

1 **A cell-free synthetic biochemistry platform for raspberry ketone production**

2

3 Simon J Moore^{1,3}

4 Tomasso Tosi³

5 David Bell^{1,3}

6 Yonek B Hleba^{1,2}

7 Karen M Polizzi^{1,2}

8 Paul S Freemont^{1,3}

9

10 ¹Centre for Synthetic Biology and Innovation, Imperial College London, South
11 Kensington Campus, Exhibition Road, London, SW7 2AZ, UK

12 ²Department of Life Sciences, Imperial College London, South Kensington Campus,
13 Exhibition Road, London, SW7 2AZ, UK

14 ³Department of Medicine; Imperial College London, South Kensington Campus,
15 Exhibition Road, London, SW7 2AZ, UK

16

17 **Keywords**

18 Synthetic biology, fine chemical, raspberry ketone, polyketide synthase, synthetic
19 biochemistry

20

21

22 **Abstract**

23 Cell-free synthetic biochemistry provides a green solution to replace traditional
24 petroleum or agricultural based methods for production of fine chemicals. 4-(4-
25 hydroxyphenyl)-butan-2-one, also known as raspberry ketone, is the major fragrance
26 component of raspberry fruit and is utilised as a natural additive in the food and
27 sports industry. Current industrial processing standards involve chemical extraction
28 with a yield of 1-4 mg per kilo of fruit. As such its market price can fluctuate up to
29 \$20,000 per kg. Metabolic engineering approaches to synthesise this molecule by
30 microbial fermentation have only resulted in low yields of up to 5 mg L⁻¹. In contrast,
31 cell-free synthetic biochemistry offers an intriguing compromise to the engineering
32 constraints provided by the living cell. Using purified enzymes or a two-step semi-
33 synthetic route, an optimised pathway was formed for raspberry ketone synthesis
34 leading up to 100% yield conversion. The semi-synthetic route is potentially scalable
35 and cost-efficient for industrial synthesis of raspberry ketone.

36

37 **Introduction**

38 For fine chemical biomanufacturing, synthetic biology aims to provide green
39 solutions to replacing traditional petroleum or arable farming based production
40 methods¹⁻⁶. The synthetic biochemistry approach, whereby metabolic pathways can
41 be entirely reconstituted within a test-tube with purified enzymes⁷⁻¹¹ or cell-free
42 extracts¹²⁻¹⁴, offers a realistic concept to traditional cell based engineering, with the
43 potential for high performance synthesis of fine chemicals and recombinant proteins
44 to the industrial scale^{11,15}.

45

46 4-(4-hydroxyphenyl)butan-2-one, commonly referred to as raspberry ketone, is the
47 major fragrance compound from raspberry berries (*Rubus rubrum*). Raspberry
48 ketone is harvested by chemical extraction at a ratio of 1-4 mg per kilo of fruit¹⁶. This
49 presents a highly-inefficient purification process, which is reflected by a high market
50 price for naturally extracted raspberry ketone that fluctuates at approximately
51 \$10,000-20,000 kg⁻¹, with global production estimated at between 100-200 tons per
52 annum^{16,17}. As an alternative green solution for its production, raspberry ketone can
53 be synthesised in microbial cells. However, current efforts in either *Escherichia coli*¹⁷
54 or *Saccharomyces cerevisiae*^{17,18} have only produced limited quantities of raspberry
55 ketone (from 0.2 to 5 mg L⁻¹), even despite the use of high cell-density fermentation.
56 The raspberry ketone biosynthetic pathway in plants begins from tyrosine or
57 phenylalanine and belongs to the flavonoid natural product family, which includes the
58 medicinal compounds curcumin^{19,20}, naringenin²¹, resveratrol²² and gingerole^{23,24}.
59 The synthesis of flavonoid natural products requires a dedicated type III polyketide
60 synthase that uses the cofactor malonyl-CoA for chain extension. For raspberry
61 ketone, the enzyme responsible for this step is the benzalacetone synthase (BAS),

62 which converts *p*-coumoryl-CoA and malonyl-CoA into 4-hydroxybenzalacetone
63 (HBA) using a unique decarboxylation event ²⁵, thus affording the precursor of
64 raspberry ketone. Possible limitations for engineering raspberry ketone in cells
65 include a limited malonyl-CoA pool (~35 μ M in glucose catabolism) in *E. coli* ^{26,27} and
66 a comparatively slow turnover rate (0.1 s^{-1}) for the BAS enzyme ²⁸. Additionally,
67 previous metabolic engineering studies have led to a mixed yield of raspberry ketone
68 and its precursor HBA, which requires a further double bond reduction. Therefore, an
69 efficient alkene reductase is also required to complete the pathway.

70

71 Routinely in synthetic biology, microbial cells are engineered through plasmid or
72 chromosomal based heterologous gene expression to synthesise a desired synthetic
73 fine chemical. However, this often presents a myriad of challenges to the living cell.
74 This includes, but is not limited to, cellular burden ²⁹, metabolic flux ³⁰, accumulation
75 of toxic intermediates ^{4,31}, poor substrate availability ²⁶ and non-productive chemical
76 or enzyme based side-reactions ³². In addition, whilst *in vitro* deduced enzyme k_{cat}
77 values are often reflective of *in vivo* catalytic rates (k_{app}), it should also be considered
78 that the cellular environment can modulate enzyme controlled pathways through
79 changes in thermodynamics or substrate availability ³³. The low yields of raspberry
80 ketone obtained in microbial cells^{17,18} suggests that an enzyme bottleneck or product
81 toxicity limits it's production *in vivo*.

82

83 For fine chemical pathways, as well as drugs and recombinant proteins, an *in vitro*
84 approach offers a unique opportunity to the biochemist to control and modify
85 synthetic pathways outside the regulatory control of the cell. Using raspberry ketone
86 as a model pathway, we detail a purified enzyme approach to achieve a high-yield

87 synthesis in a one-pot reaction. Together with other recent synthetic biochemistry
88 studies^{11,13}, we feel this approach is potentially expandable to other high-value fine
89 chemicals that require cost efficient cofactor regeneration (i.e. malonyl-CoA, ATP) for
90 *in vitro* synthesis. In summary, we present a modularised enzyme prototyping
91 approach to completely convert the substrate tyrosine via a five-enzyme cascade
92 into raspberry ketone, as well as demonstrating how enzyme levels competing for
93 the key cofactor, coenzyme A (CoA), require balancing for optimal performance. To
94 complement these findings, we also present a crystal structure of the NADPH-
95 dependent raspberry ketone reductase, which we use to relax its cofactor specificity
96 towards NADH utilisation for an improved low-cost *in vitro* engineering.

97 **Results**

98

99 **Enzyme synthesis of raspberry ketone pathway *in vitro***

100 In order to begin studying the raspberry ketone pathway *in vitro* and identify key
101 metabolic bottlenecks, we selected a synthetic five-step pathway for raspberry
102 ketone using a combination of bacterial, fungi and plant enzymes (Figure 1A). The
103 starting point for this pathway begins from tyrosine, the natural substrate for
104 raspberry ketone synthesis in plants, using tyrosine ammonia lyase (TAL) to
105 deaminate tyrosine, forming *p*-coumarate³⁴. This in turn is activated for malonyl-CoA
106 extension by the addition of CoA by an ATP-dependent CoA ligase (PCL) to form *p*-
107 coumaroyl-CoA³⁵. Following this, the benzalacetone synthase (BAS) uses malonyl-
108 CoA for chain extension via a double decarboxylation event to release the HBA
109 product^{25,28}. Finally, a NADPH-dependent raspberry ketone synthase (RKS), a
110 double bond reductase, converts HBA into raspberry ketone³⁶. Based on this
111 synthetic pathway, a set of highly active and kinetically well-characterised enzymes
112 for TAL, PCL and a malonyl-CoA synthetase (MatB) were selected from the
113 BRENDA database (see materials and methods), together with BAS and RKS
114 (previously abbreviated as RZS for raspberry ketone/zingerone synthase), where
115 only a single enzyme has been reported and characterised^{25,36}. Initially, each
116 enzyme was recombinantly produced in *E. coli* BL21 Gold (DE3) pLysS and purified
117 at high-yields (~10-100 mg L⁻¹) from the soluble fraction with at least 95% purity as
118 estimated by SDS-PAGE (Figure 1B). The activity of TAL and PCL enzymes was
119 also assayed individually (Supplementary Figure S1) and results were in close
120 agreement to previous reported literature values^{37,38}.

121

122 To test the synthetic *in vitro* pathway, 5 μ M of purified TAL, PCL, MatB, BAS and
123 RKS enzymes were incubated with 1 mM tyrosine and substrates/cofactors (MgATP,
124 CoA, malonate and NADPH). Please refer to the materials and methods for further
125 details. Samples were removed at time points and quantified by reverse phase (C18)
126 liquid-chromatography mass spectrometry (LC-MS) (Figure 1C). To begin, tyrosine is
127 steadily depleted, whilst *p*-coumarate accumulates up to a maximum of 110 μ M.
128 Under these conditions, the HBA intermediate is not detectable, with the RKS fully
129 converting its substrate into raspberry ketone. Raspberry ketone synthesis occurred
130 at an initial linear rate of 0.63 μ M min⁻¹ for up to 6 hours, with a 33.7 % yield (337
131 μ M) achieved at end-point, which is equivalent to 55 mg L⁻¹ under batch synthesis.
132 This suggested that the synthetic pathway was highly active in relative comparison to
133 previous low yields achieved from cell-based metabolic engineering efforts (from
134 0.28 mg L⁻¹ and 5 mg L⁻¹ in yeast and *E. coli*, respectively)^{17,18}.

135

136 **A fluorescence biosensor for optimising flavonoid synthesis *in vitro***

137 Following the initial demonstration of raspberry ketone synthesis *in vitro*, we next
138 sought to improve the overall pathway performance by identifying key bottlenecks
139 and optimal pathway conditions. Due to the presence of an extra double bond, the
140 product of the BAS enzyme, HBA, shares broad UV-Visible absorbance with the
141 precursor intermediates *p*-coumarate and *p*-coumroyl-CoA. Therefore, it was not
142 possible to rapidly optimise the pathway with respect to BAS activity using a UV-
143 Visible absorbance assay. Instead, the pathway was modularised by designing a
144 fluorescence-based product detection assay to separately optimise *p*-coumroyl-CoA
145 and malonyl-CoA synthesis, the shared substrates for the BAS enzyme (Figure 2A)

146 with the rationale that a delicate balance of these is likely necessary to maximise
147 total production concentration because they both rely on CoA for their synthesis.

