

1 **From sequence to molecules: Feature sequence-based genome mining**  
2 **uncovers the hidden diversity of bacterial siderophore pathways**

3 Shaohua Gu<sup>1,2#</sup>, Yuanzhe Shao<sup>2#</sup>, Karoline Rehm<sup>3</sup>, Laurent Bigler<sup>3</sup>, Di Zhang<sup>1</sup>, Ruolin He<sup>1</sup>,  
4 Jiqi Shao<sup>1</sup>, Alexandre Jousset<sup>4</sup>, Ville-Petri Friman<sup>5</sup>, Zhong Wei<sup>4\*</sup>, Rolf Kümmerli<sup>6\*</sup>, Zhiyuan  
5 Li<sup>1,2\*</sup>

6 <sup>1</sup> Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking  
7 University, Beijing, 100871, China

8 <sup>2</sup> Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies,  
9 Peking University, Beijing, 100871, China

10 <sup>3</sup> University of Zurich, Department of Chemistry, Winterthurerstr. 190, 8057 Zurich,  
11 Switzerland

12 <sup>4</sup> Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key lab of organic-based  
13 fertilizers of China, Nanjing Agricultural University, Nanjing, P R China

14 <sup>5</sup> University of Helsinki, Department of Microbiology, 00014, Helsinki, Finland

15 <sup>6</sup> University of Zurich, Department of Quantitative Biomedicine, Winterthurerstr. 190, 8057  
16 Zurich, Switzerland

17

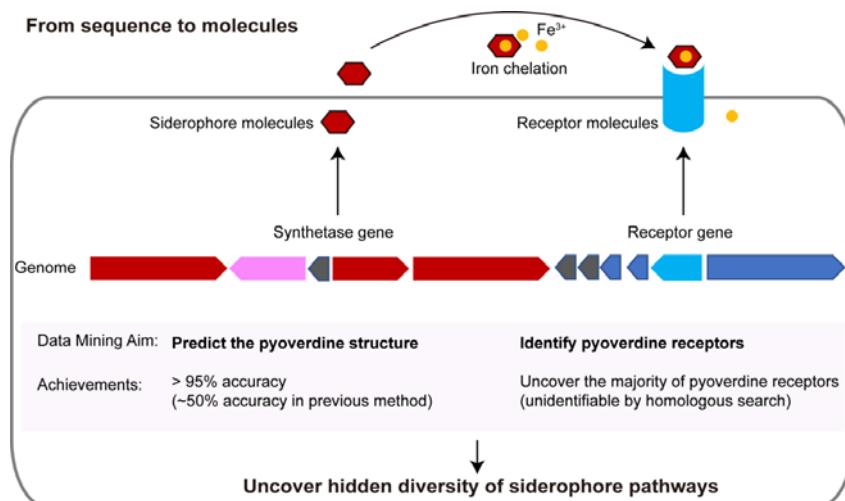
18 <sup>#</sup>These authors contributed equally to this article.

19 \*Corresponding authors (email: [weizhong@njau.edu.cn](mailto:weizhong@njau.edu.cn); [rolf.kuemmerli@uzh.ch](mailto:rolf.kuemmerli@uzh.ch);  
20 [zhiyuanli@pku.edu.cn](mailto:zhiyuanli@pku.edu.cn) )

21

22 **Abstract**

23 Microbial secondary metabolites have long been recognized as a rich source for  
24 pharmaceutical compound discovery and to have crucial ecological functions. However, the  
25 sequence-to-function mapping in microbial secondary metabolism pathways remains  
26 challenging because neither protein function nor substrate specificity can accurately be  
27 predicted from genome data. Here we focus on the iron-scavenging pyoverdines,  
28 siderophores of *Pseudomonas* bacteria, as model system to develop a knowledge-guided  
29 bioinformatic pipeline that extracts functional information of both the pyoverdine synthesis  
30 machinery and uptake receptors from 1928 draft genomes. For pyoverdine synthesis, our  
31 approach predicts the chemical structure of 188 different pyoverdines with nearly 100%  
32 accuracy. For pyoverdine uptake, our pipeline uncovers 94 different pyoverdine receptor  
33 groups. Our results demonstrate that combining feature sequence and phylogenetic  
34 approaches is a powerful way to reconstruct bacterial secondary metabolism pathways based  
35 on sequence data, unveiling an enormous yet overlooked diversity of siderophores and their  
36 receptors.



37

38 **Introduction**

39 Rapid advancements in sequencing technologies have revolutionized our view on microbial  
40 communities. While amplicon sequencing provides information on community composition  
41 and diversity, shotgun and whole genome sequencing allow us to reliably anticipate  
42 evolutionary and ecological relationships between microbes and to obtain functional  
43 information on communities. Computational models assessing the metabolic capacity of  
44 individual members, or an entire consortium, have become very popular and powerful<sup>1-3</sup>. The  
45 major focus of such modelling approaches is typically on the primary metabolism of bacteria,  
46 as genes involved in core metabolic pathways are highly conserved and can be identified with  
47 relative ease<sup>2,4</sup>. Conversely, analysis of the secondary metabolites has attracted less attention,  
48 even though they include compounds such as antibiotics, toxins, siderophores, biosurfactants,  
49 all known to have important implications for community assembly<sup>5,6</sup> and to be important  
50 sources for pharmaceutical discoveries<sup>7,8,9,10</sup>.

51 There are multiple challenges that currently prevent a detailed unravelling of secondary  
52 metabolism of bacteria based on genome data<sup>5,11</sup>. First, most secondary metabolites are  
53 produced by pathways comprised of modular enzymes such as non-ribosomal peptide  
54 synthetases (NRPSs) or polyketide synthases (PKS)<sup>12,13</sup>. Locating complete synthesis  
55 clusters and identifying all enzyme-encoding genes is challenging from highly fragmented  
56 metagenomic sequences or draft genomes with a high number of contigs. Second, functional  
57 predictions for coding regions within a cluster rely on homologous comparisons with  
58 experimentally characterized genes. Such information is often restricted to a limited number  
59 of model organisms, meaning that only a small portion of the existing secondary metabolism

60 pathways is covered by current data bases. Finally, given the complex multi-modular  
61 synthesis machineries, it is challenging to precisely predict the secondary metabolites  
62 produced even with accurately annotated NRPS or PKS clusters. The main challenge is that a  
63 large pool of non-proteinogenic amino acids is used as substrates and the specificity of an  
64 enzyme's A domain, connecting these unusual amino acids, is often poorly understood<sup>14</sup>. As a  
65 result, new computational methods are needed to accurately reconstruct bacterial secondary  
66 metabolism from sequence data.

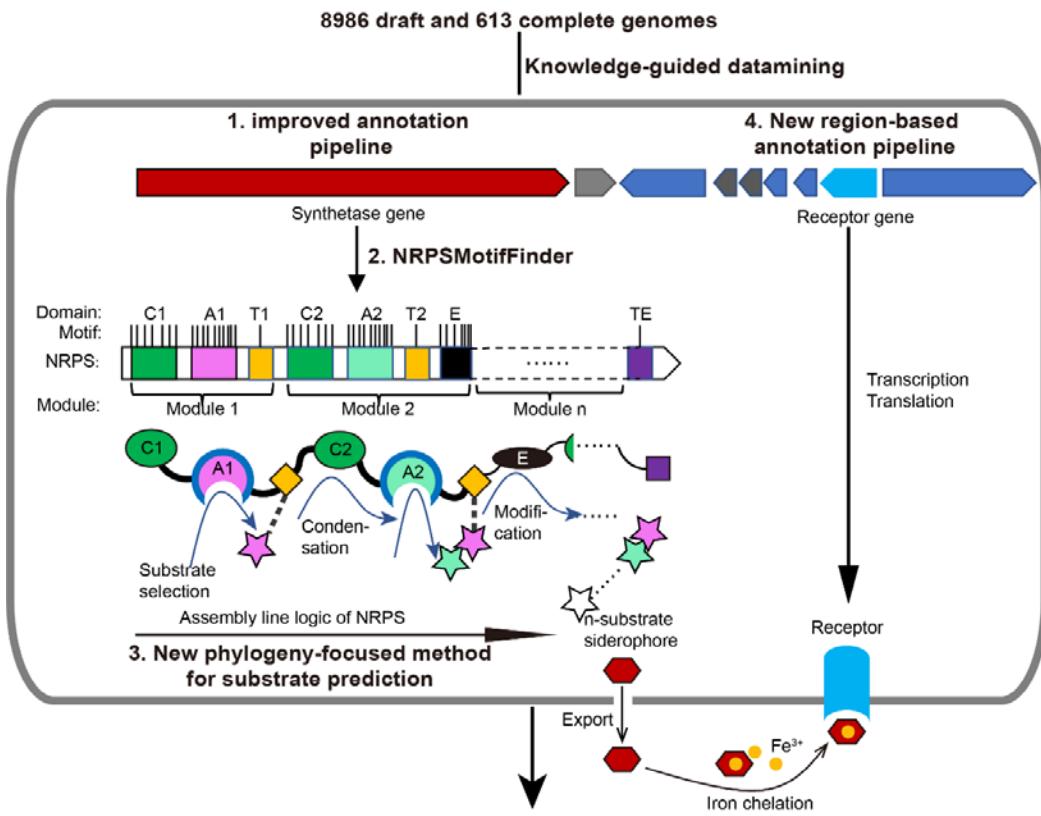
67 Here, we present a new bioinformatic pipeline that overcomes these challenges. We  
68 specifically focus on a particular class of secondary metabolites (iron-scavenging  
69 siderophores) as a case study to develop a bioinformatic workflow that predicts the chemical  
70 structure of the produced metabolites with near 100% accuracy. Our pipeline is based on  
71 improved gene annotation combined with a phylogeny- and feature sequence-based  
72 substrate prediction techniques (Figure 1). In comparison with the currently available  
73 databases and bioinformatic tools<sup>14-16</sup>, the main advancement of our method is the more  
74 accurate prediction of synthesized products based on NRPS clusters identified in genome  
75 data.

76 Among siderophores, we focus on NRPS machineries that are responsible for the  
77 synthesis of pyoverdines, a class of chemically diverse siderophores with high iron affinity,  
78 produced by *Pseudomonas* bacteria<sup>17,18</sup>. While each *Pseudomonas* strain produces a single  
79 type of pyoverdine, an enormous structural diversity has been described across strains and  
80 species<sup>19-22</sup>. Pyoverdine types differ in their peptide backbone, meaning that the diversity  
81 should be mirrored in NRPS enzyme diversity and their selectivity for the different amino acid

82 substrates<sup>18</sup>. Based on this knowledge, our pipeline entails the following steps (Figure 1): (i)  
83 identification of the complete sequences of pyoverdine synthetase genes from fragmented  
84 draft genomes, (ii) building the pyoverdine synthesis machinery *in silico* by extracting the  
85 feature sequences for substrate specificity from motif-standardized NRPSs, and (iii) predicting  
86 the precise chemical structure of pyoverdines followed by empirical verification.

