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Abstract 12	

We previously demonstrated that the phase of oscillations modulates neural 13	
activity representing categorical information using human intracranial recordings and 14	
high-frequency activity from local field potentials (Watrous et al., 2015b).  We extend 15	
these findings here using human single-neuron recordings during a navigation task. We 16	
identify neurons in the medial temporal lobe with firing-rate modulations for specific 17	
navigational goals, as well as for navigational planning and goal arrival.  Going beyond 18	
this work, using a novel oscillation detection algorithm, we identify phase-locked neural 19	
firing that encodes information about a person’s prospective navigational goal in the 20	
absence of firing rate changes. These results provide evidence for navigational planning 21	
and contextual accounts of human MTL function at the single-neuron level.  More 22	
generally, our findings identify phase-coded neuronal firing as a component of the 23	
human neural code. 24	
 25	
Introduction 26	

Single-neuron firing forms a fundamental basis of the neural code during 27	
perception and memory.  In addition to the well-established role for behavior-related 28	
changes in neuronal firing rates, converging evidence across species and behaviors 29	
suggests that interactions between single-neuron spike timing and oscillations observed 30	
in the local field potential (LFP) also contribute to the neural code (Hyman et al., 2005; 31	
Huxter et al., 2003; Rutishauser et al., 2010; Belitski et al., 2008; Ng et al., 2013; Kayser 32	
et al., 2009).  In rodents, hippocampal and medial prefrontal cells show phase 33	
precession relative to theta oscillations during navigation (O’Keefe & Recce, 1993; 34	
Terada et al., 2017; Jones & Wilson, 2005), in which the theta phase of neuronal firing 35	
represents information about the animal’s position (Jensen & Lisman, 2000).  36	

These observations have been incorporated into theoretical models of neural 37	
coding that posit a general role for oscillatory phase for coding various types of 38	
behavioral information (Nadasdy 2009; Kayser et al., 2012; Lisman and Jensen 2013; 39	
Watrous and Ekstrom 2014).  For example, in Spectro-Contextual Encoding and 40	
Retrieval Theory (SCERT), we proposed that frequency-specific and phase-locked 41	
neuronal firing to low-frequency oscillations at different phases (i.e. phase coding) also 42	
forms a basis of the human neural code (Watrous & Ekstrom 2014; Watrous et al., 43	
2015a). We previously reported evidence for SCERT (Watrous et al., 2015b) using high-44	
frequency activity in the LFP as a proxy for single-cell spiking (Crone et al., 1998; 45	
Manning et al., 2009; Miller et al., 2014).  However, given the complex and variable 46	
relationship (Ekstrom et al., 2007; Manning et al., 2009; Rey et al., 2014) between the 47	
spiking of particular single neurons and high-frequency activity in the human medial 48	
temporal lobe (MTL), it is unclear whether human MTL neurons show phase coding of 49	
navigationally relevant information beyond an overall preference to fire at particular 50	
phases (Jacobs et al., 2007).  We thus sought to extend our previous findings of LFP 51	
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phase coding (Watrous et al., 2015b) to the single-neuron level in patients performing a 52	
virtual navigation task, hypothesizing that phase coding would occur to low-frequency 53	
oscillations based on both human studies (Jacobs et al., 2010; Watrous et al., 2011; 54	
Ekstrom et al., 2005; Mormann et al., 2008) and the above-described rodent work. 55	

An optimal navigator must both plan routes and recognize when they have 56	
arrived at their destination.  Human imaging and lesion evidence indicate that activity in 57	
the human MTL and medial prefrontal cortex forms active representations of spatial 58	
context such as navigational goals (Ranganath & Ritchey, 2012; Brown et al., 2016; 59	
Ciaramelli  et al., 2008; Spiers and Maguire 2007; Wolbers et al., 2007) in support of 60	
navigational planning (Horner et al., 2016; Bellmund et al., 2017; Kaplan et al., 2017). 61	
Analyzing human single neuron recordings from the MTL, previous studies have 62	
identified neurons that increase their firing rate when viewing goal locations (Ekstrom et 63	
al., 2003).  To date, it is unclear whether phase-coding also exists for navigational goals.  64	
It is also unknown whether rate and phase-coding co-exist in humans, as suggested by 65	
seminal rodent studies that indicated that phase coding was a distinct phenomenon 66	
compared to rate coding (Huxter et al., 2003).   67	

Drawing upon the phase-coding hypotheses from SCERT and related findings in 68	
rodents (Hollup et al., 2001; Hok et al., 2007; Hyman et al., 2005; O’Neill et al., 2013), 69	
we hypothesized that spatial contextual representations for specific navigational goals 70	
would be implemented by distinctive patterns of phase coding by individual 71	
neurons.  Moreover, based on rodent (Wikenheiser et al., 2015) and human studies 72	
(Viard et al., 2011; Howard et al., 2014; Brown et al., 2016; Horner et al., 2016; 73	
Bellmund et al., 2017) implicating medial temporal lobe structures and frontal cortex in 74	
navigational planning, we reasoned that spike-phase coding may support these 75	
behaviors at the single-neuron level, hypothesizing that distinctive spike phase patterns 76	
would correspond to the neural network states representing planning and searching for 77	
particular goals. SCERT generally predicts that oscillatory frequencies should match 78	
between encoding and retrieval and that phase coding should occur at the dominant 79	
oscillatory frequency that occurs in a particular behavior and brain region. Thus, based 80	
on the body of evidence indicating hippocampal slow-theta oscillations are the most 81	
prominent during human virtual navigation (Ekstrom et al., 2005; Watrous et al., 2011; 82	
Jacobs 2014), we predicted here that phase coding should occur primarily at slow theta 83	
frequencies. 84	

