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Abstract 16 

Integrative analysis of spatially resolved transcriptomics datasets empowers a deeper 17 

understanding of complex biological systems. However, integrating multiple tissue sections 18 

presents challenges for batch effect removal, particularly when the sections are measured by 19 

various technologies or collected at different times. Here, we propose spatiAlign, an 20 

unsupervised contrastive learning model that employs the expression of all measured genes and 21 

the spatial location of cells, to integrate multiple tissue sections. It enables the joint downstream 22 

analysis of multiple datasets not only in low-dimensional embeddings but also in the 23 

reconstructed full expression space. In benchmarking analysis, spatiAlign outperforms state-24 

of-the-art methods in learning joint and discriminative representations for tissue sections, each 25 

potentially characterized by complex batch effects or distinct biological characteristics. 26 

Furthermore, we demonstrate the benefits of spatiAlign for the integrative analysis of time-27 

series brain sections, including spatial clustering, differential expression analysis, and 28 

particularly trajectory inference that requires a corrected gene expression matrix. 29 

Introduction 30 

The rapid advancements of spatially resolved transcriptomics (SRT) have revolutionized our 31 

understanding of the spatial organization and heterogeneity of cells within complex tissues and 32 

developmental processes1. Cutting-edge in situ capturing technologies (e.g., 10x Genomics 33 

Visium2, Slide-seq3, Stereo-seq4, and Seq-scope5) have facilitated the simultaneous 34 

measurement of tens of thousands of genes in their spatial context, achieving unprecedented 35 

cellular or even subcellular resolution. The SRT datasets are typically acquired from different 36 

tissue sections, each potentially representing a fragmented profiling of the targeted biological 37 

system. Hence, integrating multiple datasets for joint analysis is imperative to decipher the 38 

whole biological system. However, integrative analysis presents significant challenges due to 39 

the inherent biological variability and batch effects caused by nonbiological factors such as 40 

technology differences and different experimental batches. 41 

Prior efforts to tackle this task have conventionally focused on single-cell RNA 42 

sequencing technologies (scRNA-seq)6, 7, which can be roughly classified into two main 43 

categories: methods that (1) generate a joint embedding space8-13 and (2) calculate a corrected 44 

feature matrix14-17. For example, Harmony8 projects cells into a shared embedding by maximum 45 

diversity clustering and iteratively learning a cell-specific linear correction function that 46 

regresses out biological effects within clusters. SCALEX13, a deep learning method, provides a 47 

truly online tool to project cells into a batch-invariant, common cell-embedding space. 48 

Although these methods prove valuable for capturing the overall characteristics of cells, such 49 

as combined clustering, they are not applicable to downstream gene-level analysis tasks, such 50 
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as differentially expressed gene (DEG) analysis. In contrast, popular MNN-based methods such 51 

as Seurat v316 efficiently address batch effects in gene expression, but their limitation lies in the 52 

ability to align only two batches at a time, and they become impractical when dealing with 53 

many batches. However, it is worth noting that these scRNA-seq data integration tools have 54 

focused on harmonizing gene expression profiles across different experimental batches and do 55 

not consider the spatial context of spots/cells. 56 

In the field of SRT studies, embedding spatial information has proven beneficial for 57 

downstream analysis, such as spatial domain identification18, 19, imputation20, 21, clustering22, 58 

and cell-type annotation23. More recently, works have been published to improve the integration 59 

of SRT datasets by exploiting spatial information. PRECAST leverages spatial smoothness in 60 

both the cluster label and lower-dimensional representations to estimate aligned embeddings 61 

for multiple tissue sections, effectively capturing the spatial relationship between cells/spots24. 62 

GraphST introduces a graph self-supervised contrastive learning model to reconstruct gene 63 

expression by minimizing the embedding distance between spatially adjacent spots25. However, 64 

PRECAST only returns the corrected embedding space, and GraphST requires registering the 65 

spatial coordinates of samples first to ensure its integration performance; thus, their applications 66 

are limited in certain scenarios. 67 

To address these challenges, we propose spatiAlign, an unsupervised method that 68 

leverages spatial embedding and across-domain adaptation strategies for aligning SRT datasets. 69 

spatiAlign offers three key advantages as follows. First, it effectively captures the underlying 70 

relationships between spots/cells in both the spatial neighbourhoods and gene expression to 71 

learn latent representations with a deep graph infomax (DGI)26 framework. Second, spatiAlign 72 

aligns biological effects by adapting the semantic similarities between spots/cells and/or 73 

pseudoclusters from one section to another without relying on external labelled data, resulting 74 

in a joint batch-corrected embedding. Third, benefiting from a symmetric decoder in DGI, 75 

spatiAlign outputs the reconstructed spatial gene expression matrices, in which gene expression 76 

is enhanced and batch effects are corrected. We validate the three advantages of spatiAlign with 77 

four applications on publicly available 10x Genomics Visium, Slide-seq, and Stereo-seq 78 

datasets of human and mouse tissues. The benchmarking analysis demonstrates spatiAlign’s 79 

superiority in learning low-dimensional representations compared with eight established 80 

methods, including GraphST and PRECAST, which were recently developed for SRT datasets. 81 

Compared with the original spatial expression of brain region-specific markers, the 82 

reconstructed counts from spatiAlign better reflect their laminar organization with denoised, 83 

enhanced expressions and clear boundaries between regions. We also validate the capability of 84 

spatiAlign to capture the unique characteristics of three Slide-seq mouse hippocampus slices, 85 

which contain regions with different structures. The comprehensive integrated analysis of 86 
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developing moues brain slices indicates that the aligned joint representations, which embed 87 

cellular neighbourhoods, improve the identification of cell clusters. In addition, the 88 

reconstructed features from our proposed spatiAlign method facilitate the identification of 89 

DEGs under different developmental stages and the recovery of cellular trajectories. 90 

Results 91 

Overview of spatiAlign 92 

spatiAlign takes as inputs multiple SRT datasets, comprising the expression of all measured 93 

genes and spatial locations of spots/cells, to achieve two objectives: low-dimensional semantic 94 

alignment and high-dimensional gene expression reconstruction (Fig. 1a). In low-dimensional 95 

alignment, the primary strategy underlying spatiAlign is to implement a self-supervised 96 

contrastive learning architecture (DGI-based framework) for dimensional reduction while 97 

simultaneously propagating neighbouring spatial context between spots/cells (Fig. 1c). 98 

Furthermore, it employs an across-domain adaptation technique to align joint embeddings, 99 

effectively accounting for batch effects across multiple tissue sections (Fig. 1b). In high-100 

dimensional gene expression reconstruction, we utilize a decoder included in the DGI to reverse 101 

aligned representations back into the raw gene expression space, thereby enhancing the gene 102 

expression counts. 103 

Formally, given a series of SRT datasets, gene expression profiles are transformed into 104 

cell/spot-gene matrices (e.g., gene expression matrix X ) and spatial neighbouring graphs 105 

between cells/spots (e.g., cell‒cell adjacent matrix A ), where the connective relationships of 106 

cells/spots are negatively associated with Euclidean distance. We design a deep neural network 107 