148

149 Previously, curcumin, which is a structural dimer of raspberry ketone, was identified
150 to exhibit fluorescence when bound non-specifically to Gram-negative bacterial
151 extracellular curli (amyloid-type) protein fibres ³⁹. The precursor of curcumin,
152 bidesmethoxycurcumin (BDMC), is synthesised from *p*-coumoroyl-CoA and malonyl-
153 CoA by the curcumin synthase (CUS) ⁴⁰, a type III polyketide synthase that is related
154 to the BAS enzyme with 69% amino acid identity. Additionally, a NADPH-dependent
155 curcumin double bond reductase (CurA), which is related to the RKS reductase
156 enzyme with 38% amino acid identity, was previously characterised from *E. coli* ⁴¹. A
157 Phyre2 ⁴² structural model of CurA suggested a large active site dominated by Tyr
158 and Phe residues. Based on the potential fluorescence properties of non-specifically
159 bound curcumin, we speculated that substrate binding of the apo-form of CurA to
160 either curcumin or BDMC would also generate fluorescence through π - π stacking
161 within the aromatic active site. To test this, we overexpressed and purified CurA with
162 an N-terminal His₆-tag from *E. coli* BL21 Gold (DE3) pLysS. Mixing an equal amount
163 (10 μ M) of apo-CurA with curcumin resulted in strong fluorescence with a maximum
164 excitation and emission peaks at 425 nm and 520 nm, respectively, indicating ligand
165 binding (Supplementary Figure S2). If an excess (100 μ M) of NADPH was also
166 added, the yellow coloured curcumin was rapidly reduced into the colourless
167 tetrahydrocurcumin. This resulted in a quenching of the fluorescence, due to double
168 bond reduction and a loss of conjugation. This suggested that CurA could bind
169 curcumin in the absence of NADPH and therefore does not require the formation of a
170 ternary complex. Next, with 25 μ M of CurA incubated with an increasing

171 concentration of curcumin (0-100 μ M), the fluorescence signal fitted an exponential
172 saturation curve (Supplementary Figure S3). Further increases in signal could be
173 achieved with higher levels of CurA protein, but since the yield of recombinant CurA
174 in *E. coli* was limiting (\sim 10 mg L $^{-1}$), a maximum level of 25 μ M was used for
175 subsequent assays to preserve protein stocks.

176

177 To confirm the use of this protein-ligand sensor as a real-time fluorescence assay of
178 BDMC/curcumin synthesis, 25 μ M of CurA was mixed in a one-pot reaction
179 containing 1 μ M of TAL, PCL, MatB and the type III polyketide synthase, CUS, along
180 with the necessary cofactors and 1 mM Tyrosine. In addition, each enzyme was
181 individually omitted as a control to confirm the specificity of the assay. Following a
182 time-course reaction, an increasing fluorescence signal was observed
183 (Supplementary Figure S4), relative to a stable background signal if any of the
184 enzymes or substrates were omitted (Supplementary Figure S4). The initial rate of
185 the fluorescence signal was further improved by increasing the concentration of the
186 substrate tyrosine or the CUS enzyme (Supplementary Figure S5). Furthermore, if a
187 1 μ M aliquot of NADPH was injected midway through the reaction, a reduced
188 fluorescence was observed, confirming that reduction of the double bond quenches
189 the fluorescence. This confirmed the sensitivity and specificity of the assay for
190 BDMC synthesis.

191

192 **Optimising the synthesis the substrates *p*-coumaryl-CoA and malonyl-CoA**

193 To potentially improve the activity of the BAS enzyme, we next sought to use our
194 novel fluorescence small molecule sensor to rapidly optimise the synthesis of the
195 substrates *p*-coumaryl-CoA and malonyl-CoA *in vitro*. Firstly, one-pot synthesis of

196 BDMC accumulated a yellow visual appearance (Figure 2C), which was fluorescent
197 in the presence of the CurA sensor (Figure 2D). Initially, the conditions for *in vitro*
198 synthesis of BDMC were optimised. Firstly, tyrosine and CUS levels were set at 5
199 mM and 25 μ M, respectively, so that these parameters were not rate limiting
200 (Supplementary Figure S5). An important consideration for *in vitro* enzyme systems
201 is the concentration of substrates and cofactors (Figure 2B). BDMC synthesis was
202 next optimised with respect to ATP, Mg²⁺, CoA and malonate levels. As expected,
203 the ATP level was critical to BDMC synthesis with at least 1 mM required to reach
204 fluorescence saturation (~65,000 RFU), whilst for optimal malonyl-CoA supply, a
205 concentration of greater than 2.5 mM malonate was required for maximal activity
206 (>60,000 RFU) and fluorescence saturation. The Mg²⁺ levels were equally optimal at
207 0.1-1 mM, but with higher levels, a biphasic fluorescence curve was observed
208 (Figure 2B). A similar observation also occurred with the levels of CoA, where
209 concentrations below the optimum level (0.25 mM) were also found to demonstrate a
210 biphasic response. One potential interpretation of this response is a temporary
211 depletion of free CoA availability, thus leading to an imbalance between *p*-coumaryl-
212 CoA and malonyl-CoA levels for the CUS enzyme. In contrast, if higher levels of CoA
213 (>1 mM) were added, complete inhibition of CurA-BDMC was observed (Figure 2B).

214
215 We next used this optimised set of conditions to determine if the enzyme levels of
216 TAL, PCL or MatB control BDMC synthesis. To do this, each enzyme was varied in a
217 4-fold dilution series from 0.0156 to 16 μ M. Firstly, some background fluorescence
218 attributed to high levels of *p*-coumaryl-CoA occurred if the level of the PCL enzyme
219 was increased above 1 μ M (Figure 2E). However, if both the levels of the TAL and
220 PCL enzymes were optimised to a peak concentration of 16 μ M and 1 μ M,

221 respectively, maximal BDMC synthesis (87,400 RFU) was reached. Interestingly, by
222 varying PCL and MatB together, noticeably a careful balance of enzymes was
223 required to prevent pathway inhibition, possibly through depletion of free CoA (Figure
224 2D). This evidence overall suggests that the pathway is tightly regulated by a
225 sensitive interplay between the free CoA pool, CoA derivatives, CoA-dependent
226 enzymes and the rate-limiting activity of the type III polyketide synthase (CUS).
227 Therefore, whilst this experiment only provides a relative measure of pathway
228 activity, it demonstrates that a finely tuned interplay between enzyme levels and the
229 CoA cofactor is required for optimal pathway performance. This observation would
230 not be possible to detect through cell-based engineering. Based on these
231 measurements, we next used the optimal parameters to determine whether
232 raspberry ketone synthesis could be improved.

233

234 **Raspberry ketone biosynthesis is inhibited by a high tyrosine concentration**

235 We next sought to increase the yield of raspberry ketone synthesis *in vitro* by
236 providing optimised levels of *p*-coumaroyl-CoA and malonyl-CoA synthesis using the
237 parameters determined in CurA-BDMC fluorescence assay. Firstly, batch reactions
238 were prepared with varying concentrations of tyrosine from 100-1000 μ M. Between
239 100-300 μ M tyrosine, raspberry ketone was produced at a 100% yield (Figure 3A).
240 Beyond this, the level of *p*-coumarate rises, without a further increase in raspberry
241 ketone yield. Initially, we suspected that the supply of malonyl-CoA or *p*-coumaroyl-
242 CoA was limited by the exhaustion of the ATP supply. However, although providing
243 ATP regeneration through phosphoenolpyruvate (PEP) and pyruvate kinase
244 increased the flux of tyrosine and *p*-coumarate, the net yield of raspberry ketone was
245 lowered (Figure 3B). Unexpectedly, these conditions led to an accumulation (~30-

246 50%) of the BAS catalysed side-product bisnoryanogonin (BNY), in comparison to
247 standard conditions where only minor levels (~5%) were detected by LC-MS. BNY is
248 a side-product of the BAS enzyme that is produced by an additional malonyl-CoA
249 extension of the diketide intermediate ⁴³. Previously, BNY was produced only at
250 minor levels at mildly alkaline pH (7.5-8.5), but elevated at pH 6.0-7.5 in Tris-HCl or
251 phosphate buffers ⁴³. To attempt to correct this issue, we repeated the synthesis of
252 raspberry ketone in a range of alkaline buffers (pH 7.5-9.0) and as a time-course at
253 pH 9 (Supplementary Figure S7). Increasing the pH favoured the activities of the
254 TAL and PCL enzymes, but this did not further increase the levels of raspberry
255 ketone and only a minor decrease in the levels of the BNY side-product was
256 observed. Under these forced synthetic conditions, it appears that the HBA synthesis
257 activity of the BAS enzyme switches towards a preference of BNY synthesis. Since
258 we could not find a route to eliminate BNY synthesis and this capped our overall
259 yield of raspberry ketone, we next considered how the cost-efficiency of this *in vitro*
260 pathway could be improved by relaxing the cofactor specificity of the NADPH-
261 dependent RKS reductase step.

262

263 **NADH is rate limiting for *in vitro* raspberry ketone synthesis**

264 The final step of raspberry ketone synthesis is catalysed by the NADPH-dependent
265 double bond reductase RKS. For *in vitro* based biocatalysis, NADH ⁴⁴ or biomimetic
266 analogues ⁴⁵ are preferred to provide increased stability and reduced cost for
267 reductive enzyme reactions. We therefore revisited the one-pot synthesis of
268 raspberry ketone providing NADH, as opposed to NADPH, as a cofactor
269 (Supplementary Figure S6). With this, whilst the rate of tyrosine deamination by TAL
270 remains unchanged, an increased accumulation of *p*-coumarate (172 µM) and HBA

271 (15 μ M) is observed after 6 hours, with only trace levels of raspberry ketone
272 detected. Unsurprisingly, only trace levels of raspberry ketone were detected during
273 the time-course, whilst after 48 hrs, a 7.6% (76.1 μ M) yield of raspberry ketone was
274 achieved. The initial lag in raspberry ketone synthesis confirmed that the RKS
275 enzyme had a clear preference for NADPH as a cofactor.

