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16 Abstract

17  Integrative analysis of spatially resolved transcriptomics datasets empowers a deeper
18  understanding of complex biological systems. However, integrating multiple tissue sections
19  presents challenges for batch effect removal, particularly when the sections are measured by
20  various technologies or collected at different times. Here, we propose spatiAlign, an
21  unsupervised contrastive learning model that employs the expression of all measured genes and
22  the spatial location of cells, to integrate multiple tissue sections. It enables the joint downstream
23 analysis of multiple datasets not only in low-dimensional embeddings but also in the
24  reconstructed full expression space. In benchmarking analysis, spatiAlign outperforms state-
25  of-the-art methods in learning joint and discriminative representations for tissue sections, each
26  potentially characterized by complex batch effects or distinct biological characteristics.
27  Furthermore, we demonstrate the benefits of spatiAlign for the integrative analysis of time-
28  series brain sections, including spatial clustering, differential expression analysis, and
29  particularly trajectory inference that requires a corrected gene expression matrix.

30 Introduction

31  The rapid advancements of spatially resolved transcriptomics (SRT) have revolutionized our
32 understanding of the spatial organization and heterogeneity of cells within complex tissues and
33 developmental processes’. Cutting-edge in situ capturing technologies (e.g., 10x Genomics
34  Visium? Slide-seq®, Stereo-seq®, and Seg-scope®) have facilitated the simultaneous
35  measurement of tens of thousands of genes in their spatial context, achieving unprecedented
36  cellular or even subcellular resolution. The SRT datasets are typically acquired from different
37  tissue sections, each potentially representing a fragmented profiling of the targeted biological
38  system. Hence, integrating multiple datasets for joint analysis is imperative to decipher the
39  whole biological system. However, integrative analysis presents significant challenges due to
40  the inherent biological variability and batch effects caused by nonbiological factors such as
41  technology differences and different experimental batches.

42 Prior efforts to tackle this task have conventionally focused on single-cell RNA
43 sequencing technologies (scCRNA-seq)® ’, which can be roughly classified into two main

44  categories: methods that (1) generate a joint embedding space®™

and (2) calculate a corrected
45  feature matrix**’. For example, Harmony?® projects cells into a shared embedding by maximum
46 diversity clustering and iteratively learning a cell-specific linear correction function that
47  regresses out biological effects within clusters. SCALEX™, a deep learning method, provides a
48  truly online tool to project cells into a batch-invariant, common cell-embedding space.
49  Although these methods prove valuable for capturing the overall characteristics of cells, such

50 as combined clustering, they are not applicable to downstream gene-level analysis tasks, such
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51  asdifferentially expressed gene (DEG) analysis. In contrast, popular MNN-based methods such
52 as Seurat v3'® efficiently address batch effects in gene expression, but their limitation lies in the
53  ability to align only two batches at a time, and they become impractical when dealing with
54 many batches. However, it is worth noting that these SCRNA-seq data integration tools have
55  focused on harmonizing gene expression profiles across different experimental batches and do
56  not consider the spatial context of spots/cells.

57 In the field of SRT studies, embedding spatial information has proven beneficial for
58  downstream analysis, such as spatial domain identification® *°, imputation®® 2, clustering®,
59  and cell-type annotation?. More recently, works have been published to improve the integration
60  of SRT datasets by exploiting spatial information. PRECAST leverages spatial smoothness in
61  both the cluster label and lower-dimensional representations to estimate aligned embeddings
62  for multiple tissue sections, effectively capturing the spatial relationship between cells/spots®.
63  GraphST introduces a graph self-supervised contrastive learning model to reconstruct gene
64  expression by minimizing the embedding distance between spatially adjacent spots®®. However,
65  PRECAST only returns the corrected embedding space, and GraphST requires registering the
66  spatial coordinates of samples first to ensure its integration performance; thus, their applications
67  are limited in certain scenarios.

68 To address these challenges, we propose spatiAlign, an unsupervised method that
69 leverages spatial embedding and across-domain adaptation strategies for aligning SRT datasets.
70  spatiAlign offers three key advantages as follows. First, it effectively captures the underlying
71  relationships between spots/cells in both the spatial neighbourhoods and gene expression to
72 learn latent representations with a deep graph infomax (DGI)*® framework. Second, spatiAlign
73 aligns biological effects by adapting the semantic similarities between spots/cells and/or
74 pseudoclusters from one section to another without relying on external labelled data, resulting
75 in a joint batch-corrected embedding. Third, benefiting from a symmetric decoder in DGI,
76  spatiAlign outputs the reconstructed spatial gene expression matrices, in which gene expression
77  isenhanced and batch effects are corrected. We validate the three advantages of spatiAlign with
78  four applications on publicly available 10x Genomics Visium, Slide-seq, and Stereo-seq
79  datasets of human and mouse tissues. The benchmarking analysis demonstrates spatiAlign’s
80  superiority in learning low-dimensional representations compared with eight established
81  methods, including GraphST and PRECAST, which were recently developed for SRT datasets.
82  Compared with the original spatial expression of brain region-specific markers, the
83  reconstructed counts from spatiAlign better reflect their laminar organization with denoised,
84  enhanced expressions and clear boundaries between regions. We also validate the capability of
85  spatiAlign to capture the unique characteristics of three Slide-seq mouse hippocampus slices,
86  which contain regions with different structures. The comprehensive integrated analysis of
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87  developing moues brain slices indicates that the aligned joint representations, which embed
88  cellular neighbourhoods, improve the identification of cell clusters. In addition, the
89  reconstructed features from our proposed spatiAlign method facilitate the identification of
90  DEGs under different developmental stages and the recovery of cellular trajectories.

91 Results

92  Overview of spatiAlign
93  spatiAlign takes as inputs multiple SRT datasets, comprising the expression of all measured
94  genes and spatial locations of spots/cells, to achieve two objectives: low-dimensional semantic
95 alignment and high-dimensional gene expression reconstruction (Fig. 1a). In low-dimensional
96  alignment, the primary strategy underlying spatiAlign is to implement a self-supervised
97  contrastive learning architecture (DGI-based framework) for dimensional reduction while
98  simultaneously propagating neighbouring spatial context between spots/cells (Fig. 1c).
99  Furthermore, it employs an across-domain adaptation technique to align joint embeddings,
100  effectively accounting for batch effects across multiple tissue sections (Fig. 1b). In high-
101  dimensional gene expression reconstruction, we utilize a decoder included in the DGI to reverse
102  aligned representations back into the raw gene expression space, thereby enhancing the gene
103  expression counts.