To test these ideas, we analyzed a dataset that simultaneously measured human 85	
single-neuron and oscillatory activity from MTL (hippocampus, entorhinal cortex, 86	
amygdala, and parahippocampal gyrus) and frontal (medial prefrontal/cingulate, motor, 87	
orbitofrontal) regions during a goal-directed navigation task (Figure 1-figure supplement 88	
1; Jacobs et al., 2010; Miller et al., 2015).  After first assessing changes in firing rate 89	
related to goal activity, we then asked if additional goal-related information is encoded by 90	
considering oscillatory phase during spiking.  Following the analytic strategy from our 91	
previous work (Watrous et al., 2015b), we tested for frequency-specific phase locking 92	
and then directly tested for phase coding, which would appear as individual neurons that 93	
spiked at different phases according to the prospective goal. In addition to cells that 94	
encode navigational variables using firing rate, our results confirmed the existence of 95	
phase coding for navigational goals in individual neurons, thus providing the first 96	
evidence for the oscillatory phase coding of spatial contextual information in the human 97	
brain.   98	
 99	
Results  100	
 101	
Behavior & neuronal firing during goal-directed navigational planning and arrival. 102	
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Patients performed a goal-directed navigation task in which they moved 103	
throughout a circular environment delivering passengers to one of six goal locations 104	
located on the outer edge of the environment (see Jacobs et al., 2010 for details).  Upon 105	
arriving at a goal store, the patient paused and then was instructed to navigate to a new 106	
goal store.  On each trial, patients thus had to make a navigation plan about which 107	
direction of movement in the environment would lead them most directly to the location 108	
of their goal.  Driving time between stores significantly decreased throughout the task 109	
session (Kruskal-Wallis test across sessions, p=.007), indicating that the patients 110	
successfully learned the environment and planned efficient paths between stores. 111	

Previous work in humans has identified single neurons responsive to navigational 112	
goals (Ekstrom et al., 2003) and imaging work suggests that the MTL is involved in 113	
navigational planning (Bellmund et al., 2017; Horner et al., 2016; Brown et al., 2016). We 114	
investigated the single-neuron correlates of these phenomena in our task. We assessed 115	
neuronal firing rate as a function of the identity of the navigational goal and of different 116	
task periods using a two-way ANOVA, with factors for goal and task period (“planning” 117	
vs. “arriving”, see Methods).  Figure 1A shows an example entorhinal neuron who’s firing 118	
significantly increased during deliveries to goal store 3 (main effect of goal, F(5)=6.7, 119	
p<.0001). We identified 53 such goal-responsive cells (11% of 466 MTL neurons; main 120	
effect of goal, p<.05), which were present in 11 of 12 patients.  We observed significant 121	
counts of goal-responsive neurons in the hippocampus, entorhinal cortex, orbitofrontal 122	
cortex, and premotor cortex (Figure 1B; Binomial tests, p’s<0.05).  123	

We also identified cells that showed significantly enhanced firing during either the 124	
navigational planning or the arrival period of each trial (main effect of task period, p<.05).  125	
Figure 1C shows an example hippocampal neuron whose firing rate significantly 126	
increased during navigational planning compared to goal arrival (main effect of task 127	
period, two-way ANOVA, p<.0001, followed by post-hoc analysis).  We observed 128	
significant counts of navigational planning neurons in the hippocampus of 9 of 12 129	
patients and in all areas except the amygdala (Figure 1E; Binomial test, p<.05). 130	
Furthermore, we observed modulation of firing rate by arrival at goals in 131	
parahippocampal and motor areas (Figure 1 D-E).  We found 24 cells with significant 132	
interactions between goal and task period (p<.05).  These results provide single-neuron 133	
evidence that the MTL encodes information about navigational goals, and supports 134	
navigational planning towards reaching these goals, using modulations in firing rate, 135	
extending previous findings (Ekstrom et al., 2003; Watrous et al., 2011; Brown et al., 136	
2016). 137	
 138	
 139	
 140	
 141	
 142	
 143	
 144	
 145	
 146	
 147	
 148	
 149	
 150	
 151	
 152	
 153	
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 154	
Figure 1  Firing rate modulations by navigational goal and task phase  155	
A) Neuron from the entorhinal cortex of patient 4 whose firing rate was significantly goal-156	
modulated when delivering to goal 3 (p<.001).  Firing rate is plotted as a function of each 157	
navigational goal (error bars indicate s.e.m.).  B) Proportion of goal-responsive neurons 158	
in each brain area. Asterisk indicates significant counts using binomial test. C) Example 159	
neuron from the hippocampus of patient 12 whose firing rate was modulated during goal 160	
planning (p<.0001). D) Example neuron from the parahippocampal gyrus of patient 8 161	
whose firing rate was modulated during goal arrival (p=.0002).  E) Proportion of task-162	
responsive neurons in each brain area, shown separately for planning and arrival.  See 163	
methods for regional acronyms. 164	
 165	
Slow theta oscillations (3Hz) in the MTL during virtual navigation 166	

