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22 Abstract

23  Microbial secondary metabolites have long been recognized as a rich source for
24  pharmaceutical compound discovery and to have crucial ecological functions. However, the
25  sequence-to-function mapping in microbial secondary metabolism pathways remains
26 challenging because neither protein function nor substrate specificity can accurately be
27  predicted from genome data. Here we focus on the iron-scavenging pyoverdines,
28  siderophores of Pseudomonas bacteria, as model system to develop a knowledge-guided
29  bioinformatic pipeline that extracts functional information of both the pyoverdine synthesis
30  machinery and uptake receptors from 1928 draft genomes. For pyoverdine synthesis, our
31 approach predicts the chemical structure of 188 different pyoverdines with nearly 100%
32  accuracy. For pyoverdine uptake, our pipeline uncovers 94 different pyoverdine receptor
33  groups. Our results demonstrate that combining feature sequence and phylogenetic
34  approaches is a powerful way to reconstruct bacterial secondary metabolism pathways based
35  on sequence data, unveiling an enormous yet overlooked diversity of siderophores and their

36  receptors.
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38 Introduction

39  Rapid advancements in sequencing technologies have revolutionized our view on microbial
40  communities. While amplicon sequencing provides information on community composition
41 and diversity, shotgun and whole genome sequencing allow us to reliably anticipate
42  evolutionary and ecological relationships between microbes and to obtain functional
43  information on communities. Computational models assessing the metabolic capacity of
44 individual members, or an entire consortium, have become very popular and powerful**. The
45  major focus of such modelling approaches is typically on the primary metabolism of bacteria,
46  as genes involved in core metabolic pathways are highly conserved and can be identified with
47  relative ease**. Conversely, analysis of the secondary metabolites has attracted less attention,
48 even though they include compounds such as antibiotics, toxins, siderophores, biosurfactants,
49  all known to have important implications for community assembly®® and to be important
50  sources for pharmaceutical discoveries’® **°.

51 There are multiple challenges that currently prevent a detailed unravelling of secondary

511

52 metabolism of bacteria based on genome data™. First, most secondary metabolites are

53  produced by pathways comprised of modular enzymes such as non-ribosomal peptide

54  synthetases (NRPSs) or polyketide synthases (PKS)™*

Locating complete synthesis
55  clusters and identifying all enzyme-encoding genes is challenging from highly fragmented
56 metagenomic sequences or draft genomes with a high number of contigs. Second, functional
57  predictions for coding regions within a cluster rely on homologous comparisons with

58  experimentally characterized genes. Such information is often restricted to a limited number

59  of model organisms, meaning that only a small portion of the existing secondary metabolism
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60 pathways is covered by current data bases. Finally, given the complex multi-modular
61 synthesis machineries, it is challenging to precisely predict the secondary metabolites
62  produced even with accurately annotated NRPS or PKS clusters. The main challenge is that a
63  large pool of non-proteinogenic amino acids is used as substrates and the specificity of an
64  enzyme's A domain, connecting these unusual amino acids, is often poorly understood™. As a
65 result, new computational methods are needed to accurately reconstruct bacterial secondary
66  metabolism from sequence data.

67 Here, we present a new bioinformatic pipeline that overcomes these challenges. We
68  specifically focus on a particular class of secondary metabolites (iron-scavenging
69  siderophores) as a case study to develop a bioinformatic workflow that predicts the chemical
70  structure of the produced metabolites with near 100% accuracy. Our pipeline is based on
71 improved gene annotation combined with a phylogeny- and feature sequence-based
72  substrate prediction techniques (Figure 1). In comparison with the currently available

14-16

73 databases and bioinformatic tools , the main advancement of our method is the more

74  accurate prediction of synthesized products based on NRPS clusters identified in genome
75 data.

76 Among siderophores, we focus on NPRS machineries that are responsible for the
77  synthesis of pyoverdines, a class of chemically diverse siderophores with high iron affinity,

17,18

78  produced by Pseudomonas bacteria™"*°. While each Pseudomonas strain produces a single

79  type of pyoverdine, an enormous structural diversity has been described across strains and

19-22

80  species™ . Pyoverdine types differ in their peptide backbone, meaning that the diversity

81 should be mirrored in NPRS enzyme diversity and their selectivity for the different amino acid
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82  substrates'®. Based on this knowledge, our pipeline entails the following steps (Figure 1): (i)
83 identification of the complete sequences of pyoverdine synthetase genes from fragmented
84  draft genomes, (ii) building the pyoverdine synthesis machinery in silico by extracting the
85  feature sequences for substrate specificity from motif-standardized NRPSs, and (iii) predicting
86  the precise chemical structure of pyoverdines followed by empirical verification.

87 An additional element of iron metabolism is that when siderophores are secreted and
88  bound to iron, bacteria rely on a specific receptor for their uptake into the cell. Pyoverdine
89  receptors are annotated as FpvA and it is known that receptor diversity matches pyoverdine

22,23

90  diversity“™“". Moreover, FpvA belongs to the family of TonB-dependent receptors and a single
9N Pseudomonas species often has many gene copies encoding these receptors. This poses an
92  additional bioinformatic challenge: how to find the gene encoding the specific pyoverdine
93  receptor among several potential receptor genes? To overcome this, we develop an algorithm
94  that focuses on sequence regions involved in pyoverdine recognition and translocation across
95  the outer membrane with supervised learning methods that locate the fpvA genes in the
96 fragmented genomes based on these regions (Figure 1). Altogether, our bioinformatic pipeline
97  uses knowledge-guided insights empowered by supervised learning to construct a first
98  systematic sequence-to-function mapping of a family of secondary metabolites (pyoverdine)

99 and their corresponding receptors. Our analysis unveils a yet unrecognized extraordinary

100  diversity of iron-scavenging machineries in pseudomonads.

101
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103  Figure 1 Scheme depicting our new genome mining pipeline to precisely predict the

104  synthesis, the molecular structure and the uptake machinery of pyoverdines, a family

105 of iron-scavenging siderophores produced by members of the Pseudomonas genus.

