bioRxiv preprint doi: https://doi.org/10.1101/2023.12.25.573324; this version posted December 26, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

10

11

12

13

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Generating single-cell gene expression profiles for high-resolution

spatial transcriptomics based on cell boundary images

Bohan Zhang!->', Mei Li!*, Qiang Kang!f, Zhonghan Deng', Hua Qin?, Kui Su', Xiuwen Feng!,
Lichuan Chen!, Huanlin Liu!, Shuangsang Fang?, Yong Zhang', Yuxiang Li', Susanne Brix**, Xun

Xul”*

1 BGI Research, Shenzhen 518083, China

2 BGI Research, Beijing 102601, China

3 Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs.
Lyngby, Denmark

1 Contributed equally.

* Corresponding author. E-mail: sbrix@dtu.dk, xuxun@genomics.cn.

1/14


https://doi.org/10.1101/2023.12.25.573324
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.25.573324; this version posted December 26, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

14 ABSTRACT

15  Stereo-seq is a cutting-edge technique for spatially resolved transcriptomics that combines

16  subcellular resolution with centimeter-level field-of-view, serving as a technical foundation for

17  analyzing large tissues at the single-cell level. Our previous work presents the first one-stop software

18  that utilizes cell nuclei staining images and statistical methods to generate high-confidence single-

19  cell spatial gene expression profiles for Stereo-seq data. With recent advancements in Stereo-seq

20  technology, it is possible to acquire cell boundary information, such as cell membrane/wall staining

21  images. To take advantage of this progress, we updated our software to a new version, named

22  STCellbin, which utilizes the cell nuclei staining images as a bridge to align cell membrane/wall

23  staining images with spatial gene expression maps. By employing an advanced cell segmentation

24 technique, accurate cell boundaries can be obtained, leading to more reliable single-cell spatial gene

25  expression profiles. Experimental results verify the application of STCellbin on mouse liver (cell

26  membranes) and Arabidopsis seed (cell walls) datasets. The improved capability of capturing single

27  cell gene expression profiles by this update results in a deeper understanding of the contribution of

28  single cell phenotypes to tissue biology.

29

30  Availability & Implementation: The source code of STCellbin is available at

31  https:/github.com/STOmics/STCellbin.

32
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33 STATEMENT OF NEED

34  Spatially resolved single cell transcriptomics enables the generation of comprehensive molecular

35  maps that provide insights into the spatial distribution of molecules within the single cells that make

36 up tissues. This groundbreaking technology offers insights into the location and function of cells in

37  various tissues, enhancing our knowledge of organ development [1], tumor heterogeneity [2], cancer

38 evolution [3], and other biological mechanisms. Resolution and field-of-view are two critical

39  parameters in spatial transcriptomics. High resolution enables detailed molecular information at the

40  single-cell level, and large field-of-view facilitates the creation of complete 3D maps that represent

41  biological functions at the organ level. Stereo-seq simultaneously achieves subcellular resolution

42  and a centimeter-level field-of-view, providing a technical foundation for obtaining comprehensive

43  spatial gene expression profiles of whole tissues at single-cell level [4]. Our previous work offers

44 the one-stop software StereoCell for acquiring high signal-to-noise ratio single-cell spatial gene

45  expression profiles from Stereo-seq data [5]. The image data generated by Stereo-seq used for

46 StereoCell are cell nuclei staining images. However, there is a big difference between cell nuclei

47  and cell boundary staining images, based on cell membrane/wall staining, in terms of the ability to

48  capture robust and precise cell specific gene expression profiles. Despite the widespread use of

49 spatial techniques, such as MERFISH [6], CosMx [7], and Xenium [8], several of these techniques

50  still struggle to achieve accurate cell boundary information, as they are based on cell nuclei staining

51  images that can be generated using stains such as 4,6-diamidino-2-phenylindole (DAPI).

52  Hematoxylin-eosin (H&E) and single strand DNA fluorescence (ssDNA) staining images are also

53  commonly used and readily obtainable data. We here implement a procedure based on simultaneous

54 cell membrane/wall and cell nuclei staining using multiplex immunofluorescence (mlF) and
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55 calcofluor white (CFW) staining [9,10], to automatically acquire more accurate cell boundary

56  information and thereby obtain more reliable single-cell spatial gene expression profiles.

57 In STCellbin, we have retained the image stitching, tissue segmentation and molecule labeling

58  steps from StereoCell and improved the image registration and cell segmentation steps. As the cell

59  membrane/wall staining images miss the “track line” information, which is the key in the image

60  registration step [S5], we utilize the cell nuclei staining images as a bridge to align the cell

61  membrane/wall staining images with the spatial gene expression maps, upon which we obtain the

62  registered cell boundary information in the cell segmentation step. Based on the cell boundaries

63  information, we directly assign the molecules to their corresponding cells, obtaining single-cell

64  spatial gene expression profiles. We applied STCellbin on mouse liver (cell membrane) and

65  Arabidopsis seed (cell wall) datasets, and confirm the accuracy of cell segmentation. This update

66  offers a comprehensive workflow to obtain reliable single-cell spatial gene expression profiles based

67  on cell membrane/wall information, providing support and guidance for related scientific

68  investigations, particularly those based on Stereo-seq data.