(DNN)-based autoencoder to learn the low-dimensional gene representations Z  from the 108 

original gene expression matrix. The adjacency matrix A  and the reduced gene 109 

representations Z  are fed into a variational graph autoencoder (VGAE)27 that propagates 110 

spatial neighbouring context for the gene representations, resulting in a final joint representation 111 

S  (positive samples) that captures comprehensive characteristics of the gene expression 112 

profile and cellular neighbourhoods. Thereafter, the enhanced gene expression matrices can be 113 

reconstructed using a symmetric decoder architecture, which reverses the joint representations 114 

S  back to the original space. 115 

To improve spatiAlign’s ability to exploit potential information in SRT datasets, 116 

augmentation-based contrastive learning is adopted25, 28, 29. Technically, a gene expression 117 

matrix X  is augmented by randomly shuffling the gene expression vector of spots/cells to 118 

create a corrupted gene expression matrix X  while keeping the spatial neighbouring graph 119 

unchanged. Then, the corrupted gene expression matrix X  and adjacency matrix A  are fed 120 

into the aforementioned model, which utilizes the shared model weights to generate corrupted 121 

joint representations S  (negative samples). We then use self-supervised contrastive learning 122 

to bring the positive samples closer within the spatial neighbouring context while pushing the 123 

negative samples far apart within the same neighbouring context (Fig. 1c). 124 
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Using an across-domain adaptation28, 30, 31 and deep clustering32 strategy, spatiAlign aims 125 

to align biological effects while maximizing the preservation of biological variances in the 126 

latent embedding of spots/cells. Specifically, we use a memory bank to store the final latent 127 

representations for each dataset that will be used to measure the similarity between spots/cells 128 

or pseudoclusters for self-batch/across-batch contrastive learning. For each tissue section, 129 

spatiAlign minimizes the similarity distance between the current latent representations and the 130 

corresponding memory bank entries to bring similar semantic spots/cells closer together and 131 

push dissimilar semantic spots/cells far apart. In parallel, inspired by the idea of “label as 132 

representation”, we assume that the dimension of the final latent embedding is equal to the 133 

number of pseudoprototypical clusters, and the spots/cells vector denotes its soft label 134 

accordingly. Thus, each spot/cell is assigned to a different pseudo cluster, and all pseudo 135 

clusters should differ from each other. Identically, spatiAlign employs “current pseudocluster 136 

representation” (transposition latent representation) and “cached pseudocluster representation” 137 

(transposition corresponding memory bank) to bring the same pseudocluster spots/cells closer 138 

together and push dissimilar pseudo cluster spots/cells far apart, avoiding pseudocluster dropout 139 

intrinsic biological variances. In across-batch contrastive learning, cross-similarity between 140 

spots/cells, measured by the current latent representation and memory bank of other sections, 141 

is minimized to align biological effects across sections, ensuring similar semantic spots/cells 142 

closer together, regardless of which sections they are from. 143 

spatiAlign outperforms the control methods in integrating DLPFC datasets 144 

We evaluated the effectiveness of spatiAlign in analysing a series of 10x Genomics Visium 145 

datasets from the human dorsolateral prefrontal cortex (DLPFC). The selected dataset 146 

comprised four sections that were manually annotated into six tissue layers (Layer_1 to Layer_6) 147 

and white matter (WM) in the original study (Fig. 2a, Supplementary Fig. S1a)33. We first 148 

performed graph-based clustering (Leiden) on the latent representations of spatiAlign and the 149 

other eight benchmarking methods to assess their capability in aligning embedding space. 150 

Before comparison, we merged the Leiden clusters of each method with the ground truth using 151 

a maximum matching strategy for certain categories to produce final clustering results 152 

(Supplementary Fig. S1b-f). spatiAlign achieved the highest adjusted Rand index (ARI)34 score 153 

with a mean of 0.5967 on all four sections and outperformed all the control methods (Fig. 2b). 154 

In addition, spatiAlign achieved the highest mean weighted F1 score of the local inverse 155 

Simpson’s index (LISI)8 of 0.8402 (Fig. 2c), where sufficient mixing and variation preservation 156 

were equally evaluated. In comparison, MNN showed ineffectiveness in fusing the sections 157 

together and obtained the lowest weighted F1 score of LISI. The uniform manifold 158 

approximation and projection (UMAP) visualization for each method revealed that spatiAlign 159 

outperformed other control methods in separating clusters while simultaneously integrating 160 

slices (Fig. 2d). In particular, methods such as GraphST, SCALEX, Harmony, and Combat did 161 

not clearly separate spots belonging to distinct layers, and the batches did not mix well when 162 

using MNN. Although PRECAST appeared to separate clusters and integrate batches well, it 163 

resulted in Layer_1 being split into two groups. 164 

Furthermore, we validated the latent embeddings with the inferred trajectory from PAGA35 165 

(Fig. 2e). The PAGA path derived from spatiAlign embeddings exhibited a clear and nearly 166 
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linear spatial trajectory from Layer_1 to Layer_6, with significant similarities observed 167 

between adjacent layers, in accordance with the developmental process of the neurons36. In 168 

contrast, the PAGA results of the other benchmarking methods were intermixed. Finally, we 169 

compared the spatial expression patterns of layer marker genes before and after spatiAlign (Fig. 170 

2f). The results revealed that the spatiAlign-reconstructed expression of layer-marker genes had 171 

enhanced laminar enrichment and denoised distributions compared with the original data. For 172 

example, CXCL14 in Layer_1 and Layer_2, ETV1 in Layer_5 and Layer_6, and VAT1L in 173 

Layer_5 were consistent with previous studies37, whereas their raw gene expression did not 174 

show discernible spatial laminar patterns. In addition, violin plots comparing gene expression 175 

before and after spatiAlign processing also showed the expression enhancement of spatiAlign 176 

(Fig. 2g). For example, the reconstructed expression of SEMA3C significantly populated Layer 177 

6 compared with the original data. Such expression enhancements were also observed in other 178 

sections, such as in sample ID 151674, further validating the reliability of the reconstructed 179 

expressions (Supplementary Fig. S2c). 180 

spatiAlign enables the alignment of multiple olfactory bulb datasets from different SRT 181 

platforms. 182 

To demonstrate the efficiency of spatiAlign in integrating datasets from different sequencing 183 

platforms, we used three mouse olfactory bulb datasets. One slice was profiled by 10x 184 

Genomics Visium, while the other two slices were obtained from Stereo-seq (Fig. 3a). Before 185 

integration, we manually annotated each dataset (Fig. 3c) by leveraging unsupervised clustering 186 

(Supplementary Fig. S3a, b), reported marker genes (Supplementary Fig. S3c, d, e, f) and the 187 

ssDNA image (Fig. 3b). This provided a ground truth for calculating the weighted F1-score of 188 

