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Abstract 22 

Microbial secondary metabolites have long been recognized as a rich source for 23 

pharmaceutical compound discovery and to have crucial ecological functions. However, the 24 

sequence-to-function mapping in microbial secondary metabolism pathways remains 25 

challenging because neither protein function nor substrate specificity can accurately be 26 

predicted from genome data. Here we focus on the iron-scavenging pyoverdines, 27 

siderophores of Pseudomonas bacteria, as model system to develop a knowledge-guided 28 

bioinformatic pipeline that extracts functional information of both the pyoverdine synthesis 29 

machinery and uptake receptors from 1928 draft genomes. For pyoverdine synthesis, our 30 

approach predicts the chemical structure of 188 different pyoverdines with nearly 100% 31 

accuracy. For pyoverdine uptake, our pipeline uncovers 94 different pyoverdine receptor 32 

groups. Our results demonstrate that combining feature sequence and phylogenetic 33 

approaches is a powerful way to reconstruct bacterial secondary metabolism pathways based 34 

on sequence data, unveiling an enormous yet overlooked diversity of siderophores and their 35 

receptors. 36 

37 
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Introduction 38 

Rapid advancements in sequencing technologies have revolutionized our view on microbial 39 

communities. While amplicon sequencing provides information on community composition 40 

and diversity, shotgun and whole genome sequencing allow us to reliably anticipate 41 

evolutionary and ecological relationships between microbes and to obtain functional 42 

information on communities. Computational models assessing the metabolic capacity of 43 

individual members, or an entire consortium, have become very popular and powerful1-3. The 44 

major focus of such modelling approaches is typically on the primary metabolism of bacteria, 45 

as genes involved in core metabolic pathways are highly conserved and can be identified with 46 

relative ease2,4. Conversely, analysis of the secondary metabolites has attracted less attention, 47 

even though they include compounds such as antibiotics, toxins, siderophores, biosurfactants, 48 

all known to have important implications for community assembly5,6 and to be important 49 

sources for pharmaceutical discoveries7,8 9,10.  50 

There are multiple challenges that currently prevent a detailed unravelling of secondary 51 

metabolism of bacteria based on genome data5,11. First, most secondary metabolites are 52 

produced by pathways comprised of modular enzymes such as non-ribosomal peptide 53 

synthetases (NRPSs) or polyketide synthases (PKS)12,13. Locating complete synthesis 54 

clusters and identifying all enzyme-encoding genes is challenging from highly fragmented 55 

metagenomic sequences or draft genomes with a high number of contigs. Second, functional 56 

predictions for coding regions within a cluster rely on homologous comparisons with 57 

experimentally characterized genes. Such information is often restricted to a limited number 58 

of model organisms, meaning that only a small portion of the existing secondary metabolism 59 
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pathways is covered by current data bases. Finally, given the complex multi-modular 60 

synthesis machineries, it is challenging to precisely predict the secondary metabolites 61 

produced even with accurately annotated NRPS or PKS clusters. The main challenge is that a 62 

large pool of non-proteinogenic amino acids is used as substrates and the specificity of an 63 

enzyme’s A domain, connecting these unusual amino acids, is often poorly understood14. As a 64 

result, new computational methods are needed to accurately reconstruct bacterial secondary 65 

metabolism from sequence data.  66 

Here, we present a new bioinformatic pipeline that overcomes these challenges. We 67 

specifically focus on a particular class of secondary metabolites (iron-scavenging 68 

siderophores) as a case study to develop a bioinformatic workflow that predicts the chemical 69 

structure of the produced metabolites with near 100% accuracy. Our pipeline is based on 70 

improved gene annotation combined with a phylogeny- and feature sequence-based 71 

substrate prediction techniques (Figure 1). In comparison with the currently available 72 

databases and bioinformatic tools14-16, the main advancement of our method is the more 73 

accurate prediction of synthesized products based on NRPS clusters identified in genome 74 

data.  75 

Among siderophores, we focus on NPRS machineries that are responsible for the 76 

synthesis of pyoverdines, a class of chemically diverse siderophores with high iron affinity, 77 

produced by Pseudomonas bacteria17,18. While each Pseudomonas strain produces a single 78 

type of pyoverdine, an enormous structural diversity has been described across strains and 79 

species19-22. Pyoverdine types differ in their peptide backbone, meaning that the diversity 80 

should be mirrored in NPRS enzyme diversity and their selectivity for the different amino acid 81 
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substrates18. Based on this knowledge, our pipeline entails the following steps (Figure 1): (i) 82 

identification of the complete sequences of pyoverdine synthetase genes from fragmented 83 

draft genomes, (ii) building the pyoverdine synthesis machinery in silico by extracting the 84 

feature sequences for substrate specificity from motif-standardized NRPSs, and (iii) predicting 85 

the precise chemical structure of pyoverdines followed by empirical verification. 86 

An additional element of iron metabolism is that when siderophores are secreted and 87 

bound to iron, bacteria rely on a specific receptor for their uptake into the cell. Pyoverdine 88 

receptors are annotated as FpvA and it is known that receptor diversity matches pyoverdine 89 

diversity22,23. Moreover, FpvA belongs to the family of TonB-dependent receptors and a single 90 

Pseudomonas species often has many gene copies encoding these receptors. This poses an 91 

additional bioinformatic challenge: how to find the gene encoding the specific pyoverdine 92 

receptor among several potential receptor genes? To overcome this, we develop an algorithm 93 

that focuses on sequence regions involved in pyoverdine recognition and translocation across 94 

the outer membrane with supervised learning methods that locate the fpvA genes in the 95 

fragmented genomes based on these regions (Figure 1). Altogether, our bioinformatic pipeline 96 

uses knowledge-guided insights empowered by supervised learning to construct a first 97 

systematic sequence-to-function mapping of a family of secondary metabolites (pyoverdine) 98 

and their corresponding receptors. Our analysis unveils a yet unrecognized extraordinary 99 

diversity of iron-scavenging machineries in pseudomonads.  100 

 101 
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 102 

Figure 1 Scheme depicting our new genome mining pipeline to precisely predict the 103 

synthesis, the molecular structure and the uptake machinery of pyoverdines, a family 104 

of iron-scavenging siderophores produced by members of the Pseudomonas genus. 105 