69 IMPLEMENTATION

70  Overview of STCellbin

71  The process of STCellbin includes image stitching, image registration, cell segmentation and

72  molecule labeling (Fig. 1). The Stereo-seq spatial gene expression data, cell nuclei and cell

73  membrane/wall staining image tiles are input into STCellbin. The stitched cell nuclei and cell

74  membrane/wall staining images are obtained through the MFWS algorithm [5]. The stitched cell

75  nuclei and cell membrane/wall staining images are registered using the Fast Fourier Transform (FFT)
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76  algorithm [11]. The spatial gene expression data is transformed into a map, this map and a stitched
77  cell nuclei staining image are registered based on “track lines”. Thus, the registration of the gene
78  expression map and cell membrane/wall staining image is implemented. Cell segmentation is
79  performed on the registered cell membrane/wall staining image by Cellpose 2.0 [12] to obtain the
80  cell mask. The molecules are assigned to their corresponding cells according to the cell mask to
81  obtain the single-cell spatial gene expression profile. The tissue segmentation step based on Bi-
82  Directional ConvLSTM U-Net [13] is set as optional, which can generate a tissue mask to assist in
83 filtering out impurities outside the tissue.

84  Image stitching

85  The image stitching steps in STCellbin is consistent with the image stitching steps in StereoCell.
86  The MFWS algorithm [5] is adopted, which calculates the offsets of two adjacent tiles with
87  overlapping areas using FFT [11] to stitch these two tiles, and extends this process to all tiles. The
88  relative error, absolute error and running time of MFWS have been verified in our previous work
89  [5].

90 Image registration

91  The image registration of STCellbin includes two steps. The first is the registration of the stitched
92  cell nuclei and stitched cell membrane/wall staining images. The two stained images are taken by
93  the same microscope at the same magnification, which ensures that they have similar sizes and no
94  large difference in rotation. Therefore, the key of the registration is to calculate the image offsets.
95  The cell nuclei staining image is fixed, and the size of the cell membrane/wall staining image is
96  adjusted to be consistent with the cell nuclei staining image by cutting and zero-padding (Fig. 2A).
97  FFT [11] is then used to calculate the image offsets (similar to MFWS [5]). To save computing
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98  resources, the two stained images are mean-based subsampled [14] (Fig. 2B), the offsets of the

99  subsampled images are calculated (Fig. 2C), and these offsets are restored to the scale of the original
100  images so that the cell nuclei and cell membrane/wall staining images can be registered (Fig. 2D).
101  The second registration is the same as in StereoCell [5], that is, the spatial gene expression data is
102  transformed into a map, and then this map is registered with the stitched cell nuclei staining image
103  based on “track lines”. This registration fixes the spatial gene expression map and performs scaling,
104  rotating, flipping and translating on the stitched cell nuclei staining image. Since the cell nuclei and
105  cell membrane/wall staining images have been registered, the same operations (scaling, rotating,
106  flipping and translating) are repeated on the cell membrane/wall staining image (Fig. 2E), that is,
107  the cell membrane/wall staining image and spatial gene expression map can be registered using the
108  cell nuclei staining image as a bridge. STCellbin also has compatibility with registration
109  requirements of specific images. When utilizing staining images produced with a multi-channel
110  microscope, it is possible to omit the registration between these images, and the image stitching
111  parameters can be the same for all channel images. Moreover, the registration can handle the case
112 of multiple mIF staining images taken from identical tissues using the same microscope when there
113  is only a difference in offsets among these images.
114  Cell segmentation
115  The cell segmentation step of STCellbin is performed using Cellpose 2.0 [12] with some
116  adjustments. The model architecture of Cellpose 2.0 and its weight files “cyto2” are downloaded.
117  Due to the large size of staining images derived from Stereo-seq data, Cellpose 2.0 cannot be
118  executed smoothly using normal hardware configurations. To circumvent this issue, the staining
119  images are therefore cropped into multiple tiles with overlapping areas to perform cell segmentation
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120  and record the coordinates of tiles. The overlapping areas rescue cells at the border of the tiles from
121 being cropped. To obtain the best results, segmentations with different values of the cell diameter
122 parameter are performed independently, and the result with the largest sum of cell areas is retained.
123 All the segmented tiles are assembled into the final segmented result according to the recorded
124 coordinates. Moreover, when selecting the tissue segmentation option, an additional step is executed
125  to apply a filter on the cell mask using the tissue mask, resulting in a filtered segmented outcome.
126 Molecule labeling

127  The molecule labeling of STCellbin is the same as the one used in StereoCell in principle. StereoCell
128  assigns molecules in the cell nuclei to the cell by using the cell nuclei mask, and then assigns
129  molecules outside the cell nuclei to the cells with the highest probability density using Gaussian
130  Mixture Model [15]. STCellbin assigns molecules to the cells directly based on the cell mask, while
131  the process of assigning molecules outside the cell is included as an option. The latter decision was
132  made as the cell membranes/walls are usually tightly packed, with only a few molecules outside the
133 cells, and the assignment of these molecules takes a lot of time. Thus, we generally do not
134  recommend this option, and the users can use it according to actual requirements.