LISI, which quantified the performance of the methods in aligning batches and separating cells 189 

from different clusters. As a result, spatiAlign achieved the highest score of 0.7935, 190 

outperforming other methods such as PRECAST (0.6863) and SCALEX (0.6099), while MNN 191 

was the poorest with a score of 0.0485 (Fig. 3d). Next, on the UMAP plots, we illustrated the 192 

batch effects present before alignment (Fig. 3e). After integration, spatiAlign demonstrated 193 

successful batch merging, in contrast to the outputs of PRECAST, GraphST, Harmony, Combat 194 

and other control methods, where prominent batch effects remained observable. In addition, 195 

spatiAlign found separate clusters that aligned well across the three sections (Fig. 3f). Even 196 

though BBKNN and SCALEX also generated separate clusters, batch effects were still visible 197 

after their integration. Hence, compared with combined clustering results produced by the 198 

control methods, those detected using spatiAlign embeddings better corresponded to the 199 

annotated ground truth and showed a higher consistency across different sections. 200 

Furthermore, we showed that the reconstructed gene expression from spatiAlign (Fig. 3g, 201 

Supplementary Fig. S4d, e, top panel) was denoised and enhanced compared with the raw gene 202 

expression (Fig. 3g, Supplementary Fig. S4d, e, middle panel). For some marker genes38, e.g., 203 

Cmtm5, Cdhr1, Doc2g, and Pcp4, the spatial expression pattern was clearly enhanced and more 204 
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consistent with the spatial locations of the corresponding cell types(Fig. 3g, Supplementary Fig. 205 

S4d, e, bottom panel). 206 

spatiAlign preserves heterogeneous characteristics among slices while aligning datasets. 207 

We utilized three mouse hippocampal slices from Slide-seq (Fig. 4a and Supplementary Table 208 

1) to assess the performance of spatiAlign and the benchmarking methods in integrating 209 

datasets with different biological characteristics. These mouse hippocampus slices were 210 

collected from different regions in the mouse brain3, 39, 40. As shown on the UMAP plots, 211 

spatiAlign accurately integrated disparate datasets and revealed diverse clusters of structural 212 

heterogeneity (Fig. 4b, d, and g). Quantitatively, spatiAlign excelled over other control methods 213 

with an integrated LISI (iLISI) index of 0.6230, except for SCALEX. However, despite 214 

achieving the highest iLISI index, SCALEX was unable to preserve the biological difference 215 

among slices (Fig. 4c, Supplementary Fig. S5a and d). 216 

Furthermore, we adopted hierarchical clustering to validate the effectiveness of each 217 

method in identifying the brain regions. The resulting cell clusters after spatiAlign was applied 218 

displayed strong spatial aggregation with clear boundaries and higher consistency with the 219 

anatomical structures of the Allen Brain Atlas41 (Fig. 4d and Supplementary Fig. S5b). Such an 220 

observation was further evidenced by the global Moran’s I index, which measures spatial 221 

autocorrelation (Fig. 4e). Regarding finding the substructural regions, our proposed spatiAlign 222 

was the only method that identified the substructures of the hippocampus, including CA1, CA2 223 

and dentate gyrus (DG), on all three slices (Fig. 4g). The successful hippocampus-related-224 

region identification of spatiAlign had higher consistency across three slices than others (Fig. 225 

4g), while GraphST detected incorrect regions due to a lack of registering spatial coordinates 226 

(Supplementary Fig. S5d). For preserving heterogeneous characteristics, we observed that the 227 

identified habenula and third ventricle (V3) regions were barely enriched on slice 3 but highly 228 

populated on the other two slices, as expected (Fig. 4h). Such results were in high concordance 229 

with the expression spatial pattern of the associated marker genes42 Enpp2 for V3 and Tac2 for 230 

habenula (Fig. 4i). To validate the biological traits of heterogeneous embedding, we 231 

implemented DEG and GO analyses on detected habenular cell groups. We found many marker 232 

genes42 for habenula among the highly expressed genes of the merged dataset, e.g., Gm5741, 233 

Nwd2, Gng8 and Lrrc55 (Fig. 4j). In addition, the GO enrichment analysis showed that the 234 

habenula is actively involved in the production and synthesis of ATP (Fig. 4k). This finding 235 

was in accordance with biological understandings that ATP not only plays a crucial role in 236 

energy metabolism for habenular cells but also acts as a neurotransmitter to modulate neuronal 237 

activity and synaptic transmission43. 238 
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spatiAlign facilitates joint gene-level analysis of time-series mouse embryonic brain. 239 

Finally, we utilized a series of mouse brain datasets4 extracted from multiple developing mouse 240 

embryos (Fig. 5a), measured by Stereo-seq, to demonstrate the benefits of spatiAlign for 241 

downstream gene-level analysis. These brain sections were collected at different embryonic 242 

days from E9.5 to E16.5, which included a total of 104,974 cells and 22,864 genes in the merged 243 

dataset. Herein, we initially evaluated the inherent batch effects present prior to alignment. 244 

Before applying spatiAlign, cells were primarily grouped by batch (Fig. 5b). In comparison, 245 

spatiAlign well aligned these datasets within its lower-dimensional representations, where the 246 

batch effects were adjusted. The cells were then clustered into coherent groups in an 247 

unsupervised manner, and we next manually labelled them by referring to the expression of 248 

marker genes reported by the atlas of the developing mouse brain44 (Fig. 5b). These marker 249 

genes, e.g., Ccnd2 of NeuB, Col4a1 of fibroblast, Sncg of FMN, Slc1a3 of Hb VZ, and Hcrtr2 250 

of Spall VZ, exhibited the highest expression levels in their corresponding cell types that had a 251 

relatively high fraction (Fig. 5c). In particular, we found two subtypes of GABAergic 252 

interneurons in the subpallial region that were characterized by the Dlx5 and Gpm6a genes, 253 

which we named SPall Gpm6a and SPall Dlx5, respectively (Fig. 5c). The validity of these 254 

annotations was also confirmed by the strong correspondence observed in the spatial 255 

distributions between cell types and relevant marker genes (Supplementary Fig. S6a). 256 

A key benefit of our proposed spatiAlign is its ability to obtain aligned gene expression 257 

with batch effects removed, thereby enabling downstream gene-level analysis. Based on the 258 

reconstructed expression features, we identified DEGs across E9.5-E16.5 using the Wilcoxon 259 

test in SCANPY. A heatmap of the expression of the top 5 ranked DEGs (Supplementary Fig. 260 

S6b) illustrated high specificity across different developmental stages. In our observations, the 261 

detected DEGs, e.g., Id2, Lbx1, Id3, Cdh8, and Nlgn1, have been reported to play crucial roles 262 

in neuronal differentiation and maturation processes, such as neurogenesis and synaptic 263 

plasticity. Specifically, Id2, with differential expression at E9.5, has been extensively studied 264 

for its involvement in balancing neuronal proliferation and differentiation45. Similarly, Id3, 265 

showing specificity to E13.5, was widely recognized for its function in controlling the timing 266 

of neurogenesis in the embryo46. Conversely, the top-ranked DEGs identified at E16.5, such as 267 

