

1 **spatiAlign: An Unsupervised Contrastive Learning Model for Data**
2 **Integration of Spatially Resolved Transcriptomics**

3

4

5 Chao Zhang^{1,#}, Lin Liu^{1,#}, Ying Zhang^{1,#}, Mei Li¹, Shuangsang Fang^{1,2}, Qiang Kang¹, Ao
6 Chen^{1,3}, Xun Xu^{4,*}, Yong Zhang^{1,4,5,*}, Yuxiang Li^{1,4,5,*}

7 ¹ BGI Research, Shenzhen, 518083, China

8 ² BGI Research, Beijing, 102601, China

9 ³ BGI Research, Chongqing, 401329, China

10 ⁴ BGI Research, Wuhan, 430074, China

11 ⁵ Guangdong Bigdata Engineering Technology Research Center for Life Sciences, BGI
12 Research, Shenzhen 518083, China

13

14 [#] These authors contributed equally to this work.

15 ^{*} Correspondence: xuxun@genomics.cn, zhangyong2@genomics.cn, liyuxiang@genomics.cn

16 **Abstract**

17 Integrative analysis of spatially resolved transcriptomics datasets empowers a deeper
18 understanding of complex biological systems. However, integrating multiple tissue sections
19 presents challenges for batch effect removal, particularly when the sections are measured by
20 various technologies or collected at different times. Here, we propose spatiAlign, an
21 unsupervised contrastive learning model that employs the expression of all measured genes and
22 the spatial location of cells, to integrate multiple tissue sections. It enables the joint downstream
23 analysis of multiple datasets not only in low-dimensional embeddings but also in the
24 reconstructed full expression space. In benchmarking analysis, spatiAlign outperforms state-
25 of-the-art methods in learning joint and discriminative representations for tissue sections, each
26 potentially characterized by complex batch effects or distinct biological characteristics.
27 Furthermore, we demonstrate the benefits of spatiAlign for the integrative analysis of time-
28 series brain sections, including spatial clustering, differential expression analysis, and
29 particularly trajectory inference that requires a corrected gene expression matrix.

30 **Introduction**

31 The rapid advancements of spatially resolved transcriptomics (SRT) have revolutionized our
32 understanding of the spatial organization and heterogeneity of cells within complex tissues and
33 developmental processes¹. Cutting-edge *in situ* capturing technologies (e.g., 10x Genomics
34 Visium², Slide-seq³, Stereo-seq⁴, and Seq-scope⁵) have facilitated the simultaneous
35 measurement of tens of thousands of genes in their spatial context, achieving unprecedented
36 cellular or even subcellular resolution. The SRT datasets are typically acquired from different
37 tissue sections, each potentially representing a fragmented profiling of the targeted biological
38 system. Hence, integrating multiple datasets for joint analysis is imperative to decipher the
39 whole biological system. However, integrative analysis presents significant challenges due to
40 the inherent biological variability and batch effects caused by nonbiological factors such as
41 technology differences and different experimental batches.

42 Prior efforts to tackle this task have conventionally focused on single-cell RNA
43 sequencing technologies (scRNA-seq)^{6, 7}, which can be roughly classified into two main
44 categories: methods that (1) generate a joint embedding space⁸⁻¹³ and (2) calculate a corrected
45 feature matrix¹⁴⁻¹⁷. For example, Harmony⁸ projects cells into a shared embedding by maximum
46 diversity clustering and iteratively learning a cell-specific linear correction function that
47 regresses out biological effects within clusters. SCALEX¹³, a deep learning method, provides a
48 truly online tool to project cells into a batch-invariant, common cell-embedding space.
49 Although these methods prove valuable for capturing the overall characteristics of cells, such
50 as combined clustering, they are not applicable to downstream gene-level analysis tasks, such

51 as differentially expressed gene (DEG) analysis. In contrast, popular MNN-based methods such
52 as Seurat v3¹⁶ efficiently address batch effects in gene expression, but their limitation lies in the
53 ability to align only two batches at a time, and they become impractical when dealing with
54 many batches. However, it is worth noting that these scRNA-seq data integration tools have
55 focused on harmonizing gene expression profiles across different experimental batches and do
56 not consider the spatial context of spots/cells.

57 In the field of SRT studies, embedding spatial information has proven beneficial for
58 downstream analysis, such as spatial domain identification^{18, 19}, imputation^{20, 21}, clustering²²,
59 and cell-type annotation²³. More recently, works have been published to improve the integration
60 of SRT datasets by exploiting spatial information. PRECAST leverages spatial smoothness in
61 both the cluster label and lower-dimensional representations to estimate aligned embeddings
62 for multiple tissue sections, effectively capturing the spatial relationship between cells/spots²⁴.
63 GraphST introduces a graph self-supervised contrastive learning model to reconstruct gene
64 expression by minimizing the embedding distance between spatially adjacent spots²⁵. However,
65 PRECAST only returns the corrected embedding space, and GraphST requires registering the
66 spatial coordinates of samples first to ensure its integration performance; thus, their applications
67 are limited in certain scenarios.

68 To address these challenges, we propose spatiAlign, an unsupervised method that
69 leverages spatial embedding and across-domain adaptation strategies for aligning SRT datasets.
70 spatiAlign offers three key advantages as follows. First, it effectively captures the underlying
71 relationships between spots/cells in both the spatial neighbourhoods and gene expression to
72 learn latent representations with a deep graph infomax (DGI)²⁶ framework. Second, spatiAlign
73 aligns biological effects by adapting the semantic similarities between spots/cells and/or
74 pseudoclusters from one section to another without relying on external labelled data, resulting
75 in a joint batch-corrected embedding. Third, benefiting from a symmetric decoder in DGI,
76 spatiAlign outputs the reconstructed spatial gene expression matrices, in which gene expression
77 is enhanced and batch effects are corrected. We validate the three advantages of spatiAlign with
78 four applications on publicly available 10x Genomics Visium, Slide-seq, and Stereo-seq
79 datasets of human and mouse tissues. The benchmarking analysis demonstrates spatiAlign's
80 superiority in learning low-dimensional representations compared with eight established
81 methods, including GraphST and PRECAST, which were recently developed for SRT datasets.
82 Compared with the original spatial expression of brain region-specific markers, the
83 reconstructed counts from spatiAlign better reflect their laminar organization with denoised,
84 enhanced expressions and clear boundaries between regions. We also validate the capability of
85 spatiAlign to capture the unique characteristics of three Slide-seq mouse hippocampus slices,
86 which contain regions with different structures. The comprehensive integrated analysis of

87 developing mouse brain slices indicates that the aligned joint representations, which embed
88 cellular neighbourhoods, improve the identification of cell clusters. In addition, the
89 reconstructed features from our proposed spatiAlign method facilitate the identification of
90 DEGs under different developmental stages and the recovery of cellular trajectories.

91 **Results**

92 **Overview of spatiAlign**

93 spatiAlign takes as inputs multiple SRT datasets, comprising the expression of all measured
94 genes and spatial locations of spots/cells, to achieve two objectives: low-dimensional semantic
95 alignment and high-dimensional gene expression reconstruction (Fig. 1a). In low-dimensional
96 alignment, the primary strategy underlying spatiAlign is to implement a self-supervised
97 contrastive learning architecture (DGI-based framework) for dimensional reduction while
98 simultaneously propagating neighbouring spatial context between spots/cells (Fig. 1c).
99 Furthermore, it employs an across-domain adaptation technique to align joint embeddings,
100 effectively accounting for batch effects across multiple tissue sections (Fig. 1b). In high-
101 dimensional gene expression reconstruction, we utilize a decoder included in the DGI to reverse
102 aligned representations back into the raw gene expression space, thereby enhancing the gene
103 expression counts.

104 Formally, given a series of SRT datasets, gene expression profiles are transformed into
105 cell/spot-gene matrices (e.g., gene expression matrix X) and spatial neighbouring graphs
106 between cells/spots (e.g., cell-cell adjacent matrix A), where the connective relationships of
107 cells/spots are negatively associated with Euclidean distance. We design a deep neural network
108 (DNN)-based autoencoder to learn the low-dimensional gene representations Z from the
109 original gene expression matrix. The adjacency matrix A and the reduced gene
110 representations Z are fed into a variational graph autoencoder (VGAE)²⁷ that propagates
111 spatial neighbouring context for the gene representations, resulting in a final joint representation
112 S (positive samples) that captures comprehensive characteristics of the gene expression
113 profile and cellular neighbourhoods. Thereafter, the enhanced gene expression matrices can be
114 reconstructed using a symmetric decoder architecture, which reverses the joint representations
115 S back to the original space.

116 To improve spatiAlign's ability to exploit potential information in SRT datasets,
117 augmentation-based contrastive learning is adopted^{25, 28, 29}. Technically, a gene expression
118 matrix X is augmented by randomly shuffling the gene expression vector of spots/cells to
119 create a corrupted gene expression matrix X' while keeping the spatial neighbouring graph
120 unchanged. Then, the corrupted gene expression matrix X' and adjacency matrix A are fed
121 into the aforementioned model, which utilizes the shared model weights to generate corrupted
122 joint representations S' (negative samples). We then use self-supervised contrastive learning
123 to bring the positive samples closer within the spatial neighbouring context while pushing the
124 negative samples far apart within the same neighbouring context (Fig. 1c).

125 Using an across-domain adaptation^{28, 30, 31} and deep clustering³² strategy, spatiAlign aims
126 to align biological effects while maximizing the preservation of biological variances in the
127 latent embedding of spots/cells. Specifically, we use a memory bank to store the final latent
128 representations for each dataset that will be used to measure the similarity between spots/cells
129 or pseudoclusters for self-batch/across-batch contrastive learning. For each tissue section,
130 spatiAlign minimizes the similarity distance between the current latent representations and the
131 corresponding memory bank entries to bring similar semantic spots/cells closer together and
132 push dissimilar semantic spots/cells far apart. In parallel, inspired by the idea of “label as
133 representation”, we assume that the dimension of the final latent embedding is equal to the
134 number of pseudoprototypical clusters, and the spots/cells vector denotes its soft label
135 accordingly. Thus, each spot/cell is assigned to a different pseudo cluster, and all pseudo
136 clusters should differ from each other. Identically, spatiAlign employs “current pseudocluster
137 representation” (transposition latent representation) and “cached pseudocluster representation”
138 (transposition corresponding memory bank) to bring the same pseudocluster spots/cells closer
139 together and push dissimilar pseudo cluster spots/cells far apart, avoiding pseudocluster dropout
140 intrinsic biological variances. In across-batch contrastive learning, cross-similarity between
141 spots/cells, measured by the current latent representation and memory bank of other sections,
142 is minimized to align biological effects across sections, ensuring similar semantic spots/cells
143 closer together, regardless of which sections they are from.

144 **spatiAlign outperforms the control methods in integrating DLPFC datasets**

145 We evaluated the effectiveness of spatiAlign in analysing a series of 10x Genomics Visium
146 datasets from the human dorsolateral prefrontal cortex (DLPFC). The selected dataset
147 comprised four sections that were manually annotated into six tissue layers (Layer_1 to Layer_6)
148 and white matter (WM) in the original study (Fig. 2a, Supplementary Fig. S1a)³³. We first
149 performed graph-based clustering (Leiden) on the latent representations of spatiAlign and the
150 other eight benchmarking methods to assess their capability in aligning embedding space.
151 Before comparison, we merged the Leiden clusters of each method with the ground truth using
152 a maximum matching strategy for certain categories to produce final clustering results
153 (Supplementary Fig. S1b-f). spatiAlign achieved the highest adjusted Rand index (ARI)³⁴ score
154 with a mean of 0.5967 on all four sections and outperformed all the control methods (Fig. 2b).
155 In addition, spatiAlign achieved the highest mean weighted F1 score of the local inverse
156 Simpson’s index (LISI)⁸ of 0.8402 (Fig. 2c), where sufficient mixing and variation preservation
157 were equally evaluated. In comparison, MNN showed ineffectiveness in fusing the sections
158 together and obtained the lowest weighted F1 score of LISI. The uniform manifold
159 approximation and projection (UMAP) visualization for each method revealed that spatiAlign
160 outperformed other control methods in separating clusters while simultaneously integrating
161 slices (Fig. 2d). In particular, methods such as GraphST, SCALEX, Harmony, and Combat did
162 not clearly separate spots belonging to distinct layers, and the batches did not mix well when
163 using MNN. Although PRECAST appeared to separate clusters and integrate batches well, it
164 resulted in Layer_1 being split into two groups.

165 Furthermore, we validated the latent embeddings with the inferred trajectory from PAGA³⁵
166 (Fig. 2e). The PAGA path derived from spatiAlign embeddings exhibited a clear and nearly

167 linear spatial trajectory from Layer_1 to Layer_6, with significant similarities observed
168 between adjacent layers, in accordance with the developmental process of the neurons³⁶. In
169 contrast, the PAGA results of the other benchmarking methods were intermixed. Finally, we
170 compared the spatial expression patterns of layer marker genes before and after spatiAlign (Fig.
171 2f). The results revealed that the spatiAlign-reconstructed expression of layer-marker genes had
172 enhanced laminar enrichment and denoised distributions compared with the original data. For
173 example, *CXCL14* in Layer_1 and Layer_2, *ETV1* in Layer_5 and Layer_6, and *VATIL* in
174 Layer_5 were consistent with previous studies³⁷, whereas their raw gene expression did not
175 show discernible spatial laminar patterns. In addition, violin plots comparing gene expression
176 before and after spatiAlign processing also showed the expression enhancement of spatiAlign
177 (Fig. 2g). For example, the reconstructed expression of *SEMA3C* significantly populated Layer
178 6 compared with the original data. Such expression enhancements were also observed in other
179 sections, such as in sample ID 151674, further validating the reliability of the reconstructed
180 expressions (Supplementary Fig. S2c).

181 **spatiAlign enables the alignment of multiple olfactory bulb datasets from different SRT
182 platforms.**

183 To demonstrate the efficiency of spatiAlign in integrating datasets from different sequencing
184 platforms, we used three mouse olfactory bulb datasets. One slice was profiled by 10x
185 Genomics Visium, while the other two slices were obtained from Stereo-seq (Fig. 3a). Before
186 integration, we manually annotated each dataset (Fig. 3c) by leveraging unsupervised clustering
187 (Supplementary Fig. S3a, b), reported marker genes (Supplementary Fig. S3c, d, e, f) and the
188 ssDNA image (Fig. 3b). This provided a ground truth for calculating the weighted F1-score of
189 LISI, which quantified the performance of the methods in aligning batches and separating cells
190 from different clusters. As a result, spatiAlign achieved the highest score of 0.7935,
191 outperforming other methods such as PRECAST (0.6863) and SCALEX (0.6099), while MNN
192 was the poorest with a score of 0.0485 (Fig. 3d). Next, on the UMAP plots, we illustrated the
193 batch effects present before alignment (Fig. 3e). After integration, spatiAlign demonstrated
194 successful batch merging, in contrast to the outputs of PRECAST, GraphST, Harmony, Combat
195 and other control methods, where prominent batch effects remained observable. In addition,
196 spatiAlign found separate clusters that aligned well across the three sections (Fig. 3f). Even
197 though BBKNN and SCALEX also generated separate clusters, batch effects were still visible
198 after their integration. Hence, compared with combined clustering results produced by the
199 control methods, those detected using spatiAlign embeddings better corresponded to the
200 annotated ground truth and showed a higher consistency across different sections.

201 Furthermore, we showed that the reconstructed gene expression from spatiAlign (Fig. 3g,
202 Supplementary Fig. S4d, e, top panel) was denoised and enhanced compared with the raw gene
203 expression (Fig. 3g, Supplementary Fig. S4d, e, middle panel). For some marker genes³⁸, e.g.,
204 *Cmtm5*, *Cdhr1*, *Doc2g*, and *Pcp4*, the spatial expression pattern was clearly enhanced and more

205 consistent with the spatial locations of the corresponding cell types (Fig. 3g, Supplementary Fig.
206 S4d, e, bottom panel).

207 **spatiAlign preserves heterogeneous characteristics among slices while aligning datasets.**

208 We utilized three mouse hippocampal slices from Slide-seq (Fig. 4a and Supplementary Table
209 1) to assess the performance of spatiAlign and the benchmarking methods in integrating
210 datasets with different biological characteristics. These mouse hippocampus slices were
211 collected from different regions in the mouse brain^{3, 39, 40}. As shown on the UMAP plots,
212 spatiAlign accurately integrated disparate datasets and revealed diverse clusters of structural
213 heterogeneity (Fig. 4b, d, and g). Quantitatively, spatiAlign excelled over other control methods
214 with an integrated LISI (iLISI) index of 0.6230, except for SCALEX. However, despite
215 achieving the highest iLISI index, SCALEX was unable to preserve the biological difference
216 among slices (Fig. 4c, Supplementary Fig. S5a and d).

217 Furthermore, we adopted hierarchical clustering to validate the effectiveness of each
218 method in identifying the brain regions. The resulting cell clusters after spatiAlign was applied
219 displayed strong spatial aggregation with clear boundaries and higher consistency with the
220 anatomical structures of the Allen Brain Atlas⁴¹ (Fig. 4d and Supplementary Fig. S5b). Such an
221 observation was further evidenced by the global Moran's I index, which measures spatial
222 autocorrelation (Fig. 4e). Regarding finding the substructural regions, our proposed spatiAlign
223 was the only method that identified the substructures of the hippocampus, including CA1, CA2
224 and dentate gyrus (DG), on all three slices (Fig. 4g). The successful hippocampus-related-
225 region identification of spatiAlign had higher consistency across three slices than others (Fig.
226 4g), while GraphST detected incorrect regions due to a lack of registering spatial coordinates
227 (Supplementary Fig. S5d). For preserving heterogeneous characteristics, we observed that the
228 identified habenula and third ventricle (V3) regions were barely enriched on slice 3 but highly
229 populated on the other two slices, as expected (Fig. 4h). Such results were in high concordance
230 with the expression spatial pattern of the associated marker genes⁴² *Enpp2* for V3 and *Tac2* for
231 habenula (Fig. 4i). To validate the biological traits of heterogeneous embedding, we
232 implemented DEG and GO analyses on detected habenular cell groups. We found many marker
233 genes⁴² for habenula among the highly expressed genes of the merged dataset, e.g., *Gm5741*,
234 *Nwd2*, *Gng8* and *Lrrc55* (Fig. 4j). In addition, the GO enrichment analysis showed that the
235 habenula is actively involved in the production and synthesis of ATP (Fig. 4k). This finding
236 was in accordance with biological understandings that ATP not only plays a crucial role in
237 energy metabolism for habenular cells but also acts as a neurotransmitter to modulate neuronal
238 activity and synaptic transmission⁴³.