104 Formally, given a series of SRT datasets, gene expression profiles are transformed into
105  cell/spot-gene matrices (e.g., gene expression matrix X ) and spatial neighbouring graphs
106  between cells/spots (e.g., cell—cell adjacent matrix A ), where the connective relationships of
107  cells/spots are negatively associated with Euclidean distance. We design a deep neural network
108  (DNN)-based autoencoder to learn the low-dimensional gene representations Z from the
109  original gene expression matrix. The adjacency matrix A and the reduced gene
110  representations Z are fed into a variational graph autoencoder (VGAE)? that propagates
111  spatial neighbouring context for the gene representations, resulting in a final joint representation
112 S (positive samples) that captures comprehensive characteristics of the gene expression
113 profile and cellular neighbourhoods. Thereafter, the enhanced gene expression matrices can be
114  reconstructed using a symmetric decoder architecture, which reverses the joint representations
115 S back to the original space.

116 To improve spatiAlign’s ability to exploit potential information in SRT datasets,
117  augmentation-based contrastive learning is adopted® 2* . Technically, a gene expression
118  matrix X is augmented by randomly shuffling the gene expression vector of spots/cells to
119  create a corrupted gene expression matrix X’ while keeping the spatial neighbouring graph
120  unchanged. Then, the corrupted gene expression matrix X’ and adjacency matrix A are fed
121  into the aforementioned model, which utilizes the shared model weights to generate corrupted
122 joint representations S’ (negative samples). We then use self-supervised contrastive learning
123 to bring the positive samples closer within the spatial neighbouring context while pushing the
124 negative samples far apart within the same neighbouring context (Fig. 1c).
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125 Using an across-domain adaptation?® %3 and deep clustering® strategy, spatiAlign aims
126  to align biological effects while maximizing the preservation of biological variances in the
127  latent embedding of spots/cells. Specifically, we use a memory bank to store the final latent
128  representations for each dataset that will be used to measure the similarity between spots/cells
129  or pseudoclusters for self-batch/across-batch contrastive learning. For each tissue section,
130  spatiAlign minimizes the similarity distance between the current latent representations and the
131  corresponding memory bank entries to bring similar semantic spots/cells closer together and
132 push dissimilar semantic spots/cells far apart. In parallel, inspired by the idea of “label as
133  representation”, we assume that the dimension of the final latent embedding is equal to the
134  number of pseudoprototypical clusters, and the spots/cells vector denotes its soft label
135  accordingly. Thus, each spot/cell is assigned to a different pseudo cluster, and all pseudo
136  clusters should differ from each other. Identically, spatiAlign employs “current pseudocluster
137  representation” (transposition latent representation) and “cached pseudocluster representation”
138  (transposition corresponding memory bank) to bring the same pseudocluster spots/cells closer
139  together and push dissimilar pseudo cluster spots/cells far apart, avoiding pseudocluster dropout
140  intrinsic biological variances. In across-batch contrastive learning, cross-similarity between
141  spots/cells, measured by the current latent representation and memory bank of other sections,
142 is minimized to align biological effects across sections, ensuring similar semantic spots/cells
143  closer together, regardless of which sections they are from.

144  spatiAlign outperforms the control methods in integrating DLPFC datasets

145  We evaluated the effectiveness of spatiAlign in analysing a series of 10x Genomics Visium
146  datasets from the human dorsolateral prefrontal cortex (DLPFC). The selected dataset
147  comprised four sections that were manually annotated into six tissue layers (Layer_1 to Layer_6)
148  and white matter (WM) in the original study (Fig. 2a, Supplementary Fig. S1a)*. We first
149  performed graph-based clustering (Leiden) on the latent representations of spatiAlign and the
150  other eight benchmarking methods to assess their capability in aligning embedding space.
151  Before comparison, we merged the Leiden clusters of each method with the ground truth using
152 a maximum matching strategy for certain categories to produce final clustering results
153  (Supplementary Fig. S1b-f). spatiAlign achieved the highest adjusted Rand index (ARI)** score
154 with a mean of 0.5967 on all four sections and outperformed all the control methods (Fig. 2b).
155  In addition, spatiAlign achieved the highest mean weighted F1 score of the local inverse
156  Simpson’s index (LISI)® of 0.8402 (Fig. 2c), where sufficient mixing and variation preservation
157  were equally evaluated. In comparison, MNN showed ineffectiveness in fusing the sections
158  together and obtained the lowest weighted F1 score of LISI. The uniform manifold
159  approximation and projection (UMAP) visualization for each method revealed that spatiAlign
160  outperformed other control methods in separating clusters while simultaneously integrating
161  slices (Fig. 2d). In particular, methods such as GraphST, SCALEX, Harmony, and Combat did
162  not clearly separate spots belonging to distinct layers, and the batches did not mix well when
163  using MNN. Although PRECAST appeared to separate clusters and integrate batches well, it
164  resulted in Layer_1 being split into two groups.

165 Furthermore, we validated the latent embeddings with the inferred trajectory from PAGA®

166  (Fig. 2e). The PAGA path derived from spatiAlign embeddings exhibited a clear and nearly
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167  linear spatial trajectory from Layer_1 to Layer 6, with significant similarities observed
168  between adjacent layers, in accordance with the developmental process of the neurons®. In
169  contrast, the PAGA results of the other benchmarking methods were intermixed. Finally, we
170  compared the spatial expression patterns of layer marker genes before and after spatiAlign (Fig.
171 2f). The results revealed that the spatiAlign-reconstructed expression of layer-marker genes had
172 enhanced laminar enrichment and denoised distributions compared with the original data. For
173  example, CXCL14 in Layer_1 and Layer 2, ETV1 in Layer 5 and Layer_6, and VATLL in
174  Layer_5 were consistent with previous studies®’, whereas their raw gene expression did not
175  show discernible spatial laminar patterns. In addition, violin plots comparing gene expression
176  before and after spatiAlign processing also showed the expression enhancement of spatiAlign
177  (Fig. 2g). For example, the reconstructed expression of SEMA3C significantly populated Layer
178 6 compared with the original data. Such expression enhancements were also observed in other
179  sections, such as in sample ID 151674, further validating the reliability of the reconstructed
180  expressions (Supplementary Fig. S2c).

181  spatiAlign enables the alignment of multiple olfactory bulb datasets from different SRT
182 platforms.