276

277 To further understand the RKS reductase, the enzyme was next characterised *in*
278 *vitro*. Firstly, HBA the natural substrate for RKS is yellow in colouration at pH >6 and
279 strongly absorbs between 250-450 nm, which overlaps with NAD(P)H absorbance at
280 340 nm for kinetic characterisation. Instead, to initially obtain kinetic parameters for
281 the RKS enzyme, the substrate analogue phenylbuten-2-one was used since it lacks
282 UV-Visible absorbance at 340 nm. To begin, the RKS enzyme shares sequence
283 similarity (77% amino acid identity) and similar kinetic properties to the previously
284 characterised promiscuous *Nicotiana tabacum* double bond reductase NtDBR⁴⁶. For
285 example, both RKS and NtDBR share increased activity towards acidic pH
286 conditions (Supplementary Figure S8). For all further RKS enzyme assays, these
287 were measured at 30°C and pH 6.4, with 1 mM of phenylbuten-2-one. Under these
288 conditions, RKS shows an apparent K_{cat}/K_m of 58 and 1.3 mM s⁻¹ mM⁻¹ with NADPH
289 and NADH, respectively (Supplementary Table S3). This demonstrates a 45-fold
290 preference for NADPH as a cofactor.

291

292 **Structure guided engineering of a NADH proficient RKS**

293 A number of studies have highlighted that the cofactor specificity of NADPH-
294 dependent reductase enzymes can be relaxed towards NADH utilisation⁴⁷⁻⁵⁰ by
295 modulating the interaction of the enzyme from the ribose 5'-phosphate (NADPH) in

296 preference to the ribose 5'-hydroxyl group (NADH)^{51,52}. To aid in the rational design
297 of increasing NADH activity of the RKS enzyme, we crystallised and solved the
298 tertiary structure complex of RKS with raspberry ketone pathway substrate HBA
299 (Figure 4A) and the cofactor NADPH (Figure 4B), deposited as pdb: 6EOW. By
300 analysing the $2F_0 - F_c$ Fourier syntheses, two configuration states were observed at
301 a 50:50 ratio due to crystal soaking. The mixed states could be as a result of NADPH
302 and ternary complex formation to the active site, thus displacing any NADP⁺ present
303 from crystallisation. In the ternary complex state, additional electron density for HBA
304 binding is observed, with π - π stacking between the HBA and nicotinamide aromatic
305 rings (Figure 4A) with a hydride transfer distance of 3.06 Å to the alkene double
306 bond. Furthermore, in the ternary complex, an additional patch of electron density
307 consistent of a flexible loop supporting Y72 is observed. This flexible loop forms a
308 cap over the active site (closed loop), with the *para* hydroxyl group in HBA moving
309 towards Y72. With respect to HBA binding, the substrate is bent within the active site
310 and is encased by aromatic residues Y59, Y72, Y85, F107, Y263 and F290
311 (Supplementary Figure S9). We speculate that this this closed loop formation holds
312 the HBA within the active site prior to transition state. Interestingly, in contrast to
313 apo-RKS and NtDBR, the Y72 flexible loop lacks electron density and seemingly
314 points away from the active site (open loop state). Finally, in regards to cofactor
315 binding, in both states the NADP(H⁺) cofactor is bound in a typical conformation as
316 is observed in the previous related structures^{46,53} with the binding specificity
317 provided by a triad of hydrogen bond based contacts with the G191 backbone
318 nitrogen and the side chains K195 and Y211 (Figure 4B). Whilst K212 is also
319 present, it is rather removed from binding to the ribose 5'-phosphate. Importantly,

320 K195 can interact with either the ribose 5'-phosphate or neighbouring 4'-hydroxyl
321 group.

322

323 In an effort to modify the cofactor specificity of the RKS enzyme, a number of amino
324 acid substitutions at G191 and Y211 were made and steady-state kinetics was
325 determined where appropriate (Figure 4C and Supplementary Table S3). We did not
326 attempt to modify K195 due to its role in bonding to the 4' hydroxyl group found in
327 both NADPH and NADH. We instead chose to modify G191 to provide a short polar
328 side chain (D and N) that can provide a hydrogen bond for the 5'-hydroxyl group
329 unique to NADH. Both the D191 and N191 modifications decreased the k_{cat}/K_m from
330 58 mM⁻¹ s⁻¹ (RKS^{WT}) with NADPH to 14 and 15 (s⁻¹ mM⁻¹), respectively (Figure 4C).
331 This decrease in catalytic efficiency was due to an increased K_m for NADPH with the
332 variants. Interestingly, for N191, the k_{cat} increased by 3-fold up to 1.07 s⁻¹ in
333 comparison to the wild-type (0.31 s⁻¹). One possible interpretation is that steric
334 hindrance of N191 with the 5' phosphate increases the catalytic rate by enhancing
335 NADP⁺ release through decreasing its binding affinity. In contrast, with NADH as the
336 cofactor, whilst N191 did not improve NADH utilisation, D191 was found to increase
337 the k_{cat}/K_m from 1.3 mM⁻¹ s⁻¹ (RKS^{WT}) to 5.9 mM⁻¹ s⁻¹ (Figure 4D and Supplementary
338 Table S3). In summary, these mutagenesis experiments at the G191 position
339 demonstrated that the negatively charged (D) side chain improves NADH specificity
340 in preference to a positive charged residue (N). Whilst further modifications to the
341 Y211 position were also tested individually or in combination with D191 and N191
342 (data not shown), no further improvements in NADH specificity or k_{cat} were found,
343 with most modifications leading to a loss of activity with either NADH or NADPH.

344

345 **NADH based *in vitro* synthesis of raspberry ketone from HBA**

346 Whilst the kinetics of RKS (wild-type and D191) were not characterised with its
347 natural substrate, HBA, its activity was demonstrated with NAD(P)H cofactor
348 regeneration. Firstly, HBA was synthesised from the inexpensive substrates *p*-
349 benzaldehyde (\$203 per kg) and acetic acid (\$67 per kg) using an aldol
350 condensation reaction under basic conditions to provide a 76% yield⁵⁴ (Figure 5A).
351 Then, using the thermostable phosphite dehydrogenase (PtxD) mutant Opt12⁵⁵ for
352 NAD(P)H regeneration from phosphite, we tested the reduction of the HBA substrate
353 at 30°C by following a loss of absorbance at 400 nm (A400). For negative controls, in
354 the absence of the reductase, phosphite or PtxD, the A400 for 1 mM HBA remained
355 stable over the time-course measured (Figure 5B). With 1 mM HBA, 10 µM of RKS,
356 20 mM phosphite and an excess of PtxD opt12, complete reduction was achieved
357 with as little as 10 µM of NADPH (Figure 5B). Next, to demonstrate the proficiency of
358 the RKS variants (10 µM) with both NADPH and NADH, a time-course reaction was
359 monitored with 1 mM injections of HBA every hour with 0.25 mM NAD(P)H, 20 mM
360 phosphite and an excess of PtxD opt12 (Figure 5B). For RKS^{WT}, an initial rate of
361 59.1 and 12.8 µM/min/mg was observed with NADPH and NADH, respectively
362 (Supplementary Table S2). In comparison, for RKS^{D191}, the rates of reduction with
363 NADPH and NADH were nearly equivalent at 46.5 and 43.5 µM/min/mg, respectively
364 (Supplementary Table S2). This demonstrated high-yield and efficient synthesis of
365 raspberry ketone with the RKS^{D191} variant providing an elevated and complete
366 turnover (~100%) with the inexpensive NADH cofactor. RKS reductase activity was
367 also stable for several days at room temperature (data not shown).

368

369 **NADH based *in vitro* synthesis of raspberry ketone from tyrosine**

370 To understand whether the RKS^{D191} variant could be used for *in vitro* synthesis of
371 raspberry ketone with NADH, three time-course reactions were prepared with 1 mM
372 tyrosine and optimised enzyme levels and cofactors with either an absence of the
373 reductase or a combination of RKS^{WT}/NADPH or RKS^{D191}/NADH. Firstly, ATP
374 regeneration was omitted to limit the accumulation of the BNY intermediate. Then,
375 without the RKS reductase, the reaction accumulated HBA at a rate of 0.81 $\mu\text{M min}^{-1}$
376 (Supplementary Table S2), with a maximum yield of 421 μM observed after 48 hrs,
377 along with 197 μM of leftover *p*-coumarate. By adding 20 μM RKS^{WT} with 0.5 mM
378 NADPH along with cofactor recycling with the phosphite dehydrogenase⁵⁵, in
379 contrast, a linear rate of raspberry ketone synthesis of 0.38 $\mu\text{M min}^{-1}$ was observed,
380 whilst after 48 hrs, the final concentrations of the intermediates were 291 μM *p*-
381 coumarate and 375 μM raspberry ketone, with tyrosine or HBA undetected (Figure
382 6A). The HPLC chromatogram trace suggested that the remaining mixture was
383 composed of the BNY side product. Finally, with 20 μM RKS^{D191} introduced with 0.5
384 mM of NADH and the recycling enzymes, in contrast to its earlier use with the wild-
385 type RKS, the final level of raspberry ketone synthesis was improved to 297 μM at a
386 rate of 0.51 $\mu\text{M min}^{-1}$. However, a mixture of 297 μM *p*-coumarate and 198 μM HBA
387 still remained present (Figure 6B).

388 **Discussion**

389 Synthetic biochemistry offers an exciting opportunity to design and engineer enzyme
390 pathways outside of the constraints of a living cell. Recent advances include the
391 generation of a synthetic CO₂ fixation cycle ⁵⁶ and the potential industrial scale
392 synthesis of bioplastic ¹¹. Here, we show the application of the synthetic biochemistry
393 approach to the synthesis of the natural product raspberry ketone. There is
394 increasing interest in natural product biosynthesis as a source of new antimicrobials,
395 human therapeutics, and fine chemicals. The synthetic biochemistry platform, which
396 allows the rapid optimisation of pathway flux ^{12,57} using purified enzymes from
397 different sources to identify high yielding combinations, is a powerful tool for natural
398 product biosynthesis. Potentially, it could be used as a drug discovery tool, e.g. for
399 probing the function of newly identified gene clusters in a sequential manner that
400 allows the documentation of individual enzyme activities.

