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12  Abstract
13 We previously demonstrated that the phase of oscillations modulates neural

14  activity representing categorical information using human intracranial recordings and
15  high-frequency activity from local field potentials (Watrous et al., 2015b). We extend
16 these findings here using human single-neuron recordings during a navigation task. We
17  identify neurons in the medial temporal lobe with firing-rate modulations for specific

18 navigational goals, as well as for navigational planning and goal arrival. Going beyond
19  this work, using a novel oscillation detection algorithm, we identify phase-locked neural
20  firing that encodes information about a person’s prospective navigational goal in the

21  absence of firing rate changes. These results provide evidence for navigational planning
22 and contextual accounts of human MTL function at the single-neuron level. More

23 generally, our findings identify phase-coded neuronal firing as a component of the

24 human neural code.

25
26  Introduction
27 Single-neuron firing forms a fundamental basis of the neural code during

28  perception and memory. In addition to the well-established role for behavior-related

29  changes in neuronal firing rates, converging evidence across species and behaviors

30 suggests that interactions between single-neuron spike timing and oscillations observed
31 inthe local field potential (LFP) also contribute to the neural code (Hyman et al., 2005;
32 Huxter et al., 2003; Rutishauser et al., 2010; Belitski et al., 2008; Ng et al., 2013; Kayser
33 etal., 2009). In rodents, hippocampal and medial prefrontal cells show phase

34  precession relative to theta oscillations during navigation (O’Keefe & Recce, 1993;

35 Terada et al., 2017; Jones & Wilson, 2005), in which the theta phase of neuronal firing
36 represents information about the animal’s position (Jensen & Lisman, 2000).

37 These observations have been incorporated into theoretical models of neural

38 coding that posit a general role for oscillatory phase for coding various types of

39 behavioral information (Nadasdy 2009; Kayser et al., 2012; Lisman and Jensen 2013;
40  Watrous and Ekstrom 2014). For example, in Spectro-Contextual Encoding and

41 Retrieval Theory (SCERT), we proposed that frequency-specific and phase-locked

42  neuronal firing to low-frequency oscillations at different phases (i.e. phase coding) also
43 forms a basis of the human neural code (Watrous & Ekstrom 2014; Watrous et al.,

44  2015a). We previously reported evidence for SCERT (Watrous et al., 2015b) using high-
45  frequency activity in the LFP as a proxy for single-cell spiking (Crone et al., 1998;

46 Manning et al., 2009; Miller et al., 2014). However, given the complex and variable

47 relationship (Ekstrom et al., 2007; Manning et al., 2009; Rey et al., 2014) between the
48  spiking of particular single neurons and high-frequency activity in the human medial

49  temporal lobe (MTL), it is unclear whether human MTL neurons show phase coding of
50 navigationally relevant information beyond an overall preference to fire at particular

51 phases (Jacobs et al., 2007). We thus sought to extend our previous findings of LFP
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52  phase coding (Watrous et al., 2015b) to the single-neuron level in patients performing a
53 virtual navigation task, hypothesizing that phase coding would occur to low-frequency
54  oscillations based on both human studies (Jacobs et al., 2010; Watrous et al., 2011;
55 Ekstrom et al., 2005; Mormann et al., 2008) and the above-described rodent work.
56 An optimal navigator must both plan routes and recognize when they have
57 arrived at their destination. Human imaging and lesion evidence indicate that activity in
58 the human MTL and medial prefrontal cortex forms active representations of spatial
59  context such as navigational goals (Ranganath & Ritchey, 2012; Brown et al., 2016;
60  Ciaramelli et al., 2008; Spiers and Maguire 2007; Wolbers et al., 2007) in support of
61 navigational planning (Horner et al., 2016; Bellmund et al., 2017; Kaplan et al., 2017).
62  Analyzing human single neuron recordings from the MTL, previous studies have
63 identified neurons that increase their firing rate when viewing goal locations (Ekstrom et
64  al, 2003). To date, it is unclear whether phase-coding also exists for navigational goals.
65 ltis also unknown whether rate and phase-coding co-exist in humans, as suggested by
66  seminal rodent studies that indicated that phase coding was a distinct phenomenon
67  compared to rate coding (Huxter et al., 2003).
68 Drawing upon the phase-coding hypotheses from SCERT and related findings in
69 rodents (Hollup et al., 2001; Hok et al., 2007; Hyman et al., 2005; O’Neill et al., 2013),
70  we hypothesized that spatial contextual representations for specific navigational goals
71  would be implemented by distinctive patterns of phase coding by individual
72 neurons. Moreover, based on rodent (Wikenheiser et al., 2015) and human studies
73 (Viard et al., 2011; Howard et al., 2014; Brown et al., 2016; Horner et al., 2016;
74  Bellmund et al., 2017) implicating medial temporal lobe structures and frontal cortex in
75  navigational planning, we reasoned that spike-phase coding may support these
76  behaviors at the single-neuron level, hypothesizing that distinctive spike phase patterns
77  would correspond to the neural network states representing planning and searching for
78  particular goals. SCERT generally predicts that oscillatory frequencies should match
79  between encoding and retrieval and that phase coding should occur at the dominant
80 oscillatory frequency that occurs in a particular behavior and brain region. Thus, based
81 on the body of evidence indicating hippocampal slow-theta oscillations are the most
82 prominent during human virtual navigation (Ekstrom et al., 2005; Watrous et al., 2011;
83  Jacobs 2014), we predicted here that phase coding should occur primarily at slow theta
84  frequencies.
85 To test these ideas, we analyzed a dataset that simultaneously measured human
86  single-neuron and oscillatory activity from MTL (hippocampus, entorhinal cortex,
87 amygdala, and parahippocampal gyrus) and frontal (medial prefrontal/cingulate, motor,
88  orbitofrontal) regions during a goal-directed navigation task (Figure 1-figure supplement
89  1; Jacobs et al., 2010; Miller et al., 2015). After first assessing changes in firing rate
90 related to goal activity, we then asked if additional goal-related information is encoded by
91 considering oscillatory phase during spiking. Following the analytic strategy from our
92  previous work (Watrous et al., 2015b), we tested for frequency-specific phase locking
93 and then directly tested for phase coding, which would appear as individual neurons that
94  spiked at different phases according to the prospective goal. In addition to cells that
95 encode navigational variables using firing rate, our results confirmed the existence of
96 phase coding for navigational goals in individual neurons, thus providing the first
97  evidence for the oscillatory phase coding of spatial contextual information in the human
98  brain.
99