87 An additional element of iron metabolism is that when siderophores are secreted and  
88 bound to iron, bacteria rely on a specific receptor for their uptake into the cell. Pyoverdine  
89 receptors are annotated as FpvA and it is known that receptor diversity matches pyoverdine  
90 diversity<sup>22,23</sup>. Moreover, FpvA belongs to the family of TonB-dependent receptors and a single  
91 *Pseudomonas* species often has many gene copies encoding these receptors. This poses an  
92 additional bioinformatic challenge: how to find the gene encoding the specific pyoverdine  
93 receptor among several potential receptor genes? To overcome this, we develop an algorithm  
94 that focuses on sequence regions involved in pyoverdine recognition and translocation across  
95 the outer membrane with supervised learning methods that locate the *fpvA* genes in the  
96 fragmented genomes based on these regions (Figure 1). Altogether, our bioinformatic pipeline  
97 uses knowledge-guided insights empowered by supervised learning to construct a first  
98 systematic sequence-to-function mapping of a family of secondary metabolites (pyoverdine)  
99 and their corresponding receptors. Our analysis unveils a yet unrecognized extraordinary  
100 diversity of iron-scavenging machineries in pseudomonads.

101



102 **A first global comprehensive overview of pyoverdine and receptor diversity**

103 **Figure 1 Scheme depicting our new genome mining pipeline to precisely predict the**  
104 **synthesis, the molecular structure and the uptake machinery of pyoverdines, a family**  
105 **of iron-scavenging siderophores produced by members of the *Pseudomonas* genus.**

106 The grey rounded outer rectangle represents a bacterial cell. The red and blue arrow-shaped boxes  
107 stand for the synthetase and receptor genes for pyoverdines, respectively. Synthetase genes are  
108 transcribed and translated to form the *n*-modular NRPS enzymes. These enzymes synthesize the  
109 peptide backbone of pyoverdine through an assembly line using their repeating module units, with the A  
110 domain being responsible for substrate selection and the E domain for chirality. The *n*-substrate  
111 siderophores are then exported to the extracellular space for iron chelation. Membrane-embedded  
112 TonB-dependent receptors recognize the ferri-siderophore complex and import it into the cell. Bold black  
113 text and black arrows describe our multi-step computational methods developed to reconstruct the entire

114 process from genome sequence data. First, the annotation pipeline was improved (from antiSMASH) to  
115 extract the complete sequence of pyoverdine synthetase genes from draft genomes. Second,  
116 NRPSMotifFinder was used to define A- and E-domains and to determine the exact motif-intermotif  
117 structure of the pyoverdine assembly line. Third, intermotif regions most indicative of substrate  
118 specificity were used to develop a phylogeny-focused method for precise product prediction. Fourth, a  
119 sequence-region-based annotation method was combined with genome architecture features to identify  
120 the FpvA, receptors responsible for ferri-pyoverdine import.

121

122 **Results**

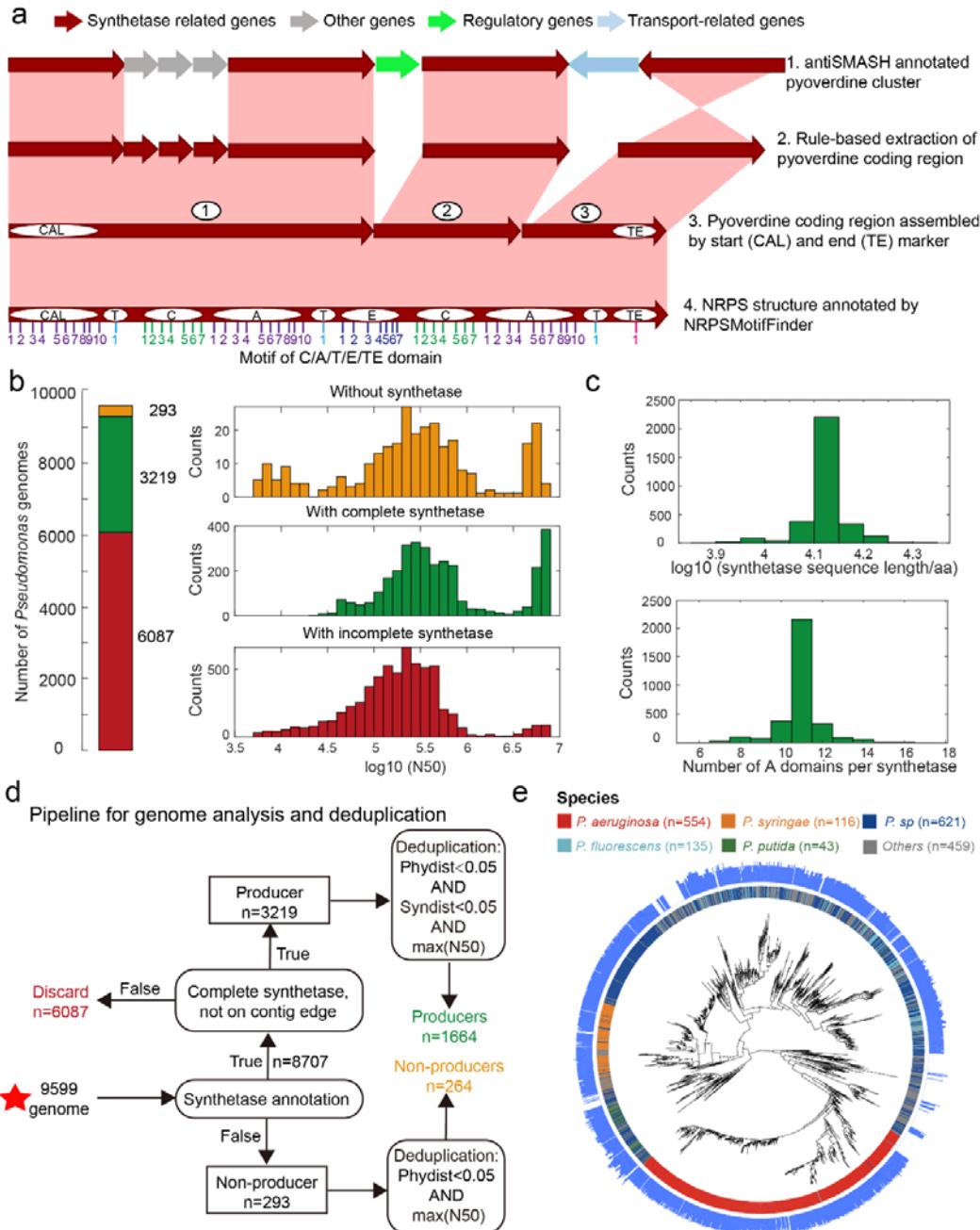
123

124 **Section 1: Improved annotation pipeline reveals a vast reservoir of pyoverdine  
125 synthetase genes**

126 The first step of our bioinformatic pipeline was to improve the annotation of pyoverdine  
127 synthetase genes. The pyoverdine molecules is composed of a conserved fluorescent  
128 chromophore (Flu) and a peptide chain (Pep), which are both synthesized by NRPS  
129 enzymes<sup>24</sup>. There are already existing tools, such as antiSMASH, that can find and annotate  
130 NRPS clusters in microbial genomes<sup>25</sup>. However, antiSMASH (and other popular annotation  
131 platforms<sup>15,16</sup>) rely on accurate gene predictions, which are typically problematic for  
132 fragmented genomes. Consequently, while antiSMASH can recognize and annotate certain  
133 genes of an NRPS cluster, the precise reconstruction of a complete NRPS assembly line  
134 often fails. This is particularly problematic because most available genomes are drafts and  
135 any analysis suffers from the unavoidable issue of incomplete or misannotation of gene

136 fragments.

137



138

139 **Figure 2 Improved annotation pipeline reveals a vast diversity of pyoverdine**

140 **synthetase genes.** a. Improved annotation pipeline based on the raw annotation from antiSMASH. b.

141 The annotation pipeline was applied to 9599 *Pseudomonas* genomes (94% draft genomes). Genomes

142 could be separated into three categories. Yellow: genomes without pyoverdine cluster. Green: genomes

143 with a complete pyoverdine cluster. Red: genomes with incomplete pyoverdine synthetase cluster. The  
144 red category involved genomes with truly incomplete clusters (lacking Flu or Pep synthetic genes) or  
145 genomes with likely truncated synthetic genes at the edge of contigs. **c.** Distributions of the sequence  
146 length (upper panel) and the number of A domains (lower panel) across all the genomes with a complete  
147 synthetase cluster. **d.** Workflow applied to separate the 9599 *Pseudomonas* genomes into the three  
148 categories described in b and removing of redundant genomes with high phylogenetic similarity and  
149 showing high similarity in pyoverdine synthetases. Red star indicates the start of the workflow. **e.**  
150 Phylogenetic tree depicting the relationship among the 1928 non-redundant *Pseudomonas* strains (1664  
151 producers and 264 non-producers) based on the concatenated alignment of 400 single-copy conserved  
152 genes in their genomes. The inner ring depicts the taxonomical classification including the four most  
153 prevalent species. The outer ring shows the number of A domains present in the pyoverdine synthetase  
154 assembly line in each strain.

155 To overcome these issues, we developed an improved four-step annotation pipeline  
156 starting with the raw annotation of the pyoverdine cluster obtained from antiSMASH (Figure  
157 2a). First, we implemented a NRPS Hidden Markov Model (HMM) to re-annotate and extract  
158 the entire nucleotide sequence of the pyoverdine synthetase cluster<sup>26</sup>, including the genes  
159 missed by antiSMASH. For this step, the nucleotide sequences were converted into amino  
160 acid sequences to avoid erroneous gene predictions typically associated with antiSMASH.  
161 Second, we assembled the entire re-annotated pyoverdine coding region into a single  
162 sequence with a defined start (CAL) and/or end (TE) markers. Third, we used  
163 NRPSMotifFinder to identify the C, A, T, E and TE motifs that are characteristic for the NRPS  
164 structure of pyoverdine<sup>14</sup>. Finally, we applied a safety measure to ensure that the recovered

165 NRPS assembly line is complete (contains both Flu and Pep) and is not truncated, which can  
166 occur when a synthetase coding region is at the edge of a contig. Consequently, we  
167 dismissed all pyoverdine synthesis clusters located within 100 bp proximity to contigs' edges  
168 and either lacked Flu or Pep synthetic genes.

169 Next, we applied our improved pyoverdine synthesis annotation pipeline to 9599  
170 *Pseudomonas* genomes (including 613 complete and 8986 draft genomes) retrieved from the  
171 *Pseudomonas* Genome Database<sup>27</sup>. We found the pyoverdine synthesis machinery in 97% of  
172 the genomes (Figure 2b), indicating that the machinery is ubiquitous in *Pseudomonas*.  
173 However, since 94% of the analyzed genomes were in draft form, the pyoverdine synthesis  
174 machinery was likely truncated (i.e., on the edge of the contig) in 63.4% (6087) of the  
175 genomes. These genomes were excluded from further analysis. Around 3.1% of retained  
176 genomes (293) with high assembly completeness were missing pyoverdine synthetic genes,  
177 indicating that these *Pseudomonas* strains were not able to produce pyoverdine ('non-  
178 producers'). The rest of the genomes (33.5%; 3219 genomes) were classified as 'producers'  
179 with complete pyoverdine NRPS assembly lines that meet all our quality controls. For these  
180 3219 genomes, we used NRPSMotifFinder to find boundaries between the various synthesis  
181 domains and to determine amino acid length and the number of A domains. The lengths of  
182 pyoverdine synthetic genes ranged between 7690 and 21333 amino acids, and the number of  
183 A domains per synthetase ranged between 6 and 17, with a total of 35,281 A domains being  
184 present across all strains (Figure 2c and Figure S1). Overall, our analysis pipeline unveiled a  
185 vast diversity of pyoverdine synthetase that goes far beyond of what has previously been  
186 described in the literature.