106 The grey rounded outer rectangle represents a bacterial cell. The red and blue arrow-shaped boxes

107 stand for the synthetase and receptor genes for pyoverdines, respectively. Synthetase genes are

108 transcribed and translated to form the n-modular NRPS enzymes. These enzymes synthesize the

109 peptide backbone of pyoverdine through an assembly line using their repeating module units, with the A

110 domain being responsible for substrate selection and the E domain for chirality. The n-substrate

111 siderophores are then exported to the extracellular space for iron chelation. Membrane-embedded

112 TonB-dependent receptors recognize the ferri-siderophore complex and import it into the cell. Bold black

113 text and black arrows describe our multi-step computational methods developed to reconstruct the entire
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114 process from genome sequence data. First, the annotation pipeline was improved (from antiSMASH) to
115 extract the complete sequence of pyoverdine synthetase genes from draft genomes. Second,
116 NRPSMotifFinder was used to define A- and E-domains and to determine the exact motif-intermotif
117  structure of the pyoverdine assembly line. Third, intermotif regions most indicative of substrate
118 specificity were used to develop a phylogeny-focused method for precise product prediction. Fourth, a
119 sequence-region-based annotation method was combined with genome architecture features to identify

120  the FpvA, receptors responsible for ferri-pyoverdine import.

121

122 Results

123

124  Section 1: Improved annotation pipeline reveals a vast reservoir of pyoverdine
125  synthetase genes

126  The first step of our bioinformatic pipeline was to improve the annotation of pyoverdine
127  synthetase genes. The pyoverdine molecules is composed of a conserved fluorescent
128  chromophore (Flu) and a peptide chain (Pep), which are both synthesized by NRPS
129  enzymes®. There are already existing tools, such as antiSMASH, that can find and annotate
130  NRPS clusters in microbial genomes®. However, antiSMASH (and other popular annotation

131 platforms™*®

) rely on accurate gene predictions, which are typically problematic for
132  fragmented genomes. Consequently, while antiSMASH can recognize and annotate certain
133  genes of an NRPS cluster, the precise reconstruction of a complete NRPS assembly line

134 often fails. This is particularly problematic because most available genomes are drafts and

135 any analysis suffers from the unavoidable issue of incomplete or misannotation of gene
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Figure 2 Improved annotation pipeline reveals a vast diversity of pyoverdine

synthetase genes. a. Improved annotation pipeline based on the raw annotation from antiSMASH. b.

The annotation pipeline was applied to 9599 Pseudomonas genomes (94% draft genomes). Genomes

could be separated into three categories. Yellow: genomes without pyoverdine cluster. Green: genomes
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143 with a complete pyoverdine cluster. Red: genomes with incomplete pyoverdine synthetase cluster. The
144 red category involved genomes with truly incomplete clusters (lacking Flu or Pep synthetic genes) or
145 genomes with likely truncated synthetic genes at the edge of contigs. c. Distributions of the sequence
146 length (upper panel) and the number of A domains (lower panel) across all the genomes with a complete
147 synthetase cluster. d. Workflow applied to separate the 9599 Pseudomonas genomes into the three
148 categories described in b and removing of redundant genomes with high phylogenic similarity and
149  showing high similarity in pyoverdine synthetases. Red star indicates the start of the workflow. e.
150 Phylogenetic tree depicting the relationship among the 1928 non-redundant Pseudomonas strains (1664
151 producers and 264 non-producers) based on the concatenated alignment of 400 single-copy conserved
152 genes in their genomes. The inner ring depicts the taxonomical classification including the four most
153 prevalent species. The outer ring shows the number of A domains present in the pyoverdine synthetase
154  assembly line in each strain.

155 To overcome these issues, we developed an improved four-step annotation pipeline
156  starting with the raw annotation of the pyoverdine cluster obtained from antiSMASH (Figure
157  2a). First, we implemented a NRPS Hidden Markov Model (HMM) to re-annotate and extract
158  the entire nucleotide sequence of the pyoverdine synthetase cluster®, including the genes
159  missed by antiSMASH. For this step, the nucleotide sequences were converted into amino
160 acid sequences to avoid erroneous gene predictions typically associated with antiSMASH.
161 Second, we assembled the entire re-annotated pyoverdine coding region into a single
162 sequence with a defined start (CAL) and/or end (TE) markers. Third, we used
163  NRPSMotifFinder to identify the C, A, T, E and TE motifs that are characteristic for the NRPS

164  structure of pyoverdine™. Finally, we applied a safety measure to ensure that the recovered
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165  NRPS assembly line is complete (contains both Flu and Pep) and is not truncated, which can
166  occur when a synthetase coding region is at the edge of a contig. Consequently, we
167  dismissed all pyoverdine synthesis clusters located within 100 bp proximity to contigs’ edges
168  and either lacked Flu or Pep synthetic genes.

169 Next, we applied our improved pyoverdine synthesis annotation pipeline to 9599
170  Pseudomonas genomes (including 613 complete and 8986 draft genomes) retrieved from the
171 Pseudomonas Genome Database?’. We found the pyoverdine synthesis machinery in 97% of
172  the genomes (Figure 2b), indicating that the machinery is ubiquitous in Pseudomonas.
173  However, since 94% of the analyzed genomes were in draft form, the pyoverdine synthesis
174  machinery was likely truncated (i.e., on the edge of the contig) in 63.4% (6087) of the
175  genomes. These genomes were excluded from further analysis. Around 3.1% of retained
176  genomes (293) with high assembly completeness were missing pyoverdine synthetic genes,
177  indicating that these Pseudomonas strains were not able to produce pyoverdine (‘non-
178  producers’). The rest of the genomes (33.5%; 3219 genomes) were classified as ‘producers’
179  with complete pyoverdine NRPS assembly lines that meet all our quality controls. For these
180 3219 genomes, we used NRPSMotifFinder to find boundaries between the various synthesis
181 domains and to determine amino acid length and the number of A domains. The lengths of
182  pyoverdine synthetic genes ranged between 7690 and 21333 amino acids, and the number of
183 A domains per synthetase ranged between 6 and 17, with a total of 35,281 A domains being
184  present across all strains (Figure 2c and Figure S1). Overall, our analysis pipeline unveiled a
185  vast diversity of pyoverdine synthetase that goes far beyond of what has previously been

