

1 **Ubiquitination-mediated Golgi-to-endosome sorting determines**
2 **the toxin-antidote duality of *wtf* meiotic drivers**

3

4 Jin-Xin Zheng^{1,2}, Tong-Yang Du^{2,3}, Guang-Can Shao², Zhu-Hui Ma², Zhao-Di
5 Jiang², Wen Hu², Fang Suo², Wanzhong He², Meng-Qiu Dong^{2,4}, and Li-Lin
6 Du^{1,2,4,*}

7

8 ¹Graduate School of Peking Union Medical College, Beijing 100730, China

9 ²National Institute of Biological Sciences, Beijing 102206, China.

10 ³College of Life Sciences, Beijing Normal University, Beijing 100875, China

11 ⁴Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University,
12 Beijing 102206, China.

13

14 *Correspondence: dulilin@nibs.ac.cn

15

16 **Abstract**

17 Killer meiotic drivers (KMDs) skew allele transmission in their favor by killing
18 meiotic progeny not inheriting the driver allele. Despite their widespread presence
19 in eukaryotes, the molecular mechanisms behind their selfish behavior are poorly
20 understood. Here we investigate how the toxin and antidote products of a fission
21 yeast *wtf*-family KMD gene can act antagonistically. Both the toxin and the
22 antidote are multi-transmembrane proteins, differing only in their N-terminal
23 cytosolic tails. We find that the antidote employs N-terminal PY motifs
24 (Leu/Pro-Pro-X-Tyr) to bind Rsp5/NEDD4 family ubiquitin ligases, which
25 ubiquitinate the antidote. Mutating PY motifs or attaching a deubiquitinating
26 enzyme transforms the antidote into a toxic protein. Ubiquitination promotes the
27 transport of the antidote from the trans-Golgi network to the endosome, thereby
28 preventing it from causing toxicity. A physical interaction between the antidote and
29 the toxin enables the ubiquitinated antidote to translocate the toxin to the
30 endosome and neutralize its toxicity. We propose that post-translational
31 modification-mediated protein localization and/or activity changes may be a
32 common mechanism governing the antagonistic duality of single-gene KMDs.

33

34 **Keywords:** killer meiotic driver, *wtf* family genes, ubiquitination, post-translational
35 modification, *Schizosaccharomyces pombe*

36

37 **Introduction**

38 The killer meiotic drivers (KMDs), which have been found in animals, fungi, and
39 plants, are selfish genetic elements that subvert Mendel's law of segregation by
40 disabling meiotic progeny lacking the driver element¹. A commonly employed
41 mode of action of KMDs is the toxin-antidote mechanism^{1,2}. The protein products
42 of a toxin-antidote KMD form a toxin-antidote pair. The toxin exerts a killing activity
43 towards all meiotic progeny and the antidote confers a protection against the toxin
44 in progeny carrying the driver allele. Interestingly, the toxin and the antidote can
45 be encoded by the same gene. Single-gene KMDs known or proposed to employ
46 the toxin-antidote mechanism include *wtf* genes of fission yeasts³⁻⁹, the *Spk-1*
47 gene of *Neurospora*¹⁰, and the *Spok* family genes found in *Podospora* and other
48 filamentous fungi¹¹⁻¹⁵. How a single-gene KMD can produce proteins with
49 antagonistic activities has been a perplexing mystery.

50 *wtf* (for with Tf LTRs) genes, which encode multi-transmembrane proteins,
51 constitute the largest gene family in the fission yeast *Schizosaccharomyces*
52 *pombe*^{8,9,16}. Some of the *S. pombe* *wtf* genes are drivers that can express both a
53 toxin and an antidote through alternative transcription initiation, whereas others
54 express only an antidote^{5,8,9}. The toxin and the antidote expressed by a *wtf* driver
55 gene have identical transmembrane domains, differing only in their N-terminal
56 tails, where the antidote features an extension at its N-terminus. Presumably, this
57 antidote-specific region plays a key role in determining the distinction between the
58 toxin and the antidote. However, no activities have been assigned to the
59 antidote-specific region.

60 Here, we show that the antidote-specific region is a binding platform for
61 ubiquitin ligases and mediates the ubiquitination of the antidote. Ubiquitination
62 directs the transport of the antidote from the trans-Golgi network (TGN) to the
63 endosome, preventing the antidote from causing toxicity. Furthermore, through a

64 physical interaction between the antidote and the toxin, the ubiquitinated antidote
65 relocates the toxin to the endosome and thereby detoxifies the toxin. This
66 ubiquitination-mediated toxicity neutralization mechanism is conserved among *wtf*
67 genes, including *S. pombe* *wtf* genes encoding only antidotes and *wtf* genes
68 present in other fission yeast species that diverged from *S. pombe* about 100
69 million years ago. Our findings provide new insights into the molecular
70 mechanisms underlying the actions of KMDs.

71

72 **Results**

73 **The toxin and antidote products of *cw9* are active in vegetative cells**

74 We used the *S. pombe* *wtf* gene *cw9*, which is an active KMD from the natural
75 isolate CBS5557⁹, as a model to study the molecular mechanism underlying the
76 distinction between the toxin and the antidote. We will refer to its toxin as Cw9t
77 and its antidote as Cw9a. Cw9a is 52 amino acids longer than Cw9t at the N
78 terminus (Fig. 1a). Transcripts encoding Cw9a and Cw9t are initiated from
79 upstream of coding exon 1 and within intron 1, respectively. As shown before⁹, the
80 removal of the sequence upstream of exon 1 resulted in a form of *cw9* that
81 indiscriminately kills spore progeny of a hemizygous cross between a strain
82 carrying this form of *cw9* and a strain without *cw9*, presumably because only Cw9t
83 but not Cw9a can be expressed (Fig. 1b). On the other hand, a Cw9a-only form
84 created through deleting intron 1 was able to protect progeny from the killing
85 effect of Cw9t expressed from a different locus (Fig. 1b). Thus, Cw9t and Cw9a
86 can act as toxin and antidote respectively when they are not expressed from the
87 same locus.

88 It has been shown that both the toxin and antidote products of the *Sk wtf4* gene
89 from the *S. pombe* var. *kambucha* strain are active in vegetative cells⁶. To test
90 whether the toxicity of Cw9t can manifest in vegetative *S. pombe* cells, we placed

91 its coding sequence under the control of thiamine-repressible promoters (*Pnmt1*,
92 *P41nmt1*, or *P81nmt1*, from the strongest to the weakest) (Fig. 1c)¹⁷. We found
93 that Cw9t expressed from the *P81nmt1* or *P41nmt1* promoter prevented the
94 growth of vegetative cells under the induction condition (minus thiamine) (Fig. 1c).
95 We failed to obtain strains expressing Cw9t from the strongest *Pnmt1* promoter,
96 probably due to toxicity caused by a higher level of basal expression. Cw9t
97 expressed from the anhydrotetracycline (ahTet)-inducible promoter *PtetO7* also
98 showed strong toxicity to vegetative cells under the induction condition
99 (Supplementary Fig. 1a)¹⁸. Thus, Cw9t is a toxin that can kill not only *S. pombe*
100 spores, but also *S. pombe* vegetative cells.

101 When examining cells using differential interference contrast (DIC) microscopy,
102 we found that Cw9t induction in vegetative cells resulted in the appearance of
103 large crater-like structures (Fig. 1d and Supplementary Fig. 1b). We suspected
104 that these structures may correspond to enlarged vacuoles. Indeed, Zhf1, a
105 vacuole membrane marker, localized at the boundaries of the structures, and
106 Cpy1, a vacuole lumen marker, localized in the interior of the structures (Fig. 1d).
107 Enlarged vacuoles can also be observed by electron microscopy analysis
108 (Supplementary Fig. 1c). The reason behind this phenotype is unclear, but it
109 serves as a convenient readout of the toxicity of Cw9t in vegetative *S. pombe*
110 cells.

111 To test whether Cw9a can act in vegetative cells, we placed its coding
112 sequence (without intron 1) under the control of thiamine-repressible promoters
113 (Fig. 1e). Inducing the expression of Cw9a had no effect on vegetative cell growth,
114 even when using the strongest *Pnmt1* promoter. When we co-expressed Cw9a
115 and Cw9t, the toxicity of Cw9t expressed from the *P41nmt1* promoter was
116 completely abrogated by Cw9a expressed from either the *P41nmt1* promoter or
117 the *Pnmt1* promoter and strongly but incompletely mitigated by Cw9a expressed

118 from the weakest *P81nmt1* promoter (Fig. 1e), indicating that the protecting
119 activity conferred by Cw9a is dose-dependent. When Cw9t was expressed from
120 the *P81nmt1* promoter, co-expressing Cw9a from even the *P81nmt1* promoter
121 can abolish the toxicity (Supplementary Fig. 1d).

122 We also tested whether Cw9t and Cw9a are active in the vegetative cells of the
123 budding yeast *Saccharomyces cerevisiae*. Similar to the observations made on
124 the products of *Sk wtf4*⁶, we found that Cw9t was toxic to vegetative budding
125 yeast cells, and Cw9a can neutralize the toxicity of Cw9t in a dose-dependent
126 manner (Supplementary Figs. 1e, f). Together, our results indicate that the
127 activities of Cw9t and Cw9a are neither specific to spores nor limited to *S. pombe*.

128

129 **The antidote-specific region binds Rsp5/NEDD4 family ubiquitin ligases**

130 Cw9a is predicted to be a multi-transmembrane protein with both its N terminus
131 and C terminus in the cytosol (Supplementary Fig. 1g)⁹. The N-terminal cytosolic
132 tail of Cw9a is predicted to be 105 amino acids long, with its most N-terminal 52
133 amino acids being absent in Cw9t (Fig. 2a). How does the presence or absence of
134 this antidote-specific region, Cw9a(1-52), determine whether the protein is an
135 antidote or a toxin? As Cw9a is essentially a combination of Cw9a(1-52) and Cw9t,
136 we first addressed the question of how the presence of Cw9a(1-52) in the same
137 polypeptide with Cw9t prevents the manifestation of the toxicity of Cw9t. We
138 hypothesized that Cw9a(1-52) may possess an activity that can neutralize the
139 toxicity of Cw9t as long as it is physically associated with Cw9t. To test this idea,
140 we artificially tethered Cw9a(1-52) to Cw9t using the noncovalent interaction
141 between GFP and GBP (GFP binding protein)^{19,20}. We co-expressed a
142 GFP-tagged form of Cw9t, which is toxic to *S. pombe* vegetative cells (Fig. 2b),
143 with Cw9a(1-52) or Cw9a(1-52) fused with GBP. Cw9a(1-52) did not obviously
144 ameliorate the toxicity of GFP-Cw9t, whereas Cw9a(1-52)-GBP abolished the

145 toxicity of GFP-Cw9t (Fig. 2b), supporting the idea that Cw9a(1-52) possesses a
146 toxicity-neutralizing activity that can detoxify associated Cw9t.

147 To explore the molecular mechanism underlying the toxicity-neutralizing activity
148 of Cw9a(1-52), we searched for physical interactors of Cw9a(1-52) using affinity
149 purification coupled with mass spectrometry (AP-MS) (Supplementary Table 1).
150 One hit of the AP-MS analysis is Pub1 (Fig. 2c), an Rsp5/NEDD4 family ubiquitin
151 ligase²¹. In *S. pombe*, there are three Rsp5/NEDD4 family ubiquitin ligases, Pub1,
152 Pub2, and Pub3²². Pub1 and Pub3 are more similar to each other than to Pub2
153 and are redundantly essential for cell growth²². Pub1 has the highest expression
154 level among the three^{23,24}. We used a glutathione S-transferase (GST) pulldown
155 assay to examine whether Cw9a(1-52) interacts with these three ubiquitin ligases
156 and found that both Pub1 and Pub3 exhibited robust interactions with Cw9a(1-52),
157 whereas Pub2 showed a much weaker interaction with Cw9a(1-52) (Fig. 2d).
158 Similar results were obtained using an *in vivo* co-immunoprecipitation assay
159 (Supplementary Fig. 1h), further validating the interactions.

160 The ability of Cw9a(1-52) to interact with Rsp5/NEDD4 family ubiquitin ligases
161 led us to hypothesize that Cw9a(1-52) may neutralize the toxicity of associated
162 Cw9t through recruiting ubiquitin ligases. This hypothesis predicts that the toxicity
163 of Cw9t may be inhibited if a ubiquitin ligase is artificially tethered to it. To test this
164 idea, we employed the GFP–GBP interaction again. Indeed, tethering Pub1 to
165 Cw9t abolished the toxicity of Cw9t (Fig. 2e). As a control, tethering Pub1-C735S,
166 a catalytically dead mutant of Pub1²⁵, to Cw9t did not affect the toxicity, indicating
167 that the ubiquitin ligase activity is required for neutralizing the toxicity. Artificially
168 tethering Pub3 to Cw9t can also abolish the toxicity, whereas tethering Pub2 only
169 partially neutralized the toxicity (Fig. 2f). These results suggest that the
170 antidote-specific region of Cw9a acts as a binding platform for Rsp5/NEDD4
171 family ubiquitin ligases, especially Pub1 and Pub3, and these ubiquitin ligases,

172 when recruited near Cw9t, can neutralize the toxicity of Cw9t through promoting
173 ubiquitination.

174

175 **PY motifs in the N-terminal tail of Cw9a are responsible for binding ubiquitin
176 ligases and preventing Cw9a from becoming toxic**

177 The substrate proteins of Rsp5/NEDD4 family ubiquitin ligases often contain one
178 or multiple Leu/Pro-Pro-X-Tyr sequences (PY motifs), which are binding sites of
179 the WW domains in the Rsp5/NEDD4 family ubiquitin ligases²⁶⁻²⁹. There are three
180 PY motifs in Cw9a, at positions 30-33, 41-44, and 69-72, respectively (Fig. 3a).
181 We named them PY1, PY2, and PY3. PY1 and PY2 are located within the
182 antidote-specific region. In a sequence alignment of the N-terminal cytosolic tails
183 of the antidote products of two active *wtf* driver genes from CBS5557 (*cw9* and
184 *cw27*) and 16 non-pseudo *wtf* genes in the *S. pombe* reference genome, PY1 and
185 PY2 are conserved in the products of all but the four most divergent *wtf* genes
186 (*wtf7*, *wtf11*, *wtf14*, and *wtf15*), which do not have KMD activities⁵, whereas PY3 is
187 only present in the products of four genes, *cw9*, *cw27*, *wtf19*, and *wtf23* (Fig. 3a).
188 The absence of PY3 in the product of the known active driver gene *wtf13*
189 suggests that PY3 is not essential for the selfish actions⁷.

190 To examine whether the PY motifs in the N-terminal cytosolic tail of Cw9a
191 mediate interactions with Rsp5/NEDD4 family ubiquitin ligases, we performed
192 GST pulldown analysis using *E. coli*-expressed Cw9a N-terminal fragments fused
193 with GST and *E. coli*-expressed Pub1 lacking the N-terminal lipid-binding C2
194 domain but containing all three PY-motif-binding WW domains (Pub1-ΔC2) (Fig.
195 3b). The removal of the C2 domain has been shown to reduce the aggregation
196 tendency of recombinant Rsp5 protein, while not impacting its ability to
197 ubiquitinate PY-containing substrates³⁰. It is known that mutating the strictly
198 conserved tyrosine residue in a PY motif to alanine disrupts the ability of the PY

199 motif to bind WW domains^{31,32}. Thus, we introduced tyrosine-to-alanine mutations
200 (denoted by asterisks) into the PY motifs of Cw9a. Mutating the three PY motifs
201 individually (PY1*, PY2*, or PY3*) did not obviously affect the ability of the
202 N-terminal cytosolic tail of Cw9a, Cw9a(1-104) (abbreviated as N in Fig. 3b), to
203 bind Pub1-ΔC2. When two out of the three PY motifs were mutated
204 simultaneously, the PY1*PY2* and PY2*PY3* combinations, but not the
205 PY1*PY3* combination, resulted in dramatically reduced but still detectable
206 interactions. Disrupting all three PY motifs (3PY*) weakened the interaction to an
207 undetectable level. Consistently, Cw9a(24-52), a 29-amino-acid fragment
208 containing both PY1 and PY2, interacted with Pub1-ΔC2 as strongly as
209 Cw9a(1-104). Cw9a(53-104), which contains only PY3, interacted weakly with
210 Pub1-ΔC2, whereas Cw9a(1-23) that lacks any PY motifs did not interact with
211 Pub1-ΔC2 (Fig. 3b). Similar results were obtained when using Pub3 as prey to
212 perform GST pulldown assay (Supplementary Fig. 2a). Together, these results
213 indicate that the three PY motifs of Cw9a act redundantly to promote interactions
214 with Pub1 and Pub3. PY2 is sufficient to mediate a strong interaction by itself,
215 whereas PY1 and PY3 individually are much weaker binding motifs but together
216 can mediate a robust interaction.

217 To examine the in vivo roles of the PY motifs, PY-mutated forms of Cw9a were
218 expressed in vegetative *S. pombe* cells using the inducible *P81nmt1* promoter.
219 Mutations that did not substantially affect Pub1/Pub3 binding in the GST pulldown
220 analysis, including PY1*, PY2*, PY3*, and PY1*PY3*, did not alter the non-toxic
221 nature of Cw9a (Fig. 3c and Supplementary Fig. 2b). In contrast, mutations that
222 markedly weakened ubiquitin ligase binding in the pulldown assay, including
223 PY1*PY2*, PY2*PY3*, and 3PY*, rendered Cw9a strongly toxic to vegetative cells
224 (Fig. 3c). Thus, PY motif-mediated binding to Rsp5/NEDD4 family ubiquitin
225 ligases keeps Cw9a in a non-toxic state.