Our primary hypothesis was that human MTL neurons encode behavioral 167	
information by modulating their spiking based on the phase of slow oscillations beyond 168	
changes in firing rate. Examining this hypothesis required that we accurately identify the 169	
presence and phase of slow oscillations, particularly because human MTL oscillations 170	
are lower frequency and less stationary compared to the stable theta oscillations 171	
observed in rodents (Watrous et al., 2013; Vass et al., 2016). We developed and 172	
validated a novel method, the Multiple Oscillations Detection Algorithm (“MODAL”; 173	
Figure 2A-C), to detect and characterize neural oscillations in adaptively identified 174	
band(s) whose frequency ranges are customized for each recording site according to its 175	
spectral properties.  MODAL identifies narrow-band oscillations exceeding the 176	
background 1/f spectrum (Figure 2A) and calculates the instantaneous phase and 177	
frequency of oscillations in each band (see Methods) while excluding time points without 178	
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oscillations or that exhibited epileptogenic activity (Gelinas et al., 2016). Thus, MODAL 179	
allowed us to test for phase coding of spikes during the presence of narrowband 180	
oscillations in our dataset. 181	

 182	
Figure 2 Multiple Oscillation Detection Algorithm (“MODAL”) 183	
A-C) Key steps in the algorithm, shown for an example electrode from the right 184	
hippocampus of patient 9.  A) Mean log power averaged over time (black) and a fit line 185	
of the 1/f background spectrum (gray).  A slow theta band (blue) and a beta band 186	
(green) are identified as contiguous frequencies exceeding the fit line.   B) Example 187	
output from MODAL depicting a raw trace example of the LFP (upper) with the detected 188	
oscillations in each band (lower).  The instantaneous frequency of the detected 189	
oscillation in each band is overlaid on a spectrogram and gray portions of the 190	
spectrogram indicate power values exceeding a local fit (similar to A but using a 10s 191	
epoch).  C) Accumulating detections over time reveals the prevalence of oscillations at 192	
each frequency on this electrode (black).  Blue and green bars indicate the overall 193	
prevalence of oscillations in each frequency, independent of the exact frequency within a 194	
band.  D) Population data for MTL channels demonstrating low frequency 195	
oscillations.  Grey line indicates the percent of LFP channels with a detected band as a 196	
function of frequency.  Of those channels with a detected band, the black line indicates 197	
the average amount of time each frequency was detected.  Slow theta oscillations 198	
(below 5Hz) are observed using both metrics. 199	

 200	
MODAL reliably identified oscillations at multiple frequencies that were visible in 201	

the raw trace (Figure 2B-C).  Analyzing each of 385 LFP channels from the MTL across 202	
the entire task period using MODAL, we found that most channels showed a band of 203	
activity centered at “slow theta” (~3Hz; 93% of signals; Figure 2D, gray line). Analyzing 204	
the overall amount of time each frequency was detected on these electrodes, we found 205	
that slow theta was detected most often (Figure 2D, black line).  Similar results were 206	
identified in different brain areas (Figure 2-figure supplement 1). We then verified that 207	
MODAL can capture multiple narrowband oscillatory signals using a published rodent 208	
recording dataset (Fujisawa et al., 2008; crcns.org PFC-2 dataset), and observed 209	
canonical rodent hippocampal CA1 theta oscillations and a more variable low-frequency 210	
rhythm in the medial prefrontal cortex (Figure 2-figure supplement 2). These results 211	
indicate that MODAL is able to identify and track the dynamics of narrowband signals, 212	
providing cross-validation for our human findings which are consistent with previous 213	
work showing the prevalence of slow theta in the human MTL (Watrous et al., 2011; 214	
Watrous et al., 2013; Vass et al., 2016, Jacobs, 2014; Bohbot et al., 2017). We 215	
subsequently restricted our analysis of phase coding to this low-frequency band (1–10 216	
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Hz) because it was most prominently detected by MODAL and because activity in this 217	
band has been shown to modulate human single-neuron firing (Jacobs et al., 2007).   218	
 219	
Slow theta phase modulates neuronal firing  220	

As a precursor to testing for phase coding, we asked if phase coordinates the 221	
activity of individual neurons across the entire task session in the bands identified by 222	
MODAL.  Focusing first on the MTL, we analyzed 466 neurons that each had a 223	
simultaneously recorded LFP with an oscillation in a low-frequency band (1–10 Hz).  In 224	
many cells we observed significant phase-locking, an overall tendency for firing to 225	
increase at particular phases of the LFP oscillation (Jacobs et al., 2007; Rey et al., 226	
2014). Phase locking is evident by examining the LFP phase distribution for all spikes 227	
that occurred during oscillations from a given cell (Figure 3A upper panel, Rayleigh 228	
p<0.005).  Across our population of MTL neurons, we identified phase-locked neural 229	
firing in 144 neurons (144/466, 30%, Rayleigh test, p<0.005), a proportion significantly 230	
above chance (Binomial p<.00001).  We observed that phase locked neural firing was 231	
clustered just after the trough of the oscillation for these cells (Figure 3B, Rayleigh test 232	
p<.00001) and most phase locking occurred to slow-theta oscillations below 5 Hz (Figure 233	
3C).  Significant counts of phase-locked neurons were observed in each brain region 234	
(Binomial test, p<0.0001) and we observed phase-locking most prominently in the 235	
hippocampus (Figure 3D).  These results confirm the presence of phase-modulated 236	
neuronal activity in this dataset. 237	