186  described in the literature.
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187 Finally, we conducted a phylogenetic analysis based on 400 conserved genes with the

188 293 non-producers and the 3219 producers. We first removed redundant non-producers by

189  retaining the most integrative genome among strains with high phylogenic similarity. Then, we

190  removed redundant producers by retaining the most integrative genome among strains with

191 high phylogenic and pyoverdine synthetase similarity (Figure 2d). This data cleaning yielded a

192  total of 1928 Pseudomonas strains (403 complete and 1525 incomplete genomes),

193  segregating into 1664 pyoverdine producers and 264 non-producers. The phylogenetic tree

194 revealed that all major Pseudomonas species clades were present in our data set (Figure 2e).

195 Moreover, the number of A domains varied widely among species and even between strains

196  within species. For example, the number of Pseudomonas aeruginosa A domains ranges

197 between 7 and 14. In summary, by improving the synthetase annotation method, we

198  successfully obtained 1664 highly reliable pyoverdine synthetases (with a total of 18,292 A

199  domains) and 264 non-producers.

200

201 Section 2: Phylogeny-focused substrate prediction for pyoverdine A domains

202  Our next goal was to precisely predict the molecular structure of the pyoverdines produced by

203  the 1664 strains with complete synthetase gene clusters. The first essential step towards this

204  goal was to reliably predict the substrate selectivity of all A domains in the NRPS assembly

205 line. The A domain of each module selects for a single substrate among 22 proteinogenic and

229 Moreover, whenever an E domain exists

206  hundreds of non-proteinogenic amino acids
207  downstream of an A domain, the chirality of the amino acid incorporated into the peptide chain

208  gets modified from L to D. Thus, the modularity combined with the selectivity of A domains
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209  can promote an enormous diversity of pyoverdine molecule structures. To date, 73 pyoverdine
210  structures have been reported (Supplementary_tablel) out of which 13 have their synthetase
211 genes sequenced (Supplementary table2). In order to make reliable predictions, two
212  challenges must be addressed: (i) the extraction of relevant information from A domain
213  sequences for which the substrate is known, and (ii) the effective application of this
214 information to predict specificity of A domain sequences for which the substrate is unknown.
215 To address the first challenge, we built our analysis on the NRPS assembly lines of the
216 known 13 pyoverdines to extract relevant information from the A domain sequences. From
217  this dataset, we could identify 101 A domains that could be experimentally linked to 13 amino
218  acid substrates (Supplementary_table3). We next performed multisequence alignment of the
219 101 A domains to determine the “feature sequence distance”, which is the most informative
220 for the substrate selectivity. To this end, we tested three different A domain regions, three
221 different sequence similarity measurements and seven different clustering methods for their
222  predictive power (Figure 3a). We found that the full A domain sequence is not informative for
223  substrate prediction (Figure 3b, left panel). Instead, our analysis indicated that information-
224 rich positions start with motif A4 and end before motif A5, consistent with the known role of
225  the A domain pocket in substrate selectivity*. Overall, the sequence region from motifs A4 to
226 A5 (termed “Amotif4-5”), in conjunction with Jukes-Cantor distance and Ward linkage
227  clustering, performed best in accurately distinguishing between different substrates and
228  maintaining homogeneity for identical substrates (Figure 3b).

229 To address the second challenge, we developed a “phylogeny-focused method” to apply

230 the feature sequence distance derived in the preceding paragraph to the 18,292 discovered A
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231 domains. We realized that a direct construction of a phylogenetic tree including all 18,292
232  query A domains and the 101 reference A domains would be computationally too demanding
233  and impossible to scale up. Furthermore, such an approach would result in phylogeny-
234 interference issues, where domains would cluster not only based on their substrate
235  similarities but also based on overall species relatedness'®. To minimize the effect of
236  phylogeny and speed up calculation, we took each of the 18,292 query A domains and
237  identified the two most similar A domain clusters within the 101 reference A domain set. We
238  then compared the feature distance between each query A domain and the two most similar
239 reference A domains in different clusters and assigned the query A domain to a substrate
240  specificity using the following rules (Figure 3c). (1) If the feature distance is below the 0.7
241 threshold (corresponding to 50% identity) for only one of the two reference A domains, then
242  the substrate of the query A domain is matched to the substrate of the more similar (lower
243  distance) reference A domain. (2a) If the feature distance is below the 0.7 threshold for both
244  reference A domains, then we considered the relative difference of the query A domain
245  towards the two reference A domains. If the relative difference is larger than 0.2, the query A
246  domain is matched to the substrate of the more similar reference A domain. (2b) If the relative
247  difference is smaller than 0.2, the substrate of the query A domain cannot unambiguously be
248  determined and is thus matched with both reference substrates. (3) If the feature distance is
249  above the 0.7 threshold (below 50% identity) for both reference A domains, then the substrate
250  of the query A domain is marked as “unknown”. For most query A domains, rule (1) could be
251 applied (17880 cases), whereas rules (2) and (3) had to be used rarely (133 and 279 cases,

252  respectively). We applied our methodology termed “phylogeny-focused method” to all
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253  following substrate and pyoverdine structure predictions.