183  To demonstrate the efficiency of spatiAlign in integrating datasets from different sequencing
184  platforms, we used three mouse olfactory bulb datasets. One slice was profiled by 10x
185  Genomics Visium, while the other two slices were obtained from Stereo-seq (Fig. 3a). Before
186  integration, we manually annotated each dataset (Fig. 3c) by leveraging unsupervised clustering
187  (Supplementary Fig. S3a, b), reported marker genes (Supplementary Fig. S3c, d, e, f) and the
188  ssDNA image (Fig. 3b). This provided a ground truth for calculating the weighted F1-score of
189  LISI, which quantified the performance of the methods in aligning batches and separating cells
190 from different clusters. As a result, spatiAlign achieved the highest score of 0.7935,
191  outperforming other methods such as PRECAST (0.6863) and SCALEX (0.6099), while MNN
192  was the poorest with a score of 0.0485 (Fig. 3d). Next, on the UMAP plots, we illustrated the
193  batch effects present before alignment (Fig. 3e). After integration, spatiAlign demonstrated
194  successful batch merging, in contrast to the outputs of PRECAST, GraphST, Harmony, Combat
195  and other control methods, where prominent batch effects remained observable. In addition,
196  spatiAlign found separate clusters that aligned well across the three sections (Fig. 3f). Even
197  though BBKNN and SCALEX also generated separate clusters, batch effects were still visible
198  after their integration. Hence, compared with combined clustering results produced by the
199  control methods, those detected using spatiAlign embeddings better corresponded to the
200  annotated ground truth and showed a higher consistency across different sections.

201 Furthermore, we showed that the reconstructed gene expression from spatiAlign (Fig. 3g,
202  Supplementary Fig. S4d, e, top panel) was denoised and enhanced compared with the raw gene
203  expression (Fig. 3g, Supplementary Fig. S4d, e, middle panel). For some marker genes®, e.g.,
204 Cmtm5, Cdhrl, Doc2g, and Pcp4, the spatial expression pattern was clearly enhanced and more
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205  consistent with the spatial locations of the corresponding cell types(Fig. 3g, Supplementary Fig.
206 S4d, e, bottom panel).

207  spatiAlign preserves heterogeneous characteristics among slices while aligning datasets.

208  We utilized three mouse hippocampal slices from Slide-seq (Fig. 4a and Supplementary Table
209 1) to assess the performance of spatiAlign and the benchmarking methods in integrating
210  datasets with different biological characteristics. These mouse hippocampus slices were
211  collected from different regions in the mouse brain® 3 %, As shown on the UMAP plots,
212  spatiAlign accurately integrated disparate datasets and revealed diverse clusters of structural
213  heterogeneity (Fig. 4b, d, and g). Quantitatively, spatiAlign excelled over other control methods
214 with an integrated LISI (iLISI) index of 0.6230, except for SCALEX. However, despite
215  achieving the highest iLISI index, SCALEX was unable to preserve the biological difference
216  among slices (Fig. 4c, Supplementary Fig. S5a and d).

217 Furthermore, we adopted hierarchical clustering to validate the effectiveness of each
218  method in identifying the brain regions. The resulting cell clusters after spatiAlign was applied
219  displayed strong spatial aggregation with clear boundaries and higher consistency with the
220  anatomical structures of the Allen Brain Atlas* (Fig. 4d and Supplementary Fig. S5b). Such an
221  observation was further evidenced by the global Moran’s I index, which measures spatial
222  autocorrelation (Fig. 4e). Regarding finding the substructural regions, our proposed spatiAlign
223 was the only method that identified the substructures of the hippocampus, including CA1, CA2
224 and dentate gyrus (DG), on all three slices (Fig. 4g). The successful hippocampus-related-
225  region identification of spatiAlign had higher consistency across three slices than others (Fig.
226  4g), while GraphST detected incorrect regions due to a lack of registering spatial coordinates
227  (Supplementary Fig. S5d). For preserving heterogeneous characteristics, we observed that the
228 identified habenula and third ventricle (V3) regions were barely enriched on slice 3 but highly
229  populated on the other two slices, as expected (Fig. 4h). Such results were in high concordance
230  with the expression spatial pattern of the associated marker genes*? Enpp2 for V3 and Tac2 for
231  habenula (Fig. 4i). To validate the biological traits of heterogeneous embedding, we
232 implemented DEG and GO analyses on detected habenular cell groups. We found many marker
233 genes* for habenula among the highly expressed genes of the merged dataset, e.g., Gm5741,
234  Nwd2, Gng8 and Lrrc55 (Fig. 4j). In addition, the GO enrichment analysis showed that the
235  habenula is actively involved in the production and synthesis of ATP (Fig. 4k). This finding
236  was in accordance with biological understandings that ATP not only plays a crucial role in
237  energy metabolism for habenular cells but also acts as a neurotransmitter to modulate neuronal
238  activity and synaptic transmission®,
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239  spatiAlign facilitates joint gene-level analysis of time-series mouse embryonic brain.

240  Finally, we utilized a series of mouse brain datasets* extracted from multiple developing mouse
241  embryos (Fig. 5a), measured by Stereo-seq, to demonstrate the benefits of spatiAlign for
242  downstream gene-level analysis. These brain sections were collected at different embryonic
243  daysfrom E9.5to E16.5, which included a total of 104,974 cells and 22,864 genes in the merged
244 dataset. Herein, we initially evaluated the inherent batch effects present prior to alignment.
245  Before applying spatiAlign, cells were primarily grouped by batch (Fig. 5b). In comparison,
246  spatiAlign well aligned these datasets within its lower-dimensional representations, where the
247  batch effects were adjusted. The cells were then clustered into coherent groups in an
248  unsupervised manner, and we next manually labelled them by referring to the expression of
249  marker genes reported by the atlas of the developing mouse brain* (Fig. 5b). These marker
250  genes, e.g., Ccnd2 of NeuB, Col4al of fibroblast, Sncg of FMN, Slcla3 of Hb VVZ, and Hcrtr2
251  of Spall VZ, exhibited the highest expression levels in their corresponding cell types that had a
252  relatively high fraction (Fig. 5c). In particular, we found two subtypes of GABAergic
253 interneurons in the subpallial region that were characterized by the DIx5 and Gpm6a genes,
254 which we named SPall Gpm6a and SPall DIx5, respectively (Fig. 5c). The validity of these
255  annotations was also confirmed by the strong correspondence observed in the spatial
256  distributions between cell types and relevant marker genes (Supplementary Fig. S6a).