 238	
Figure 3 Phase-Locked Neural Firing to low-frequency oscillations 239	
A)  Spike-triggered average of a phase-locked neuron from the right hippocampus of 240	
Patient 1 (left).  Red tick mark denotes a spike.  Circular histograms (right) show phases 241	
at which spikes occurred relative to two detected bands.  Spiking was phase-locked to 242	
the ascending phase in the 1.5-5 Hz band (red) but not in the 7.5-9 Hz band (Rayleigh 243	
test, p=.004 and p=.34, respectively).  B) MTL Population data: Pooling over 244	
frequencies, mean spike phases were significantly clustered near the initial ascending 245	
phase of the oscillation (Rayleigh test, p<.00001).  C) Population scatter plot of the 246	
mean phase of firing and maximally detected frequency within the band for each phase-247	
locked MTL neurons.  D) Population results showing proportion of phase-locked neurons 248	
in each brain region.  Total bar height indicates the proportion of neurons recorded on an 249	
LFP channel with a band in the 1-10 Hz range.  See methods for regional acronyms. 250	
   251	

The SCERT model predicts that neuronal activity is modulated by oscillations at 252	
particular frequencies.  Because the LFPs associated with 48 neurons displayed 253	
oscillations at two distinct frequency bands in the 1–10-Hz range, we were able to test if 254	
the spike–LFP phase locking was specific to an individual frequency band or present for 255	
both bands. 12.5% of these cells (6/48) showed frequency-specific phase locking, 256	
showing phase-locked firing in only one LFP frequency band (Figure 3a; p<.005 in one 257	
band, p>.1 in all other bands).  Thus, extending previous findings (Jacobs et al., 2007) 258	
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by examining phase-locking to adaptively-identified narrowband signals, we find that 259	
human neuronal firing is modulated by the phase of low-frequency oscillations in a band 260	
and frequency-specific manner, as predicted by several models of neural coding (Cohen 261	
2014; Kayser et al., 2012; Lisman and Jensen 2013; Watrous & Ekstrom, 2014). 262	
  263	
LFP-spike phase coding of goal information 264	

To understand the behavioral relevance of phase-tuned neuronal activity, we 265	
tested whether neurons also used phase-tuned neural firing to encode spatial contextual 266	
information, analogous to the phase coding for location in the rodent hippocampus 267	
(O’Keefe & Recce, 1993).  Our task tapped into goal-directed navigation and we 268	
therefore hypothesized that phase coding may be used to represent the patient’s 269	
prospective navigational goal and should appear as neuronal firing to different phases 270	
for different navigational goals. Visual inspection of raw traces (Figure 4-figure 271	
supplement 1) and circular histograms of spike-phases during deliveries to each goal 272	
revealed that this pattern was evident in individual neurons (Figure 4A-B).   273	

We used a cross-validated decoding approach (Watrous et al., 2015b; see 274	
Methods) to confirm that goal-specific phase variations were robust, by testing whether 275	
the patient’s prospective goal could be predicted from the phase of neuronal spiking.  276	
This analysis identified 63 cells (10% of 627 cells tested) across all regions that showed 277	
individually significant decoding of goal information from spike phases (p<.05, shuffle 278	
corrected).  This proportion of neurons exceeded chance levels (Binomial test, p<.0001) 279	
and spike phase coding differentially occurred in the hippocampus (χ2(6) = 50, p<.0001), 280	
with 28 of the phase coding cells coming from the hippocampus of nine different patients 281	
(Figure 4C). Roughly half (29/63) of phase coding cells exhibited significant phase-282	
locking (Rayleigh test, p<0.005), consistent with the idea that phase-locking and phase 283	
coding are related but non-identical phenomena (Watrous et al., 2015b). Critically, 51 284	
(80%) of the cells that showed significant phase coding did not show firing-rate effects 285	
(two-way ANOVA, p>.1), indicating that phase coding for a specific goal state can exist 286	
independent of firing rate effects.  We also observed intriguing examples of neurons that 287	
showed rate and phase-coding for different goals (Figure 4-figure supplement 2).  These 288	
results indicate that rate and phase coding each contribute to neural representation of 289	
goals during navigation. 290	

 291	

 292	
Figure 4 Spike–Phase coding for navigational goals 293	

A) Example neuron from the right hippocampus of patient 1 showing significant spike-294	
LFP phase coding for goal 4 compared to goals 5 and 6.  Circular histograms show 295	
spike counts separately for different goals.  Black line at center of each plot shows the 296	
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resultant vector and the colored arc indicates the 95th percentile confidence interval of 297	
the circular mean. B) Example cell from left entorhinal cortex of patient 6 showing phase 298	
coding for goal 6.  C) Population summary showing the proportion of significant neurons 299	
in each region that showed rate coding, phase coding, or both effects.  LEC: Left 300	
entorhinal cortex; RH: Right hippocampus 301	