239 **spatiAlign facilitates joint gene-level analysis of time-series mouse embryonic brain.**

240 Finally, we utilized a series of mouse brain datasets⁴ extracted from multiple developing mouse
241 embryos (Fig. 5a), measured by Stereo-seq, to demonstrate the benefits of spatiAlign for
242 downstream gene-level analysis. These brain sections were collected at different embryonic
243 days from E9.5 to E16.5, which included a total of 104,974 cells and 22,864 genes in the merged
244 dataset. Herein, we initially evaluated the inherent batch effects present prior to alignment.
245 Before applying spatiAlign, cells were primarily grouped by batch (Fig. 5b). In comparison,
246 spatiAlign well aligned these datasets within its lower-dimensional representations, where the
247 batch effects were adjusted. The cells were then clustered into coherent groups in an
248 unsupervised manner, and we next manually labelled them by referring to the expression of
249 marker genes reported by the atlas of the developing mouse brain⁴⁴ (Fig. 5b). These marker
250 genes, e.g., *Ccnd2* of NeuB, *Col4a1* of fibroblast, *Sncg* of FMN, *Slc1a3* of Hb VZ, and *Hcrtr2*
251 of Spall VZ, exhibited the highest expression levels in their corresponding cell types that had a
252 relatively high fraction (Fig. 5c). In particular, we found two subtypes of GABAergic
253 interneurons in the subpallial region that were characterized by the *Dlx5* and *Gpm6a* genes,
254 which we named SPall Gpm6a and SPall Dlx5, respectively (Fig. 5c). The validity of these
255 annotations was also confirmed by the strong correspondence observed in the spatial
256 distributions between cell types and relevant marker genes (Supplementary Fig. S6a).

257 A key benefit of our proposed spatiAlign is its ability to obtain aligned gene expression
258 with batch effects removed, thereby enabling downstream gene-level analysis. Based on the
259 reconstructed expression features, we identified DEGs across E9.5-E16.5 using the Wilcoxon
260 test in SCANPY. A heatmap of the expression of the top 5 ranked DEGs (Supplementary Fig.
261 S6b) illustrated high specificity across different developmental stages. In our observations, the
262 detected DEGs, e.g., *Id2*, *Lbx1*, *Id3*, *Cdh8*, and *Nlgn1*, have been reported to play crucial roles
263 in neuronal differentiation and maturation processes, such as neurogenesis and synaptic
264 plasticity. Specifically, *Id2*, with differential expression at E9.5, has been extensively studied
265 for its involvement in balancing neuronal proliferation and differentiation⁴⁵. Similarly, *Id3*,
266 showing specificity to E13.5, was widely recognized for its function in controlling the timing
267 of neurogenesis in the embryo⁴⁶. Conversely, the top-ranked DEGs identified at E16.5, such as
268 *Nlgn1*, *Cadm2*, *Nrg1*, and *Ccser1*, have been well studied for their contributions to synapse
269 formation, myelination, synaptic plasticity and connectivity⁴⁷⁻⁴⁹, suggesting the final stage of
270 neurogenesis with synaptogenesis and the formation of synaptic connections between neurons
271 at E16.5. The subsequent GO-based enrichment analysis (Fig. 5d) revealed distinct functional
272 enrichments during different developmental stages in the mouse embryonic brain. Negative
273 regulation of haemopoiesis was observed at E9.5, followed by dendrite morphogenesis at E12.5,
274 early endosome at E13.5, synaptic cleft at E14.5, long-term synaptic potentiation at E15.5, and
275 synaptic membrane adhesion at E16.5. These findings were in line with the major

276 developmental events observed at different embryonic stages, encompassing the initiation of
277 neurogenesis (E9.5)⁵⁰, early neuronal connection (E12.5)⁵¹, increased neurogenesis (E13.5,
278 E14.5 and E15.5)^{52, 53}, and the refinement of synaptic plasticity (E16.5).

279 We further demonstrated the effectiveness of spatiAlign for combined trajectory analysis
280 by employing two distinct approaches: PAGA, a graph abstraction technique based on low-
281 dimensional embedding space³⁵, and CellRank⁵⁴, a state-of-the-art cell fate mapping algorithm
282 using a high-dimensional count matrix as input. The PAGA graph of spatiAlign embeddings
283 (Fig. 5e) exhibited a nearly linear development trajectory from E9.5 to E16.5, as well as a high
284 similarity between adjacent time points. Furthermore, the age-specific genes that were
285 identified could be traced along the PAGA path (Fig. 5f). We proceeded to compare the
286 reconstructed trajectory obtained from CellRank using two different inputs: the raw and
287 spatiAlign-reconstructed feature matrices. The recovered trajectory, derived from reconstructed
288 features (Fig. 5g and h), illustrated a clear transition path across cell types and a similar
289 distribution across different time points, consistent with previous observations⁵⁵. In contrast,
290 the batch effects present in the raw count matrix may lead to infeasible and chaotic fate
291 potentials across different batches (Supplementary Fig. S6c). Additionally, the expression
292 patterns of reported driver genes associated with neuronal (i.e., *Tuba1a*⁵⁶, *Tenm2*⁵⁷, *Rbfox1*) as
293 well as nonneuronal (*Dcn*, *Col1a1*, *Col1a2*) development⁵⁸ (Fig. 5h) were consistent with the
294 predicted cell fate, thereby validating the feasibility of the estimated pseudotime and affirming
295 the reliability of our analysis.

296 Discussion

297 In this paper, we develop spatiAlign, an advanced deep learning methodology that tackles the
298 challenge of integrating multiple SRT datasets. SpatiAlign first transforms spatial information
299 into a neighbouring adjacency matrix to perform spatial embedding that aggregates gene
300 expression profiles together with spatial neighbouring context for spot/cell representations. The
301 obtained representations are subsequently fine-tuned through augmentation-based contrastive
302 learning, which incorporates spatial context information to improve their informativeness and
303 distinguishability. Next, regarding aligning biological effects, spatiAlign adopts across-domain
304 adaptation and deep clustering strategies to bring the semantic similarity of spots/cells closer
305 and push dissimilar spots/cells apart, regardless of which datasets they are from. Collectively,
306 beyond SRT dataset integration and batch effect correction, spatiAlign-integrated datasets can
307 be used for downstream analysis, such as identifying combined clusters and DEGs and
308 trajectory inference.

309 Naturally, one might be concerned that achieving a sufficient mix of serial tissue sections
310 could result in the inability to distinguish spots/cells from different clusters. Therefore, in this
311 study, we introduce a weighted F1 score of LISI, which evaluates the integration mixing and
312 separation of each cluster, to perform comparison analysis. We presented a series of

313 benchmarking analyses on four publicly available SRT datasets with different characteristics.
314 On the human DLPFC datasets, with the manual annotation as ground truth, spatiAlign achieves
315 the highest ARI and weighted F1 score of LISI compared with other control methods. This
316 quantitative assessment highlights its superiority in integrating different samples while also
317 identifying separate clusters. Furthermore, the superior performance of spatiAlign on
318 aggregated datasets of olfactory bulbs sequenced by different platforms demonstrates its
319 efficacy in integrating multiple datasets with complex technical variations. In addition, the
320 reconstructed expression of region-specific marker genes exhibits a greater spatial specificity
321 compared with the original data. However, we point out here that our effort was not intended
322 to develop a new imputation method over existing methods but to demonstrate that spatiAlign-
323 reconstructed matrices enhance gene counts.

324 Moreover, there is concern regarding the potential loss of distinct biological characteristics
325 during the batch alignment process. Herein, we unequivocally affirm that spatiAlign not only
326 effectively preserves the intrinsic variation among sections but also adeptly harmonizes batches,
327 as demonstrated through its successful application to three distinct brain sections characterized
328 by heterogeneous structures. However, the benchmarking methods are unable to match the
329 performance of spatiAlign. When applied to a time-series dataset, spatiAlign significantly
330 facilitates downstream analysis, such as combined clustering, combined differential expression
331 analysis and trajectory inference. In the results, various subtypes of neurons were successfully
332 identified, with the typical marker genes displaying the highest expression in their
333 corresponding cell types. Upon analysing the reconstructed full expression space, we identified
334 DEGs and significant GO terms specific to different developmental stages that showed high
335 consistency with previous studies on mouse brain development. Comparing the trajectories
336 inferred from corrected expression features and the raw data, we verify that spatiAlign not only
337 aligns multiple batches into a joint low-dimensional embedding space but also corrects the
338 batch effects in their full expression space. This capability empowers users to perform
339 preprocessing for methods that require a full gene expression matrix, such as CellRank.

340 We designed spatiAlign to be user-friendly and believe that it offers a novel and effective
341 approach for SRT dataset integration. In the future, we envision extending spatiAlign for
342 integrative and multimodal spatial molecular dataset analysis, e.g., epigenetics, proteomics and
343 microbiomics. Such advancements will enable efficient integration of multiomics data and
344 facilitate the deeper exploration of biological phenomena.

345

346

347 **Methods**

348 **Motivation for the use of across-domain adaptation contrastive learning**

349 As genomic sequencing technology continues to advance, an increasing number of SRT
350 datasets are being generated from various platforms. Joint analysis of multiple datasets can be
351 used to facilitate the extraction of maximum reliable information, but inconsistent data
352 distributions between different sections due to batch effects may affect the reliability of
353 downstream analysis results. To address this issue and maximize the preservation of biological
354 variations, it is desirable to amalgamate disparate datasets and bring similar cell types closer
355 together while keeping dissimilar cell types far apart. Across-domain adaptation contrastive
356 learning, an unsupervised domain adaptation method, can be used for this purpose. This method
357 can align data distributions, preserve biological variations, and remove batch effects while also
358 incorporating spatial information of the SRT dataset into the newly generated latent embedding
359 and reconstructed matrix.

360 **Data preprocessing**

361 spatiAlign utilizes a series of gene expression matrices and associated spatial coordinates
362 as inputs. The gene expression profiles are stored in a $X^{N \times D}$ matrix of unique molecular
363 identifier (UMI) counts, where N is the number of spots/cells and D is the number of genes,
364 and it also includes (x, y) two-dimensional spatial coordinates for each spot/cell. The raw
365 gene expression matrices were first filtered according to criteria $\text{min_genes} = 20$ and
366 $\text{min_cells} = 20$ for each dataset using SCANPY (version: 1.9.1), followed by normalization
367 and log transformation of individual spots.

368 **Spatial neighbour graph construction for the SRT dataset**

369 To fully exploit the spatial local neighbouring context, we convert the spatial coordinates
370 into an undirected neighbourhood graph $G = (V, E)$ by Euclidean distance with a predefined
371 neighbour parameter k , where V represents the SRT dataset spots/cells and E represents
372 the connected edges between the current spot/cell and neighbouring spots/cells. The adjacency
373 matrix of graph G is denoted by A , in which spot/cell $u \in V$ with k nearest neighbour
374 spots/cells; if spot/cell $v \in V$ is the neighbour of spot/cell u , $a_{uv} = 1$; otherwise, it is 0.
375 Specifically, we selected the top 15 nearest neighbours for each spot/cell in the SRT gene
376 expression spatial coordinates.

377 **Batch-specific variations to separate using domain-specific batch normalization**

378 Batch normalization (BN)⁵⁹ is widely used to solve the problem of internal covariate shift
379 during DNN training. It can reduce the problems of vanishing gradients and overfitting. For a
380 mini-batch of data $\mathcal{B} = x_{1 \dots m}$, the BN layer can be calculated using the following
381 parameterization:

$$\begin{aligned}
 \mu_B &= \frac{1}{m} \sum_{i=1}^m x_i \\
 \sigma_B^2 &= \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2 \\
 \hat{x}_i &= \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \varepsilon}} \\
 y_i &= \gamma \hat{x}_i + \xi \equiv BN_{\gamma, \xi}(x_i)
 \end{aligned} \tag{1}$$

383 where μ_B is the mean of the mini-batch, σ_B^2 is the variance of the mini-batch, \hat{x}_i is the
 384 normalized output by the mean and variance of the mini-batch, ε is a small constant to avoid
 385 dividing by zero, and y_i is the output of the BN layer, which is obtained by scaling and
 386 shifting \hat{x}_i with learned parameters γ and ξ .

387 Domain-specific batch normalization (DSBN)⁶⁰ is used in unsupervised domain adaptation
 388 with multiple source datasets to separate domain-specific variations from different datasets. In
 389 spatiAlign, DSBN consists of multiple sets of BN layers that select the corresponding BN with
 390 the batch label b . DSBN can be represented as follows:

$$y_b = \gamma_b \hat{x}_b + \xi_b \equiv DSBN_{\gamma_b, \xi_b}(x_b, b) \tag{2}$$

392 where γ_b and ξ_b are batch-specific affine parameters for batch b .

393 DSBN has been proposed to capture and utilize the batch-specific information in datasets
 394 by learning affine parameters for each dataset, which enables the model to learn the batch-
 395 specific variations that exist within the datasets^{13, 60}.

396 **DGI-based feature extractor for reducing dimensions and propagating spatial neighbouring
 397 context**

398 spatiAlign leverages the DGI framework to project a gene expression matrix into a latent
 399 space while simultaneously performing dimension reduction and propagating spatial
 400 neighbouring spots/cells context. To reduce the dimension of higher-dimensional SRT data, we
 401 employed a DNN-based autoencoder mapping model $f_\theta: X \rightarrow Z$, where θ represents the
 402 parameters of the mapping model, $Z^{N \times d}$ is a latent embedding with dimensions d , and $d \ll D$.
 403 The DNN-based mapping model, a feature embedding block, consists of a fully connected block
 404 and two stacked residual bottleneck blocks. Specifically, the fully connected block comprises
 405 a linear connected layer, a DSBN layer, an exponential linear unit (ELU) as a nonlinear
 406 activation function, and a dropout layer in sequence. Each residual bottleneck block consists of
 407 two stacked fully connected blocks, and the output of the residual bottleneck block is passed
 408 through an ELU layer (Fig. 1b). Notably, the feature embedding block only takes the gene
 409 expression matrix as input.

410 To propagate the spatial neighbouring context in the reduced dimensionality space, we
411 employ a variational graph autoencoder (VGAE) framework. The VGAE framework takes the
412 latent embedding Z obtained from the feature embedding model and the adjacency matrix
413 A as input and generates Y as output. The VGAE encoder includes two stacked graph
414 convolutional network (GCN) layers and uses the rectified linear unit (ReLU) as a nonlinear
415 activation function. The first GCN layer generates a lower-dimensional spatial embedding and
416 aggregates the spatial neighbouring context, while the second GCN layer generates the mean
417 μ and variance δ^2 . The spatial embedding Y is then reparametrized from $Y = \mu + \tau * \delta^2$,
418 where $\tau \sim N(0,1)$. The final latent representation S is generated from the feature fusion
419 block, which includes two stacked fully connected layers, as well as a DSBN layer followed by
420 each connected layer in sequence, and takes concatenated feature embedding as input, which is
421 obtained by concatenating the reduction dimensionality embedding Z and the spatial
422 embedding Y . The final latent embedding S is then used to reconstruct the original gene
423 expression matrix X' in the DNN-based autoencoder and the spatial neighbouring adjacency
424 matrix A' in the VGAE network.

425 Training the DNN-based autoencoder and VGAE network minimizes the loss of the
426 reconstructed gene expression matrix and maximizes the log-likelihood of the observed SRT
427 sequencing latent representation S . We first employed the scale-invariant mean squared error
428 (MSE)⁶¹ to measure the DNN-based loss. In addition, the loss function of the VGAE includes
429 a binary cross-entropy loss to minimize the difference between the input spatial neighbouring
430 adjacency matrix A and the reconstructed adjacency matrix A' . Additionally, a Kullback–
431 Leibler divergence loss was used to optimize the log-likelihood between the posterior
432 distribution $q_\theta(Y|S, A)$ and prior distribution $p(Y)$, where $p(Y) \sim N(0,1)$. The
433 dimension reduction and spatial neighbouring context propagation loss can be calculated as
434 follows:

$$435 \quad L_{ENC} = L_{mse} + \alpha \times BCE(A, A') + \beta \times KL(q_\theta(Y|S, A), p(Y)) \quad (3)$$

436 where $BCE \cdot$ is the binary cross-entropy, $KL \cdot$ is the Kullback–Leibler divergence, L_{sim_mse}
437 is the scale-invariant MSE and $\alpha, \beta \in [0, 1]$ are hyperparameters.

$$438 \quad L_{mse} = \frac{1}{k} \|x - x'\|_2^2 - \lambda \frac{1}{k^2} \|x - x'\|_2 \cdot 1_k^2 \quad (4)$$

439 where k is the number of spots/cells in the input gene expression matrix, 1_k is a vector of
440 ones of length k , $\|\cdot\|_2^2$ is the squared L_2 norm, and $\lambda \in [0, 1]$ is a hyperparameter.