Nlgn1, Cadm2, Nrg1, and Ccser1, have been well studied for their contributions to synapse 268 

formation, myelination, synaptic plasticity and connectivity47-49, suggesting the final stage of 269 

neurogenesis with synaptogenesis and the formation of synaptic connections between neurons 270 

at E16.5. The subsequent GO-based enrichment analysis (Fig. 5d) revealed distinct functional 271 

enrichments during different developmental stages in the mouse embryonic brain. Negative 272 

regulation of haemopoiesis was observed at E9.5, followed by dendrite morphogenesis at E12.5, 273 

early endosome at E13.5, synaptic cleft at E14.5, long-term synaptic potentiation at E15.5, and 274 

synaptic membrane adhesion at E16.5. These findings were in line with the major 275 
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developmental events observed at different embryonic stages, encompassing the initiation of 276 

neurogenesis (E9.5)50, early neuronal connection (E12.5)51, increased neurogenesis (E13.5, 277 

E14.5 and E15.5)52, 53, and the refinement of synaptic plasticity (E16.5). 278 

We further demonstrated the effectiveness of spatiAlign for combined trajectory analysis 279 

by employing two distinct approaches: PAGA, a graph abstraction technique based on low-280 

dimensional embedding space35, and CellRank54, a state-of-the-art cell fate mapping algorithm 281 

using a high-dimensional count matrix as input. The PAGA graph of spatiAlign embeddings 282 

(Fig. 5e) exhibited a nearly linear development trajectory from E9.5 to E16.5, as well as a high 283 

similarity between adjacent time points. Furthermore, the age-specific genes that were 284 

identified could be traced along the PAGA path (Fig. 5f). We proceeded to compare the 285 

reconstructed trajectory obtained from CellRank using two different inputs: the raw and 286 

spatiAlign-reconstructed feature matrices. The recovered trajectory, derived from reconstructed 287 

features (Fig. 5g and h), illustrated a clear transition path across cell types and a similar 288 

distribution across different time points, consistent with previous observations55. In contrast, 289 

the batch effects present in the raw count matrix may lead to infeasible and chaotic fate 290 

potentials across different batches (Supplementary Fig. S6c). Additionally, the expression 291 

patterns of reported driver genes associated with neuronal (i.e., Tuba1a56, Tenm257, Rbfox1) as 292 

well as nonneuronal (Dcn, Col1a1, Col1a2) development58 (Fig. 5h) were consistent with the 293 

predicted cell fate, thereby validating the feasibility of the estimated pseudotime and affirming 294 

the reliability of our analysis. 295 

Discussion 296 

In this paper, we develop spatiAlign, an advanced deep learning methodology that tackles the 297 

challenge of integrating multiple SRT datasets. SpatiAlign first transforms spatial information 298 

into a neighbouring adjacency matrix to perform spatial embedding that aggregates gene 299 

expression profiles together with spatial neighbouring context for spot/cell representations. The 300 

obtained representations are subsequently fine-tuned through augmentation-based contrastive 301 

learning, which incorporates spatial context information to improve their informativeness and 302 

distinguishability. Next, regarding aligning biological effects, spatiAlign adopts across-domain 303 

adaptation and deep clustering strategies to bring the semantic similarity of spots/cells closer 304 

and push dissimilar spots/cells apart, regardless of which datasets they are from. Collectively, 305 

beyond SRT dataset integration and batch effect correction, spatiAlign-integrated datasets can 306 

be used for downstream analysis, such as identifying combined clusters and DEGs and 307 

trajectory inference. 308 

Naturally, one might be concerned that achieving a sufficient mix of serial tissue sections 309 

could result in the inability to distinguish spots/cells from different clusters. Therefore, in this 310 

study, we introduce a weighted F1 score of LISI, which evaluates the integration mixing and 311 

separation of each cluster, to perform comparison analysis. We presented a series of 312 
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benchmarking analyses on four publicly available SRT datasets with different characteristics. 313 

On the human DLPFC datasets, with the manual annotation as ground truth, spatiAlign achieves 314 

the highest ARI and weighted F1 score of LISI compared with other control methods. This 315 

quantitative assessment highlights its superiority in integrating different samples while also 316 

identifying separate clusters. Furthermore, the superior performance of spatiAlign on 317 

aggregated datasets of olfactory bulbs sequenced by different platforms demonstrates its 318 

efficacy in integrating multiple datasets with complex technical variations. In addition, the 319 

reconstructed expression of region-specific marker genes exhibits a greater spatial specificity 320 

compared with the original data. However, we point out here that our effort was not intended 321 

to develop a new imputation method over existing methods but to demonstrate that spatiAlign-322 

reconstructed matrices enhance gene counts. 323 

Moreover, there is concern regarding the potential loss of distinct biological characteristics 324 

during the batch alignment process. Herein, we unequivocally affirm that spatiAlign not only 325 

effectively preserves the intrinsic variation among sections but also adeptly harmonizes batches, 326 

as demonstrated through its successful application to three distinct brain sections characterized 327 

by heterogeneous structures. However, the benchmarking methods are unable to match the 328 

performance of spatiAlign. When applied to a time-series dataset, spatiAlign significantly 329 

facilitates downstream analysis, such as combined clustering, combined differential expression 330 

analysis and trajectory inference. In the results, various subtypes of neurons were successfully 331 

identified, with the typical marker genes displaying the highest expression in their 332 

corresponding cell types. Upon analysing the reconstructed full expression space, we identified 333 

DEGs and significant GO terms specific to different developmental stages that showed high 334 

consistency with previous studies on mouse brain development. Comparing the trajectories 335 

inferred from corrected expression features and the raw data, we verify that spatiAlign not only 336 

aligns multiple batches into a joint low-dimensional embedding space but also corrects the 337 

batch effects in their full expression space. This capability empowers users to perform 338 

preprocessing for methods that require a full gene expression matrix, such as CellRank. 339 