187 Finally, we conducted a phylogenetic analysis based on 400 conserved genes with the  
188 293 non-producers and the 3219 producers. We first removed redundant non-producers by  
189 retaining the most integrative genome among strains with high phylogenetic similarity. Then, we  
190 removed redundant producers by retaining the most integrative genome among strains with  
191 high phylogenetic and pyoverdine synthetase similarity (Figure 2d). This data cleaning yielded a  
192 total of 1928 *Pseudomonas* strains (403 complete and 1525 incomplete genomes),  
193 segregating into 1664 pyoverdine producers and 264 non-producers. The phylogenetic tree  
194 revealed that all major *Pseudomonas* species clades were present in our data set (Figure 2e).  
195 Moreover, the number of A domains varied widely among species and even between strains  
196 within species. For example, the number of *Pseudomonas aeruginosa* A domains ranges  
197 between 7 and 14. In summary, by improving the synthetase annotation method, we  
198 successfully obtained 1664 highly reliable pyoverdine synthetases (with a total of 18,292 A  
199 domains) and 264 non-producers.

200

## 201 **Section 2: Phylogeny-focused substrate prediction for pyoverdine A domains**

202 Our next goal was to precisely predict the molecular structure of the pyoverdines produced by  
203 the 1664 strains with complete synthetase gene clusters. The first essential step towards this  
204 goal was to reliably predict the substrate selectivity of all A domains in the NRPS assembly  
205 line. The A domain of each module selects for a single substrate among 22 proteinogenic and  
206 hundreds of non-proteinogenic amino acids<sup>28,29</sup>. Moreover, whenever an E domain exists  
207 downstream of an A domain, the chirality of the amino acid incorporated into the peptide chain  
208 gets modified from L to D. Thus, the modularity combined with the selectivity of A domains

209 can promote an enormous diversity of pyoverdine molecule structures. To date, 73 pyoverdine  
210 structures have been reported (Supplementary\_table1) out of which 13 have their synthetase  
211 genes sequenced (Supplementary\_table2). In order to make reliable predictions, two  
212 challenges must be addressed: (i) the extraction of relevant information from A domain  
213 sequences for which the substrate is known, and (ii) the effective application of this  
214 information to predict specificity of A domain sequences for which the substrate is unknown.

215 To address the first challenge, we built our analysis on the NRPS assembly lines of the  
216 known 13 pyoverdines to extract relevant information from the A domain sequences. From  
217 this dataset, we could identify 101 A domains that could be experimentally linked to 13 amino  
218 acid substrates (Supplementary\_table3). We next performed multisequence alignment of the  
219 101 A domains to determine the “feature sequence distance”, which is the most informative  
220 for the substrate selectivity. To this end, we tested three different A domain regions, three  
221 different sequence similarity measurements and seven different clustering methods for their  
222 predictive power (Figure 3a). We found that the full A domain sequence is not informative for  
223 substrate prediction (Figure 3b, left panel). Instead, our analysis indicated that information-  
224 rich positions start with motif A4 and end before motif A5, consistent with the known role of  
225 the A domain pocket in substrate selectivity<sup>14</sup>. Overall, the sequence region from motifs A4 to  
226 A5 (termed “Amotif4-5”), in conjunction with Jukes-Cantor distance and Ward linkage  
227 clustering, performed best in accurately distinguishing between different substrates and  
228 maintaining homogeneity for identical substrates (Figure 3b).

229 To address the second challenge, we developed a “phylogeny-focused method” to apply  
230 the feature sequence distance derived in the preceding paragraph to the 18,292 discovered A

231 domains. We realized that a direct construction of a phylogenetic tree including all 18,292  
232 query A domains and the 101 reference A domains would be computationally too demanding  
233 and impossible to scale up. Furthermore, such an approach would result in phylogeny-  
234 interference issues, where domains would cluster not only based on their substrate  
235 similarities but also based on overall species relatedness<sup>14</sup>. To minimize the effect of  
236 phylogeny and speed up calculation, we took each of the 18,292 query A domains and  
237 identified the two most similar A domain clusters within the 101 reference A domain set. We  
238 then compared the feature distance between each query A domain and the two most similar  
239 reference A domains in different clusters and assigned the query A domain to a substrate  
240 specificity using the following rules (Figure 3c). (1) If the feature distance is below the 0.7  
241 threshold (corresponding to 50% identity) for only one of the two reference A domains, then  
242 the substrate of the query A domain is matched to the substrate of the more similar (lower  
243 distance) reference A domain. (2a) If the feature distance is below the 0.7 threshold for both  
244 reference A domains, then we considered the relative difference of the query A domain  
245 towards the two reference A domains. If the relative difference is larger than 0.2, the query A  
246 domain is matched to the substrate of the more similar reference A domain. (2b) If the relative  
247 difference is smaller than 0.2, the substrate of the query A domain cannot unambiguously be  
248 determined and is thus matched with both reference substrates. (3) If the feature distance is  
249 above the 0.7 threshold (below 50% identity) for both reference A domains, then the substrate  
250 of the query A domain is marked as “unknown”. For most query A domains, rule (1) could be  
251 applied (17880 cases), whereas rules (2) and (3) had to be used rarely (133 and 279 cases,  
252 respectively). We applied our methodology termed “phylogeny-focused method” to all

253 following substrate and pyoverdine structure predictions.

254

255 **Section 3: Experimental validation of the annotation and prediction pipeline**

256 We tested whether our bioinformatic pipeline can reliably predict the structure of a set of yet

257 uncharacterized pyoverdines. To achieve this objective, we selected 20 *Pseudomonas* strains,

258 all known to produce pyoverdines, from a natural strain collection that was previously isolated

259 from soil and water<sup>30</sup>. We sequenced their genomes and subsequently applied our annotation

260 and prediction pipeline to generate predicted pyoverdine structures for all 20 strains harboring

261 a total of 237 A domains. Then, we elucidated the chemical structure of the 20 pyoverdines

262 using culture-based methods combined with UHPLC-HR-MS/MS<sup>31</sup>. We found a near-perfect

263 match (96.2%) between the predicted and the observed pyoverdine chemical structures and

264 were able to accurately assign amino acids in 228 out of 237 cases (Figure 3d). Our method

265 demonstrated a substantial improvement comparing to the prediction accuracy of AntiSMASH

266 in pyoverdines (46.0%), which could accurately assign correct amino acids only in 109 out of

267 237 cases (Supplementary\_table4). The nine non-matching cases of our method segregated

268 into three groups. In three cases (1.3%), our algorithm could not distinguish between the

269 substrates Lysine and Ornithine, as these two amino acids are highly similar both in terms of

270 their chemical structures and corresponding A domain sequences. This is the only sensitivity

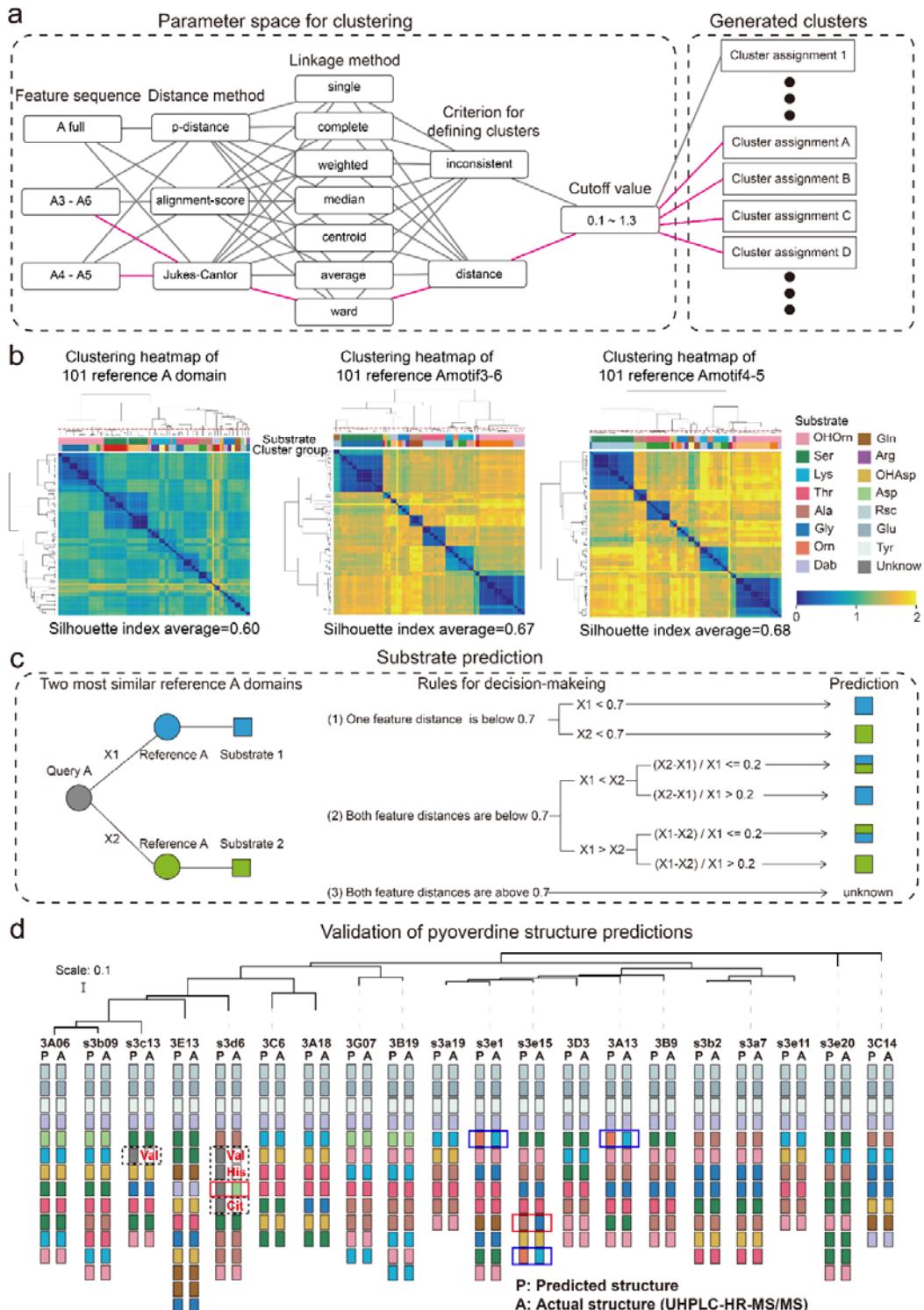
271 issue that is associated with our approach. In four cases (1.7%), our technique assigned an

272 “unknown” substrate to amino acids that turned out to be valine, citrulline and histidine.

273 Indeed, these three amino acids have not been reported in pyoverdines before and are

274 therefore not yet present in the reference dataset. These cases show that our analysis

275 pipeline can be used to identify new substrates. Once experimentally verified, the new A  
276 domains and their substrates can expand the reference dataset, allowing targeted  
277 improvement of our phylogeny-focused prediction technique. Finally, there were only two  
278 cases (0.8%) that represented true mismatches between observed and predicted amino acids.  
279 Altogether, our phylogeny-focused method is highly accurate in predicting pyoverdine peptide  
280 structures and in identifying unknown substrates in *Pseudomonas*.