441 **Self-supervised contrastive learning for representation enhancement**

442 DGI is a self-supervised learning architecture that maximizes mutual information between
443 local neighbours of a graph to learn representations of nodes. spatiAlign takes original and
444 corrupted gene expression matrices as inputs and generates latent representation matrices S
445 and S' , respectively. The corrupted matrix is a rowwise random perturbation of the original

446 matrix, and we assume that the corrupted gene expression profiles have the same neighbouring
447 adjacency matrix as the original profiles. Formally, given a spot i , we form a positive pair
448 consisting of its representation s_i and the neighbouring graph spot vector g , while the
449 corresponding corrupted representation s'_i from the corrupted matrix and the same
450 neighbouring graph spot vector g form a negative pair. A self-supervised contrastive
451 learning method was used to train the DGI framework, and the loss function was designed to
452 maximize the mutual information of positive pairs while minimizing the mutual information of
453 negative pairs:

454

$$L_{SSL} = -\frac{1}{2N} \left(\sum_{i=1}^N \mathbb{E}_{Z,A} \left[\log \phi(s_i, g_i) \right] + \mathbb{E}_{Z',A} \left[\log 1 - \phi(s'_i, g_i) \right] \right) \quad (5)$$

455 where $\phi(\cdot)$ is a discriminator, a bilinear layer and follows a sigmoid layer, to distinguish the
456 positive pairs from negative pairs.

457 **Biological effects alignment using across-domain adaptation contrastive learning**

458 To align biological effects using across-domain adaptation contrastive learning, we
459 propose a criterion for forming pairs based on the assumption that datasets from multiple tissue
460 sections share at least one common cell type in the current alignment setting. To achieve this,
461 we perform in-batch instance-level contrastive learning and across-batch instance-level
462 contrastive learning for each tissue section separately. Specifically, we maintain a memory bank
463 V^b for each tissue section, which is used to store the latent embedding and prototype spot/cell
464 type representations within the batch.

465

$$V^I = [v_I^I, \dots, v_N^I], \dots, V^b = [v_I^b, \dots, v_N^b] \quad (6)$$

466 where v_i is the stored feature vector of x_i , initialized with final latent representation S ,
467 and updated with a momentum m after each iteration for each dataset:

468

$$v_i \leftarrow mv_i + (1-m)s_i \quad (7)$$

469 **In-batch instance level contrastive learning**

470 The pairwise similarity distributions P_i^b are measured by the cosine distance between
471 latent embedding s^b and the corresponding memory bank V^b to perform in-batch instance
472 discrimination,

473

$$P_i^b = \frac{\exp \text{sim } v_i^b, s_i^b / \tau}{\sum_{k=1}^{N_b} \exp \text{sim } v_k^b, s_i^b / \tau} \quad (8)$$

$$\text{sim } v_i^b, s_j^b = \frac{v_i^b \ s_j^b^T}{\|v_i^b\| \|s_j^b\|}$$

474 where τ is the temperature parameter, which can determine the concentration level of the
 475 similarity distribution. Finally, cross-entropy was employed to minimize the in-batch instance
 476 discrimination.

477

$$L_{instCL} = \text{CrossEntropy}(P_i^b, i) \quad (9)$$

478 where i denotes the unique index of the spot of x_i .

479 **Pseudoprototypical cluster level contrastive learning**

480

481 Inspired by unsupervised contrastive clustering³², we map each spot/cell i into an
 482 embedding space with d dimensions, where d is equal to the number of
 483 pseudoprototypical clusters. Since each spot belongs to only one cluster, ideally, the row of the
 484 latent embedding $S^{N \times d}$ tends to be one-hot, meaning that the j -th column of $S^{N \times d}$ represents
 485 the j -th cluster. Similar to in-batch instance-level contrastive learning, our method uses cosine
 486 distance to measure the similarity between latent embedding and the corresponding memory
 487 bank and maximize the pseudo cluster pair similarity using cross-entropy. Specifically, the loss
 function can be expressed as:

488

$$\text{sim } v_i^b^T, s_j^b^T = \frac{v_i^b^T \ s_j^b}{\|v_i^b\| \|s_j^b\|}$$

$$P_{cluster}^b = \frac{\exp \text{sim } v_i^b^T, s_i^b / \tau}{\sum_{k=1}^d \exp \text{sim } v_k^b^T, s_i^b / \tau} \quad (10)$$

$$L_{clstCL} = \text{CrossEntropy}(P_{cluster}^b, j) - H \ S$$

489 where $H(Z) = -\sum_{i=1}^N \left[P(s_i^b) \log P(s_i^b) \right]$ is the entropy of the pseudo cluster assignment
490 probabilities $P(s_i^b) = \sum_{t=1}^d s_{ti}^b / \|s_i^b\|_1$, which can help to avoid the trivial solution in which most
491 spots are assigned to the same cluster³².

492 Across-batch instance self-supervised learning

493 To explicitly align biological effects and ensure that spatiAlign learns discriminative
494 representations of dissimilar cell types between different batches, we perform across-batch
495 feature matching. Specifically, we minimize the entropy of the pairwise similarity distribution
496 between latent embeddings in one batch and the latent embeddings stored in the memory bank
497 of another batch. The loss function for across-batch spot/cell pair matching can be formalized
498 as:

$$\begin{aligned} \text{sim}(S^s, V^b) &= \frac{S^s V^b^T}{\|S^s\| \|V^b\|} \\ P_i^{s \rightarrow b} &= \frac{\exp \text{sim}(s_i^s, v_i^b) / \tau}{\sum_{j=1}^N \exp \text{sim}(s_i^s, v_j^b) / \tau} \\ L_{\text{crossSSL}}(S^s, V) &= \sum_{b=1, b \neq s}^m H(P_{i',i}^{s \rightarrow b}) \end{aligned} \quad (11)$$

500 The overall objective for spatiAlign is to minimize:

$$501 \quad \text{Loss} = L_{\text{ENC}} + L_{\text{SSL}} + L_{\text{instCL}} + L_{\text{clutCL}} + L_{\text{crossSSL}} \quad (12)$$

502 Comparisons of methods

503 We perform four comprehensive representative SRT datasets with varying characteristics
504 to compare spatiAlign with other state-of-the-art methods of data integration.

505 We applied the following integration methods: (1) Harmony⁸ implemented in the
506 SCANPY package external module *harmony_integrate*; (2) Combat⁶² implemented in the
507 SCANPY package module *combat*; (3) Scanorama¹¹ implemented in the SCANPY package
508 external module *scanorama_integrate*; (4) BBKNN¹² implemented in the SCANPY package
509 external module *bbknn*; (5) MNN¹⁵ implemented in the SCANPY package external module
510 *mnn_correct*; (6) SCALEX¹³ implemented in the Python package *scalex*, and spatial-base
511 methods: (7) PRECAST²⁴ implemented in the R package *PRECAST*; (8) GraphST²⁵
512 implemented in the Python package *GraphST*. We input the preprocessed datasets into

513 spatiAlign and several other tested methods. The first six methods were developed for scRNA-
514 Seq datasets, whereas PRECAST and GraphST were specifically designed for SRT datasets.

515 **Evaluation metrics**

516 We evaluate the performance of spatiAlign and other control methods in both data
517 integration and the preservation of biological variation using the following metric.

518 **F1-score of Local inverse Simpson's index.** To simultaneously evaluate the separation
519 of same-cell-type aggregation and across-batch fusion in the data integration, we calculated the
520 LISI⁸ using two different groupings: (1) grouping using different datasets as the batch *iLISI*
521 and (2) grouping using known cell types as the spot *cLISI*. In the data integration, a larger
522 value of *iLISI* indicates sufficient mixing of the different batch datasets, while a smaller
523 value of *cLISI* suggests better preservation of the biological variations between spot types.
524 The two metrics can be summarized using the *F1* score as follows:

$$525 \quad \left\{ \begin{array}{l} F1 \text{ score} = \frac{2 \times iLISI_{norm} \times 1 - cLISI_{norm}}{iLISI_{norm} + 1 - cLISI_{norm}} \in [0,1] \\ iLISI_{norm} = \frac{iLISI - \min iLISI}{\max iLISI - \min iLISI + \varepsilon} \in [0,1] \\ cLISI_{norm} = \frac{cLISI - \min cLISI}{\max cLISI - \min cLISI + \varepsilon} \in [0,1] \end{array} \right. \quad (13)$$

526 where ε is a smaller constant. A higher *F1* score indicates superior data integration, which
527 effectively retains the biological variations between spot types while eliminating other
528 noncellular biological variations across multiple batches, thereby enhancing the fidelity of the
529 biological information.

530 **Adjusted Rand index.** To evaluate the efficacy of merge clustering when utilizing lower-
531 dimensional gene expression representations, we utilized the adjusted Rand index (ARI)³⁴ as a
532 performance metric. ARI represents an enhanced version of the Rand Index (RI), which
533 overcomes several of its limitations. By measuring the degree of similarity between two
534 partitions, ARI provides a numerical value that ranges between -1 and 1, with a higher value
535 indicating a higher degree of similarity between the two partitions being compared. Moreover,
536 ARI attains a value of 1 when the two partitions under comparison are equivalent up to a
537 permutation. Hence, ARI serves as a reliable and robust tool for evaluating the performance of
538 merge clustering approaches.

539 **Hierarchical clustering and Moran's I index calculation.** The spatial regions were
540 identified by a hierarchical clustering algorithm with a lower-dimensional representation from

541 different methods. The *agglomerative clustering* function in the scikit-learn package was
542 implemented with 16 clusters (*n_cluster*=16). Then, we calculate the global *Moran's I index*
543 for each region on each slice. First, the batch labels were encoded to one-hot vectors, and spatial
544 coordinates were used to calculate spatial neighbours (edge weights=1). Then, the Moran
545 function in the ESDA (2.4.3) Python package was applied to calculate *Moran's I index*

546 **Differential expression analysis and GO enrichment analysis.** We employed the
547 *FindMarkers()* function of the Scanpy package to identify differentially expressed genes (DEGs)
548 for the spatial domain using “*T test*” implementation and cutting of the adjusted *p* value at 0.05.
549 To perform GO enrichment analysis for the DEGs, we utilized the *ClusterProfiler* (v4.8.1) R
550 package.

551 **Trajectory inference analysis.** We used the spatiAlign embedding to infer the PAGA³⁵
552 path by the *scipy.tl.paga* function in SCANPY. CellRank⁵⁴ was implemented to estimate
553 pseudotime using the *CytoTraceKernel* algorithm and *compute_transition_matrix* beyond RNA
554 velocity because the spliced and unspliced counts were not available in the mouse embryonic
555 brain datasets. We visualized the directed transition matrix CellRank calculated with the same
556 sort of arrows that are used for RNA velocity. However, there is no RNA velocity in this study.

557 **Dataset availability**

558 The public datasets are freely available as follows. The Stereo-seq data have been
559 deposited into the CNGB Sequence Archive (CNSA) of the China National GenBank DataBase
560 (CNGBdb) with accession number CNP0001543, the spatiotemporal dataset of the mouse
561 embryonic brain is available at <https://db.cngb.org/stomics/mosta>, and the 10x Genomics
562 Visium data have been published at <https://www.10xgenomics.com/resources/datasets/adult-mouse-olfactory-bulb-1-standard>. The LIBD human dorsolateral prefrontal cortex (DLPFC)
563 dataset and mouse breast datasets can be downloaded from
564 <https://zenodo.org/record/6925603#.YuM5WXZBwuU>. Mouse hippocampus:
565 https://singlecell.broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-transcriptomics-at-near-cellular-resolution-with-slide-seqv2#study-summary,
566 https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study#study-summary,
567 and https://singlecell.broadinstitute.org/single_cell/study/SCP948/robust-decomposition-of-cell-type-mixtures-in-spatial-transcriptomics#study-summary, respectively.
568
569
570

571 **Codes & Software availability**

572 An open-source Python implementation of spatiAlign and reproduction codes are available at:
573 <https://github.com/STOmics/Spatialalign.git>

574 Tutorials are available at: <https://spatialalign-tutorials.readthedocs.io/en/latest/index.html>

575 **Acknowledgements**

576 We thank China National GeneBank for providing data support for this study. We thank
577 Guangdong Bigdata Engineering Technology Research Center for Life Sciences support for
578 this study. In addition, we would like to thank Prof. Dr. Junjun Jiang, Dr. Jian Zhang, Dr. Ke
579 Fan, Dr. Yong Bai and Dr. Min Xie for their help.

580 **Funding**

581 This study was funded by National Key R&D Program of China (2022YFC3400400)

582 **Author contributions**

583 Conceptualization: Chao Zhang.
584 Project administration and supervision: Ao Chen, Xun Xu, Yong Zhang and Yuxiang Li.
585 Algorithm development and implementation: Chao Zhang.
586 Public datasets collection, processing and application: Chao Zhang, Lin Liu, Ying Zhang, Mei
587 Li and Shuangsang Fang.
588 Methods comparisons: Chao Zhang, Lin Liu and Ying Zhang.
589 Biological interpretation: Chao Zhang, Lin Liu and Ying Zhang.
590 Manuscript writing and figure generation: Chao Zhang, Lin Liu and Ying Zhang.
591 Manuscript reviewing: Shuangsang Fang, Qiang Kang and Mei Li
592 All authors approved the manuscript.

593 **Competing interests**

594 The authors declare no competing interests.

595

596 References

- 597 1. Marx, V. Method of the Year: spatially resolved transcriptomics. *Nature methods* **18**, 9-14
598 (2021).
- 599 2. Stahl, P.L., Salmen, F., Vickovic, S. et al. Visualization and analysis of gene expression in
600 tissue sections by spatial transcriptomics. *Science* **353**, 78-82 (2016).
- 601 3. Rodrigues, S.G., Stickels, R.R., Goeva, A. et al. Slide-seq: A scalable technology for
602 measuring genome-wide expression at high spatial resolution. *Science* **363**, 1463-1467
603 (2019).
- 604 4. Chen, A., Liao, S., Cheng, M. et al. Spatiotemporal transcriptomic atlas of mouse
605 organogenesis using DNA nanoball-patterned arrays. *Cell* **185**, 1777-1792 e1721 (2022).
- 606 5. Cho, C.S., Xi, J., Si, Y. et al. Microscopic examination of spatial transcriptome using Seq-
607 Scope. *Cell* **184**, 3559-3572 e3522 (2021).
- 608 6. Luecken, M.D., Buttner, M., Chaichoompu, K. et al. Benchmarking atlas-level data
609 integration in single-cell genomics. *Nat Methods* **19**, 41-50 (2022).
- 610 7. Tran, H.T.N., Ang, K.S., Chevrier, M. et al. A benchmark of batch-effect correction methods
611 for single-cell RNA sequencing data. *Genome Biol* **21**, 12 (2020).
- 612 8. Korsunsky, I., Millard, N., Fan, J. et al. Fast, sensitive and accurate integration of single-cell
613 data with Harmony. *Nature methods* **16**, 1289-1296 (2019).
- 614 9. Welch, J.D., Kozareva, V., Ferreira, A. et al. Single-Cell Multi-omic Integration Compares
615 and Contrasts Features of Brain Cell Identity. *Cell* **177**, 1873-1887 e1817 (2019).
- 616 10. Li, X., Wang, K., Lyu, Y. et al. Deep learning enables accurate clustering with batch effect
617 removal in single-cell RNA-seq analysis. *Nat Commun* **11**, 2338 (2020).
- 618 11. Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell
619 transcriptomes using Scanorama. *Nature biotechnology* **37**, 685-691 (2019).
- 620 12. Polański, K., Young, M.D., Miao, Z. et al. BBKNN: fast batch alignment of single cell
621 transcriptomes. *Bioinformatics* **36**, 964-965 (2020).
- 622 13. Xiong, L., Tian, K., Li, Y. et al. Online single-cell data integration through projecting
623 heterogeneous datasets into a common cell-embedding space. *Nature Communications*
624 **13**, 6118 (2022).
- 625 14. Johnson, W.E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data
626 using empirical Bayes methods. *Biostatistics* **8**, 118-127 (2007).
- 627 15. Haghverdi, L., Lun, A.T., Morgan, M.D. et al. Batch effects in single-cell RNA-sequencing
628 data are corrected by matching mutual nearest neighbors. *Nature biotechnology* **36**, 421-
629 427 (2018).
- 630 16. Stuart, T., Butler, A., Hoffman, P. et al. Comprehensive Integration of Single-Cell Data. *Cell*
631 **177**, 1888-1902 e1821 (2019).
- 632 17. Lotfollahi, M., Wolf, F.A. & Theis, F.J. scGen predicts single-cell perturbation responses.
633 *Nat Methods* **16**, 715-721 (2019).
- 634 18. Hu, J., Li, X., Coleman, K. et al. SpaGCN: Integrating gene expression, spatial location and
635 histology to identify spatial domains and spatially variable genes by graph convolutional
636 network. *Nat Methods* **18**, 1342-1351 (2021).

637 19. Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics
638 with an adaptive graph attention auto-encoder. *Nature communications* **13**, 1739 (2022).

639 20. Zhao, Y., Wang, K. & Hu, G. DIST: spatial transcriptomics enhancement using deep
640 learning. *Brief Bioinform* **24** (2023).

641 21. Wang, Y., Song, B., Wang, S. et al. Sprod for de-noising spatially resolved transcriptomics
642 data based on position and image information. *Nat Methods* **19**, 950–958 (2022).

643 22. Zhao, E., Stone, M.R., Ren, X. et al. Spatial transcriptomics at subspot resolution with
644 BayesSpace. *Nat Biotechnol* **39**, 1375–1384 (2021).

645 23. Shen, R., Liu, L., Wu, Z. et al. Spatial-ID: a cell typing method for spatially resolved
646 transcriptomics via transfer learning and spatial embedding. *Nat Commun* **13**, 7640 (2022).

647 24. Liu, W., Liao, X., Luo, Z. et al. Probabilistic embedding, clustering, and alignment for
648 integrating spatial transcriptomics data with PRECAST. *Nature Communications* **14**, 296
649 (2023).

650 25. Long, Y., Ang, K.S., Li, M. et al. Spatially informed clustering, integration, and
651 deconvolution of spatial transcriptomics with GraphST. *Nature Communications* **14**, 1155
652 (2023).

653 26. Velickovic, P., Fedus, W., Hamilton, W.L. et al. Deep graph infomax. *ICLR (Poster)* **2**, 4
654 (2019).

655 27. Kipf, T.N. & Welling, M. Variational graph auto-encoders. *arXiv preprint arXiv:1611.07308*
656 (2016).

657 28. Wang, R., Wu, Z., Weng, Z. et al. Cross-domain contrastive learning for unsupervised
658 domain adaptation. *IEEE Transactions on Multimedia* (2022).

