

1 **Generating single-cell gene expression profiles for high-resolution
2 spatial transcriptomics based on cell boundary images**

3

4 Bohan Zhang^{1,2,†}, Mei Li^{1,3,†}, Qiang Kang^{1,†}, Zhonghan Deng¹, Hua Qin², Kui Su¹, Xiuwen Feng¹,
5 Lichuan Chen¹, Huanlin Liu¹, Shuang sang Fang², Yong Zhang¹, Yuxiang Li¹, Susanne Brix^{3,*}, Xun
6 Xu^{1,*}

7

8 1 BGI Research, Shenzhen 518083, China

9 2 BGI Research, Beijing 102601, China

10 3 Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs.
11 Lyngby, Denmark

12 † Contributed equally.

13 * Corresponding author. E-mail: sbrix@dtu.dk, xuxun@genomics.cn.

14 **ABSTRACT**

15 Stereo-seq is a cutting-edge technique for spatially resolved transcriptomics that combines
16 subcellular resolution with centimeter-level field-of-view, serving as a technical foundation for
17 analyzing large tissues at the single-cell level. Our previous work presents the first one-stop software
18 that utilizes cell nuclei staining images and statistical methods to generate high-confidence single-
19 cell spatial gene expression profiles for Stereo-seq data. With recent advancements in Stereo-seq
20 technology, it is possible to acquire cell boundary information, such as cell membrane/wall staining
21 images. To take advantage of this progress, we updated our software to a new version, named
22 STCellbin, which utilizes the cell nuclei staining images as a bridge to align cell membrane/wall
23 staining images with spatial gene expression maps. By employing an advanced cell segmentation
24 technique, accurate cell boundaries can be obtained, leading to more reliable single-cell spatial gene
25 expression profiles. Experimental results verify the application of STCellbin on mouse liver (cell
26 membranes) and *Arabidopsis* seed (cell walls) datasets. The improved capability of capturing single
27 cell gene expression profiles by this update results in a deeper understanding of the contribution of
28 single cell phenotypes to tissue biology.

29

30 **Availability & Implementation:** The source code of STCellbin is available at
31 <https://github.com/STOmics/STCellbin>.

32

33 STATEMENT OF NEED

34 Spatially resolved single cell transcriptomics enables the generation of comprehensive molecular
35 maps that provide insights into the spatial distribution of molecules within the single cells that make
36 up tissues. This groundbreaking technology offers insights into the location and function of cells in
37 various tissues, enhancing our knowledge of organ development [1], tumor heterogeneity [2], cancer
38 evolution [3], and other biological mechanisms. Resolution and field-of-view are two critical
39 parameters in spatial transcriptomics. High resolution enables detailed molecular information at the
40 single-cell level, and large field-of-view facilitates the creation of complete 3D maps that represent
41 biological functions at the organ level. Stereo-seq simultaneously achieves subcellular resolution
42 and a centimeter-level field-of-view, providing a technical foundation for obtaining comprehensive
43 spatial gene expression profiles of whole tissues at single-cell level [4]. Our previous work offers
44 the one-stop software StereoCell for acquiring high signal-to-noise ratio single-cell spatial gene
45 expression profiles from Stereo-seq data [5]. The image data generated by Stereo-seq used for
46 StereoCell are cell nuclei staining images. However, there is a big difference between cell nuclei
47 and cell boundary staining images, based on cell membrane/wall staining, in terms of the ability to
48 capture robust and precise cell specific gene expression profiles. Despite the widespread use of
49 spatial techniques, such as MERFISH [6], CosMx [7], and Xenium [8], several of these techniques
50 still struggle to achieve accurate cell boundary information, as they are based on cell nuclei staining
51 images that can be generated using stains such as 4,6-diamidino-2-phenylindole (DAPI).
52 Hematoxylin-eosin (H&E) and single strand DNA fluorescence (ssDNA) staining images are also
53 commonly used and readily obtainable data. We here implement a procedure based on simultaneous
54 cell membrane/wall and cell nuclei staining using multiplex immunofluorescence (mIF) and

55 calcofluor white (CFW) staining [9,10], to automatically acquire more accurate cell boundary
56 information and thereby obtain more reliable single-cell spatial gene expression profiles.