254

255  Section 3: Experimental validation of the annotation and prediction pipeline

256  We tested whether our bioinformatic pipeline can reliably predict the structure of a set of yet
257  uncharacterized pyoverdines. To achieve this objective, we selected 20 Pseudomonas strains,
258  all known to produce pyoverdines, from a natural strain collection that was previously isolated
259  from soil and water®®. We sequenced their genomes and subsequently applied our annotation
260 and prediction pipeline to generate predicted pyoverdine structures for all 20 strains harboring
261 a total of 237 A domains. Then, we elucidated the chemical structure of the 20 pyoverdines
262  using culture-based methods combined with UHPLC-HR-MS/MS>!. We found a near-perfect
263  match (96.2%) between the predicted and the observed pyoverdine chemical structures and
264  were able to accurately assign amino acids in 228 out of 237 cases (Figure 3d). Our method
265  demonstrated a substantial improvement comparing to the prediction accuracy of AntiSMASH
266  in pyoverdines (46.0%), which could accurately assign correct amino acids only in 109 out of
267 237 cases (Supplementary_table4). The nine non-matching cases of our method segregated
268 into three groups. In three cases (1.3%), our algorithm could not distinguish between the
269  substrates Lysine and Ornithine, as these two amino acids are highly similar both in terms of
270  their chemical structures and corresponding A domain sequences. This is the only sensitivity
271 issue that is associated with our approach. In four cases (1.7%), our technique assigned an
272 “unknown” substrate to amino acids that turned out to be valine, citrulline and histidine.
273  Indeed, these three amino acids have not been reported in pyoverdines before and are

274  therefore not yet present in the reference dataset. These cases show that our analysis
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275  pipeline can be used to identify new substrates. Once experimentally verified, the new A

276  domains and their substrates can expand the reference dataset, allowing targeted

277  improvement of our phylogeny-focused prediction technique. Finally, there were only two

278  cases (0.8%) that represented true mismatches between observed and predicted amino acids.

279  Altogether, our phylogeny-focused method is highly accurate in predicting pyoverdine peptide

280  structures and in identifying unknown substrates in Pseudomonas.
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Figure 3 Phylogeny-focused substrate prediction for pyoverdine synthetase assembly

lines. a. Information from 101 reference A domains with known amino acid substrates were used to

develop an algorithm that predicts substrates from A domain sequence data with high accuracy. The
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285 challenge is to group the variable A domains into clusters that predict the same substrate (captured by

286 the silhouette index). To find the most distinctive algorithm, we combined different feature sequences of

287 A domains (Amotif) with different distance and linkage methods in our hierarchical clustering analyses.

288  The best performing path is shown in pink. b. Heatmap showing the hierarchically clustered distances of

289 the 101 reference A domains as a function of the feature sequence used. Left panel: complete A domain

290  sequences. Middle panel: Amotif3-6 sequences. Right panel: Amotif4-5 sequences. The experimentally

291 validated substrates are shown on top of the heatmaps. The heatmaps show that hierarchical clustering,

292  reliably associating sequence distances with substrate, worked best with the Amotif4-5. c. Phylogeny-

293  focused substrate prediction pipeline for query A domains (grey circle) based on Amotif4-5 feature

294 sequence comparisons. X1 and X2 represent the feature distance between the query A domain and two

295 closest reference A domains (blue and green circles), respectively. Three rules are used, based on the

296 feature distances X1 and X2 and a threshold value of 0.7 (50% similarity), to make substrate predictions

297 for the query A domain. There are three possible outcomes: unambiguous substrate prediction (blue or

298 green squares), ambiguous substrate prediction (dual-colored squares), and no prediction (“unknown). d.

299 Phylogenetic tree of 20 Pseudomonas strains and visualization of their predicted and actual pyoverdine

300 structures to validate our phylogeny-focused substrate prediction pipeline. 228 out of the 237 substrates

301 (96.2%) were correctly predicted. The nine inconsistencies are boxed in blue (Lysine and Ornithine are

302 indistinguishable), in dashed black (correct detection of “unknown” substrates), and in red (true

303 mismatches). Note that our prediction pipeline (as any other pipeline) cannot distinguish between

304 modified variants of the same amino acid.

305  Section 4: Application of the annotation and prediction pipelines to a full dataset

306  After successful validation, we applied our bioinformatic pipeline to the 1664 complete NRPS
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307 assembly lines annotated in our genome analysis (Figure 2). Across all assembly lines, we

308  were able to predict the substrates of 17,880 A domains (97.75%) without ambiguity, whereas

309 133 A domains (0.73%) were associated with two different substrates, and 279 A domains

310  (1.52%) predicted an unknown substrate (similar to the case of valine above). After

311 considering the presence/absence of an E domain in each module, we derived the structure

312 of 1664 pyoverdines according to method at section 2 (Figure 4). Our prediction yielded 188

313  different pyoverdine molecules, out of which only 37 structures had been previously reported.

314 However, these 37 reported structures were highly abundant across strains (1103 out of

315  1664). Agreeing with previous studies, we observed that the fluorophore is highly conserved

316  among the 188 predicted structures. Moreover, our analysis confirmed that 13 amino acid

317  substrates form the core of all the 188 pyoverdine structures, with most of the variation being

318  attributable to different substrate combinations, peptide lengths, and substrate chirality

319  (Figure 4). In addition, the 279 unknown substrates will significantly increase the repertoire of

320 pyoverdine amino acids if could be characterized by future experiments, despite that they

321 were much rarer than the 13 main substrates. Notably, pyoverdine structural diversity was not

322  strongly linked to phylogeny because the same pyoverdine structure could be found in

323  completely unrelated species, while closely related species often had different pyoverdine

324  structures (Figure 4). These observations suggest that there may be both frequent

325  recombination and horizontal gene transfer of pyoverdine synthetase clusters between

326  species. Taken together, the bioinformatics methods developed in our study can predict a suit

327  of secondary metabolites (pyoverdines) from sequence data with high accuracy, revealing an

328  unprecedented richness and evolutionary history of siderophores within pseudomonads and
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329  the discovery of 151 putative novel pyoverdine variants.
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331 Figure 4 Predicted pyoverdine structural diversity based on our developed

332 algorithm mapped onto the phylogenetic tree comprising all 1928 (non-redundant)

333 Pseudomonas strains. The stacked boxes in the outermost circle show the predicted structure of

334 pyoverdines, whereby each color represents a specific amino acid substrate. Strains without boxes

335 represent non-producers (n = 264). Boxes with two colors indicate cases of ambiguous (dual) substrate

336  prediction. The red dots at the basis of the stacked boxes indicate experimentally validated pyoverdine

337 structures. The inner circle shows the taxonomic species classification following Figure 2e. Because the

338 allocation of strains to species names is often imprecise, we divided the 1928 strains by their


https://doi.org/10.1101/2023.10.30.564663
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.30.564663; this version posted November 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

339 phylogenetic distance into 18 clades (color shadings in inner-most circle), out of which 13 contained
340 more than 1 strain. Lines within the inner-most circle link strains from different clades that share the
341 same pyoverdine structures, whereby line colors represent the shared unique pyoverdines. The bending
342 of the lines represents the phylogenetic sequence distances of the connected strain pairs.