We designed spatiAlign to be user-friendly and believe that it offers a novel and effective 340 

approach for SRT dataset integration. In the future, we envision extending spatiAlign for 341 

integrative and multimodal spatial molecular dataset analysis, e.g., epigenetics, proteomics and 342 

microbiomics. Such advancements will enable efficient integration of multiomics data and 343 

facilitate the deeper exploration of biological phenomena. 344 

 345 

 346 
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Methods 347 

Motivation for the use of across-domain adaptation contrastive learning 348 

As genomic sequencing technology continues to advance, an increasing number of SRT 349 

datasets are being generated from various platforms. Joint analysis of multiple datasets can be 350 

used to facilitate the extraction of maximum reliable information, but inconsistent data 351 

distributions between different sections due to batch effects may affect the reliability of 352 

downstream analysis results. To address this issue and maximize the preservation of biological 353 

variations, it is desirable to amalgamate disparate datasets and bring similar cell types closer 354 

together while keeping dissimilar cell types far apart. Across-domain adaptation contrastive 355 

learning, an unsupervised domain adaptation method, can be used for this purpose. This method 356 

can align data distributions, preserve biological variations, and remove batch effects while also 357 

incorporating spatial information of the SRT dataset into the newly generated latent embedding 358 

and reconstructed matrix. 359 

Data preprocessing 360 

spatiAlign utilizes a series of gene expression matrices and associated spatial coordinates 361 

as inputs. The gene expression profiles are stored in a 
N DX  matrix of unique molecular 362 

identifier (UMI) counts, where N is the number of spots/cells and D  is the number of genes, 363 

and it also includes ( , )x y  two-dimensional spatial coordinates for each spot/cell. The raw 364 

gene expression matrices were first filtered according to criteria _ 20min genes  and 365 

_ 20min cells  for each dataset using SCANPY (version: 1.9.1), followed by normalization 366 

and log transformation of individual spots. 367 

Spatial neighbour graph construction for the SRT dataset 368 

To fully exploit the spatial local neighbouring context, we convert the spatial coordinates 369 

into an undirected neighbourhood graph ( )G V,E  by Euclidean distance with a predefined 370 

neighbour parameter k , where V represents the SRT dataset spots/cells and E  represents 371 

the connected edges between the current spot/cell and neighbouring spots/cells. The adjacency 372 

matrix of graph G  is denoted by A , in which spot/cell u V with k  nearest neighbour 373 

spots/cells; if spot/cell v V  is the neighbour of spot/cell u , = 1uva ; otherwise, it is 0. 374 

Specifically, we selected the top 15 nearest neighbours for each spot/cell in the SRT gene 375 

expression spatial coordinates. 376 

Batch-specific variations to separate using domain-specific batch normalization 377 

Batch normalization (BN)59 is widely used to solve the problem of internal covariate shift 378 

during DNN training. It can reduce the problems of vanishing gradients and overfitting. For a 379 

mini-batch of data 
1...mx , the BN layer can be calculated using the following 380 

parameterization: 381 
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where  is the mean of the mini-batch, 2  is the variance of the mini-batch, ˆ
ix  is the 383 

normalized output by the mean and variance of the mini-batch,  is a small constant to avoid 384 

dividing by zero, and iy  is the output of the BN layer, which is obtained by scaling and 385 

shifting ˆ
ix  with learned parameters  and . 386 

Domain-specific batch normalization (DSBN)60 is used in unsupervised domain adaptation 387 

with multiple source datasets to separate domain-specific variations from different datasets. In 388 

spatiAlign, DSBN consists of multiple sets of BN layers that select the corresponding BN with 389 

the batch label b . DSBN can be represented as follows: 390 

 
,

ˆ ( , )
b bb b b b by x DSBN x b   (2) 391 

where b  and b  are batch-specific affine parameters for batch b . 392 

DSBN has been proposed to capture and utilize the batch-specific information in datasets 393 

by learning affine parameters for each dataset, which enables the model to learn the batch-394 

specific variations that exist within the datasets13, 60. 395 

DGI-based feature extractor for reducing dimensions and propagating spatial neighbouring 396 

context 397 

spatiAlign leverages the DGI framework to project a gene expression matrix into a latent 398 

space while simultaneously performing dimension reduction and propagating spatial 399 

neighbouring spots/cells context. To reduce the dimension of higher-dimensional SRT data, we 400 

employed a DNN-based autoencoder mapping model :f X Z , where  represents the 401 

parameters of the mapping model, N dZ  is a latent embedding with dimensions d , and d D . 402 

The DNN-based mapping model, a feature embedding block, consists of a fully connected block 403 

and two stacked residual bottleneck blocks. Specifically, the fully connected block comprises 404 

a linear connected layer, a DSBN layer, an exponential linear unit (ELU) as a nonlinear 405 

activation function, and a dropout layer in sequence. Each residual bottleneck block consists of 406 

two stacked fully connected blocks, and the output of the residual bottleneck block is passed 407 

through an ELU layer (Fig. 1b). Notably, the feature embedding block only takes the gene 408 

expression matrix as input. 409 
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To propagate the spatial neighbouring context in the reduced dimensionality space, we 410 

employ a variational graph autoencoder (VGAE) framework. The VGAE framework takes the 411 

latent embedding Z  obtained from the feature embedding model and the adjacency matrix 412 

A  as input and generates Y  as output. The VGAE encoder includes two stacked graph 413 

convolutional network (GCN) layers and uses the rectified linear unit (ReLU) as a nonlinear 414 

activation function. The first GCN layer generates a lower-dimensional spatial embedding and 415 

aggregates the spatial neighbouring context, while the second GCN layer generates the mean 416 

 and variance 
2
. The spatial embedding Y  is then reparametrized from 

2Y , 417 

where (0,1)N . The final latent representation S  is generated from the feature fusion 418 

block, which includes two stacked fully connected layers, as well as a DSBN layer followed by 419 

each connected layer in sequence, and takes concatenated feature embedding as input, which is 420 

obtained by concatenating the reduction dimensionality embedding Z  and the spatial 421 

embedding Y . The final latent embedding S  is then used to reconstruct the original gene 422 

expression matrix X  in the DNN-based autoencoder and the spatial neighbouring adjacency 423 

matrix A  in the VGAE network. 424 

Training the DNN-based autoencoder and VGAE network minimizes the loss of the 425 

reconstructed gene expression matrix and maximizes the log-likelihood of the observed SRT 426 

sequencing latent representation S . We first employed the scale-invariant mean squared error 427 

(MSE)61 to measure the DNN-based loss. In addition, the loss function of the VGAE includes 428 

a binary cross-entropy loss to minimize the difference between the input spatial neighbouring 429 

adjacency matrix A  and the reconstructed adjacency matrix A . Additionally, a Kullback‒430 