57 In STCellbin, we have retained the image stitching, tissue segmentation and molecule labeling
58 steps from StereoCell and improved the image registration and cell segmentation steps. As the cell
59 membrane/wall staining images miss the “track line” information, which is the key in the image
60 registration step [5], we utilize the cell nuclei staining images as a bridge to align the cell
61 membrane/wall staining images with the spatial gene expression maps, upon which we obtain the
62 registered cell boundary information in the cell segmentation step. Based on the cell boundaries
63 information, we directly assign the molecules to their corresponding cells, obtaining single-cell
64 spatial gene expression profiles. We applied STCellbin on mouse liver (cell membrane) and
65 *Arabidopsis* seed (cell wall) datasets, and confirm the accuracy of cell segmentation. This update
66 offers a comprehensive workflow to obtain reliable single-cell spatial gene expression profiles based
67 on cell membrane/wall information, providing support and guidance for related scientific
68 investigations, particularly those based on Stereo-seq data.

69 **IMPLEMENTATION**

70 **Overview of STCellbin**

71 The process of STCellbin includes image stitching, image registration, cell segmentation and
72 molecule labeling (Fig. 1). The Stereo-seq spatial gene expression data, cell nuclei and cell
73 membrane/wall staining image tiles are input into STCellbin. The stitched cell nuclei and cell
74 membrane/wall staining images are obtained through the MFWS algorithm [5]. The stitched cell
75 nuclei and cell membrane/wall staining images are registered using the Fast Fourier Transform (FFT)

76 algorithm [11]. The spatial gene expression data is transformed into a map, this map and a stitched
77 cell nuclei staining image are registered based on “track lines”. Thus, the registration of the gene
78 expression map and cell membrane/wall staining image is implemented. Cell segmentation is
79 performed on the registered cell membrane/wall staining image by Cellpose 2.0 [12] to obtain the
80 cell mask. The molecules are assigned to their corresponding cells according to the cell mask to
81 obtain the single-cell spatial gene expression profile. The tissue segmentation step based on Bi-
82 Directional ConvLSTM U-Net [13] is set as optional, which can generate a tissue mask to assist in
83 filtering out impurities outside the tissue.

84 **Image stitching**

85 The image stitching steps in STCellbin is consistent with the image stitching steps in StereoCell.
86 The MFWS algorithm [5] is adopted, which calculates the offsets of two adjacent tiles with
87 overlapping areas using FFT [11] to stitch these two tiles, and extends this process to all tiles. The
88 relative error, absolute error and running time of MFWS have been verified in our previous work
89 [5].

90 **Image registration**

91 The image registration of STCellbin includes two steps. The first is the registration of the stitched
92 cell nuclei and stitched cell membrane/wall staining images. The two stained images are taken by
93 the same microscope at the same magnification, which ensures that they have similar sizes and no
94 large difference in rotation. Therefore, the key of the registration is to calculate the image offsets.
95 The cell nuclei staining image is fixed, and the size of the cell membrane/wall staining image is
96 adjusted to be consistent with the cell nuclei staining image by cutting and zero-padding (Fig. 2A).
97 FFT [11] is then used to calculate the image offsets (similar to MFWS [5]). To save computing

98 resources, the two stained images are mean-based subsampled [14] (Fig. 2B), the offsets of the
99 subsampled images are calculated (Fig. 2C), and these offsets are restored to the scale of the original
100 images so that the cell nuclei and cell membrane/wall staining images can be registered (Fig. 2D).

101 The second registration is the same as in StereoCell [5], that is, the spatial gene expression data is
102 transformed into a map, and then this map is registered with the stitched cell nuclei staining image
103 based on “track lines”. This registration fixes the spatial gene expression map and performs scaling,
104 rotating, flipping and translating on the stitched cell nuclei staining image. Since the cell nuclei and
105 cell membrane/wall staining images have been registered, the same operations (scaling, rotating,
106 flipping and translating) are repeated on the cell membrane/wall staining image (Fig. 2E), that is,
107 the cell membrane/wall staining image and spatial gene expression map can be registered using the
108 cell nuclei staining image as a bridge. STCellbin also has compatibility with registration
109 requirements of specific images. When utilizing staining images produced with a multi-channel
110 microscope, it is possible to omit the registration between these images, and the image stitching
111 parameters can be the same for all channel images. Moreover, the registration can handle the case
112 of multiple mIF staining images taken from identical tissues using the same microscope when there
113 is only a difference in offsets among these images.