659 29. You, Y., Chen, T., Sui, Y. et al. Graph contrastive learning with augmentations. *Advances in
660 neural information processing systems* **33**, 5812–5823 (2020).

661 30. Xie, S., Zheng, Z., Chen, L. et al. in International conference on machine learning 5423–
662 5432 (PMLR, 2018).

663 31. Yue, X., Zheng, Z., Zhang, S. et al. in Proceedings of the IEEE/CVF Conference on Computer
664 Vision and Pattern Recognition 13834–13844 (2021).

665 32. Li, Y., Hu, P., Liu, Z. et al. in Proceedings of the AAAI Conference on Artificial Intelligence,
666 Vol. 35 8547–8555 (2021).

667 33. Maynard, K.R., Collado-Torres, L., Weber, L.M. et al. Transcriptome-scale spatial gene
668 expression in the human dorsolateral prefrontal cortex. *Nature neuroscience* **24**, 425–436
669 (2021).

670 34. Hubert, L. & Arabie, P. Comparing partitions. *Journal of classification* **2**, 193–218 (1985).

671 35. Wolf, F.A., Hamey, F.K., Plass, M. et al. PAGA: graph abstraction reconciles clustering with
672 trajectory inference through a topology preserving map of single cells. *Genome biology*
673 **20**, 1–9 (2019).

674 36. Gilmore, E.C. & Herrup, K. Cortical development: layers of complexity. *Current Biology* **7**,
675 R231–R234 (1997).

676 37. Zeng, H., Shen, E.H., Hohmann, J.G. et al. Large-scale cellular-resolution gene profiling in
677 human neocortex reveals species-specific molecular signatures. *Cell* **149**, 483–496 (2012).

678 38. Wang, I.-H., Murray, E., Andrews, G. et al. Spatial transcriptomic reconstruction of the
679 mouse olfactory glomerular map suggests principles of odor processing. *Nature
680 neuroscience* **25**, 484-492 (2022).

681 39. Cable, D.M., Murray, E., Zou, L.S. et al. Robust decomposition of cell type mixtures in
682 spatial transcriptomics. *Nature Biotechnology* **40**, 517-526 (2022).

683 40. Stickels, R.R., Murray, E., Kumar, P. et al. Highly sensitive spatial transcriptomics at near-
684 cellular resolution with Slide-seqV2. *Nature biotechnology* **39**, 313-319 (2021).

685 41. Sunkin, S.M., Ng, L., Lau, C. et al. Allen Brain Atlas: an integrated spatio-temporal portal
686 for exploring the central nervous system. *Nucleic Acids Research* **41**, D996-D1008 (2013).

687 42. Zeisel, A., Hochgerner, H., Lönnerberg, P. et al. Molecular architecture of the mouse
688 nervous system. *Cell* **174**, 999-1014. e1022 (2018).

689 43. Robertson, S.J. & Edwards, F.A. ATP and glutamate are released from separate neurones
690 in the rat medial habenula nucleus: frequency dependence and adenosine-mediated
691 inhibition of release. *The Journal of Physiology* **508**, 691 (1998).

692 44. La Manno, G., Siletti, K., Furlan, A. et al. Molecular architecture of the developing mouse
693 brain. *Nature* **596**, 92-96 (2021).

694 45. Yokota, Y. & Mori, S. Role of Id family proteins in growth control. *J Cell Physiol* **190**, 21-
695 28 (2002).

696 46. Lyden, D., Young, A.Z., Zagzag, D. et al. Id1 and Id3 are required for neurogenesis,
697 angiogenesis and vascularization of tumour xenografts. *Nature* **401**, 670-677 (1999).

698 47. Sudhof, T.C. Neuroligins and neurexins link synaptic function to cognitive disease. *Nature*
699 **455**, 903-911 (2008).

700 48. Mei, L. & Nave, K.A. Neuregulin-ERBB signaling in the nervous system and
701 neuropsychiatric diseases. *Neuron* **83**, 27-49 (2014).

702 49. Jun, H., Mohammed Qasim Hussaini, S., Rigby, M.J. et al. Functional role of adult
703 hippocampal neurogenesis as a therapeutic strategy for mental disorders. *Neural Plast*
704 **2012**, 854285 (2012).

705 50. Guillemot, F. & Zimmer, C. From cradle to grave: the multiple roles of fibroblast growth
706 factors in neural development. *Neuron* **71**, 574-588 (2011).

707 51. Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem
708 cells. *Annu Rev Neurosci* **32**, 149-184 (2009).

709 52. Hatten, M.E. & Heintz, N. Mechanisms of neural patterning and specification in the
710 developing cerebellum. *Annu Rev Neurosci* **18**, 385-408 (1995).

711 53. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. *Nat Rev
712 Neurosci* **10**, 724-735 (2009).

713 54. Lange, M., Bergen, V., Klein, M. et al. CellRank for directed single-cell fate mapping. *Nat
714 Methods* **19**, 159-170 (2022).

715 55. Qiu, C., Cao, J., Martin, B.K. et al. Systematic reconstruction of cellular trajectories across
716 mouse embryogenesis. *Nat Genet* **54**, 328-341 (2022).

717 56. Vayer, T., Chapel, L., Flamary, R. et al. Fused gromov-wasserstein distance for structured
718 objects. *Algorithms* **13**, 212 (2020).

719 57. Peterson, V.M., Zhang, K.X., Kumar, N. et al. Multiplexed quantification of proteins and
720 transcripts in single cells. *Nature biotechnology* **35**, 936-939 (2017).

721 58. Maynard, K.R., Collado-Torres, L., Weber, L.M. et al. Transcriptome-scale spatial gene
722 expression in the human dorsolateral prefrontal cortex. *Nature Neuroscience* **24**, 425-436
723 (2021).

724 59. Ioffe, S. & Szegedy, C. in International conference on machine learning 448-456 (pmlr,
725 2015).

726 60. Chang, W.-G., You, T., Seo, S. et al. in Proceedings of the IEEE/CVF conference on
727 Computer Vision and Pattern Recognition 7354-7362 (2019).

728 61. Bousmalis, K., Trigeorgis, G., Silberman, N. et al. Domain separation networks. *Advances
729 in neural information processing systems* **29** (2016).

730 62. Kim, K.-Y., Kim, S.H., Ki, D.H. et al. An attempt for combining microarray data sets by
731 adjusting gene expressions. *Cancer Research and Treatment: official journal of Korean
732 Cancer Association* **39**, 74-81 (2007).

733

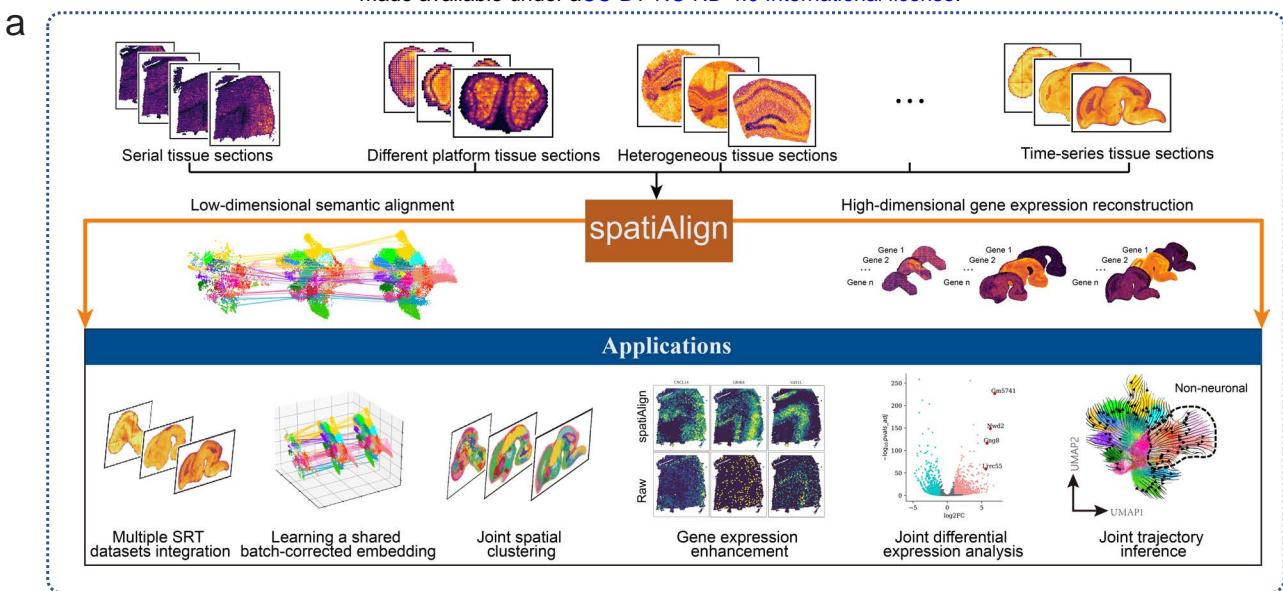
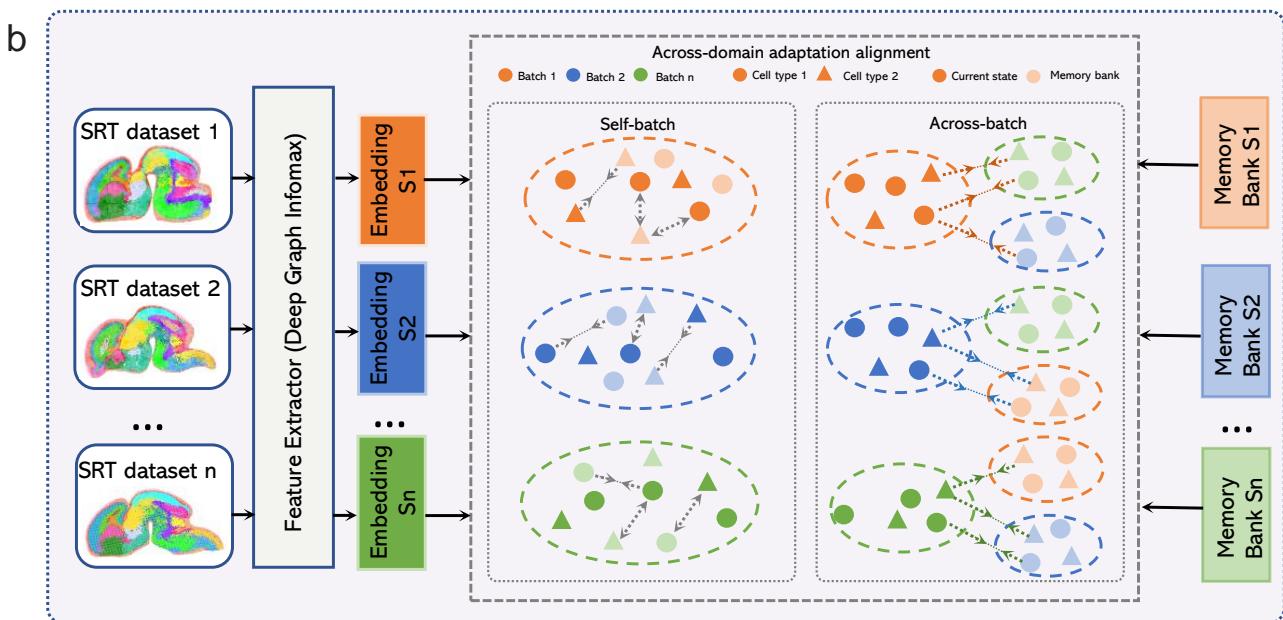
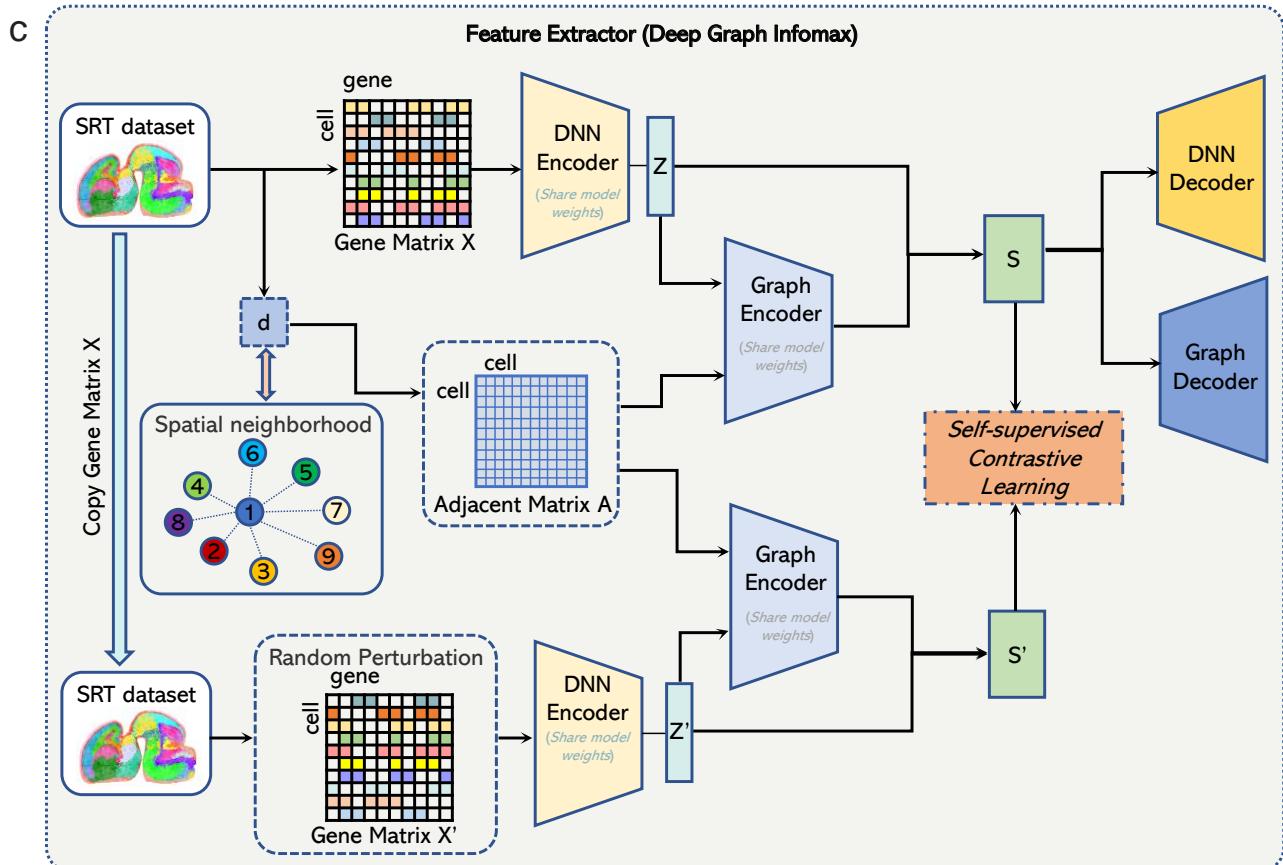


Fig. 1 | Overview of spatiAlign. **a).** spatiAlign takes as inputs multiple spatially resolved transcriptomics (SRT) datasets that consist of gene expression profiles for all measured genes and spatial locations of spots/cells. Using semantic alignment, spatiAlign generates a shared batch-corrected embedding, where biological effects are aligned. Moreover, spatiAlign reconstructs the full high-dimensional expression space, enhancing and correcting gene expression counts. In addition to SRT dataset integration and gene feature correction, spatiAlign returns a final joint embedding and enhanced gene expression matrices to facilitate downstream analysis, such as joint spatial clustering, joint differential expression analysis, and joint trajectory inference. **b).** spatiAlign takes multiple SRT datasets as inputs. Latent embeddings are first generated using Deep Graph Infomax (DGI) as feature extractors. Then, with the utilization of across-domain adaptation and memory bank strategies, spatiAlign brings similar semantic spots/cells closer together and pushes dissimilar spots/cells farther apart, irrespective of their original datasets. These self-batch and across-batch contrastive learning processes align biological effects while correcting batch effects. **c).** A DGI framework takes as inputs the normalized gene expression matrix and corresponding spatial coordinates from an SRT dataset. A spatial neighbouring graph (i.e., adjacent matrix A) is built to represent the spatial relationships between adjacent spots/cells. To create an augmented gene expression matrix X' , a random perturbation is applied to shuffle the original gene expression X while maintaining the spatial neighbouring graph unchanged. Deep neural network (DNN)-based autoencoders are used to learn gene representations Z and Z' by reducing the dimension of gene expression matrix X and the augmented expression matrix X' . These representations are individually fed into a variational graph autoencoder (VGAE), along with the spatial neighbouring graph, which performs spatial embedding for the gene representations and outputs the final latent representations S and S' that capture the rich information both in original/augmented gene expression profiles and spatial information. Afterwards, embeddings S are optimized using our self-supervised contrastive learning strategy, which ensures that spatially adjacent cells have similar embeddings while nonadjacent cells have dissimilar embeddings. Finally, the final embeddings S can be reversed back to the original feature space, resulting in a reconstructed gene expression matrix.