401

402 Natural products and other high-value fine chemicals are often only synthesized at
403 very low concentrations in their natural source. Unless chemical logic (i.e reactive
404 species) dictates, metabolic pathway enzymes lack selective pressure to evolve
405 enhanced catalytic rates. For raspberry ketone, only tiny quantities are synthesised
406 in the berries themselves and the process requires weeks of maturation. Therefore,
407 yields as low as 1-4 mg per kilo of raspberry are obtained by chemical extraction of
408 natural raspberry ketone fragrance ¹⁷. To meet the demand of raspberry ketone for
409 the food and sports industry, a two-step organic synthesis via an aldol condensation
410 followed by a rhodium-catalysed hydrogenation reaction is used ⁵⁸. However, there is
411 interest in developing a greener approach using synthetic biology to obtain this

412 natural product. Previous work has investigated synthetically engineered *E. coli*¹⁷
413 and Baker's Yeast^{17,18} systems, but yields from fermentation have been limited.

414

415 One of the advantages of the synthetic biochemistry approach is the ability to
416 produce compounds that are toxic to cells or require high levels of enzyme
417 expression to overcome pathway bottlenecks, which can lead to metabolic burden *in*
418 *vivo*. Processes can also be designed to convert central metabolites to products
419 without siphoning off essential resources required for cellular growth. Metabolic
420 engineering *in vivo* requires a delicate balance between flux towards the product and
421 towards biomass accumulation. When flux towards the product is sufficiently high to
422 reduce cellular growth rates, there is inherent evolutionary pressure to lower
423 productivity because mutations that reduce enzyme expression or primary metabolite
424 usage will lead to a selective advantage. Our synthetic biochemistry platform utilises
425 purified proteins *in vitro* and therefore is not subject to evolutionary pressure to
426 decrease productivity. In principle, any compound can be produced from any starting
427 material without incurring metabolic burden. Synthetic biochemistry can, therefore,
428 be considered 'evolution-free' and often results in higher yields of product than can
429 be achieved via *in vivo* production. In our case, we obtained 61 mg L⁻¹ raspberry
430 ketone in a batch system, which is approximately 10-fold higher than the highest
431 reported concentration from fermentation. Further improvement could also be
432 achieved with a continuous flow system such as that reported recently by Hold *et al*
433⁵⁷ for active provision of substrates and removal of product. Moreover, during our
434 optimisation experiments, we identified that high concentrations of tyrosine as the
435 starting substrate inhibited the overall yield of raspberry ketone. Our study hints that
436 there may be a novel regulation mechanism of the BAS enzyme, possibly allosteric,

437 that prevents over-accumulation of raspberry ketone in its native host. Therefore,
438 synthetic biochemistry can also be a powerful tool for research as well as production
439 of compounds.

440

441 Another advantage of the synthetic biochemistry platform is the ability to combine
442 enzymes from different sources with greater ease and less metabolic burden than
443 constructing a strain expressing the whole heterologous pathway. Although we
444 chose to express our enzymes in *E. coli*, in principle pathway variants that are
445 'difficult-to-express' or require post-translational modifications can be expressed and
446 purified in another host, but still mixed with an inexpensive cell-lysate derived from *E.*
447 *coli* to provide energy metabolism to drive the reaction phase. This hybrid approach
448 is not possible with *in vivo* metabolic engineering where a single production chassis
449 is chosen and its choice may constrain the expression levels of the heterologous
450 pathway or the choice of enzyme source.

451

452 Raspberry ketone, although one of the simpler polyketides, still has a complicated
453 biosynthetic pathway that requires ATP, malonyl-coA, and NAD(P)H as cofactors.
454 We showed that each of these could be recycled *in situ* through the application of
455 appropriate cofactor regeneration schemes, but that this must be balanced to avoid
456 the accumulation of side products. In addition, we found that the relative levels of
457 malonyl-CoA, *p*-coumoryl-CoA, and free CoA are a key consideration for maximising
458 yield. The use of an *in vitro* platform allows precise molecular control over the
459 concentration of enzymes, which would be difficult to achieve *in vivo* with the
460 currently available gene expression tools.

461

462

463 To achieve a fine-tuned *in vitro* performance, we have also developed a novel
464 protein-ligand binding fluorescence sensor for direct detection of polyketide
465 synthesis activity and used it to maximise the accumulation of the common
466 intermediates of the raspberry ketone and curcumin biosynthesis pathways. This
467 method could be extended for optimisation of biosynthesis of related polyketides or
468 increase flux towards the malonyl-CoA pool *in vivo*, but will require the inactivation of
469 the CurA reductase activity through point mutations. Given the structural
470 conservation of reductase enzymes, a similar strategy could also be used to develop
471 biosensors for other polyketides in the benzylklaloid family or to screen variants of
472 the TAL, PCL, or MatB enzymes in order to further increase the yields of raspberry
473 ketone in our synthetic biochemistry platform.

474

475 We also demonstrated that raspberry ketone can be synthesised from either tyrosine
476 (the natural substrate *in vivo*), or through a hybrid chemoenzymatic process where
477 HBA is synthesised in one chemical synthesis step, followed by enzymatic
478 conversion to raspberry ketone. *p*-coumarate is also an abundant renewable
479 substrate that can be derived from lignin, so is another plausible starting substrate.
480 The chemoenzymatic approach to high-yield raspberry ketone synthesis provides
481 greater simplicity and lower cost. This method is scalable *in vitro* and potentially also
482 as a microbial fermentation route, potentially providing the most direct method for
483 obtaining industrial yields of raspberry ketone.

484

485

486 Raspberry ketone reductase activity utilises NADPH as a co-substrate which in
487 terms of scalable production is a costly co-factor. To further decrease the cost, we
488 relaxed the cofactor specificity of RKS enzyme to tolerate NADH. A number of
489 studies have highlighted that NADPH-dependent reductases can be engineered to
490 utilise the more stable and inexpensive NADH or biomimetic analogs⁴⁷⁻⁵⁰. As a
491 generalised approach, the structure-guided design of NAD(P)H enzymes can be
492 rationalised by altering the affinity for the ribose 5'-phosphate (NADPH) or hydroxyl
493 (NADH) group^{51,52}. In the case of the RKS enzyme, position G191 provides flexible
494 control for engineering relaxed cofactor specificity. Its coupled use with an
495 inexpensive phosphate donor via the phosphite dehydrogenase⁵⁵ thus affords a low-
496 cost route to raspberry ketone synthesis *in vitro* with NADH using any of the three
497 starting substrates described.

498

499 Approximately 80% of the fine chemical market that is used for cosmetics and food
500 additives, is currently produced by oil derived chemical synthesis and thus approved
501 for use if declared as “nature-identical”⁵⁹. For fine chemicals that are extracted
502 naturally from food sources that require large agricultural landmasses, therefore,
503 potentially it is far simpler and more sustainable to engineer greener alternative
504 biocatalytic platforms, either from the use of engineered plants and microbes or
505 through *in vitro* isolated enzymes. Here, using raspberry ketone as a model pathway,
506 we have demonstrated how an apparently non-productive enzyme pathway can be
507 engineered to a high level of performance from outside of the cell. Essential to this
508 process is the ability to fine tune enzyme pathways in completion, rather than as
509 individual uncoupled kinetics, since shared resources (CoA, ATP) can impact overall
510 yields. In summary, synthetic biochemistry provides an expandable opportunity to

511 design synthetic enzyme ensembles in unison with cofactor availability. We have
512 applied this rational to optimise raspberry ketone, a small molecule that is not easily
513 obtained from within engineered living cells.

514 **Materials and Methods**

515

516 **Molecular biology and protein expression**

517 Routine molecular biology was performed as described previously by our previous
518 research⁶⁰. For the synthetic raspberry ketone pathway the following enzymes were
519 selected - *Rhodotorula glutinis* TAL³⁷, *Arabidopsis thaliana* PCL^{35,38},
520 *Rhodopseudomonas palustris* MatB⁶¹, *Rheum palmatum* BAS^{25,28} and *Rheum*
521 *idaeus* RKS from³⁶. The genes encoding these enzymes were synthesised by
522 ThermoFisher Scientific and codon optimised for *E. coli* K12 expression with
523 compatibility for EcoFlex cloning⁶⁰. PtxD was used for NAD(P)H recycling from
524 phosphite⁵⁵, whilst ATP regeneration was provided from PEP and rabbit pyruvate
525 kinase (Sigma, UK). All oligonucleotides, plasmids and synthetic DNA sequences
526 are listed in the supporting information. Sequencing was performed by Eurofins,
527 Germany.

528

529 **Golden Gate Mutagenesis**

530 We developed a new protocol for mutagenesis based on Golden Gate cloning.
531 Forward and reverse primers were designed for inverse PCR of the plasmid (pTU1-
532 A-T7His-RKS-Bba_B0015) to incorporate a Bsal site, which is routinely used in
533 Golden Gate cloning for directional assembly. After digestion with Bsal, the
534 restriction sites are removed, leaving a complementary 4 bp overhang, which is
535 designed to incorporate the mutation site. This anneals and ligates to provide the
536 desired mutation. PCR was performed with the Q5 polymerase (NEB, UK) with 3%
537 DMSO using the manufacturers standard guidelines. PCR was run on a 1% agarose
538 gel and the bands were excised and gel purified with a QIAquick Gel Extraction Kit.
539 20 ng of PCR product was then digest and ligated in a one-pot reaction with 1 x
540 DNA ligase buffer (Promega), 1 unit of Bsal-HF, 5 units of T4 ligase and 1 unit of
541 DpnI. The reaction was run for 15 cycles at 37°C for 5 min and 16°C for 10 min,
542 followed by a further incubation at 50°C for 5 min and 80°C for 5 min. 20 µL of
543 DH10β competent cells were transformed with 2 µL of ligation mix and plated onto
544 100 µg mL⁻¹ carbenicillin plates. Single colonies were then sequence verified for
545 incorporation of the mutation site.

546

547 **Protein expression and purification**

548 His₆-tagged recombinant TAL, PCL, BAS, MatB and RKS were over-produced in *E.*
549 *coli* BL21-Gold (DE3) grown at 37°C, 200 rpm in 2YT medium with 100 µg/ml
550 ampicillin until an OD₆₀₀ of 0.6 was reached. Cells were induced with 0.4 mM IPTG
551 and grown overnight at 21°C at 200 rpm. Cell were collected by centrifugation at
552 6,000 x g, 4°C for 20 min, then re-suspended in binding buffer (20 mM Tris-HCl pH
553 8, 500 mM NaCl, 5 mM imidazole) and lysed by sonication. Cell-lysates were
554 clarified with centrifugation at 45,000 x g, 4°C for 20 min and purified by gravity flow
555 using Ni-NTA agarose (Generon). His₆-tagged proteins were washed with increasing
556 concentrations of imidazole (5, 30 and 70 mM) in 20 mM Tris-HCl pH 8, 500 mM
557 NaCl, before elution at 400 mM imidazole. Purified protein were then dialysed
558 (MWCO 10,000) into 2 litres of 20 mM HEPES pH 7.5, 100 mM NaCl (Buffer A) at
559 4°C for 6 hours. The enzymes were found to be soluble and active in a range of
560 standard buffers including HEPES (pH 7.5) and Tris-HCL pH 8.0-9.5. Additionally, all
561 enzymes were stable for long-term storage at -80°C with 15% (v/v) glycerol.