Leibler divergence loss was used to optimize the log-likelihood between the posterior 431 

distribution ( , )q Y | S A  and prior distribution ( )p Y , where ( ) (0,1)p Y N . The 432 

dimension reduction and spatial neighbouring context propagation loss can be calculated as 433 

follows: 434 

  ( ) ( , )ENC mseL L BCE A,A KL q Y | S,A p Y  (3) 435 

where BCE  is the binary cross-entropy, KL  is the Kullback‒Leibler divergence, 
_sim mseL  436 

is the scale-invariant MSE and , 0,1  are hyperparameters. 437 

 [ ] 1
2 2

mse k22

1 1
L x x x - x

k k
  (4) 438 

where k  is the number of spots/cells in the input gene expression matrix, 1k  is a vector of 439 

ones of length k , 
2

2
 is the squared 2L  norm, and 0,1  is a hyperparameter. 440 

Self-supervised contrastive learning for representation enhancement 441 

DGI is a self-supervised learning architecture that maximizes mutual information between 442 

local neighbours of a graph to learn representations of nodes. spatiAlign takes original and 443 

corrupted gene expression matrices as inputs and generates latent representation matrices S  444 

and S , respectively. The corrupted matrix is a rowwise random perturbation of the original 445 
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matrix, and we assume that the corrupted gene expression profiles have the same neighbouring 446 

adjacency matrix as the original profiles. Formally, given a spot i , we form a positive pair 447 

consisting of its representation is  and the neighbouring graph spot vector g , while the 448 

corresponding corrupted representation is  from the corrupted matrix and the same 449 

neighbouring graph spot vector g  form a negative pair. A self-supervised contrastive 450 

learning method was used to train the DGI framework, and the loss function was designed to 451 

maximize the mutual information of positive pairs while minimizing the mutual information of 452 

negative pairs: 453 

 
,

1
log , log 1 ,

2

N

SSL i i i iZ,A Z A
i 1

L s g s g
N

  (5) 454 

where  is a discriminator, a bilinear layer and follows a sigmoid layer, to distinguish the 455 

positive pairs from negative pairs. 456 

Biological effects alignment using across-domain adaptation contrastive learning 457 

To align biological effects using across-domain adaptation contrastive learning, we 458 

propose a criterion for forming pairs based on the assumption that datasets from multiple tissue 459 

sections share at least one common cell type in the current alignment setting. To achieve this, 460 

we perform in-batch instance-level contrastive learning and across-batch instance-level 461 

contrastive learning for each tissue section separately. Specifically, we maintain a memory bank 462 
bV  for each tissue section, which is used to store the latent embedding and prototype spot/cell 463 

type representations within the batch. 464 

 , , , , , ,1 1 1 b b b

1 N 1 NV v v V v v   (6) 465 

where iv  is the stored feature vector of 
ix , initialized with final latent representation S , 466 

and updated with a momentum m  after each iteration for each dataset: 467 

 1i i iv mv m s   (7) 468 

In-batch instance level contrastive learning 469 

The pairwise similarity distributions b

iP  are measured by the cosine distance between 470 

latent embedding bS  and the corresponding memory bank bV  to perform in-batch instance 471 

discrimination, 472 
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  (8) 473 

where  is the temperature parameter, which can determine the concentration level of the 474 

similarity distribution. Finally, cross-entropy was employed to minimize the in-batch instance 475 

discrimination. 476 

 ( )b

instCL iL CrossEntropy P ,i   (9) 477 

where i  denotes the unique index of the spot of ix . 478 

Pseudoprototypical cluster level contrastive learning 479 

Inspired by unsupervised contrastive clustering32, we map each spot/cell i  into an 480 

embedding space with d  dimensions, where d  is equal to the number of 481 

pseudoprototypical clusters. Since each spot belongs to only one cluster, ideally, the row of the 482 

latent embedding N dS  tends to be one-hot, meaning that the -thj  column of N dS  represents 483 

the -thj  cluster. Similar to in-batch instance-level contrastive learning, our method uses cosine 484 

distance to measure the similarity between latent embedding and the corresponding memory 485 

bank and maximize the pseudo cluster pair similarity using cross-entropy. Specifically, the loss 486 

function can be expressed as: 487 

 

,

exp , /

exp , /

( , )

T
b b

T T i jb b

i j T T
b b

i j

T T
b b

i i
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T T
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  (10) 488 
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where log
N b b

i ii 1
H Z P s P s  is the entropy of the pseudo cluster assignment 489 

probabilities 
1 1

/
db b b

i ti it
P s s s , which can help to avoid the trivial solution in which most 490 

spots are assigned to the same cluster32. 491 

Across-batch instance self-supervised learning 492 

To explicitly align biological effects and ensure that spatiAlign learns discriminative 493 

representations of dissimilar cell types between different batches, we perform across-batch 494 

feature matching. Specifically, we minimize the entropy of the pairwise similarity distribution 495 

between latent embeddings in one batch and the latent embeddings stored in the memory bank 496 

of another batch. The loss function for across-batch spot/cell pair matching can be formalized 497 

as: 498 

 

=1

,

1,

,

exp , /

exp , /

, ,

T
s b

s b

s b

s b

i is b

i N s b

i jj
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s s b s b
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b= b s

S V
sim S V

S V

sim s v
P

sim s v

L S V H P S V

  (11) 499 

The overall objective for spatiAlign is to minimize: 500 

 ENC SSL instCL clutCL crossSSLLoss L L L L L   (12) 501 

Comparisons of methods 502 

We perform four comprehensive representative SRT datasets with varying characteristics 503 

to compare spatiAlign with other state-of-the-art methods of data integration. 504 

We applied the following integration methods: (1) Harmony8 implemented in the 505 

SCANPY package external module harmony_integrate; (2) Combat62 implemented in the 506 

SCANPY package module combat; (3) Scanorama11 implemented in the SCANPY package 507 

external module scanorama_integrate; (4) BBKNN12 implemented in the SCANPY package 508 

external module bbknn; (5) MNN15 implemented in the SCANPY package external module 509 

mnn_correct; (6) SCALEX13 implemented in the Python package scalex, and spatial-base 510 

methods: (7) PRECAST24 implemented in the R package PRECAST; (8) GraphST25 511 

implemented in the Python package GraphST. We input the preprocessed datasets into 512 
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spatiAlign and several other tested methods. The first six methods were developed for scRNA-513 

Seq datasets, whereas PRECAST and GraphST were specifically designed for SRT datasets. 514 

Evaluation metrics 515 

We evaluate the performance of spatiAlign and other control methods in both data 516 

integration and the preservation of biological variation using the following metric. 517 

F1-score of Local inverse Simpson’s index. To simultaneously evaluate the separation 518 

of same-cell-type aggregation and across-batch fusion in the data integration, we calculated the 519 

LISI8 using two different groupings: (1) grouping using different datasets as the batch iLISI  520 

and (2) grouping using known cell types as the spot cLISI . In the data integration, a larger 521 

value of iLISI  indicates sufficient mixing of the different batch datasets, while a smaller 522 

value of cLISI  suggests better preservation of the biological variations between spot types. 523 

The two metrics can be summarized using the 1F  score as follows: 524 

 

2 1
1 score 0,1

1

0,1

0,1

norm

norm

norm norm

norm norm

iLISI min iLISI
iLISI

max iLISI min iLISI

cLISI min cLISI
cLISI

max cLISI min cLISI

iLISI cLISI
F

iLISI cLISI

  (13) 525 

where  is a smaller constant. A higher 1F  score indicates superior data integration, which 526 

effectively retains the biological variations between spot types while eliminating other 527 

noncellular biological variations across multiple batches, thereby enhancing the fidelity of the 528 

biological information. 529 

Adjusted Rand index. To evaluate the efficacy of merge clustering when utilizing lower-530 

dimensional gene expression representations, we utilized the adjusted Rand index (ARI)34 as a 531 

performance metric. ARI represents an enhanced version of the Rand Index (RI), which 532 

overcomes several of its limitations. By measuring the degree of similarity between two 533 

partitions, ARI provides a numerical value that ranges between −1 and 1, with a higher value 534 

indicating a higher degree of similarity between the two partitions being compared. Moreover, 535 