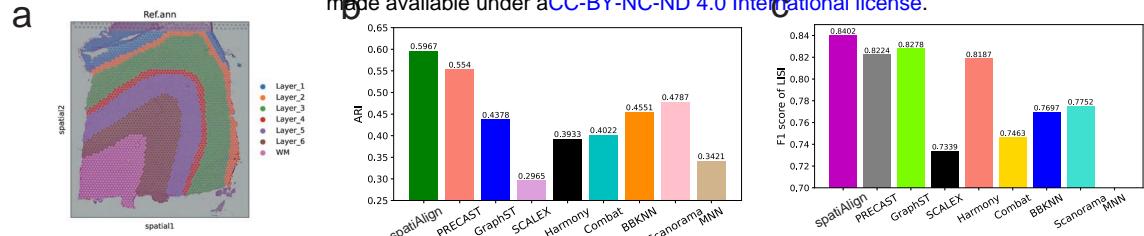
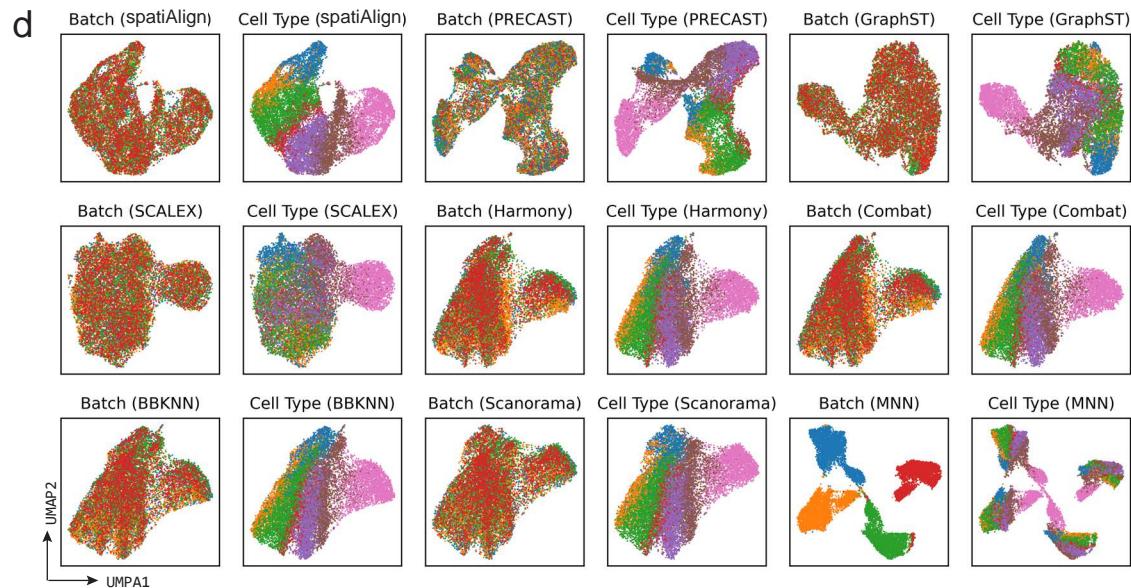
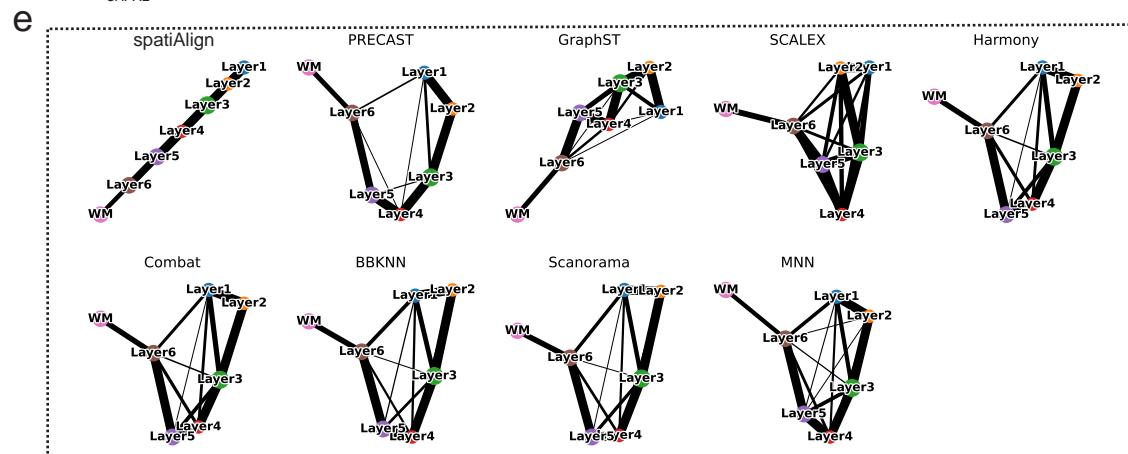
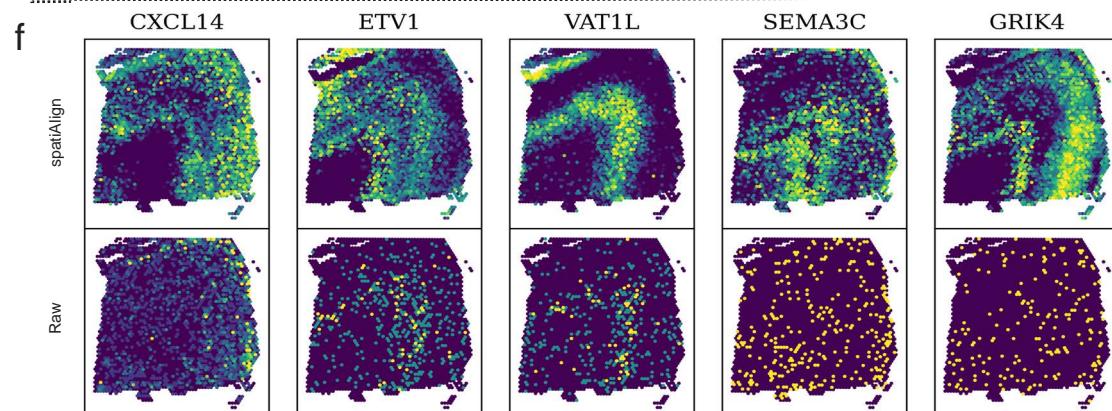
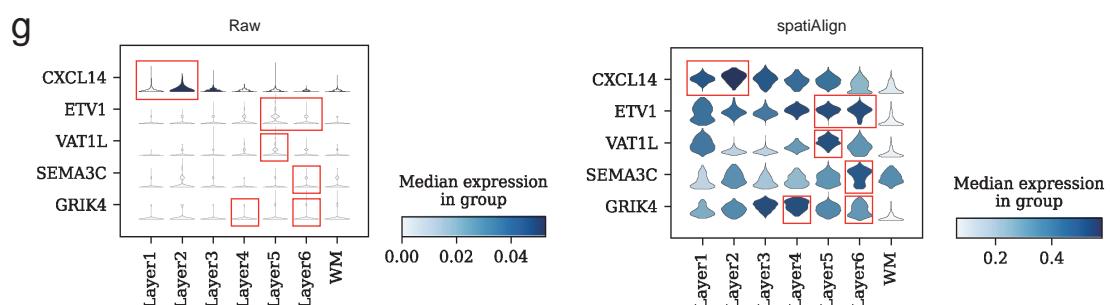


Fig. 2 | spatiAlign outperforms the control methods in integrating the human dorsolateral prefrontal cortex (DLPFC) datasets. **a).** Manual annotation of sample ID 151673 from the original study. **b).** Bar plots of the mean scores of the adjusted Rand index (ARI) for the combined clusters from spatiAlign and other control methods. **c).** Bar plots of the weighted F1 scores of the local inverse Simpson's index (LISI), assessing both batch mixing and cell-type separation, for the integration results from different data integration methods. **d).** UMAP plots for the integrated batches and identified cell types from spatiAlign and other control methods. For the integration result of each method, dots in the right panel are coloured by batch, and dots in the left panel are coloured by cell type. **e).** PAGA graphs of spatiAlign and other control methods. **f).** Spatial visualization of spatiAlign-enhanced (top panel) and raw (bottom panel) expression of layer-marker genes. **g).** Violin plots of the raw (left panel) and spatiAlign-enhanced (right panel) expression of layer-marker genes. The cortical layers corresponding to the layer-marker genes are highlighted with red boxes.

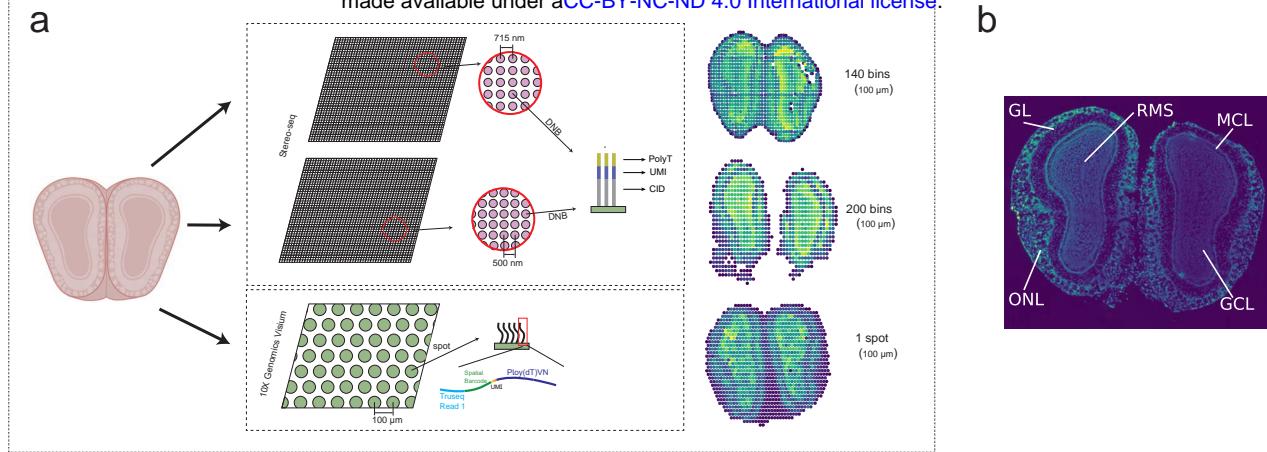
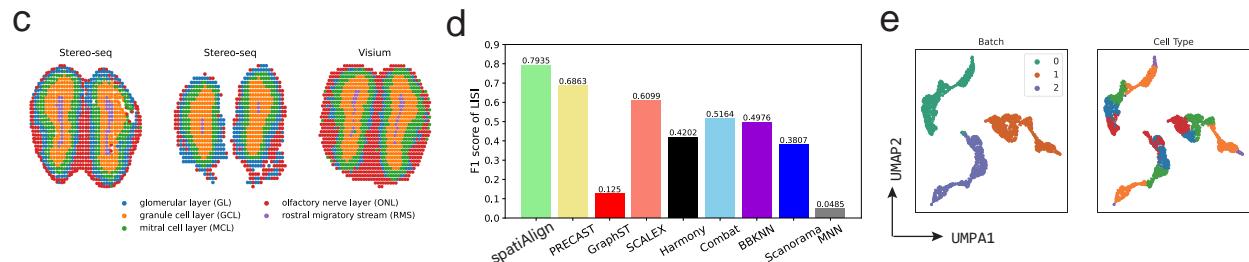
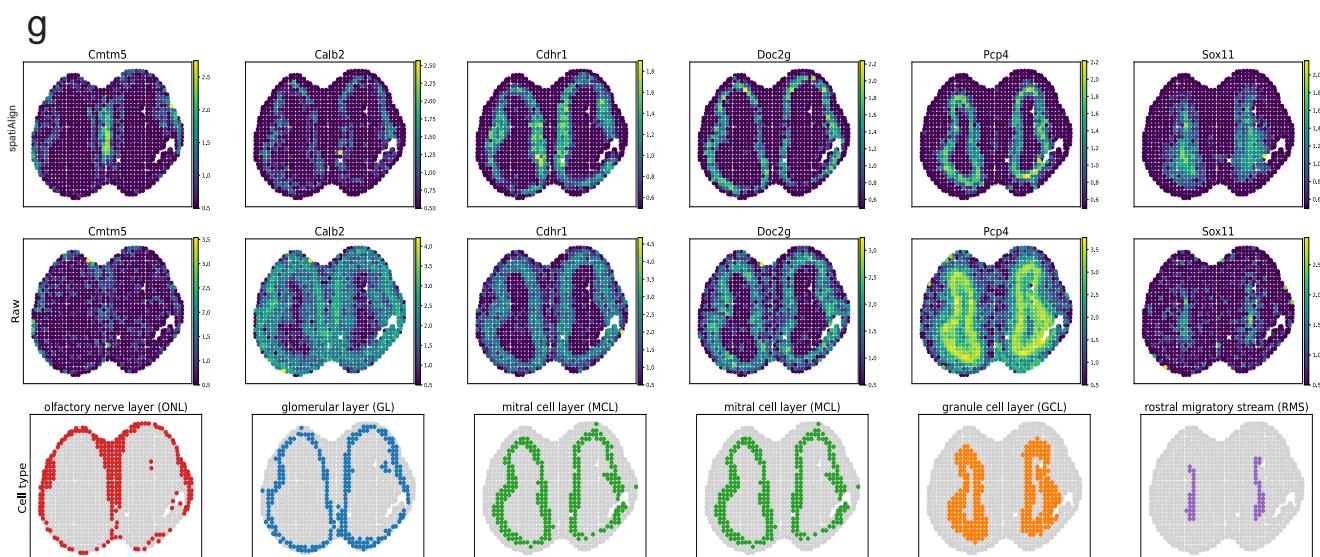
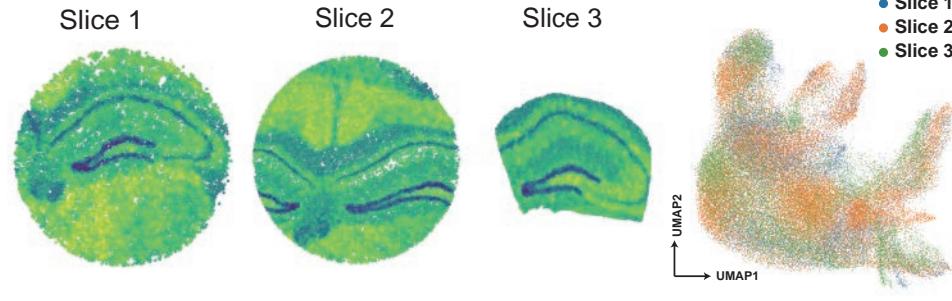
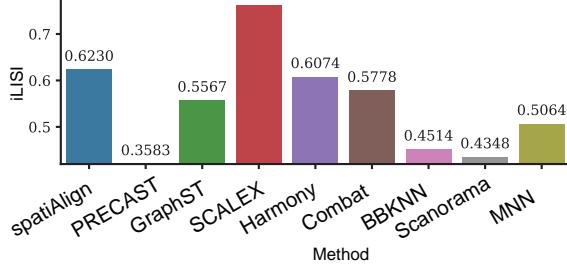
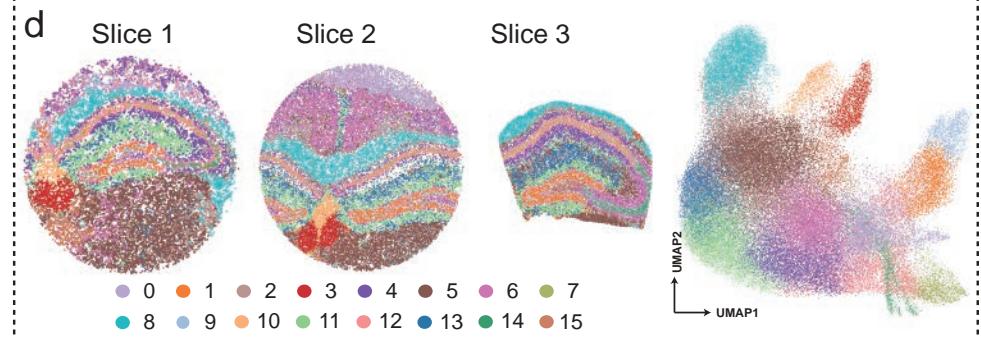
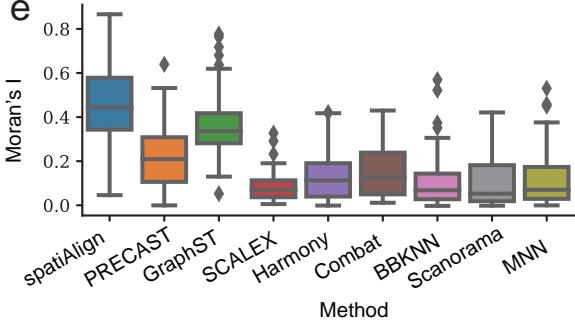


Fig. 3 | spatiAlign integrates three mouse olfactory bulb datasets from Stereo-seq and 10x Genomics Visium sequencing platforms. **a).** The mouse olfactory bulb datasets consisted of three sections, with two sections sequenced using Stereo-seq and the third section generated from 10x Genomics Visium. The two Stereo-seq datasets were sequenced on different types of chips, with spots having centre-to-centre distances of 500 and 715 nm, respectively (middle panel). Hence, the two Stereo-seq datasets were individually binned at Bin140 and Bin200 to ensure that all spots in the three sections were of the same size of 100 μ m (right panel). **b).** Organization of mouse olfactory bulb annotated by ssDNA image. **c).** Manual annotation as a ground truth for benchmarking analysis. Spots are coloured by cell type. **d).** Bar plots of the weighted F1 scores of LISI for the integration results from spatiAlign and the other control methods. **e).** Visualization of batch effects present in batches and cell types before integration. **f).** UMAP plots for the integrated batches and identified cell types from spatiAlign and other control methods. For the integration result of each method, dots in the right panel are coloured by batch, and dots in the left panel are coloured by cell type. **g).** Spatial visualization of spatiAlign-enhanced (top panel) and raw (middle panel) expression of marker genes, together with the associated cell types (bottom panel). spatiAlign denoised and enhanced the spatial expression pattern of marker genes compared with raw data.