114 **Cell segmentation**

115 The cell segmentation step of STCellbin is performed using Cellpose 2.0 [12] with some
116 adjustments. The model architecture of Cellpose 2.0 and its weight files “cyto2” are downloaded.
117 Due to the large size of staining images derived from Stereo-seq data, Cellpose 2.0 cannot be
118 executed smoothly using normal hardware configurations. To circumvent this issue, the staining
119 images are therefore cropped into multiple tiles with overlapping areas to perform cell segmentation

120 and record the coordinates of tiles. The overlapping areas rescue cells at the border of the tiles from
121 being cropped. To obtain the best results, segmentations with different values of the cell diameter
122 parameter are performed independently, and the result with the largest sum of cell areas is retained.
123 All the segmented tiles are assembled into the final segmented result according to the recorded
124 coordinates. Moreover, when selecting the tissue segmentation option, an additional step is executed
125 to apply a filter on the cell mask using the tissue mask, resulting in a filtered segmented outcome.

126 **Molecule labeling**

127 The molecule labeling of STCellbin is the same as the one used in StereoCell in principle. StereoCell
128 assigns molecules in the cell nuclei to the cell by using the cell nuclei mask, and then assigns
129 molecules outside the cell nuclei to the cells with the highest probability density using Gaussian
130 Mixture Model [15]. STCellbin assigns molecules to the cells directly based on the cell mask, while
131 the process of assigning molecules outside the cell is included as an option. The latter decision was
132 made as the cell membranes/walls are usually tightly packed, with only a few molecules outside the
133 cells, and the assignment of these molecules takes a lot of time. Thus, we generally do not
134 recommend this option, and the users can use it according to actual requirements.

135 **RESULTS**

136 **Datasets**

137 We adopt two datasets acquired via Stereo-seq technology [4]. One is a mouse liver dataset, a tissue
138 that offers cell boundary information via cell membranes, as in all mammalian tissues. The other
139 dataset is derived from seeds of the plant *Arabidopsis*, a tissue that provides cell boundary
140 information based on rigid cell walls. More details of the two datasets are shown in Table 1.

141

142 **Table 1.** Details of two datasets used for evaluation of cell boundary information

Detail	Mouse liver dataset	<i>Arabidopsis</i> seed dataset
Data source	A slice of liver	Slices of multiple seeds
Cell nuclei dye	DAPI	ssDNA
Cell membrane/wall dye	mIF	CFW
Number of molecules	16,177,288	62,884,637

143 **Evaluation of cell segmentation performance**

144 To evaluate the cell segmentation performance of STCellbin, we designed a ground truth based on
145 a manual markup of the cells according to their cell membranes/walls based on the staining images.
146 The number of cells from ground truth is named ng . The number of cells segmented by STCellbin
147 is named ns . For each STCellbin segmented cell (s_{cell_i}), there must be a corresponding cell from
148 ground truth (m_{cell_i}), where i is the index of the cell ($i = 1, 2, \dots, ns$). Then a rule is set:

$$\begin{cases} s_{cell_i} \text{ is segmented correctly} & \text{if } IoU_i > 0.5 \\ s_{cell_i} \text{ is segmented incorrectly} & \text{otherwise} \end{cases} \quad (1)$$

149 where IoU is the standard intersection over union metric [16] set as:

$$IoU_i = ao_i / au_i \quad (2)$$

150 where ao_i is the area of overlap between s_{cell_i} and m_{cell_i} , and au_i is the area of union of these two
151 cells. Then the precision (Pre) and recall (Rec) are adopted:

$$Pre = nc / ns \quad (3)$$

$$Rec = nc / ng \quad (4)$$

152 where nc is the number of cells correctly segmented by STCellbin.

153 **Generation of single-cell spatial gene expression profiles utilizing cell
154 membrane/wall staining images**

155 STCellbin was next applied to the mouse liver and *Arabidopsis* seed datasets. For each dataset, the

156 input includes a file of spatial gene expression data, a folder of cell nuclei staining image tiles, and
157 a folder of cell membrane/wall staining image tiles. Through the steps of image stitching, image
158 registration, cell segmentation (the option of tissue segmentation is selected), and molecule labeling,
159 the single-cell spatial gene expression profiles are generated as the output.