343

344  Section 5. Development of a region-based identification method for annotation of the

345  FpvAreceptors

346  In pseudomonads, iron-loaded pyoverdines are recognized by FpvA, a TonB-dependent

347  receptor, that transports the ferri-siderophore into the periplasm®®*3

. The protein structure
348  of characterized FpvA variants consists of three domains: The Secretin and TonB N-terminus
349  short domain (STN), the Plug domain (Plug), and the TonB dependent receptor domain
350  (TonB)™. While these domains are conserved across FpvA variants and other siderophore
351 receptors, there is substantial variation at the sequence level. This makes it challenging to
352  reliably identify FpvA receptors from sequence data by homologous search. As an example,
353  we were unable to find FpvA genes (with a 60% identity threshold) by homologous search in
354  several genomes although they had complete pyoverdine synthesis machineries. Moreover,
355  there are many other TonB-dependent receptors with fairly high sequence identity to FpvA but
356  that transport other siderophores than pyoverdine (e.g. FpvB, 55% identity, transporting

357  pyoverdine, ferrichrome and ferrioxamine B**. Therefore, it is imperative to develop a new

358  comprehensive method for identifying FpvA receptors in Pseudomonas genomes.
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360 Figure 5 A sequence-region-based identification pipeline for annotating FpvA receptors.

361 a. Heatmap displaying the hierarchically clustered sequence distances (p-distance calculation method,

362 identity (%) = (1-sequence distance) * 100) of 35 reference siderophore receptors identified in

363 Pseudomonas spp., based on full sequences. No clear discrimination between FpvA, FpvB and other
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364 receptors is possible. The order of receptors is consistent across panels (b), (e), and (f). b. The pHMM

365 scores of the three standard receptor domains (STN, Plug, and TonBDR) vary across the 35 reference

366 sequences (A: FpvA, B: FpvB and NA: others), but do not allow to distinguish between receptor groups.

367 c. FpvA region-based conservation scores from a multi-alignment of the 35 reference sequences

368 mapped to the FpvA sequence of strain P. aeruginosa PAOL. All residues within the top 10% of the

369 conservation score denoted with black dots. For each region flanked by two black dots, we calculated

370 the FpvA identification score (heatmap), representing the ability to distinguish FpvA from non-FpvA

371 receptors. d. Mapping of the two regions with the highest FpvA identification scores R1(dark red) and

372 R2 (orange) to the crystal structure of FpvA from PAO1 conjugated with pyoverdine (PDB 2IAH). e.

373 Heatmap showing the hierarchically clustered sequence distances of 35 reference siderophore
374 receptors based on the R1 sequence region. A clear discrimination between FpvA/FpvB and other
375 receptors emerges. f. Heatmap showing the hierarchically clustered sequence distances of 35
376 reference siderophore receptors based on the R2 sequence region. A clear discrimination between

377 FpvA and FpvB receptors emerges. e. The pHMM scores of regions R1 and R2 for the 35 siderophore

378 reference receptors are contrasted against each other, yielding a clear separation between FpvA, FpvB
379 and other receptors. Dashed lines indicate the pHMM threshold scores used for later analysis. f.
380 Flowchart showing all steps involved in the FpvA annotation from genome sequence data. The red star
381 indicates the start of the workflow.

382 We started our approach by comparing the sequences of 35 reported siderophore

383  receptors, including 21 FpvA, 6 FpvB, and 8 TonB-dependent siderophore receptor

384  sequences often found in Pseudomonas genomes, encoding receptors for the uptake of

385  heterologous siderophores (Supplementary_table5). We found that all receptor sequences
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386  share a similar length of around 800 amino acids (FpvA and FpvB sequences: 809 + 10

387  amino acids). We then used the complete sequences to calculate the pair-wise distances by

388  global alignment before applying hierarchical clustering (Figure 5a). We found substantial

389  divergence between FpvA variants to an extent that was comparable to the distance between

390  FpvA and other siderophore receptors. Moreover, FpvB variants clustered with FpvA variants,

391 showing that FpvA identification based on full sequence distances is unachievable. We hence

392  focused on the three typical receptor domains (TonB, Plug, and STN, retrieved from the Pfam

393 database) and applied Profile Hidden Markov Models (pHMM) to calculate the pHMM

394  probability scores for each domain and reference sequence. The probability scores

395  (calculated as the log-odd ratios for emission probabilities and log probabilities for state

396 transitions) had reasonably high scores but no distinction was apparent between the three

397  receptor classes (Figure 5b).