226 We found that the 3PY* mutation can also convert Cw9a from non-toxic to toxic
227 in vegetative *S. cerevisiae* cells (Supplementary Fig. 2c), indicating that PY motifs
228 in Cw9a can mediate toxicity neutralization in *S. cerevisiae*, probably because PY
229 motif binding is a conserved feature of Rsp5/NEDD4 family ubiquitin ligases,
230 which are ubiquitously present in fungi and animals³³.

231 To examine whether PY motifs are also important for preventing Cw9a from
232 becoming toxic during sexual reproduction, we placed Cw9a-3PY* under the
233 control of the native upstream sequence. This form, referred to as *cw9a-3PY**,
234 can only be introduced into a strain that also contains a wild-type form of *cw9a*,
235 presumably because of the toxicity of Cw9a-3PY* to vegetative cells. When the
236 strain containing both *cw9a-3PY** and *cw9a* was crossed to a strain without any
237 forms of *cw9*, the resulting spores that contained only *cw9a-3PY** were inviable,
238 while the viability of other spores was normal (Fig. 3d). Thus, *cw9a-3PY** behaved
239 as a suicidal gene during sexual reproduction, indicating that PY motif-mediated
240 ubiquitin ligase binding is required to prevent the antidote from becoming a toxin
241 in the native context of KMD actions.

242 PY3 is located downstream of the antidote-specific region and thus is present in
243 Cw9t. The pulldown analyses showed that PY3 can support a weak binding with
244 Pub1 and Pub3 (Fig. 3b and Supplementary Fig. 2a). To determine whether the
245 presence of PY3 weakens the toxicity of Cw9t, we expressed Cw9t in vegetative
246 cells using an attenuated version of the *P81nmt1* promoter (*P81nmt1a*) so that
247 cell growth was inhibited but not completely prevented. We found that mutating
248 PY3 of Cw9t did not alter the extent of growth inhibition (Supplementary Fig. 2d),
249 indicating that PY3 does not influence the toxicity of Cw9t, perhaps because
250 PY3-mediated ubiquitin ligase binding is too weak to reach a threshold needed to
251 exert a neutralizing effect on the toxicity.

252 To further ascertain the toxicity-neutralizing role of PY motifs, we tested whether

253 simply adding a strong exogenous PY motif to Cw9t is sufficient to neutralize its
254 toxicity. We fused to the N-terminus of Cw9t a PY-motif-containing artificial
255 peptide (artPY, MPSTPPPPYSRGT), which is known to promote strong in vitro
256 ubiquitination by the Rsp5 ubiquitin ligase³⁰. This fusion abolished the toxicity of
257 Cw9t (Fig. 3e). As a control, fusing a PY-mutated peptide (artPY*,
258 MPSTPPPPASRGT) to Cw9t did not affect the toxicity. When artPY-Cw9t and
259 Cw9t were co-expressed, artPY-Cw9t behaved like an antidote and neutralized
260 the toxicity of Cw9t (Fig. 3e). Thus, the antidote-specific region of Cw9a can be
261 substituted by an exogenous PY motif, indicating that the main function of the
262 antidote-specific region is binding Rsp5/NEDD4 family ubiquitin ligases through
263 PY motifs.

264

265 **Ubiquitination sites in the N-terminal cytosolic tail of Cw9a are necessary
266 for preventing Cw9a from becoming toxic**

267 Because the N-terminal cytosolic tail of Cw9a interacts with Rsp5/NEDD4 family
268 ubiquitin ligases, we tested whether this region of Cw9a harbors ubiquitination
269 sites that can be modified by Rsp5/NEDD4 family ubiquitin ligases. We performed
270 in vitro ubiquitination reactions using recombinant Cw9a(1-104) as the substrate
271 and recombinant Pub1- Δ C2 as the ubiquitin ligase (E3) (Fig. 4a). Pub1- Δ C2 lacks
272 the N-terminal lipid-binding C2 domain but contains the catalytic domain and all
273 three WW domains. Upon SDS-PAGE separation of the reaction mixes, we
274 observed that the unmodified form of Cw9a(1-104) decreased and higher
275 molecular weight forms of Cw9a(1-104) appeared when and only when ubiquitin,
276 the ubiquitin-activating enzyme (E1), the ubiquitin-conjugating enzyme (E2), and
277 E3 were all present, indicative of ubiquitination of Cw9a(1-104). The extent of
278 ubiquitination correlated with the amount of E3. Thus, Cw9a(1-104) is a
279 ubiquitination substrate of Pub1.

280 To test whether PY motifs are important for the ubiquitination of Cw9a(1-104) by
281 Pub1, we performed ubiquitination reactions on PY-mutated Cw9a(1-104)
282 proteins (Fig. 4b). Mutating the three PY motifs individually caused mild reduction
283 of ubiquitination, with PY2* showing the strongest effect. Among the double PY
284 mutations, PY1*PY2* and PY2*PY3* but not PY1*PY3* mutations caused
285 substantially more severe reduction of ubiquitination than PY2*. 3PY* mutations
286 reduced the ubiquitination to an undetectable level. These results parallel the
287 binding assay results shown earlier, and indicate that PY motifs are needed for
288 the ubiquitination of Cw9a(1-104) by Pub1.

289 To obtain evidence on the *in vivo* role of Cw9a ubiquitination, we tested whether
290 artificially preventing the ubiquitination of Cw9a can render it toxic. We tethered
291 UL36, a deubiquitinating enzyme (DUB), to Cw9a using the GFP-GBP
292 interaction³⁴⁻³⁷. Cw9a fused at the N terminus with mECitrine, a variant of GFP,
293 was expressed from the thiamine-repressible *P81nmt1* promoter and DUB fused
294 with GBP was expressed from the ahTet-inducible *PtetO7* promoter. The
295 co-expression of GBP-DUB, but not the catalytically inactive GBP-DUB*, with
296 mECitrine-Cw9a caused toxicity to vegetative *S. pombe* cells (Fig. 4c), indicating
297 that ubiquitination of Cw9a is essential for preventing it from becoming toxic.

298 There are a total of 16 lysines in the cytosolic tails and loops of Cw9a (Fig. 4d).
299 We predicted that mutating all these lysines should prevent Cw9a from being
300 ubiquitinated and render Cw9a toxic. Indeed, when all 16 lysines were mutated to
301 arginines, the resulting mutant, Cw9a-16R, was toxic to vegetative cells (Fig. 4e).
302 Next, to define a minimal set of ubiquitination sites important for toxicity
303 neutralization, we mutated only the lysines in the N-terminal cytosolic tail. There
304 are seven lysines in this region (Figs. 4d, f). Mutating the five lysines in the
305 antidote-specific region (Cw9a-5R) or mutating the two lysines in the remaining
306 portion of the N-terminal cytosolic tail (Cw9a-2R) had no effect, whereas mutating

307 all seven lysines (Cw9a-7R) rendered Cw9a toxic (Fig. 4f). Reverting any one of
308 the seven mutations back to lysine abolished the toxicity of Cw9a-7R (Fig. 4g),
309 suggesting that these seven lysines can all be ubiquitinated and the ubiquitination
310 of these lysines is redundantly required for toxicity neutralization. Consistently,
311 using mass spectrometry analysis, we found that all seven lysines in the
312 N-terminal cytosolic tail can be ubiquitinated in vitro by Pub1 or Pub3 (Fig. 4h and
313 Supplementary Fig. 2e). Together, these results indicate that PY motif-dependent
314 ubiquitination of the N-terminal cytosolic tail of Cw9a is necessary for preventing
315 Cw9a from becoming toxic.

316

317 **The vacuolar targeting of Cw9a is mediated by the ESCRT machinery**

318 It has been reported that the antidote and the toxin products of the *Sk wtf4* gene
319 from the *S. pombe* var. *kambucha* strain exhibited distinct subcellular localization
320 patterns, with the antidote protein localizing to vacuoles and the toxin protein
321 forming cytoplasmic puncta^{6,8}. To examine the localization of the protein products
322 of *cw9*, we performed microscopy analysis on Cw9t and Cw9a tagged with
323 fluorescent proteins. Cw9t was tagged by inserting a fluorescent protein at an
324 internal position of the N-terminal cytosolic tail (between S96 and G97, amino acid
325 numbering based on the sequence of Cw9a), because this way of tagging
326 maintained the spore killing activity of Cw9t better than C-terminal tagging or
327 N-terminal tagging (Supplementary Fig. 3a). We refer to Cw9t tagged internally
328 with GFP as GFP^{int}-Cw9t. Cw9a was tagged at the N terminus, as N-terminal
329 tagging did not obviously affect the antidote activity of Cw9a (Supplementary Fig.
330 3b). Similar to the observations made on the protein products of *Sk wtf4*^{6,8},
331 GFP-Cw9a showed perfect co-localization with the vacuole lumen marker
332 Cpy1-CFP in spores (Supplementary Fig. 3c), whereas GFP^{int}-Cw9t formed
333 puncta not overlapping with vacuoles in spores (Supplementary Fig. 3d).

334 In vegetative cells, Cw9t and Cw9a tagged with the yellow fluorescent protein
335 mECitrine and expressed from the *P81nmt1* or *P41nmt1* promoter behaved like
336 the untagged proteins in terms of the toxicity of Cw9t and the antidote activity of
337 Cw9a (Supplementary Fig. 3e). Similar to the situation in spores, in vegetative
338 cells, mECitrine^{int}-Cw9t formed cytoplasmic puncta and mECitrine-Cw9a localized
339 to the vacuole lumen (Fig. 5a). mECitrine-Cw9a localized in the vacuole lumen is
340 expected to be cleaved by vacuolar proteases to release free mECitrine, which is
341 resistant to protease digestion³⁸. Indeed, immunoblotting analysis showed that
342 mECitrine-Cw9a was processed into free mECitrine in vegetative cells in a
343 manner dependent on the two main vacuolar proteases Isp6 and Psp3 (Fig. 5b)³⁹.

344 It has been shown that the co-expression of *Sk wtf4* antidote protein results in
345 the relocalization of *Sk wtf4* toxin protein to vacuoles⁶. Similarly, we found that the
346 co-expression of mCherry-Cw9a altered the localization of mECitrine^{int}-Cw9t in
347 vegetative *S. pombe* cells, resulting in a perfect co-localization of
348 mECitrine^{int}-Cw9t with mCherry-Cw9a in the vacuole lumen (Fig. 5c). This effect
349 of Cw9a on Cw9t is likely mediated by a physical interaction between Cw9a and
350 Cw9t, as mCherry-Cw9a can be co-immunoprecipitated with mECitrine^{int}-Cw9t
351 (Fig. 5d). Thus, as proposed before for *Sk wtf4*⁶, Cw9a may exert its antidote
352 activity through binding Cw9t and altering the localization of Cw9t.

353 Because mutating PY motifs in the N-terminal cytosolic tail of Cw9a can render
354 Cw9a toxic, we hypothesized that PY-mutated forms of Cw9a that become toxic
355 may have a localization pattern similar to that of Cw9t. Indeed, toxic Cw9a
356 mutants, including PY1*PY2*, PY2*PY3*, and 3PY* mutants, no longer showed
357 prominent vacuolar localization but instead mainly localized to cytoplasmic puncta,
358 whereas non-toxic PY-mutated forms of Cw9a, including PY1*, PY2*, PY3*, and
359 PY1*PY3*, still mainly localized to the vacuole lumen (Fig. 5e). Thus, the targeting
360 of Cw9a to the vacuole lumen requires the PY motifs. The 3PY* mutant of Cw9a

361 exhibited co-localization with Cw9t (Supplementary Fig. 3f), indicating that in the
362 absence of PY motif-dependent ubiquitination, Cw9a localizes to the same
363 compartment as Cw9t.

364 Ubiquitination of transmembrane proteins by Rsp5/NEDD4 family ubiquitin
365 ligases is known to be a sorting signal recognized by the endosomal sorting
366 complex required for transport (ESCRT) machinery⁴⁰. The ESCRT machinery
367 sorts ubiquitinated transmembrane proteins into intra-endosomal vesicles, which
368 end up in the vacuole lumen upon endosome-vacuole fusion. As the PY motifs in
369 Cw9a promote the ubiquitination of Cw9a by Rsp5/NEDD4 family ubiquitin ligases,
370 we hypothesized that the vacuolar targeting of Cw9a may rely on the ESCRT
371 machinery. Supporting this idea, we found that in the absence of Vps24 or Sst4,
372 which are components of the ESCRT-III complex and the ESCRT-0 complex,
373 respectively, Cw9a no longer localized to the vacuole lumen, and instead formed
374 cytoplasmic puncta, which tend to be larger than the puncta formed by Cw9t (Fig.
375 5f and Supplementary Fig. 3g). The Cw9a puncta in *vps24Δ* cells showed
376 substantial co-localization with two endosome markers: the ESCRT-0 complex
377 subunit Hse1 and the endosomal membrane protein SPAC15A10.06 (ortholog of
378 *S. cerevisiae* Nhx1) (Figs. 5f, g), suggesting that Cw9a accumulates on the
379 endosome when the ESCRT machinery is defective. Thus, Cw9a is transported to
380 the vacuole through the endosome and the ESCRT machinery is required for the
381 endosome-to-vacuole transport of Cw9a. Further supporting this conclusion, we
382 found that the vacuole lumen localization of Cw9a was unaffected in mutants
383 defective in the AP3 pathway, an endosome-bypassing Golgi-to-vacuole
384 trafficking pathway (Supplementary Fig. 3h).

385 The ubiquitination on the cargo transmembrane proteins transported by the
386 ESCRT machinery is known to be removed by DUBs when the cargo proteins are
387 sequestered into the endosome⁴¹. The transient nature of ubiquitination makes its

388 in vivo detection challenging. An ESCRT mutant preventing the endosomal
389 sequestration of cargo proteins, such as *vps24Δ*, causes the accumulation of
390 ubiquitinated cargo proteins and makes their detection easier⁴². Using
391 biotin-tagged ubiquitin (biotin-Ub) to enrich ubiquitinated proteins^{36,43}, we
392 detected ubiquitinated Cw9a in *vps24Δ* cells (Fig. 5h). The PY1*PY3* mutation,
393 which does not prevent the vacuolar localization of Cw9a in the wild-type
394 background, diminished but did not abolish ubiquitination in *vps24Δ* cells,
395 whereas PY1*PY2*, PY2*PY3*, and 3PY* mutations, which prevent the vacuolar
396 localization of Cw9a in the wild-type background, decreased ubiquitination to an
397 undetectable level in *vps24Δ* cells (Fig. 5h). These results support that PY
398 motif-mediated ubiquitination determines the endosome-to-vacuole transport of
399 Cw9a.

400

401 **Trafficking of Cw9a and Cw9t from the TGN to the endosome prevents their 402 toxicity**

403 Although deleting *vps24* prevented the vacuolar targeting of Cw9a, Cw9a did not
404 show toxicity in *vps24Δ* cells (Fig. 5i). This is not due to a suppression effect of
405 *vps24Δ* on the manifestation of toxicity, as Cw9t and PY-mutated forms of Cw9a
406 showed toxicity in *vps24Δ* cells (Supplementary Fig. 4a). Thus,
407 ubiquitination-dependent neutralization of the toxicity of Cw9a still occurs when
408 Cw9a localizes at the endosome. We predicted that in this situation, Cw9a can
409 also act as an antidote to inhibit the toxicity of Cw9t. Indeed, mTurquoise2-Cw9a
410 neutralized the toxicity of mECitrine^{int}-Cw9t in *vps24Δ* cells (Fig. 5j). Moreover,
411 they co-localized with the endosome marker Hse1 (Supplementary Fig. 4b). In
412 contrast, Cw9t and Cw9a-3PY*, when individually expressed, did not show
413 obvious co-localization with Hse1 in *vps24Δ* cells (Supplementary Fig. 4c). These
414 results suggest that endosomal localization prevents Cw9a and Cw9t from

415 becoming toxic.

416 To determine which compartment Cw9t localizes to in the absence of Cw9a, we
417 performed co-localization analysis using a number of organelle markers exhibiting
418 punctate patterns and found that mECitrine^{int}-Cw9t puncta partially co-localized
419 with the trans-Golgi network (TGN) marker Sec72-mCherry (Supplementary Fig.
420 4d). The TGN is a dynamic organelle and typical TGN-localizing proteins only
421 exhibit partial overlap with each other⁴⁴. We performed a time-lapse analysis and
422 found that the cytoplasmic puncta of Cw9t exhibited dynamic behaviors and
423 showed transient co-localization with Sec72 puncta (Fig. 5k). The most likely
424 trafficking route that Cw9t takes to reach the TGN is the secretary pathway
425 starting at the endoplasmic reticulum (ER). Supporting this idea, overexpressing a
426 dominant negative Sar1-T34N mutant, which impedes ER-to-Golgi transport at
427 the ER exit step⁴⁵, caused mECitrine^{int}-Cw9t to show a perfect co-localization with
428 the ER marker Ost4-mCherry (Supplementary Fig. 4e). These results suggest
429 that Cw9t enters the secretary pathway at the ER and is transported through the
430 Golgi to reach the TGN.

431 We hypothesized that Cw9a follows the same trafficking route as Cw9t to reach
432 the TGN, where the ubiquitination sorting signal on Cw9a directs its transport to
433 the endosome. This hypothesis predicts that ubiquitin-binding trafficking factors
434 may promote the TGN-to-endosome transport of Cw9a. The most obvious
435 candidates for such factors are Golgi-localized gamma-ear-containing
436 ARF-binding (GGA) family trafficking adaptors that can bind ubiquitin and act in
437 TGN-to-endosome transport^{46,47}. There are two GGA-encoding genes in *S.*
438 *pombe*, *gga21* and *gga22*, which play partially redundant roles⁴⁷. Cw9a remained
439 non-toxic in single deletion mutants lacking *gga21* or *gga22* (Supplementary Fig.
440 5a). However, in the *gga21Δ gga22Δ* double deletion mutant, which has a
441 moderate growth defect, the expression of Cw9a further weakened the growth,

442 indicative of a mild toxicity (Supplementary Fig. 5a).