257 A key benefit of our proposed spatiAlign is its ability to obtain aligned gene expression
258  with batch effects removed, thereby enabling downstream gene-level analysis. Based on the
259  reconstructed expression features, we identified DEGs across E9.5-E16.5 using the Wilcoxon
260  testin SCANPY. A heatmap of the expression of the top 5 ranked DEGs (Supplementary Fig.
261  S6b) illustrated high specificity across different developmental stages. In our observations, the
262  detected DEGs, e.g., 1d2, Lbx1, 1d3, Cdh8, and Nlgn1, have been reported to play crucial roles
263 in neuronal differentiation and maturation processes, such as neurogenesis and synaptic
264  plasticity. Specifically, 1d2, with differential expression at E9.5, has been extensively studied
265  for its involvement in balancing neuronal proliferation and differentiation®. Similarly, 1d3,
266  showing specificity to E13.5, was widely recognized for its function in controlling the timing
267  of neurogenesis in the embryo®. Conversely, the top-ranked DEGs identified at E16.5, such as
268  Nlgnl, Cadm2, Nrgl, and Ccserl, have been well studied for their contributions to synapse

269  formation, myelination, synaptic plasticity and connectivity*’°

, suggesting the final stage of
270  neurogenesis with synaptogenesis and the formation of synaptic connections between neurons
271  at E16.5. The subsequent GO-based enrichment analysis (Fig. 5d) revealed distinct functional
272  enrichments during different developmental stages in the mouse embryonic brain. Negative
273  regulation of haemopoiesis was observed at E9.5, followed by dendrite morphogenesis at E12.5,
274  early endosome at E13.5, synaptic cleft at E14.5, long-term synaptic potentiation at E15.5, and

275  synaptic membrane adhesion at E16.5. These findings were in line with the major
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276  developmental events observed at different embryonic stages, encompassing the initiation of
277  neurogenesis (E9.5)%, early neuronal connection (E12.5)%, increased neurogenesis (E13.5,
278  E14.5and E15.5)°2 %3, and the refinement of synaptic plasticity (E16.5).

279 We further demonstrated the effectiveness of spatiAlign for combined trajectory analysis
280 by employing two distinct approaches: PAGA, a graph abstraction technique based on low-
281  dimensional embedding space®, and CellRank®, a state-of-the-art cell fate mapping algorithm
282  using a high-dimensional count matrix as input. The PAGA graph of spatiAlign embeddings
283  (Fig. 5e) exhibited a nearly linear development trajectory from E9.5 to E16.5, as well as a high
284  similarity between adjacent time points. Furthermore, the age-specific genes that were
285 identified could be traced along the PAGA path (Fig. 5f). We proceeded to compare the
286  reconstructed trajectory obtained from CellRank using two different inputs: the raw and
287  spatiAlign-reconstructed feature matrices. The recovered trajectory, derived from reconstructed
288  features (Fig. 5g and h), illustrated a clear transition path across cell types and a similar
289  distribution across different time points, consistent with previous observations®. In contrast,
290  the batch effects present in the raw count matrix may lead to infeasible and chaotic fate
291  potentials across different batches (Supplementary Fig. S6c¢). Additionally, the expression
292  patterns of reported driver genes associated with neuronal (i.e., Tubala®, Tenm2%’, Rbfox1) as
293  well as nonneuronal (Dcn, Collal, Colla2) development®® (Fig. 5h) were consistent with the
294  predicted cell fate, thereby validating the feasibility of the estimated pseudotime and affirming
295  the reliability of our analysis.

206  Discussion

297  Inthis paper, we develop spatiAlign, an advanced deep learning methodology that tackles the
298  challenge of integrating multiple SRT datasets. SpatiAlign first transforms spatial information
299 into a neighbouring adjacency matrix to perform spatial embedding that aggregates gene
300  expression profiles together with spatial neighbouring context for spot/cell representations. The
301  obtained representations are subsequently fine-tuned through augmentation-based contrastive
302 learning, which incorporates spatial context information to improve their informativeness and
303  distinguishability. Next, regarding aligning biological effects, spatiAlign adopts across-domain
304  adaptation and deep clustering strategies to bring the semantic similarity of spots/cells closer
305  and push dissimilar spots/cells apart, regardless of which datasets they are from. Collectively,
306  beyond SRT dataset integration and batch effect correction, spatiAlign-integrated datasets can
307  be used for downstream analysis, such as identifying combined clusters and DEGs and
308  trajectory inference.

309 Naturally, one might be concerned that achieving a sufficient mix of serial tissue sections
310  could result in the inability to distinguish spots/cells from different clusters. Therefore, in this
311  study, we introduce a weighted F1 score of LISI, which evaluates the integration mixing and
312  separation of each cluster, to perform comparison analysis. We presented a series of
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313  benchmarking analyses on four publicly available SRT datasets with different characteristics.
314  Onthe human DLPFC datasets, with the manual annotation as ground truth, spatiAlign achieves
315  the highest ARI and weighted F1 score of LISI compared with other control methods. This
316  quantitative assessment highlights its superiority in integrating different samples while also
317  identifying separate clusters. Furthermore, the superior performance of spatiAlign on
318  aggregated datasets of olfactory bulbs sequenced by different platforms demonstrates its
319  efficacy in integrating multiple datasets with complex technical variations. In addition, the
320  reconstructed expression of region-specific marker genes exhibits a greater spatial specificity
321  compared with the original data. However, we point out here that our effort was not intended
322  todevelop a new imputation method over existing methods but to demonstrate that spatiAlign-
323  reconstructed matrices enhance gene counts.

324 Moreover, there is concern regarding the potential loss of distinct biological characteristics
325  during the batch alignment process. Herein, we unequivocally affirm that spatiAlign not only
326  effectively preserves the intrinsic variation among sections but also adeptly harmonizes batches,
327  asdemonstrated through its successful application to three distinct brain sections characterized
328 by heterogeneous structures. However, the benchmarking methods are unable to match the
329  performance of spatiAlign. When applied to a time-series dataset, spatiAlign significantly
330 facilitates downstream analysis, such as combined clustering, combined differential expression
331 analysis and trajectory inference. In the results, various subtypes of neurons were successfully
332  identified, with the typical marker genes displaying the highest expression in their
333  corresponding cell types. Upon analysing the reconstructed full expression space, we identified
334  DEGs and significant GO terms specific to different developmental stages that showed high
335  consistency with previous studies on mouse brain development. Comparing the trajectories
336  inferred from corrected expression features and the raw data, we verify that spatiAlign not only
337  aligns multiple batches into a joint low-dimensional embedding space but also corrects the
338  batch effects in their full expression space. This capability empowers users to perform
339  preprocessing for methods that require a full gene expression matrix, such as CellRank.

340 We designed spatiAlign to be user-friendly and believe that it offers a novel and effective
341  approach for SRT dataset integration. In the future, we envision extending spatiAlign for
342 integrative and multimodal spatial molecular dataset analysis, e.g., epigenetics, proteomics and
343  microbiomics. Such advancements will enable efficient integration of multiomics data and
344  facilitate the deeper exploration of biological phenomena.

345

346
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347 Methods

348  Motivation for the use of across-domain adaptation contrastive learning

349 As genomic sequencing technology continues to advance, an increasing number of SRT
350  datasets are being generated from various platforms. Joint analysis of multiple datasets can be
351 used to facilitate the extraction of maximum reliable information, but inconsistent data
352  distributions between different sections due to batch effects may affect the reliability of
353  downstream analysis results. To address this issue and maximize the preservation of biological
354 variations, it is desirable to amalgamate disparate datasets and bring similar cell types closer
355  together while keeping dissimilar cell types far apart. Across-domain adaptation contrastive
356 learning, an unsupervised domain adaptation method, can be used for this purpose. This method
357  canalign data distributions, preserve biological variations, and remove batch effects while also
358 incorporating spatial information of the SRT dataset into the newly generated latent embedding
359  and reconstructed matrix.