398 We next asked whether there are specific regions within the receptor sequences that are

399 characteristic of FpvA. To address this, we conducted a multiple sequence alignment (MSA)

400  with all 35 reference receptor sequences and mapped them onto the sequence of the well-

401 characterized FpvA of P. aeruginosa PAOL (Figure 5c¢). MSA allows to identify conserved sites

402  (Figure 5c, black dots representing the top 10% most conserved sites) that are shared by the

403  majority of the reference sequences. We then used these conserved sites to partition the

404 MSA into variable regions which were flanked by two conserved sites. For each variable

405  region, we assessed its predictive power to differentiate FpvA from non-FpvA sequences. For

406  this we defined the "FpvA identification score" analogous to the intercluster-vs-intracluster

407 Calinski-Harabasz variance ratio, as
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IvaA = damon/daa
408 where dj., is the sequence distance among all 21 FpvA sequences, and da. o, IS the
409  sequence distance between all 21 FpvA and the 14 non-FpvA sequences.
410 Our analysis yielded two locations with noticeably high FpvA identification scores (Figure
411 5c). The region with the highest FpvA identification score (referred to as R1) locates at the
412 intersection of the Plug domain and the barrel structure of the TonB domain (Figure 5d,
413  between 258 Gly and 309 Gly in the PAO1 FpvA). According to the sequence distance matrix,
414  the R1 region allows to distinguish heterologous siderophore receptors from FpvA and FpvB
415  receptors (Figure 5e). The region with the second highest FpvA identification score (referred
416  to as R2) was located in the C-terminal signaling domain (Figure 5d, between 59 Leu and 86
417  Lys in the PAO1 FpvA). The sequence distance matrix revealed that R2 allows to distinguish
418  FpvB from FpvA receptors (Figure 5f).
419 We then constructed two pHMM by (i) the alignment of the 21 FpvA sequences in the R1
420  region, termed R1(FpvA), and (ii) the alignment of the 6 FpvB sequences in the R2 region,
421 termed R2(FpvB). Running R1(FpvA) and R2(FpvB) against all 35 reference sequences
422  revealed a clear separation between the three receptor categories (Figure 5g). Along the
423  R1(FpvA) axis, FpvA and FpvB reference sequences have high R1 scores (minimal score
424 77.0) that separate them from other siderophore receptors (maximal score 38.1), whereas
425  FpvAs references have substantially lower R2 scores (maximal 20.2) than FpvBs (minimal
426  49.0) along the R2(FpvB) axis.
427 Based on these insights, we developed a decision flow chart for annotating FpvAs in

428  Pseudomonas genomes (Figure 5h): First, we considered sequences as Fpv-like receptors
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429  that share similar properties to the ones identified in our reference database. Particularly,

430  protein coding sequence (CDS) length has to be between 750 and 850 amino acids and the

431 phMM scores for the three typical receptor domains STN, Plug, and TonB have to be greater

432  than 25, 50, and 80, respectively (Figure 5b, red dashed lines). Second, we used the pHMM

433  threshold scores obtained for R1(FpvA) and R2(FpvB) (Figure 5g) to differentiate other

434 siderophore receptors (R1(FpvA) score < 50) from FpvB receptors (R1(FpvA) score > 50 and

435 R2(FpvB) score > 30) and FpvA receptors (R1(FpvA) score > 50 and R2(FpvB) score < 30).

436  Our method effectively identifies FpvA receptors from sequence data and can be readily

437  applied to the entire Pseudomonas dataset.

438

439  Section 6: Application of the receptor annotation pipeline to the full dataset.

440 The region-based receptor identification pipeline was applied to all 1928 Pseudomonas

441 genomes. The analysis identified 4547 FpvAs, 615 FpvBs, and 9139 other TonB-dependent

442 Fpv-like receptors across the dataset (Figure 6a). The 4547 FpvA sequences clustered

443  hierarchically into 114 groups, defined by an identity threshold of 60%. When comparing to

444  the 21 reference FpvAs (Figure 6b), we found that 2293 FpvA sequences have close

445  homologues in the reference data base, while 2254 FpvA sequences lack such close

446  homologues (sequence identity < 50%). These latter sequences, termed as "dissimilar to

447  reference”, may represent novel subtypes of FpvA receptors that could not be found by

448  simple homology search. Our analysis further shows that many strains have more than one

449  FpvAreceptor.

450 We then asked whether the 4547 FpvAs are found in proximity of pyoverdine Pep
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451 synthetase genes as it is commonly the case for cognate FpvA receptors . We thus
452  calculated the proximity between pyoverdine Pep genes and the Fpv-like receptor genes by
453  counting the number of base pairs between the two coding regions. All TonB-dependent
454  receptors that have not been classified as FpvAs were more than 20 kb away from the Pep
455  genes (Figure 6¢). In contrast, 92% of the nearest FpvA genes were indeed located within 20
456 kb of their pyoverdine Pep genes (Figure 6d, called proximate receptors). These proximate
457  receptors encompassed both those with close (66%) and more distant (34%) resemblance to
458  the reference receptor types. Overall, this proximity analysis confirmed that our region-based
459  gene identification method can reliably identify FpvA receptors.

460 We next explored the diversity among FpvA receptors in more detail by focusing on the
461 1534 strains that had proximate-receptors within 20 kb of the pyoverdine Pep genes (Figure
462  6d) and using high-confidence FpvAs for sequence feature extraction. When considering the
463 whole gene sequences, these receptors segregated into 44 groups according to single-
464  linkage clustering with an identity threshold of 60% (Figure S2a). To investigate which
465  sequence regions were the most informative for reliable clustering, we used a similar
466  approach as with FpvAs detection by quantifying the "group identification score" for variable
467  regions flanked by highly conserved sites. The higher the score, the stronger a region's
468  capacity to discriminate between FpvA groups. We found that the four regions with the top
469  discrimination capacities all located near the Plug domain surrounding the pyoverdine
470  transmission channel (Figure 6e). The plug domain is known to undergo conformational

36,37

471 changes and is involved in pyoverdine selectivity and import™~", suggesting that the four

472  high-score regions are responsible for pyoverdine specificity.
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475  Figure 6 Application of the receptor annotation pipeline to the full database. a. Applying
476 the receptor annotation pipeline to the genomes of the 1928 non-redundant Pseudomonas strains yields
a77 14301 Fpv-like receptors, which segregate into 4547 FpvA receptors (red box), 615 FpvB receptors, and

478 9139 other receptors, based on the pHMM score thresholds for regions R1 and R2. The heatmap
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479 indicates receptor density. b. Sequence distance matrix between the 35 reference sequences (y-axis)

