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ABSTRACT 14 

Stereo-seq is a cutting-edge technique for spatially resolved transcriptomics that combines 15 

subcellular resolution with centimeter-level field-of-view, serving as a technical foundation for 16 

analyzing large tissues at the single-cell level. Our previous work presents the first one-stop software 17 

that utilizes cell nuclei staining images and statistical methods to generate high-confidence single-18 

cell spatial gene expression profiles for Stereo-seq data. With recent advancements in Stereo-seq 19 

technology, it is possible to acquire cell boundary information, such as cell membrane/wall staining 20 

images. To take advantage of this progress, we updated our software to a new version, named 21 

STCellbin, which utilizes the cell nuclei staining images as a bridge to align cell membrane/wall 22 

staining images with spatial gene expression maps. By employing an advanced cell segmentation 23 

technique, accurate cell boundaries can be obtained, leading to more reliable single-cell spatial gene 24 

expression profiles. Experimental results verify the application of STCellbin on mouse liver (cell 25 

membranes) and Arabidopsis seed (cell walls) datasets. The improved capability of capturing single 26 

cell gene expression profiles by this update results in a deeper understanding of the contribution of 27 

single cell phenotypes to tissue biology. 28 

 29 

Availability & Implementation: The source code of STCellbin is available at 30 

https://github.com/STOmics/STCellbin. 31 

  32 
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STATEMENT OF NEED 33 

Spatially resolved single cell transcriptomics enables the generation of comprehensive molecular 34 

maps that provide insights into the spatial distribution of molecules within the single cells that make 35 

up tissues. This groundbreaking technology offers insights into the location and function of cells in 36 

various tissues, enhancing our knowledge of organ development [1], tumor heterogeneity [2], cancer 37 

evolution [3], and other biological mechanisms. Resolution and field-of-view are two critical 38 

parameters in spatial transcriptomics. High resolution enables detailed molecular information at the 39 

single-cell level, and large field-of-view facilitates the creation of complete 3D maps that represent 40 

biological functions at the organ level. Stereo-seq simultaneously achieves subcellular resolution 41 

and a centimeter-level field-of-view, providing a technical foundation for obtaining comprehensive 42 

spatial gene expression profiles of whole tissues at single-cell level [4]. Our previous work offers 43 

the one-stop software StereoCell for acquiring high signal-to-noise ratio single-cell spatial gene 44 

expression profiles from Stereo-seq data [5]. The image data generated by Stereo-seq used for 45 

StereoCell are cell nuclei staining images. However, there is a big difference between cell nuclei 46 

and cell boundary staining images, based on cell membrane/wall staining, in terms of the ability to 47 

capture robust and precise cell specific gene expression profiles. Despite the widespread use of 48 

spatial techniques, such as MERFISH [6], CosMx [7], and Xenium [8], several of these techniques 49 

still struggle to achieve accurate cell boundary information, as they are based on cell nuclei staining 50 

images that can be generated using stains such as 4,6-diamidino-2-phenylindole (DAPI). 51 

Hematoxylin-eosin (H&E) and single strand DNA fluorescence (ssDNA) staining images are also 52 

commonly used and readily obtainable data. We here implement a procedure based on simultaneous 53 

cell membrane/wall and cell nuclei staining using multiplex immunofluorescence (mIF) and 54 
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calcofluor white (CFW) staining [9,10], to automatically acquire more accurate cell boundary 55 

information and thereby obtain more reliable single-cell spatial gene expression profiles. 56 

In STCellbin, we have retained the image stitching, tissue segmentation and molecule labeling 57 

steps from StereoCell and improved the image registration and cell segmentation steps. As the cell 58 

membrane/wall staining images miss the “track line” information, which is the key in the image 59 

registration step [5], we utilize the cell nuclei staining images as a bridge to align the cell 60 

membrane/wall staining images with the spatial gene expression maps, upon which we obtain the 61 

registered cell boundary information in the cell segmentation step. Based on the cell boundaries 62 

information, we directly assign the molecules to their corresponding cells, obtaining single-cell 63 

spatial gene expression profiles. We applied STCellbin on mouse liver (cell membrane) and 64 