562

563 **Chemical synthesis of HBA**

564 HBA, also referred to as 4-(4-hydroxyphenyl)-buten-2-one was synthesised by a
565 crossed aldol condensation as previously described⁶². Further details and NMR
566 spectra (Supplementary Figure S10) are provided in the supplementary data.
567

568 **LC-MS of raspberry ketone and pathway intermediates**

569 50 μ L samples of time-course reaction in triplicate were removed and inactivated
570 with 450 μ L of 1% HCl. Samples were centrifuged at 13,000 rpm for 10 min at room
571 temperature. The supernatant was directly analysed by liquid-chromatography mass
572 spectrometry (LC-MS), performed with an Agilent 1290 Infinity system with an online
573 diode array detector in combination with a Bruker 6500 quadrupole time-of-flight (Q-
574 ToF) mass spectrometer. An Agilent Extend-C18 2.1 x 50mm (1.8 μ m particle size)
575 column was used at a temperature of 25 °C with a buffer flow rate of 0.2 $\text{ml}^{-1} \text{ min}^{-1}$.
576 LC was performed with a linear gradient of buffer A (0.1% formic acid) and buffer B
577 (0.1% formic acid in acetonitrile). Separation was achieved using 5% buffer B for 2
578 min, followed by a linear gradient to 50% buffer B from 2-9 min, which was held at
579 50% buffer B from 9-10 min. Spectra were recorded between a mass range of 90-
580 1000 *m/z* at a rate of 3 spectra per second. Standards were prepared and calibration
581 curves for the intermediates tyrosine, *p*-coumaric acid, HBA and raspberry ketone
582 were derived. Quantitation was based on the MS peak area of precursor or fragment
583 ion in comparison to the analytical standards. Under the conditions used, raspberry
584 ketone is detected as a sodium adduct $[\text{M}+\text{Na}^+]^+$ or as a diagnostic fragment ion at
585 *m/z*= 107.49, corresponding to $\text{C}_7\text{H}_7\text{O}$. For the standards in solvent, good linearity
586 ($R^2>0.99$) was achieved over the range of 0.3 to 30 pmol on column. The lower limit
587 of quantitation was set at 0.3 pmol. Samples that were below this limit were repeated
588 by increasing the injection volume to 1 μ L. Due to a lack of a analytical standard and
589 poor separation, *p*-coumoryl-CoA was not quantified.
590

591 **Enzyme kinetics**

592 RKS and mutants were purified to homogeneity using nickel IMAC and buffer
593 exchanged into Buffer A. Steady-state kinetics were monitored on a Clariostar (BMG
594 Lifetech) plate-reader monitoring absorbance at 340 nm following the reduction of
595 NAD(P)H to NAD(P)⁺ with either 4-hydroxyphenyl-3-butan-2-one
596 (hydroxybenzaldehyde) or phenyl-3-butan-2-one (benzaldehyde) as substrates.
597 Assays were performed in triplicate at 30°C in 0.1 M potassium phosphate pH 6.4.
598

599 **RKS crystallisation and structure determination**

600 IMAC purified RKS was dialysed for 4 hours in 20 mM Tris-HCL pH 8.0 and 200 mM
601 NaCl. Pure fraction concentrated with a 10,000 MWCO centrifugation concentrator
602 (Amicon) and then run on analytical gel filtration in the same buffer. Purity was
603 assessed by SDS-PAGE and the concentration was determined by A_{280}
604 measurement using an extinction coefficient of 44,030 $\text{M}^{-1} \text{ cm}^{-1}$. RKS was
605 concentrated to 10 mg mL⁻¹ and screened in a range of crystallisation conditions
606 using 300 nL drops containing either a ratio of 1:2 or 2:1 of protein and reservoir
607 buffer. Crystals of N-terminally His₆-tagged RKS were obtained by sitting drop
608 vapour diffusion at 20°C after ~3 days of incubation in 0.1 M MES/imidazole pH 6.3,
609 11% (w/v) PEG 550 MME and 5% (w/v) PEG 20K, 20 mM of amino acid mixture
610 (Molecular dimensions Morpheus system) with 1 mM NADPH. Single cube-shaped
611 crystals grew within 1 week. Native crystals with NADPH bound were soaked in
612 cryoprotectant containing 1 mM HBA, 1 mM NADPH and 20% glycerol. A native
613 dataset of 1800 frames was collected remotely at the I04 beamline (Diamond Light

614 Source, Didcot, Oxfordshire) from a single crystal diffracting up to ~1.5 Å. The crystal
615 belonged to space group P1 (Supplementary Table S1). Further details on structure
616 determination are provided in the supplementary text. The atomic coordinates and
617 structure factors (codes: 6EOW for the ternary structure) has been deposited in the
618 Protein Data Bank.

619

620 **Acknowledgements**

621 We would like to thank Dr Tobias Erb (Max Planck Institute) for constructive
622 comments on the preliminary data from this project. We would also like to thank Dr
623 Marc Morgan, Dr Inmaculada Pérez-Dorato and Professor Angelika Gründling for
624 project support concerning the crystallography of RKS, and all the staff in the beam
625 line I04 at the Diamond Light Source (Didcot, Oxfordshire, UK) where the
626 crystallographic datasets were collected. We would also like to thank the EPSRC for
627 funding to SM (EP/K038648/1 - Frontier Engineering).

628

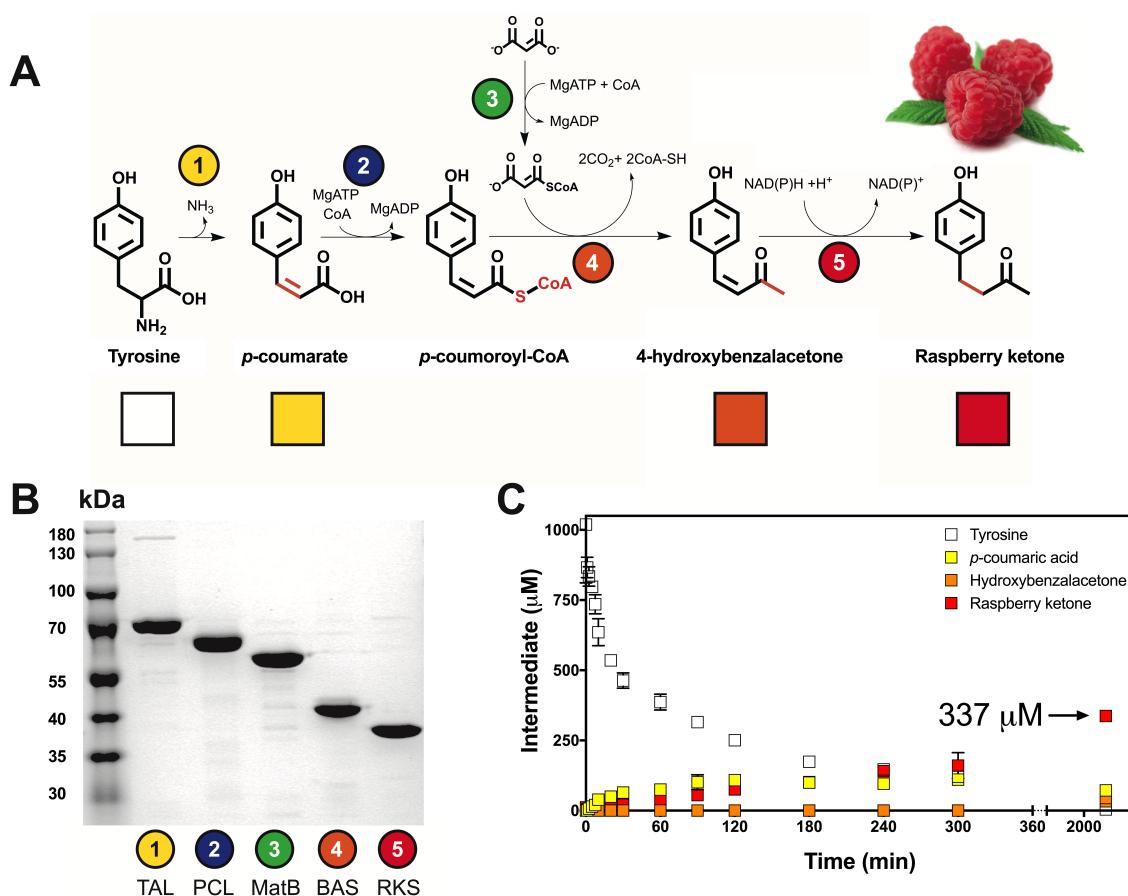
629

630 **References**

- 631 1. Brochado, A. R. *et al.* Improved vanillin production in baker's yeast through in
632 silico design. *Microb. Cell Fact.* **9**, 84 (2010).
- 633 2. Hansen, E. H. *et al.* De novo biosynthesis of vanillin in fission yeast
634 (*Schizosaccharomyces pombe*) and baker's yeast (*Saccharomyces*
635 *cerevisiae*). *Appl. Environ. Microbiol.* **75**, 2765–74 (2009).
- 636 3. Toogood, H. S. *et al.* Enzymatic Menthol Production: One-Pot Approach Using
637 Engineered *Escherichia coli*. *ACS Synth. Biol.* **4**, 1112–1123 (2015).
- 638 4. Paddon, C. J. *et al.* High-level semi-synthetic production of the potent
639 antimarial artemisinin. *Nature* **496**, 528–32 (2013).
- 640 5. Thodey, K., Galanie, S. & Smolke, C. D. A microbial biomanufacturing platform
641 for natural and semisynthetic opioids. *Nat. Chem. Biol.* **10**, 1–10 (2014).
- 642 6. Ye, V. M. & Bhatia, S. K. Metabolic engineering for the production of clinically
643 important molecules: Omega-3 fatty acids, artemisinin, and taxol. *Biotechnol.*
644 *J.* **7**, 20–33 (2012).
- 645 7. Zhang, Y. H. P. Simpler is better: High-yield and potential low-cost biofuels
646 production through cell-free synthetic pathway biotransformation (SyPaB).
647 *ACS Catal.* **1**, 998–1009 (2011).
- 648 8. Yu, X., Liu, T., Zhu, F. & Khosla, C. *In vitro* reconstitution and steady-state
649 analysis of the fatty acid synthase from *Escherichia coli*. *Proc. Natl. Acad. Sci.*
650 **108**, 18643–18648 (2011).
- 651 9. Bujara, M., Schümperli, M., Billerbeck, S., Heinemann, M. & Panke, S.
652 Exploiting cell-free systems: Implementation and debugging of a system of
653 biotransformations. *Biotechnol. Bioeng.* **106**, 376–389 (2010).
- 654 10. Schultheisz, H. L., Szymczyna, B. R., Scott, L. G. & Williamson, J. R.