100 Results

101

102 Behavior & neuronal firing during goal-directed navigational planning and arrival.
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Patients performed a goal-directed navigation task in which they moved
throughout a circular environment delivering passengers to one of six goal locations
located on the outer edge of the environment (see Jacobs et al., 2010 for details). Upon
arriving at a goal store, the patient paused and then was instructed to navigate to a new
goal store. On each trial, patients thus had to make a navigation plan about which
direction of movement in the environment would lead them most directly to the location
of their goal. Driving time between stores significantly decreased throughout the task
session (Kruskal-Wallis test across sessions, p=.007), indicating that the patients
successfully learned the environment and planned efficient paths between stores.

Previous work in humans has identified single neurons responsive to navigational
goals (Ekstrom et al., 2003) and imaging work suggests that the MTL is involved in
navigational planning (Bellmund et al., 2017; Horner et al., 2016; Brown et al., 2016). We
investigated the single-neuron correlates of these phenomena in our task. We assessed
neuronal firing rate as a function of the identity of the navigational goal and of different
task periods using a two-way ANOVA, with factors for goal and task period (“planning”
vs. “arriving”, see Methods). Figure 1A shows an example entorhinal neuron who’s firing
significantly increased during deliveries to goal store 3 (main effect of goal, F(5)=6.7,
p<.0001). We identified 53 such goal-responsive cells (11% of 466 MTL neurons; main
effect of goal, p<.05), which were presentin 11 of 12 patients. We observed significant
counts of goal-responsive neurons in the hippocampus, entorhinal cortex, orbitofrontal
cortex, and premotor cortex (Figure 1B; Binomial tests, p’s<0.05).

We also identified cells that showed significantly enhanced firing during either the
navigational planning or the arrival period of each trial (main effect of task period, p<.05).
Figure 1C shows an example hippocampal neuron whose firing rate significantly
increased during navigational planning compared to goal arrival (main effect of task
period, two-way ANOVA, p<.0001, followed by post-hoc analysis). We observed
significant counts of navigational planning neurons in the hippocampus of 9 of 12
patients and in all areas except the amygdala (Figure 1E; Binomial test, p<.05).
Furthermore, we observed modulation of firing rate by arrival at goals in
parahippocampal and motor areas (Figure 1 D-E). We found 24 cells with significant
interactions between goal and task period (p<.05). These results provide single-neuron
evidence that the MTL encodes information about navigational goals, and supports
navigational planning towards reaching these goals, using modulations in firing rate,
extending previous findings (Ekstrom et al., 2003; Watrous et al., 2011; Brown et al.,
2016).
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155 Figure 1 Firing rate modulations by navigational goal and task phase

156  A) Neuron from the entorhinal cortex of patient 4 whose firing rate was significantly goal-
157 modulated when delivering to goal 3 (p<.001). Firing rate is plotted as a function of each
158 navigational goal (error bars indicate s.e.m.). B) Proportion of goal-responsive neurons
159 in each brain area. Asterisk indicates significant counts using binomial test. C) Example
160  neuron from the hippocampus of patient 12 whose firing rate was modulated during goal
161 planning (p<.0001). D) Example neuron from the parahippocampal gyrus of patient 8
162  whose firing rate was modulated during goal arrival (p=.0002). E) Proportion of task-
163 responsive neurons in each brain area, shown separately for planning and arrival. See
164  methods for regional acronyms.