282 **Figure 3 Phylogeny-focused substrate prediction for pyoverdine synthetase assembly**

283 **lines.** a. Information from 101 reference A domains with known amino acid substrates were used to

284 develop an algorithm that predicts substrates from A domain sequence data with high accuracy. The

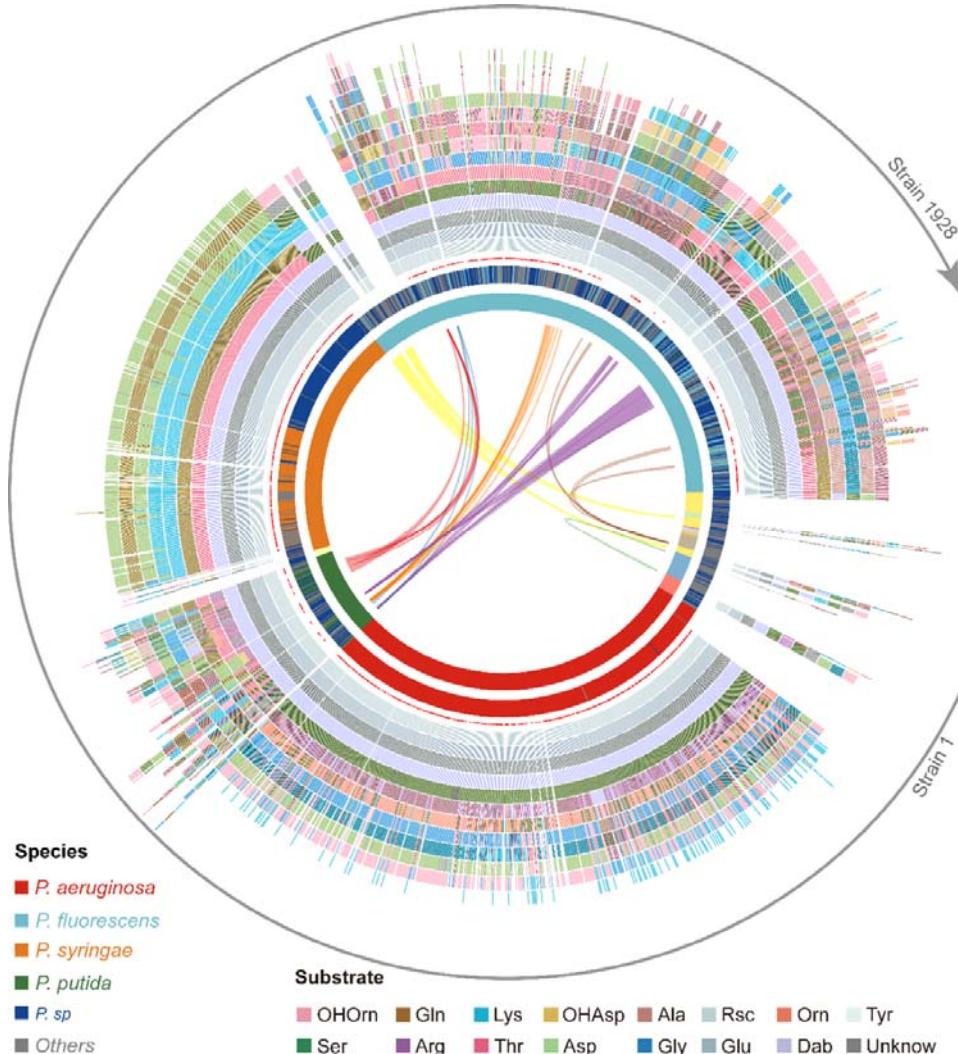
285 challenge is to group the variable A domains into clusters that predict the same substrate (captured by  
286 the silhouette index). To find the most distinctive algorithm, we combined different feature sequences of  
287 A domains (Amotif) with different distance and linkage methods in our hierarchical clustering analyses.  
288 The best performing path is shown in pink. **b.** Heatmap showing the hierarchically clustered distances of  
289 the 101 reference A domains as a function of the feature sequence used. Left panel: complete A domain  
290 sequences. Middle panel: Amotif3-6 sequences. Right panel: Amotif4-5 sequences. The experimentally  
291 validated substrates are shown on top of the heatmaps. The heatmaps show that hierarchical clustering,  
292 reliably associating sequence distances with substrate, worked best with the Amotif4-5. **c.** Phylogeny-  
293 focused substrate prediction pipeline for query A domains (grey circle) based on Amotif4-5 feature  
294 sequence comparisons. X1 and X2 represent the feature distance between the query A domain and two  
295 closest reference A domains (blue and green circles), respectively. Three rules are used, based on the  
296 feature distances X1 and X2 and a threshold value of 0.7 (50% similarity), to make substrate predictions  
297 for the query A domain. There are three possible outcomes: unambiguous substrate prediction (blue or  
298 green squares), ambiguous substrate prediction (dual-colored squares), and no prediction ("unknown"). **d.**  
299 Phylogenetic tree of 20 *Pseudomonas* strains and visualization of their predicted and actual pyoverdine  
300 structures to validate our phylogeny-focused substrate prediction pipeline. 228 out of the 237 substrates  
301 (96.2%) were correctly predicted. The nine inconsistencies are boxed in blue (Lysine and Ornithine are  
302 indistinguishable), in dashed black (correct detection of "unknown" substrates), and in red (true  
303 mismatches). Note that our prediction pipeline (as any other pipeline) cannot distinguish between  
304 modified variants of the same amino acid.

#### 305 **Section 4: Application of the annotation and prediction pipelines to a full dataset**

306 After successful validation, we applied our bioinformatic pipeline to the 1664 complete NRPS

307 assembly lines annotated in our genome analysis (Figure 2). Across all assembly lines, we  
308 were able to predict the substrates of 17,880 A domains (97.75%) without ambiguity, whereas  
309 133 A domains (0.73%) were associated with two different substrates, and 279 A domains  
310 (1.52%) predicted an unknown substrate (similar to the case of valine above). After  
311 considering the presence/absence of an E domain in each module, we derived the structure  
312 of 1664 pyoverdines according to method at section 2 (Figure 4). Our prediction yielded 188  
313 different pyoverdine molecules, out of which only 37 structures had been previously reported.  
314 However, these 37 reported structures were highly abundant across strains (1103 out of  
315 1664). Agreeing with previous studies, we observed that the fluorophore is highly conserved  
316 among the 188 predicted structures. Moreover, our analysis confirmed that 13 amino acid  
317 substrates form the core of all the 188 pyoverdine structures, with most of the variation being  
318 attributable to different substrate combinations, peptide lengths, and substrate chirality  
319 (Figure 4). In addition, the 279 unknown substrates will significantly increase the repertoire of  
320 pyoverdine amino acids if could be characterized by future experiments, despite that they  
321 were much rarer than the 13 main substrates. Notably, pyoverdine structural diversity was not  
322 strongly linked to phylogeny because the same pyoverdine structure could be found in  
323 completely unrelated species, while closely related species often had different pyoverdine  
324 structures (Figure 4). These observations suggest that there may be both frequent  
325 recombination and horizontal gene transfer of pyoverdine synthetase clusters between  
326 species. Taken together, the bioinformatics methods developed in our study can predict a suit  
327 of secondary metabolites (pyoverdines) from sequence data with high accuracy, revealing an  
328 unprecedented richness and evolutionary history of siderophores within pseudomonads and

329 the discovery of 151 putative novel pyoverdine variants.



330

331 **Figure 4 Predicted pyoverdine structural diversity based on our developed**

332 **algorithm mapped onto the phylogenetic tree comprising all 1928 (non-redundant)**

333 **Pseudomonas strains.** The stacked boxes in the outermost circle show the predicted structure of

334 pyoverdines, whereby each color represents a specific amino acid substrate. Strains without boxes

335 represent non-producers ( $n = 264$ ). Boxes with two colors indicate cases of ambiguous (dual) substrate

336 prediction. The red dots at the basis of the stacked boxes indicate experimentally validated pyoverdine

337 structures. The inner circle shows the taxonomic species classification following Figure 2e. Because the

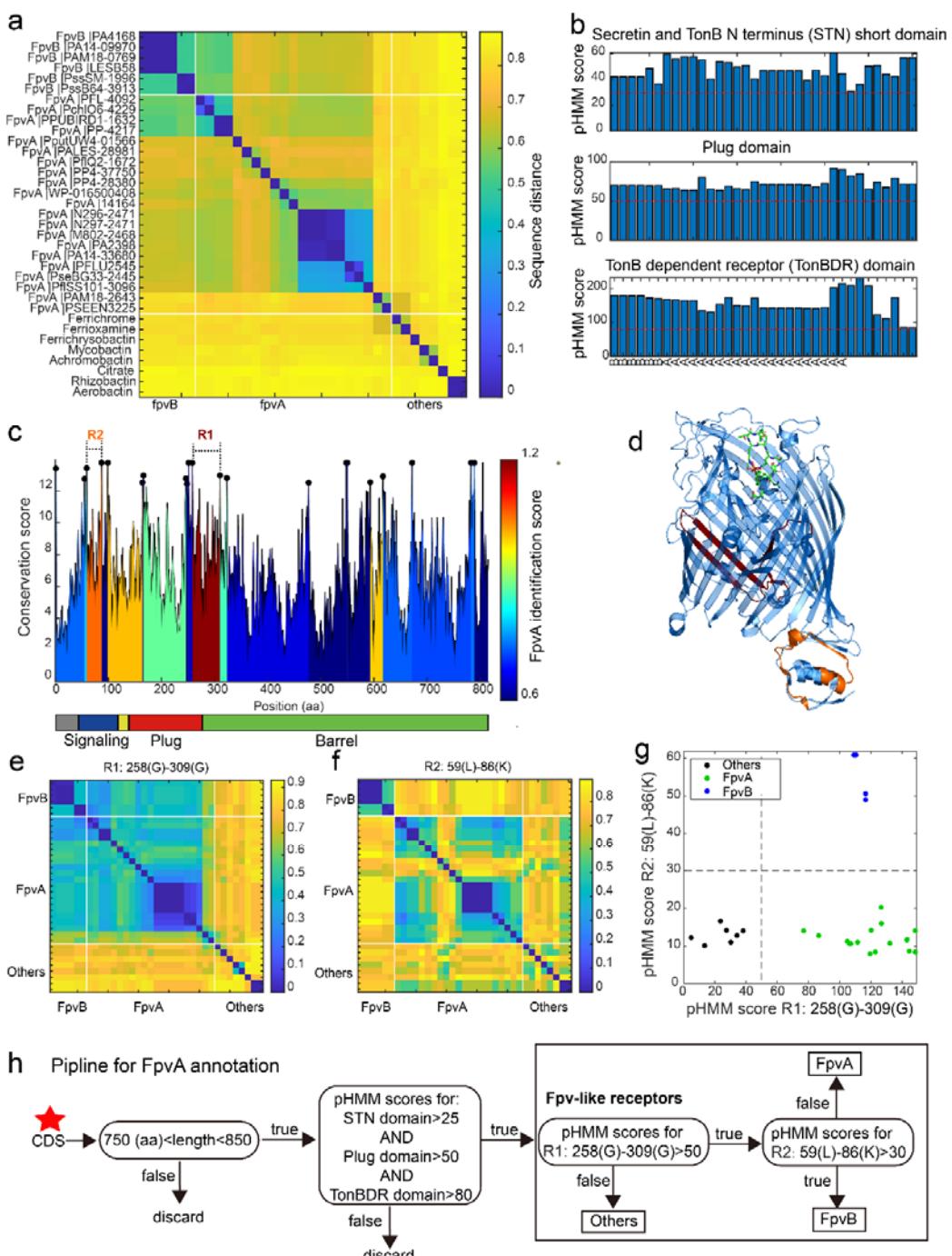
338 allocation of strains to species names is often imprecise, we divided the 1928 strains by their

339 phylogenetic distance into 18 clades (color shadings in inner-most circle), out of which 13 contained  
340 more than 1 strain. Lines within the inner-most circle link strains from different clades that share the  
341 same pyoverdine structures, whereby line colors represent the shared unique pyoverdines. The bending  
342 of the lines represents the phylogenetic sequence distances of the connected strain pairs.