The grey rounded outer rectangle represents a bacterial cell. The red and blue arrow-shaped boxes 106 

stand for the synthetase and receptor genes for pyoverdines, respectively. Synthetase genes are 107 

transcribed and translated to form the n-modular NRPS enzymes. These enzymes synthesize the 108 

peptide backbone of pyoverdine through an assembly line using their repeating module units, with the A 109 

domain being responsible for substrate selection and the E domain for chirality. The n-substrate 110 

siderophores are then exported to the extracellular space for iron chelation. Membrane-embedded 111 

TonB-dependent receptors recognize the ferri-siderophore complex and import it into the cell. Bold black 112 

text and black arrows describe our multi-step computational methods developed to reconstruct the entire 113 
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process from genome sequence data. First, the annotation pipeline was improved (from antiSMASH) to 114 

extract the complete sequence of pyoverdine synthetase genes from draft genomes. Second, 115 

NRPSMotifFinder was used to define A- and E-domains and to determine the exact motif-intermotif 116 

structure of the pyoverdine assembly line. Third, intermotif regions most indicative of substrate 117 

specificity were used to develop a phylogeny-focused method for precise product prediction. Fourth, a 118 

sequence-region-based annotation method was combined with genome architecture features to identify 119 

the FpvA, receptors responsible for ferri-pyoverdine import.   120 

 121 

Results 122 

 123 

Section 1: Improved annotation pipeline reveals a vast reservoir of pyoverdine 124 

synthetase genes 125 

The first step of our bioinformatic pipeline was to improve the annotation of pyoverdine 126 

synthetase genes. The pyoverdine molecules is composed of a conserved fluorescent 127 

chromophore (Flu) and a peptide chain (Pep), which are both synthesized by NRPS 128 

enzymes24. There are already existing tools, such as antiSMASH, that can find and annotate 129 

NRPS clusters in microbial genomes25. However, antiSMASH (and other popular annotation 130 

platforms15,16) rely on accurate gene predictions, which are typically problematic for 131 

fragmented genomes. Consequently, while antiSMASH can recognize and annotate certain 132 

genes of an NRPS cluster, the precise reconstruction of a complete NRPS assembly line 133 

often fails. This is particularly problematic because most available genomes are drafts and 134 

any analysis suffers from the unavoidable issue of incomplete or misannotation of gene 135 
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fragments.  136 

 137 

 138 

Figure 2 Improved annotation pipeline reveals a vast diversity of pyoverdine 139 

synthetase genes. a. Improved annotation pipeline based on the raw annotation from antiSMASH. b. 140 

The annotation pipeline was applied to 9599 Pseudomonas genomes (94% draft genomes). Genomes 141 

could be separated into three categories. Yellow: genomes without pyoverdine cluster. Green: genomes 142 
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with a complete pyoverdine cluster. Red: genomes with incomplete pyoverdine synthetase cluster. The 143 

red category involved genomes with truly incomplete clusters (lacking Flu or Pep synthetic genes) or 144 

genomes with likely truncated synthetic genes at the edge of contigs. c. Distributions of the sequence 145 

length (upper panel) and the number of A domains (lower panel) across all the genomes with a complete 146 

synthetase cluster. d. Workflow applied to separate the 9599 Pseudomonas genomes into the three 147 

categories described in b and removing of redundant genomes with high phylogenic similarity and 148 

showing high similarity in pyoverdine synthetases. Red star indicates the start of the workflow. e. 149 

Phylogenetic tree depicting the relationship among the 1928 non-redundant Pseudomonas strains (1664 150 

producers and 264 non-producers) based on the concatenated alignment of 400 single-copy conserved 151 

genes in their genomes. The inner ring depicts the taxonomical classification including the four most 152 

prevalent species. The outer ring shows the number of A domains present in the pyoverdine synthetase 153 

assembly line in each strain. 154 

To overcome these issues, we developed an improved four-step annotation pipeline 155 

starting with the raw annotation of the pyoverdine cluster obtained from antiSMASH (Figure 156 

2a). First, we implemented a NRPS Hidden Markov Model (HMM) to re-annotate and extract 157 

the entire nucleotide sequence of the pyoverdine synthetase cluster26, including the genes 158 

missed by antiSMASH. For this step, the nucleotide sequences were converted into amino 159 

acid sequences to avoid erroneous gene predictions typically associated with antiSMASH. 160 

Second, we assembled the entire re-annotated pyoverdine coding region into a single 161 

sequence with a defined start (CAL) and/or end (TE) markers. Third, we used 162 

NRPSMotifFinder to identify the  C, A, T, E and TE motifs that are characteristic for the NRPS 163 

structure of pyoverdine14. Finally, we applied a safety measure to ensure that the recovered 164 
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NRPS assembly line is complete (contains both Flu and Pep) and is not truncated, which can 165 

occur when a synthetase coding region is at the edge of a contig. Consequently, we 166 

dismissed all pyoverdine synthesis clusters located within 100 bp proximity to contigs’ edges 167 

and either lacked Flu or Pep synthetic genes. 168 

Next, we applied our improved pyoverdine synthesis annotation pipeline to 9599 169 

Pseudomonas genomes (including 613 complete and 8986 draft genomes) retrieved from the 170 

Pseudomonas Genome Database27. We found the pyoverdine synthesis machinery in 97% of 171 

the genomes (Figure 2b), indicating that the machinery is ubiquitous in Pseudomonas. 172 

However, since 94% of the analyzed genomes were in draft form, the pyoverdine synthesis 173 

machinery was likely truncated (i.e., on the edge of the contig) in 63.4% (6087) of the 174 

genomes. These genomes were excluded from further analysis. Around 3.1% of retained 175 

genomes (293) with high assembly completeness were missing pyoverdine synthetic genes, 176 

indicating that these Pseudomonas strains were not able to produce pyoverdine (‘non-177 

producers’). The rest of the genomes (33.5%; 3219 genomes) were classified as ‘producers’ 178 

with complete pyoverdine NRPS assembly lines that meet all our quality controls. For these 179 