165
166  Slow theta oscillations (3Hz) in the MTL during virtual navigation
167 Our primary hypothesis was that human MTL neurons encode behavioral

168 information by modulating their spiking based on the phase of slow oscillations beyond
169 changes in firing rate. Examining this hypothesis required that we accurately identify the
170  presence and phase of slow oscillations, particularly because human MTL oscillations
171  are lower frequency and less stationary compared to the stable theta oscillations

172  observed in rodents (Watrous et al., 2013; Vass et al., 2016). We developed and

173  validated a novel method, the Multiple Oscillations Detection Algorithm (“MODAL”;

174  Figure 2A-C), to detect and characterize neural oscillations in adaptively identified

175 band(s) whose frequency ranges are customized for each recording site according to its
176  spectral properties. MODAL identifies narrow-band oscillations exceeding the

177  background 1/f spectrum (Figure 2A) and calculates the instantaneous phase and

178  frequency of oscillations in each band (see Methods) while excluding time points without
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oscillations or that exhibited epileptogenic activity (Gelinas et al., 2016). Thus, MODAL
allowed us to test for phase coding of spikes during the presence of narrowband

oscillations in our dataset.
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Figure 2 Multiple Oscillation Detection Algorithm (“MODAL”)

A-C) Key steps in the algorithm, shown for an example electrode from the right
hippocampus of patient 9. A) Mean log power averaged over time (black) and a fit line
of the 1/f background spectrum (gray). A slow theta band (blue) and a beta band
(green) are identified as contiguous frequencies exceeding the fit line. B) Example
output from MODAL depicting a raw trace example of the LFP (upper) with the detected
oscillations in each band (lower). The instantaneous frequency of the detected
oscillation in each band is overlaid on a spectrogram and gray portions of the
spectrogram indicate power values exceeding a local fit (similar to A but using a 10s
epoch). C) Accumulating detections over time reveals the prevalence of oscillations at
each frequency on this electrode (black). Blue and green bars indicate the overall
prevalence of oscillations in each frequency, independent of the exact frequency within a
band. D) Population data for MTL channels demonstrating low frequency

oscillations. Grey line indicates the percent of LFP channels with a detected band as a
function of frequency. Of those channels with a detected band, the black line indicates
the average amount of time each frequency was detected. Slow theta oscillations
(below 5Hz) are observed using both metrics.

1

MODAL reliably identified oscillations at multiple frequencies that were visible in
the raw trace (Figure 2B-C). Analyzing each of 385 LFP channels from the MTL across
the entire task period using MODAL, we found that most channels showed a band of
activity centered at “slow theta” (~3Hz; 93% of signals; Figure 2D, gray line). Analyzing
the overall amount of time each frequency was detected on these electrodes, we found
that slow theta was detected most often (Figure 2D, black line). Similar results were
identified in different brain areas (Figure 2-figure supplement 1). We then verified that
MODAL can capture multiple narrowband oscillatory signals using a published rodent
recording dataset (Fujisawa et al., 2008; crcns.org PFC-2 dataset), and observed
canonical rodent hippocampal CA1 theta oscillations and a more variable low-frequency
rhythm in the medial prefrontal cortex (Figure 2-figure supplement 2). These results
indicate that MODAL is able to identify and track the dynamics of narrowband signals,
providing cross-validation for our human findings which are consistent with previous
work showing the prevalence of slow theta in the human MTL (Watrous et al., 2011;
Watrous et al., 2013; Vass et al., 2016, Jacobs, 2014; Bohbot et al., 2017). We
subsequently restricted our analysis of phase coding to this low-frequency band (1-10

25

o


https://doi.org/10.1101/202374
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/202374; this version posted March 19, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

217  Hz) because it was most prominently detected by MODAL and because activity in this
218 band has been shown to modulate human single-neuron firing (Jacobs et al., 2007).
219

220  Slow theta phase modulates neuronal firing

221 As a precursor to testing for phase coding, we asked if phase coordinates the
222  activity of individual neurons across the entire task session in the bands identified by
223  MODAL. Focusing first on the MTL, we analyzed 466 neurons that each had a

224  simultaneously recorded LFP with an oscillation in a low-frequency band (1-10 Hz). In
225 many cells we observed significant phase-locking, an overall tendency for firing to

226 increase at particular phases of the LFP oscillation (Jacobs et al., 2007; Rey et al.,
227  2014). Phase locking is evident by examining the LFP phase distribution for all spikes
228  that occurred during oscillations from a given cell (Figure 3A upper panel, Rayleigh
229  p<0.005). Across our population of MTL neurons, we identified phase-locked neural
230 firing in 144 neurons (144/466, 30%, Rayleigh test, p<0.005), a proportion significantly
231 above chance (Binomial p<.00001). We observed that phase locked neural firing was
232  clustered just after the trough of the oscillation for these cells (Figure 3B, Rayleigh test
233  p<.00001) and most phase locking occurred to slow-theta oscillations below 5 Hz (Figure
234  3C). Significant counts of phase-locked neurons were observed in each brain region
235 (Binomial test, p<0.0001) and we observed phase-locking most prominently in the
236  hippocampus (Figure 3D). These results confirm the presence of phase-modulated
237  neuronal activity in this dataset.
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239  Figure 3 Phase-Locked Neural Firing to low-frequency oscillations