443 Live cell imaging showed that in *gga21Δ gga22Δ* cells, Cw9a exhibited mainly a
444 vacuole lumen localization, but a small subset of Cw9a signals were observed on
445 cytoplasmic puncta outside of vacuoles (Supplementary Fig. 5b). Thus, the loss of
446 Gga21 and Gga22 only weakly disturbed the trafficking of Cw9a, possibly
447 because there are additional trafficking factors promoting the TGN-to-endosome
448 trafficking of Cw9a. We surmised that partially reducing the ubiquitination of Cw9a
449 using PY mutations that moderately weaken the in vitro ubiquitination of
450 Cw9a(1-104) may enhance the phenotypic consequence of losing Gga21 and
451 Gga22. Indeed, Cw9a-PY2* and Cw9a-PY1*PY3*, which localize to the vacuole
452 lumen and do not show toxicity in the wild-type background, localized to
453 cytoplasmic puncta and caused strong toxicity in the *gga21Δ gga22Δ* double
454 deletion background (Supplementary Figs. 5b, c). Furthermore, their puncta
455 showed partial overlap with the TGN marker Sec72-mCherry (Supplementary Fig.
456 5d). These findings suggest that ubiquitination-mediated trafficking of Cw9a from
457 the TGN to the endosome renders it non-toxic. Further supporting this model,
458 ubiquitination-defective Cw9a-3PY* protein exhibited co-localization with the TGN
459 marker (Supplementary Fig. 5e).

460 To further investigate how the ubiquitinated Cw9a neutralizes the toxicity of
461 Cw9t, we examined whether the detoxification of Cw9t requires its ubiquitination.
462 Mutating all 11 cytosol-facing lysines of Cw9t to arginines did not affect its toxicity
463 or the neutralization of its toxicity by Cw9a (Supplementary Fig. 5f), indicating that
464 Cw9t ubiquitination is not necessary for detoxification. Given that Cw9a and Cw9t
465 physically interact (Fig. 5d), we propose that Cw9a forms a complex with Cw9t,
466 and this Cw9a-Cw9t complex is transported from the TGN to the endosome in a
467 manner dependent on the PY motif-mediated ubiquitination of Cw9a, which
468 serves as the sorting signal recognized by trafficking factors.

469

470 **Ubiquitination neutralizes the toxicity of antidotes encoded by other *wtf***
471 **genes from *S. pombe* and *S. octosporus***

472 Among the 16 non-pseudo *wtf* genes in the *S. pombe* reference genome⁹, all but
473 the four most divergent genes (*wtf7*, *wtf11*, *wtf14*, and *wtf15*) encode antidotes
474 harboring the PY1 and PY2 motifs (Fig. 3a). Our analysis of Cw9a led us to
475 hypothesize that like Cw9a, these PY motif-containing antidote proteins may also
476 be kept non-toxic by ubiquitination. This model predicts that artificially preventing
477 ubiquitination of these antidote proteins may release their toxicity. To test this idea,
478 we applied the DUB tethering analysis on the antidote products of these 16
479 non-pseudo *wtf* genes.

480 We crossed a strain expressing a GFP-tagged antidote protein from a
481 thiamine-repressible promoter to a strain expressing GBP-DUB or a strain
482 expressing GBP-DUB* (catalytically dead DUB) on mating/sporulation media
483 containing thiamine and performed tetrad dissection analysis on media lacking
484 thiamine. Spore progeny harboring both the *GFP-antidote* allele and the
485 *GBP-DUB* allele were inviable for nine *wtf* genes, including all four genes that can
486 express both the antidote and the toxin (*wtf4*, *wtf13*, *wtf19*, and *wtf23*) and five
487 genes that can only express the antidote (*wtf9*, *wtf10*, *wtf16*, *wtf18*, and *wtf21*)
488 (Fig. 6a). For the antidote-only gene *wtf25*, spore progeny of the *GFP-antidote*
489 *GBP-DUB* genotype formed only extremely small colonies. Antidotes encoded by
490 the other six non-pseudo *wtf* genes (*wtf5*, *wtf20*, and the four divergent genes) did
491 not show toxicity upon DUB tethering (Supplementary Fig. 6a). For all 16 *wtf*
492 genes, combining the *GFP-antidote* allele with the *GBP-DUB** allele did not result
493 in spore viability loss or growth defect (Fig. 6a and Supplementary Fig. 6a). These
494 results indicate that PY motif-containing antidotes mostly possess intrinsic toxicity
495 that needs to be neutralized by ubiquitination to avoid suicidal killing.

496 The protein products of two antidote-only genes *wtf5* and *wtf10* are 82.9%
497 identical in their amino acid sequences (Supplementary Fig. 6b). However, only
498 Wtf10 but not Wtf5 displayed toxicity in the DUB tethering analysis. To understand
499 the reason behind this difference, we performed sequence swapping between
500 Wtf5 and Wtf10, and found that the difference is determined by the Wtf5(73-142)
501 region (Supplementary Fig. 6c). Within this region, these two proteins only differ at
502 two residues (Supplementary Fig. 6b). Replacing either residue in Wtf5 with the
503 residue in Wtf10 rendered Wtf5 toxic in the DUB tethering analysis
504 (Supplementary Fig. 6d). Thus, Wtf5 may have only recently lost its intrinsic
505 toxicity and can regain the toxicity through a single point mutation.

506 *wtf* genes are present not only in *S. pombe* but also in four other fission yeast
507 species: *S. octosporus*, *S. lindneri*, *S. osmophilus*, and *S. cryophilus*^{4,48}. These
508 four species share a common ancestor that lived approximately 30 million years
509 ago, and that common ancestor diverged from *S. pombe* around 100 million years
510 ago^{48,49}. Since *S. lindneri* still lacks a high-quality reference genome, the full
511 catalogs of *wtf* genes are only available for *S. octosporus*, *S. osmophilus*, and *S.*
512 *cryophilus*^{4,49}. Inspecting sequence alignments of proteins encoded by intact *wtf*
513 genes in these three species showed that the N-terminal cytosolic tails of the
514 antidote isoforms all contain a single conserved PY motif (Supplementary Fig. 7a).
515 We predicted that, like the situation in *S. pombe*, these PY motif-containing
516 antidotes are intrinsically toxic and are kept non-toxic by ubiquitination. To test this
517 idea, we applied the DUB tethering analysis by crossing *S. pombe* strains
518 expressing individually GFP-tagged antidotes of four *S. octosporus* *wtf* genes
519 (*octo_wtf14*, *octo_wtf21*, *octo_wtf25*, and *octo_wtf46*) to an *S. pombe* strain
520 expressing GBP-DUB. Cross progeny harboring both the *GFP-octo_antidote*
521 allele and the *GBP-DUB* allele were inviable (Fig. 6b). These results suggest that
522 ubiquitination-mediated toxicity neutralization is an ancient mechanism dating

523 back to the common ancestors of *wtf* genes existing 100 million years ago.

524

525 Discussion

526 Our study uncovers a ubiquitination-mediated toxicity neutralization mechanism
527 employed by *wtf* KMDs to convert the intrinsically toxic long isoform product into a
528 non-toxic antidote (Fig. 6c). This conversion requires conserved PY motifs, which
529 promote ubiquitination through binding Rsp5/NEDD4 family ubiquitin ligases.
530 Ubiquitination serves as a sorting signal to direct the trafficking of the antidote
531 protein from the TGN to the endosome, and thereby prevents it from exerting toxic
532 effects at the TGN and/or at non-endosomal post-TGN locations. The ability of the
533 antidote to interact with the toxin allows the antidote to target the toxin to the
534 endosome and thereby neutralize the toxicity of the toxin.

535 It remains unclear how non-ubiquitinated Wtf proteins cause toxicity. The partial
536 co-localization of the toxic forms of Cw9 with a TGN marker suggests a possibility
537 that the toxicity is due to perturbation of TGN functions, but we cannot rule out the
538 possibility that toxicity is exerted at non-endosomal post-Golgi membrane
539 locations. It has been proposed that the cytoplasmic puncta formed by the toxin
540 product of *Sk wtf4* are protein aggregates⁶. In this study, we show that Cw9t is a
541 transmembrane protein that traffics through the secretory pathway from the ER to
542 the TGN, where it exhibits a punctate localization pattern, presumably because
543 that is how the TGN appears in light microscopy.

544 The mechanisms uncovered in this study can serve as a paradigm for
545 understanding how toxin-antidote duality of single-gene KMDs is generated. We
546 propose that for single-gene KMDs, ubiquitination or other types of
547 post-translational modifications may be a commonly employed mechanism for
548 converting a toxic protein product to a non-toxic protein or converting a non-toxic
549 protein product to a toxic protein. As a result, both a toxic protein and a non-toxic

550 protein can be produced from the same gene. An advantage of such a
551 mechanism is that at the amino acid sequence level, post-translational
552 modifications can be determined by simply a short sequence motif such a single
553 PY motif. Interestingly, we noticed that another single-gene KMD family, the *Spk-1*
554 gene and its homologs in *Neurospora*¹⁰, encode transmembrane proteins
555 containing a conserved PY motif (Supplementary Fig. 7b), suggesting the
556 possibility that PY motif-mediated ubiquitination may control the toxin-antidote
557 duality of *Spk-1* family KMDs.

558 For single-gene KMDs that, like *wtf* driver genes, express overlapping but
559 non-identical protein products, post-translational modification-based
560 toxin-antidote duality can be achieved through the presence of modification
561 determinant sequence motif(s) in the product-specific amino acid sequence. For
562 single-gene KMDs that express a single polypeptide, post-translational
563 modification-based toxin-antidote duality may be realized through variable
564 activities of modifying/demodifying enzymes. For example, a modifying enzyme
565 whose activity is up-regulated in spores may prevent the toxicity of the newly
566 synthesized KMD product in spores and allow it to detoxify the toxin inherited from
567 the zygote. It is of note that certain eukaryotic toxin-antidote systems encode
568 proteins that may potentially catalyze post-translational modifications of
569 themselves. For example, the protein products of *Spok* spore killers in *Podospora*
570 contain a kinase domain¹⁵, and the *zeel-1* gene of the embryo-killing *peel-1/zeel-1*
571 element in *Caenorhabditis elegans* encodes a protein sharing similarity with a
572 subunit of a ubiquitin ligase complex⁵⁰.

573 For the non-toxic protein product of a single-gene KMD to fulfill the role of the
574 antidote, it needs to exert a toxicity neutralizing activity on the toxin product. As
575 shown here for the case of *cw9*, this need can be satisfied if the toxin and the
576 antidote can interact with each other. As the toxin and antidote products of a

577 single-gene KMD share an overlapping region, the toxin-antidote interaction can
578 be achieved if the overlapping region is capable of self-interaction.

579 Summing up the above considerations, we propose that toxin-antidote duality of
580 single-gene KMDs can be based on the concurrent presence of the following two
581 features: 1) The gene product(s) can engage in homotypic interactions; and 2) At
582 least one gene product isoform undergoes a post-translational modification that
583 either causes or prevents toxicity. This model has implications for the evolutionary
584 origin of single-gene toxin-antidote KMDs. We envision that any preexisting genes
585 encoding self-interacting proteins regulated by a post-translational modification
586 are potential precursors of single-gene toxin-antidote KMDs. Should a mutation
587 arise that renders such a protein toxic in either the unmodified or modified form,
588 but not both, a rudimentary KMD may emerge. Subsequent evolutionary
589 processes would then refine its selfish behavior, ultimately culminating in the
590 formation of a fully-developed meiotic driver gene.

591

592 **Acknowledgments**

593 We thank Dan Zhao for providing a plasmid containing the *P81nmt1a* promoter;
594 Yan Ding for assistance with the in vitro ubiquitination assay; Gaihong Cai and
595 She Chen for assistance with the mass spectrometry analysis; and Ping Wei for
596 providing *S. cerevisiae* plasmids. This work was supported by grants from the
597 Ministry of Science and Technology of the People's Republic of China and the
598 Beijing municipal government.

599

600 **Author Contributions**

601 Conceptualization: J.-X.Z. and L.-L.D.; Methodology and Investigation: J.-X.Z.,
602 T.-Y.D., G.-C.S., Z.-H.M., Z.-D.J., W.H., F.S., W.H., M.-Q.D., L.-L.D.; Writing –
603 Original Draft: J.-X.Z. and L.-L.D.; Writing – Review and Editing: J.-X.Z. and

604 L.-L.D.

605

606 **Declaration of Interests**

607 The authors declare no competing interests.

608

609

610 **METHODS**

611 **Strains and plasmids**

612 Yeast strains used in this study are listed in Supplementary Table 2, and plasmids
613 used in this study are listed in Supplementary Table 3. Strain construction
614 methods and media used for *S. pombe* culturing are as described^{51,52}. The SC
615 medium (FunGenome, Beijing, China) was used for culturing *S. cerevisiae*.
616 Deletion strains were created using PCR-based gene deletion. Strains expressing
617 proteins fused with various tags from native promoters were created using
618 PCR-based tagging. Plasmids carrying the *Pnmt1*, *P41nmt1*, or *P81nmt1*
619 promoter were based on modified pDUAL vectors^{53,54}. The DUB used in the DUB
620 tethering analysis consists of a linker region from the budding yeast Ubp7
621 (residues 561-591) and the catalytic domain from the herpes simplex virus 1
622 (HSV-1) UL36 protein (residues 15-260)^{35,36}. The catalytically dead DUB* harbors
623 a C40S mutation in the sequence of UL36. The *P81nmt1a* promoter was
624 constructed by inserting a 57 bp sequence that contains the restriction sites of
625 Xhol, Sall, Nrul, Ascl, PstI, and Apal between the Nhel and BamHI sites
626 downstream of the *P81nmt1* promoter⁵⁵. Plasmids containing the *PtetO7*
627 promoter were constructed by replacing the *Pnmt1* promoter of the pDUAL vector.
628 For the plasmid expressing Sar1-T34N, the PCR sequence was inserted into the
629 modified pSIV vector⁵⁶. *cw9t-only* corresponds to the Te form of *cw9* reported in
630 the previous study⁹. Other forms of *cw9* used in this study were generated by

631 PCR-based plasmid construction. Plasmids expressing proteins in budding yeast
632 under the control of the *pGAL1* promoter were constructed using pRS305
633 vectors⁵⁷. Plasmids expressing proteins in budding yeast under the control of the
634 *pCYC1*, *pTEF1*, and *pURA3* promoters were constructed using pNH605 vectors⁵⁷.
635 For the doxycycline (DOX) inducible system in budding yeast, the sequence of
636 *cw9t* was inserted downstream of the *pTETO7* promoter, and the plasmid
637 expressing rtTA-Msn2 was constructed with the pNH607 vector⁵⁷. Plasmids
638 expressing different fragments of Cw9a and truncated Pub1/Pub3 were
639 constructed by inserting coding sequences into pETDuet vectors or pET15b
640 vectors. Plasmids expressing Uba1, Ubc4, and ubiquitin in *E. coli* were obtained
641 from the previous study⁵⁸.

642

643 **Tetrad analysis**

644 Haploid parental strains freshly grown on YES plates were mixed and spotted on
645 SPAS plates. The SPAS plates were incubated at 30 °C for about 24 hr. The
646 tetrad analysis was carried out using a TDM50 tetrad dissection microscope
647 (Micro Video Instruments, Avon, USA) and spores were placed on YES plates.
648 For the DUB tethering analysis, thiamine was added to SPAS plates, and spores
649 were placed on PMG plates without thiamine.

650

651 **Spot assay**

652 Log-phase cells grown in the YES medium were washed twice with water and
653 diluted to an OD₆₀₀ of 0.4 in water. 200 µL of cell suspension of each strain was
654 transferred to a well in a 96-well plate. Five-fold serial dilutions of cell suspension
655 were made in the 96-well plate and spotted onto plates using a pin tool (3 mm
656 diameter pins). Plates were incubated at 30 °C for about two days. For strains
657 expressing *cw9* from thiamine-repressible promoters, PMG plates with or without

658 thiamine were used. For *S. pombe* strains expressing *cw9* from the *PtetO7*
659 promoter, MSA plates with or without 2.5 µg/mL of anhydrotetracycline (ahTet)
660 (Sigma Aldrich, Cat#37919) were used⁵⁹. For *S. cerevisiae* strains expressing
661 *cw9* from the *pGAL1* promoter, SC plates with 2% galactose or glucose were used.
662 For *S. cerevisiae* strains expressing *cw9* from the *pTETO7* promoter, SC plates
663 with or without 200 µg/mL of doxycycline (DOX) (J&K, Cat#146689) were used.

664

665 **Protein extraction**

666 Cell lysates were prepared from approximately 3 OD₆₀₀ units of cells using a
667 trichloroacetic acid (TCA) (Sigma Aldrich, Cat#T9159) lysis method⁶⁰. The cells
668 were harvested and resuspended in 100 µL of water. Cells were lysed on ice for
669 15 min by adding 75 µL of NaOH/2-mercaptoethanol (1.85 M NaOH, 7.5% (v/v)
670 2-mercaptoethanol) to the suspension. The proteins were precipitated by adding
671 75 µL of 55% (w/v) TCA solution for 10 min on ice. After centrifuging the sample at
672 13000 rpm for 10 min, the supernatant was removed. Following the addition of
673 about 5 µL of neutralizing buffer (1.5 M Tris-HCl, pH 8.8) to prevent any color
674 change, the protein pellet was resuspended in 100 µL of SDS loading buffer (60
675 mM Tris-HCl, pH 6.8, 4% 2-mercaptoethanol, 4% SDS, 0.01% bromophenol blue,
676 5% glycerol) at 65 °C for 20 min. The anti-GFP (Roche, Cat#11814460001)
677 antibody was used for detection.