3219 genomes, we used NRPSMotifFinder to find boundaries between the various synthesis 180 

domains and to determine amino acid length and the number of A domains. The lengths of 181 

pyoverdine synthetic genes ranged between 7690 and 21333 amino acids, and the number of 182 

A domains per synthetase ranged between 6 and 17, with a total of 35,281 A domains being 183 

present across all strains (Figure 2c and Figure S1). Overall, our analysis pipeline unveiled a 184 

vast diversity of pyoverdine synthetase that goes far beyond of what has previously been 185 

described in the literature. 186 
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Finally, we conducted a phylogenetic analysis based on 400 conserved genes with the 187 

293 non-producers and the 3219 producers. We first removed redundant non-producers by 188 

retaining the most integrative genome among strains with high phylogenic similarity. Then, we 189 

removed redundant producers by retaining the most integrative genome among strains with 190 

high phylogenic and pyoverdine synthetase similarity (Figure 2d). This data cleaning yielded a 191 

total of 1928 Pseudomonas strains (403 complete and 1525 incomplete genomes), 192 

segregating into 1664 pyoverdine producers and 264 non-producers. The phylogenetic tree 193 

revealed that all major Pseudomonas species clades were present in our data set (Figure 2e). 194 

Moreover, the number of A domains varied widely among species and even between strains 195 

within species. For example, the number of Pseudomonas aeruginosa A domains ranges 196 

between 7 and 14. In summary, by improving the synthetase annotation method, we 197 

successfully obtained 1664 highly reliable pyoverdine synthetases (with a total of 18,292 A 198 

domains) and 264 non-producers. 199 

 200 

Section 2: Phylogeny-focused substrate prediction for pyoverdine A domains 201 

Our next goal was to precisely predict the molecular structure of the pyoverdines produced by 202 

the 1664 strains with complete synthetase gene clusters. The first essential step towards this 203 

goal was to reliably predict the substrate selectivity of all A domains in the NRPS assembly 204 

line. The A domain of each module selects for a single substrate among 22 proteinogenic and 205 

hundreds of non-proteinogenic amino acids28,29. Moreover, whenever an E domain exists 206 

downstream of an A domain, the chirality of the amino acid incorporated into the peptide chain 207 

gets modified from L to D. Thus, the modularity combined with the selectivity of A domains 208 
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can promote an enormous diversity of pyoverdine molecule structures. To date, 73 pyoverdine 209 

structures have been reported (Supplementary_table1) out of which 13 have their synthetase 210 

genes sequenced (Supplementary_table2). In order to make reliable predictions, two 211 

challenges must be addressed: (i) the extraction of relevant information from A domain 212 

sequences for which the substrate is known, and (ii) the effective application of this 213 

information to predict specificity of A domain sequences for which the substrate is unknown. 214 

To address the first challenge, we built our analysis on the NRPS assembly lines of the 215 

known 13 pyoverdines to extract relevant information from the A domain sequences. From 216 

this dataset, we could identify 101 A domains that could be experimentally linked to 13 amino 217 

acid substrates (Supplementary_table3). We next performed multisequence alignment of the 218 

101 A domains to determine the “feature sequence distance”, which is the most informative 219 

for the substrate selectivity. To this end, we tested three different A domain regions, three 220 

different sequence similarity measurements and seven different clustering methods for their 221 

predictive power (Figure 3a). We found that the full A domain sequence is not informative for 222 

substrate prediction (Figure 3b, left panel). Instead, our analysis indicated that information-223 

rich positions start with motif A4 and end before motif A5, consistent with the known role of 224 

the A domain pocket in substrate selectivity14. Overall, the sequence region from motifs A4 to 225 

A5 (termed “Amotif4-5”), in conjunction with Jukes-Cantor distance and Ward linkage 226 

clustering, performed best in accurately distinguishing between different substrates and 227 

maintaining homogeneity for identical substrates (Figure 3b). 228 

To address the second challenge, we developed a “phylogeny-focused method” to apply 229 

the feature sequence distance derived in the preceding paragraph to the 18,292 discovered A 230 
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domains. We realized that a direct construction of a phylogenetic tree including all 18,292 231 

query A domains and the 101 reference A domains would be computationally too demanding 232 

and impossible to scale up. Furthermore, such an approach would result in phylogeny-233 

interference issues, where domains would cluster not only based on their substrate 234 

similarities but also based on overall species relatedness14. To minimize the effect of 235 

phylogeny and speed up calculation, we took each of the 18,292 query A domains and 236 

identified the two most similar A domain clusters within the 101 reference A domain set. We 237 

then compared the feature distance between each query A domain and the two most similar 238 

reference A domains in different clusters and assigned the query A domain to a substrate 239 

specificity using the following rules (Figure 3c). (1) If the feature distance is below the 0.7 240 

threshold (corresponding to 50% identity) for only one of the two reference A domains, then 241 

the substrate of the query A domain is matched to the substrate of the more similar (lower 242 

distance) reference A domain. (2a) If the feature distance is below the 0.7 threshold for both 243 

reference A domains, then we considered the relative difference of the query A domain 244 

towards the two reference A domains. If the relative difference is larger than 0.2, the query A 245 

domain is matched to the substrate of the more similar reference A domain. (2b) If the relative 246 

difference is smaller than 0.2, the substrate of the query A domain cannot unambiguously be 247 

determined and is thus matched with both reference substrates. (3) If the feature distance is 248 

above the 0.7 threshold (below 50% identity) for both reference A domains, then the substrate 249 

of the query A domain is marked as “unknown”. For most query A domains, rule (1) could be 250 

applied (17880 cases), whereas rules (2) and (3) had to be used rarely (133 and 279 cases, 251 

respectively). We applied our methodology termed “phylogeny-focused method” to all 252 
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following substrate and pyoverdine structure predictions. 253 