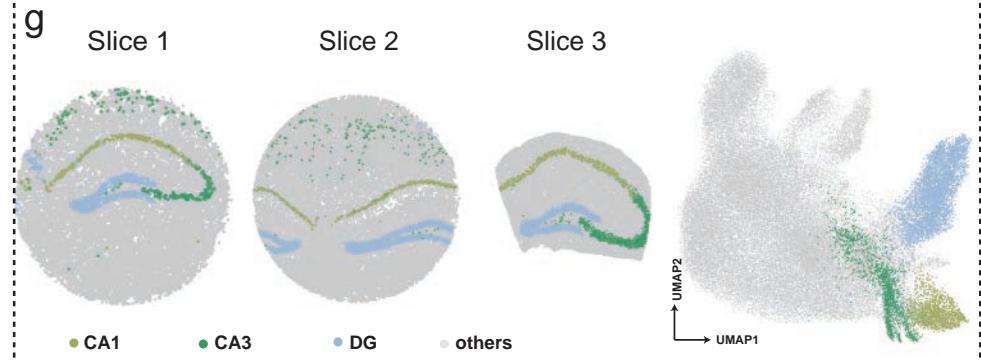
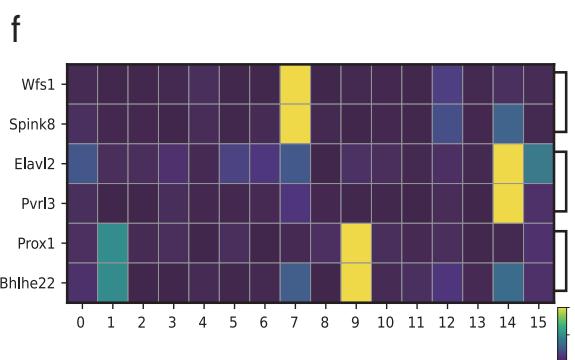
a



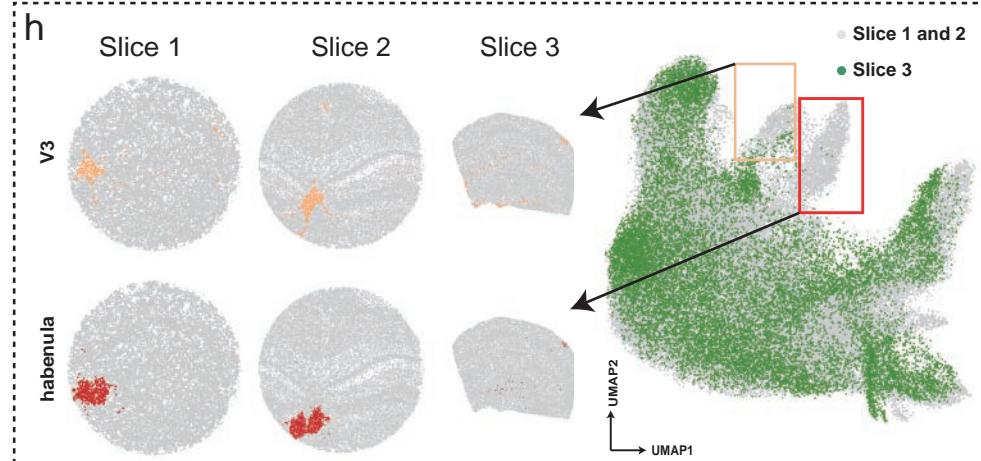
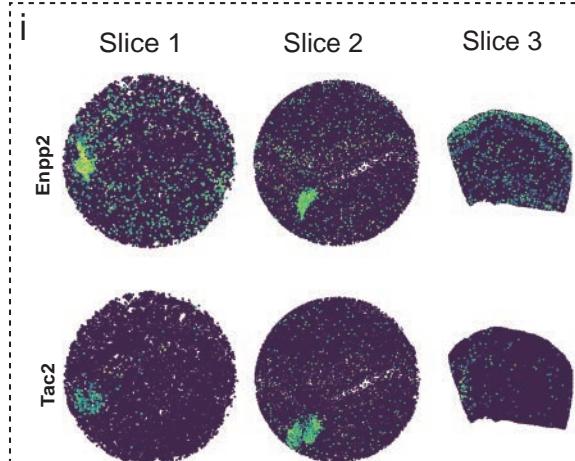
d



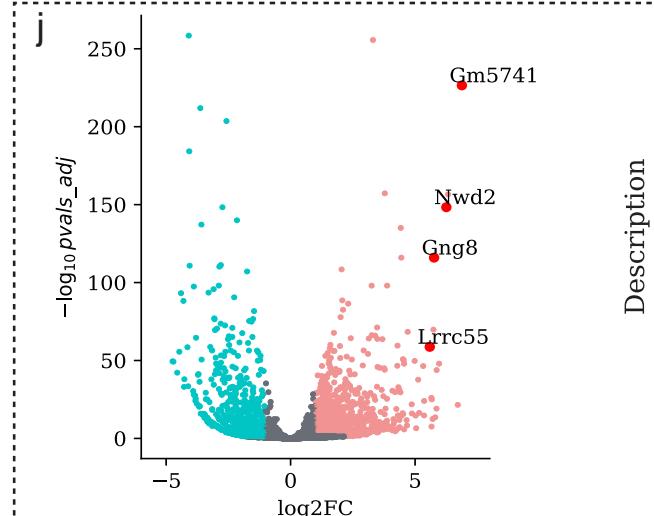
g



h



j

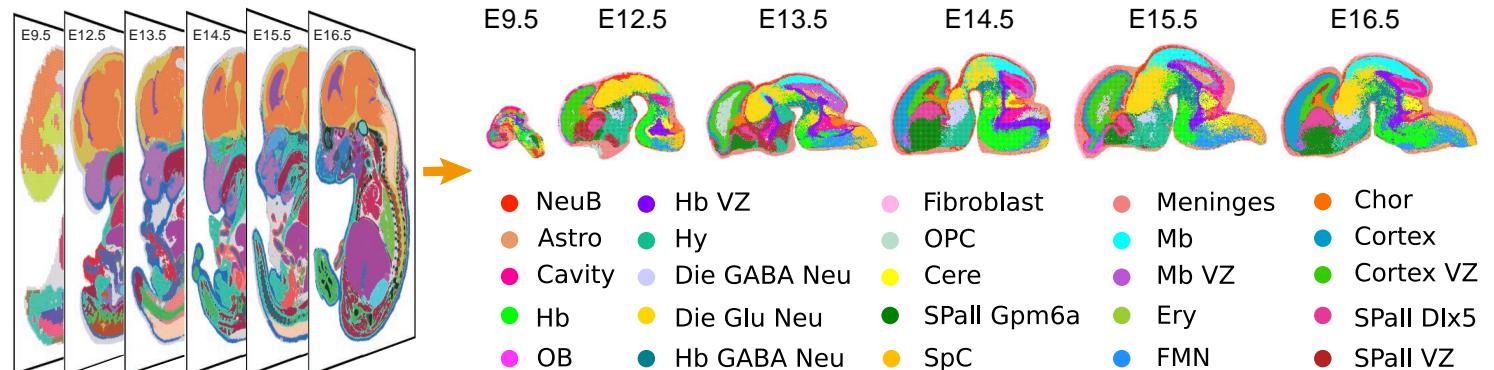


k

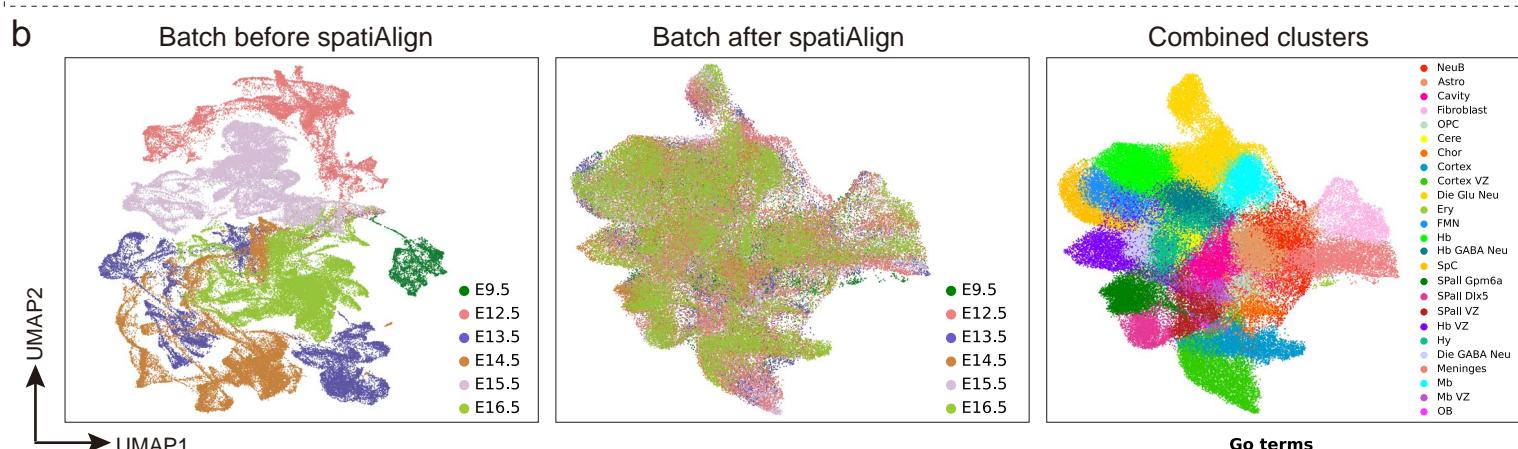


Fig. 4 | spatiAlign identifies distinct brain structures specific to each slice while integrating three mouse hippocampus datasets. **a).** Spatial heatmap of total transcripts in the three mouse hippocampal slices measured by Slide-seq. **b).** UMAP plot for the integrated slices from spatiAlign. **c).** Bar plots of the integration LISI (iLISI) scores, evaluating batch mixing, for the integration results from spatiAlign and other control methods. **d).** Spatial visualization (left) and UMAP plot (right) for the joint clustering results from spatiAlign. **e).** Boxplots of global Moran's I index for the joint clusters from spatiAlign and other control methods. **f).** The expression matrix plot of markers of the CA1, CA3, and DG regions. **g).** Spatial visualization (left) and UMAP plot (right) of CA1, CA3, and DG regions that were only identified by spatiAlign. **h).** Spatial visualization (left) and UMAP plot (right) of V3 and the habenula that are specific to slice 1 and slice 2. **i).** Spatial expression of the marker genes *Enpp2* in V3 and *Tac2* in the habenula. **j).** Volcano plot of differentially expressed genes (DEGs) between the habenula and rest. **k).** Top ten highly enriched GO terms for the top 100 ranked DEGs.

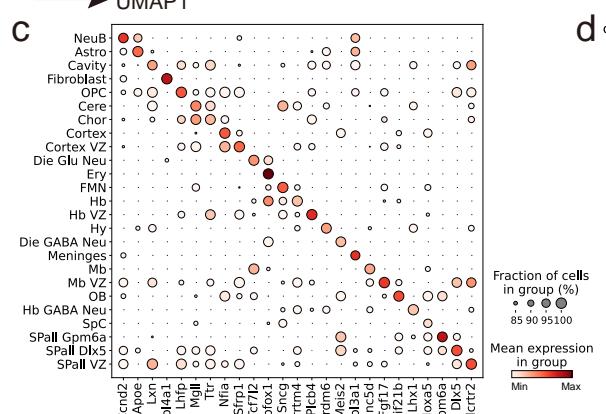
a



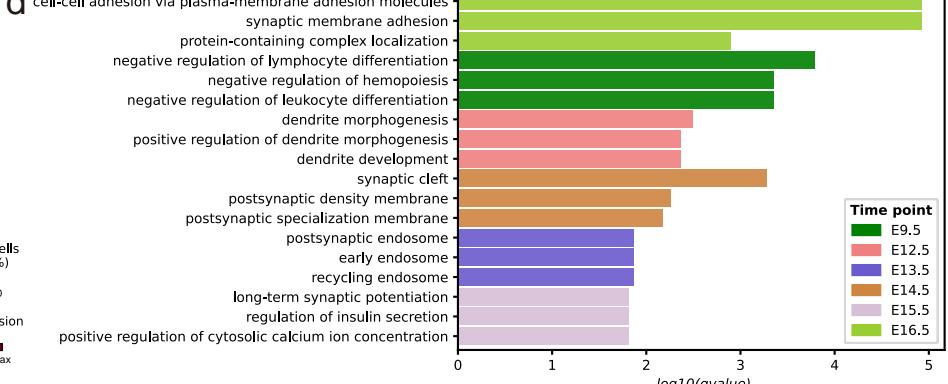
b



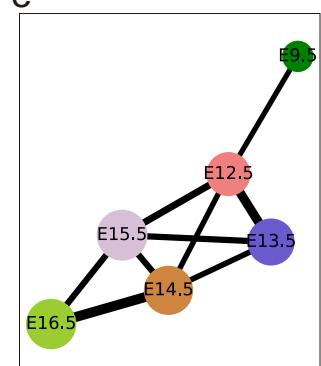
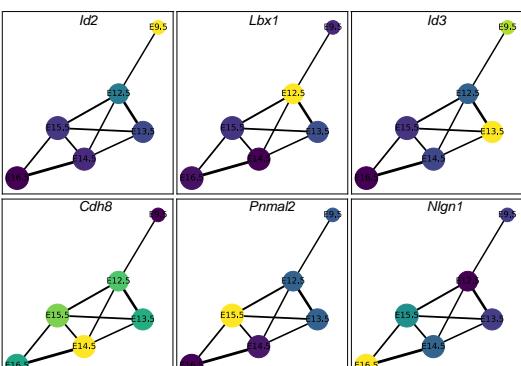
c



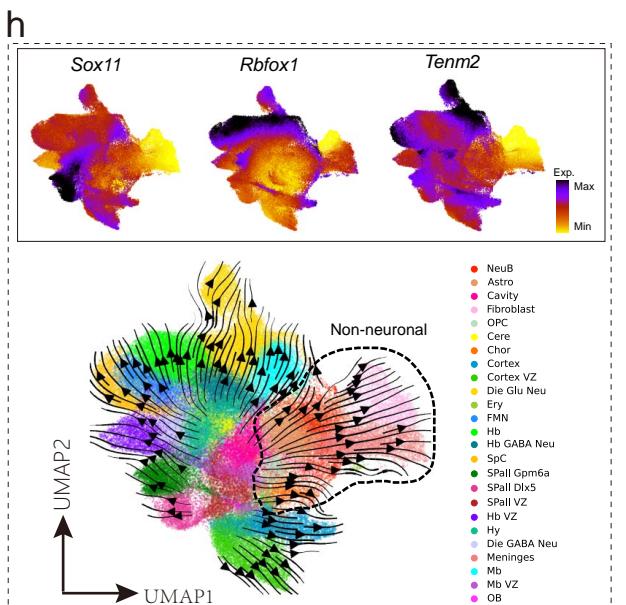
d cell-cell adhesion via plasma-membrane adhesion molecules