343

344 **Section 5: Development of a region-based identification method for annotation of the**  
345 **FpvA receptors**

346 In pseudomonads, iron-loaded pyoverdines are recognized by FpvA, a TonB-dependent  
347 receptor, that transports the ferri-siderophore into the periplasm<sup>19,32,33</sup>. The protein structure  
348 of characterized FpvA variants consists of three domains: The Secretin and TonB N-terminus  
349 short domain (STN), the Plug domain (Plug), and the TonB dependent receptor domain  
350 (TonB)<sup>19</sup>. While these domains are conserved across FpvA variants and other siderophore  
351 receptors, there is substantial variation at the sequence level. This makes it challenging to  
352 reliably identify FpvA receptors from sequence data by homologous search. As an example,  
353 we were unable to find FpvA genes (with a 60% identity threshold) by homologous search in  
354 several genomes although they had complete pyoverdine synthesis machineries. Moreover,  
355 there are many other TonB-dependent receptors with fairly high sequence identity to FpvA but  
356 that transport other siderophores than pyoverdine (e.g. FpvB, 55% identity, transporting  
357 pyoverdine, ferrichrome and ferrioxamine B<sup>34</sup>. Therefore, it is imperative to develop a new  
358 comprehensive method for identifying FpvA receptors in *Pseudomonas* genomes.



359

360 **Figure 5** A sequence-region-based identification pipeline for annotating FpvA receptors.

361 a. Heatmap displaying the hierarchically clustered sequence distances (p-distance calculation method,

362 identity (%) = (1-sequence distance) \* 100) of 35 reference siderophore receptors identified in

363 *Pseudomonas* spp., based on full sequences. No clear discrimination between FpvA, FpvB and other

364 receptors is possible. The order of receptors is consistent across panels **(b)**, **(e)**, and **(f)**. **b.** The pHMM  
365 scores of the three standard receptor domains (STN, Plug, and TonBDR) vary across the 35 reference  
366 sequences (A: FpvA, B: FpvB and NA: others), but do not allow to distinguish between receptor groups.  
367 **c.** FpvA region-based conservation scores from a multi-alignment of the 35 reference sequences  
368 mapped to the FpvA sequence of strain *P. aeruginosa* PAO1. All residues within the top 10% of the  
369 conservation score denoted with black dots. For each region flanked by two black dots, we calculated  
370 the FpvA identification score (heatmap), representing the ability to distinguish FpvA from non-FpvA  
371 receptors. **d.** Mapping of the two regions with the highest FpvA identification scores R1(dark red) and  
372 R2 (orange) to the crystal structure of FpvA from PAO1 conjugated with pyoverdine (PDB 2IAH). **e.**  
373 Heatmap showing the hierarchically clustered sequence distances of 35 reference siderophore  
374 receptors based on the R1 sequence region. A clear discrimination between FpvA/FpvB and other  
375 receptors emerges. **f.** Heatmap showing the hierarchically clustered sequence distances of 35  
376 reference siderophore receptors based on the R2 sequence region. A clear discrimination between  
377 FpvA and FpvB receptors emerges. **e.** The pHMM scores of regions R1 and R2 for the 35 siderophore  
378 reference receptors are contrasted against each other, yielding a clear separation between FpvA, FpvB  
379 and other receptors. Dashed lines indicate the pHMM threshold scores used for later analysis. **f.**  
380 Flowchart showing all steps involved in the FpvA annotation from genome sequence data. The red star  
381 indicates the start of the workflow.

382 We started our approach by comparing the sequences of 35 reported siderophore  
383 receptors, including 21 FpvA, 6 FpvB, and 8 TonB-dependent siderophore receptor  
384 sequences often found in *Pseudomonas* genomes, encoding receptors for the uptake of  
385 heterologous siderophores (Supplementary\_table5). We found that all receptor sequences

386 share a similar length of around 800 amino acids (FpvA and FpvB sequences:  $809 \pm 10$   
387 amino acids). We then used the complete sequences to calculate the pair-wise distances by  
388 global alignment before applying hierarchical clustering (Figure 5a). We found substantial  
389 divergence between FpvA variants to an extent that was comparable to the distance between  
390 FpvA and other siderophore receptors. Moreover, FpvB variants clustered with FpvA variants,  
391 showing that FpvA identification based on full sequence distances is unachievable. We hence  
392 focused on the three typical receptor domains (TonB, Plug, and STN, retrieved from the Pfam  
393 database) and applied Profile Hidden Markov Models (pHMM) to calculate the pHMM  
394 probability scores for each domain and reference sequence. The probability scores  
395 (calculated as the log-odd ratios for emission probabilities and log probabilities for state  
396 transitions) had reasonably high scores but no distinction was apparent between the three  
397 receptor classes (Figure 5b).

398 We next asked whether there are specific regions within the receptor sequences that are  
399 characteristic of FpvA. To address this, we conducted a multiple sequence alignment (MSA)  
400 with all 35 reference receptor sequences and mapped them onto the sequence of the well-  
401 characterized FpvA of *P. aeruginosa* PAO1 (Figure 5c). MSA allows to identify conserved sites  
402 (Figure 5c, black dots representing the top 10% most conserved sites) that are shared by the  
403 majority of the reference sequences. We then used these conserved sites to partition the  
404 MSA into variable regions which were flanked by two conserved sites. For each variable  
405 region, we assessed its predictive power to differentiate FpvA from non-FpvA sequences. For  
406 this we defined the "FpvA identification score" analogous to the intercluster-vs-intraccluster  
407 Calinski-Harabasz variance ratio, as

$$I_{\text{FpvA}} = d_{\text{A:non}}/d_{\text{A:A}}$$

408 where  $d_{\text{A:A}}$  is the sequence distance among all 21 FpvA sequences, and  $d_{\text{A:non}}$  is the  
409 sequence distance between all 21 FpvA and the 14 non-FpvA sequences.

410 Our analysis yielded two locations with noticeably high FpvA identification scores (Figure  
411 5c). The region with the highest FpvA identification score (referred to as R1) locates at the  
412 intersection of the Plug domain and the barrel structure of the TonB domain (Figure 5d,  
413 between 258 Gly and 309 Gly in the PAO1 FpvA). According to the sequence distance matrix,  
414 the R1 region allows to distinguish heterologous siderophore receptors from FpvA and FpvB  
415 receptors (Figure 5e). The region with the second highest FpvA identification score (referred  
416 to as R2) was located in the C-terminal signaling domain (Figure 5d, between 59 Leu and 86  
417 Lys in the PAO1 FpvA). The sequence distance matrix revealed that R2 allows to distinguish  
418 FpvB from FpvA receptors (Figure 5f).

419 We then constructed two pHMM by (i) the alignment of the 21 FpvA sequences in the R1  
420 region, termed R1(FpvA), and (ii) the alignment of the 6 FpvB sequences in the R2 region,  
421 termed R2(FpvB). Running R1(FpvA) and R2(FpvB) against all 35 reference sequences  
422 revealed a clear separation between the three receptor categories (Figure 5g). Along the  
423 R1(FpvA) axis, FpvA and FpvB reference sequences have high R1 scores (minimal score  
424 77.0) that separate them from other siderophore receptors (maximal score 38.1), whereas  
425 FpvAs references have substantially lower R2 scores (maximal 20.2) than FpvBs (minimal  
426 49.0) along the R2(FpvB) axis.

427 Based on these insights, we developed a decision flow chart for annotating FpvAs in  
428 *Pseudomonas* genomes (Figure 5h): First, we considered sequences as Fpv-like receptors

429 that share similar properties to the ones identified in our reference database. Particularly,  
430 protein coding sequence (CDS) length has to be between 750 and 850 amino acids and the  
431 phMM scores for the three typical receptor domains STN, Plug, and TonB have to be greater  
432 than 25, 50, and 80, respectively (Figure 5b, red dashed lines). Second, we used the pHMM  
433 threshold scores obtained for R1(FpvA) and R2(FpvB) (Figure 5g) to differentiate other  
434 siderophore receptors (R1(FpvA) score < 50) from FpvB receptors (R1(FpvA) score > 50 and  
435 R2(FpvB) score > 30) and FpvA receptors (R1(FpvA) score > 50 and R2(FpvB) score < 30).  
436 Our method effectively identifies FpvA receptors from sequence data and can be readily  
437 applied to the entire *Pseudomonas* dataset.