678

679 **Immunoprecipitation**

680 About 30 OD₆₀₀ units of cells were harvested. The cells were mixed with 300 µL of
681 lysis buffer (100 mM Tris-HCl, pH 7.5, 50 mM NaCl, 50 mM NaF, 1 mM EDTA, 1
682 mM EGTA, 10% glycerol, 1% Triton X-100, 1 mM DTT, 1 mM PMSF, 1× Roche
683 protease inhibitor cocktail) and about 500 µL of 0.5-mm-diameter glass beads.
684 Using a Fastprep-24 device, bead beating lysis was carried out. The setting was

685 6.5 m/s for 30 s followed by a 2-min on-ice cooling. The beating step was
686 repeated three times to make sure more than 90% of cells were lysed. Microtubes
687 used for bead beating were punctured at the bottom with a hot needle and the
688 lysates were collected into new microtubes by centrifugation at 3000 rpm for 1 min
689 at 4 °C. The cell lysates were cleared by centrifugation at 13000 rpm for 10 min.
690 The supernatants were incubated with GFP-Trap agarose beads (ChromoTek,
691 Cat#gta-20) for 2 hr at 4 °C. Following incubation, the beads were washed with
692 lysis buffer devoid of DTT, PMSF, and the protease inhibitor cocktail. Bead-bound
693 proteins were eluted by incubating the beads at room temperature with SDS
694 loading buffer for 10 min. The anti-GFP, anti-mCherry (Abmart, Cat#ab167453),
695 and anti-FLAG (Sigma Aldrich, Cat#F3165) antibodies were used for detection.

696

697 **Affinity purification coupled with mass spectrometry (AP-MS) analysis**

698 AP-MS analysis was performed as described³⁶ with some modifications. About
699 1000 OD₆₀₀ units of cells were harvested. Cells were lysed by grinding in liquid
700 nitrogen. The powder was mixed with 30 mL of lysis buffer as described above
701 and incubated for 30 min at 4 °C. After centrifugation, the cell lysate was
702 incubated with GFP-Trap agarose beads for 2 hr at 4 °C. After incubation, the
703 beads were washed four times with lysis buffer. Elution was carried out by
704 incubating the beads at 65 °C with SDS loading buffer. Eluted proteins were
705 separated by SDS-PAGE. Protein bands on the SDS-PAGE gel were de-stained
706 and in-gel digested with sequencing grade trypsin (10 ng/μL trypsin, 50 mM
707 ammonium bicarbonate, pH 8.0) overnight at 37 °C. Peptides were extracted with
708 5% formic acid/50% acetonitrile and 0.1% formic acid/75% acetonitrile
709 sequentially and then concentrated to about 20 μL. The extracted peptides were
710 separated by an pre-column (75 μm × 5 cm) packed with 10 μm spherical C18
711 reversed phase material (YMC, Kyoyo, Japan) and analytical capillary column

712 (100 μ m \times 15 cm) packed with 3 μ m spherical C18 reversed phase material (Dr.
713 Maisch, GmbH, Germany). A Waters nanoAcuity UPLC system (Waters, Milford,
714 USA) was used to generate the following HPLC gradient: 0-8% B in 10 min, 8-30%
715 B in 30 min, 30-80% B in 15 min, 80% B in 5 min (A = 0.1% formic acid in water, B
716 = 0.1% formic acid in acetonitrile). The eluted peptides were sprayed into a LTQ
717 Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA)
718 equipped with a nano-ESI ion source. The mass spectrometer was operated in
719 data-dependent mode with one MS scan followed by ten HCD (High-energy
720 Collisional Dissociation) MS/MS scans for each cycle. With the cutoff of peptide
721 FDR < 1%, proteins were identified using the pFind program⁶¹.

722

723 **Recombinant protein purification**

724 Recombinant proteins containing the His₆ tag were expressed in *E. coli* BL21 or
725 Rosetta strain. *E. coli* cells were cultured in 200 mL of LB medium (10 g/L
726 bactotryptone, 5 g/L yeast extract, 10 g/L NaCl) containing 50 mg/L of ampicillin.
727 When OD₆₀₀ reached 0.4-0.6, 40 μ L of 1 M IPTG was added and the culture was
728 incubated at 16 °C for 18 hr. The following steps were performed at 4 °C or on ice.
729 The cells were harvested and mixed with 8 mL of *E. coli* lysis buffer (50 mM
730 NaH₂PO₄, pH 8.0, 300 mM NaCl, 10 mM imidazole, 10% glycerol). The cell
731 suspension was transferred to a 10 mL beaker, and cells were lysed by sonication.
732 The lysate was centrifuged at 4000 rpm for 10 min at 4 °C. The supernatant was
733 incubated with Ni-NTA beads (QIAGEN, Cat#30210) at 4 °C for 1 hr. The beads
734 were washed three times with wash buffer (50 mM NaH₂PO₄, pH 8.0, 300 mM
735 NaCl, 20 mM imidazole, 10% glycerol). Elution was performed four times by
736 incubating the beads each time with an equal volume of elution buffer (50 mM
737 NaH₂PO₄, pH 8.0, 300 mM NaCl, 250 mM imidazole, 10% glycerol). The eluate
738 was stored at -80 °C.

739

740 **GST pulldown**

741 For analyzing the interactions between Cw9a(1-52) and three E3 ligases (Pub1,
742 Pub2, and Pub3) and the interactions between Cw9a N-terminal fragments and
743 Pub3, the E3 ligases were expressed in *S. pombe* and Cw9a fragments were
744 expressed in *E. coli*. *S. pombe* lysates were generated the same way as in the
745 immunoprecipitation analysis. *E. coli* lysates were generated the same way as in
746 recombinant protein purification, except for the composition of the lysis buffer (50
747 mM phosphate buffer, pH 7.4, 200 mM NaCl, 10% glycerol, 0.05% NP-40). After
748 centrifugation, 1 mL of *E. coli* lysate and 100 μ L of *S. pombe* lysate were mixed
749 and incubated at 4 °C for 30 min before the addition of glutathione-sepharose
750 beads (GE Healthcare, Cat#17-0756-01). After 2-hour incubation, the beads were
751 washed four times with *E. coli* lysis buffer and subsequently eluted with SDS
752 loading buffer. The anti-GST (BPI, Cat#AbM59001-2H5-PU) and anti-FLAG
753 antibodies were used for detection.

754 For the interactions between Cw9a N-terminal fragments and Pub1-ΔC2,
755 proteins were all expressed in *E. coli* and the other steps were as described
756 above. The anti-GST and anti-HA (MBL, Cat#M180-3) antibodies were used for
757 detection.

758

759 **In vitro ubiquitination**

760 In vitro ubiquitination was performed as described³⁰ with some modifications. Mix
761 1 was prepared as follows: 4 μ L of buffer A (50 mM Tris-HCl, pH 7.5, 100 mM
762 NaCl, 10% glycerol), 2 μ L of 5 \times ATP (10 mM ATP, 50 mM MgCl₂, 5 mM DTT in
763 buffer A), 1 μ L of Uba1 (0.1 μ g), 1 μ L of Ubc4 (2.5 μ g), 2 μ L of ubiquitin (7 μ g). Mix
764 1 was preincubated for 10 min at 25 °C. Mix 2 was prepared as follows: 6.5 μ L of
765 buffer A, 2 μ L of 5 \times ATP, 0.5 μ L of Pub1 (0.3 μ g), 1 μ L of Cw9a N-terminal

766 fragment (2 µg) as the substrate protein, which was fused to eight copies of a
767 modified myc tag lacking lysine (myc*: EQRLISEEDL)⁶². Mix 1 was added to Mix
768 2 and incubated for 3 hr at 25 °C. The reaction was stopped by adding SDS
769 loading buffer. During immunoblotting, immediately after the protein transfer step,
770 the PVDF membrane was treated for 30 min with 1% glutaraldehyde in PBS to
771 render the transferred proteins more tightly associated with the membrane⁶³. The
772 anti-myc (Huaxingbio, Cat#HX1802) antibody was used for detection.

773

774 **In vitro ubiquitination coupled with mass spectrometry analysis**

775 For in vitro ubiquitination followed by MS analysis, 10 µg of the substrate, 0.5 µg
776 of Uba1, and 0.5 µg of Pub1/Pub3 were used. The ubiquitination reaction was
777 carried out at 25 °C overnight. CaCl₂ was added to a final concentration of 1 mM.
778 The samples were digested with trypsin overnight at 37 °C. Formic acid was
779 added to the final concentration of 5% to stop the digestion reaction. LC-MS/MS
780 analysis was performed on an Easy-nLC 1000 II HPLC instrument (Thermo Fisher
781 Scientific, San Jose, CA, USA) coupled to an Orbitrap QE-HF mass spectrometer
782 (Thermo Fisher Scientific, San Jose, CA, USA). Peptides were loaded on a
783 pre-column (100 µm ID, 4 cm long, packed with C18 10 µm 120 Å resin from YMC
784 Co., Ltd) and separated on an analytical column (75 µm ID, 10 cm long, packed
785 with Luna C18 1.8 µm 100 Å resin from Welch Materials) using an acetonitrile
786 gradient from 0% to 30% in 70 min at a flow rate of 250 nL/min. The top 20
787 intense precursor ions from each full scan (resolution 60000) were isolated for
788 higher-energy collisional dissociation tandem mass spectrometry spectra analysis
789 (HCD MS2; normalized collision energy 27) with a dynamic exclusion time of 45 s.
790 Tandem mass spectrometry fragment ions were detected using orbitrap in a
791 normal scan mode. The pFind software was used to identify proteins with the
792 cutoff of peptide FDR < 1%.

793

794 **Streptavidin pulldown of biotin-tagged ubiquitin**

795 About 30 OD₆₀₀ units of *S. pombe* cells were harvested. Cells were resuspended
796 with 500 μ L of water and incubated at room temperature for 10 min after the
797 addition of 500 μ L of 0.7 M NaOH. After centrifugation, the supernatants were
798 discarded. The pellets were resuspended with 1 mL of lysis buffer (2% SDS, 60
799 mM Tris-HCl, pH 6.8, 5% glycerol, 4% 2-mercaptoethanol) and incubated at 42 °C
800 for 20 min. After centrifugation, the supernatants were incubated with 20 μ L of
801 high capacity streptavidin agarose (Thermo Fisher, Cat#20359) at room
802 temperature for 3 hr. After incubation, the beads were washed two times with
803 wash buffer A (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1mM EGTA,
804 1% Triton X-100, 0.4% SDS, 1% NP-40, 1 \times Roche protease inhibitor cocktail),
805 one time with wash buffer B (50 mM Tris-HCl, pH 7.5, 2% SDS), and two times
806 with wash buffer A. Elution was performed two times by incubating the beads
807 each time with 20 μ L of elution buffer (50 mM Tris-HCl, pH 8.0, 2% SDS, 5 mM
808 biotin) at 60 °C for 20 min. The anti-myc antibody was used for detection.

809

810 **Electron microscopy**

811 Approximately 20 OD₆₀₀ units of cells treated with 2.5 μ g/mL ahTet for 6 hr were
812 harvested, and then washed once with water. Cells was fixed with freshly
813 prepared 1% glutaraldehyde and 4% KMnO₄, and then dehydrated through a
814 graded ethanol series and embedded in Spurr's resin⁶⁴. An FEI Tecnai G2 Spirit
815 electron microscope operating at 120kV with a 4k \times 4k Gatan 895 CCD camera
816 was used to examine thin sections.

817

818 **Fluorescence microscopy**

819 For imaging of vegetative cells expressing Cw9 from a thiamine-repressible

820 promoter, cells were first cultured in the YES medium, which contains thiamine.
821 Log-phase cells were harvested and washed two times with the EMM medium,
822 which lacks thiamine. Next, cells were cultured in the EMM medium to induce
823 protein expression. For imaging of spores, we crossed the two haploid strains on
824 the SPAS plates. The SPAS plates were incubated at 30 °C for about 24 hr. Cells
825 were scraped from the SPAS plates and placed onto slides for imaging.

826 Images shown in Figs. 1d, 5a, 5c, 5e, 5f, 5g and Supplementary Figs. 1b, 3f, 4c,
827 4d were obtained using a DeltaVision PersonalDV system (Applied Precision)
828 equipped with an mCherry/YFP/CFP filter set (Chroma 89006 set) and a
829 Photometrics Evolve 512 EMCCD camera. The SoftWoRx program was used to
830 analyze the images. Images shown in Fig. 5k and Supplementary Figs. 3c, 3d, 3g,
831 3h, 4b, 4e, 5b, 5d, 5e were obtained using an Andor Dragonfly 200 high speed
832 confocal microscope system equipped with a Sona sCMOS camera. Images were
833 acquired using the Fusion software and analyzed using Fiji. During image
834 analysis, we specifically opted to select cells that exhibited no obvious
835 depressions, as those with such features were found to attenuate the
836 fluorescence emission from mECitrine^{int}-Cw9t.

837

838 **Protein sequence alignment**

839 For the sequence alignment shown in Fig. 3a, the N-terminal cytosolic tails of
840 Cw9a, Cw27pi, and Wtf proteins encoded by the 16 intact *wtf* genes in the
841 reference *S. pombe* genome were analyzed. The ranges of the N-terminal
842 cytosolic tails were based on the transmembrane topology predicted by
843 TOPCONS (<https://topcons.cbr.su.se/>)⁶⁵ for the four divergent Wtf proteins (Wtf7,
844 Wtf11, Wtf14, and Wtf15), and the transmembrane topology described in our
845 previous study for the other 14 proteins⁹. Sequence alignment was performed
846 using the MAFFT web server (<https://mafft.cbrc.jp/alignment/server/>) with the

847 L-INS-i algorithm^{66,67}.

848 For the sequence alignment shown in Supplementary Fig. 7a, the long isoform
849 protein sequences of 30 intact *wtf* genes from *S. osmophilus*⁴⁹, 48 intact *wtf*
850 genes from *S. octosporus*⁴, and 2 intact *wtf* genes from *S. cryophilus*⁴ were
851 analyzed using MAFFT. The transmembrane helices of these Wtf proteins were
852 predicted using PolyPhobius (<http://phobius.sbc.su.se/poly.html>)⁶⁸. Only the
853 N-terminal cytosolic tails were shown in Supplementary Fig. 7a. The sequence
854 alignment shown in Supplementary Fig. 7b was based on a published
855 alignment¹⁰.

856

857 **Data availability**

858 The authors declare that all data supporting the findings of this study are available
859 within the paper and its supplementary information files. Source data are provided
860 in this paper.

861

862

863 **References**

- 864 1. Núñez, M. A. B., Nuckolls, N. L. & Zanders, S. E. (2018). Genetic villains: killer meiotic drivers. *Trends Genet.* **34**, 424-433, 10.1016/j.tig.2018.02.003.
- 865 2. Burga, A., Ben-David, E. & Kruglyak, L. (2020). Toxin-antidote elements across the tree of life. *Annu. Rev. Genet.* **54**, 387-415, 10.1146/annurev-genet-112618-043659.
- 866 3. Nuckolls, N. L., Nidamangala Srinivasa, A., Mok, A. C., Helston, R. M., Bravo Núñez, M. A., Lange, J., Gallagher, T. J., Seidel, C. W. & Zanders, S. E. (2022). *S. pombe* *wtf* drivers use dual transcriptional regulation and selective protein exclusion from spores to cause meiotic drive. *PLoS Genet.* **18**, e1009847, 10.1371/journal.pgen.1009847.
- 867 4. De Carvalho, M., Jia, G.-S., Srinivasa, A. N., Billmyre, R. B., Xu, Y.-H., Lange, J. J., Sabbarini, I. M., Du, L.-L. & Zanders, S. E. (2022). The *wtf* meiotic driver gene family has unexpectedly persisted for over 100 million years. *eLife* **11**, e81149, 10.7554/eLife.81149.
- 868 5. Núñez, M. A. B., Sabbarini, I. M., Eickbush, M. T., Liang, Y., Lange, J. J., Kent, A. M. & Zanders, S. E. (2020). Dramatically diverse *Schizosaccharomyces pombe* *wtf* meiotic drivers all display high gamete-killing efficiency. *PLoS Genet.* **16**, e1008350, 10.1371/journal.pgen.1008350.
- 869 6. Nuckolls, N. L., Mok, A. C., Lange, J. J., Yi, K., Kandola, T. S., Hunn, A. M., McCroskey, S., Snyder, J.

879 L., Núñez, M. A. B. & McClain, M. (2020). The wtf4 meiotic driver utilizes controlled protein
880 aggregation to generate selective cell death. *eLife* **9**, e55694, 10.7554/eLife.55694.

881 7. Núñez, M. A. B., Lange, J. J. & Zanders, S. E. (2018). A suppressor of a wtf poison-antidote meiotic
882 driver acts via mimicry of the driver's antidote. *PLoS Genet.* **14**, e1007836,
883 10.1371/journal.pgen.1007836.

884 8. Nuckolls, N. L., Núñez, M. A. B., Eickbush, M. T., Young, J. M., Lange, J. J., Jonathan, S. Y., Smith, G.
885 R., Jaspersen, S. L., Malik, H. S. & Zanders, S. E. (2017). wtf genes are prolific dual poison-antidote
886 meiotic drivers. *eLife* **6**, e26033, 10.7554/eLife.26033.

887 9. Hu, W., Jiang, Z.-D., Suo, F., Zheng, J.-X., He, W.-Z. & Du, L.-L. (2017). A large gene family in fission
888 yeast encodes spore killers that subvert Mendel's law. *eLife* **6**, e26057, 10.7554/eLife.26057.