Arabidopsis seed (cell wall) datasets, and confirm the accuracy of cell segmentation. This update 65 

offers a comprehensive workflow to obtain reliable single-cell spatial gene expression profiles based 66 

on cell membrane/wall information, providing support and guidance for related scientific 67 

investigations, particularly those based on Stereo-seq data. 68 

IMPLEMENTATION 69 

Overview of STCellbin 70 

The process of STCellbin includes image stitching, image registration, cell segmentation and 71 

molecule labeling (Fig. 1). The Stereo-seq spatial gene expression data, cell nuclei and cell 72 

membrane/wall staining image tiles are input into STCellbin. The stitched cell nuclei and cell 73 

membrane/wall staining images are obtained through the MFWS algorithm [5]. The stitched cell 74 

nuclei and cell membrane/wall staining images are registered using the Fast Fourier Transform (FFT) 75 
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algorithm [11]. The spatial gene expression data is transformed into a map, this map and a stitched 76 

cell nuclei staining image are registered based on “track lines”. Thus, the registration of the gene 77 

expression map and cell membrane/wall staining image is implemented. Cell segmentation is 78 

performed on the registered cell membrane/wall staining image by Cellpose 2.0 [12] to obtain the 79 

cell mask. The molecules are assigned to their corresponding cells according to the cell mask to 80 

obtain the single-cell spatial gene expression profile. The tissue segmentation step based on Bi-81 

Directional ConvLSTM U-Net [13] is set as optional, which can generate a tissue mask to assist in 82 

filtering out impurities outside the tissue. 83 

Image stitching 84 

The image stitching steps in STCellbin is consistent with the image stitching steps in StereoCell. 85 

The MFWS algorithm [5] is adopted, which calculates the offsets of two adjacent tiles with 86 

overlapping areas using FFT [11] to stitch these two tiles, and extends this process to all tiles. The 87 

relative error, absolute error and running time of MFWS have been verified in our previous work 88 

[5]. 89 

Image registration 90 

The image registration of STCellbin includes two steps. The first is the registration of the stitched 91 

cell nuclei and stitched cell membrane/wall staining images. The two stained images are taken by 92 

the same microscope at the same magnification, which ensures that they have similar sizes and no 93 

large difference in rotation. Therefore, the key of the registration is to calculate the image offsets. 94 

The cell nuclei staining image is fixed, and the size of the cell membrane/wall staining image is 95 

adjusted to be consistent with the cell nuclei staining image by cutting and zero-padding (Fig. 2A). 96 

FFT [11] is then used to calculate the image offsets (similar to MFWS [5]). To save computing 97 
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resources, the two stained images are mean-based subsampled [14] (Fig. 2B), the offsets of the 98 

subsampled images are calculated (Fig. 2C), and these offsets are restored to the scale of the original 99 

images so that the cell nuclei and cell membrane/wall staining images can be registered (Fig. 2D). 100 

The second registration is the same as in StereoCell [5], that is, the spatial gene expression data is 101 

transformed into a map, and then this map is registered with the stitched cell nuclei staining image 102 

based on “track lines”. This registration fixes the spatial gene expression map and performs scaling, 103 

rotating, flipping and translating on the stitched cell nuclei staining image. Since the cell nuclei and 104 

cell membrane/wall staining images have been registered, the same operations (scaling, rotating, 105 

flipping and translating) are repeated on the cell membrane/wall staining image (Fig. 2E), that is, 106 

the cell membrane/wall staining image and spatial gene expression map can be registered using the 107 

cell nuclei staining image as a bridge. STCellbin also has compatibility with registration 108 

requirements of specific images. When utilizing staining images produced with a multi-channel 109 

microscope, it is possible to omit the registration between these images, and the image stitching 110 

parameters can be the same for all channel images. Moreover, the registration can handle the case 111 

of multiple mIF staining images taken from identical tissues using the same microscope when there 112 

is only a difference in offsets among these images. 113 

Cell segmentation 114 

The cell segmentation step of STCellbin is performed using Cellpose 2.0 [12] with some 115 

adjustments. The model architecture of Cellpose 2.0 and its weight files “cyto2” are downloaded. 116 

Due to the large size of staining images derived from Stereo-seq data, Cellpose 2.0 cannot be 117 

executed smoothly using normal hardware configurations. To circumvent this issue, the staining 118 

images are therefore cropped into multiple tiles with overlapping areas to perform cell segmentation 119 
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and record the coordinates of tiles. The overlapping areas rescue cells at the border of the tiles from 120 

being cropped. To obtain the best results, segmentations with different values of the cell diameter 121 

parameter are performed independently, and the result with the largest sum of cell areas is retained. 122 