e



h



g

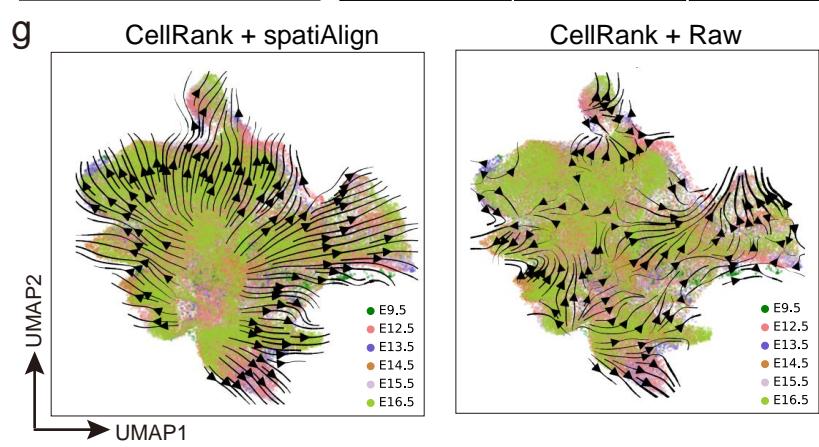
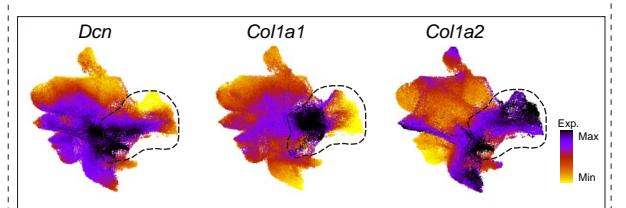
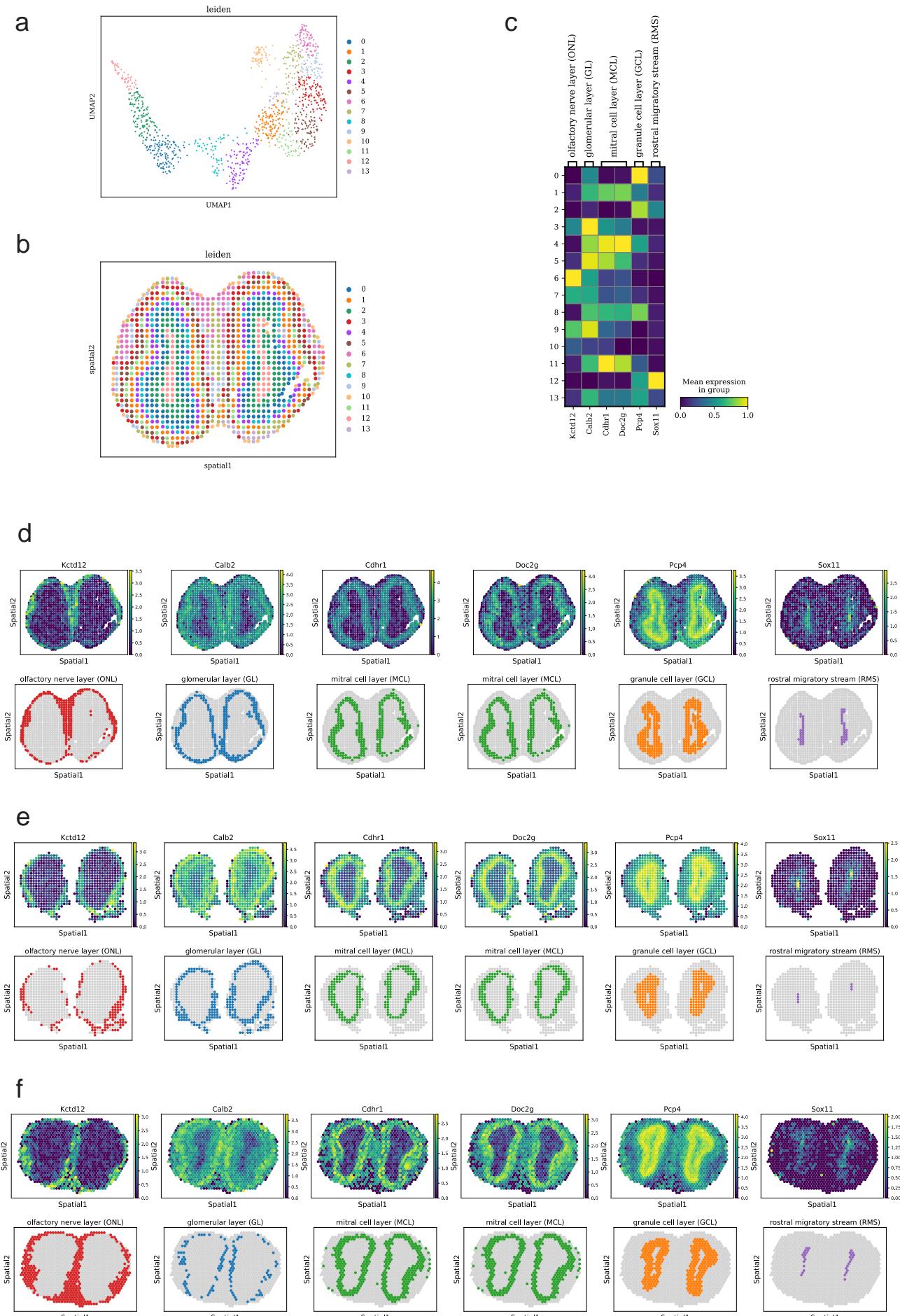
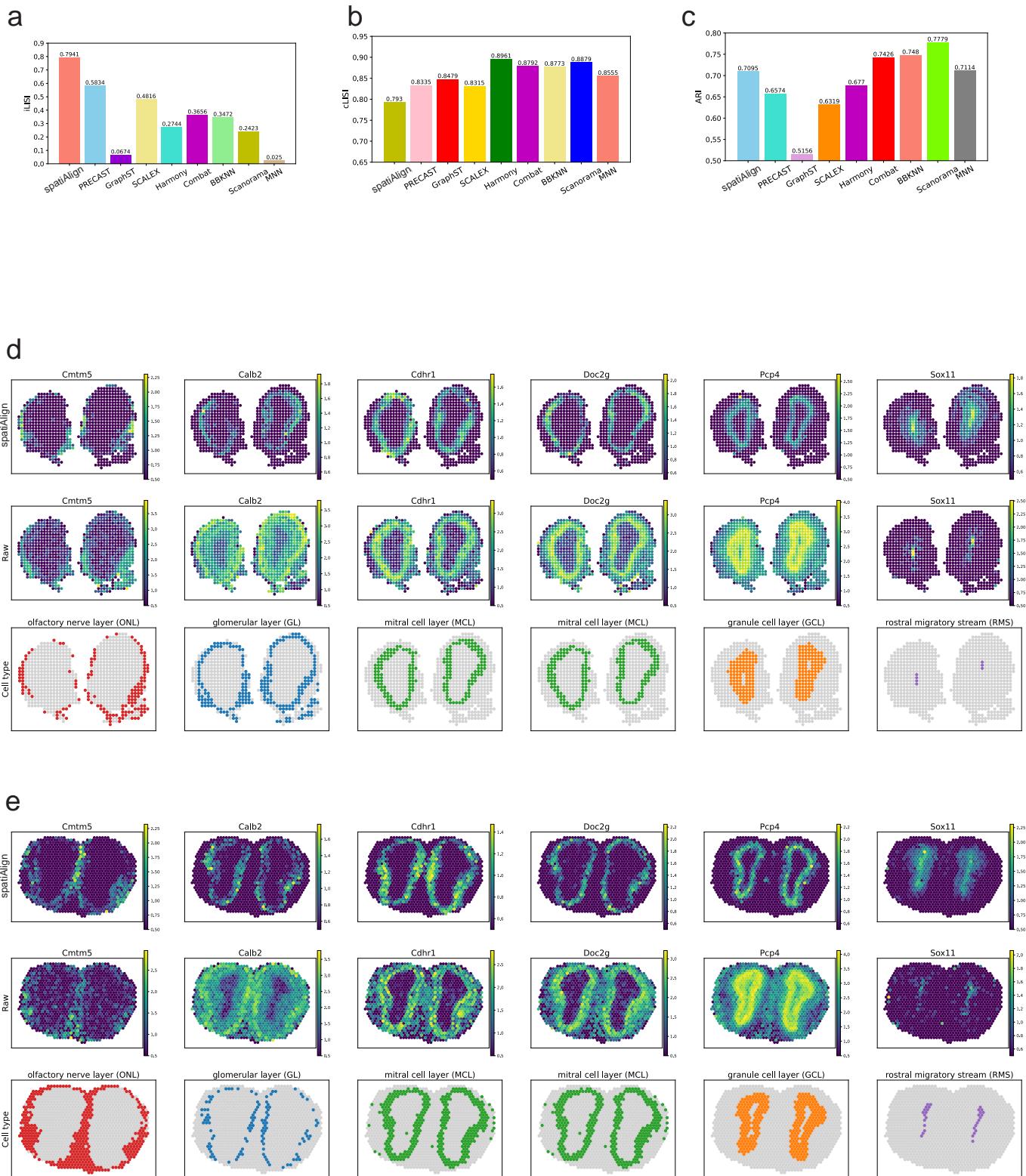


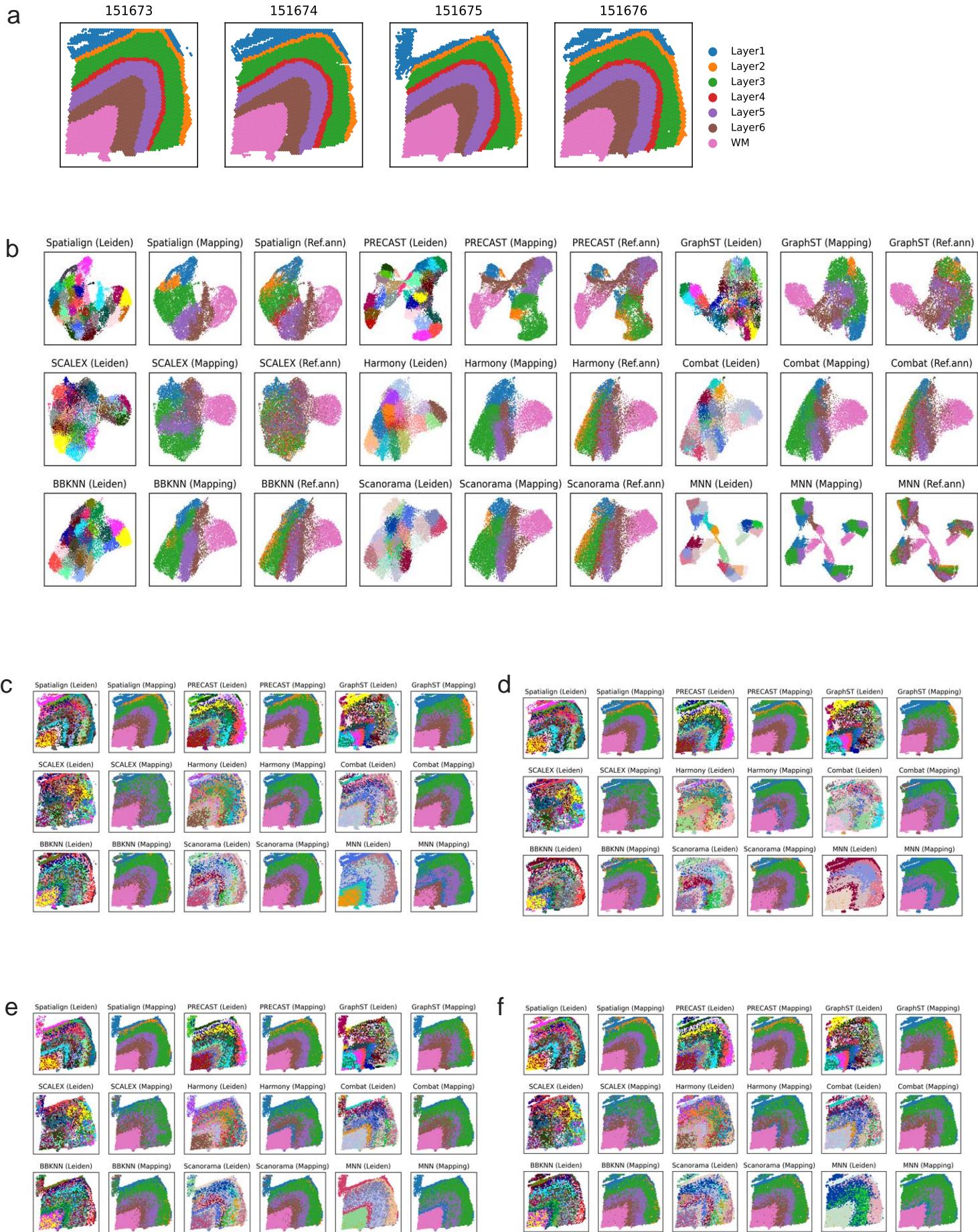
Fig. 5 | spatiAlign facilitates joint analysis of time-series mouse embryonic brain sections. a). Unsupervised clustering of time-series brain sections extracted from the mouse embryos across E9.5-E16.5 (E9.5, E12.5, E13.5, E14.5, E15.5 and E16.5) after integration using spatiAlign. Spots are coloured by their annotation (right panel). NeuB, neuroblast; Astro, astrocyte; Hb, hindbrain; OB, olfactory bulb; VZ, ventricular zone; Hy, hypothalamus; Die, diencephalon; OPC, oligodendrocyte precursor cell; Cere, cerebellum; SPall, subpallium; SpC, spinal cord; Mb, dorsal midbrain; Ery, erythrocyte; FMN, facial motor nucleus; and Chor, choroid plexus. **b).** UMAP plots for batch mixing before spatiAlign (left) and after spatiAlign (middle) and the labelled combined clusters from spatiAlign (right). **c).** Expression dot plots showing the gene expression specificity of typical marker genes for identified cell types. Dot size represents the proportion of expressing cells, and colour indicates the average expression level in each identified cell type. **d).** Top three highly enriched GO terms for differentially expressed genes from E9.5 to E16.5. **e).** PAGA graph of spatiAlign embeddings. Each node represents a batch that is connected by weighted edges that quantify the connectivity between batches. **f).** Age-specific genes traced along the PAGA graph paths. **g).** Cellular trajectory across different time points inferred by the spatiAlign-corrected feature matrix (left) and raw expression (right), with black arrows representing transition trends. **h).** Cellular state transitions across cell types (middle panel) and expression of reported driver genes for neuronal (top panel) and nonneuronal cells (bottom panel).



Supplementary Fig. S1 | Manual annotation of human DLPFC datasets and joint clustering results from spatiAlign and other control methods, related to Figure 2. **a)**. Manual annotation of four DLPFC sections from the original study. **b)**. UMAP plots for joint leiden clusters (Leiden) from spatiAlign and the control methods, together with the final clusters (Mapping) that merged leiden clusters with the ground truth using a maximum matching strategy. **c, d, e, f)**. Spatial visualization of the Leiden clusters and the mapping clusters of sample ID 151673 (**c**), sample ID 151674 (**d**), sample ID 151675 (**e**), and sample ID 151676 (**f**).



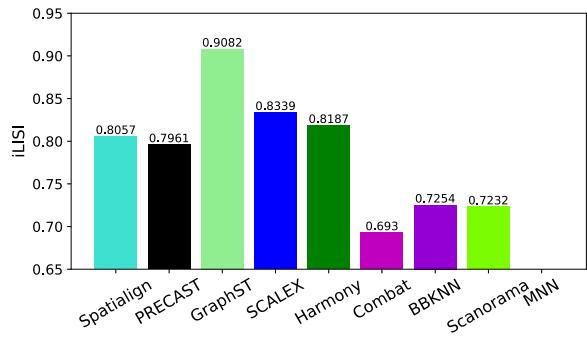
Supplementary Fig. S2 | Benchmarking analysis on human DLPFC datasets, related to Figure 2. a, b). Bar plots of integration LISI (iLISI), **a**) and cell-type LISI (cLISI), **b**) scores for integration results from different methods. **c).** Visualization of spatiAlign-enhanced (top panel) and raw (bottom panel) spatial expression of layer-marker genes in sample 151674.



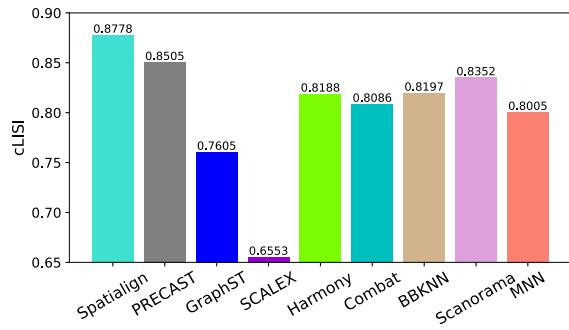
Supplementary Fig. S3 | Manual annotation of olfactory bulb datasets, related to Fig. 3.

a). UMAP plot for the left clusters of a Stereo-seq olfactory bulb dataset and its spatial visualization **(b)**. **c).** Heatmap of marker genes associated with their cell types. **d, e, f).** Spatial pattern of marker genes and the corresponding cell types on the three olfactory bulb slices.