240  A) Spike-triggered average of a phase-locked neuron from the right hippocampus of
241  Patient 1 (left). Red tick mark denotes a spike. Circular histograms (right) show phases
242  at which spikes occurred relative to two detected bands. Spiking was phase-locked to
243  the ascending phase in the 1.5-5 Hz band (red) but not in the 7.5-9 Hz band (Rayleigh
244  test, p=.004 and p=.34, respectively). B) MTL Population data: Pooling over

245 frequencies, mean spike phases were significantly clustered near the initial ascending
246  phase of the oscillation (Rayleigh test, p<.00001). C) Population scatter plot of the

247  mean phase of firing and maximally detected frequency within the band for each phase-
248 locked MTL neurons. D) Population results showing proportion of phase-locked neurons
249  in each brain region. Total bar height indicates the proportion of neurons recorded on an
250 LFP channel with a band in the 1-10 Hz range. See methods for regional acronyms.
251

252 The SCERT model predicts that neuronal activity is modulated by oscillations at
253  particular frequencies. Because the LFPs associated with 48 neurons displayed

254  oscillations at two distinct frequency bands in the 1-10-Hz range, we were able to test if
255 the spike-LFP phase locking was specific to an individual frequency band or present for
256  both bands. 12.5% of these cells (6/48) showed frequency-specific phase locking,

257  showing phase-locked firing in only one LFP frequency band (Figure 3a; p<.005 in one
258 band, p>.1in all other bands). Thus, extending previous findings (Jacobs et al., 2007)
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259 by examining phase-locking to adaptively-identified narrowband signals, we find that
260  human neuronal firing is modulated by the phase of low-frequency oscillations in a band
261  and frequency-specific manner, as predicted by several models of neural coding (Cohen
262  2014; Kayser et al., 2012; Lisman and Jensen 2013; Watrous & Ekstrom, 2014).

263

264  LFP-spike phase coding of goal information

265 To understand the behavioral relevance of phase-tuned neuronal activity, we
266  tested whether neurons also used phase-tuned neural firing to encode spatial contextual
267  information, analogous to the phase coding for location in the rodent hippocampus

268 (O’Keefe & Recce, 1993). Our task tapped into goal-directed navigation and we

269 therefore hypothesized that phase coding may be used to represent the patient’s

270  prospective navigational goal and should appear as neuronal firing to different phases
271  for different navigational goals. Visual inspection of raw traces (Figure 4-figure

272  supplement 1) and circular histograms of spike-phases during deliveries to each goal
273  revealed that this pattern was evident in individual neurons (Figure 4A-B).

274 We used a cross-validated decoding approach (Watrous et al., 2015b; see

275  Methods) to confirm that goal-specific phase variations were robust, by testing whether
276  the patient’s prospective goal could be predicted from the phase of neuronal spiking.
277  This analysis identified 63 cells (10% of 627 cells tested) across all regions that showed
278 individually significant decoding of goal information from spike phases (p<.05, shuffle
279  corrected). This proportion of neurons exceeded chance levels (Binomial test, p<.0001)
280 and spike phase coding differentially occurred in the hippocampus (X*(6) = 50, p<.0001),
281  with 28 of the phase coding cells coming from the hippocampus of nine different patients
282  (Figure 4C). Roughly half (29/63) of phase coding cells exhibited significant phase-

283  locking (Rayleigh test, p<0.005), consistent with the idea that phase-locking and phase
284  coding are related but non-identical phenomena (Watrous et al., 2015b). Critically, 51
285  (80%) of the cells that showed significant phase coding did not show firing-rate effects
286  (two-way ANOVA, p>.1), indicating that phase coding for a specific goal state can exist
287 independent of firing rate effects. We also observed intriguing examples of neurons that
288  showed rate and phase-coding for different goals (Figure 4-figure supplement 2). These
289  results indicate that rate and phase coding each contribute to neural representation of
290  goals during navigation.

Goal 4 Goal 5 Goal 6
A + /2 (descending) C.
9 10 23
25,
=(Trough) 0 (Peak) Trough Peak  Trough Peak
20! lRate coding
2 [JPhase coding|
3 HlBoth
] 15|
/2 (ascending) .g
B £
. Goal 1 Goal 2 Goal 6 510
»
36 33 32 ®*
5|
Trough Peak  Trough Peak  Trough Peak Y Hipp EC PHG Amyg OF Motor mPFC

293  Figure 4 Spike-Phase coding for navigational goals

294  A) Example neuron from the right hippocampus of patient 1 showing significant spike-
295  LFP phase coding for goal 4 compared to goals 5 and 6. Circular histograms show
296  spike counts separately for different goals. Black line at center of each plot shows the
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297  resultant vector and the colored arc indicates the 95th percentile confidence interval of
298 the circular mean. B) Example cell from left entorhinal cortex of patient 6 showing phase
299  coding for goal 6. C) Population summary showing the proportion of significant neurons
300 in each region that showed rate coding, phase coding, or both effects. LEC: Left