 254 

Section 3: Experimental validation of the annotation and prediction pipeline 255 

We tested whether our bioinformatic pipeline can reliably predict the structure of a set of yet 256 

uncharacterized pyoverdines. To achieve this objective, we selected 20 Pseudomonas strains, 257 

all known to produce pyoverdines, from a natural strain collection that was previously isolated 258 

from soil and water30. We sequenced their genomes and subsequently applied our annotation 259 

and prediction pipeline to generate predicted pyoverdine structures for all 20 strains harboring 260 

a total of 237 A domains. Then, we elucidated the chemical structure of the 20 pyoverdines 261 

using culture-based methods combined with UHPLC-HR-MS/MS31. We found a near-perfect 262 

match (96.2%) between the predicted and the observed pyoverdine chemical structures and 263 

were able to accurately assign amino acids in 228 out of 237 cases (Figure 3d). Our method 264 

demonstrated a substantial improvement comparing to the prediction accuracy of AntiSMASH 265 

in pyoverdines (46.0%), which could accurately assign correct amino acids only in 109 out of 266 

237 cases (Supplementary_table4). The nine non-matching cases of our method segregated 267 

into three groups. In three cases (1.3%), our algorithm could not distinguish between the 268 

substrates Lysine and Ornithine, as these two amino acids are highly similar both in terms of 269 

their chemical structures and corresponding A domain sequences. This is the only sensitivity 270 

issue that is associated with our approach. In four cases (1.7%), our technique assigned an 271 

“unknown” substrate to amino acids that turned out to be valine, citrulline and histidine. 272 

Indeed, these three amino acids have not been reported in pyoverdines before and are 273 

therefore not yet present in the reference dataset. These cases show that our analysis 274 
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pipeline can be used to identify new substrates. Once experimentally verified, the new A 275 

domains and their substrates can expand the reference dataset, allowing targeted 276 

improvement of our phylogeny-focused prediction technique. Finally, there were only two 277 

cases (0.8%) that represented true mismatches between observed and predicted amino acids. 278 

Altogether, our phylogeny-focused method is highly accurate in predicting pyoverdine peptide 279 

structures and in identifying unknown substrates in Pseudomonas.  280 
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 281 

Figure 3 Phylogeny-focused substrate prediction for pyoverdine synthetase assembly 282 

lines. a. Information from 101 reference A domains with known amino acid substrates were used to 283 

develop an algorithm that predicts substrates from A domain sequence data with high accuracy. The 284 
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challenge is to group the variable A domains into clusters that predict the same substrate (captured by 285 

the silhouette index). To find the most distinctive algorithm, we combined different feature sequences of 286 

A domains (Amotif) with different distance and linkage methods in our hierarchical clustering analyses. 287 

The best performing path is shown in pink. b. Heatmap showing the hierarchically clustered distances of 288 

the 101 reference A domains as a function of the feature sequence used. Left panel: complete A domain 289 

sequences. Middle panel: Amotif3-6 sequences. Right panel: Amotif4-5 sequences. The experimentally 290 

validated substrates are shown on top of the heatmaps. The heatmaps show that hierarchical clustering, 291 

reliably associating sequence distances with substrate, worked best with the Amotif4-5. c. Phylogeny-292 

focused substrate prediction pipeline for query A domains (grey circle) based on Amotif4-5 feature 293 

sequence comparisons. X1 and X2 represent the feature distance between the query A domain and two 294 

closest reference A domains (blue and green circles), respectively. Three rules are used, based on the 295 

feature distances X1 and X2 and a threshold value of 0.7 (50% similarity), to make substrate predictions 296 

for the query A domain. There are three possible outcomes: unambiguous substrate prediction (blue or 297 

green squares), ambiguous substrate prediction (dual-colored squares), and no prediction (“unknown). d. 298 

Phylogenetic tree of 20 Pseudomonas strains and visualization of their predicted and actual pyoverdine 299 

structures to validate our phylogeny-focused substrate prediction pipeline. 228 out of the 237 substrates 300 

(96.2%) were correctly predicted. The nine inconsistencies are boxed in blue (Lysine and Ornithine are 301 

indistinguishable), in dashed black (correct detection of “unknown” substrates), and in red (true 302 

mismatches). Note that our prediction pipeline (as any other pipeline) cannot distinguish between 303 

modified variants of the same amino acid. 304 

Section 4: Application of the annotation and prediction pipelines to a full dataset 305 

After successful validation, we applied our bioinformatic pipeline to the 1664 complete NRPS 306 
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assembly lines annotated in our genome analysis (Figure 2). Across all assembly lines, we 307 

were able to predict the substrates of 17,880 A domains (97.75%) without ambiguity, whereas 308 

133 A domains (0.73%) were associated with two different substrates, and 279 A domains 309 

(1.52%) predicted an unknown substrate (similar to the case of valine above). After 310 

considering the presence/absence of an E domain in each module, we derived the structure 311 

of 1664 pyoverdines according to method at section 2 (Figure 4). Our prediction yielded 188 312 

different pyoverdine molecules, out of which only 37 structures had been previously reported. 313 

However, these 37 reported structures were highly abundant across strains (1103 out of 314 

1664). Agreeing with previous studies, we observed that the fluorophore is highly conserved 315 

among the 188 predicted structures. Moreover, our analysis confirmed that 13 amino acid 316 

substrates form the core of all the 188 pyoverdine structures, with most of the variation being 317 

attributable to different substrate combinations, peptide lengths, and substrate chirality 318 

(Figure 4). In addition, the 279 unknown substrates will significantly increase the repertoire of 319 

pyoverdine amino acids if could be characterized by future experiments, despite that they 320 

were much rarer than the 13 main substrates. Notably, pyoverdine structural diversity was not 321 

strongly linked to phylogeny because the same pyoverdine structure could be found in 322 

completely unrelated species, while closely related species often had different pyoverdine 323 

structures (Figure 4). These observations suggest that there may be both frequent 324 

recombination and horizontal gene transfer of pyoverdine synthetase clusters between 325 

species. Taken together, the bioinformatics methods developed in our study can predict a suit 326 

of secondary metabolites (pyoverdines) from sequence data with high accuracy, revealing an 327 

unprecedented richness and evolutionary history of siderophores within pseudomonads and 328 
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the discovery of 151 putative novel pyoverdine variants.  329 

 330 

Figure 4 Predicted pyoverdine structural diversity based on our developed 331 

algorithm mapped onto the phylogenetic tree comprising all 1928 (non-redundant) 332 