ARI attains a value of 1 when the two partitions under comparison are equivalent up to a 536 

permutation. Hence, ARI serves as a reliable and robust tool for evaluating the performance of 537 

merge clustering approaches. 538 

Hierarchical clustering and Moran’s I index calculation. The spatial regions were 539 

identified by a hierarchical clustering algorithm with a lower-dimensional representation from 540 
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different methods. The agglomerative clustering function in the scikit-learn package was 541 

implemented with 16 clusters (n_cluster=16). Then, we calculate the global Moran’s I index 542 

for each region on each slice. First, the batch labels were encoded to one-hot vectors, and spatial 543 

coordinates were used to calculate spatial neighbours (edge weights=1). Then, the Moran 544 

function in the ESDA (2.4.3) Python package was applied to calculate Moran’s I index 545 

Differential expression analysis and GO enrichment analysis. We employed the 546 

FindMarkers() function of the Scanpy package to identify differentially expressed genes (DEGs) 547 

for the spatial domain using “T test” implementation and cutting of the adjusted 𝑝 value at 0.05. 548 

To perform GO enrichment analysis for the DEGs, we utilized the ClusterProfiler (v4.8.1) R 549 

package. 550 

Trajectory inference analysis. We used the spatiAlign embedding to infer the PAGA35 551 

path by the scanpy.tl.paga function in SCANPY. CellRank54 was implemented to estimate 552 

pseudotime using the CytoTraceKernel algorithm and compute_transition_matrix beyond RNA 553 

velocity because the spliced and unspliced counts were not available in the mouse embryonic 554 

brain datasets. We visualized the directed transition matrix CellRank calculated with the same 555 

sort of arrows that are used for RNA velocity. However, there is no RNA velocity in this study. 556 

Dataset availability 557 

The public datasets are freely available as follows. The Stereo-seq data have been 558 

deposited into the CNGB Sequence Archive (CNSA) of the China National GenBank DataBase 559 

(CNGBdb) with accession number CNP0001543, the spatiotemporal dataset of the mouse 560 

embryonic brain is available at https://db.cngb.org/stomics/mosta, and the 10x Genomics 561 

Visium data have been published at https://www.10xgenomics.com/resources/datasets/adult-562 

mouse-olfactory-bulb-1-standard. The LIBD human dorsolateral prefrontal cortex (DLPFC) 563 

dataset and mouse breast datasets can be downloaded from 564 

https://zenodo.org/record/6925603#.YuM5WXZBwuU. Mouse hippocampus: 565 

https://singlecell.broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-566 

transcriptomics-at-near-cellular-resolution-with-slide-seqv2#study-summary, 567 

https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study#study-summary, 568 

and https://singlecell.broadinstitute.org/single_cell/study/SCP948/robust-decomposition-of-569 

cell-type-mixtures-in-spatial-transcriptomics#study-summary, respectively.  570 

Codes & Software availability 571 

An open-source Python implementation of spatiAlign and reproduction codes are available at: 572 