889 10. Svedberg, J., Vogan, A. A., Rhoades, N. A., Sarmarajeewa, D., Jacobson, D. J., Lascoux, M.,
890 Hammond, T. M. & Johannesson, H. (2021). An introgressed gene causes meiotic drive in
891 *Neurospora sitophila*. *Proc. Natl. Acad. Sci. U.S.A.* **118**, 10.1073/pnas.2026605118.

892 11. Zanders, S. & Johannesson, H. (2021). Molecular mechanisms and evolutionary consequences of
893 spore killers in ascomycetes. *Microbiol. Mol. Biol. Rev.* **85**, e00016-00021,
894 10.1128/MMBR.00016-21.

895 12. Vogan, A. A., Martinossi-Allibert, I., Ament-Velásquez, S. L., Svedberg, J. & Johannesson, H. (2022).
896 The spore killers, fungal meiotic driver elements. *Mycologia* **114**, 1-23,
897 10.1080/00275514.2021.1994815.

898 13. Saupe, S. J. & Johannesson, H. (2022). On the Mechanistic Basis of Killer Meiotic Drive in Fungi.
899 *Annu. Rev. Microbiol.* **76**, 305-323, 10.1146/annurev-micro-041320-113730.

900 14. Grognat, P., Lalucque, H., Malagnac, F. & Silar, P. (2014). Genes that bias Mendelian segregation.
901 *PLoS Genet.* **10**, e1004387, 10.1371/journal.pgen.1004387.

902 15. Vogan, A. A., Ament-Velásquez, S. L., Granger-Farbos, A., Svedberg, J., Bastiaans, E., Debets, A. J.,
903 Coustou, V., Yvanne, H., Clavé, C. & Saupe, S. J. (2019). Combinations of Spok genes create
904 multiple meiotic drivers in *Podospora*. *eLife* **8**, e46454, 10.7554/eLife.46454.

905 16. Bowen, N. J., Jordan, I. K., Epstein, J. A., Wood, V. & Levin, H. L. (2003). Retrotransposons and
906 their recognition of pol II promoters: a comprehensive survey of the transposable elements from
907 the complete genome sequence of *Schizosaccharomyces pombe*. *Genome Res.* **13**, 1984-1997,
908 10.1101/gr.1191603.

909 17. Basi, G., Schmid, E. & Maundrell, K. (1993). TATA box mutations in the *Schizosaccharomyces*
910 *pombe* *nmt1* promoter affect transcription efficiency but not the transcription start point or
911 thiamine repressibility. *Gene* **123**, 131-136, 10.1016/0378-1119(93)90552-e.

912 18. Zilio, N., Wehrkamp-Richter, S. & Boddy, M. N. (2012). A new versatile system for rapid control of
913 gene expression in the fission yeast *Schizosaccharomyces pombe*. *Yeast* **29**, 425-434,
914 10.1002/yea.2920.

915 19. Chen, Y.-h., Wang, G.-y., Hao, H.-c., Chao, C.-j., Wang, Y. & Jin, Q.-w. (2017). Facile manipulation of
916 protein localization in fission yeast through binding of GFP-binding protein to GFP. *J. Cell Sci.* **130**,
917 1003-1015, 10.1242/jcs.198457.

918 20. Rothbauer, U., Zolghadr, K., Tillib, S., Nowak, D., Schermelleh, L., Gahl, A., Backmann, N., Conrath,
919 K., Muyldermans, S. & Cardoso, M. C. (2006). Targeting and tracing antigens in live cells with

920 fluorescent nanobodies. *Nat. Methods* **3**, 887-889, 10.1038/nmeth953.

921 21. Nefsky, B. & Beach, D. (1996). Pub1 acts as an E6-AP-like protein ubiquitin ligase in the
922 degradation of cdc25. *EMBO J.* **15**, 1301-1312.

923 22. Tamai, K. K. & Shimoda, C. (2002). The novel HECT-type ubiquitin-protein ligase Pub2p shares
924 partially overlapping function with Pub1p in *Schizosaccharomyces pombe*. *J. Cell Sci.* **115**,
925 1847-1857, 10.1242/jcs.115.9.1847.

926 23. Carpy, A., Krug, K., Graf, S., Koch, A., Popic, S., Hauf, S. & Macek, B. (2014). Absolute proteome
927 and phosphoproteome dynamics during the cell cycle of *Schizosaccharomyces pombe* (Fission
928 Yeast). *Mol. Cell Proteomics* **13**, 1925-1936, 10.1074/mcp.M113.035824.

929 24. Marguerat, S., Schmidt, A., Codlin, S., Chen, W., Aebersold, R. & Bähler, J. (2012). Quantitative
930 analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. *Cell*
931 **151**, 671-683, 10.1016/j.cell.2012.09.019.

932 25. Maspero, E., Valentini, E., Mari, S., Cecatiello, V., Soffientini, P., Pasqualato, S. & Polo, S. (2013).
933 Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. *Nat.*
934 *Struct. Mol. Biol.* **20**, 696-701, 10.1038/nsmb.2566.

935 26. Staub, O., Dho, S., Henry, P., Correa, J., Ishikawa, T., McGlade, J. & Rotin, D. (1996). WW domains
936 of Nedd4 bind to the proline-rich PY motifs in the epithelial Na⁺ channel deleted in Liddle's
937 syndrome. *EMBO J.* **15**, 2371-2380.

938 27. Gupta, R., Kus, B., Fladd, C., Wasmuth, J., Tonikian, R., Sidhu, S., Krogan, N. J., Parkinson, J. & Rotin,
939 D. (2007). Ubiquitination screen using protein microarrays for comprehensive identification of
940 Rsp5 substrates in yeast. *Mol. Syst. Biol.* **3**, 116, 10.1038/msb4100159.

941 28. Persaud, A., Alberts, P., Amsen, E. M., Xiong, X., Wasmuth, J., Saadon, Z., Fladd, C., Parkinson, J. &
942 Rotin, D. (2009). Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2
943 using proteome arrays. *Mol. Syst. Biol.* **5**, 333, 10.1038/msb.2009.85.

944 29. Kasanov, J., Pirozzi, G., Uveges, A. J. & Kay, B. K. (2001). Characterizing Class I WW domains
945 defines key specificity determinants and generates mutant domains with novel specificities. *Chem.*
946 *Biol.* **8**, 231-241, 10.1016/s1074-5521(01)00005-9.

947 30. Saeki, Y., Isono, E. & Toh-e, A. (2005). Preparation of ubiquitinated substrates by the PY
948 motif-insertion method for monitoring 26S proteasome activity. *Methods Enzymol.* **399**, 215-227,
949 10.1016/S0076-6879(05)99014-9.

950 31. Henry, P. C., Kanelis, V., O'Brien, M. C., Kim, B., Gautschi, I., Forman-Kay, J., Schild, L. & Rotin, D.
951 (2003). Affinity and specificity of interactions between Nedd4 isoforms and the epithelial Na⁺
952 channel. *J. Biol. Chem.* **278**, 20019-20028, 10.1074/jbc.M211153200.

953 32. Kanelis, V., Bruce, M. C., Skrynnikov, N. R., Rotin, D. & Forman-Kay, J. D. (2006). Structural
954 determinants for high-affinity binding in a Nedd4 WW3* domain-Comm PY motif complex.
955 *Structure* **14**, 543-553, 10.1016/j.str.2005.11.018.

956 33. Marín, I. (2018). Origin and evolution of fungal HECT ubiquitin ligases. *Sci. Rep.* **8**, 6419,
957 10.1038/s41598-018-24914-x.

958 34. Kattenhorn, L. M., Korbel, G. A., Kessler, B. M., Spooner, E. & Ploegh, H. L. (2005). A
959 deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is
960 conserved across the family Herpesviridae. *Mol. Cell* **19**, 547-557, 10.1016/j.molcel.2005.07.003.

961 35. Stringer, D. K. & Piper, R. C. (2011). A single ubiquitin is sufficient for cargo protein entry into
962 MVBs in the absence of ESCRT ubiquitination. *J. Cell Biol.* **192**, 229-242, 10.1083/jcb.201008121.

963 36. Liu, X.-M., Sun, L.-L., Hu, W., Ding, Y.-H., Dong, M.-Q. & Du, L.-L. (2015). ESCRTs cooperate with a
964 selective autophagy receptor to mediate vacuolar targeting of soluble cargos. *Mol. Cell* **59**,
965 1035-1042, 10.1016/j.molcel.2015.07.034.

966 37. Davidson, R., Laporte, D. & Wu, J.-Q. (2015). Regulation of Rho-GEF Rgf3 by the arrestin Art1 in
967 fission yeast cytokinesis. *Mol. Biol. Cell* **26**, 453-466, 10.1091/mbc.E14-07-1252.

968 38. Cheong, H. & Klionsky, D. J. (2008). Biochemical methods to monitor autophagy-related processes
969 in yeast. *Methods Enzymol.* **451**, 1-26, 10.1016/S0076-6879(08)03201-1.

970 39. Mukaiyama, H., Iwaki, T., Idiris, A. & Takegawa, K. (2011). Processing and maturation of
971 carboxypeptidase Y and alkaline phosphatase in *Schizosaccharomyces pombe*. *Appl. Microbiol.*
972 *Biotechnol.* **90**, 203-213, 10.1007/s00253-010-3031-3.

973 40. Feyder, S., De Craene, J.-O., Bär, S., Bertazzi, D. L. & Friant, S. (2015). Membrane trafficking in the
974 yeast *Saccharomyces cerevisiae* model. *Int. J. Mol. Sci.* **16**, 1509-1525, 10.3390/ijms16011509.

975 41. Raiborg, C. & Stenmark, H. (2009). The ESCRT machinery in endosomal sorting of ubiquitylated
976 membrane proteins. *Nature* **458**, 445-452, 10.1038/nature07961.

977 42. Katzmann, D. J., Babst, M. & Emr, S. D. (2001). Ubiquitin-dependent sorting into the
978 multivesicular body pathway requires the function of a conserved endosomal protein sorting
979 complex, ESCRT-I. *Cell* **106**, 145-155, 10.1016/s0092-8674(01)00434-2.

980 43. Tagwerker, C., Flick, K., Cui, M., Guerrero, C., Dou, Y., Auer, B., Baldi, P., Huang, L. & Kaiser, P.
981 (2006). A tandem affinity tag for two-step purification under fully denaturing conditions:
982 application in ubiquitin profiling and protein complex identification combined with in
983 vivocross-linking. *Mol. Cell Proteomics* **5**, 737-748, 10.1074/mcp.M500368-MCP200.

984 44. Day, K. J., Casler, J. C. & Glick, B. S. (2018). Budding yeast has a minimal endomembrane system.
985 *Dev. Cell* **44**, 56-72. e54, 10.1016/j.devcel.2017.12.014.

986 45. Connerly, P. L., Esaki, M., Montegna, E. A., Strongin, D. E., Levi, S., Soderholm, J. & Glick, B. S.
987 (2005). Sec16 is a determinant of transitional ER organization. *Curr. Biol.* **15**, 1439-1447,
988 10.1016/j.cub.2005.06.065.

989 46. Pelham, H. R. (2004). Membrane traffic: GGAs sort ubiquitin. *Curr. Biol.* **14**, R357-R359,
990 10.1016/j.cub.2004.04.027.

991 47. Yanguas, F., Moscoso-Romero, E. & Valdivieso, M.-H. (2019). Ent3 and GGA adaptors facilitate
992 diverse anterograde and retrograde trafficking events to and from the prevacuolar endosome. *Sci.*
993 *Rep.* **9**, 1-17, 10.1038/s41598-019-47035-5.

994 48. Brysch-Herzberg, M., Jia, G. S., Sipiczki, M., Seidel, M., Li, W., Assali, I. & Du, L. L. (2023).
995 *Schizosaccharomyces lindneri* sp. nov., a fission yeast occurring in honey. *Yeast*,
996 10.1002/yea.3857.

997 49. Jia, G. S., Zhang, W. C., Liang, Y., Liu, X. H., Rhind, N., Pidoux, A., Brysch-Herzberg, M. & Du, L. L.
998 (2023). A high-quality reference genome for the fission yeast *Schizosaccharomyces osmophilus*.
999 *G3 (Bethesda, Md.)*, 10.1093/g3journal/jkad028.

1000 50. Seidel, H. S., Rockman, M. V. & Kruglyak, L. (2008). Widespread genetic incompatibility in *C.*
1001 *elegans* maintained by balancing selection. *Science* **319**, 589-594, 10.1126/science.1151107.

1002 51. Forsburg, S. L. & Rhind, N. (2006). Basic methods for fission yeast. *Yeast* **23**, 173-183, 10.1002/yea.1347.

1003 52. Petersen, J. & Russell, P. (2016). Growth and the environment of *Schizosaccharomyces pombe*. *Cold Spring Harb. Protoc.* **2016**, pdb. top079764, 10.1101/pdb.top079764.

1004 53. Matsuyama, A., Shirai, A., Yashiroda, Y., Kamata, A., Horinouchi, S. & Yoshida, M. (2004). pDUAL, a 1005 multipurpose, multicopy vector capable of chromosomal integration in fission yeast. *Yeast* **21**, 1006 1289-1305, 10.1002/yea.1181.

1007 54. Wei, Y., Wang, H.-T., Zhai, Y., Russell, P. & Du, L.-L. (2014). Mdb1, a fission yeast homolog of 1008 human MDC1, modulates DNA damage response and mitotic spindle function. *PLoS One* **9**, 1009 e97028, 10.1371/journal.pone.0097028.

1010 55. Belén Moreno, M., Durán, A. & Carlos Ribas, J. (2000). A family of multifunctional 1011 thiamine-repressible expression vectors for fission yeast. *Yeast* **16**, 861-872, 10.1002/1097-0061(20000630)16:9<861::AID-YEA577>3.0.CO;2-9.

1012 56. Vještica, A., Marek, M., Nkosi, P. J., Merlini, L., Liu, G., Bérard, M., Billault-Chaumartin, I. & Martin, 1013 S. G. (2020). A toolbox of stable integration vectors in the fission yeast *Schizosaccharomyces* 1014 *pombe*. *J. Cell Sci.* **133**, jcs240754, 10.1242/jcs.240754.

1015 57. Zhang, Z.-B., Wang, Q.-Y., Ke, Y.-X., Liu, S.-Y., Ju, J.-Q., Lim, W. A., Tang, C. & Wei, P. (2017). Design 1016 of tunable oscillatory dynamics in a synthetic NF-κB signaling circuit. *Cell Syst.* **5**, 460-470. e465, 10.1016/j.cels.2017.09.016.

1017 58. Wei, Y., Diao, L.-X., Lu, S., Wang, H.-T., Suo, F., Dong, M.-Q. & Du, L.-L. (2017). SUMO-targeted 1018 DNA translocase Rrp2 protects the genome from Top2-induced DNA damage. *Mol. Cell* **66**, 1019 581-596. e586, 10.1016/j.molcel.2017.04.017.

1020 59. Egel, R., Willer, M., Kjærulff, S., Davey, J. & Nielsen, O. (1994). Assessment of pheromone 1021 production and response in fission yeast by a halo test of induced sporulation. *Yeast* **10**, 1022 1347-1354, 10.1002/yea.320101012.

1023 60. Ulrich, H. D. & Davies, A. A. (2009). In vivo detection and characterization of sumoylation targets 1024 in *Saccharomyces cerevisiae*. *Methods Mol. Biol.*, 81-103, 10.1007/978-1-59745-566-4_6.

1025 61. Chi, H., Liu, C., Yang, H., Zeng, W.-F., Wu, L., Zhou, W.-J., Wang, R.-M., Niu, X.-N., Ding, Y.-H. & 1026 Zhang, Y. (2018). Comprehensive identification of peptides in tandem mass spectra using an 1027 efficient open search engine. *Nat. Biotechnol.* **36**, 1059-1061, 10.1038/nbt.4236.

1028 62. Golnik, R., Lehmann, A., Kloetzel, P.-M. & Ebstein, F. (2016). Major histocompatibility complex 1029 (MHC) class I processing of the NY-ESO-1 antigen is regulated by Rpn10 and Rpn13 proteins and 1030 immunoproteasomes following non-lysine ubiquitination. *J. Biol. Chem.* **291**, 8805-8815, 10.1074/jbc.M115.705178.

1031 63. Okita, N., Higami, Y., Fukai, F., Kobayashi, M., Mitarai, M., Sekiya, T. & Sasaki, T. (2017). Modified 1032 Western blotting for insulin and other diabetes-associated peptide hormones. *Sci. Rep.* **7**, 1-11, 10.1038/s41598-017-04456-4.

1033 64. Kaiser, C. A. & Schekman, R. (1990). Distinct sets of SEC genes govern transport vesicle formation 1034 and fusion early in the secretory pathway. *Cell* **61**, 723-733, 10.1016/0092-8674(90)90483-u.

1035 65. Tsirigos, K. D., Peters, C., Shu, N., Käll, L. & Elofsson, A. (2015). The TOPCONS web server for 1036 consensus prediction of membrane protein topology and signal peptides. *Nucleic Acids Res.* **43**,

1037 1038 1039 1040 1041 1042

1043 W401-W407, 10.1093/nar/gkv485.

1044 66. Katoh, K., Misawa, K., Kuma, K. i. & Miyata, T. (2002). MAFFT: a novel method for rapid multiple
1045 sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* **30**, 3059-3066,
1046 10.1093/nar/gkf436.

1047 67. Katoh, K. & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7:
1048 improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772-780,
1049 10.1093/molbev/mst010.

1050 68. Käll, L., Krogh, A. & Sonnhammer, E. L. (2005). An HMM posterior decoder for sequence feature
1051 prediction that includes homology information. *Bioinformatics* **21**, i251-i257,
1052 10.1093/bioinformatics/bti1014.