Pseudomonas strains. The stacked boxes in the outermost circle show the predicted structure of 333 

pyoverdines, whereby each color represents a specific amino acid substrate. Strains without boxes 334 

represent non-producers (n = 264). Boxes with two colors indicate cases of ambiguous (dual) substrate 335 

prediction. The red dots at the basis of the stacked boxes indicate experimentally validated pyoverdine 336 

structures. The inner circle shows the taxonomic species classification following Figure 2e. Because the 337 

allocation of strains to species names is often imprecise, we divided the 1928 strains by their 338 
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phylogenetic distance into 18 clades (color shadings in inner-most circle), out of which 13 contained 339 

more than 1 strain. Lines within the inner-most circle link strains from different clades that share the 340 

same pyoverdine structures, whereby line colors represent the shared unique pyoverdines. The bending 341 

of the lines represents the phylogenetic sequence distances of the connected strain pairs. 342 

 343 

Section 5: Development of a region-based identification method for annotation of the 344 

FpvA receptors 345 

In pseudomonads, iron-loaded pyoverdines are recognized by FpvA, a TonB-dependent 346 

receptor, that transports the ferri-siderophore into the periplasm19,32,33 . The protein structure 347 

of characterized FpvA variants consists of three domains: The Secretin and TonB N-terminus 348 

short domain (STN), the Plug domain (Plug), and the TonB dependent receptor domain 349 

(TonB)19. While these domains are conserved across FpvA variants and other siderophore 350 

receptors, there is substantial variation at the sequence level. This makes it challenging to 351 

reliably identify FpvA receptors from sequence data by homologous search. As an example, 352 

we were unable to find FpvA genes (with a 60% identity threshold) by homologous search in 353 

several genomes although they had complete pyoverdine synthesis machineries. Moreover, 354 

there are many other TonB-dependent receptors with fairly high sequence identity to FpvA but 355 

that transport other siderophores than pyoverdine (e.g. FpvB, 55% identity, transporting 356 

pyoverdine, ferrichrome and ferrioxamine B34. Therefore, it is imperative to develop a new 357 

comprehensive method for identifying FpvA receptors in Pseudomonas genomes. 358 
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 359 

Figure 5 A sequence-region-based identification pipeline for annotating FpvA receptors. 360 

a. Heatmap displaying the hierarchically clustered sequence distances (p-distance calculation method, 361 

identity (%) = (1-sequence distance) * 100) of 35 reference siderophore receptors identified in 362 

Pseudomonas spp., based on full sequences. No clear discrimination between FpvA, FpvB and other 363 
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receptors is possible. The order of receptors is consistent across panels (b), (e), and (f). b. The pHMM 364 

scores of the three standard receptor domains (STN, Plug, and TonBDR) vary across the 35 reference 365 

sequences (A: FpvA, B: FpvB and NA: others), but do not allow to distinguish between receptor groups. 366 

c. FpvA region-based conservation scores from a multi-alignment of the 35 reference sequences 367 

mapped to the FpvA sequence of strain P. aeruginosa PAO1. All residues within the top 10% of the 368 

conservation score denoted with black dots. For each region flanked by two black dots, we calculated 369 

the FpvA identification score (heatmap), representing the ability to distinguish FpvA from non-FpvA 370 

receptors. d. Mapping of the two regions with the highest FpvA identification scores R1(dark red) and 371 

R2 (orange) to the crystal structure of FpvA from PAO1 conjugated with pyoverdine (PDB 2IAH). e. 372 

Heatmap showing the hierarchically clustered sequence distances of 35 reference siderophore 373 

receptors based on the R1 sequence region. A clear discrimination between FpvA/FpvB and other 374 

receptors emerges. f. Heatmap showing the hierarchically clustered sequence distances of 35 375 

reference siderophore receptors based on the R2 sequence region. A clear discrimination between 376 

FpvA and FpvB receptors emerges. e. The pHMM scores of regions R1 and R2 for the 35 siderophore 377 

reference receptors are contrasted against each other, yielding a clear separation between FpvA, FpvB 378 

and other receptors. Dashed lines indicate the pHMM threshold scores used for later analysis. f. 379 

Flowchart showing all steps involved in the FpvA annotation from genome sequence data. The red star 380 

indicates the start of the workflow. 381 

We started our approach by comparing the sequences of 35 reported siderophore 382 

receptors, including 21 FpvA, 6 FpvB, and 8 TonB-dependent siderophore receptor 383 

sequences often found in Pseudomonas genomes, encoding receptors for the uptake of 384 

heterologous siderophores (Supplementary_table5). We found that all receptor sequences 385 
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share a similar length of around 800 amino acids (FpvA and FpvB sequences: 809 ± 10 386 

amino acids). We then used the complete sequences to calculate the pair-wise distances by 387 

global alignment before applying hierarchical clustering (Figure 5a). We found substantial 388 

divergence between FpvA variants to an extent that was comparable to the distance between 389 

FpvA and other siderophore receptors. Moreover, FpvB variants clustered with FpvA variants, 390 

showing that FpvA identification based on full sequence distances is unachievable. We hence 391 

focused on the three typical receptor domains (TonB, Plug, and STN, retrieved from the Pfam 392 

database) and applied Profile Hidden Markov Models (pHMM) to calculate the pHMM 393 

probability scores for each domain and reference sequence. The probability scores 394 

(calculated as the log-odd ratios for emission probabilities and log probabilities for state 395 

transitions) had reasonably high scores but no distinction was apparent between the three 396 

receptor classes (Figure 5b). 397 

We next asked whether there are specific regions within the receptor sequences that are 398 

characteristic of FpvA. To address this, we conducted a multiple sequence alignment (MSA) 399 

with all 35 reference receptor sequences and mapped them onto the sequence of the well-400 

characterized FpvA of P. aeruginosa PAO1 (Figure 5c). MSA allows to identify conserved sites 401 

(Figure 5c, black dots representing the top 10% most conserved sites) that are shared by the 402 

majority of the reference sequences. We then used these conserved sites to partition the 403 

MSA into variable regions which were flanked by two conserved sites. For each variable 404 

region, we assessed its predictive power to differentiate FpvA from non-FpvA sequences. For 405 

this we defined the "FpvA identification score" analogous to the intercluster-vs-intracluster 406 

