [n = 86], E1/E2.1 [n = 100], E2.2 [n = 124], E3 [n = 101], and F1 [n = 236]) are shown against SARS-CoV-2 D614G, BA.5, BQ.1.1, and XBB.1.5. Geometric mean IC50 values are displayed as bars and labeled above each group of data points.


Extended Data Figure 6

Extended Data Fig. 6 | Workflow of calculating weighted escape scores of each mutation on RBD.

Weights for ACE2 binding and RBD expression, neutralization activity, and codon usage are sequentially applied on the calculation to achieve informative results. Mutation preferences of BA.5 RBD under the pressure of NAb from BA.5 or BF.7 BTI are shown.


Extended Data Figure 7

Extended Data Fig. 7 | SPR sensograms for affinity of hACE2 and SARS-CoV-2 mutants RBD

Representative sensogram of at least four replicates is shown for each RBD. Geometric mean kinetic constants k_a , k_d , and dissociation equilibrium constant K_D are labeled in each panel.

Extended Data Figure 8

Extended Data Fig. 8 | NAbs from BTI and reinfection are escaped by constructed mutants

a, IC50 values for representative potent XBB.1.5-neutralizing antibodies from different epitope groups against XBB.1.5 variants carrying individual or multiple escape mutations are shown. The order of antibodies is the same as that in Fig. 6c. b, Pseudovirus NT50 for SARS-CoV-2 XBB.1.5-based mutants are shown using plasma from convalescent individuals who experienced BA.5 (n=36) or BF.7 BTI (n = 30). Statistical tests are performed between neighboring mutants. P-values are calculated using two-tailed Wilcoxon signed-rank tests on paired samples. *p < 0.05, **p < 0.01, ***p < 0.0001, and p > 0.05 (NS).