All the segmented tiles are assembled into the final segmented result according to the recorded 123 

coordinates. Moreover, when selecting the tissue segmentation option, an additional step is executed 124 

to apply a filter on the cell mask using the tissue mask, resulting in a filtered segmented outcome. 125 

Molecule labeling 126 

The molecule labeling of STCellbin is the same as the one used in StereoCell in principle. StereoCell 127 

assigns molecules in the cell nuclei to the cell by using the cell nuclei mask, and then assigns 128 

molecules outside the cell nuclei to the cells with the highest probability density using Gaussian 129 

Mixture Model [15]. STCellbin assigns molecules to the cells directly based on the cell mask, while 130 

the process of assigning molecules outside the cell is included as an option. The latter decision was 131 

made as the cell membranes/walls are usually tightly packed, with only a few molecules outside the 132 

cells, and the assignment of these molecules takes a lot of time. Thus, we generally do not 133 

recommend this option, and the users can use it according to actual requirements. 134 

RESULTS 135 

Datasets 136 

We adopt two datasets acquired via Stereo-seq technology [4]. One is a mouse liver dataset, a tissue 137 

that offers cell boundary information via cell membranes, as in all mammalian tissues. The other 138 

dataset is derived from seeds of the plant Arabidopsis, a tissue that provides cell boundary 139 

information based on rigid cell walls. More details of the two datasets are shown in Table 1. 140 

 141 
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Table 1. Details of two datasets used for evaluation of cell boundary information 142 

Detail Mouse liver dataset Arabidopsis seed dataset 

Data source A slice of liver Slices of multiple seeds 

Cell nuclei dye DAPI ssDNA 

Cell membrane/wall dye mIF CFW 

Number of molecules 16,177,288 62,884,637 

Evaluation of cell segmentation performance 143 

To evaluate the cell segmentation performance of STCellbin, we designed a ground truth based on 144 

a manual markup of the cells according to their cell membranes/walls based on the staining images. 145 

The number of cells from ground truth is named ng. The number of cells segmented by STCellbin 146 

is named ns. For each STCellbin segmented cell (s_celli), there must be a corresponding cell from 147 

ground truth (m_celli), where i is the index of the cell (i = 1, 2, …, ns). Then a rule is set: 148 

s_cell  is segmented correctly          if  0.5

s_cell  is segmented incorrectly       otherwise

i i

i

IoU 



 
(1) 

where IoU is the standard intersection over union metric [16] set as: 149 

i i iIoU ao au=  (2) 

where aoi is the area of overlap between s_celli and m_celli, and aui is the area of union of these two 150 

cells. Then the precision (Pre) and recall (Rec) are adopted: 151 

Pre= nc ns  (3) 

Rec= nc ng  (4) 

where nc is the number of cells correctly segmented by STCellbin. 152 

Generation of single-cell spatial gene expression profiles utilizing cell 153 

membrane/wall staining images 154 

STCellbin was next applied to the mouse liver and Arabidopsis seed datasets. For each dataset, the 155 
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input includes a file of spatial gene expression data, a folder of cell nuclei staining image tiles, and 156 

a folder of cell membrane/wall staining image tiles. Through the steps of image stitching, image 157 

registration, cell segmentation (the option of tissue segmentation is selected), and molecule labeling, 158 

the single-cell spatial gene expression profiles are generated as the output. 159 

Given the substantial amount of work required for manual cell marking and limited clarity in 160 

certain regions of the staining images, we selected the areas with the best image data from the two 161 

datasets for presentation of the segmentation results. When using staining images with different 162 

dyes, STCellbin effectively identifies cell membranes/walls for cell segmentation, yielding cell 163 

masks that exhibit acceptable agreement with the manually marked results (Fig. 3A). This capability 164 

offers significant time and cost savings in practical applications. STCellbin demonstrates reliable 165 

identification of cells in both mammalian and plant tissues with a detection rate (ns/ng) of over 166 

93.6%, and correctly segments most of them (Fig. 3B, left). Using the Arabidopsis seed dataset, 167 

STCellbin achieves a precision of 60.5% and a recall of 56.7%, while in the mouse liver dataset, it 168 

achieves a precision of 74.1% and a recall of 70.5% (Fig. 3B, right). 169 

By employing STCellbin, the Stereo-seq spatial gene expression data includes an attribute of 170 