Calinski-Harabasz variance ratio, as 407 
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where ��:� is the sequence distance among all 21 FpvA sequences, and ��:��� is the 408 

sequence distance between all 21 FpvA and the 14 non-FpvA sequences. 409 

Our analysis yielded two locations with noticeably high FpvA identification scores (Figure 410 

5c). The region with the highest FpvA identification score (referred to as R1) locates at the 411 

intersection of the Plug domain and the barrel structure of the TonB domain (Figure 5d, 412 

between 258 Gly and 309 Gly in the PAO1 FpvA). According to the sequence distance matrix, 413 

the R1 region allows to distinguish heterologous siderophore receptors from FpvA and FpvB 414 

receptors (Figure 5e). The region with the second highest FpvA identification score (referred 415 

to as R2) was located in the C-terminal signaling domain (Figure 5d, between 59 Leu and 86 416 

Lys in the PAO1 FpvA). The sequence distance matrix revealed that R2 allows to distinguish 417 

FpvB from FpvA receptors (Figure 5f). 418 

We then constructed two pHMM by (i) the alignment of the 21 FpvA sequences in the R1 419 

region, termed R1(FpvA), and (ii) the alignment of the 6 FpvB sequences in the R2 region, 420 

termed R2(FpvB). Running R1(FpvA) and R2(FpvB) against all 35 reference sequences 421 

revealed a clear separation between the three receptor categories (Figure 5g). Along the 422 

R1(FpvA) axis, FpvA and FpvB reference sequences have high R1 scores (minimal score 423 

77.0) that separate them from other siderophore receptors (maximal score 38.1), whereas 424 

FpvAs references have substantially lower R2 scores (maximal 20.2) than FpvBs (minimal 425 

49.0) along the R2(FpvB) axis. 426 

Based on these insights, we developed a decision flow chart for annotating FpvAs in 427 

Pseudomonas genomes (Figure 5h): First, we considered sequences as Fpv-like receptors 428 
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that share similar properties to the ones identified in our reference database. Particularly, 429 

protein coding sequence (CDS) length has to be between 750 and 850 amino acids and the 430 

phMM scores for the three typical receptor domains STN, Plug, and TonB have to be greater 431 

than 25, 50, and 80, respectively (Figure 5b, red dashed lines). Second, we used the pHMM 432 

threshold scores obtained for R1(FpvA) and R2(FpvB) (Figure 5g) to differentiate other 433 

siderophore receptors (R1(FpvA) score < 50) from FpvB receptors (R1(FpvA) score > 50 and 434 

R2(FpvB) score > 30) and FpvA receptors (R1(FpvA) score > 50 and R2(FpvB) score < 30).  435 

Our method effectively identifies FpvA receptors from sequence data and can be readily 436 

applied to the entire Pseudomonas dataset. 437 

 438 

Section 6: Application of the receptor annotation pipeline to the full dataset. 439 

The region-based receptor identification pipeline was applied to all 1928 Pseudomonas 440 

genomes. The analysis identified 4547 FpvAs, 615 FpvBs, and 9139 other TonB-dependent 441 

Fpv-like receptors across the dataset (Figure 6a). The 4547 FpvA sequences clustered 442 

hierarchically into 114 groups, defined by an identity threshold of 60%. When comparing to 443 

the 21 reference FpvAs (Figure 6b), we found that 2293 FpvA sequences have close 444 

homologues in the reference data base, while 2254 FpvA sequences lack such close 445 

homologues (sequence identity < 50%). These latter sequences, termed as "dissimilar to 446 

reference", may represent novel subtypes of FpvA receptors that could not be found by 447 

simple homology search. Our analysis further shows that many strains have more than one 448 

FpvA receptor. 449 

We then asked whether the 4547 FpvAs are found in proximity of pyoverdine Pep 450 
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synthetase genes as it is commonly the case for cognate FpvA receptors 35. We thus 451 

calculated the proximity between pyoverdine Pep genes and the Fpv-like receptor genes by 452 

counting the number of base pairs between the two coding regions. All TonB-dependent 453 

receptors that have not been classified as FpvAs were more than 20 kb away from the Pep 454 

genes (Figure 6c). In contrast, 92% of the nearest FpvA genes were indeed located within 20 455 

kb of their pyoverdine Pep genes (Figure 6d, called proximate receptors). These proximate 456 

receptors encompassed both those with close (66%) and more distant (34%) resemblance to 457 

the reference receptor types. Overall, this proximity analysis confirmed that our region-based 458 

gene identification method can reliably identify FpvA receptors.  459 

We next explored the diversity among FpvA receptors in more detail by focusing on the 460 

1534 strains that had proximate-receptors within 20 kb of the pyoverdine Pep genes (Figure 461 

6d) and using high-confidence FpvAs for sequence feature extraction. When considering the 462 

whole gene sequences, these receptors segregated into 44 groups according to single-463 

linkage clustering with an identity threshold of 60% (Figure S2a). To investigate which 464 

sequence regions were the most informative for reliable clustering, we used a similar 465 

approach as with FpvAs detection by quantifying the "group identification score" for variable 466 

regions flanked by highly conserved sites. The higher the score, the stronger a region's 467 

capacity to discriminate between FpvA groups. We found that the four regions with the top 468 

discrimination capacities all located near the Plug domain surrounding the pyoverdine 469 

transmission channel (Figure 6e). The plug domain is known to undergo conformational 470 

changes and is involved in pyoverdine selectivity and import36,37, suggesting that the four 471 

high-score regions are responsible for pyoverdine specificity.  472 
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 473 

 474 

Figure 6 Application of the receptor annotation pipeline to the full database. a. Applying 475 

the receptor annotation pipeline to the genomes of the 1928 non-redundant Pseudomonas strains yields 476 