301 entorhinal cortex; RH: Right hippocampus

302 To further understand hippocampal phase coding and motivated by our findings
303 of differential firing rate modulation during planning and arrival, we investigated if phase
304 coding differentially occurred during different task periods. Observing such a distinction
305 would indicate that phase coding for goals is behaviorally relevant because the effects
306 relate to navigational planning or goal arrival. We thus re-ran our decoding analysis for
307 hippocampal neurons and restricted the analysis to either planning or arrival periods of
308 each trial. We identified a subset of 24 hippocampal neurons that showed significant
309 decoding (p<.05) during the planning period, a proportion significantly above chance
310  (24/186 neurons, 12% Binomial test p<.00001, chance = 9.3 neurons). Similarly, we
311 identified a mostly distinct subset of neurons (e.g., Figure 4-figure supplements 1 and 2)
312 that showed phase coding during goal arrival (24/186 neurons, 12%, Binomial test

313  p<.00001). Importantly, these were largely distinct subsets of hippocampal neurons and
314  were found in different patient groups, with only 2 neurons significant for both planning
315 and arrival. Because we imposed two statistical thresholds per cell for inclusion, this
316 analysis is statistically more stringent than the preceding analysis, which assessed

317 phase coding over the entire task period, and thus the neuron counts are expected to be
318  substantially smaller.

319 In sum, we find evidence that phase-coding by individual neurons is specific to
320 particular task periods. We conclude that phase coding occurs in distinct hippocampal
321 populations in support of navigational planning and goal arrival. More broadly, these
322  findings suggest that phase-based coding is a general phenomenon used by MTL

323  neurons to represent various types of contextual information.

324 We performed several control analyses to exclude alternate accounts of our
325 findings (see Supplemental Materials for full details). Ruling out signal-to-noise ratio
326  concerns when measuring phase, phase coding was not related to the overall

327  prevalence of oscillations detected by MODAL (rho = -0.0049, p=.9) nor to oscillatory
328 bandwidth (rho =.008, p=.85). Finally, to link these findings to our previous work using
329 high-frequency activity (Watrous et al., 2015b), we observed a significant positive

330 relationship (shuffle corrected p<.01) between single-neuron firing rate and high-

331 frequency activity in 41% of recorded neurons, suggesting that the phenomenon are
332 related in many cases. We thus conclude that phase coding is a robust mechanism for
333  neural representation in the human brain during navigation.

334
335 Discussion
336 Analyzing recordings from epilepsy patients performing a goal-directed

337 navigation task, we expand our previous observation of phase-coding with high-

338 frequency LFPs (Watrous et al., 2015b) to the domain of single neuron spiking. In

339 addition to firing rate modulations (discussed below), we found a distinct population of
340 cells in which spike-LFP phase coding contributed to representations in the absence of
341 significant changes in firing rate (Hyman et al., 2005; Rutishauser et al., 2010). In

342 addition, we found neurons that were phase-locked to frequency-specific narrowband
343  oscillations primarily in the slow-theta band. Together, these findings provide new,

344  stronger evidence for SCERT and related models that posit a role for oscillatory phase in
345 neural coding (Nadasdy 2009; Kayser et al., 2012; Lisman and Jensen 2013; Watrous
346 and Ekstrom 2014).
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347 We replicated the earlier finding of firing-rate coding of goal representations in
348 human single-cell activity (Ekstrom et al., 2003) and provide novel evidence for MTL and
349  medial prefrontal neuronal firing during navigational planning (Figure 1E). Consistent
350 with its role in viewpoint-dependent scene processing (Epstein et al., 2003), we found
351 neurons in parahippocampal gyrus that were modulated during navigational arrival. In
352  our analysis of goal modulation, we identified a similar number of neurons that were

353 rate-modulated (n=53) or spike-LFP phase modulated (n=63) and these were largely
354  non-overlapping neuronal populations. Phase-coding also appeared to be modulated by
355  current task demands such that it appeared during either navigational planning or goal
356 arrival. Because different groups of cells show rate versus phase coding for goals, it
357 indicates that these phenomena are partially distinct (Huxter et al., 2003) and that phase
358 coding is not an epiphenomenon.

359 Our analyses benefited from employing the MODAL algorithm, which combines
360 features of earlier algorithms (Whitten et al., 2011; Lega et al., 2012; Cohen 2014) to
361 identify oscillatory bands in a manner that is customized for each recording site.

362 MODAL is an improvement on these methods because it adaptively identifies oscillatory
363 band(s) without introducing experimenter bias regarding bands of interest, excludes

364 periods when phase is noisy because oscillations are absent, and provides exactly one
365 estimate of power, phase, and frequency per band and signal sample. We focused on
366 low-frequency oscillations in this study due to the nature of our task, but it should be
367 understood that MODAL allows one to investigate oscillatory effects such as phase-
368 coding at higher frequency bands such as beta or gamma (Siegel et al., 2009; Colgin et
369 al., 2016). Prior work has argued that the unstable shifts in gamma frequency limit their
370 utility in phase coding (Xing et al., 2012). This is likely distinct from phase coding at slow
371 frequencies in which both modeling (Cohen, 2014) and empirical studies (Hutcheon and
372  Yarom, 2000; Giocomo et al., 2007) support the idea that neurons may respond

373 maximally to inputs at particular frequencies, likely manifesting as the aggregated LFP
374  signal (Buzsaki et al., 2012).