- 655 Enzymatic de novo pyrimidine nucleotide synthesis. *J. Am. Chem. Soc.* **133**,
656 297–304 (2011).
- 657 11. Opgenorth, P. H., Korman, T. P. & Bowie, J. U. A synthetic biochemistry
658 module for production of bio-based chemicals from glucose. *Nat. Chem. Biol.*
659 **12**, 393–5 (2016).
- 660 12. Bujara, M., Heinemann, M. & Panke, S. Optimization of a blueprint for in vitro
661 glycolysis by metabolic real-time analysis. *Nat. Chem. Biol.* **7**, 271–277 (2011).
- 662 13. Dudley, Q. M., Anderson, K. C. & Jewett, M. C. Cell-Free Mixing of *Escherichia*
663 *coli* Crude Extracts to Prototype and Rationally Engineer High-Titer
664 Mevalonate Synthesis. *ACS Synth. Biol.* **5**, 1578–1588 (2016).
- 665 14. Roessner, C. a *et al.* Overexpression in *Escherichia coli* of 12 vitamin B₁₂
666 biosynthetic enzymes. *Protein expression and purification* **6**, 155–163 (1995).
- 667 15. Zawada, J. F. *et al.* Microscale to manufacturing scale-up of cell-free cytokine
668 production-a new approach for shortening protein production development
669 timelines. *Biotechnol. Bioeng.* **108**, 1570–1578 (2011).
- 670 16. Zorn, H., Fischer-Zorn, M. & Berger, R. G. A labeling study to elucidate the
671 biosynthesis of 4-(4-hydroxyphenyl)-butan-2-one (Raspberry Ketone) by
672 *Nidula niveotomentosa*. *Appl. Environ. Microbiol.* (2003).
- 673 doi:10.1128/AEM.69.1.367-372.2003
- 674 17. Beekwilder, J. *et al.* Microbial production of natural raspberry ketone.
675 *Biotechnol. J.* **2**, 1270–1279 (2007).
- 676 18. Lee, D., Lloyd, N. D. R., Pretorius, I. S. & Borneman, A. R. Heterologous
677 production of raspberry ketone in the wine yeast *Saccharomyces cerevisiae*
678 via pathway engineering and synthetic enzyme fusion. *Microb. Cell Fact.* **15**,
679 49 (2016).

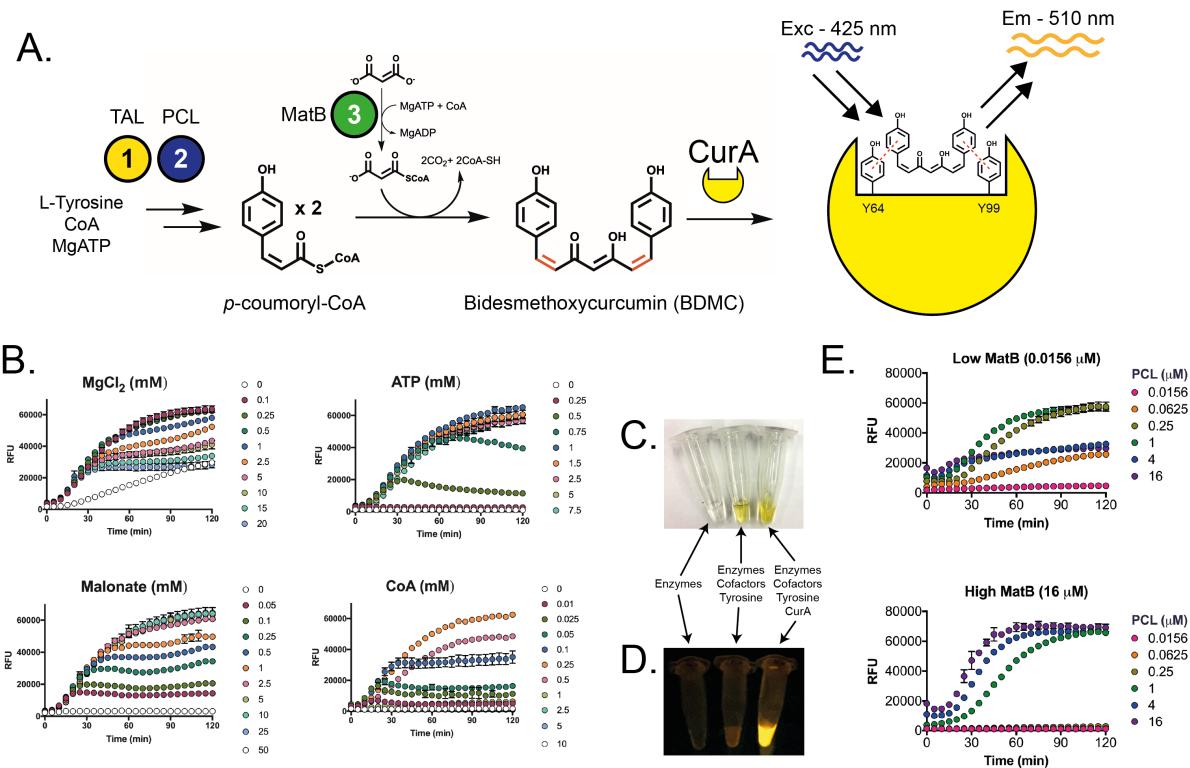
- 680 19. Katsuyama, Y., Matsuzawa, M., Funa, N. & Horinouchi, S. Production of
681 curcuminoids by *Escherichia coli* carrying an artificial biosynthesis pathway.
682 *Microbiology* **154**, 2620–2628 (2008).
- 683 20. Morita, H. *et al.* Structural basis for the one-pot formation of the
684 diarylheptanoid scaffold by curcuminoid synthase from *Oryza sativa*. *Proc.*
685 *Natl. Acad. Sci. U. S. A.* (2010). doi:10.1073/pnas.1011499107
- 686 21. Wu, J., Zhou, T., Du, G., Zhou, J. & Chen, J. Modular optimization of
687 heterologous pathways for *de novo* synthesis of (2S)-Naringenin in
688 *Escherichia coli*. *PLoS One* (2014). doi:10.1371/journal.pone.0101492
- 689 22. Lim, C. G., Fowler, Z. L., Hueller, T., Schaffer, S. & Koffas, M. A. G. High-yield
690 resveratrol production in engineered *Escherichia coli*. *Appl. Environ. Microbiol.*
691 **77**, 3451–3460 (2011).
- 692 23. Koo, H. J. *et al.* Ginger and turmeric expressed sequence tags identify
693 signature genes for rhizome identity and development and the biosynthesis of
694 curcuminoids, gingerols and terpenoids. *BMC Plant Biol.* **13**, 27 (2013).
- 695 24. Ramirez-ahumada, C., Timmermann, B. N. & Gang, D. R. Biosynthesis of
696 curcuminoids and gingerols in turmeric (*Curcuma longa*) and ginger (*Zingiber*
697 *officinale*): Identification of curcuminoid synthase and hydroxycinnamoyl-CoA
698 thioesterases. **67**, 2017–2029 (2006).
- 699 25. Morita, H. *et al.* A structure-based mechanism for benzalacetone synthase
700 from *Rheum palmatum*. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 669–673 (2010).
- 701 26. Zha, W., Rubin-Pitel, S. B., Shao, Z. & Zhao, H. Improving cellular malonyl-
702 CoA level in *Escherichia coli* via metabolic engineering. *Metab. Eng.* **11**, 192–8
703 (2009).
- 704 27. Bennett, B. D. *et al.* Absolute metabolite concentrations and implied enzyme


- 705 active site occupancy in *Escherichia coli*. *Nat. Chem. Biol.* **5**, 593–599 (2009).
- 706 28. Abe, I., Takahashi, Y., Morita, H. & Noguchi, H. Benzalacetone synthase. A
707 novel polyketide synthase that plays a crucial role in the biosynthesis of
708 phenylbutanones in *Rheum palmatum*. *Eur. J. Biochem.* **268**, 3354–3359
709 (2001).
- 710 29. Ceroni, F., Algar, R., Stan, G.-B. & Ellis, T. Quantifying cellular capacity
711 identifies gene expression designs with reduced burden. *Nat. Methods* **12**,
712 415–418 (2015).
- 713 30. Delgado, J. & Liao, J. C. Determination of Flux Control Coefficients from
714 transient metabolite concentrations. *Biochem. J.* **282 (Pt 3)**, 919–27 (1992).
- 715 31. Weaver, L. J. *et al.* A kinetic-based approach to understanding heterologous
716 mevalonate pathway function in *E. coli*. *Biotechnol. Bioeng.* **112**, 111–9 (2015).
- 717 32. Linster, C. L., Van Schaftingen, E. & Hanson, A. D. Metabolite damage and its
718 repair or pre-emption. *Nat. Chem. Biol.* **9**, 72–80 (2013).
- 719 33. Davidi, D. *et al.* Global characterization of *in vivo* enzyme catalytic rates and
720 their correspondence to *in vitro* kcat measurements. *Proc. Natl. Acad. Sci. U.*
721 *S. A.* **113**, 3401–6 (2016).
- 722 34. Poppe, L. & Rétey, J. Friedel-Crafts-type mechanism for the enzymatic
723 elimination of ammonia from histidine and phenylalanine. *Angew. Chem. Int.*
724 *Ed. Engl.* **44**, 3668–88 (2005).
- 725 35. Stuible, H. P., Büttner, D., Ehling, J., Hahlbrock, K. & Kombrink, E. Mutational
726 analysis of 4-coumarate:CoA ligase identifies functionally important amino
727 acids and verifies its close relationship to other adenylate-forming enzymes.
728 *FEBS Lett.* (2000). doi:10.1016/S0014-5793(00)01133-9
- 729 36. Koeduka, T. *et al.* Characterization of raspberry ketone/zingerone synthase,