14301 Fpv-like receptors, which segregate into 4547 FpvA receptors (red box), 615 FpvB receptors, and 477 

9139 other receptors, based on the pHMM score thresholds for regions R1 and R2. The heatmap 478 
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indicates receptor density. b. Sequence distance matrix between the 35 reference sequences (y-axis) 479 

and the 4547 annotated FpvA sequences in the full database (x-axis). Database sequences were 480 

ordered by hierarchically clustering and segregated into 114 groups. 2254 of the annotated FpvA 481 

sequences have sequence identity < 60% compared to the reference receptors, pointing at novel 482 

subtypes of FpvA receptors. c. Genomic distance (in base pairs) between each Fpv-like receptor 483 

sequence and its pyoverdine peptide synthetase gene (Pep) for annotated FpvA receptors (upper panel), 484 

FpvB receptors (middle panel) and other receptors (lower panel). d. Distribution of the genomic distance 485 

between each FpvA receptor and its nearest pyoverdine peptide synthetase depending on whether the 486 

annotated FpvA receptor has high sequency similarity (blue, ≥ 50%) or low sequence similarity (yellow, 487 

< 50%) with at least one of the 21 reference FpvAs. e. FpvA region-based conservation scores from a 488 

multi-alignment of all the annotated FpvA receptors that are proximate (< 20 kbp) to the pyoverdine 489 

synthetase cluster mapped to the FpvA sequence of strain P. aeruginosa PAO1. All residues within the 490 

top 10% of the conservation score denoted with black dots. For each region flanked by two black dots, 491 

we calculated the group identification score (heatmap, lower panel), representing the ability of the region 492 

to distinguish between different groups of FpvA receptors. Four regions in the plug domains had a 493 

particularly high group identification score (called the feature sequence). They are mapped to the crystal 494 

structure of FpvA from PAO1 conjugated with pyoverdine (PDB 2IAH, up panel). All four regions 495 

surround the pyoverdine transmission channel and are shown in the respective heatmap color. f. 496 

Heatmap showing the hierarchically clustered distances between the 4547 annotated FpvA receptors 497 

based on the feature sequence (comprising the four groups with the highest identification scores). The 498 

analysis identifies 94 receptor groups with a 70% identity threshold. e. The diversity of FpvA receptors 499 

along the 13 phylogeny clades containing more than 1 strain. Receptor diversity was calculated by the 500 
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Shannon entropy, similar to the alpha-diversity in microbial community. 501 

Based on the above insights, we concatenated the four high-score regions (from 168 Pro 502 

to 295 Ala in PAO1) into a single "feature sequence". The feature sequence could 503 

characterize 98% of the distance matrix compared to the whole sequence (1534 FpvAs, 504 

r=0.98, Figure S2a-b) and substantially reduced within-group distance. We applied the 505 

concatenated feature sequence approach to all the 4547 annotated FpvAs to calculate the 506 

sequence distance matrix. Single-linkage clustering with an identity threshold of 70% revealed 507 

a total of 94 groups, out of which 43 groups contained more than 10 members (Figure 6f). 508 

The diversity of receptors is hence much larger than currently anticipated as only 3 groups of 509 

FpvAs have previously been reported. Finally, we calculated the diversity of receptor FpvAs 510 

for each of the 13 phylogenetic clades with more than one strain by the Shannon entropy, 511 

which is similar to the alpha-diversity in microbial community (Figure 6g). We noticed large 512 

differences in FpvA diversity across the clades and species: clades with P. aeruginosa and P. 513 

syringae species had lower FpvAs diversity (1.55 and 1.60) than clades containing P. putida 514 

and P. fluorescens species (4.82 and 3.77). Taken together, the region-based identification 515 

method developed in our study can reliably mine the FpvAs (pyoverdines receptors) from 516 

genome data, revealing undiscovered diversity of FpvA pyoverdine receptors that are 517 

unequally distributed across the different phylogenetic clades of pseudomonads. 518 

 519 

Discussion 520 

The rapid expansion of sequencing data offers exciting opportunities for microbiology38-40. 521 

One key challenge of current research in the field is to infer biological functions of microbial 522 
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communities from genome sequence data41-43. While this endeavor is increasingly successful 523 

for biological functions involving the primary metabolism and the associated complex 524 

metabolic flux, reconstructing aspects of the secondary metabolism is much more challenging. 525 

The main issue is that neither the function of a secondary metabolite enzyme nor the resulting 526 

metabolite can be precisely predicted from gene sequence data. In our study, we tackled this 527 

challenge and developed a bioinformatic pipeline to reconstruct the complete secondary 528 

metabolism pathway of pyoverdines, a class of iron-scavenging siderophores produced by 529 

Pseudomonas spp. These secondary metabolites are synthetized by a series of non-530 

ribosomal peptide synthetases and require a specific receptor (FpvA) for uptake. We 531 

combined knowledge-guided learning with phylogeny-based methods to predict with high 532 

accuracy: (i) the full pyoverdine assembly line, (ii) the substrate specificity for each enzyme 533 

within the assembly lines, (iii) the complete chemical structure of pyoverdines, and (iv) the 534 

FpvA receptors from genome sequences. After validation, we tested our pipeline with 535 

sequence data from 1664 phylogenetically distinct Pseudomonas strains and were able to 536 

determine 18,292 enzymatic A domains involved in pyoverdine synthesis, reliably predicted 537 

97.8% of their substrates, identified 188 different pyoverdine molecule structures and 4547 538 

FpvA receptor variants belonging to 94 distinct groups. The uncovered diversity is stunning 539 

and goes far beyond currently known levels of variation (73 pyoverdines and 3 FpvA groups). 540 

The molecular diversity of iron scavenging capacity highlights its importance among 541 

pseudomonads. 542 

We show that knowledge-guided learning is an extremely powerful tool to predict enzyme, 543 

metabolite, and receptor properties. The establishment of our entire pipeline is based on only 544 
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101 previously known enzymatic A domains (from 13 known pyoverdine assembly lines) and 545 