https://github.com/STOmics/Spatialign.git 573 
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Tutorials are available at: https://spatialign-tutorials.readthedocs.io/en/latest/index.html 574 
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Fig. 1 | Overview of spatiAlign. a). spatiAlign takes as inputs multiple spatially resolved 
transcriptomics (SRT) datasets that consist of gene expression profiles for all measured genes and 
spatial locations of spots/cells. Using semantic alignment, spatiAlign generates a shared batch-
corrected embedding, where biological effects are aligned. Moreover, spatiAlign reconstructs the 
full high-dimensional expression space, enhancing and correcting gene expression counts. In 
addition to SRT dataset integration and gene feature correction, spatiAlign returns a final joint 
embedding and enhanced gene expression matrices to facilitate downstream analysis, such as joint 
spatial clustering, joint differential expression analysis, and joint trajectory inference. b). spatiAlign 
takes multiple SRT datasets as inputs. Latent embeddings are first generated using Deep Graph 
Infomax (DGI) as feature extractors. Then, with the utilization of across-domain adaptation and 
memory bank strategies, sptiAlign brings similar semantic spots/cells closer together and pushes 
dissimilar spots/cells farther apart, irrespective of their original datasets. These self-batch and 
across-batch contrastive learning processes align biological effects while correcting batch effects. 
c). A DGI framework takes as inputs the normalized gene expression matrix and corresponding 
spatial coordinates from an SRT dataset. A spatial neighbouring graph (i.e., adjacent matrix A ) is 
built to represent the spatial relationships between adjacent spots/cells. To create an augmented gene 
expression matrix X , a random perturbation is applied to shuffle the original gene expression X  
while maintaining the spatial neighbouring graph unchanged. Deep neural network (DNN)-based 
autoencoders are used to learn gene representations Z  and Z  by reducing the dimension of gene 
expression matrix X   and the augmented expression matrix X  . These representations are 
individually fed into a variational graph autoencoder (VGAE), along with the spatial neighbouring 
graph, which performs spatial embedding for the gene representations and outputs the final latent 
representations S   and S   that capture the rich information both in original/augmented gene 
expression profiles and spatial information. Afterwards, embeddings S  are optimized using our 
self-supervised contrastive learning strategy, which ensures that spatially adjacent cells have similar 
embeddings while nonadjacent cells have dissimilar embeddings. Finally, the final embeddings S  
can be reversed back to the original feature space, resulting in a reconstructed gene expression 
matrix. 
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Fig. 2 | spatiAlign outperforms the control methods in integrating the human dorsolateral 
prefrontal cortex (DLPFC) datasets. a). Manual annotation of sample ID 151673 from the original 
study. b). Bar plots of the mean scores of the adjusted Rand index (ARI) for the combined clusters 
from spatiAlign and other control methods. c). Bar plots of the weighted F1 scores of the local 
inverse Simpson’s index (LISI), assessing both batch mixing and cell-type separation, for the 
integration results from different data integration methods. d). UMAP plots for the integrated 
batches and identified cell types from spatiAlign and other control methods. For the integration 
result of each method, dots in the right panel are coloured by batch, and dots in the left panel are 
coloured by cell type. e). PAGA graphs of spatiAlign and other control methods. f). Spatial 
visualization of spatiAlign-enhanced (top panel) and raw (bottom panel) expression of layer-marker 
genes. g). Violin plots of the raw (left panel) and spatiAlign-enhanced (right panel) expression of 
layer-marker genes. The cortical layers corresponding to the layer-marker genes are highlighted 
with red boxes. 
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Fig. 3 | spatiAlign integrates three mouse olfactory bulb datasets from Stereo-seq and 10x 
Genomics Visium sequencing platforms. a). The mouse olfactory bulb datasets consisted of three 
sections, with two sections sequenced using Stereo-seq and the third section generated from 10x 
Genomics Visium. The two Stereo-seq datasets were sequenced on different types of chips, with 
spots having centre-to-centre distances of 500 and 715 nm, respectively (middle panel). Hence, the 
two Stereo-seq datasets were individually binned at Bin140 and Bin200 to ensure that all spots in 
the three sections were of the same size of 100 µm (right panel). b). Organization of mouse olfactory 
bulb annotated by ssDNA image. c). Manual annotation as a ground truth for benchmarking analysis. 
Spots are coloured by cell type. d). Bar plots of the weighted F1 scores of LISI for the integration 
results from spatiAlign and the other control methods. e). Visualization of batch effects present in 
batches and cell types before integration. f). UMAP plots for the integrated batches and identified 
cell types from spatiAlign and other control methods. For the integration result of each method, dots 
in the right panel are coloured by batch, and dots in the left panel are coloured by cell type. g). 
Spatial visualization of spatiAlign-enhanced (top panel) and raw (middle panel) expression of 
marker genes, together with the associated cell types (bottom panel). spatiAlign denoised and 
enhanced the spatial expression pattern of marker genes compared with raw data. 
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Fig. 4 | spatiAlign identifies distinct brain structures specific to each slice while integrating 
three mouse hippocampus datasets. a). Spatial heatmap of total transcripts in the three mouse 
hippocampal slices measured by Slide-seq. b). UMAP plot for the integrated slices from 
spatiAlign. c). Bar plots of the integration LISI (iLISI) scores, evaluating batch mixing, for the 
integration results from spatiAlign and other control methods. d). Spatial visualization (left) 
and UMAP plot (right) for the joint clustering results from spatiAlign. e). Boxplots of global 
Moran’s I index for the joint clusters from spatiAlign and other control methods. f). The 
expression matrix plot of markers of the CA1, CA3, and DG regions. g). Spatial visualization 
(left) and UMAP plot (right) of CA1, CA3, and DG regions that were only identified by 
spatiAlign. h). Spatial visualization (left) and UMAP plot (right) of V3 and the habenula that 
are specific to slice 1 and slice 2. i). Spatial expression of the marker genes Enpp2 in V3 and 
Tac2 in the habenula. j). Volcano plot of differentially expressed genes (DEGs) between the 
habenula and rest. k). Top ten highly enriched GO terms for the top 100 ranked DEGs. 
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Fig. 5 | spatiAlign facilitates joint analysis of time-series mouse embryonic brain sections. a). 
Unsupervised clustering of time-series brain sections extracted from the mouse embryos across 
E9.5-E16.5 (E9.5, E12.5, E13.5, E14.5, E15.5 and E16.5) after integration using spatiAlign. 
Spots are coloured by their annotation (right panel). NeuB, neuroblast; Astro, astrocyte; Hb, 
hindbrain; OB, olfactory bulb; VZ, ventricular zone; Hy, hypothalamus; Die, diencephalon; 
OPC, oligodendrocyte precursor cell; Cere, cerebellum; SPall, subpallium; SpC, spinal cord; 
Mb, dorsal midbrain; Ery, erythrocyte; FMN, facial motor nucleus; and Chor, choroid plexus. 
b). UMAP plots for batch mixing before spatiAlign (left) and after spatiAlign (middle) and the 
labelled combined clusters from spatiAlign (right). c). Expression dot plots showing the gene 
expression specificity of typical marker genes for identified cell types. Dot size represents the 
proportion of expressing cells, and colour indicates the average expression level in each 
identified cell type. d). Top three highly enriched GO terms for differentially expressed genes 
from E9.5 to E16.5. e). PAGA graph of spatiAlign embeddings. Each node represents a batch 
that is connected by weighted edges that quantify the connectivity between batches. f). Age-
specific genes traced along the PAGA graph paths. g). Cellular trajectory across different time 
points inferred by the spatiAlign-corrected feature matrix (left) and raw expression (right), with 
black arrows representing transition trends. h). Cellular state transitions across cell types 
(middle panel) and expression of reported driver genes for neuronal (top panel) and 
nonneuronal cells (bottom panel). 
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Supplementary Fig. S1 | Manual annotation of human DLPFC datasets and joint clustering 
results from spatiAlign and other control methods, related to Figure 2. a). Manual annotation 
of four DLPFC sections from the original study. b). UMAP plots for joint leiden clusters (Leiden) 
from spatiAlign and the control methods, together with the final clusters (Mapping) that merged 
leiden clusters with the ground truth using a maximum matching strategy. c, d, e, f). Spatial 
visualization of the Leiden clusters and the mapping clusters of sample ID 151673 (c), sample ID 
151674 (d), sample ID 151675 (e), and sample ID 151676 (f). 
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Supplementary Fig. S2 | Benchmarking analysis on human DLPFC datasets, related to 
Figure 2. a, b). Bar plots of integration LISI (iLISI), a) and cell-type LISI (cLISI), b) scores 
for integration results from different methods. c). Visualization of spatiAlign-enhanced (top 
panel) and raw (bottom panel) spatial expression of layer-marker genes in sample 151674. 
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Supplementary Fig. S3 | Manual annotation of olfactory bulb datasets, related to Fig. 
3. a). UMAP plot for the left clusters of a Stereo-seq olfactory bulb dataset and its spatial 
visualization (b). c). Heatmap of marker genes associated with their cell types. d, e, f). Spatial 
pattern of marker genes and the corresponding cell types on the three olfactory bulb slices. 
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Supplementary Fig. S4 | Benchmarking analysis on olfactory bulb datasets, related to 
Figure 3. a, b, c). Bar plots of integration LISI (iLISI), a), cell-type LISI (cLISI), b) and 
ARI (c) scores for integration results from different methods. d, e). Spatial visualization of 
spatiAlign-enhanced (top panel) and raw (middle panel) spatial expression of marker genes, 
together with their corresponding cell types (bottom panel), on two olfactory bulb sections. 
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Supplementary Fig. S5 | Integration results of three mouse hippocampus slices from the 
control methods, related to Figure 4. a). UMAP plots for the joint clustering result from the control 
methods, coloured by slices (top panel) and cluster labels (bottom panel). b). Spatial visualization 
of the joint clustering results from the control methods on the three slices. c). Expression heatmaps 
of marker genes for the CA1, CA3, and DG regions in joint clusters from spatiAlign and the control 
methods. Clusters with high expression specificity are highlighted by red boxes. d). Spatial 
visualization of the hippocampus-related regions on three slices identified by the control methods. 
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Supplementary Fig. S6 | Application to time-series mouse embryonic brain, related to Figure 
5. a). Spatial visualization of the labelled clusters and the corresponding marker genes. b). 
Expression heatmap of the top five differentially expressed genes from E9.5 to E16.5. c). CellRank 
trajectory of cell types reconstructed using the raw expression counts. d). Estimated pseudotime 
scores by spatiAlign-corrected gene expression matrices. 
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