438

#### 439 **Section 6: Application of the receptor annotation pipeline to the full dataset.**

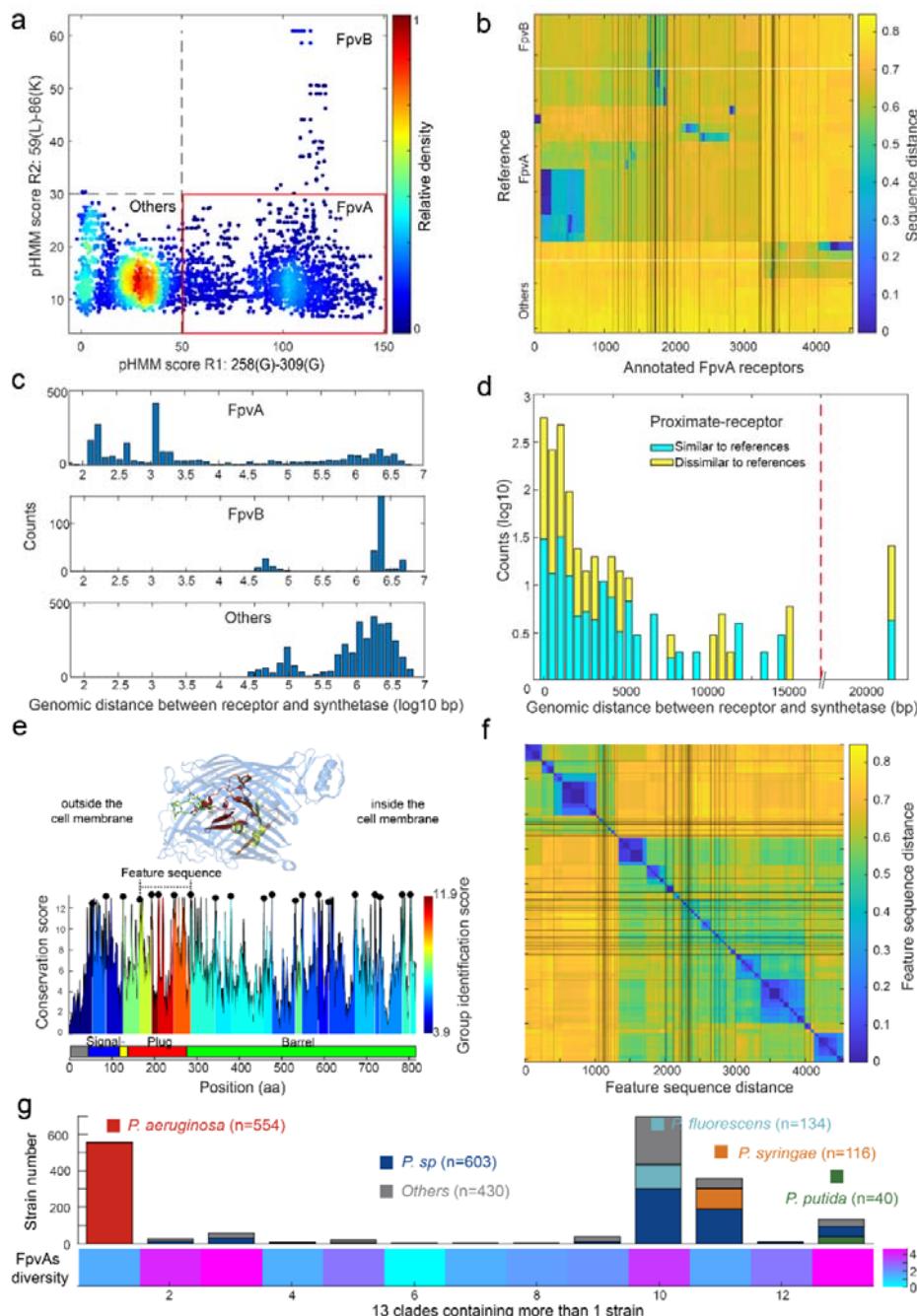
440 The region-based receptor identification pipeline was applied to all 1928 *Pseudomonas*  
441 genomes. The analysis identified 4547 FpvAs, 615 FpvBs, and 9139 other TonB-dependent  
442 Fpv-like receptors across the dataset (Figure 6a). The 4547 FpvA sequences clustered  
443 hierarchically into 114 groups, defined by an identity threshold of 60%. When comparing to  
444 the 21 reference FpvAs (Figure 6b), we found that 2293 FpvA sequences have close  
445 homologues in the reference data base, while 2254 FpvA sequences lack such close  
446 homologues (sequence identity < 50%). These latter sequences, termed as "dissimilar to  
447 reference", may represent novel subtypes of FpvA receptors that could not be found by  
448 simple homology search. Our analysis further shows that many strains have more than one  
449 FpvA receptor.

450 We then asked whether the 4547 FpvAs are found in proximity of pyoverdine Pep

451 synthetase genes as it is commonly the case for cognate FpvA receptors<sup>35</sup>. We thus  
452 calculated the proximity between pyoverdine Pep genes and the Fpv-like receptor genes by  
453 counting the number of base pairs between the two coding regions. All TonB-dependent  
454 receptors that have not been classified as FpvAs were more than 20 kb away from the Pep  
455 genes (Figure 6c). In contrast, 92% of the nearest FpvA genes were indeed located within 20  
456 kb of their pyoverdine Pep genes (Figure 6d, called proximate receptors). These proximate  
457 receptors encompassed both those with close (66%) and more distant (34%) resemblance to  
458 the reference receptor types. Overall, this proximity analysis confirmed that our region-based  
459 gene identification method can reliably identify FpvA receptors.

460 We next explored the diversity among FpvA receptors in more detail by focusing on the  
461 1534 strains that had proximate-receptors within 20 kb of the pyoverdine Pep genes (Figure  
462 6d) and using high-confidence FpvAs for sequence feature extraction. When considering the  
463 whole gene sequences, these receptors segregated into 44 groups according to single-  
464 linkage clustering with an identity threshold of 60% (Figure S2a). To investigate which  
465 sequence regions were the most informative for reliable clustering, we used a similar  
466 approach as with FpvAs detection by quantifying the "group identification score" for variable  
467 regions flanked by highly conserved sites. The higher the score, the stronger a region's  
468 capacity to discriminate between FpvA groups. We found that the four regions with the top  
469 discrimination capacities all located near the Plug domain surrounding the pyoverdine  
470 transmission channel (Figure 6e). The plug domain is known to undergo conformational  
471 changes and is involved in pyoverdine selectivity and import<sup>36,37</sup>, suggesting that the four  
472 high-score regions are responsible for pyoverdine specificity.

473



474

475 **Figure 6 Application of the receptor annotation pipeline to the full database.** **a.** Applying  
476 the receptor annotation pipeline to the genomes of the 1928 non-redundant *Pseudomonas* strains yields  
477 14301 Fpv-like receptors, which segregate into 4547 FpvA receptors (red box), 615 FpvB receptors, and  
478 9139 other receptors, based on the pHMM score thresholds for regions R1 and R2. The heatmap

479 indicates receptor density. **b.** Sequence distance matrix between the 35 reference sequences (y-axis)  
480 and the 4547 annotated FpvA sequences in the full database (x-axis). Database sequences were  
481 ordered by hierarchically clustering and segregated into 114 groups. 2254 of the annotated FpvA  
482 sequences have sequence identity < 60% compared to the reference receptors, pointing at novel  
483 subtypes of FpvA receptors. **c.** Genomic distance (in base pairs) between each Fpv-like receptor  
484 sequence and its pyoverdine peptide synthetase gene (Pep) for annotated FpvA receptors (upper panel),  
485 FpvB receptors (middle panel) and other receptors (lower panel). **d.** Distribution of the genomic distance  
486 between each FpvA receptor and its nearest pyoverdine peptide synthetase depending on whether the  
487 annotated FpvA receptor has high sequence similarity (blue,  $\geq 50\%$ ) or low sequence similarity (yellow,  
488  $< 50\%$ ) with at least one of the 21 reference FpvAs. **e.** FpvA region-based conservation scores from a  
489 multi-alignment of all the annotated FpvA receptors that are proximate ( $< 20$  kbp) to the pyoverdine  
490 synthetase cluster mapped to the FpvA sequence of strain *P. aeruginosa* PAO1. All residues within the  
491 top 10% of the conservation score denoted with black dots. For each region flanked by two black dots,  
492 we calculated the group identification score (heatmap, lower panel), representing the ability of the region  
493 to distinguish between different groups of FpvA receptors. Four regions in the plug domains had a  
494 particularly high group identification score (called the feature sequence). They are mapped to the crystal  
495 structure of FpvA from PAO1 conjugated with pyoverdine (PDB 2IAH, up panel). All four regions  
496 surround the pyoverdine transmission channel and are shown in the respective heatmap color. **f.**  
497 Heatmap showing the hierarchically clustered distances between the 4547 annotated FpvA receptors  
498 based on the feature sequence (comprising the four groups with the highest identification scores). The  
499 analysis identifies 94 receptor groups with a 70% identity threshold. **e.** The diversity of FpvA receptors  
500 along the 13 phylogeny clades containing more than 1 strain. Receptor diversity was calculated by the

501     Shannon entropy, similar to the alpha-diversity in microbial community.

502     Based on the above insights, we concatenated the four high-score regions (from 168 Pro

503     to 295 Ala in PAO1) into a single "feature sequence". The feature sequence could

504     characterize 98% of the distance matrix compared to the whole sequence (1534 FpvAs,

505     r=0.98, Figure S2a-b) and substantially reduced within-group distance. We applied the

506     concatenated feature sequence approach to all the 4547 annotated FpvAs to calculate the

507     sequence distance matrix. Single-linkage clustering with an identity threshold of 70% revealed

508     a total of 94 groups, out of which 43 groups contained more than 10 members (Figure 6f).

509     The diversity of receptors is hence much larger than currently anticipated as only 3 groups of

510     FpvAs have previously been reported. Finally, we calculated the diversity of receptor FpvAs

511     for each of the 13 phylogenetic clades with more than one strain by the Shannon entropy,

512     which is similar to the alpha-diversity in microbial community (Figure 6g). We noticed large

513     differences in FpvA diversity across the clades and species: clades with *P. aeruginosa* and *P.*

514     *syringae* species had lower FpvAs diversity (1.55 and 1.60) than clades containing *P. putida*

515     and *P. fluorescens* species (4.82 and 3.77). Taken together, the region-based identification

516     method developed in our study can reliably mine the FpvAs (pyoverdines receptors) from

517     genome data, revealing undiscovered diversity of FpvA pyoverdine receptors that are

518     unequally distributed across the different phylogenetic clades of pseudomonads.

519

520     **Discussion**

521     The rapid expansion of sequencing data offers exciting opportunities for microbiology<sup>38-40</sup>.

522     One key challenge of current research in the field is to infer biological functions of microbial

523 communities from genome sequence data<sup>41-43</sup>. While this endeavor is increasingly successful  
524 for biological functions involving the primary metabolism and the associated complex  
525 metabolic flux, reconstructing aspects of the secondary metabolism is much more challenging.  
526 The main issue is that neither the function of a secondary metabolite enzyme nor the resulting  
527 metabolite can be precisely predicted from gene sequence data. In our study, we tackled this  
528 challenge and developed a bioinformatic pipeline to reconstruct the complete secondary  
529 metabolism pathway of pyoverdines, a class of iron-scavenging siderophores produced by  
530 *Pseudomonas* spp. These secondary metabolites are synthetized by a series of non-  
531 ribosomal peptide synthetases and require a specific receptor (FpvA) for uptake. We  
532 combined knowledge-guided learning with phylogeny-based methods to predict with high  
533 accuracy: (i) the full pyoverdine assembly line, (ii) the substrate specificity for each enzyme  
534 within the assembly lines, (iii) the complete chemical structure of pyoverdines, and (iv) the  
535 FpvA receptors from genome sequences. After validation, we tested our pipeline with  
536 sequence data from 1664 phylogenetically distinct *Pseudomonas* strains and were able to  
537 determine 18,292 enzymatic A domains involved in pyoverdine synthesis, reliably predicted  
538 97.8% of their substrates, identified 188 different pyoverdine molecule structures and 4547  
539 FpvA receptor variants belonging to 94 distinct groups. The uncovered diversity is stunning  
540 and goes far beyond currently known levels of variation (73 pyoverdines and 3 FpvA groups).  
541 The molecular diversity of iron scavenging capacity highlights its importance among  
542 pseudomonads.  
543 We show that knowledge-guided learning is an extremely powerful tool to predict enzyme,  
544 metabolite, and receptor properties. The establishment of our entire pipeline is based on only

545 101 previously known enzymatic A domains (from 13 known pyoverdine assembly lines) and  
546 21 FpvA receptor sequences. Even with this limited amount of information, we were able to  
547 predict the substrates of almost all the 18,292 enzymatic A domains and to identify 4547 FpvA  
548 receptors from the sequence data. A key insight from our knowledge-guided learning is that  
549 comparisons based on the full gene sequences (e.g., for pyoverdine synthetase or receptor)  
550 are likely non-informative and unsuitable for obtaining functional information. This is because  
551 overall diversity does not stand for functional diversity, meaning that A domains recognizing  
552 the same substrate can diverge substantially in their full sequences. The same holds true for  
553 receptor sequences: whole-sequence alignments can neither accurately identify FpvA  
554 receptors nor reliably separate them into functional groups. Instead, it is imperative to extract  
555 informative feature sequences that are defined as sequence stretches within a gene whose  
556 diversity is tightly linked to variation in its functioning. We successfully extracted and applied  
557 feature sequence comparisons for both A domain substrate prediction and FpvA identification.  
558 It is important to note that a knowledge-guided pipeline does not have to be perfect right from  
559 the start. For example, our pipeline for pyoverdine structure prediction returned unknowns for  
560 several amino acid positions within the PEP. Our experimental verifications then revealed  
561 indeed new substrates such as valine and citrulline. This information can then be used to  
562 refine our prediction algorithm in a feedback loop.