480 and the 4547 annotated FpvA sequences in the full database (x-axis). Database sequences were

481 ordered by hierarchically clustering and segregated into 114 groups. 2254 of the annotated FpvA

482 sequences have sequence identity < 60% compared to the reference receptors, pointing at novel

483 subtypes of FpvA receptors. ¢c. Genomic distance (in base pairs) between each Fpv-like receptor

484 sequence and its pyoverdine peptide synthetase gene (Pep) for annotated FpvA receptors (upper panel),

485 FpvB receptors (middle panel) and other receptors (lower panel). d. Distribution of the genomic distance

486 between each FpvA receptor and its nearest pyoverdine peptide synthetase depending on whether the

487 annotated FpvA receptor has high sequency similarity (blue, = 50%) or low sequence similarity (yellow,

488 < 50%) with at least one of the 21 reference FpvAs. e. FpvA region-based conservation scores from a

489 multi-alignment of all the annotated FpvA receptors that are proximate (< 20 kbp) to the pyoverdine

490 synthetase cluster mapped to the FpvA sequence of strain P. aeruginosa PAO1. All residues within the

491 top 10% of the conservation score denoted with black dots. For each region flanked by two black dots,

492 we calculated the group identification score (heatmap, lower panel), representing the ability of the region

493 to distinguish between different groups of FpvA receptors. Four regions in the plug domains had a

494 particularly high group identification score (called the feature sequence). They are mapped to the crystal

495 structure of FpvA from PAO1 conjugated with pyoverdine (PDB 2IAH, up panel). All four regions

496 surround the pyoverdine transmission channel and are shown in the respective heatmap color. f.

497 Heatmap showing the hierarchically clustered distances between the 4547 annotated FpvA receptors

498 based on the feature sequence (comprising the four groups with the highest identification scores). The

499 analysis identifies 94 receptor groups with a 70% identity threshold. e. The diversity of FpvA receptors

500 along the 13 phylogeny clades containing more than 1 strain. Receptor diversity was calculated by the
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501 Shannon entropy, similar to the alpha-diversity in microbial community.

502 Based on the above insights, we concatenated the four high-score regions (from 168 Pro

503 to 295 Ala in PAO1) into a single “feature sequence". The feature sequence could

504  characterize 98% of the distance matrix compared to the whole sequence (1534 FpvAs,

505 r=0.98, Figure S2a-b) and substantially reduced within-group distance. We applied the

506  concatenated feature sequence approach to all the 4547 annotated FpvAs to calculate the

507  sequence distance matrix. Single-linkage clustering with an identity threshold of 70% revealed

508 a total of 94 groups, out of which 43 groups contained more than 10 members (Figure 6f).

509  The diversity of receptors is hence much larger than currently anticipated as only 3 groups of

510  FpvAs have previously been reported. Finally, we calculated the diversity of receptor FpvAs

511 for each of the 13 phylogenetic clades with more than one strain by the Shannon entropy,

512  which is similar to the alpha-diversity in microbial community (Figure 6g). We noticed large

513  differences in FpvA diversity across the clades and species: clades with P. aeruginosa and P.

514  syringae species had lower FpvAs diversity (1.55 and 1.60) than clades containing P. putida

515 and P. fluorescens species (4.82 and 3.77). Taken together, the region-based identification

516  method developed in our study can reliably mine the FpvAs (pyoverdines receptors) from

517 genome data, revealing undiscovered diversity of FpvA pyoverdine receptors that are

518  unequally distributed across the different phylogenetic clades of pseudomonads.

519

520 Discussion

521  The rapid expansion of sequencing data offers exciting opportunities for microbiology® .

522  One key challenge of current research in the field is to infer biological functions of microbial
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523  communities from genome sequence data***?

. While this endeavor is increasingly successful
524  for biological functions involving the primary metabolism and the associated complex
525  metabolic flux, reconstructing aspects of the secondary metabolism is much more challenging.
526  The main issue is that neither the function of a secondary metabolite enzyme nor the resulting
527  metabolite can be precisely predicted from gene sequence data. In our study, we tackled this
528 challenge and developed a bioinformatic pipeline to reconstruct the complete secondary
529 metabolism pathway of pyoverdines, a class of iron-scavenging siderophores produced by
530 Pseudomonas spp. These secondary metabolites are synthetized by a series of non-
531 ribosomal peptide synthetases and require a specific receptor (FpvA) for uptake. We
532  combined knowledge-guided learning with phylogeny-based methods to predict with high
533  accuracy: (i) the full pyoverdine assembly line, (ii) the substrate specificity for each enzyme
534  within the assembly lines, (iii) the complete chemical structure of pyoverdines, and (iv) the
535  FpvA receptors from genome sequences. After validation, we tested our pipeline with
536  sequence data from 1664 phylogenetically distinct Pseudomonas strains and were able to
537  determine 18,292 enzymatic A domains involved in pyoverdine synthesis, reliably predicted
538  97.8% of their substrates, identified 188 different pyoverdine molecule structures and 4547
539  FpvA receptor variants belonging to 94 distinct groups. The uncovered diversity is stunning
540  and goes far beyond currently known levels of variation (73 pyoverdines and 3 FpvA groups).
541 The molecular diversity of iron scavenging capacity highlights its importance among
542  pseudomonads.