375 Our findings provide the first evidence of phase coding during human navigation
376 and provide a theoretically important link to other model systems where phase coding is
377  present (Siegel et al., 2009; Kayser et al., 2009; Ng et al., 2013), such as phase-

378  precession (O’Keefe and Recce, 1993; Terada et al., 2017). However, we found

379 prominent phase-locking and phase-coding to slower frequency oscillations below 5 Hz,
380 suggesting that phase coding exists beyond the canonical 8-Hz theta signal seen in rats.
381 These findings thus lend further credence to findings indicating that (virtual) navigation-
382 related theta occurs at a slower frequency in humans (Watrous et al., 2013; Jacobs,

383 2014; Bohbot et al., 2017) and demonstrates that these oscillations play a functional role
384  in modulating neuronal spiking.

385 Epilepsy is marked by slowing of neural oscillations which might be considered a
386 confound in the present study. However, numerous previous studies have identified ~3
387 Hz oscillations in the human MTL (Mormann et al., 2008; Watrous et al., 2011; Lega et
388 al., 2012; Bush et al., 2017), some of which have removed electrodes from the seizure
389 onset zone or have analyzed intracranial recordings from non-epileptic patients (Brazier
390 etal, 1968). We thus conclude that the present results would generalize to healthy
391 populations.

392 These results align with work implicating the human MTL in spatial contextual
393 representation (Ranganath & Ritchey, 2012) of navigational goals (Ekstrom et al., 2003;
394  Watrous et al., 2011; Brown et al., 2016). Our results provide further evidence that the
395 timing of MTL activity is critical for behavior (Reber et al., 2017; Rey et al., 2014). We
396 speculate that the goal coding observed in this study reflects flexible coding of spatial
397 contextual information in the service of ongoing behavior (Warren et al., 2011; Yee et al.,
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398 2014). Consistent with this interpretation, we observed cells that were phase coding
399  either during navigational planning or goal arrival. Combined with previous human

400  studies (Kraskov et al., 2007; Lopour et al., 2013; Watrous et al., 2015b; ten Oever &
401  Sack, 2015), our work indicates that both firing rate and the precise timing of activity
402 relative to LFP phase are general coding mechanisms in the human MTL across

403  behaviors and tasks, suggesting that other types of contextual information may also be
404  encoded using LFP phase. Future studies can build off these findings to directly assess
405 phase coding of other types of contextual information in humans, such as phase-

406  precession to space or time.

407

408 Methods

409  Neural Recordings and behavioral task

410 We analyzed data from 12 patients with drug-resistant epilepsy undergoing

411  seizure monitoring (surgeries performed by I.F.). The Medical Institutional Review Board
412  at the University of California-Los Angeles approved this study. Patients were implanted
413  with microwire depth electrodes (Fried et al., 1999) targeting the medial temporal lobe
414  and medial frontal lobe sites (Figure 1-figure supplement 1, see Jacobs et al., 2010;
415  Fried et al., 1999; Mukamel et al., 2010 for other example implantation images). Groups
416  were formed for recordings in hippocampus, entorhinal cortex, parahippocampal gyrus,
417  amygdala, orbitofrontal, (pre) motor, and cingulate/medial prefrontal cortex. (n=282, 176,
418 68, 225, 200, 82, 137 neurons, respectively). Acronyms for these regions are Hipp, EC,
419 PHG, Amy, OF, Motor, and mPFC, respectively. Subsets of these neurons were

420 analyzed depending on the inclusion criteria for each specific analysis. For instance,
421  only neurons with simultaneously recorded LFPs exhibiting 1-10 Hz oscillations were
422  analyzed for phase locking and phase coding. Microwire signals were recorded at 28-32
423  kHz and captured LFPs and action potentials, which were spike-sorted using wave_clus
424  (Quiroga et al., 2004). Signals were then downsampled to 2 kHz.

425 We examined data from a total of 31 recording sessions in which patients

426  performed a continuous virtual-taxi driver game in a circular environment. Patients were
427  instructed to drive passengers to one of 6 goal stores in the virtual environment. Upon
428 arrival, they were given a new goal destination. The task was self-paced in order to

429  accommodate patient testing needs and therefore patients performed at ceiling.

430 Patients performed an average of 73 deliveries in each session (standard deviation = 11
431 deliveries). To assess behavioral performance, we calculated the drive time for each
432  delivery, defined as the amount of time to drive between goal stores. We binned each
433 task session into quintiles and calculated a Kruskal-Wallis test across task sessions.
434  The recordings and behavioral task have been detailed in prior publications that have
435  characterized the spatial-tuning of neurons using firing rate alone (Jacobs et al., 2010;
436  Miller et al., 2015). Here, our primary analyses focused on how contextual information
437  about navigational goals may be encoded based on firing rates and spike-LFP

438 interactions.