563 Another main advantage of our bioinformatic pipeline is that it can be applied to draft  
564 genomes. This reflects a major improvement compared to existing annotation tools such as  
565 antiSMASH<sup>25</sup>, which typically has difficulties in recognizing NRPS structures in fragmented  
566 genome assemblies. However, draft genomes are the most common data source in

567 microbiology. While our pipeline shows high performance, we need to acknowledge that we  
568 still lose many genomes (6087 out of 9599, 63.4%). The reason for the loss is that the  
569 pyoverdine synthesis machinery is large, which increases the probability that it is positioned  
570 at the end of a contig. We decided to exclude those cases because the annotated synthesis  
571 machinery might be truncated and thus incomplete. Thus, the high loss rate of draft genomes  
572 is rather due to limitations in sequence quality (too many short contigs) and not due to a  
573 limitation of our bioinformatic pipeline. We believe that this limitation will be lesser of a problem  
574 in the future as long-read sequencing technologies are quickly becoming cheaper and more  
575 reliable.

576 We further show that knowledge-guided learning combined with a phylogeny-focused  
577 approach is a powerful tool for predicting the substrate specificity of A domains of synthetases.  
578 It outperforms currently known bioinformatics prediction tools of NRPS substrates such as  
579 antiSMASH<sup>25</sup>. Most current algorithms<sup>44-48</sup> perform poorly when applied to pyoverdines,  
580 particularly when encountering non-proteogenic amino acids. The high accuracy of our  
581 algorithm can largely be attributed to our reference set, composing only 13 pyoverdines from  
582 *Pseudomonas* spp., yet capturing most of the substrate diversity. Similarly accurate  
583 predictions based on a handful of known substrates among closely related species were  
584 observed in several fungal NRPS systems<sup>49</sup>. It is worth noting that when the algorithm output  
585 is "unknown," it actually signifies uncharacterized A domains not yet incorporated into the  
586 reference data set. This should prompt researchers to pay attention to these A domains, and  
587 like in our case, subject them to further experimental investigation. This approach helped us  
588 discover new substrates (valine, histidine, citrulline), which had not been previously

589 documented in pyoverdines and were therefore absent from the reference A domains. The  
590 novel substrates identified through our structural assessment and mass spectrometry  
591 experiment can subsequently be used to enhance the precision of our phylogeny-centered  
592 substrate prediction technique in the future, creating a progressive feedback loop of  
593 expanding knowledge. Taken together, supervised learning based on a few known  
594 compounds produced by species from the same genus probably outperforms generalized  
595 prediction algorithms trained on many products from a diverse set of microbes for NRPS  
596 substrate predictions.

597 Our results show that both pyoverdine and receptor diversity has been vastly  
598 underestimated. While considerable pyoverdine diversity (n=73) has already been captured in  
599 previous studies, here we discovered 151 new variants. On the receptor side, the uncovered  
600 novel diversity is more dramatic. One reason for this is that research on receptors has mainly  
601 focused on the pathogen *P. aeruginosa*<sup>19-22,50</sup>. For this species, three different pyoverdine  
602 types were described<sup>21</sup> together with three structurally different FpvA receptor types that each  
603 recognize one of the pyoverdine types<sup>22</sup>. While our study confirmed that *P. aeruginosa* strains  
604 (n = 554) indeed have only 3 pyoverdine-receptor systems, we also discovered 91 new FpvA  
605 groups among environmental *Pseudomonas* spp. Our findings raise the question why there  
606 are so many different pyoverdine and receptor variants. One potential explanation is that the  
607 benefit of specific siderophores could be context-dependent and locally adapted to multitude  
608 of different environmental conditions pseudomonads are exposed to. For example,  
609 experimental work has revealed that pyoverdines can be cooperatively shared among strains  
610 with matching receptors<sup>33,51</sup>, or conversely, pyoverdines can serve as competitive agents by

611 locking away iron from species that have non-matching receptors<sup>52</sup>. Given that bioavailable  
612 iron is limited in most natural and host-associated habitats<sup>53-55</sup>, the unraveled functional  
613 diversity is likely a direct evolutionary consequence of the struggle and competition of  
614 microbes for iron. While experimental work is often restricted to a low number of strains, we  
615 propose that our bioinformatic pipeline can be used to predict pyoverdine-mediated  
616 interaction networks across thousands of strains and across different habitats. We will  
617 address this point in a future study.

618 We believe our pipeline could be easily expanded to study iron competition in multi-  
619 species communities in the future and perhaps in plant-microbe ecosystems, as siderophores  
620 exist ubiquitously and are shared among microbes<sup>56</sup>. To move further, a key question is  
621 whether our knowledge-guided approach can be applied to other important secondary  
622 metabolites, such as antibiotics, toxins, biosurfactants and pigments? This answer is: not  
623 directly but the pipeline development strategies are translational between different types of  
624 compounds. As soon as sufficient case-by-case knowledge on a specific system is available,  
625 the annotation strategies together with the feature sequence extraction and the phylogeny-  
626 focused approach developed in our paper can be applied. For most of the secondary  
627 metabolites listed above, there are no receptors as the compounds have purely extra-cellular  
628 functions, which substantially simplifies the development of bioinformatic pipelines. In the long  
629 run, it will certainly be possible to automate the steps implemented in our workflow so that the  
630 algorithms can be applied to a large set of secondary metabolites when fed with an  
631 appropriate training set.

632

633 **Data Availability**

634 The source code and parameters used are available in the supplementary material.

635

636 **Acknowledgements**

637 We thank Richard Allen for genome sequencing of the 20 strains. We also appreciated Vera

638 Vollenweider for sample preparation for the experiment of pyoverdine structure elucidation.

639

640 **Funding**

641 This work was supported by the National Key Research and Development Program of China

642 (No. 2021YFF1200500, 2021YFA0910700), National Natural Science Foundation of China

643 (No. 42107140, No. 32071255, No.41922053), National Postdoctoral Program for Innovative

644 Talents (No. BX2021012), and Clinical Medicine Plus X - Young Scholars Project, Peking

645 University (7100603954). R.K. is supported jointly by a grant from the Swiss National Science

646 Foundation no. 310030\_212266. V-P.F. is supported jointly by a grant from UKRI, Defra, and

647 the Scottish Government, under the Strategic Priorities Fund Plant Bacterial Diseases

648 program (BB/T010606/1), Research Council of Finland, and The Finnish Research Impact

649 Foundation.

650

651 **Author contributions**

652 Shaohua Gu performed the majority of computational analysis in this research and drafted the

653 manuscript. Yuanzhe Shao built the pipeline for retrieving synthetase sequence information

654 and developed the phylogeny-centered method for predicting substrates. Karoline Rehm and

655 Laurent Bigler performed the experiment of pyoverdine structure elucidation. Di Zhang

656 depicted the circular plot. Ruolin He standardized of all NRPS structures into motif-intermotif  
657 format. Jiqi Shao assisted in revising the manuscript. Alexandre Jousset and Ville-Petri  
658 Friman offered insightful comments and assisted in revising and writing of the manuscript.  
659 Rolf Kümmerli and Zhong Wei oversaw the project, designed experiments and revised the  
660 manuscript. Zhiyuan Li conceptualized and oversaw the project, conducted the analysis of the  
661 receptor annotated method, and revised the manuscript.

662

#### 663 **Competing interests**

664 The authors declare no competing interests.

665

#### 666 **References**

- 667 1 Zengler, K. & Palsson, B. O. A road map for the development of community systems  
668 (CoSy) biology. *Nature Reviews Microbiology* **10**, 366-372, doi:10.1038/nrmicro2763  
669 (2012).
- 670 2 Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications  
671 of genome-scale metabolic models. *Genome Biology* **20**, 121, doi:10.1186/s13059-  
672 019-1730-3 (2019).
- 673 3 García-Jiménez, B., Torres-Bacete, J. & Nogales, J. Metabolic modelling approaches  
674 for describing and engineering microbial communities. *Computational and Structural  
675 Biotechnology Journal* **19**, 226-246, doi:10.1016/j.csbj.2020.12.003 (2021).
- 676 4 Colarusso, A. V., Goodchild-Michelman, I., Rayle, M. & Zomorrodi, A. R.  
677 Computational modeling of metabolism in microbial communities on a genome-scale.

678                    *Current Opinion in Systems Biology* **26**, 46-57, doi:10.1016/j.coisb.2021.04.001

679                    (2021).

680    5                Scherlach, K. & Hertweck, C. Mediators of mutualistic microbe–microbe interactions.

681                    *Natural Product Reports* **35**, 303-308, doi:10.1039/C7NP00035A (2018).

682    6                Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome

683                    interactions: from community assembly to plant health. *Nature Reviews Microbiology*

684                    **18**, 607-621, doi:10.1038/s41579-020-0412-1 (2020).

685    7                Price-Whelan, A., Dietrich, L. E. P. & Newman, D. K. Rethinking 'secondary'

686                    metabolism: physiological roles for phenazine antibiotics. *Nature Chemical Biology* **2**,

687                    71-78, doi:10.1038/nchembio764 (2006).

688    8                Thirumurugan, D., Cholarajan, A., Raja, S. & Vijayakumar, R. An introductory chapter:

689                    secondary metabolites. (2018).

690    9                Quinn, G. A., Banat, A. M., Abdelhameed, A. M. & Banat, I. M. Streptomyces from

691                    traditional medicine: sources of new innovations in antibiotic discovery. *J Med*

692                    *Microbiol* **69**, 1040-1048, doi:10.1099/jmm.0.001232 (2020).

693    10               Durand, G. A., Raoult, D. & Dubourg, G. Antibiotic discovery: history, methods and

694                    perspectives. *International Journal of Antimicrobial Agents* **53**, 371-382,

695                    doi:10.1016/j.ijantimicag.2018.11.010 (2019).

696    11               Penn, K. *et al.* Genomic islands link secondary metabolism to functional adaptation in

697                    marine Actinobacteria. *The ISME Journal* **3**, 1193-1203, doi:10.1038/ismej.2009.58

698                    (2009).

699    12               Andryukov, B., Mikhailov, V. & Besednova, N. The Biotechnological Potential of

700 Secondary Metabolites from Marine Bacteria. *Journal of Marine Science and*  
701 *Engineering* **7** (2019).

702 13 Kautsar, S. A., Blin, K., Shaw, S., Weber, T. & Medema, M. H. BiG-FAM: the  
703 biosynthetic gene cluster families database. *Nucleic Acids Research* **49**, D490-D497,  
704 doi:10.1093/nar/gkaa812 (2021).