360  Data preprocessing
361 spatiAlign utilizes a series of gene expression matrices and associated spatial coordinates

362  as inputs. The gene expression profiles are stored in a X"™® matrix of unique molecular
363 identifier (UMI) counts, where N is the number of spots/cellsand D is the number of genes,

364  and it also includes (X,Yy) two-dimensional spatial coordinates for each spot/cell. The raw
365 gene expression matrices were first filtered according to criteria min_genes=20 and
366  min_cells=20 for each dataset using SCANPY (version: 1.9.1), followed by normalization
367  and log transformation of individual spots.

368  Spatial neighbour graph construction for the SRT dataset
369 To fully exploit the spatial local neighbouring context, we convert the spatial coordinates
370 into an undirected neighbourhood graph G = (V,E) by Euclidean distance with a predefined

371  neighbour parameter k , where V represents the SRT dataset spots/cells and E represents
372  the connected edges between the current spot/cell and neighbouring spots/cells. The adjacency
373  matrix of graph G is denoted by A, in which spot/cell u eV with k nearest neighbour
374 spots/cells; if spot/cell vV is the neighbour of spot/cell U, a, =1, otherwise, it is 0.
375  Specifically, we selected the top 15 nearest neighbours for each spot/cell in the SRT gene
376  expression spatial coordinates.

377 Batch-specific variations to separate using domain-specific batch normalization

378 Batch normalization (BN)*® is widely used to solve the problem of internal covariate shift
379  during DNN training. It can reduce the problems of vanishing gradients and overfitting. For a
380  mini-batch of data B= x, , , the BN layer can be calculated using the following

381  parameterization:
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383  where g, is the mean of the mini-batch, 0'123 is the variance of the mini-batch, X. is the

384  normalized output by the mean and variance of the mini-batch, ¢ is a small constant to avoid
385  dividing by zero, and Y; is the output of the BN layer, which is obtained by scaling and

386  shifting X. with learned parameters ~ and .

387 Domain-specific batch normalization (DSBN)® is used in unsupervised domain adaptation
388  with multiple source datasets to separate domain-specific variations from different datasets. In
389  spatiAlign, DSBN consists of multiple sets of BN layers that select the corresponding BN with
390 the batch label b . DSBN can be represented as follows:

391 Yo =M% +& =DSBN, . (%,,b) )

392  where v, and &, are batch-specific affine parameters for batch b .

393 DSBN has been proposed to capture and utilize the batch-specific information in datasets
394 by learning affine parameters for each dataset, which enables the model to learn the batch-
395  specific variations that exist within the datasets® .

396 DGl-based feature extractor for reducing dimensions and propagating spatial neighbouring

397 context

398 spatiAlign leverages the DGI framework to project a gene expression matrix into a latent
399  space while simultaneously performing dimension reduction and propagating spatial
400  neighbouring spots/cells context. To reduce the dimension of higher-dimensional SRT data, we
401  employed a DNN-based autoencoder mapping model f,:X —Z, where @ represents the

402  parameters of the mapping model, zM<¢ isa latent embedding with dimensionsd ,and d < D.
403  The DNN-based mapping model, a feature embedding block, consists of a fully connected block
404  and two stacked residual bottleneck blocks. Specifically, the fully connected block comprises
405  a linear connected layer, a DSBN layer, an exponential linear unit (ELU) as a nonlinear
406  activation function, and a dropout layer in sequence. Each residual bottleneck block consists of
407  two stacked fully connected blocks, and the output of the residual bottleneck block is passed
408  through an ELU layer (Fig. 1b). Notably, the feature embedding block only takes the gene
409  expression matrix as input.
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410 To propagate the spatial neighbouring context in the reduced dimensionality space, we
411  employ a variational graph autoencoder (VGAE) framework. The VGAE framework takes the
412  latent embedding Z obtained from the feature embedding model and the adjacency matrix
413 A as input and generates Y as output. The VGAE encoder includes two stacked graph
414  convolutional network (GCN) layers and uses the rectified linear unit (ReLU) as a nonlinear
415  activation function. The first GCN layer generates a lower-dimensional spatial embedding and
416  aggregates the spatial neighbouring context, while the second GCN layer generates the mean
417 1+ andvariance §°.The spatial embedding Y is then reparametrized from Y = pu+7 %62,
418  where 7~ N(0,1). The final latent representation S is generated from the feature fusion
419  block, which includes two stacked fully connected layers, as well as a DSBN layer followed by
420  each connected layer in sequence, and takes concatenated feature embedding as input, which is
421  obtained by concatenating the reduction dimensionality embedding Z and the spatial
422  embedding Y . The final latent embedding S is then used to reconstruct the original gene
423 expression matrix X’ inthe DNN-based autoencoder and the spatial neighbouring adjacency
424 matrix A’ inthe VGAE network.

425 Training the DNN-based autoencoder and VGAE network minimizes the loss of the
426  reconstructed gene expression matrix and maximizes the log-likelihood of the observed SRT
427  sequencing latent representation S . We first employed the scale-invariant mean squared error
428  (MSE)® to measure the DNN-based loss. In addition, the loss function of the VGAE includes
429  a binary cross-entropy loss to minimize the difference between the input spatial neighbouring
430  adjacency matrix A and the reconstructed adjacency matrix A’ . Additionally, a Kullback—
431  Leibler divergence loss was used to optimize the log-likelihood between the posterior
432  distribution q,(Y|S,A) and prior distribution p(Y) , where p(Y)~N(0,1) . The
433  dimension reduction and spatial neighbouring context propagation loss can be calculated as
434 follows:

435 Lene = Ly +@xBCE(A,A)+8xKL(g, Y|S,A,pY) (3)

mse

436 where BCE - isthe binary cross-entropy, KL - is the Kullback-Leibler divergence, L, .

437  isthe scale-invariant MSE and «,3€ 0,1 are hyperparameters.
1 2 1 2
438 Lo = E||x —x'|, - ANr [x-x7-1, (4)

439  where k is the number of spots/cells in the input gene expression matrix, 1, is a vector of

2
440  onesof length k , ||||2 is the squared L, norm,and X\ 0,1 isahyperparameter.