439
440  Detection and Rejection of Epileptogenic signals
441 We implemented an automated algorithm to detect and exclude epochs of signal

442 likely resulting from epileptic activity following prior work (Gelinas et al., 2016). We first
443  low-pass filtered (4th order Butterworth) the signal below 80 Hz to remove any spike-
444  contamination at high frequencies. Epochs were marked for rejection if the envelope of
445  the unfiltered signal was 4 standard deviations above the baseline or if the envelope of
446 the 25-80Hz bandpass filtered signal (after rectification) was 4 standard deviations

447  above the baseline. In some cases, we noted short “bad data” epochs lasting less than
448  one second were not detected. We conservatively elected to exclude these epochs by

10
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marking any “good data” epoch lasting less than one second as “bad”. Bad data epochs
were excluded from all analyses.

Multiple Oscillations Detection Algorithm (“MODAL”)

Numerous factors contribute to the presence and characteristics of band-limited
neural oscillations, broadly including neuroanatomy, behavioral state, and recording
equipment (Buzsaki et al., 2012). We developed an algorithm to adaptively detect and
characterize neural oscillations in bands exceeding the background 1/f spectrum
motivated by rodent studies that exclude periods of low amplitude theta oscillations
when assessing phase coding (Lenck-Santini & Holmes, 2008). To this end, we
modified the “frequency sliding” algorithm (Cohen 2014), which provides the
instantaneous phase and frequency of oscillations in a band, in two important ways.

First, rather than calculating frequency sliding in a priori bands, we defined bands
for subsequent analysis on each electrode as those frequencies exceeding the
background 1/f spectrum. We calculated power values in .5Hz steps from 1 to 50 Hz
using 6 cycle Morlet wavelet convolution. We then created a power spectrum by
averaging values over time (and excluding bad data epochs), and fit a line to this
spectrum in log-log space using robustfit in Matlab. Similar approaches have been used
previously (Lega et al., 2012; Podvalny et al., 2015). Frequency band edges were
defined as the lowest and highest frequencies in a contiguous set of frequencies that
had values exceeding this fit; several bands could be detected on each electrode. We
then calculated the instantaneous frequency and phase in each detected band using the
“frequency sliding” algorithm (Cohen 2014).

Second, frequency sliding provides a frequency and phase estimate at every
moment in time, regardless of the presence or absence of an oscillation. We ensured
that phase & frequency estimates were only obtained during time periods where there
was increased power in the band of interest. We recomputed the power spectrum in 10
second, non-overlapping windows and recomputed the fit line as described above. We
excluded phase and frequency estimates at time points 1) in which the power was below
the fit line or, 2) were during bad data epochs. Finally, we also excluded noisy
frequency estimates outside of the band, which can occur based on “phase slips”
(Cohen 2014). MODAL was implemented in Matlab using custom code that is available
on Github (https://github.com/andrew-j-watrous/MODAL).

Statistical Analyses

To assess how neuronal activity may vary during navigational planning and goal
arrival, we split each delivery in half and operationalized the first half of each delivery as
the planning period and the second half of each delivery as the arrival period. This
approach has the advantage of creating equally sized temporal windows for analysis but
does not allow us to draw firm conclusions regarding the precise temporal dynamics of
navigational planning or goal arrival. We analyzed neural firing rate using a two-way
ANOVA with factors of navigational goal and task period. Cells which exhibited main
effects of goal or task period (defined as p<.05 uncorrected) were considered significant.

We used Rayleigh tests to identify phase-locked neural firing, extracting the
phase of the LFP during each spike in each detected frequency band. All analyses were
done considering each band separately and statistical thresholding was set at p<.005 for
each cell. This was chosen to be stricter than p<.05 Bonferroni-correction across the
number of bands detected in the 1-10Hz range. To control for the possibility that non-
sinusoidal oscillations led to spurious phase-locking, we tested if the distribution of spike
phases was different from the distribution of all phases on the LFP. 96% of phase-
locked cells had a significantly different phase-preference to that of the entire LFP

11
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500 (p<.05; Watson Williams test), suggesting that phase-locked activity was not a byproduct
501 of non-sinusoidal oscillations.

502

503 Assessment of phase coding using cross-validated decoding

504 We used a decoding-based approach to identify phase coding, employing a

505 linear decoder with fivefold cross-validation to predict the behavioral goal from the phase

506 of the LFP during neural spiking. In each band detected by MODAL, we first computed
507 the sine and cosine of the phase values before classification following previous work
508 (Lopour et al., 2013; Watrous et al., 2015b). Chance performance varies across cells
509 because we classified goal information associated with the LFP phase for each spike
510 and the distribution of spikes across goals varied between cells. Similarly, circular

511  statistics can be influenced by small sample sizes. We accounted for these issues using
512  a permutation procedure, re-running our classification 500 times per cell using shuffled
513  goal information (circshift in Matlab to maintain the temporal structure of the session) to
514  get a surrogate distribution of classification accuracies per cell. We then obtained a p-
515 value for classification by ranking our observed classification accuracy to the surrogate
516 distribution; p-values less than .05 were considered significant. We additionally ruled out
517 the possibility that our phase-decoding approach was biased to observe effects in more
518 narrow oscillatory bands, finding no correlation between phase-decoding classifier

519 accuracy and oscillatory bandwidth (rho=-.008, p= .85; see also Supplemental

520  Materials).

521 We then used the above decoding approach considering spikes in only the first
522  half (planning) or second half (arrival) of each delivery to assess how phase coding
523  varies by behavior. Each cell was categorized as phase coding during planning (p<.05
524  with decoding approach), arrival (p<.05), or both.