“CellID”, that is, the molecules are assigned to their originating cell to obtain single-cell gene 171 

expression profiles with spatial information (Fig. 3C, left). Cell area, number of unique genes per 172 

cell and number of gene counts per cell are statistically analyzed based on the data generated from 173 

mouse liver and the two Arabidopsis seeds with the most accurate segmentation profiles (Fig. 3C, 174 

right). By utilizing the obtained single-cell spatial gene expression profiles, clustering analysis was 175 

performed using the Leiden algorithm [17] (Fig. 3D). The resulting clusters of cells are spatially 176 

mapped within the tissue (Fig. 3D, left hand side for each tissue), allowing for the observation of 177 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 26, 2023. ; https://doi.org/10.1101/2023.12.25.573324doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.25.573324
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 / 14 
 

their specific positions. From the Umaps, it is apparent that the different cell types are effectively 178 

distinguished (Fig. 3D, right hand side for each tissue). The spatial location of the different cell 179 

types will positively influence a series of downstream analyzes such as cellular annotation in less 180 

well-studied tissues. 181 

Discussion 182 

Accurate identification of cell boundaries plays a crucial role in generating single-cell resolution in 183 

spatial omics applications. Based on previous work in StereoCell using cell nuclei staining images 184 

to generate single-cell spatial gene expression profiles, this STCellbin update extends the capability 185 

to automatically process Stereo-seq cell membrane/wall staining images for identification of cell 186 

boundaries that facilitates downstream analyses. We also showcase a few examples of the 187 

performance of cell membrane/wall segmentation in STCellbin. Currently, the tools for cell nuclei 188 

and cell membrane/wall segmentation can be independently executed, allowing users to choose the 189 

more suitable solution for their specific applications. In future work, these two techniques can be 190 

combined by training a deep learning model that is compatible with any staining image type, thereby 191 

achieving more accurate results. 192 

AVAILABILITY OF SOURCE CODE AND REQUIREMENTS 193 

● Project name: STCellbin 194 

● Project home page: https://github.com/STOmics/STCellbin 195 

● Operating system(s): Platform independent 196 

● Programming language: Python 197 

● Other requirements: Python 3.8 198 
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● License: MIT License 199 

● RRID: SCR_024438 200 

DATA AVAILABILITY 201 

The data that support the findings of this study have been deposited into Spatial Transcript Omics 202 

DataBase (STOmics DB) of China National GeneBank DataBase (CNGBdb) with accession number 203 

STT0000048: https://db.cngb.org/stomics/project/STT0000048. 204 

LIST OF ABBREVIATIONS 205 

DAPI: 4,6-diamidino-2-phenylindole; H&E: hematoxylin-eosin; ssDNA: single strand DNA 206 

fluorescence; mIF: multiplex immunofluorescence; CFW: calcofluor white; FFT: Fast Fourier 207 

Transform. 208 
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Figure legends 257 

Figure 1. Overview of STCellbin. The cell nuclei and cell membrane/wall staining image tiles are stitched into 258 

individual large images respectively. The spatial gene expression map and stitched cell membrane/wall staining 259 

image are registered with the stitched cell nuclei staining image as a bridge. The cell mask is directly obtained from 260 
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the registered cell membrane/wall staining image by cell segmentation. The single-cell spatial gene expression 261 

profile is obtained by overlaying the generated cell mask and the gene expression map. 262 

Figure 2. Registration of the cell membrane/wall staining image and spatial gene expression map using the cell 263 

nuclei staining image as a bridge. A. Size of the cell membrane/wall staining image is adjusted to be consistent with 264 

the cell nuclei staining image. B. Cell nuclei and cell membrane/wall staining images are subsampled. C. Calculating 265 

the offsets of the subsampled images. D. Restoring the offsets to the scale of original images for registration. E. 266 

Registering the spatial gene expression map and cell nuclei staining image by performing scaling, rotating, flipping 267 

and translating, and registering the spatial gene expression map and cell membrane/wall staining image by 268 

performing the same operations. 269 

Figure 3. Results of STCellbin on mouse liver and Arabidopsis seed datasets. A. Results of cell segmentation, where 270 

in the merged images, cell masks are set in yellow, staining images are set in cyan, and ground truths are set in red. 271 

B. Evaluation of segmentation performance. C. Generation of single-cell spatial gene expression profile, and 272 

statistics of cell areas, gene number per cell and gene expression per cell. D. Clustering results (left) and Umaps 273 

(right) from generated single-cell spatial gene expression profiles of a slice of mouse liver and two Arabidopsis 274 

seeds. 275 

 276 
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