21 FpvA receptor sequences. Even with this limited amount of information, we were able to 546 

predict the substrates of almost all the 18,292 enzymatic A domains and to identify 4547 FpvA 547 

receptors from the sequence data. A key insight from our knowledge-guided learning is that 548 

comparisons based on the full gene sequences (e.g., for pyoverdine synthetase or receptor) 549 

are likely non-informative and unsuitable for obtaining functional information. This is because 550 

overall diversity does not stand for functional diversity, meaning that A domains recognizing 551 

the same substrate can diverge substantially in their full sequences. The same holds true for 552 

receptor sequences: whole-sequence alignments can neither accurately identify FpvA 553 

receptors nor reliably separate them into functional groups. Instead, it is imperative to extract 554 

informative feature sequences that are defined as sequence stretches within a gene whose 555 

diversity is tightly linked to variation in its functioning. We successfully extracted and applied 556 

feature sequence comparisons for both A domain substrate prediction and FpvA identification. 557 

It is important to note that a knowledge-guided pipeline does not have to be perfect right from 558 

the start. For example, our pipeline for pyoverdine structure prediction returned unknowns for 559 

several amino acid positions within the PEP. Our experimental verifications then revealed 560 

indeed new substrates such as valine and citrulline. This information can then be used to 561 

refine our prediction algorithm in a feedback loop. 562 

Another main advantage of our bioinformatic pipeline is that it can be applied to draft 563 

genomes. This reflects a major improvement compared to existing annotation tools such as 564 

antiSMASH25, which typically has difficulties in recognizing NRPS structures in fragmented 565 

genome assemblies. However, draft genomes are the most common data source in 566 
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microbiology. While our pipeline shows high performance, we need to acknowledge that we 567 

still lose many genomes (6087 out of 9599, 63.4%). The reason for the loss is that the 568 

pyoverdine synthesis machinery is large, which increases the probability that it is positioned 569 

at the end of a contig. We decided to exclude those cases because the annotated synthesis 570 

machinery might be truncated and thus incomplete. Thus, the high loss rate of draft genomes 571 

is rather due to limitations in sequence quality (too many short contigs) and not due to a 572 

limitation of our bioinformatic pipeline. We believe that this limitation will be lesser of a proble 573 

in the future as long-read sequencing technologies are quickly becoming cheaper and more 574 

reliable. 575 

We further show that knowledge-guided learning combined with a phylogeny-focused 576 

approach is a powerful tool for predicting the substrate specificity of A domains of synthetases. 577 

It outperforms currently known bioinformatics prediction tools of NRPS substrates such as 578 

antiSMASH25. Most current algorithms44-48perform poorly when applied to pyoverdines, 579 

particularly when encountering non-proteogenic amino acids. The high accuracy of our 580 

algorithm can largely be attributed to our reference set, composing only 13 pyoverdines from 581 

Pseudomonas spp., yet capturing most of the substrate diversity. Similarly accurate 582 

predictions based on a handful of known substrates among closely related species were 583 

observed in several fungal NRPS systems49. It is worth noting that when the algorithm output 584 

is "unknown," it actually signifies uncharacterized A domains not yet incorporated into the 585 

reference data set. This should prompt researchers to pay attention to these A domains, and 586 

like in our case, subject them to further experimental investigation. This approach helped us 587 

discover new substrates (valine, histidine, citrulline), which had not been previously 588 
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documented in pyoverdines and were therefore absent from the reference A domains. The 589 

novel substrates identified through our structural assessment and mass spectrometry 590 

experiment can subsequently be used to enhance the precision of our phylogeny-centered 591 

substrate prediction technique in the future, creating a progressive feedback loop of 592 

expanding knowledge. Taken together, supervised learning based on a few known 593 

compounds produced by species from the same genus probably outperforms generalized 594 

prediction algorithms trained on many products from a diverse set of microbes for NRPS 595 

substrate predictions.  596 

Our results show that both pyoverdine and receptor diversity has been vastly 597 

underestimated. While considerable pyoverdine diversity (n=73) has already been captured in 598 

previous studies, here we discovered 151 new variants. On the receptor side, the uncovered 599 

novel diversity is more dramatic. One reason for this is that research on receptors has mainly 600 

focused on the pathogen P. aeruginosa19-22,50. For this species, three different pyoverdine 601 

types were described21 together with three structurally different FpvA receptor types that each 602 

recognize one of the pyoverdine types22. While our study confirmed that P. aeruginosa strains 603 

(n = 554) indeed have only 3 pyoverdine-receptor systems, we also discovered 91 new FpvA 604 

groups among environmental Pseudomonas spp. Our findings raise the question why there 605 

are so many different pyoverdine and receptor variants. One potential explanation is that the 606 

benefit of specific siderophores could be context-dependent and locally adapted to multitude 607 

of different environmental conditions pseudomonads are exposed to. For example, 608 

experimental work has revealed that pyoverdines can be cooperatively shared among strains 609 

with matching receptors33,51, or conversely, pyoverdines can serve as competitive agents by 610 
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locking away iron from species that have non-matching receptors52. Given that bioavailable 611 

iron is limited in most natural and host-associated habitats53-55, the unraveled functional 612 

diversity is likely a direct evolutionary consequence of the struggle and competition of 613 

microbes for iron. While experimental work is often restricted to a low number of strains, we 614 

propose that our bioinformatic pipeline can be used to predict pyoverdine-mediated 615 

interaction networks across thousands of strains and across different habitats. We will 616 

address this point in a future study. 617 

We believe our pipeline could be easily expanded to study iron competition in multi-618 

species communities in the future and perhaps in plant-microbe ecosystems, as siderophores 619 

exist ubiquitously and are shared among microbes56. To move further, a key question is 620 

whether our knowledge-guided approach can be applied to other important secondary 621 

metabolites, such as antibiotics, toxins, biosurfactants and pigments? This answer is: not 622 

directly but the pipeline development strategies are translational between different types of 623 

compounds. As soon as sufficient case-by-case knowledge on a specific system is available, 624 

the annotation strategies together with the feature sequence extraction and the phylogeny-625 

focused approach developed in our paper can be applied. For most of the secondary 626 

metabolites listed above, there are no receptors as the compounds have purely extra-cellular 627 

functions, which substantially simplifies the development of bioinformatic pipelines. In the long 628 

run, it will certainly be possible to automate the steps implemented in our workflow so that the 629 

algorithms can be applied to a large set of secondary metabolites when fed with an 630 

appropriate training set.  631 

 632 

Data Availability  633 
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The source code and parameters used are available in the supplementary material. 634 
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