525
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799

800  Control Analyses

801 We assessed signal to noise ratio in two ways to see if it may contribute to or

802  confound our results. First, we correlated the phase-decoding classification in accuracy
803 in each band with the proportion of time oscillations were detected over the whole

804  session. We did not observe a relation between the prevalence of oscillations and phase
805 decoding (rho =-0.0049, p=.9). Second, we performed an analysis testing whether

806 phase-coding, measured by classification accuracy of our decoder, was related to the
807  oscillatory bandwidth. We did not observe any relationship between the two measures
808 (rho =-.008, p = .85), indicating that phase coding in the range we are considering (<10
809  Hz)is unrelated to bands with wider (possibly less stable) frequencies.

810 To determine how the present single-neuron results relate to our previous work
811 (Watrous et al., 2015b), we tested whether high frequency activity (HFA; 65-120 Hz) was
812  correlated with single-neuron spiking. Excluding bad epochs and analyzing the entire
813 recording session for each LFP with an associated single-neuron recording, we

814  correlated z-scored HFA with a smoothed firing rate vector (500 ms kernel). We

815 identified significant (shuffle-corrected p<.01) positive correlations between HFA and
816  single-neuron activity in 544/1311 (41%) of neurons. In contrast, negative correlations
817  were only identified in 14 neurons. Together with other work (Manning et 2009; Miller et
818 al. 2010) these results corroborate the link between human single neuron firing and high-
819 frequency activity but also suggest it HFA is an imperfect proxy for single-neuron firing in
820  humans.

821

822  Figure 1-figure supplement 1

A T

823 e ST : ‘
824  A) Overhead view of the virtual environment. Goal stores are outlined in red. B)

825  Microelectrode bundle from the right entorhinal cortex of patient #2. C) Example spike
826  waveforms for neurons isolated from the bundle shown in B.
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Figure 2-figure supplement 1
Caption
Proportion of channels with oscillations detected using MODAL in each brain region
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871  Figure 2- figure supplement 2

872  Analysis of rodent CA1 and medial prefrontal cortex LFPs using MODAL
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874

875 Caption Analysis of rodent medial prefrontal cortex (A) and hippocampal CA1 (B)
876  recordings using MODAL. Data provided by Fujisawa and taken from crcns.org (PFC-2
877  dataset). The first five minutes of recordings from one rat (EE) were analyzed. Upper
878  panels show example raw traces.
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897  Figure 4-figure supplement 1
A. Example Delivery to Goal 2
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899 Caption A-F) Example of a phase coding neuron from the right hippocampus of Patient
900 1. This neuron showed significant decoding using spike phases (shuffle corrected

901 p=.002) and no firing rate effects (all p>.5 using two-way ANOVA with goal and task
902  period). Phase coding was more robust during goal arrival than during planning (p<.002
903 and p=.08, respectively) and is evident when comparing panel C and F. A) LFP traces
904 and spiking for a single delivery to goal 2, demonstrating consistent spiking near the
905 ascending peak of the low-frequency oscillation (MODAL band detected 1-5 Hz

906 oscillations). Inset in A shows the spike waveform of the neuron. Colored tick marks
907 indicate spikes during oscillations using MODAL and are color-coded by instantaneous
908 phase (color scheme seen in S4B). B-C) Normalized spike phase histograms for goal
909 store 2 deliveries across all deliveries during planning periods (B) and arrival periods
910 (C). Black lines in center indicate resultant vector length and black arc outside of circle
911 indicates circular 95" percentile confidence intervals. Absence of this black arc indicates
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912  lack of significant phase locking for the distribution (Rayleigh p>.05). D-F) Similar to A-C
913  but for a delivery to goal 5. Spike phases occur near the trough of the oscillation upon
914  arrival at the goal.

915 Figure 4-figure supplement 2
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916

917 Caption A-D) Example rate and phase-coding neuron from the left hippocampus of
918 patient 11. This neuron showed significant rate coding for goal 3 (panel E) and phase-
919  coding during arrival at goal 1 (p=.028, panel D). A) LFP traces and spiking for a single
920  delivery to goal 3, demonstrating spiking at random phases of the low-frequency

921  oscillation (MODAL band detected 1-6.5 Hz oscillations). Colored tick marks indicate
922  spikes during oscillations using MODAL and are color-coded by instantaneous phase
923  (color scheme seen in 4C). Grey ticks indicate spikes during non-oscillatory periods. C-
924 D) Normalized spike phase histograms for each goal that demonstrated phase-locking
925  during planning periods (C) and arrival periods (D). Colored lines in center indicate
926  resultant vector length and arcs outside of circle indicates circular 95" percentile

927  confidence intervals. Absence of this arc (e.g. for goal 3) indicates lack of significant
928 phase locking for the distribution (Rayleigh p>.05). E) Firing rate for each goal,

929 demonstrating that this neuron showed elevated firing for goal 3 deliveries (p<.009).
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