To further understand hippocampal phase coding and motivated by our findings 302	
of differential firing rate modulation during planning and arrival, we investigated if phase 303	
coding differentially occurred during different task periods.  Observing such a distinction 304	
would indicate that phase coding for goals is behaviorally relevant because the effects 305	
relate to navigational planning or goal arrival.  We thus re-ran our decoding analysis for 306	
hippocampal neurons and restricted the analysis to either planning or arrival periods of 307	
each trial.  We identified a subset of 24 hippocampal neurons that showed significant 308	
decoding (p<.05) during the planning period, a proportion significantly above chance 309	
(24/186 neurons, 12% Binomial test p<.00001, chance = 9.3 neurons).  Similarly, we 310	
identified a mostly distinct subset of neurons (e.g., Figure 4-figure supplements 1 and 2) 311	
that showed phase coding during goal arrival (24/186 neurons, 12%, Binomial test 312	
p<.00001). Importantly, these were largely distinct subsets of hippocampal neurons and 313	
were found in different patient groups, with only 2 neurons significant for both planning 314	
and arrival.  Because we imposed two statistical thresholds per cell for inclusion, this 315	
analysis is statistically more stringent than the preceding analysis, which assessed 316	
phase coding over the entire task period, and thus the neuron counts are expected to be 317	
substantially smaller.   318	

In sum, we find evidence that phase-coding by individual neurons is specific to 319	
particular task periods. We conclude that phase coding occurs in distinct hippocampal 320	
populations in support of navigational planning and goal arrival.  More broadly, these 321	
findings suggest that phase-based coding is a general phenomenon used by MTL 322	
neurons to represent various types of contextual information. 323	

We performed several control analyses to exclude alternate accounts of our 324	
findings (see Supplemental Materials for full details). Ruling out signal-to-noise ratio 325	
concerns when measuring phase, phase coding was not related to the overall 326	
prevalence of oscillations detected by MODAL (rho = -0.0049, p=.9) nor to oscillatory 327	
bandwidth (rho =.008, p=.85). Finally, to link these findings to our previous work using 328	
high-frequency activity (Watrous et al., 2015b), we observed a significant positive 329	
relationship (shuffle corrected p<.01) between single-neuron firing rate and high-330	
frequency activity in 41% of recorded neurons, suggesting that the phenomenon are 331	
related in many cases. We thus conclude that phase coding is a robust mechanism for 332	
neural representation in the human brain during navigation. 333	
 334	
Discussion 335	

Analyzing recordings from epilepsy patients performing a goal-directed 336	
navigation task, we expand our previous observation of phase-coding with high-337	
frequency LFPs (Watrous et al., 2015b) to the domain of single neuron spiking. In 338	
addition to firing rate modulations (discussed below), we found a distinct population of 339	
cells in which spike-LFP phase coding contributed to representations in the absence of 340	
significant changes in firing rate (Hyman et al., 2005; Rutishauser et al., 2010). In 341	
addition, we found neurons that were phase-locked to frequency-specific narrowband 342	
oscillations primarily in the slow-theta band. Together, these findings provide new, 343	
stronger evidence for SCERT and related models that posit a role for oscillatory phase in 344	
neural coding (Nadasdy 2009; Kayser et al., 2012; Lisman and Jensen 2013; Watrous 345	
and Ekstrom 2014). 346	
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We replicated the earlier finding of firing-rate coding of goal representations in 347	
human single-cell activity (Ekstrom et al., 2003) and provide novel evidence for MTL and 348	
medial prefrontal neuronal firing during navigational planning (Figure 1E).  Consistent 349	
with its role in viewpoint-dependent scene processing (Epstein et al., 2003), we found 350	
neurons in parahippocampal gyrus that were modulated during navigational arrival.  In 351	
our analysis of goal modulation, we identified a similar number of neurons that were 352	
rate-modulated (n=53) or spike-LFP phase modulated (n=63) and these were largely 353	
non-overlapping neuronal populations.  Phase-coding also appeared to be modulated by 354	
current task demands such that it appeared during either navigational planning or goal 355	
arrival.  Because different groups of cells show rate versus phase coding for goals, it 356	
indicates that these phenomena are partially distinct (Huxter et al., 2003) and that phase 357	
coding is not an epiphenomenon. 358	

Our analyses benefited from employing the MODAL algorithm, which combines 359	
features of earlier algorithms (Whitten et al., 2011; Lega et al., 2012; Cohen 2014) to 360	
identify oscillatory bands in a manner that is customized for each recording site.  361	
MODAL is an improvement on these methods because it adaptively identifies oscillatory 362	
band(s) without introducing experimenter bias regarding bands of interest, excludes 363	
periods when phase is noisy because oscillations are absent, and provides exactly one 364	
estimate of power, phase, and frequency per band and signal sample. We focused on 365	
low-frequency oscillations in this study due to the nature of our task, but it should be 366	
understood that MODAL allows one to investigate oscillatory effects such as phase-367	
coding at higher frequency bands such as beta or gamma (Siegel et al., 2009; Colgin et 368	
al., 2016). Prior work has argued that the unstable shifts in gamma frequency limit their 369	
utility in phase coding (Xing et al., 2012).  This is likely distinct from phase coding at slow 370	
frequencies in which both modeling (Cohen, 2014) and empirical studies (Hutcheon and 371	
Yarom, 2000; Giocomo et al., 2007) support the idea that neurons may respond 372	
maximally to inputs at particular frequencies, likely manifesting as the aggregated LFP 373	
signal (Buzsaki et al., 2012).   374	
 Our findings provide the first evidence of phase coding during human navigation 375	
and provide a theoretically important link to other model systems where phase coding is 376	
present (Siegel et al., 2009; Kayser et al., 2009; Ng et al., 2013), such as phase-377	
precession (O’Keefe and Recce, 1993; Terada et al., 2017).  However, we found 378	
prominent phase-locking and phase-coding to slower frequency oscillations below 5 Hz, 379	
suggesting that phase coding exists beyond the canonical 8-Hz theta signal seen in rats. 380	
These findings thus lend further credence to findings indicating that (virtual) navigation-381	
related theta occurs at a slower frequency in humans (Watrous et al., 2013; Jacobs, 382	
2014; Bohbot et al., 2017) and demonstrates that these oscillations play a functional role 383	
in modulating neuronal spiking. 384	