441  Self-supervised contrastive learning for representation enhancement

442 DGl is a self-supervised learning architecture that maximizes mutual information between
443 local neighbours of a graph to learn representations of nodes. spatiAlign takes original and
444 corrupted gene expression matrices as inputs and generates latent representation matrices S

445  and S’, respectively. The corrupted matrix is a rowwise random perturbation of the original
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446  matrix, and we assume that the corrupted gene expression profiles have the same neighbouring
447  adjacency matrix as the original profiles. Formally, given a spot i, we form a positive pair

448  consisting of its representation S; and the neighbouring graph spot vector g, while the

449  corresponding corrupted representation si'

from the corrupted matrix and the same
450  neighbouring graph spot vector g form a negative pair. A self-supervised contrastive

451  learning method was used to train the DGI framework, and the loss function was designed to
452 maximize the mutual information of positive pairs while minimizing the mutual information of
453  negative pairs:

1 N
454 L. :——2N § E,, [Iogqb S, 0 ]+EZ,’A log 1—¢ si/,gi ]] (5)
i=1

455  where ¢ - isadiscriminator, a bilinear layer and follows a sigmoid layer, to distinguish the

456  positive pairs from negative pairs.

457 Biological effects alignment using across-domain adaptation contrastive learning

458 To align biological effects using across-domain adaptation contrastive learning, we
459  propose a criterion for forming pairs based on the assumption that datasets from multiple tissue
460  sections share at least one common cell type in the current alignment setting. To achieve this,
461  we perform in-batch instance-level contrastive learning and across-batch instance-level
462  contrastive learning for each tissue section separately. Specifically, we maintain a memory bank
463  v® for each tissue section, which is used to store the latent embedding and prototype spot/cell
464  type representations within the batch.

465 Vlz[vll,...’vﬂl...,vb:[Vf’...’vm (6)

466 ~ where V,; is the stored feature vector of X, , initialized with final latent representation S,

467  and updated with a momentum M after each iteration for each dataset:
468 V,«<—mv,+ 1—m s, @)
469  In-batch instance level contrastive learning

470 The pairwise similarity distributions P" are measured by the cosine distance between

471  latent embedding s® and the corresponding memory bank v® to perform in-batch instance
472 discrimination,
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exp sim vP,s’ /71
b 1 I

i N,
> exp sim vp,s) /7
473 k=1 (8)

.
v g

S obob Vi Y

sim v, 8 ==

- b b
[ s

474  where T is the temperature parameter, which can determine the concentration level of the
475 similarity distribution. Finally, cross-entropy was employed to minimize the in-batch instance
476  discrimination.

477 L, .o = CrossEntropy(P",i) 9)

478  where i denotes the unique index of the spot of X; .

479  Pseudoprototypical cluster level contrastive learning

480 Inspired by unsupervised contrastive clustering®, we map each spot/cell i into an
481  embedding space with d dimensions, where d is equal to the number of
482  pseudoprototypical clusters. Since each spot belongs to only one cluster, ideally, the row of the
483  latent embedding s™ tends to be one-hot, meaning that the j-th columnof s represents
484  the j-th cluster. Similar to in-batch instance-level contrastive learning, our method uses cosine
485  distance to measure the similarity between latent embedding and the corresponding memory
486  bank and maximize the pseudo cluster pair similarity using cross-entropy. Specifically, the loss
487  function can be expressed as:

.
. b T b T vy S?
sim v, 80 =
b Tl b T
b
. T T
exp sim v\ , s’ /T
b
488 I:)t:luster — 74 (10)

. T T
dexpsim vy, /7
k=1

L IstCL — CrOSSEntropy(Pctl)uster’ J) — H S

C
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489 where H Z :_ZL[P s’ logP s’ } is the entropy of the pseudo cluster assignment

490  probabilities P s’ = ZLSE /|7, which can help to avoid the trivial solution in which most

491  spots are assigned to the same cluster®.
492 Across-batch instance self-supervised learning

493 To explicitly align biological effects and ensure that spatiAlign learns discriminative
494  representations of dissimilar cell types between different batches, we perform across-batch
495  feature matching. Specifically, we minimize the entropy of the pairwise similarity distribution
496  between latent embeddings in one batch and the latent embeddings stored in the memory bank
497  of another batch. The loss function for across-batch spot/cell pair matching can be formalized
498  as:

sevh !

sim S°V? = ——

[°lv°

exp sim s°,v.” /7

499 P = — _ - (11)
Zj:lexp sim s°,v° /7
. b b
LcrossSSL SV = Z H PNST SIAY
b=1,b=s

500 The overall objective for spatiAlign is to minimize:
501 LOSS = I-ENC + I-SSL + LinstCL + LclutCL + LcrossSSL (12)
502  Comparisons of methods
503 We perform four comprehensive representative SRT datasets with varying characteristics
504  to compare spatiAlign with other state-of-the-art methods of data integration.
505 We applied the following integration methods: (1) Harmony® implemented in the

506 SCANPY package external module harmony_integrate; (2) Combat® implemented in the

507  SCANPY package module combat; (3) Scanorama®* implemented in the SCANPY package
508  external module scanorama_integrate; (4) BBKNN*? implemented in the SCANPY package
509  external module bbknn; (5) MNN® implemented in the SCANPY package external module
510  mnn_correct; (6) SCALEX™ implemented in the Python package scalex, and spatial-base
511  methods: (7) PRECAST? implemented in the R package PRECAST; (8) GraphST®
512  implemented in the Python package GraphST. We input the preprocessed datasets into
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513  spatiAlign and several other tested methods. The first six methods were developed for sScRNA-
514  Seq datasets, whereas PRECAST and GraphST were specifically designed for SRT datasets.

515 Evaluation metrics

516 We evaluate the performance of spatiAlign and other control methods in both data
517 integration and the preservation of biological variation using the following metric.

518 F1-score of Local inverse Simpson’s index. To simultaneously evaluate the separation
519  of same-cell-type aggregation and across-batch fusion in the data integration, we calculated the
520  LISI® using two different groupings: (1) grouping using different datasets as the batch iLISI
521  and (2) grouping using known cell types as the spot cLISI . In the data integration, a larger
522  value of iLISI indicates sufficient mixing of the different batch datasets, while a smaller
523  value of cLISI suggests better preservation of the biological variations between spot types.
524 The two metrics can be summarized using the F1 score as follows:

2xiLISI . x 1—cLISI
F1 score = — €01
iLISI .+ 1—cLISI
iLISI —min iLISI
525 iuist. = : min 1 €0,1 (13)

™ max iLISI —min iLISI +¢

cLISI —min cLISI
cLISI .. = - €01
max cLISI —min cLISI +e¢

526  where ¢ isasmaller constant. A higher F1 score indicates superior data integration, which
527  effectively retains the biological variations between spot types while eliminating other
528  noncellular biological variations across multiple batches, thereby enhancing the fidelity of the
529  biological information.