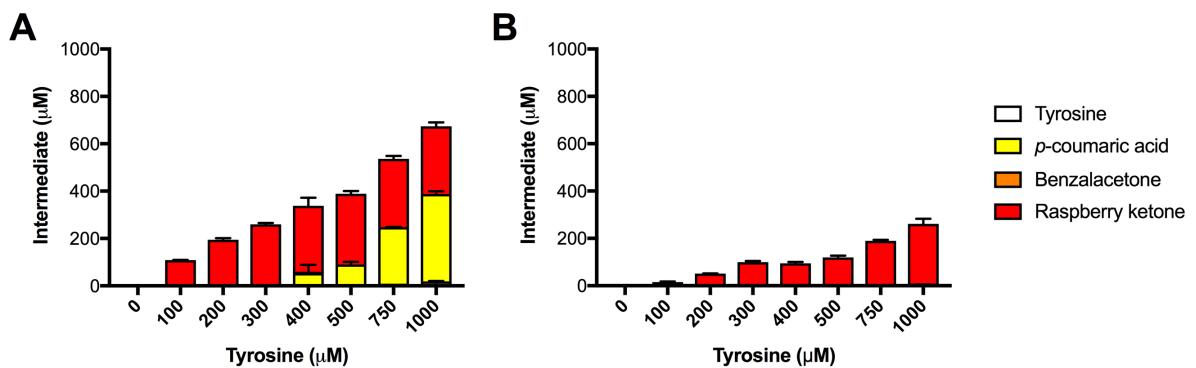
- 730 catalyzing the alpha, beta-hydrogenation of phenylbutenones in raspberry
731 fruits. *Biochem. Biophys. Res. Commun.* (2011).
732 doi:10.1016/j.bbrc.2011.07.052
- 733 37. Watts, K. T., Mijts, B. N., Lee, P. C., Manning, A. J. & Schmidt-Dannert, C.
734 Discovery of a Substrate Selectivity Switch in Tyrosine Ammonia-Lyase, a
735 Member of the Aromatic Amino Acid Lyase Family. *Chem. Biol.* **13**, 1317–1326
736 (2006).
- 737 38. Schneider, K. *et al.* The substrate specificity-determining amino acid code of 4-
738 coumarate:CoA ligase. *Proc. Natl. Acad. Sci. U. S. A.* **100**, 8601–6 (2003).
- 739 39. McCrate, O. a, Zhou, X. & Cegelski, L. Curcumin as an amyloid- indicator dye
740 in *E. coli*. *Chem. Commun.* **49**, 4193–4195 (2013).
- 741 40. Katsuyama, Y., Matsuzawa, M., Funa, N. & Horinouchi, S. In vitro synthesis of
742 curcuminoids by type III polyketide synthase from *Oryza sativa*. *J. Biol. Chem.*
743 **282**, 37702–37709 (2007).
- 744 41. Hassaninasab, A., Hashimoto, Y., Tomita-Yokotani, K. & Kobayashi, M.
745 Discovery of the curcumin metabolic pathway involving a unique enzyme in an
746 intestinal microorganism. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 6615–20 (2011).
- 747 42. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The
748 Phyre2 web portal for protein modeling, prediction and analysis. *Nat. Protoc.*
749 **10**, 845–58 (2015).
- 750 43. Abe, I., Sano, Y., Takahashi, Y. & Noguchi, H. Site-directed mutagenesis of
751 benzalacetone synthase: The role of PHE 215 in plant type III polyketide
752 synthases. *J. Biol. Chem.* **278**, 25218–25226 (2003).
- 753 44. Honda, K. *et al.* *In vitro* metabolic engineering for the salvage synthesis of
754 NAD⁺. *Metab. Eng.* **35**, 114–120 (2016).

- 755 45. Ansell, R. J. & Lowe, C. R. Artificial redox coenzymes: biomimetic analogues
756 of NAD⁺. *Appl. Environ. Microbiol.* **51**, 703–710 (1999).
- 757 46. Mansell, D. J. *et al.* Biocatalytic Asymmetric Alkene Reduction: Crystal
758 Structure and Characterization of a Double Bond Reductase from *Nicotiana*
759 *tabacum*. *ACS Catal.* **3**, 370–379 (2013).
- 760 47. Liu, X. *et al.* Structure-guided engineering of *Lactococcus lactis* alcohol
761 dehydrogenase LIAdhA for improved conversion of isobutyraldehyde to
762 isobutanol. *J. Biotechnol.* **164**, 188–195 (2012).
- 763 48. Brustad, E. M. & Arnold, F. H. Optimizing non-natural protein function with
764 directed evolution. *Curr. Opin. Chem. Biol.* **15**, 201–210 (2011).
- 765 49. Jarboe, L. R., Liu, P., Kautharapu, K. B. & Ingram, L. O. Optimization of
766 enzyme parameters for fermentative production of biorenewable fuels and
767 chemicals. *Comput. Struct. Biotechnol. J.* **3**, (2012).
- 768 50. Bastian, S. *et al.* Engineered ketol-acid reductoisomerase and alcohol
769 dehydrogenase enable anaerobic 2-methylpropan-1-ol production at
770 theoretical yield in *Escherichia coli*. *Metab. Eng.* **13**, 345–352 (2011).
- 771 51. Scrutton, N. S., Berry, a & Perham, R. N. Redesign of the coenzyme
772 specificity of a dehydrogenase by protein engineering. *Nature* **343**, 38–43
773 (1990).
- 774 52. Woodyer, R., Van der Donk, W. A. & Zhao, H. Relaxing the nicotinamide
775 cofactor specificity of phosphite dehydrogenase by rational design.
776 *Biochemistry* (2003). doi:10.1021/bi035018b
- 777 53. Youn, B. *et al.* Mechanistic and structural studies of apoform, binary, and
778 ternary complexes of the *Arabidopsis* alkenal double bond reductase
779 At5g16970. *J. Biol. Chem.* (2006). doi:10.1074/jbc.M605900200

- 780 54. Paul, S. & Gupta, M. A Simple and Efficient Method for Selective Single Aldol
781 Condensation Between Arylaldehydes and Acetone. *Synth. Commun.* **35**,
782 213–222 (2005).
- 783 55. Johannes, T. W., Woodyer, R. D. & Zhao, H. Directed evolution of a
784 thermostable phosphite dehydrogenase for NAD(P)H regeneration. *Appl.*
785 *Environ. Microbiol.* **71**, 5728–34 (2005).
- 786 56. Schwander, T., Schada von Borzyskowski, L., Burgener, S., Cortina, N. S. &
787 Erb, T. J. A synthetic pathway for the fixation of carbon dioxide *in vitro*.
788 *Science*. **354**, 900–904 (2016).
- 789 57. Hold, C., Billerbeck, S. & Panke, S. Forward design of a complex enzyme
790 cascade reaction. *Nat. Commun.* **7**, 12971 (2016).
- 791 58. Smith, L. R. Rheosmin ('Raspberry Ketone') and Zingerone, and Their
792 Preparation by Crossed Aldol-Catalytic Hydrogenation Sequences. *Chem.*
793 *Educ.* **1**, 1–18 (1996).
- 794 59. Priefert, H., Rabenhorst, J. & Steinbüchel, A. Biotechnological production of
795 vanillin. *Appl. Microbiol. Biotechnol.* **56**, 296–314 (2001).
- 796 60. Moore, S. J. *et al.* EcoFlex: A Multifunctional MoClo Kit for *E. coli* Synthetic
797 Biology. *ACS Synth. Biol.* **5**, 1059–1069 (2016).
- 798 61. Crosby, H. a., Rank, K. C., Rayment, I. & Escalante-Semerena, J. C.
799 Structure-guided expansion of the substrate range of methylmalonyl coenzyme
800 a synthetase (MatB) of *Rhodopseudomonas palustris*. *Appl. Environ. Microbiol.*
801 **78**, 6619–6629 (2012).
- 802 62. Ramachandra, M. S. & Subbaraju, G. V. Synthesis and bioactivity of novel
803 caffeic acid esters from *Zuccagnia punctata*. *J. Asian Nat. Prod. Res.* **8**, 683–
804 688 (2006).


805 **Figures**

806


807 **Figure 1.** A synthetic biochemistry module for raspberry ketone synthesis *in vitro*. (A) 808 A synthetic pathway for raspberry ketone synthesis from Tyrosine using malonate for 809 malonyl-CoA synthesis. Intermediates quantified by LC-MS include Tyrosine (white 810 box), *p*-coumarate (yellow box), hydroxyHBA (orange box) and raspberry ketone (red 811 box). (B) 2 μg of purified enzyme was loaded and analysed by 12% SDS-PAGE and 812 Coomassie Blue staining. Sizes of His₆-tagged recombinant enzyme - *R. glutinis* TAL 813 (77.0 kDa), *A. thaliana* PCL (63.2 kDa), *R. palustris* MatB (56.6 kDa), *R. palmatum* 814 BAS (44.4 kDa), *R. rubrum* RKS (40.7 kDa). (C) One-pot synthesis of raspberry 815 ketone with 2.5 μM of enzymes. For full details, please refer to Supplementary Table 816 S2.