Epilepsy is marked by slowing of neural oscillations which might be considered a 385	
confound in the present study.  However, numerous previous studies have identified ~3 386	
Hz oscillations in the human MTL (Mormann et al., 2008; Watrous et al., 2011; Lega et 387	
al., 2012; Bush et al., 2017), some of which have removed electrodes from the seizure 388	
onset zone or have analyzed intracranial recordings from non-epileptic patients (Brazier 389	
et al., 1968).  We thus conclude that the present results would generalize to healthy 390	
populations.   391	

These results align with work implicating the human MTL in spatial contextual 392	
representation (Ranganath & Ritchey, 2012) of navigational goals (Ekstrom et al., 2003; 393	
Watrous et al., 2011; Brown et al., 2016). Our results provide further evidence that the 394	
timing of MTL activity is critical for behavior (Reber et al., 2017; Rey et al., 2014).  We 395	
speculate that the goal coding observed in this study reflects flexible coding of spatial 396	
contextual information in the service of ongoing behavior (Warren et al., 2011; Yee et al., 397	
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2014). Consistent with this interpretation, we observed cells that were phase coding 398	
either during navigational planning or goal arrival.  Combined with previous human 399	
studies (Kraskov et al., 2007; Lopour et al., 2013; Watrous et al., 2015b; ten Oever & 400	
Sack, 2015), our work indicates that both firing rate and the precise timing of activity 401	
relative to LFP phase are general coding mechanisms in the human MTL across 402	
behaviors and tasks, suggesting that other types of contextual information may also be 403	
encoded using LFP phase.  Future studies can build off these findings to directly assess 404	
phase coding of other types of contextual information in humans, such as phase-405	
precession to space or time.   406	

 407	
Methods 408	
Neural Recordings and behavioral task 409	
 We analyzed data from 12 patients with drug-resistant epilepsy undergoing 410	
seizure monitoring (surgeries performed by I.F.).  The Medical Institutional Review Board 411	
at the University of California-Los Angeles approved this study.  Patients were implanted 412	
with microwire depth electrodes (Fried et al., 1999) targeting the medial temporal lobe 413	
and medial frontal lobe sites (Figure 1-figure supplement 1, see Jacobs et al., 2010; 414	
Fried et al., 1999; Mukamel et al., 2010 for other example implantation images).  Groups 415	
were formed for recordings in hippocampus, entorhinal cortex, parahippocampal gyrus, 416	
amygdala, orbitofrontal, (pre) motor, and cingulate/medial prefrontal cortex. (n=282, 176, 417	
68, 225, 200, 82, 137 neurons, respectively).  Acronyms for these regions are Hipp, EC, 418	
PHG, Amy, OF, Motor, and mPFC, respectively. Subsets of these neurons were 419	
analyzed depending on the inclusion criteria for each specific analysis.  For instance, 420	
only neurons with simultaneously recorded LFPs exhibiting 1-10 Hz oscillations were 421	
analyzed for phase locking and phase coding. Microwire signals were recorded at 28-32 422	
kHz and captured LFPs and action potentials, which were spike-sorted using wave_clus 423	
(Quiroga et al., 2004).  Signals were then downsampled to 2 kHz.   424	

We examined data from a total of 31 recording sessions in which patients 425	
performed a continuous virtual-taxi driver game in a circular environment.  Patients were 426	
instructed to drive passengers to one of 6 goal stores in the virtual environment.  Upon 427	
arrival, they were given a new goal destination. The task was self-paced in order to 428	
accommodate patient testing needs and therefore patients performed at ceiling.  429	
Patients performed an average of 73 deliveries in each session (standard deviation = 11 430	
deliveries).  To assess behavioral performance, we calculated the drive time for each 431	
delivery, defined as the amount of time to drive between goal stores.  We binned each 432	
task session into quintiles and calculated a Kruskal-Wallis test across task sessions.  433	
The recordings and behavioral task have been detailed in prior publications that have 434	
characterized the spatial-tuning of neurons using firing rate alone (Jacobs et al., 2010; 435	
Miller et al., 2015).  Here, our primary analyses focused on how contextual information 436	
about navigational goals may be encoded based on firing rates and spike-LFP 437	
interactions.   438	
 439	
Detection and Rejection of Epileptogenic signals 440	
 We implemented an automated algorithm to detect and exclude epochs of signal 441	
likely resulting from epileptic activity following prior work (Gelinas et al., 2016).  We first 442	
low-pass filtered (4th order Butterworth) the signal below 80 Hz to remove any spike-443	
contamination at high frequencies.  Epochs were marked for rejection if the envelope of 444	
the unfiltered signal was 4 standard deviations above the baseline or if the envelope of 445	
the 25-80Hz bandpass filtered signal (after rectification) was 4 standard deviations 446	
above the baseline.  In some cases, we noted short “bad data” epochs lasting less than 447	
one second were not detected. We conservatively elected to exclude these epochs by 448	
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marking any “good data” epoch lasting less than one second as “bad”.  Bad data epochs 449	
were excluded from all analyses.   450	
 451	
Multiple Oscillations Detection Algorithm (“MODAL”) 452	