1053 69. Omasits, U., Ahrens, C. H., Müller, S. & Wollscheid, B. (2014). Protter: interactive protein feature
1054 visualization and integration with experimental proteomic data. *Bioinformatics* **30**, 884-886,
1055 10.1093/bioinformatics/btt607.

1056

1057

1058 Figure legends

1059

1060 Fig. 1. Both the poison product and the antidote product of *cw9* are active in
1061 vegetative *S. pombe* cells.

1062 **a** Diagrams depicting the two isoforms encoded by *cw9*. For the diagram of the
1063 genomic DNA (top), coding exons are denoted by boxes and introns are denoted
1064 by thick grey lines. Transcriptional start sites are shown as bent arrows. Start
1065 codons are denoted by the letter M. For the diagram of the protein products
1066 (bottom), regions corresponding to the exons are indicated by boxes and the
1067 numbering of amino acids is based on the sequence of Cw9a.

1068 **b** Tetrad analysis showed that a *Cw9t-only* allele inserted at the *ars1* locus on
1069 chromosome I killed nearly all spores in a hemizygous cross and a *Cw9a-only*
1070 allele inserted at the *leu1* locus on chromosome II neutralized the spore killing
1071 effect of *Cw9t-only*. The four spores of each tetrad are labeled A, B, C, and D.

1072 **c** Cw9t expressed in vegetative *S. pombe* cells from inducible promoters caused
1073 toxicity.

1074 **d** Expressing Cw9t in vegetative *S. pombe* cells from an inducible promoter
1075 caused vacuole enlargement. Zhf1 is a vacuole membrane marker. Cpy1 is a
1076 vacuole lumen marker. DIC, differential interference contrast. Bar, 5 μ m.

1077 **e** Cw9a expressed in vegetative *S. pombe* cells from inducible promoters
1078 neutralized the toxicity of Cw9t in a dose-dependent manner.

1079

1080 Fig. 2. The antidote-specific region of Cw9a functions as a binding module for the
1081 Rsp5/NEDD4 family ubiquitin ligases Pub1 and Pub3.

1082 **a** A diagram depicting the TOPCONS-predicted membrane topology of Cw9a
1083 (see Supplementary Fig. 1g). The antidote-specific region is indicated by the
1084 bracket.

1085 **b** The antidote-specific region of Cw9a, Cw9a(1-52), when tethered to Cw9t
1086 through the interaction between GFP and the GFP-binding protein (GBP),
1087 neutralized the toxicity of Cw9t. GFP-Cw9t was expressed from the *P81nmt1*
1088 promoter. GBP, Cw9a(1-52), and Cw9a(1-52)-GBP were expressed from the
1089 *P41nmt1* promoter.

1090 **c** Pub1 co-purified with GFP-Cw9a(1-52). GFP-Cw9a(1-52) was purified using
1091 GFP-Trap beads. Co-purified proteins were identified by mass spectrometry.

1092 **d** GST pulldown assay showed that Pub1 and Pub3 but not Pub2 can strongly
1093 interact with Cw9a(1-52). The lysate of *S. pombe* cells expressing
1094 3xFLAG-tagged Pub1, Pub2, or Pub3 was mixed with the lysate of *E. coli* cells

1095 expressing GST or GST-tagged Cw9a(1-52) and pulldown was performed using
1096 glutathione beads.

1097 **e** Artificial tethering of Pub1 to Cw9t neutralized the toxicity of Cw9t. GFP-Cw9t
1098 was expressed from the *P81nmt1* promoter. GBP-Pub1 was expressed from the
1099 *P41nmt1* promoter. Pub1-C735S is a catalytically inactive mutant of Pub1.

1100 **f** Tethering Pub1 or Pub3 to Cw9t confers a strong toxicity neutralization, whereas
1101 tethering Pub2 confers a weak toxicity neutralization. GFP-Cw9t was expressed
1102 from the *P81nmt1* promoter. GBP-tagged Pub proteins were expressed from the
1103 *P41nmt1* promoter.

1104

1105 Fig. 3. PY motifs in the N-terminal cytosolic tail of Cw9a mediate Pub1 binding
1106 and prevent Cw9a from becoming toxic.

1107 **a** Multiple sequence alignment of the N-terminal cytosolic tails of the antidote
1108 products of 18 *wtf* genes. Three PY motifs in Cw9a are highlighted.

1109 **b** GST pulldown assay showed that PY motifs in the N-terminal cytosolic tail of
1110 Cw9a are redundantly required for Pub1 binding. Lysates of *E. coli* cells
1111 expressing GST-tagged Cw9a N-terminal fragments were mixed with
1112 recombinant 6xHis-HA-Pub1-ΔC2 and pulldown was performed using glutathione
1113 beads. N denotes Cw9a(1-104). Asterisk denotes the Y-to-A mutation in the PY
1114 motif. Based on the observed molecular weights, the top band in lanes containing
1115 multiple bands probably corresponds to intact GST fusion proteins, while the
1116 lower bands are likely the result of proteolytic cleavage events that occurred
1117 during the preparation of the recombinant proteins.

1118 **c** PY motif mutations strongly diminishing Pub1 binding rendered Cw9a toxic to
1119 vegetative cells.

1120 **d** Cw9a-3PY* under the control of the native promoter caused self-killing during
1121 sexual reproduction.

1122 **e** Fusing an artificial PY motif (artPY) to Cw9t abolished the toxicity of Cw9t and
1123 converted Cw9t to an antidote.

1124

1125 Fig. 4. PY motif-dependent ubiquitination of the N-terminal cytosolic tail of Cw9a
1126 renders Cw9a non-toxic.

1127 **a** Pub1-catalyzed in vitro ubiquitination of Cw9a(1-104). All components of the in
1128 vitro ubiquitination reactions were purified from *E. coli*. Immunoblotting was used
1129 to detect Cw9a(1-104), which was fused to a lysine-free 8xmyc* tag that can be
1130 recognized by the myc antibody⁶².

1131 **b** PY motif mutations diminished the in vitro ubiquitination of Cw9a(1-104).

1132 **c** Tethering a de-ubiquitinating enzyme (DUB) UL36 to Cw9a through the
1133 mECitrine-GBP interaction rendered Cw9a toxic. UL36-C40S (DUB*) is a
1134 catalytically inactive mutant of UL36.

1135 **d** Diagram highlighting lysines in the cytosolic regions of Cw9a. Blue circles
1136 denote the 16 lysines residing in the cytosolic tails or loops, including K216, which
1137 is predicted to localize at the cytosolic edge of a transmembrane helix. Red circles
1138 denote the PY motifs. This diagram was generated using Protter⁶⁹.

1139 **e** Mutating all 16 lysines in the cytosolic regions of Cw9a to arginines (16R)
1140 rendered Cw9a toxic to vegetative cells. Expression was under the control of the
1141 *P41nmt1* promoter.

1142 **f** Mutating all 7 lysines in the N-terminal cytosolic tail of Cw9a (7R) rendered
1143 Cw9a toxic, whereas mutating two subsets of the 7 lysines (5R and 2R) did not
1144 cause toxicity. Expression was under the control of the *P41nmt1* promoter.

1145 **g** The 7 lysines in the N-terminal cytosolic tail of Cw9a are redundantly required
1146 for preventing the toxicity. Mutated residues in the 7R mutant were individually
1147 reverted to lysine. Expression was under the control of the *P41nmt1* promoter.

1148 **h** All seven lysines in the N-terminal cytosolic tail of Cw9a can be ubiquitinated in
1149 vitro by Pub1 and Pub3. In vitro ubiquitination of GST-Cw9a(1-104) was
1150 performed using either Pub1 or Pub3 as E3 and ubiquitination sites were
1151 identified by mass spectrometry.

1152

1153 Fig. 5. PY motif-dependent ubiquitination of Cw9a promotes its trafficking from the
1154 TGN to the endosome and from the endosome to the vacuole.

1155 **a** Cw9t localized to cytoplasmic puncta and Cw9a localized to the vacuole lumen
1156 in vegetative *S. pombe* cells. Bar, 5 μ m.

1157 **b** mECitrine-Cw9a was processed to free mECitrine in wild-type cells but not in
1158 cells lacking vacuolar proteases Isp6 and Psp3. Post-blotting staining of the
1159 PVDF membrane using Coomassie brilliant blue (CBB) served as the load control.

1160 **c** Cw9t exhibited a vacuole lumen localization when co-expressed with Cw9a.
1161 Internally tagged Cw9t was expressed from the *P81nmt1* promoter. N-terminally
1162 tagged Cw9a was expressed from the *P41nmt1* promoter. Bar, 5 μ m.

1163 **d** Cw9a coimmunoprecipitated with Cw9t. Cw9t was internally tagged and Cw9a
1164 was N-terminally tagged. The *isp6 Δ psp3 Δ* background was used to ameliorate
1165 degradation.

1166 **e** PY mutations that rendered Cw9a toxic changed its localization to a Cw9t-like
1167 cytoplasmic punctate pattern. Bar, 5 μ m.

1168 **f** Cw9a co-localized with the endosome marker Hse1 in *vps24 Δ* cells. Bar, 5 μ m.

1169 **g** Cw9a co-localized with the endosome marker SPAC15A10.06 in *vps24Δ* cells.
1170 Bar, 5 μ m.

1171 **h** In vivo ubiquitination of Cw9a in the *vps24Δ* background was diminished by PY
1172 mutations. Under a denaturing condition, biotin-tagged ubiquitin was precipitated
1173 using streptavidin beads and Cw9a in the precipitates was detected by
1174 immunoblotting.

1175 **i** Cw9a remained non-toxic in *vps24Δ* cells. *vps24Δ* itself causes a slight growth
1176 defect. Cw9a expression was under the control of the *P41nmt1* promoter.

1177 **j** Cw9a neutralized the toxicity of Cw9t in the *vps24Δ* background. Cw9a
1178 expression was under the control of the *P41nmt1* promoter and Cw9t expression
1179 was under the control of the *P81nmt1* promoter.

1180 **k** Time-lapse imaging showed that Cw9t exhibited transient co-localization with
1181 the TGN marker Sec72. Yellow arrowheads indicate overlapping signals of Cw9t
1182 and Sec72. Internally tagged Cw9t was expressed from the *P81nmt1* promoter.
1183 Bar, 5 μ m.

1184

1185 Fig. 6. Antidote products of other *wtf* genes are kept non-toxic by ubiquitination.

1186 **a** The antidote products of 10 *wtf* genes of the *S. pombe* reference genome were
1187 rendered toxic by artificial DUB tethering. Strains expressing a GFP-fused Wtf
1188 protein from the *P41nmt1* promoter were crossed to a strain expressing
1189 GBP-DUB or GBP-DUB* from the *P41nmt1* promoter. Mating and sporulation
1190 were performed on thiamine-containing media and tetrad dissection was
1191 performed on thiamine-free media. Inviable spores whose genotype can be
1192 inferred assuming 2:2 segregation are indicated by red symbols.

1193 **b** The antidote products of four *S. octosporus* *wtf* genes were rendered toxic by
1194 artificial DUB tethering. Experiments were performed as in **a**.

1195 **c** A model of the role of PY motif-dependent ubiquitination in determining whether
1196 a Wtf protein is a poison or an antidote. PY motif-dependent ubiquitination diverts
1197 Wtf proteins from the TGN to the endosome, prevents toxicity, and confers
1198 antidote activities. Lack of ubiquitination results in the accumulation of Wtf
1199 proteins at the TGN and possibly other additional locations, and allows the
1200 manifestation of the toxicity.

1201

1202 Supplementary Figure 1. The toxicity of Cw9t and the detoxification activity of
1203 Cw9a.

1204 **a** Cw9t expressed from the *PtetO7* promoter caused toxicity in vegetative *S.*
1205 *pombe* cells.

1206 **b** Cw9t expressed from the *PtetO7* promoter caused vacuole enlargement in
1207 vegetative *S. pombe* cells. DIC, differential interference contrast. Bar, 5 μ m.

1208 **c** Electron microscopy images of control cells containing an empty vector and
1209 cells expressing Cw9t from the *PtetO7* promoter. N, nucleus; V, vacuole. Bar, 2
1210 μ m.

1211 **d** Cw9a neutralized the toxicity of Cw9t expressed from the *P81nmt1* promoter.

1212 **e** Cw9t was toxic to vegetative *S. cerevisiae* cells. *pGAL1* is a galactose-inducible
1213 promoter.

1214 **f** Cw9a neutralized the toxicity of Cw9t in a dose-dependent manner in *S.*
1215 *cerevisiae*. *pTETO7* promoter is a doxycycline (DOX)-inducible promoter and
1216 *pTEF1*, *pURA3*, and *pCYC1* are three constitutive promoters with different
1217 strengths.

1218 **g** Transmembrane topology of Cw9a was predicted using the TOPCONS web
1219 server (<https://topcons.cbr.su.se/pred/>). TOPCONS is a consensus-based
1220 method integrating the results of five different topology prediction algorithms. The
1221 topology predictions using the individual methods and the consensus prediction of
1222 TOPCONS 2.0 are shown. Inside indicates the cytosolic side of the membrane
1223 and outside indicates the non-cytosolic side of the membrane.

1224 **h** Pub1, Pub2, and Pub3 were coimmunoprecipitated with Cw9a. All proteins were
1225 expressed from the *P41nmt1* promoter.

1226

1227 Supplementary Figure 2. PY motif-mediated ubiquitin ligase binding drives Cw9a
1228 ubiquitination.

1229 **a** GST pulldown assay showed that PY motifs in the N-terminal cytosolic tail of
1230 Cw9a mediate Pub3 binding. Lysates of *E. coli* cells expressing GST-tagged
1231 Cw9a N-terminal fragments were mixed with the lysate of *S. pombe* cells
1232 expressing 3xFLAG-Pub3 and pulldown was performed using glutathione beads.

1233 **b** mECitrine-Cw9a showed no toxicity to vegetative *S. pombe* cells.

1234 **c** Cw9a-3PY* was toxic to vegetative *S. cerevisiae* cells when expressed from the
1235 *pGAL1* promoter.

1236 **d** Mutating PY3 in Cw9t did not affect its toxicity. Expression was under the
1237 control of the *P81nmt1a* promoter, which is an attenuated version of the *P81nmt1*
1238 promoter.

1239 **e** Representative mass spectrometry spectra of ubiquitinated peptides from in
1240 vitro ubiquitinated GST-Cw9a(1-104).

1241

1242 Supplementary Figure 3. Subcellular localizations of Cw9a and Cw9t.

1243 **a** When under the control of the native promoter, internally GFP-tagged Cw9t
1244 exhibited a stronger spore killing than C-terminally and N-terminally tagged Cw9t.
1245 A *ura4⁺* marker linked to the Cw9t coding sequence caused faster growth of the
1246 surviving colonies containing the Cw9t coding sequence.

1247 **b** GFP-tagged Cw9a under the control of the native promoter was able to
1248 neutralize the spore killing activity of Cw9t.

1249 **c** Cw9a localized to the vacuole in spores. Cpy1-CFP is a vacuole lumen marker.
1250 Bar, 5 μ m.

1251 **d** Cw9t localized to cytoplasmic puncta outside of vacuoles in spores. Bar, 5 μ m.

1252 **e** In vegetative cells, mECitrine-tagged Cw9t caused growth inhibition and
1253 mECitrine-tagged Cw9a conferred protection against Cw9t.

1254 **f** Cw9a-3PY* co-localized with Cw9t. Cw9a-3PY* was N-terminally tagged and
1255 Cw9t was internally tagged. Bar, 5 μ m.

1256 **g** The vacuolar targeting of Cw9a was abolished in *sst4 Δ* cells. Cw9a was
1257 N-terminally tagged. Bar, 5 μ m.

1258 **h** The vacuole lumen localization of Cw9a was unaffected in AP-3 deficient cells.
1259 Cw9a was N-terminally tagged. Bar, 5 μ m.

1260

1261 Supplementary Figure 4. ESCRT-mediated trafficking of Cw9a and the trafficking
1262 route of Cw9t.

1263 **a** Cw9t and the *PY1*PY2**, *PY2*PY3**, and *3PY** mutants of Cw9a exhibited
1264 toxicity in the *vps24 Δ* background. Expression was under the control of the
1265 *P81nmt1* promoter.

1266 **b** Cw9t localized to the endosome when co-expressed with Cw9a in the *vps24 Δ*
1267 background. Bar, 5 μ m.

1268 **c** Cw9a-3PY* and Cw9t did not co-localize with the endosome marker Hse1 in
1269 *vps24 Δ* cells. Bar, 5 μ m.

1270 **d** Co-localization analysis of Cw9t with markers of different subcellular organelles.
1271 Internally tagged Cw9t was expressed from the *P81nmt1* promoter.
1272 Anp1-mCherry is a *cis*-Golgi marker. Sec72-mCherry is a TGN marker.
1273 Hse1-mCherry is an endosome marker. Cox4(1-33)-mCherry is a mitochondria
1274 marker. Arrowheads indicate overlapping signals of Cw9t and Sec72. Bar, 5 μ m.

1275 **e** Overexpression of Sar1-T34N changed the localization of Cw9t to the ER.
1276 Sar1-T34N was expressed from the *Pnmt1* promoter. Internally tagged Cw9t was
1277 expressed from the *P81nmt1* promoter. Ost4-mCherry is an ER marker. Bar, 5
1278 μ m.

1279

1280 Supplementary Figure 5. GGA proteins promote the TGN-to-endosome trafficking
1281 of Cw9a.

1282 **a** Cw9a caused a mild growth inhibition in the *gga21Δ gga22Δ* background.