160 Given the substantial amount of work required for manual cell marking and limited clarity in
161 certain regions of the staining images, we selected the areas with the best image data from the two
162 datasets for presentation of the segmentation results. When using staining images with different
163 dyes, STCellbin effectively identifies cell membranes/walls for cell segmentation, yielding cell
164 masks that exhibit acceptable agreement with the manually marked results (Fig. 3A). This capability
165 offers significant time and cost savings in practical applications. STCellbin demonstrates reliable
166 identification of cells in both mammalian and plant tissues with a detection rate (ns/ng) of over
167 93.6%, and correctly segments most of them (Fig. 3B, left). Using the *Arabidopsis* seed dataset,
168 STCellbin achieves a precision of 60.5% and a recall of 56.7%, while in the mouse liver dataset, it
169 achieves a precision of 74.1% and a recall of 70.5% (Fig. 3B, right).

170 By employing STCellbin, the Stereo-seq spatial gene expression data includes an attribute of
171 “CellID”, that is, the molecules are assigned to their originating cell to obtain single-cell gene
172 expression profiles with spatial information (Fig. 3C, left). Cell area, number of unique genes per
173 cell and number of gene counts per cell are statistically analyzed based on the data generated from
174 mouse liver and the two *Arabidopsis* seeds with the most accurate segmentation profiles (Fig. 3C,
175 right). By utilizing the obtained single-cell spatial gene expression profiles, clustering analysis was
176 performed using the Leiden algorithm [17] (Fig. 3D). The resulting clusters of cells are spatially
177 mapped within the tissue (Fig. 3D, left hand side for each tissue), allowing for the observation of

178 their specific positions. From the Umaps, it is apparent that the different cell types are effectively
179 distinguished (Fig. 3D, right hand side for each tissue). The spatial location of the different cell
180 types will positively influence a series of downstream analyzes such as cellular annotation in less
181 well-studied tissues.

182 **Discussion**

183 Accurate identification of cell boundaries plays a crucial role in generating single-cell resolution in
184 spatial omics applications. Based on previous work in StereoCell using cell nuclei staining images
185 to generate single-cell spatial gene expression profiles, this STCellbin update extends the capability
186 to automatically process Stereo-seq cell membrane/wall staining images for identification of cell
187 boundaries that facilitates downstream analyses. We also showcase a few examples of the
188 performance of cell membrane/wall segmentation in STCellbin. Currently, the tools for cell nuclei
189 and cell membrane/wall segmentation can be independently executed, allowing users to choose the
190 more suitable solution for their specific applications. In future work, these two techniques can be
191 combined by training a deep learning model that is compatible with any staining image type, thereby
192 achieving more accurate results.

193 **AVAILABILITY OF SOURCE CODE AND REQUIREMENTS**

194 • Project name: STCellbin
195 • Project home page: <https://github.com/STOmics/STCellbin>
196 • Operating system(s): Platform independent
197 • Programming language: Python
198 • Other requirements: Python 3.8

199 • License: MIT License

200 • RRID: SCR_024438

201 DATA AVAILABILITY

202 The data that support the findings of this study have been deposited into Spatial Transcript Omics

203 DataBase (STomics DB) of China National GeneBank DataBase (CNGBdb) with accession number

204 STT0000048: <https://db.cngb.org/stomics/project/STT0000048>.

205 LIST OF ABBREVIATIONS

206 DAPI: 4,6-diamidino-2-phenylindole; H&E: hematoxylin-eosin; ssDNA: single strand DNA

207 fluorescence; mIF: multiplex immunofluorescence; CFW: calcofluor white; FFT: Fast Fourier

208 Transform.

209 DECLARATIONS

210 Ethics Approval and Consent to Participate

211 Not applicable.

212 Competing Interests

213 The authors declare that they have no competing interests.

214 Funding

215 This work was supported by the National Key R&D Program of China (2022YFC3400400).

216 Authors' Contributions

217 Conceptualization: BZ and ML; Project administration and supervision: SB and XX; Software

218 implementation: ZD, HQ, KS and HL; Data collection and processing: QK, XF and LC; Validation:

219 QK and ZD. Project coordination: BZ and ML; Manuscript writing and figure generation: BZ, ML
220 and QK; Manuscript review: ML, SF, YZ, YL and SB.