Numerous factors contribute to the presence and characteristics of band-limited 453	
neural oscillations, broadly including neuroanatomy, behavioral state, and recording 454	
equipment (Buzsaki et al., 2012).  We developed an algorithm to adaptively detect and 455	
characterize neural oscillations in bands exceeding the background 1/f spectrum 456	
motivated by rodent studies that exclude periods of low amplitude theta oscillations 457	
when assessing phase coding (Lenck-Santini & Holmes, 2008).  To this end, we 458	
modified the “frequency sliding” algorithm (Cohen 2014), which provides the 459	
instantaneous phase and frequency of oscillations in a band, in two important ways.   460	

First, rather than calculating frequency sliding in a priori bands, we defined bands 461	
for subsequent analysis on each electrode as those frequencies exceeding the 462	
background 1/f spectrum.  We calculated power values in .5Hz steps from 1 to 50 Hz 463	
using 6 cycle Morlet wavelet convolution.  We then created a power spectrum by 464	
averaging values over time (and excluding bad data epochs), and fit a line to this 465	
spectrum in log-log space using robustfit in Matlab.  Similar approaches have been used 466	
previously (Lega et al., 2012; Podvalny et al., 2015).  Frequency band edges were 467	
defined as the lowest and highest frequencies in a contiguous set of frequencies that 468	
had values exceeding this fit; several bands could be detected on each electrode.  We 469	
then calculated the instantaneous frequency and phase in each detected band using the 470	
“frequency sliding” algorithm (Cohen 2014). 471	

Second, frequency sliding provides a frequency and phase estimate at every 472	
moment in time, regardless of the presence or absence of an oscillation.  We ensured 473	
that phase & frequency estimates were only obtained during time periods where there 474	
was increased power in the band of interest.  We recomputed the power spectrum in 10 475	
second, non-overlapping windows and recomputed the fit line as described above.  We 476	
excluded phase and frequency estimates at time points 1) in which the power was below 477	
the fit line or, 2) were during bad data epochs.  Finally, we also excluded noisy 478	
frequency estimates outside of the band, which can occur based on “phase slips” 479	
(Cohen 2014).  MODAL was implemented in Matlab using custom code that is available 480	
on Github (https://github.com/andrew-j-watrous/MODAL). 481	
 482	

Statistical Analyses   483	
To assess how neuronal activity may vary during navigational planning and goal 484	

arrival, we split each delivery in half and operationalized the first half of each delivery as 485	
the planning period and the second half of each delivery as the arrival period.  This 486	
approach has the advantage of creating equally sized temporal windows for analysis but 487	
does not allow us to draw firm conclusions regarding the precise temporal dynamics of 488	
navigational planning or goal arrival.  We analyzed neural firing rate using a two-way 489	
ANOVA with factors of navigational goal and task period.  Cells which exhibited main 490	
effects of goal or task period (defined as p<.05 uncorrected) were considered significant. 491	

We used Rayleigh tests to identify phase-locked neural firing, extracting the 492	
phase of the LFP during each spike in each detected frequency band.  All analyses were 493	
done considering each band separately and statistical thresholding was set at p<.005 for 494	
each cell.  This was chosen to be stricter than p<.05 Bonferroni-correction across the 495	
number of bands detected in the 1-10Hz range.   To control for the possibility that non-496	
sinusoidal oscillations led to spurious phase-locking, we tested if the distribution of spike 497	
phases was different from the distribution of all phases on the LFP.  96% of phase-498	
locked cells had a significantly different phase-preference to that of the entire LFP 499	
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(p<.05; Watson Williams test), suggesting that phase-locked activity was not a byproduct 500	
of non-sinusoidal oscillations. 501	
 502	
Assessment of phase coding using cross-validated decoding 503	

We used a decoding-based approach to identify phase coding, employing a 504	
linear decoder with fivefold cross-validation to predict the behavioral goal from the phase 505	
of the LFP during neural spiking.  In each band detected by MODAL, we first computed 506	
the sine and cosine of the phase values before classification following previous work 507	
(Lopour et al., 2013; Watrous et al., 2015b).  Chance performance varies across cells 508	
because we classified goal information associated with the LFP phase for each spike 509	
and the distribution of spikes across goals varied between cells.  Similarly, circular 510	
statistics can be influenced by small sample sizes.  We accounted for these issues using 511	
a permutation procedure, re-running our classification 500 times per cell using shuffled 512	
goal information (circshift in Matlab to maintain the temporal structure of the session) to 513	
get a surrogate distribution of classification accuracies per cell.  We then obtained a p-514	
value for classification by ranking our observed classification accuracy to the surrogate 515	
distribution; p-values less than .05 were considered significant.  We additionally ruled out 516	
the possibility that our phase-decoding approach was biased to observe effects in more 517	
narrow oscillatory bands, finding no correlation between phase-decoding classifier 518	
accuracy and oscillatory bandwidth (rho=-.008, p= .85; see also Supplemental 519	
Materials).   520	