1283 **b** Localization of Cw9a and its *PY2** and *PY1*PY3** mutants in the *gga21Δ*
1284 *gga22Δ* background. Expression was under the control of the *P41nmt1* promoter.
1285 Arrowheads indicate Cw9a signals outside of vacuoles. Bar, 5 μm.

1286 **c** The *PY2** and *PY1*PY3** mutants of Cw9a exhibited strong toxicity in the
1287 *gga21Δ gga22Δ* background.

1288 **d** Cytoplasmic puncta of Cw9a and its *PY2** and *PY1*PY3** mutants partially
1289 co-localized with the TGN marker Sec72 in the *gga21Δ gga22Δ* background.
1290 Expression was under the control of the *P41nmt1* promoter. Arrowheads indicate
1291 signals overlapping with Sec72-mCherry. Bar, 5 μm.

1292 **e** Cw9a-3PY* partially co-localized with the TGN marker Sec72. N-terminally
1293 tagged Cw9a-3PY* was expressed from the *P81nmt1* promoter. Arrowheads
1294 indicate signals overlapping with Sec72-mCherry. Bar, 5 μm.

1295 **f** Mutating all cytosol-facing lysines of Cw9t to arginines did not affect its toxicity or
1296 the neutralization of its toxicity by Cw9a. Expression was under the control of the
1297 *P41nmt1* promoter.

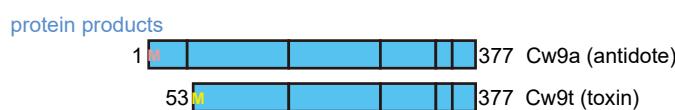
1298

1299 Supplementary Figure 6. The antidote products of certain *S. pombe* *wtf* genes did
1300 not exhibit toxicity when tethered to a DUB.

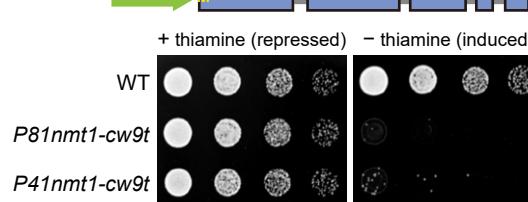
1301 **a** The antidote products of six *S. pombe* *wtf* genes of the *S. pombe* reference
1302 genome were not rendered toxic by artificial DUB tethering. Experiments were
1303 performed as in Fig. 6a.

1304 **b** The sequence alignment of Wtf5 and Wtf10. The positions of the two residues
1305 (Ile76 and Glu91) affecting toxicity are shown.

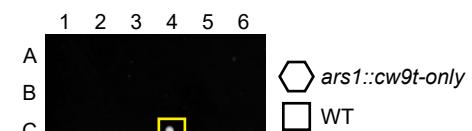
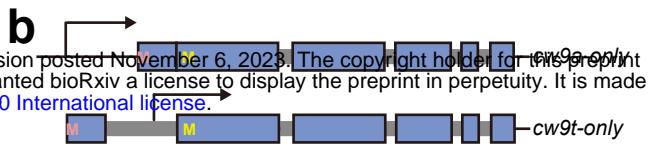
1306 **c** Sequence swapping between Wtf5 and Wtf10. Experiments were performed as
1307 in Fig. 6a.

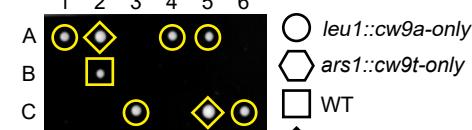

1308 **d** Either an I76K mutation or an E91A mutation rendered Wtf5 toxic in the DUB
1309 tethering analysis. Experiments were performed as in Fig. 6a.

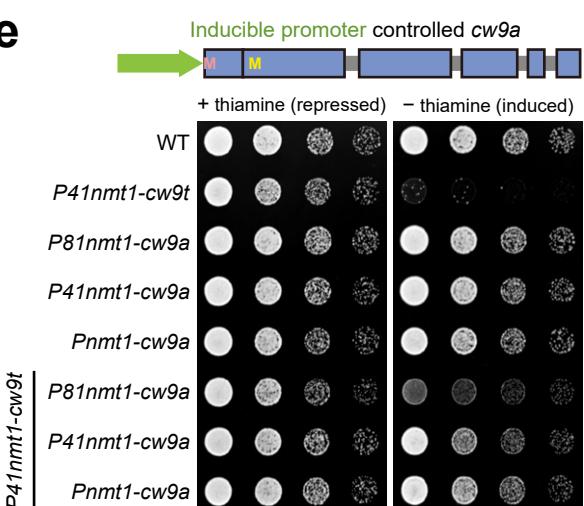
1310

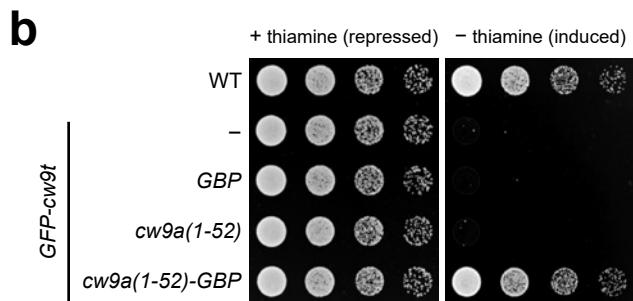
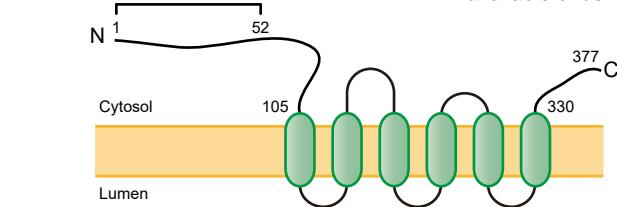

1311 Supplementary Figure 7. PY motifs are present in the protein products of non-*S.*
1312 *pombe* KMDs.

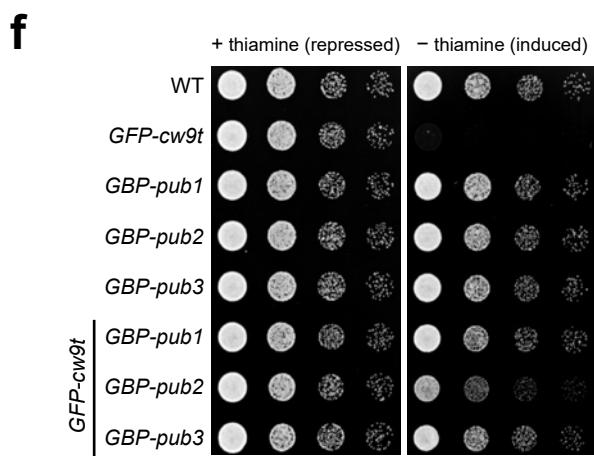
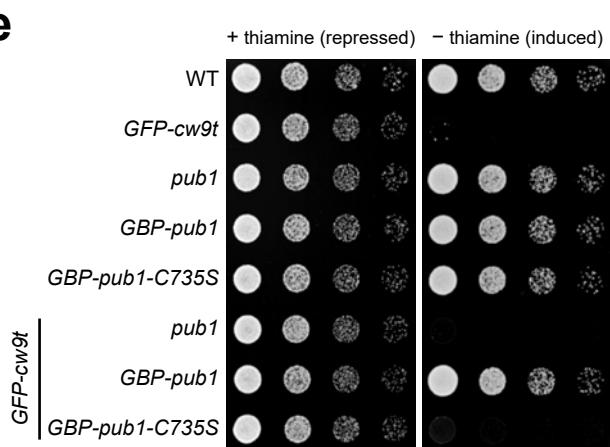
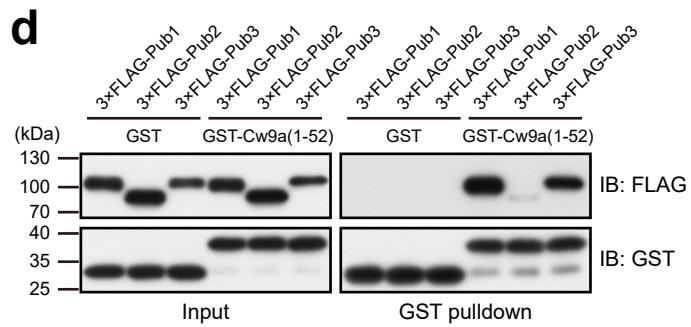
1313 **a** Multiple sequence alignment of the N-terminal cytosolic tails of the antidote
1314 products encoded by *wtf* genes in *S. octosporus*, *S. osmophilus*, and *S.*
1315 *cryophilus*. Proteins sharing the same sequence in the N-terminal cytosolic tails
1316 are shown in a single row. The conserved PY motif is highlighted.

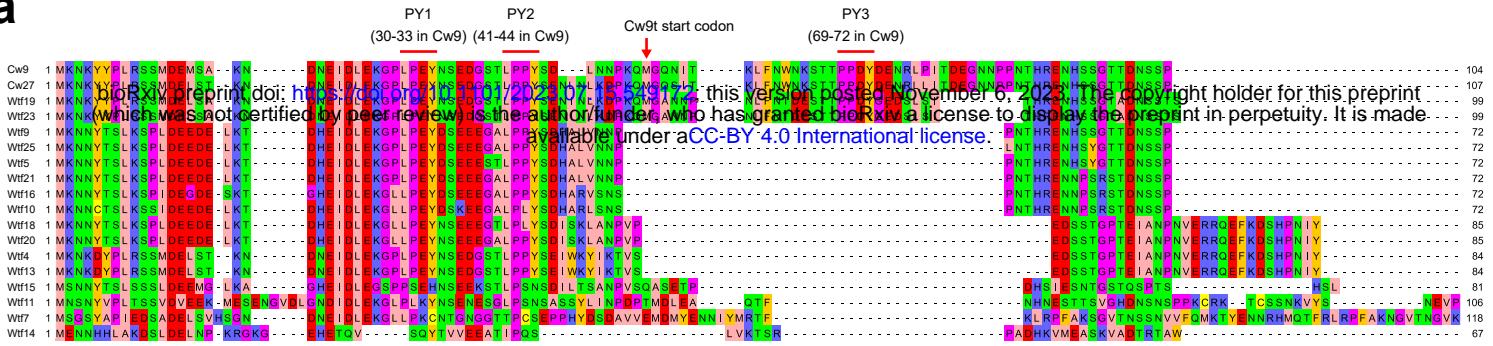
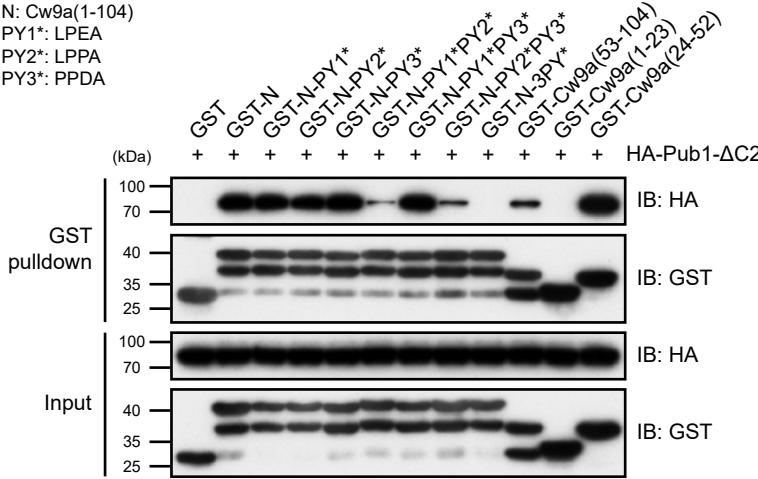
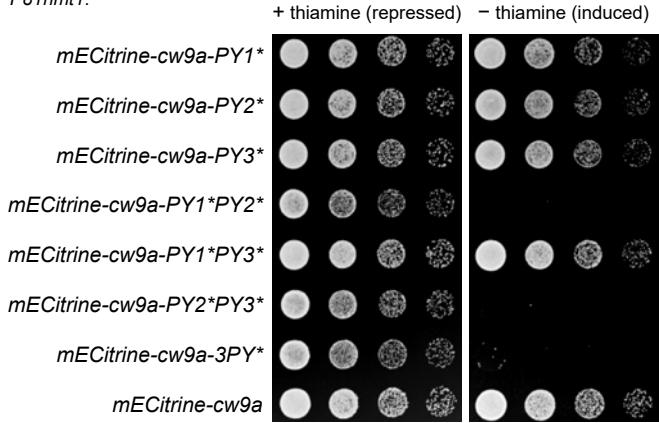
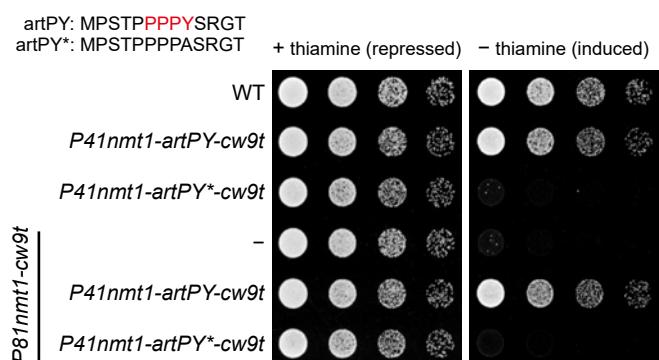
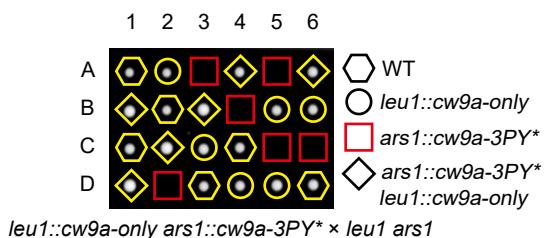


1317 **b** Multiple sequence alignment of the C-terminal region of proteins encoded by
1318 representative *Spk-1* family genes. The conserved PY motif is highlighted.

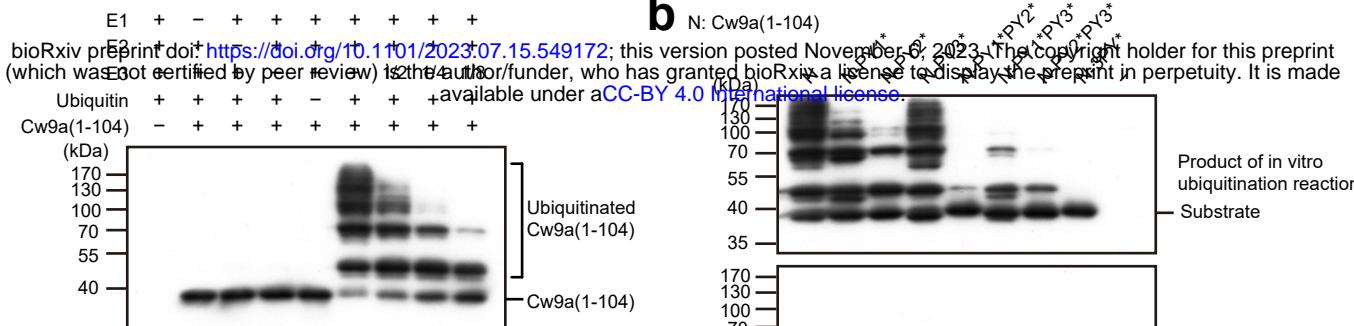
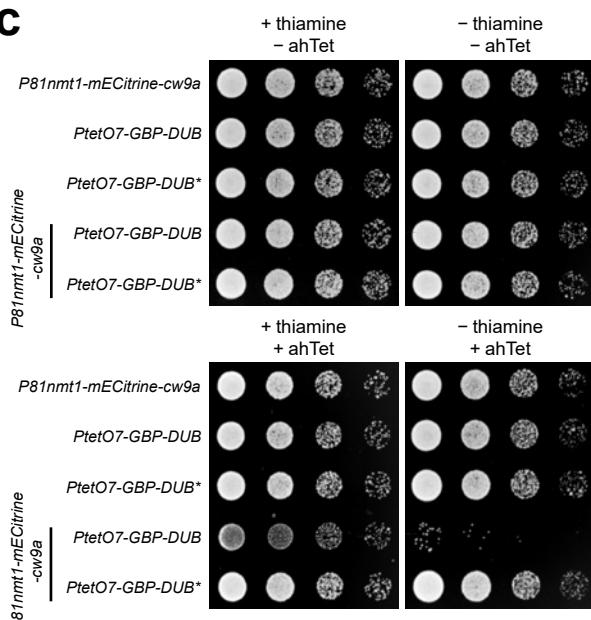
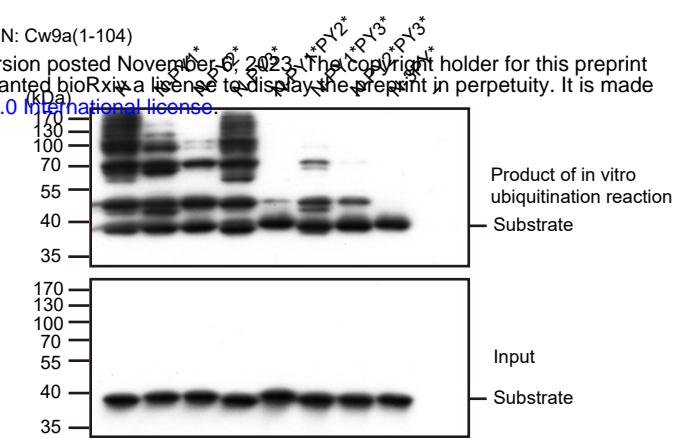
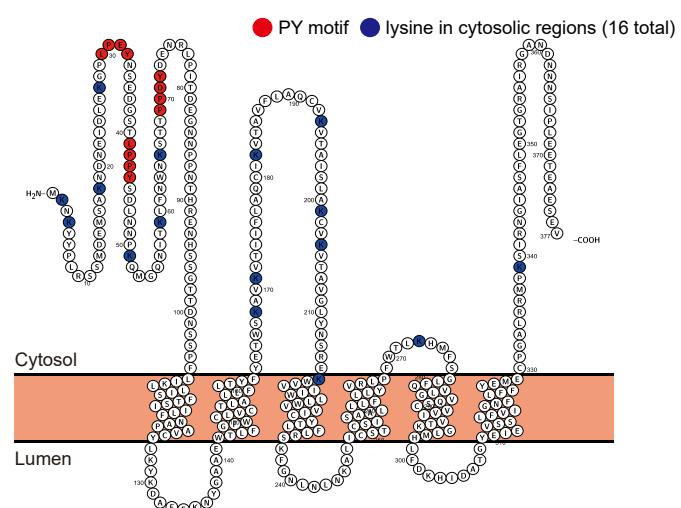
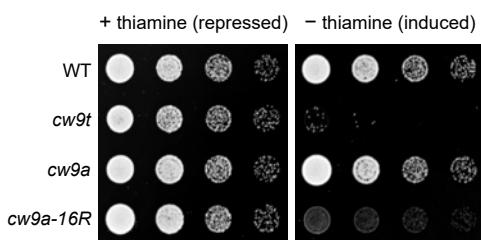