705 14 He, R. *et al.* Knowledge-guided data mining on the standardized architecture of  
706 NRPS: Subtypes, novel motifs, and sequence entanglements. *PLOS Computational*  
707 *Biology* **19**, e1011100, doi:10.1371/journal.pcbi.1011100 (2023).

708 15 Xu, Z., Park, T. J. & Cao, H. Advances in mining and expressing microbial  
709 biosynthetic gene clusters. *Crit Rev Microbiol*, 1-20,  
710 doi:10.1080/1040841x.2022.2036099 (2022).

711 16 Keller, N. P. Fungal secondary metabolism: regulation, function and drug discovery.  
712 *Nature Reviews Microbiology* **17**, 167-180, doi:10.1038/s41579-018-0121-1 (2019).

713 17 Ringel, M. T. & Brüser, T. The biosynthesis of pyoverdines. *Microb Cell* **5**, 424-437,  
714 doi:10.15698/mic2018.10.649 (2018).

715 18 Hopkinson, B. M. & Morel, F. M. M. The role of siderophores in iron acquisition by  
716 photosynthetic marine microorganisms. *BioMetals* **22**, 659-669, doi:10.1007/s10534-  
717 009-9235-2 (2009).

718 19 Cobessi, D. *et al.* The Crystal Structure of the Pyoverdine Outer Membrane Receptor  
719 FpvA from *Pseudomonas aeruginosa* at 3.6 Å Resolution. *Journal of Molecular*  
720 *Biology* **347**, 121-134, doi:10.1016/j.jmb.2005.01.021 (2005).

721 20 Diggle, S. P. & Whiteley, M. Microbe Profile: *Pseudomonas aeruginosa*: opportunistic

722 pathogen and lab rat. *Microbiology (Reading)* **166**, 30-33, doi:10.1099/mic.0.000860

723 (2020).

724 21 Meyer, J.-M. *et al.* Use of Siderophores to Type Pseudomonads: The Three

725 Pseudomonas Aeruginosa Pyoverdine Systems. *Microbiology* **143**, 35-43,

726 doi:10.1099/00221287-143-1-35 (1997).

727 22 Bodilis, J. *et al.* Distribution and evolution of ferripyoverdine receptors in

728 Pseudomonas aeruginosa. *Environmental Microbiology* **11**, 2123-2135,

729 doi:10.1111/j.1462-2920.2009.01932.x (2009).

730 23 Kümmerli, R. Iron acquisition strategies in pseudomonads: mechanisms, ecology, and

731 evolution. *BioMetals*, doi:10.1007/s10534-022-00480-8 (2022).

732 24 Meyer, J. M. Pyoverdines: pigments, siderophores and potential taxonomic markers

733 of fluorescent Pseudomonas species. *Arch Microbiol* **174**, 135-142,

734 doi:10.1007/s002030000188 (2000).

735 25 Blin, K. *et al.* antiSMASH 5.0: updates to the secondary metabolite genome mining

736 pipeline. *Nucleic Acids Research* **47**, W81-W87, doi:10.1093/nar/gkz310 (2019).

737 26 Bateman, A. *et al.* The Pfam protein families database. *Nucleic Acids Research* **32**,

738 D138-D141, doi:10.1093/nar/gkh121 (2004).

739 27 Winsor, G. L. *et al.* Enhanced annotations and features for comparing thousands of

740 Pseudomonas genomes in the Pseudomonas genome database. *Nucleic Acids*

741 *Research* **44**, D646-D653, doi:10.1093/nar/gkv1227 (2016).

742 28 Felnagle, E. A. *et al.* Nonribosomal peptide synthetases involved in the production of

743 medically relevant natural products. *Mol Pharm* **5**, 191-211, doi:10.1021/mp700137g

744 (2008).

745 29 Süssmuth, R. D. & Mainz, A. Nonribosomal Peptide Synthesis—Principles and  
746 Prospects. *Angewandte Chemie International Edition* **56**, 3770-3821,  
747 doi:10.1002/anie.201609079 (2017).

748 30 Butaitė, E., Kramer, J., Wyder, S. & Kümmerli, R. Environmental determinants of  
749 pyoverdine production, exploitation and competition in natural *Pseudomonas*  
750 communities. *Environmental Microbiology* **20**, 3629-3642, doi:10.1111/1462-  
751 2920.14355 (2018).

752 31 Rehm, K., Vollenweider, V., Kümmerli, R. & Bigler, L. A comprehensive method to  
753 elucidate pyoverdines produced by fluorescent *Pseudomonas* spp. by UHPLC-HR-  
754 MS/MS. *Analytical and Bioanalytical Chemistry* **414**, 2671-2685, doi:10.1007/s00216-  
755 022-03907-w (2022).

756 32 Butaitė, E., Baumgartner, M., Wyder, S. & Kümmerli, R. Siderophore cheating and  
757 cheating resistance shape competition for iron in soil and freshwater *Pseudomonas*  
758 communities. *Nature Communications* **8**, 414, doi:10.1038/s41467-017-00509-4  
759 (2017).

760 33 Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host  
761 interactions. *Nature Reviews Microbiology* **18**, 152-163, doi:10.1038/s41579-019-  
762 0284-4 (2020).

763 34 Chan, D. C. K. & Burrows, L. L. &lt;em&gt;*Pseudomonas aeruginosa*&lt;/em&gt; FpvB  
764 is a high-affinity transporter for xenosiderophores ferrichrome and ferrioxamine B.  
765 *bioRxiv*, 2022.2009.2020.508722, doi:10.1101/2022.09.20.508722 (2022).

766 35 González, J. *et al.* Loss of a pyoverdine secondary receptor in *Pseudomonas*  
767 *aeruginosa* results in a fitter strain suitable for population invasion. *The ISME Journal*  
768 **15**, 1330-1343, doi:10.1038/s41396-020-00853-2 (2021).

769 36 Schalk, I. J., Mislin, G. L. & Brillet, K. Structure, function and binding selectivity and  
770 stereoselectivity of siderophore-iron outer membrane transporters. *Curr Top Membr*  
771 **69**, 37-66, doi:10.1016/B978-0-12-394390-3.00002-1 (2012).

772 37 Greenwald, J. *et al.* FpvA bound to non-cognate pyoverdines: molecular basis of  
773 siderophore recognition by an iron transporter. *Molecular Microbiology* **72**, 1246-1259,  
774 doi:10.1111/j.1365-2958.2009.06721.x (2009).

775 38 Almeida, A. *et al.* A new genomic blueprint of the human gut microbiota. *Nature* **568**,  
776 499-504, doi:10.1038/s41586-019-0965-1 (2019).

777 39 Schloss, P. D. & Handelsman, J. Metagenomics for studying unculturable  
778 microorganisms: cutting the Gordian knot. *Genome Biology* **6**, 229, doi:10.1186/gb-  
779 2005-6-8-229 (2005).

780 40 Handelsman, J. Metagenomics: Application of Genomics to Uncultured  
781 Microorganisms. *Microbiology and Molecular Biology Reviews* **68**, 669-685,  
782 doi:10.1128/MMBR.68.4.669-685.2004 (2004).

783 41 Tsilimigras, M. C. B. & Fodor, A. A. Compositional data analysis of the microbiome:  
784 fundamentals, tools, and challenges. *Annals of Epidemiology* **26**, 330-335,  
785 doi:10.1016/j.annepidem.2016.03.002 (2016).

786 42 Weiss, S. *et al.* Correlation detection strategies in microbial data sets vary widely in  
787 sensitivity and precision. *ISME J* **10**, 1669-1681, doi:10.1038/ismej.2015.235 (2016).

788 43 Faust, K. & Raes, J. Microbial interactions: from networks to models. *Nature Reviews Microbiology* **10**, 538-550, doi:10.1038/nrmicro2832 (2012).

790 44 Khayatt, B. I., Overmars, L., Siezen, R. J. & Francke, C. Classification of the Adenylation and Acyl-Transferase Activity of NRPS and PKS Systems Using Ensembles of Substrate Specific Hidden Markov Models. *PLOS ONE* **8**, e62136, doi:10.1371/journal.pone.0062136 (2013).

794 45 Minowa, Y., Araki, M. & Kanehisa, M. Comprehensive Analysis of Distinctive Polyketide and Nonribosomal Peptide Structural Motifs Encoded in Microbial Genomes. *Journal of Molecular Biology* **368**, 1500-1517, doi:10.1016/j.jmb.2007.02.099 (2007).

798 46 Prieto, C., García-Estrada, C., Lorenzana, D. & Martín, J. F. NRPSsp: non-ribosomal peptide synthase substrate predictor. *Bioinformatics* **28**, 426-427, doi:10.1093/bioinformatics/btr659 (2012).

801 47 Röttig, M. *et al.* NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. *Nucleic Acids Research* **39**, W362-W367, doi:10.1093/nar/gkr323 (2011).

804 48 Zierep, P. F., Ceci, A. T., Dobrusin, I., Rockwell-Kollmann, S. C. & Günther, S. SeMPI 2.0-A Web Server for PKS and NRPS Predictions Combined with Metabolite Screening in Natural Product Databases. *Metabolites* **11**, doi:10.3390/metabo11010013 (2020).

808 49 Fan, J. *et al.* Biosynthetic diversification of peptaibol mediates fungus-mycohost interactions. *bioRxiv* (2022).

810 50 Smith, E. E., Sims, E. H., Spencer, D. H., Kaul, R. & Olson, M. V. Evidence for  
811 diversifying selection at the pyoverdine locus of *Pseudomonas aeruginosa*. *J*  
812 *Bacteriol* **187**, 2138-2147, doi:10.1128/jb.187.6.2138-2147.2005 (2005).

813 51 Gu, S. *et al.* Competition for iron drives phytopathogen control by natural rhizosphere  
814 microbiomes. *Nature Microbiology* **5**, 1002-1010, doi:10.1038/s41564-020-0719-8  
815 (2020).

816 52 Figueiredo, A. R. T., Özkaya, Ö., Kümmerli, R. & Kramer, J. Siderophores drive  
817 invasion dynamics in bacterial communities through their dual role as public good  
818 versus public bad. *Ecology Letters* **25**, 138-150, doi:10.1111/ele.13912 (2022).

819 53 Andrews, S. C., Robinson, A. K. & Rodríguez-Quiñones, F. Bacterial iron homeostasis.  
820 *FEMS Microbiology Reviews* **27**, 215–237, doi:10.1016/s0168-6445(03)00055-x  
821 (2003).

822 54 Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. *Nat*  
823 *Geosci* **3**, 675-682, doi:10.1038/ngeo964 (2010).

824 55 Emerson, D., Roden, E. & Twining, B. The microbial ferrous wheel: iron cycling in  
825 terrestrial, freshwater, and marine environments. *Frontiers in Microbiology* **3**,  
826 doi:10.3389/fmicb.2012.00383 (2012).

827 56 Ruolin, H. *et al.* SIDERITE: Unveiling Hidden Siderophore Diversity in the Chemical  
828 Space Through Digital Exploration. *bioRxiv*, 2023.2008.2031.555687,  
829 doi:10.1101/2023.08.31.555687 (2023).

830