221 **Acknowledgements**

222 We thank China National GeneBank for providing technical support.

223 **REFERENCES**

224 1. Fang S, Chen B, Zhang Y, Sun H, Liu L, Liu S, et al. Computational Approaches and Challenges in
225 Spatial Transcriptomics. *Genom Proteom Bioinf.* 2023;21:24–47.

226 2. Lu T, Ang CE, Zhuang X. Spatially resolved epigenomic profiling of single cells in complex tissues.
227 *Cell.* 2022;185:4448–4464.

228 3. Erickson A, He M, Berglund E, Marklund M, Mirzazadeh R, Schultz N, et al. Spatially resolved
229 clonal copy number alterations in benign and malignant tissue. *Nature.* 2022;608:360–367.

230 4. Chen A, Liao S, Cheng M, Ma K, Wu L, Lai Y, et al. Spatiotemporal transcriptomic atlas of mouse
231 organogenesis using DNA nanoball-patterned arrays. *Cell.* 2022;185:1777-1792.

232 5. Li M, Liu H, Li M, Fang S, Kang Q, Zhang J, et al. StereoCell enables highly accurate single-cell
233 segmentation for spatial transcriptomics. *bioRxiv.* 2023.

234 6. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed
235 RNA profiling in single cells. *Science.* 2015;348:aaa6090.

236 7. He S, Bhatt R, Brown C, Brown EA, Buhr DL, Chantranuvatana K, et al. High-plex imaging of
237 RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. *Nat
238 Biotechnol.* 2022;40:1794-1806.

239 8. Janesick A, Shelansky R, Gottscho AD, Wagner F, Rouault M, Beliakoff G, et al. High resolution

240 mapping of the breast cancer tumor microenvironment using integrated single cell, spatial and in
241 situ analysis of FFPE tissue. *bioRxiv*. 2022.

242 9. Liao S, Heng Y, Liu W, Xiang J, Ma Y, Chen L, et al. Integrated Spatial Transcriptomic and
243 Proteomic Analysis of Fresh Frozen Tissue Based on Stereo-seq. *bioRxiv*. 2023.

244 10. STomics Documents. <https://en.stomics.tech/resources/documents/documents>.

245 11. Duhamel P, Vetterli M. Fast fourier transforms: A tutorial review and a state of the art. *Signal
246 Process*. 1990;19(4):259-299.

247 12. Pachitariu M, Stringer C. Cellpose 2.0: how to train your own model. *Nat Methods*. 2022;19:1634-
248 1641.

249 13. Azad R, Asadi-Aghbolaghi M, Fathy M, Escalera S. Bi-Directional ConvLSTM U-Net with densley
250 connected convolutions. *arXiv*. 2019.

251 14. Levina A, Priesemann V. Subsampling scaling. *Nat Commun*. 2017;8:15140.

252 15. Reynolds D. Gaussian Mixture Models. *Encycl Biom*. 2009;741:659-663.

253 16. Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular
254 Segmentation. *Nat Methods*. 2021;18:100-106.

255 17. Traag VA, Waltman L, Van Eck NJ. From Louvain to Leiden: guaranteeing well-connected
256 communities. *Sci Rep*. 2019;9:5233.

257 **Figure legends**

258 **Figure 1.** Overview of STCellbin. The cell nuclei and cell membrane/wall staining image tiles are stitched into
259 individual large images respectively. The spatial gene expression map and stitched cell membrane/wall staining
260 image are registered with the stitched cell nuclei staining image as a bridge. The cell mask is directly obtained from

261 the registered cell membrane/wall staining image by cell segmentation. The single-cell spatial gene expression
262 profile is obtained by overlaying the generated cell mask and the gene expression map.

263 **Figure 2.** Registration of the cell membrane/wall staining image and spatial gene expression map using the cell
264 nuclei staining image as a bridge. **A.** Size of the cell membrane/wall staining image is adjusted to be consistent with
265 the cell nuclei staining image. **B.** Cell nuclei and cell membrane/wall staining images are subsampled. **C.** Calculating
266 the offsets of the subsampled images. **D.** Restoring the offsets to the scale of original images for registration. **E.**
267 Registering the spatial gene expression map and cell nuclei staining image by performing scaling, rotating, flipping
268 and translating, and registering the spatial gene expression map and cell membrane/wall staining image by
269 performing the same operations.