c Inducible promoter controlled *cw9t*

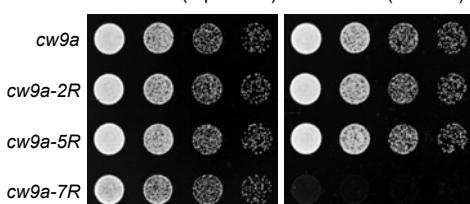
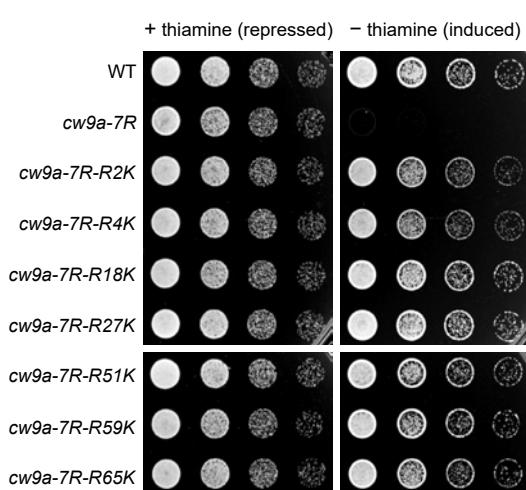

d *P41nmt1-cw9t*



ars1::cw9t-only × WT

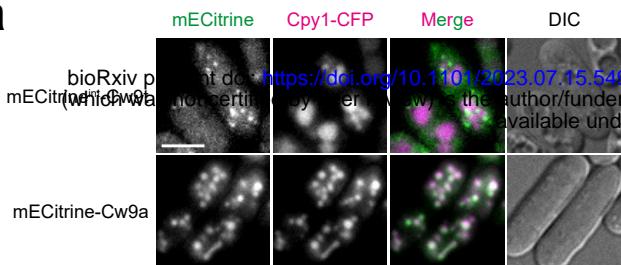



ars1::cw9t-only × *leu1::cw9a-only*

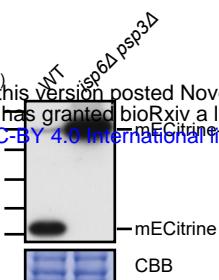
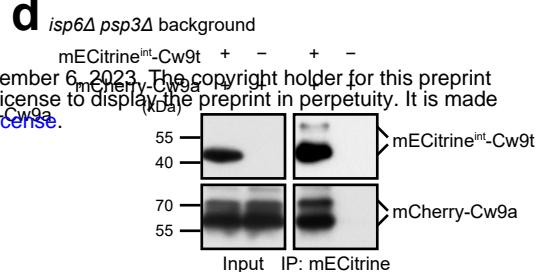
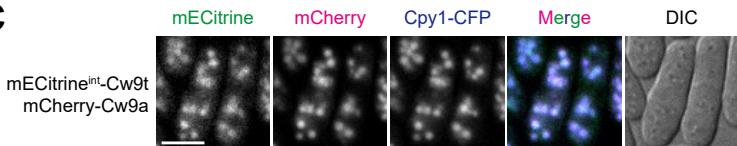
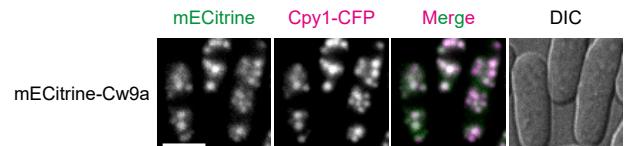
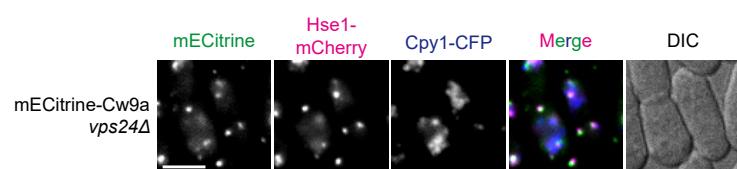
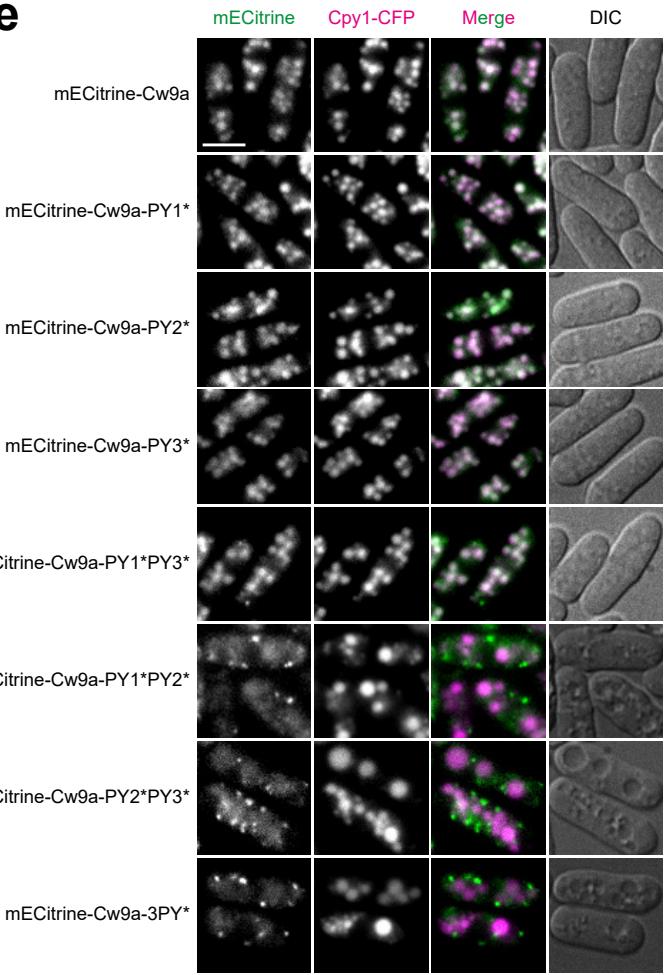
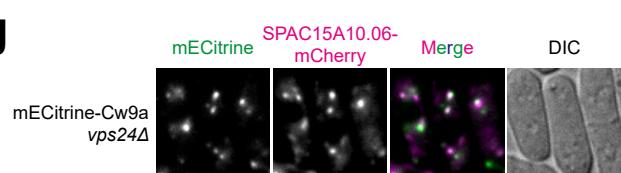
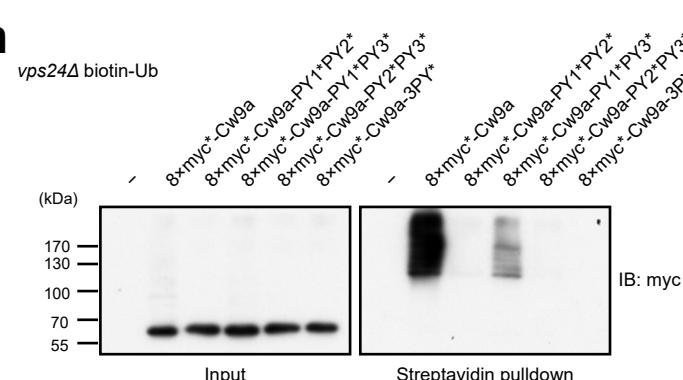





Expression strength: *Pnmt1* > *P41nmt1* > *P81nmt1*



Protein	Sequence count	Spectral count	Sequence coverage
Cw9a(1-52)	23	566	98.1%
Pub1	5	13	5.6%

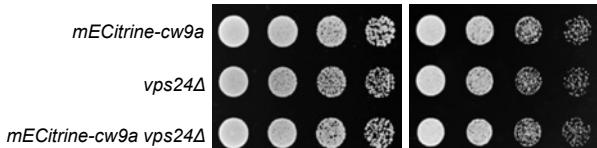
a**b****c** *P81nmt1*:**d**


a**c****b****d****e****f**

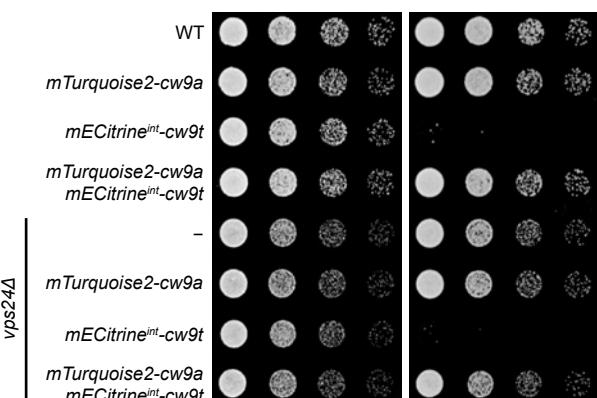
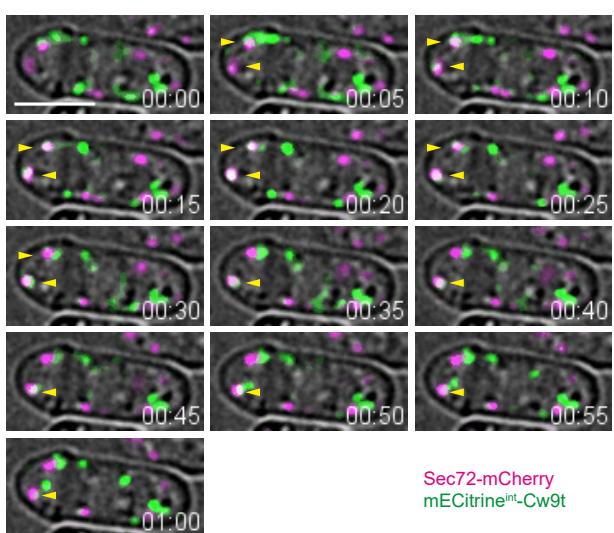
+ thiamine (repressed) - thiamine (induced)









g**h**

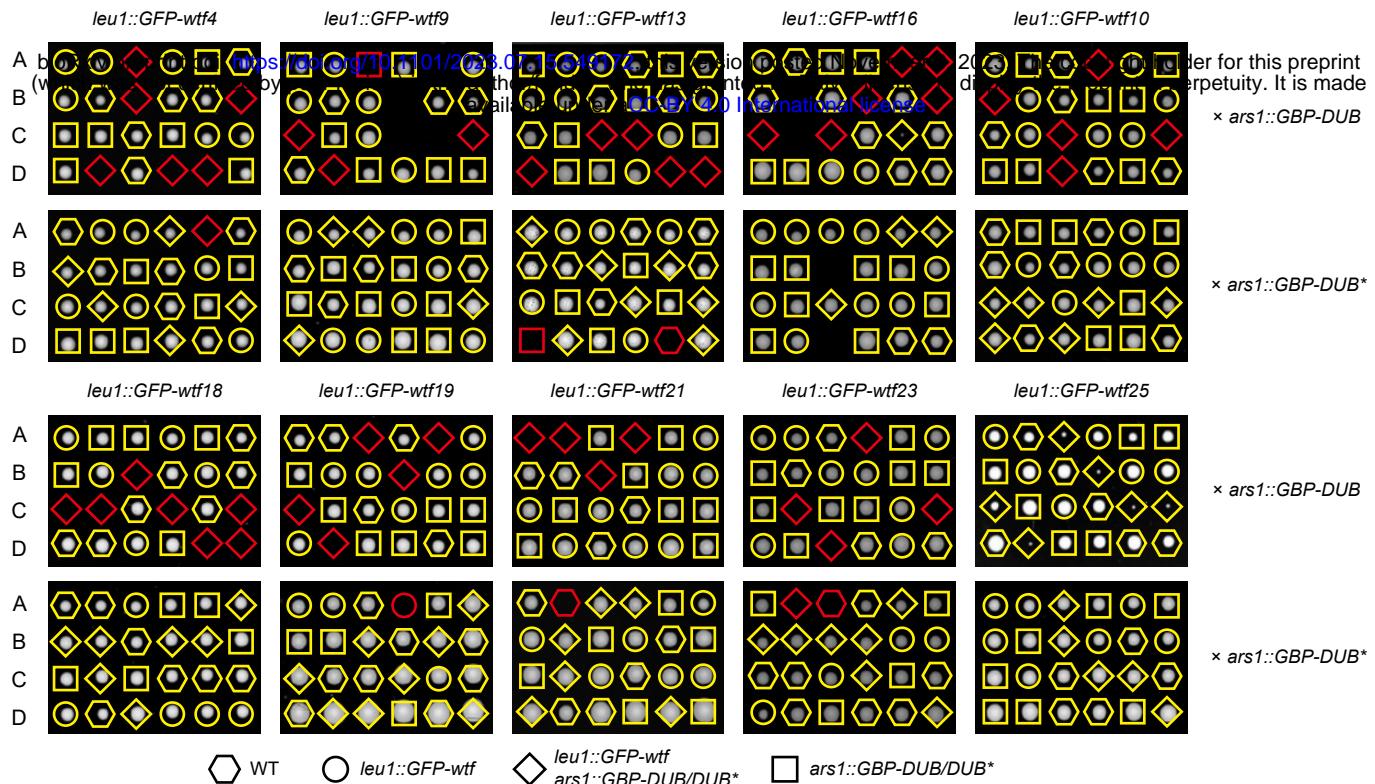
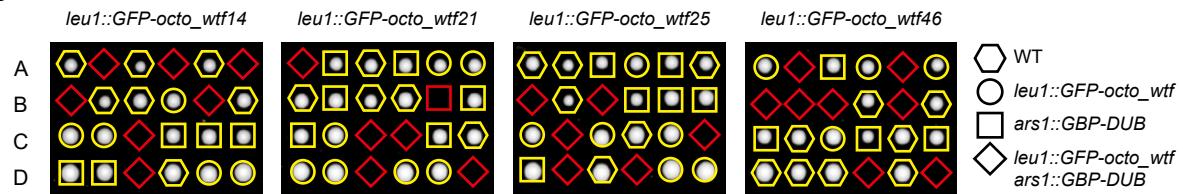
Number of spectra of Ub-modified peptides


	Lys2	Lys4	Lys18	Lys27	Lys51	Lys59	Lys65
Pub1 as E3	395	269	345	405	499	581	503
Pub3 as E3	148	66	138	188	146	114	110

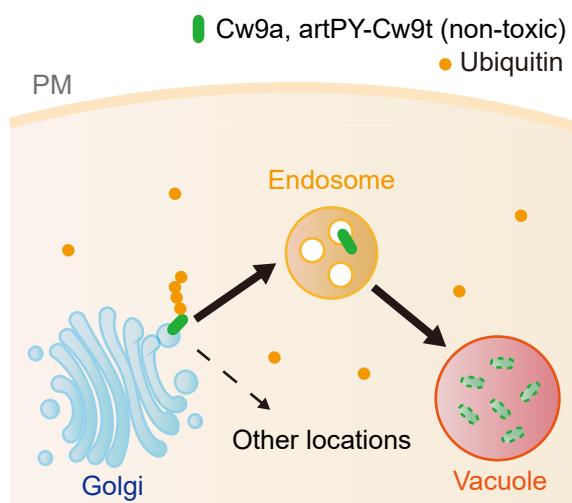
a



bioRxiv preprint doi: <https://doi.org/10.1101/2023.07.15.549172>; this version posted November 6, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

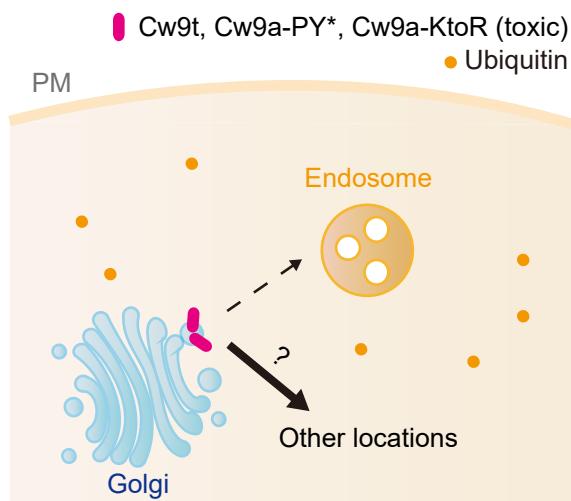
b**d****c****e****f****e****g****h****i**



+ thiamine (repressed) - thiamine (induced)

j


+ thiamine (repressed) - thiamine (induced)

k


Sec72-mCherry
mECitrine^{int}-Cw9t

a**b***ars1::GBP-DUB* ×**c**

Toxicity is neutralized by ubiquitination

Toxicity is unhindered in the absence of ubiquitination