530 Adjusted Rand index. To evaluate the efficacy of merge clustering when utilizing lower-
531  dimensional gene expression representations, we utilized the adjusted Rand index (ARI)** as a
532  performance metric. ARI represents an enhanced version of the Rand Index (RI), which
533  overcomes several of its limitations. By measuring the degree of similarity between two
534  partitions, ARI provides a numerical value that ranges between —1 and 1, with a higher value
535 indicating a higher degree of similarity between the two partitions being compared. Moreover,
536  ARI attains a value of 1 when the two partitions under comparison are equivalent up to a
537  permutation. Hence, ARI serves as a reliable and robust tool for evaluating the performance of
538  merge clustering approaches.

539 Hierarchical clustering and Moran’s I index calculation. The spatial regions were
540 identified by a hierarchical clustering algorithm with a lower-dimensional representation from
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541  different methods. The agglomerative clustering function in the scikit-learn package was
542  implemented with 16 clusters (n_cluster=16). Then, we calculate the global Moran’s I index
543  for each region on each slice. First, the batch labels were encoded to one-hot vectors, and spatial
544  coordinates were used to calculate spatial neighbours (edge weights=1). Then, the Moran
545  function in the ESDA (2.4.3) Python package was applied to calculate Moran’s I index

546 Differential expression analysis and GO enrichment analysis. We employed the
547  FindMarkers() function of the Scanpy package to identify differentially expressed genes (DEGSs)
548  for the spatial domain using “T test” implementation and cutting of the adjusted p value at 0.05.
549  To perform GO enrichment analysis for the DEGs, we utilized the ClusterProfiler (v4.8.1) R
550  package.

551 Trajectory inference analysis. We used the spatiAlign embedding to infer the PAGA®
552  path by the scanpy.tl.paga function in SCANPY. CellRank® was implemented to estimate
553  pseudotime using the CytoTraceKernel algorithm and compute_transition_matrix beyond RNA
554  velocity because the spliced and unspliced counts were not available in the mouse embryonic
555  brain datasets. We visualized the directed transition matrix CellRank calculated with the same
556  sort of arrows that are used for RNA velocity. However, there is no RNA velocity in this study.

557  Dataset availability

558 The public datasets are freely available as follows. The Stereo-seq data have been
559  deposited into the CNGB Sequence Archive (CNSA) of the China National GenBank DataBase
560 (CNGBdb) with accession number CNP0001543, the spatiotemporal dataset of the mouse
561  embryonic brain is available at https://db.cngb.org/stomics/mosta, and the 10x Genomics

562  Visium data have been published at https://www.10xgenomics.com/resources/datasets/adult-

563  mouse-olfactory-bulb-1-standard. The LIBD human dorsolateral prefrontal cortex (DLPFC)
564  dataset and mouse breast datasets can be downloaded from
565  https://zenodo.org/record/6925603#.YuM5WXZBwuU. Mouse hippocampus:
566  https://singlecell.broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-

567  transcriptomics-at-near-cellular-resolution-with-slide-seqv2#study-summary,

568  https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study#study-summary,

569 and  https://singlecell.broadinstitute.org/single cell/study/SCP948/robust-decomposition-of-

570  cell-type-mixtures-in-spatial-transcriptomics#study-summary, respectively.

571 Codes & Software availability

572 An open-source Python implementation of spatiAlign and reproduction codes are available at:

573  https://github.com/STOmics/Spatialign.qgit
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Tutorials are available at: https://spatialign-tutorials.readthedocs.io/en/latest/index.html
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Fig. 1 | Overview of spatiAlign. a). spatiAlign takes as inputs multiple spatially resolved
transcriptomics (SRT) datasets that consist of gene expression profiles for all measured genes and
spatial locations of spots/cells. Using semantic alignment, spatiAlign generates a shared batch-
corrected embedding, where biological effects are aligned. Moreover, spatiAlign reconstructs the
full high-dimensional expression space, enhancing and correcting gene expression counts. In
addition to SRT dataset integration and gene feature correction, spatiAlign returns a final joint
embedding and enhanced gene expression matrices to facilitate downstream analysis, such as joint
spatial clustering, joint differential expression analysis, and joint trajectory inference. b). spatiAlign
takes multiple SRT datasets as inputs. Latent embeddings are first generated using Deep Graph
Infomax (DGI) as feature extractors. Then, with the utilization of across-domain adaptation and
memory bank strategies, sptiAlign brings similar semantic spots/cells closer together and pushes
dissimilar spots/cells farther apart, irrespective of their original datasets. These self-batch and
across-batch contrastive learning processes align biological effects while correcting batch effects.
¢). A DGI framework takes as inputs the normalized gene expression matrix and corresponding
spatial coordinates from an SRT dataset. A spatial neighbouring graph (i.e., adjacent matrix A) is
built to represent the spatial relationships between adjacent spots/cells. To create an augmented gene
expression matrix X', a random perturbation is applied to shuffle the original gene expression X

while maintaining the spatial neighbouring graph unchanged. Deep neural network (DNN)-based
autoencoders are used to learn gene representations Z and Z’ by reducing the dimension of gene
expression matrix X and the augmented expression matrix X' . These representations are
individually fed into a variational graph autoencoder (VGAE), along with the spatial neighbouring
graph, which performs spatial embedding for the gene representations and outputs the final latent
representations S and S’ that capture the rich information both in original/augmented gene
expression profiles and spatial information. Afterwards, embeddings S are optimized using our
self-supervised contrastive learning strategy, which ensures that spatially adjacent cells have similar
embeddings while nonadjacent cells have dissimilar embeddings. Finally, the final embeddings S

can be reversed back to the original feature space, resulting in a reconstructed gene expression