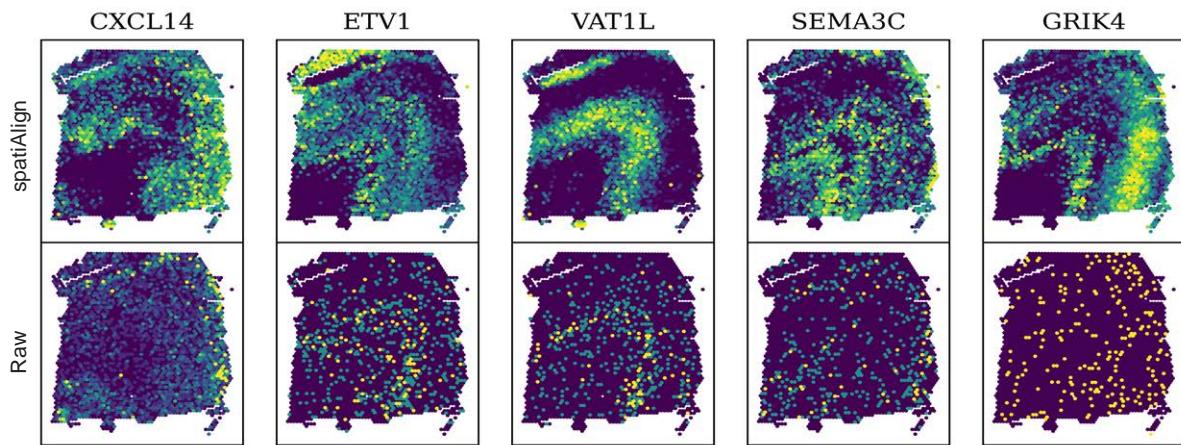
a



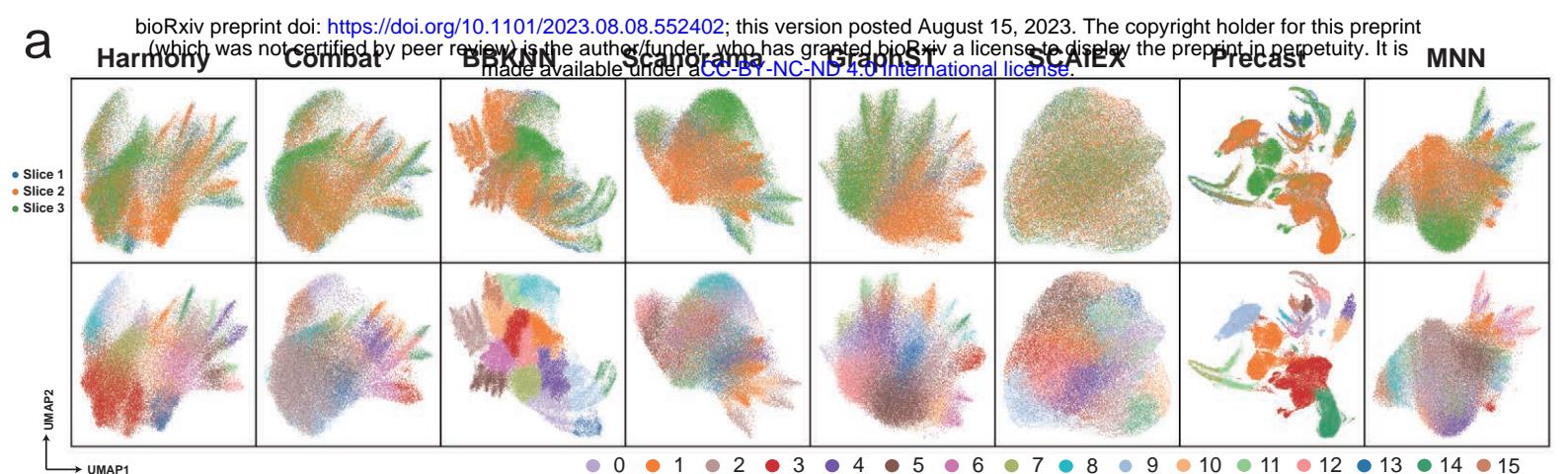
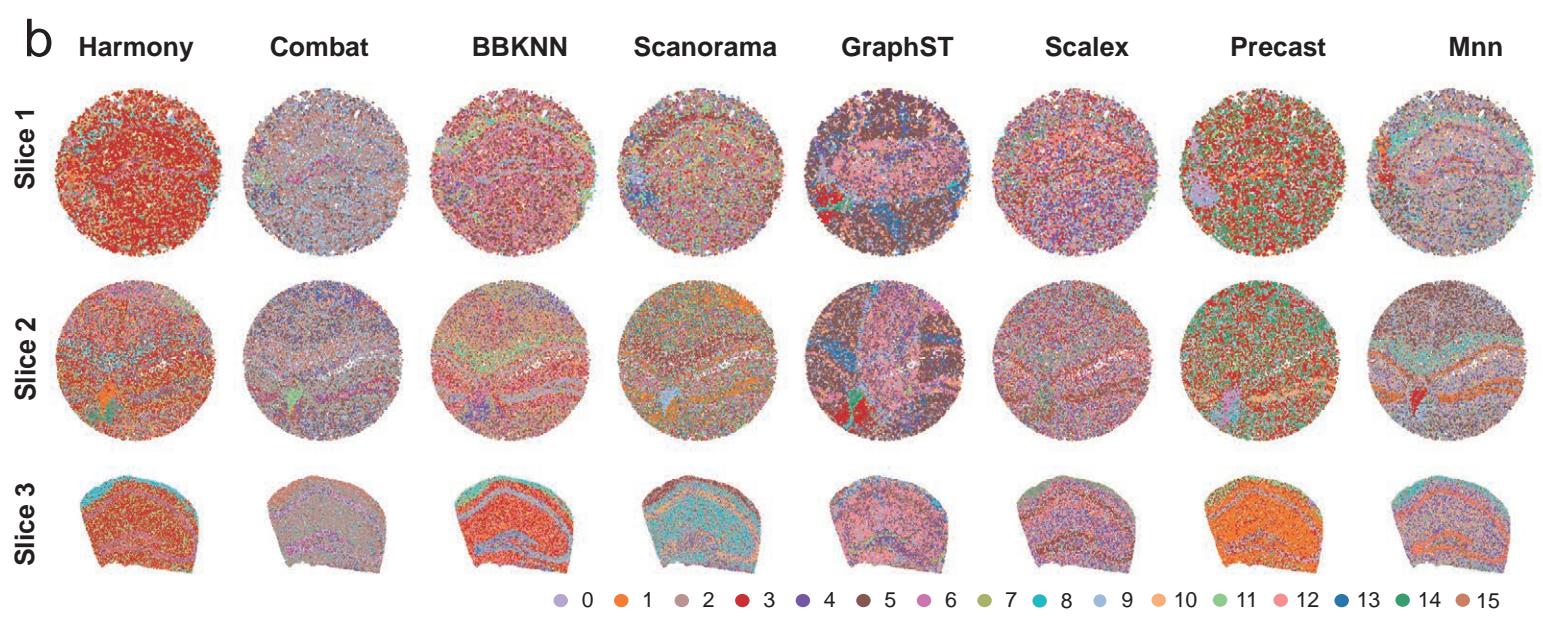
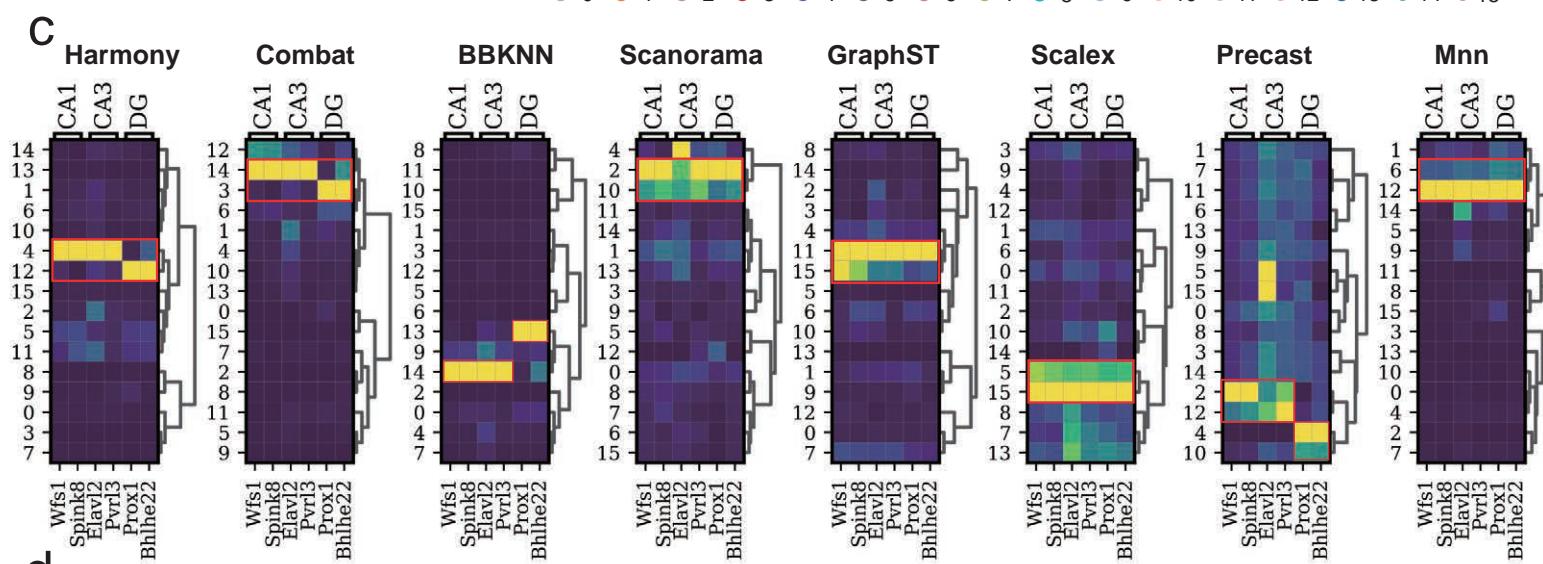
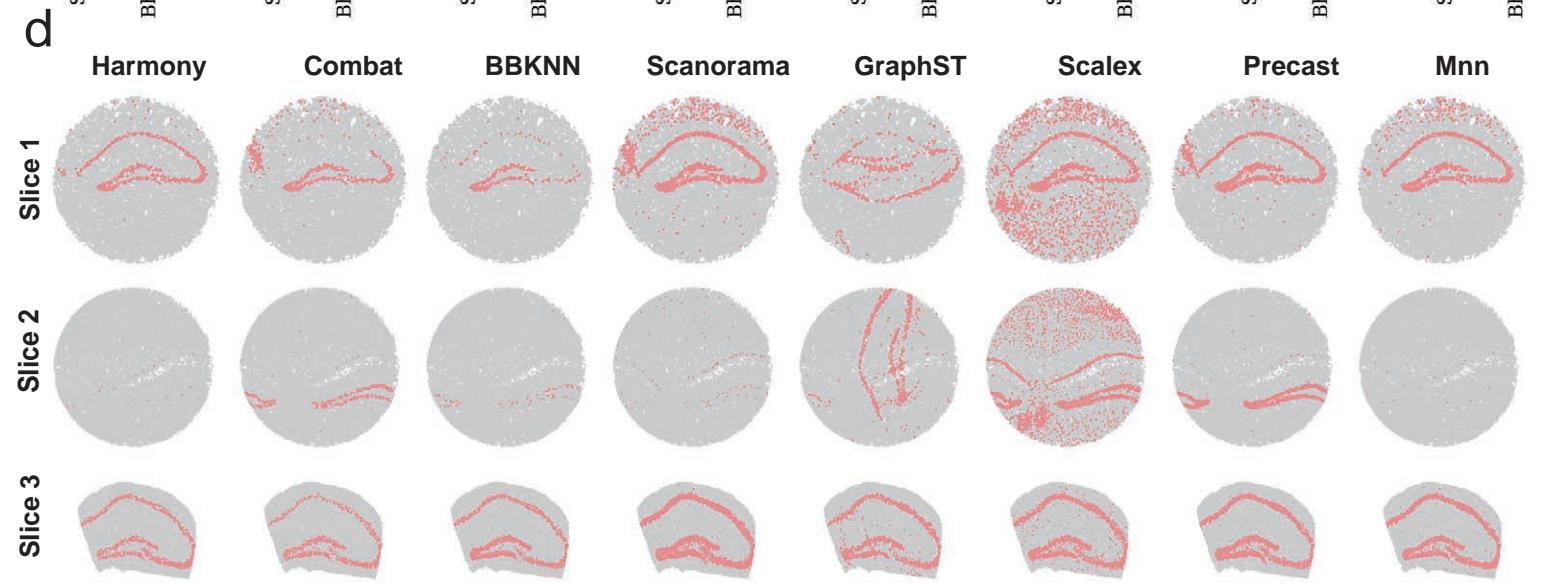
b



c

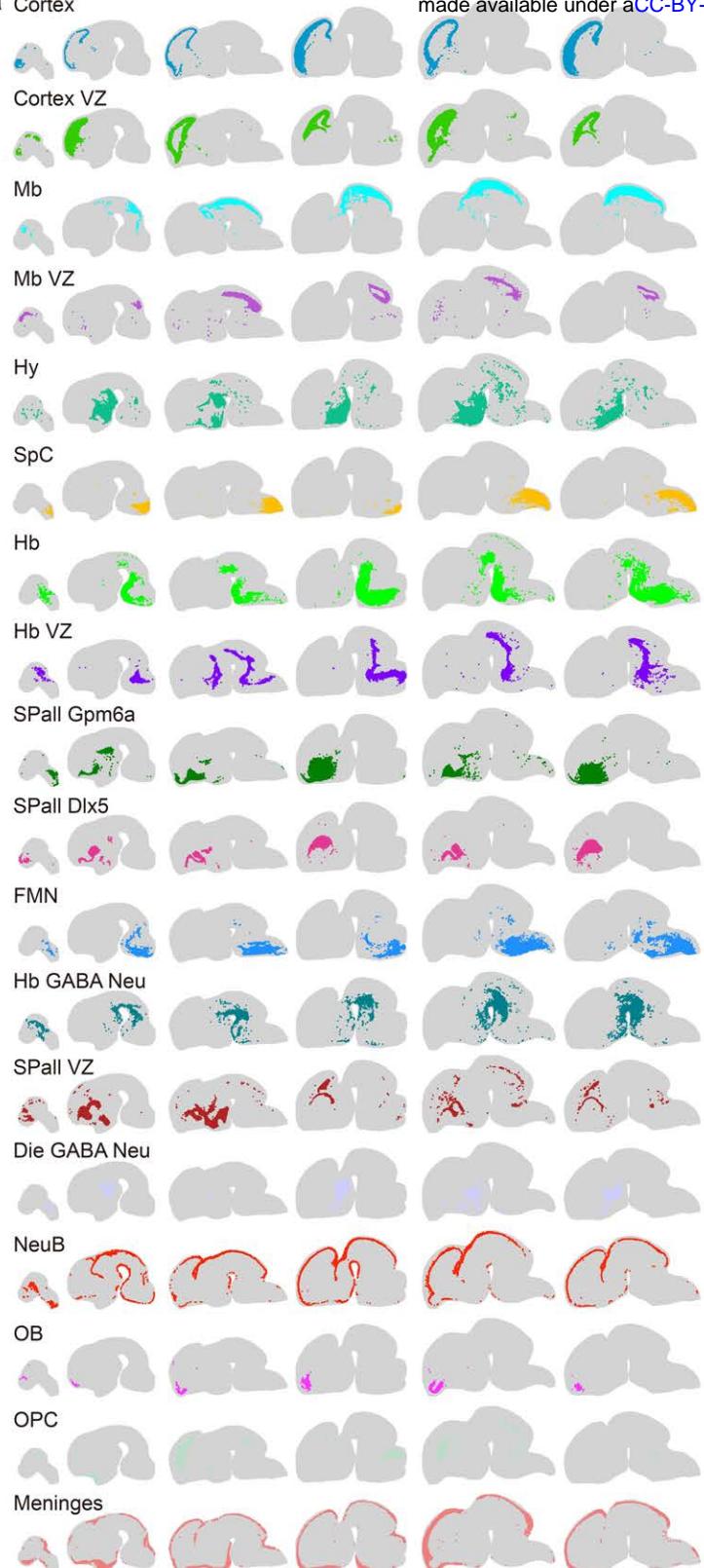
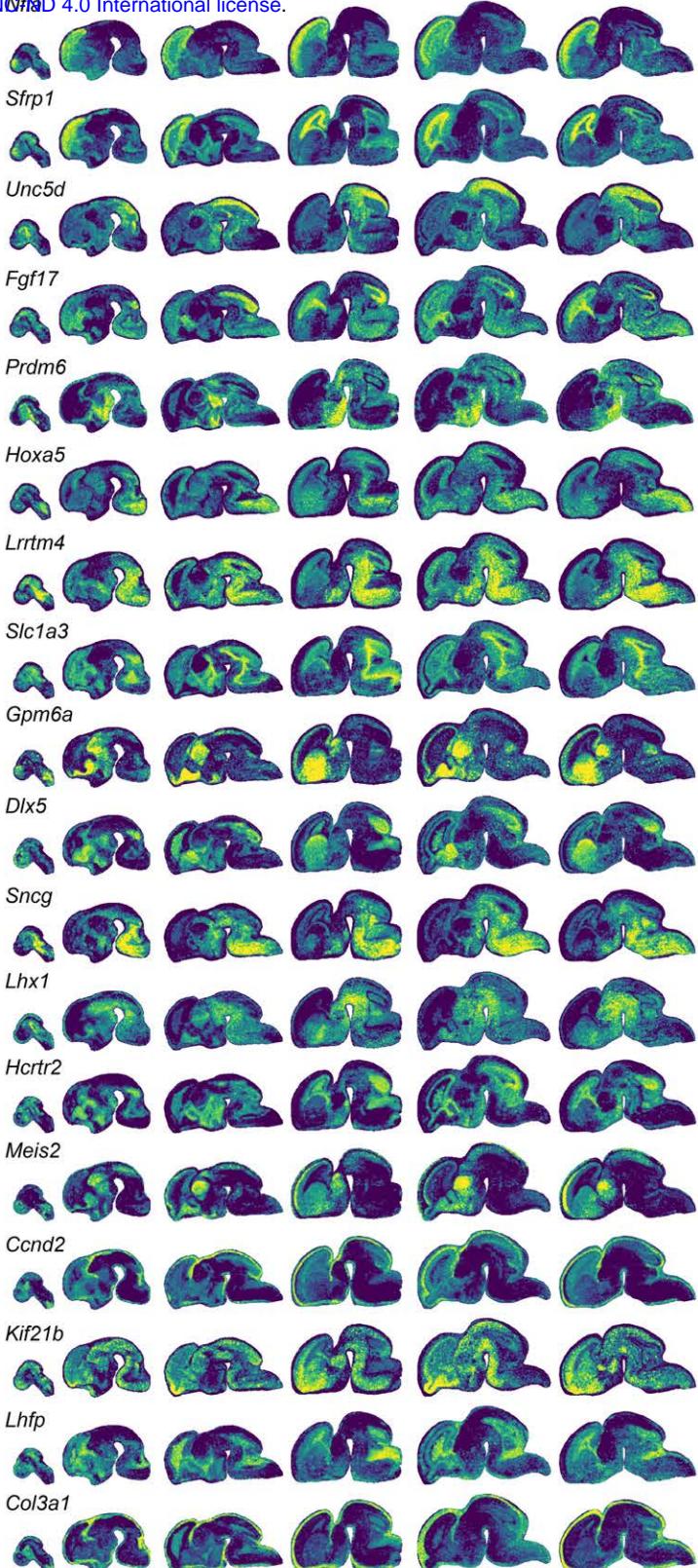


Supplementary Fig. S4 | Benchmarking analysis on olfactory bulb datasets, related to Figure 3. a, b, c. Bar plots of integration LISI (iLISI), **a**), cell-type LISI (cLISI), **b**) and ARI (**c**) scores for integration results from different methods. **d, e**). Spatial visualization of spatiAlign-enhanced (top panel) and raw (middle panel) spatial expression of marker genes, together with their corresponding cell types (bottom panel), on two olfactory bulb sections.

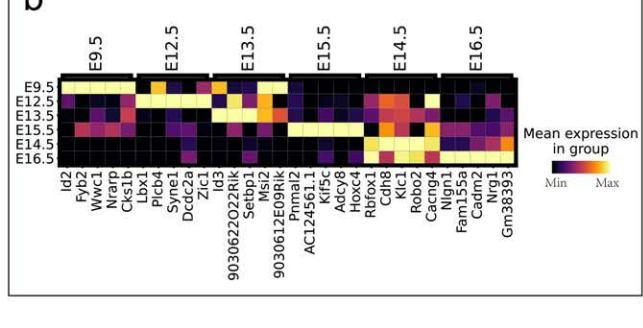


Supplementary Fig. S5 | Integration results of three mouse hippocampus slices from the control methods, related to Figure 4. **a).** UMAP plots for the joint clustering result from the control methods, coloured by slices (top panel) and cluster labels (bottom panel). **b).** Spatial visualization of the joint clustering results from the control methods on the three slices. **c).** Expression heatmaps of marker genes for the CA1, CA3, and DG regions in joint clusters from spatiAlign and the control methods. Clusters with high expression specificity are highlighted by red boxes. **d).** Spatial visualization of the hippocampus-related regions on three slices identified by the control methods.

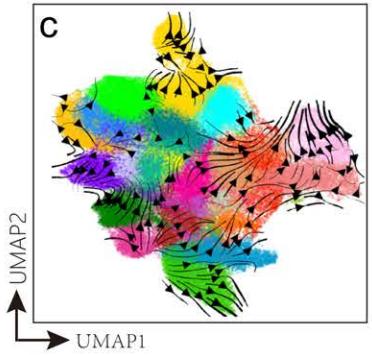
a Cortex



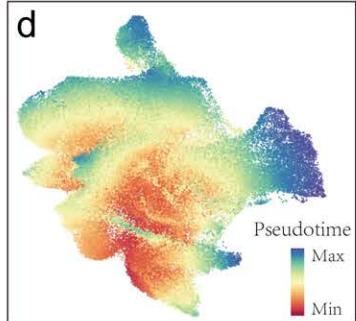
b



CellRank + Raw



CellRank + spatiAlign



Supplementary Fig. S6 | Application to time-series mouse embryonic brain, related to Figure 5.

a). Spatial visualization of the labelled clusters and the corresponding marker genes. **b).** Expression heatmap of the top five differentially expressed genes from E9.5 to E16.5. **c).** CellRank trajectory of cell types reconstructed using the raw expression counts. **d).** Estimated pseudotime scores by spatiAlign-corrected gene expression matrices.