817

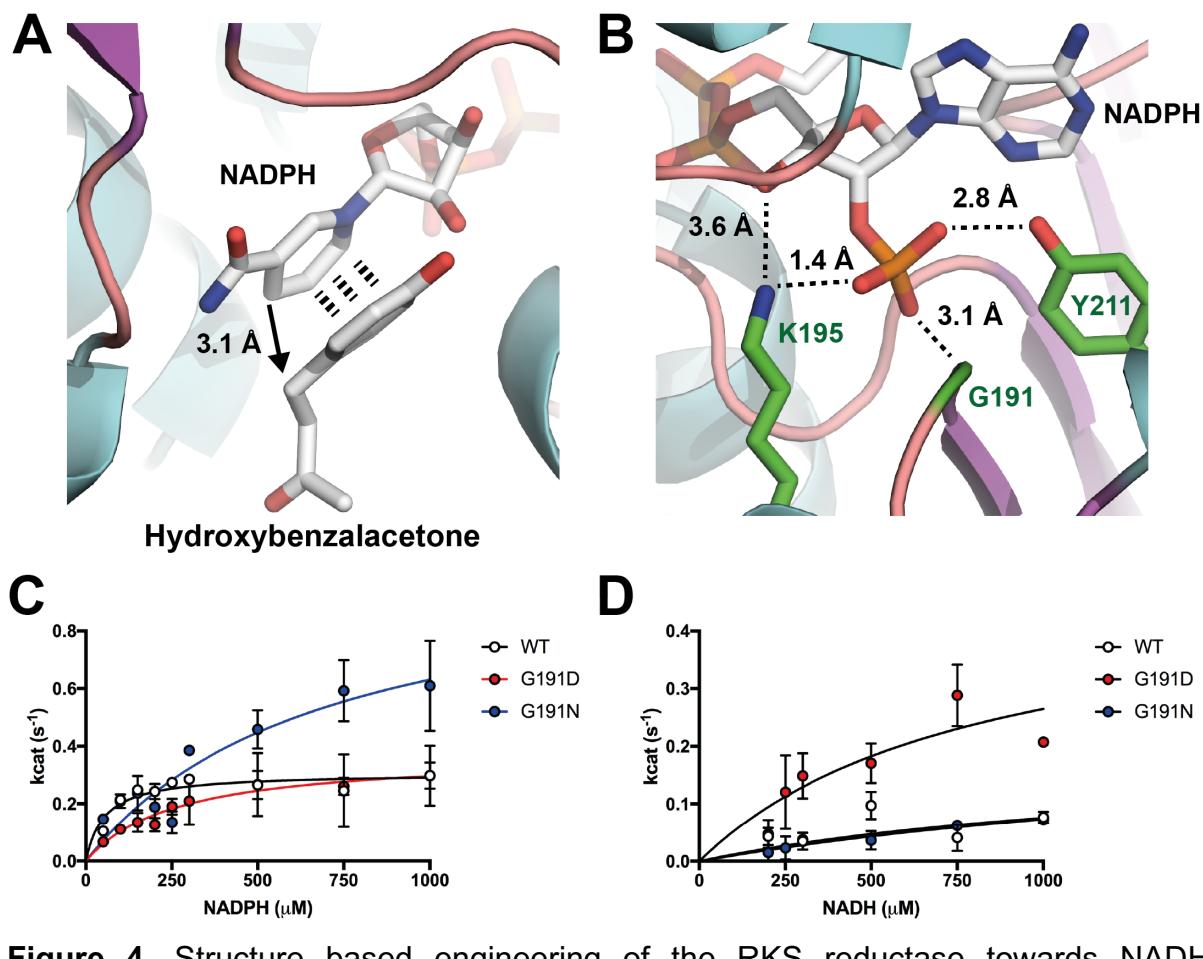
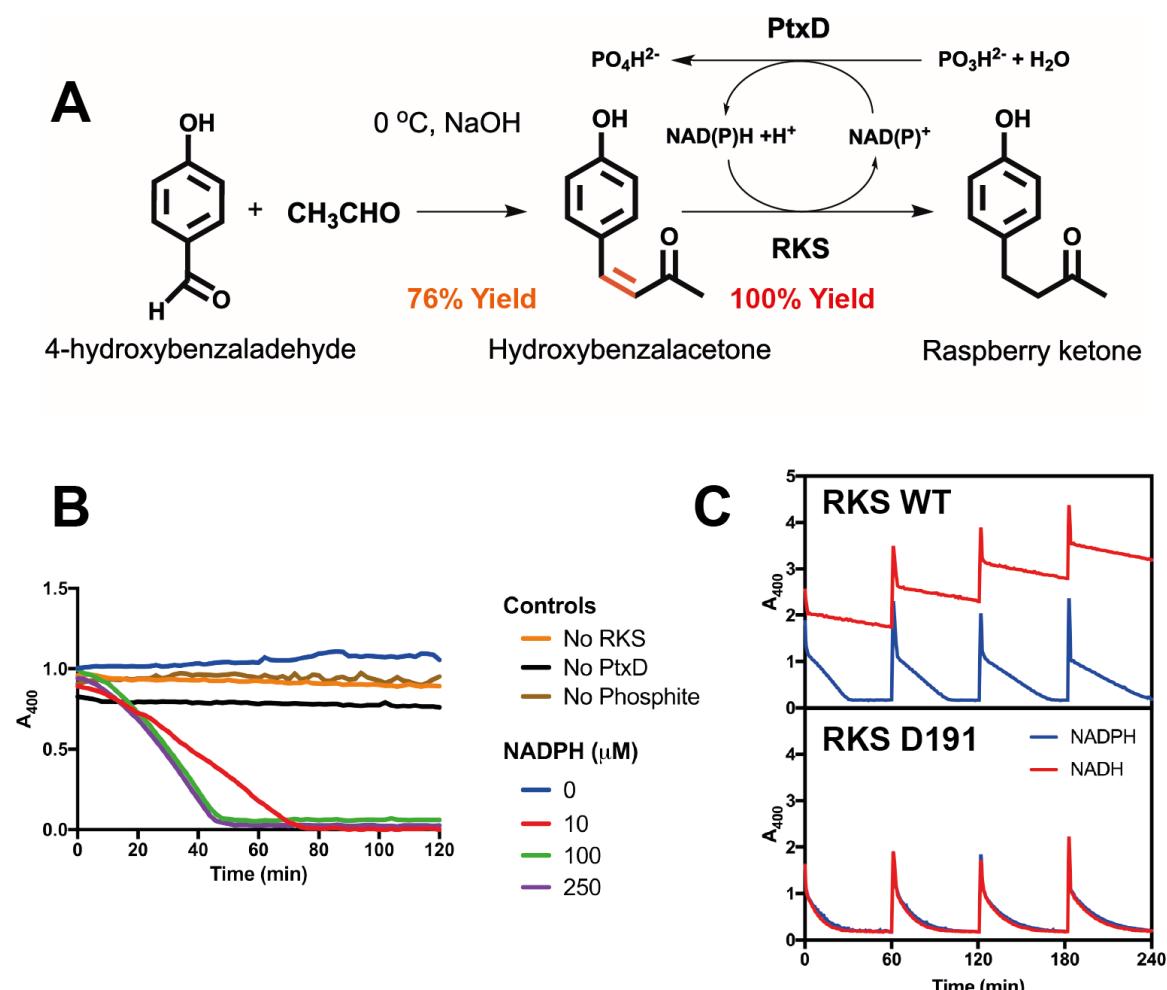
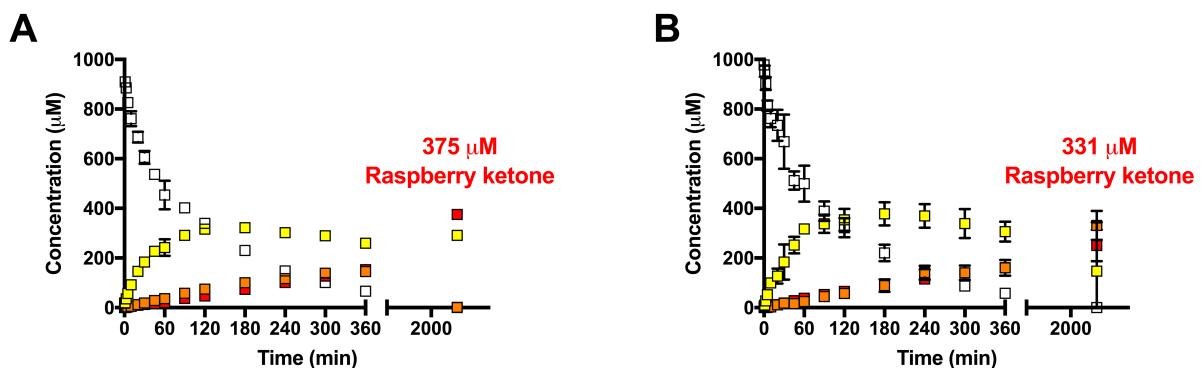

818
819
820
821
822
823
824
825
826
827

Figure 2. Development of a fluorescence sensor for type III polyketide synthesis. (A) A synthetic pathway for detection of BDMC synthesis from malonyl-CoA and *p*-coumoryl-CoA. CurA a BDMC/curcumin NADPH-dependent reductase from *E. coli* is used in the absence of NADPH to bind to BDMC/curcumin generating an unique fluorescent output for relative quantitation of pathway activity. (B) Optimisation of cofactors and substrates for type III polyketide synthesis. (C) Visual and (D) fluorescence of *in vitro* BDMC reactions, with negative controls. (E) Enzyme competition between MatB and PCL, which share CoA and ATP for activity.



828
829
830
831
832


Figure 3. One-pot synthesis of raspberry ketone with a varying concentration of tyrosine. (A) Standard conditions and (B) optimised conditions as outlined in Supplementary Table S2.

833
834 **Figure 4.** Structure based engineering of the RKS reductase towards NADH
835 utilisation (pdb: 6EOW). (A) Binding site for HBA in proximity to the NADPH cofactor.
836 (B) Cofactor specificity is provided by a triad of binding residues G191, K195 and
837 Y211 with hydrogen bonding to the 5'-ribose phosphate. (C) Kinetic characterisation
838 with NADPH and RKS variants and with (D) NADH as outlined in materials and
839 methods.
840

841
842 **Figure 5.** A two-step semi-synthetic route to high-yield raspberry ketone synthesis
843 with NADH and cofactor regeneration. (A) A semi-synthetic pathway for raspberry
844 ketone using aldol condensation and RKS reductase activity with cofactor
845 regeneration. (B) Activity of the thermostable PtxD opt12 phosphite dehydrogenase
846 with 1 mM HBA and 10 μ M RKS. Negative controls (no enzyme or phosphite) are
847 shown along with a variable concentration of NADPH. (C) Time-course reaction
848 monitoring loss of absorbance at 400 nm showing reduction of HBA to raspberry
849 ketone. Injections of 1 mM HBA were added in 60 min cycles. An excess of PtxD and
850 20 mM phosphite was incubated at 30°C with 10 μ M RKS (top panel) or the D191
851 variant (bottom panel), with either 0.25 μ M NADPH (blue line) or NADH (red line).
852

853
854
855
856
857

Figure 6. One-pot synthesis of raspberry ketone under optimised enzyme levels and cofactor regeneration. (A) Reaction with RKS^{WT} and NADPH. (B) Reaction with RKS^{D191} and NADH. Full synthesis conditions are provided in Supplementary Table S2.