matrix.
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Fig. 2 | spatiAlign outperforms the control methods in integrating the human dorsolateral
prefrontal cortex (DLPFC) datasets. a). Manual annotation of sample ID 151673 from the original
study. b). Bar plots of the mean scores of the adjusted Rand index (ARI) for the combined clusters
from spatiAlign and other control methods. ¢). Bar plots of the weighted F1 scores of the local
inverse Simpson’s index (LISI), assessing both batch mixing and cell-type separation, for the
integration results from different data integration methods. d). UMAP plots for the integrated
batches and identified cell types from spatiAlign and other control methods. For the integration
result of each method, dots in the right panel are coloured by batch, and dots in the left panel are
coloured by cell type. e). PAGA graphs of spatiAlign and other control methods. f). Spatial
visualization of spatiAlign-enhanced (top panel) and raw (bottom panel) expression of layer-marker
genes. g). Violin plots of the raw (left panel) and spatiAlign-enhanced (right panel) expression of
layer-marker genes. The cortical layers corresponding to the layer-marker genes are highlighted
with red boxes.
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Fig. 3 | spatiAlign integrates three mouse olfactory bulb datasets from Stereo-seq and 10x
Genomics Visium sequencing platforms. a). The mouse olfactory bulb datasets consisted of three
sections, with two sections sequenced using Stereo-seq and the third section generated from 10x
Genomics Visium. The two Stereo-seq datasets were sequenced on different types of chips, with
spots having centre-to-centre distances of 500 and 715 nm, respectively (middle panel). Hence, the
two Stereo-seq datasets were individually binned at Bin140 and Bin200 to ensure that all spots in
the three sections were of the same size of 100 um (right panel). b). Organization of mouse olfactory
bulb annotated by ssDNA image. ¢). Manual annotation as a ground truth for benchmarking analysis.
Spots are coloured by cell type. d). Bar plots of the weighted F1 scores of LISI for the integration
results from spatiAlign and the other control methods. e). Visualization of batch effects present in
batches and cell types before integration. f). UMAP plots for the integrated batches and identified
cell types from spatiAlign and other control methods. For the integration result of each method, dots
in the right panel are coloured by batch, and dots in the left panel are coloured by cell type. g).
Spatial visualization of spatiAlign-enhanced (top panel) and raw (middle panel) expression of
marker genes, together with the associated cell types (bottom panel). spatiAlign denoised and
enhanced the spatial expression pattern of marker genes compared with raw data.
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Fig. 4 | spatiAlign identifies distinct brain structures specific to each slice while integrating
three mouse hippocampus datasets. a). Spatial heatmap of total transcripts in the three mouse
hippocampal slices measured by Slide-seq. b). UMAP plot for the integrated slices from
spatiAlign. ¢). Bar plots of the integration LISI (iLISI) scores, evaluating batch mixing, for the
integration results from spatiAlign and other control methods. d). Spatial visualization (left)
and UMAP plot (right) for the joint clustering results from spatiAlign. e). Boxplots of global
Moran’s I index for the joint clusters from spatiAlign and other control methods. f). The
expression matrix plot of markers of the CA1, CA3, and DG regions. g). Spatial visualization
(left) and UMAP plot (right) of CAl, CA3, and DG regions that were only identified by
spatiAlign. h). Spatial visualization (left) and UMAP plot (right) of V3 and the habenula that
are specific to slice 1 and slice 2. i). Spatial expression of the marker genes Enpp2 in V3 and
Tac2 in the habenula. j). Volcano plot of differentially expressed genes (DEGs) between the
habenula and rest. k). Top ten highly enriched GO terms for the top 100 ranked DEGs.
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Fig. 5 | spatiAlign facilitates joint analysis of time-series mouse embryonic brain sections. a).
Unsupervised clustering of time-series brain sections extracted from the mouse embryos across
E9.5-E16.5 (E9.5, E12.5, E13.5, E14.5, E15.5 and E16.5) after integration using spatiAlign.
Spots are coloured by their annotation (right panel). NeuB, neuroblast; Astro, astrocyte; Hb,
hindbrain; OB, olfactory bulb; VZ, ventricular zone; Hy, hypothalamus; Die, diencephalon;
OPC, oligodendrocyte precursor cell; Cere, cerebellum; SPall, subpallium; SpC, spinal cord;
Mb, dorsal midbrain; Ery, erythrocyte; FMN, facial motor nucleus; and Chor, choroid plexus.
b). UMAP plots for batch mixing before spatiAlign (left) and after spatiAlign (middle) and the
labelled combined clusters from spatiAlign (right). ¢). Expression dot plots showing the gene
expression specificity of typical marker genes for identified cell types. Dot size represents the
proportion of expressing cells, and colour indicates the average expression level in each
identified cell type. d). Top three highly enriched GO terms for differentially expressed genes
from E9.5 to E16.5. e). PAGA graph of spatiAlign embeddings. Each node represents a batch
that is connected by weighted edges that quantify the connectivity between batches. f). Age-
specific genes traced along the PAGA graph paths. g). Cellular trajectory across different time
points inferred by the spatiAlign-corrected feature matrix (left) and raw expression (right), with
black arrows representing transition trends. h). Cellular state transitions across cell types
(middle panel) and expression of reported driver genes for neuronal (top panel) and

nonneuronal cells (bottom panel).
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Supplementary Fig. S1 | Manual annotation of human DLPFC datasets and joint clustering
results from spatiAlign and other control methods, related to Figure 2. a). Manual annotation
of four DLPFC sections from the original study. b). UMAP plots for joint leiden clusters (Leiden)
from spatiAlign and the control methods, together with the final clusters (Mapping) that merged
leiden clusters with the ground truth using a maximum matching strategy. ¢, d, e, f). Spatial
visualization of the Leiden clusters and the mapping clusters of sample ID 151673 (c¢), sample ID
151674 (d), sample ID 151675 (e), and sample ID 151676 (f).
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Supplementary Fig. S2 | Benchmarking analysis on human DLPFC datasets, related to
Figure 2. a, b). Bar plots of integration LISI (iLISI), a) and cell-type LISI (cLISI), b) scores
for integration results from different methods. ¢). Visualization of spatiAlign-enhanced (top
panel) and raw (bottom panel) spatial expression of layer-marker genes in sample 151674.
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Supplementary Fig. S3 | Manual annotation of olfactory bulb datasets, related to Fig.
3. a). UMAP plot for the left clusters of a Stereo-seq olfactory bulb dataset and its spatial
visualization (b). ¢). Heatmap of marker genes associated with their cell types. d, e, f). Spatial
pattern of marker genes and the corresponding cell types on the three olfactory bulb slices.
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Supplementary Fig. S4 | Benchmarking analysis on olfactory bulb datasets, related to
Figure 3. a, b, ¢). Bar plots of integration LISI (iLISI), a), cell-type LISI (cLISI), b) and
ARI (c¢) scores for integration results from different methods. d, e). Spatial visualization of
spatiAlign-enhanced (top panel) and raw (middle panel) spatial expression of marker genes,
together with their corresponding cell types (bottom panel), on two olfactory bulb sections.
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Supplementary Fig. S5 | Integration results of three mouse hippocampus slices from the
control methods, related to Figure 4. a). UMAP plots for the joint clustering result from the control
methods, coloured by slices (top panel) and cluster labels (bottom panel). b). Spatial visualization
of the joint clustering results from the control methods on the three slices. ¢). Expression heatmaps
of marker genes for the CA1, CA3, and DG regions in joint clusters from spatiAlign and the control
methods. Clusters with high expression specificity are highlighted by red boxes. d). Spatial
visualization of the hippocampus-related regions on three slices identified by the control methods.
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Supplementary Fig. S6 | Application to time-series mouse embryonic brain, related to Figure
5. a). Spatial visualization of the labelled clusters and the corresponding marker genes. b).
Expression heatmap of the top five differentially expressed genes from E9.5 to E16.5. ¢). CellRank
trajectory of cell types reconstructed using the raw expression counts. d). Estimated pseudotime

scores by spatiAlign-corrected gene expression matrices.
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