543 We show that knowledge-guided learning is an extremely powerful tool to predict enzyme,

544  metabolite, and receptor properties. The establishment of our entire pipeline is based on only
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545 101 previously known enzymatic A domains (from 13 known pyoverdine assembly lines) and
546 21 FpvA receptor sequences. Even with this limited amount of information, we were able to
547  predict the substrates of almost all the 18,292 enzymatic A domains and to identify 4547 FpvA
548  receptors from the sequence data. A key insight from our knowledge-guided learning is that
549  comparisons based on the full gene sequences (e.g., for pyoverdine synthetase or receptor)
550 are likely non-informative and unsuitable for obtaining functional information. This is because
551 overall diversity does not stand for functional diversity, meaning that A domains recognizing
552  the same substrate can diverge substantially in their full sequences. The same holds true for
553  receptor sequences: whole-sequence alignments can neither accurately identify FpvA
554  receptors nor reliably separate them into functional groups. Instead, it is imperative to extract
555  informative feature sequences that are defined as sequence stretches within a gene whose
556  diversity is tightly linked to variation in its functioning. We successfully extracted and applied
557  feature sequence comparisons for both A domain substrate prediction and FpvA identification.
558 Itis important to note that a knowledge-guided pipeline does not have to be perfect right from
559  the start. For example, our pipeline for pyoverdine structure prediction returned unknowns for
560 several amino acid positions within the PEP. Our experimental verifications then revealed
561 indeed new substrates such as valine and citrulline. This information can then be used to
562  refine our prediction algorithm in a feedback loop.

563 Another main advantage of our bioinformatic pipeline is that it can be applied to draft
564  genomes. This reflects a major improvement compared to existing annotation tools such as
565  antiSMASH®, which typically has difficulties in recognizing NRPS structures in fragmented

566 genome assemblies. However, draft genomes are the most common data source in
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567  microbiology. While our pipeline shows high performance, we need to acknowledge that we
568  still lose many genomes (6087 out of 9599, 63.4%). The reason for the loss is that the
569 pyoverdine synthesis machinery is large, which increases the probability that it is positioned
570  at the end of a contig. We decided to exclude those cases because the annotated synthesis
571 machinery might be truncated and thus incomplete. Thus, the high loss rate of draft genomes
572 is rather due to limitations in sequence quality (too many short contigs) and not due to a
573 limitation of our bioinformatic pipeline. We believe that this limitation will be lesser of a proble
574  in the future as long-read sequencing technologies are quickly becoming cheaper and more
575  reliable.

576 We further show that knowledge-guided learning combined with a phylogeny-focused
577  approach is a powerful tool for predicting the substrate specificity of A domains of synthetases.
578 It outperforms currently known bioinformatics prediction tools of NRPS substrates such as

579  antiSMASH®. Most current algorithms®“®

perform poorly when applied to pyoverdines,
580  particularly when encountering non-proteogenic amino acids. The high accuracy of our
581 algorithm can largely be attributed to our reference set, composing only 13 pyoverdines from
582 Pseudomonas spp., yet capturing most of the substrate diversity. Similarly accurate
583  predictions based on a handful of known substrates among closely related species were
584  observed in several fungal NRPS systems™. It is worth noting that when the algorithm output
585 is "unknown," it actually signifies uncharacterized A domains not yet incorporated into the
586 reference data set. This should prompt researchers to pay attention to these A domains, and

587 like in our case, subject them to further experimental investigation. This approach helped us

588  discover new substrates (valine, histidine, citrulline), which had not been previously
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589  documented in pyoverdines and were therefore absent from the reference A domains. The
590 novel substrates identified through our structural assessment and mass spectrometry
591 experiment can subsequently be used to enhance the precision of our phylogeny-centered
592  substrate prediction technique in the future, creating a progressive feedback loop of
593  expanding knowledge. Taken together, supervised learning based on a few known
594  compounds produced by species from the same genus probably outperforms generalized
595  prediction algorithms trained on many products from a diverse set of microbes for NRPS
596  substrate predictions.

597 Our results show that both pyoverdine and receptor diversity has been vastly
598  underestimated. While considerable pyoverdine diversity (n=73) has already been captured in
599  previous studies, here we discovered 151 new variants. On the receptor side, the uncovered
600 novel diversity is more dramatic. One reason for this is that research on receptors has mainly

601  focused on the pathogen P. aeruginosa‘®?**

. For this species, three different pyoverdine
602  types were described? together with three structurally different FpvA receptor types that each
603  recognize one of the pyoverdine types®. While our study confirmed that P. aeruginosa strains
604  (n=554) indeed have only 3 pyoverdine-receptor systems, we also discovered 91 new FpvA
605 groups among environmental Pseudomonas spp. Our findings raise the question why there
606 are so many different pyoverdine and receptor variants. One potential explanation is that the
607  benefit of specific siderophores could be context-dependent and locally adapted to multitude
608 of different environmental conditions pseudomonads are exposed to. For example,

609  experimental work has revealed that pyoverdines can be cooperatively shared among strains

610  with matching receptors®™**, or conversely, pyoverdines can serve as competitive agents by
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611 locking away iron from species that have non-matching receptors®’. Given that bioavailable

612  iron is limited in most natural and host-associated habitats®*>®

, the unraveled functional
613  diversity is likely a direct evolutionary consequence of the struggle and competition of
614 microbes for iron. While experimental work is often restricted to a low number of strains, we
615  propose that our bioinformatic pipeline can be used to predict pyoverdine-mediated
616  interaction networks across thousands of strains and across different habitats. We will
617  address this point in a future study.

618 We believe our pipeline could be easily expanded to study iron competition in multi-
619  species communities in the future and perhaps in plant-microbe ecosystems, as siderophores
620  exist ubiquitously and are shared among microbes®. To move further, a key question is
621 whether our knowledge-guided approach can be applied to other important secondary
622 metabolites, such as antibiotics, toxins, biosurfactants and pigments? This answer is: not
623  directly but the pipeline development strategies are translational between different types of
624  compounds. As soon as sufficient case-by-case knowledge on a specific system is available,
625  the annotation strategies together with the feature sequence extraction and the phylogeny-
626  focused approach developed in our paper can be applied. For most of the secondary
627  metabolites listed above, there are no receptors as the compounds have purely extra-cellular
628  functions, which substantially simplifies the development of bioinformatic pipelines. In the long
629  run, it will certainly be possible to automate the steps implemented in our workflow so that the

630  algorithms can be applied to a large set of secondary metabolites when fed with an

631 appropriate training set.
632

633  Data Availability
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634  The source code and parameters used are available in the supplementary material.
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