270 **Figure 3.** Results of STCellbin on mouse liver and *Arabidopsis* seed datasets. **A.** Results of cell segmentation, where
271 in the merged images, cell masks are set in yellow, staining images are set in cyan, and ground truths are set in red.
272 **B.** Evaluation of segmentation performance. **C.** Generation of single-cell spatial gene expression profile, and
273 statistics of cell areas, gene number per cell and gene expression per cell. **D.** Clustering results (left) and Umaps
274 (right) from generated single-cell spatial gene expression profiles of a slice of mouse liver and two *Arabidopsis*
275 seeds.

276

Fig. 1

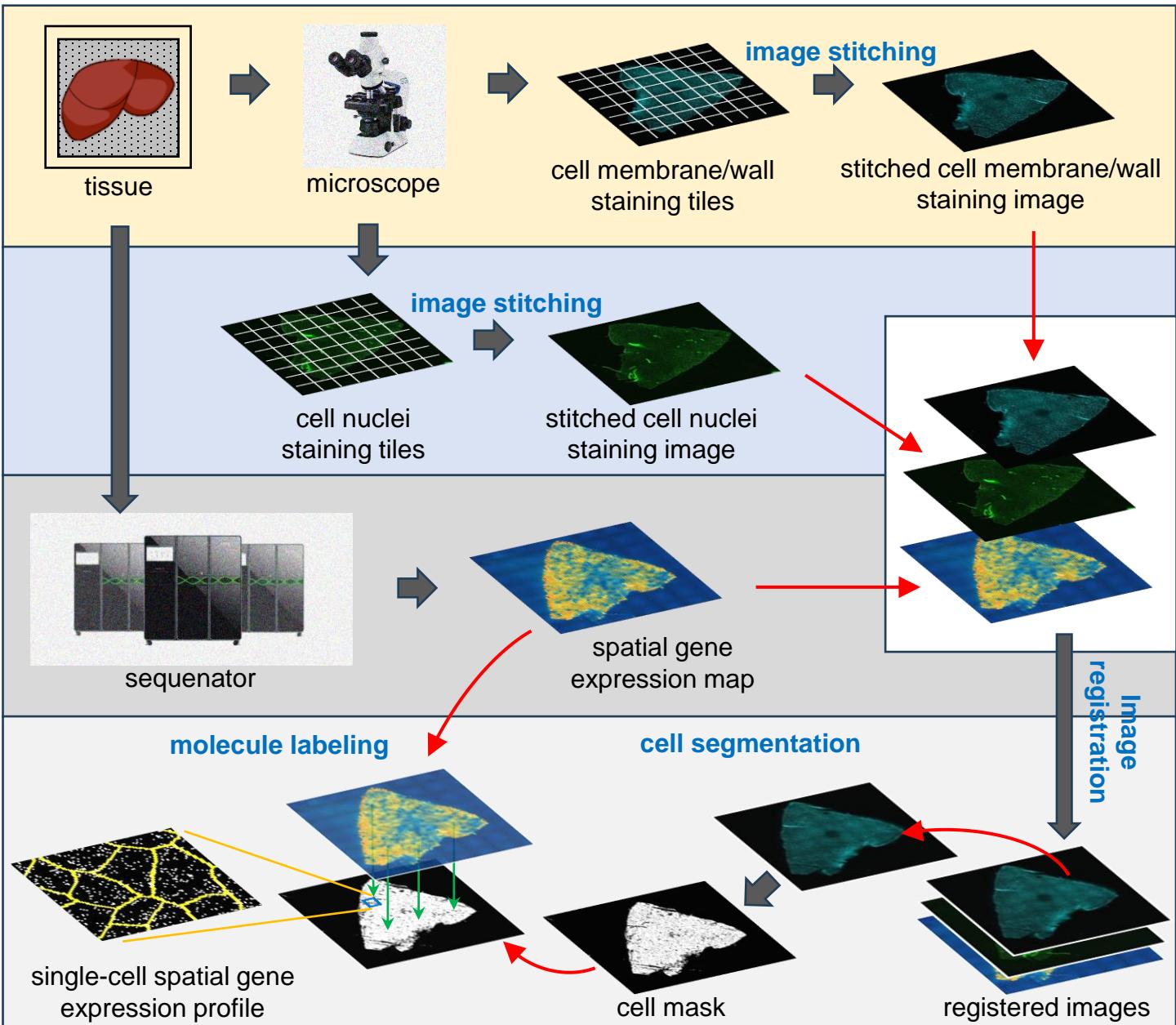


Fig. 2

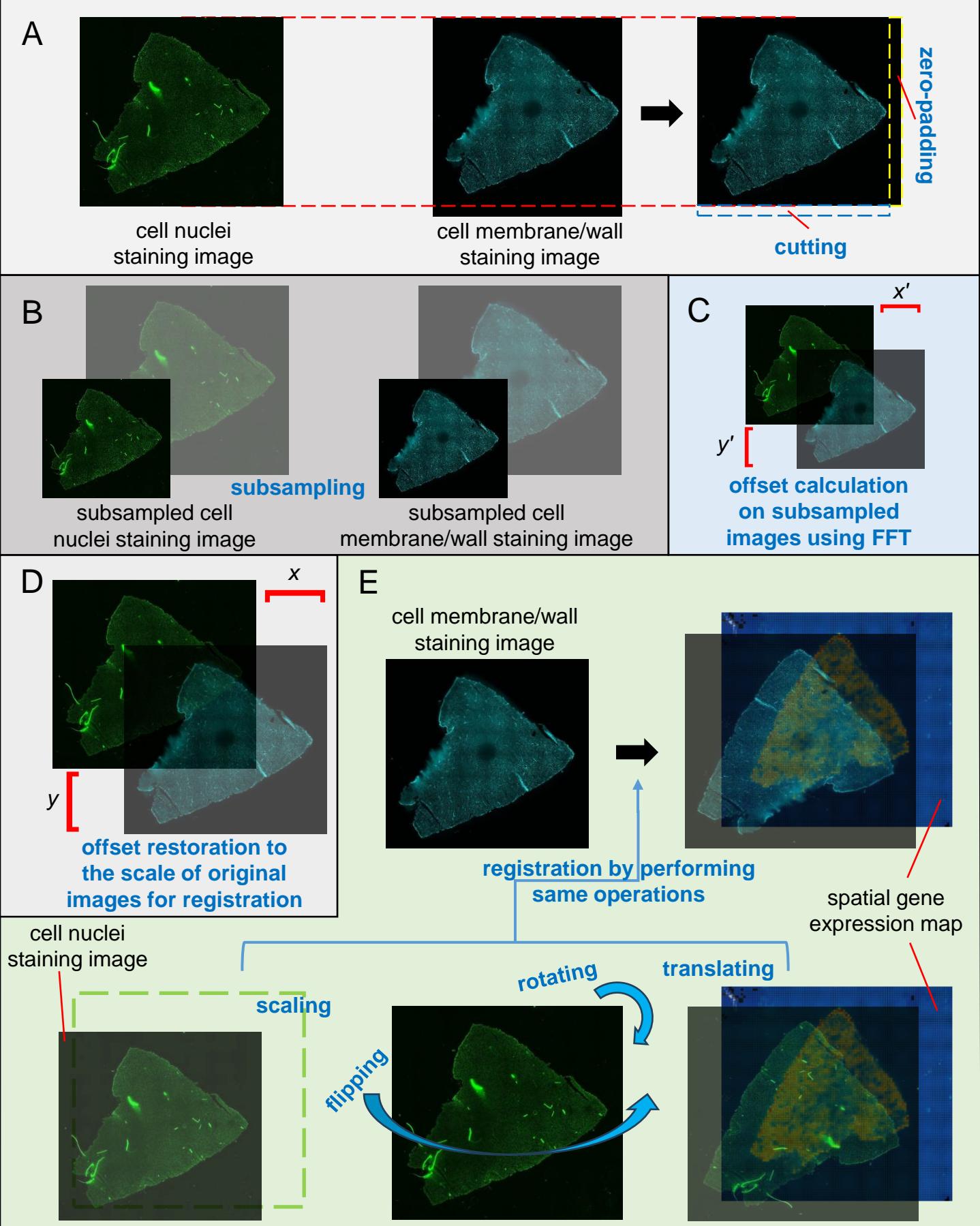


Fig. 3