We then used the above decoding approach considering spikes in only the first 521	
half (planning) or second half (arrival) of each delivery to assess how phase coding 522	
varies by behavior. Each cell was categorized as phase coding during planning (p<.05 523	
with decoding approach), arrival (p<.05), or both.  524	
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 797	
Supplemental Material 798	
 799	
Control Analyses 800	

We assessed signal to noise ratio in two ways to see if it may contribute to or 801	
confound our results.  First, we correlated the phase-decoding classification in accuracy 802	
in each band with the proportion of time oscillations were detected over the whole 803	
session. We did not observe a relation between the prevalence of oscillations and phase 804	
decoding (rho = -0.0049, p=.9). Second, we performed an analysis testing whether 805	
phase-coding, measured by classification accuracy of our decoder, was related to the 806	
oscillatory bandwidth.  We did not observe any relationship between the two measures 807	
(rho = -.008, p = .85), indicating that phase coding in the range we are considering (<10 808	
Hz) is unrelated to bands with wider (possibly less stable) frequencies. 809	

To determine how the present single-neuron results relate to our previous work 810	
(Watrous et al., 2015b), we tested whether high frequency activity (HFA; 65-120 Hz) was 811	
correlated with single-neuron spiking.  Excluding bad epochs and analyzing the entire 812	
recording session for each LFP with an associated single-neuron recording, we 813	
correlated z-scored HFA with a smoothed firing rate vector (500 ms kernel).  We 814	
identified significant (shuffle-corrected p<.01) positive correlations between HFA and 815	
single-neuron activity in 544/1311 (41%) of neurons.  In contrast, negative correlations 816	
were only identified in 14 neurons. Together with other work (Manning et 2009; Miller et 817	
al. 2010) these results corroborate the link between human single neuron firing and high-818	
frequency activity but also suggest it HFA is an imperfect proxy for single-neuron firing in 819	
humans.   820	
 821	
Figure 1-figure supplement 1 822	

 823	
A) Overhead view of the virtual environment.  Goal stores are outlined in red. B) 824	
Microelectrode bundle from the right entorhinal cortex of patient #2. C) Example spike 825	
waveforms for neurons isolated from the bundle shown in B. 826	
 827	
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 839	
 840	
Figure 2-figure supplement 1 841	
Caption 842	
Proportion of channels with oscillations detected using MODAL in each brain region 843	
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 868	
 869	
 870	
Figure 2- figure supplement 2 871	
Analysis of rodent CA1 and medial prefrontal cortex LFPs using MODAL 872	

 873	
 874	
Caption Analysis of rodent medial prefrontal cortex (A) and hippocampal CA1 (B) 875	
recordings using MODAL.  Data provided by Fujisawa and taken from crcns.org (PFC-2 876	
dataset).  The first five minutes of recordings from one rat (EE) were analyzed. Upper 877	
panels show example raw traces. 878	
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	894	
	895	
	896	
Figure	4-figure	supplement	1	897	

 898	
Caption A-F) Example of a phase coding neuron from the right hippocampus of Patient 899	
1.  This neuron showed significant decoding using spike phases (shuffle corrected 900	
p=.002) and no firing rate effects (all p>.5 using two-way ANOVA with goal and task 901	
period).  Phase coding was more robust during goal arrival than during planning (p<.002 902	
and p=.08, respectively) and is evident when comparing panel C and F.  A) LFP traces 903	
and spiking for a single delivery to goal 2, demonstrating consistent spiking near the 904	
ascending peak of the low-frequency oscillation (MODAL band detected 1-5 Hz 905	
oscillations). Inset in A shows the spike waveform of the neuron.  Colored tick marks 906	
indicate spikes during oscillations using MODAL and are color-coded by instantaneous 907	
phase (color scheme seen in S4B). B-C) Normalized spike phase histograms for goal 908	
store 2 deliveries across all deliveries during planning periods (B) and arrival periods 909	
(C).  Black lines in center indicate resultant vector length and black arc outside of circle 910	
indicates circular 95th percentile confidence intervals.  Absence of this black arc indicates 911	
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lack of significant phase locking for the distribution (Rayleigh p>.05).  D-F) Similar to A-C 912	
but for a delivery to goal 5.  Spike phases occur near the trough of the oscillation upon 913	
arrival at the goal.  914	

Figure	4-figure	supplement	2	915	

 916	

Caption A-D)  Example rate and phase-coding neuron from the left hippocampus of 917	
patient 11.   This neuron showed significant rate coding for goal 3 (panel E) and phase-918	
coding during arrival at goal 1 (p=.028, panel D). A) LFP traces and spiking for a single 919	
delivery to goal 3, demonstrating spiking at random phases of the low-frequency 920	
oscillation (MODAL band detected 1-6.5 Hz oscillations). Colored tick marks indicate 921	
spikes during oscillations using MODAL and are color-coded by instantaneous phase 922	
(color scheme seen in 4C). Grey ticks indicate spikes during non-oscillatory periods. C-923	
D) Normalized spike phase histograms for each goal that demonstrated phase-locking 924	
during planning periods (C) and arrival periods (D).  Colored lines in center indicate 925	
resultant vector length and arcs outside of circle indicates circular 95th percentile 926	
confidence intervals.  Absence of this arc (e.g. for goal 3) indicates lack of significant 927	
phase locking for the distribution (Rayleigh p>.05).  E) Firing rate for each goal, 928	
demonstrating that this neuron showed elevated firing for goal 3 deliveries (p<.009). 929	
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