135 RESULTS

136 Datasets

137  We adopt two datasets acquired via Stereo-seq technology [4]. One is a mouse liver dataset, a tissue
138  that offers cell boundary information via cell membranes, as in all mammalian tissues. The other
139  dataset is derived from seeds of the plant Arabidopsis, a tissue that provides cell boundary
140  information based on rigid cell walls. More details of the two datasets are shown in Table 1.

141
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142 Table 1. Details of two datasets used for evaluation of cell boundary information
Detail Mouse liver dataset Arabidopsis seed dataset
Data source A slice of liver Slices of multiple seeds
Cell nuclei dye DAPI ssDNA
Cell membrane/wall dye mlF CFW
Number of molecules 16,177,288 62,884,637

143  Evaluation of cell segmentation performance

144 To evaluate the cell segmentation performance of STCellbin, we designed a ground truth based on
145  a manual markup of the cells according to their cell membranes/walls based on the staining images.
146 The number of cells from ground truth is named ng. The number of cells segmented by STCellbin
147  is named ns. For each STCellbin segmented cell (s_cell;), there must be a corresponding cell from

148  ground truth (m_cell;), where i is the index of the cell (i =1, 2, ..., ns). Then a rule is set:

s_cell, is segmented correctly if loU; >0.5 (1)
s_cell, is segmented incorrectly  otherwise

149  where loU is the standard intersection over union metric [16] set as:
loU,; =ao, /ay, )

150  where ao; is the area of overlap between s_cell; and m_cell;, and au; is the area of union of these two
151  cells. Then the precision (Pre) and recall (Rec) are adopted:

Pre=nc/ns 3)

Rec=nc/ng “4)
152  where nc is the number of cells correctly segmented by STCellbin.
153  Generation of single-cell spatial gene expression profiles utilizing cell
154  membrane/wall staining images

155  STCellbin was next applied to the mouse liver and Arabidopsis seed datasets. For each dataset, the
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156  input includes a file of spatial gene expression data, a folder of cell nuclei staining image tiles, and

157  a folder of cell membrane/wall staining image tiles. Through the steps of image stitching, image

158  registration, cell segmentation (the option of tissue segmentation is selected), and molecule labeling,

159  the single-cell spatial gene expression profiles are generated as the output.

160 Given the substantial amount of work required for manual cell marking and limited clarity in

161  certain regions of the staining images, we selected the areas with the best image data from the two

162  datasets for presentation of the segmentation results. When using staining images with different

163 dyes, STCellbin effectively identifies cell membranes/walls for cell segmentation, yielding cell

164  masks that exhibit acceptable agreement with the manually marked results (Fig. 3A). This capability

165  offers significant time and cost savings in practical applications. STCellbin demonstrates reliable

166  identification of cells in both mammalian and plant tissues with a detection rate (ns/ng) of over

167  93.6%, and correctly segments most of them (Fig. 3B, left). Using the Arabidopsis seed dataset,

168 STCellbin achieves a precision of 60.5% and a recall of 56.7%, while in the mouse liver dataset, it

169  achieves a precision of 74.1% and a recall of 70.5% (Fig. 3B, right).

170 By employing STCellbin, the Stereo-seq spatial gene expression data includes an attribute of

171 “CellID”, that is, the molecules are assigned to their originating cell to obtain single-cell gene

172  expression profiles with spatial information (Fig. 3C, left). Cell area, number of unique genes per

173 cell and number of gene counts per cell are statistically analyzed based on the data generated from

174  mouse liver and the two Arabidopsis seeds with the most accurate segmentation profiles (Fig. 3C,

175  right). By utilizing the obtained single-cell spatial gene expression profiles, clustering analysis was

176  performed using the Leiden algorithm [17] (Fig. 3D). The resulting clusters of cells are spatially

177  mapped within the tissue (Fig. 3D, left hand side for each tissue), allowing for the observation of
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178  their specific positions. From the Umaps, it is apparent that the different cell types are effectively
179 distinguished (Fig. 3D, right hand side for each tissue). The spatial location of the different cell
180  types will positively influence a series of downstream analyzes such as cellular annotation in less
181  well-studied tissues.

182  Discussion

183  Accurate identification of cell boundaries plays a crucial role in generating single-cell resolution in
184  spatial omics applications. Based on previous work in StereoCell using cell nuclei staining images
185  to generate single-cell spatial gene expression profiles, this STCellbin update extends the capability
186  to automatically process Stereo-seq cell membrane/wall staining images for identification of cell
187  boundaries that facilitates downstream analyses. We also showcase a few examples of the
188  performance of cell membrane/wall segmentation in STCellbin. Currently, the tools for cell nuclei
189  and cell membrane/wall segmentation can be independently executed, allowing users to choose the
190  more suitable solution for their specific applications. In future work, these two techniques can be
191  combined by training a deep learning model that is compatible with any staining image type, thereby

192  achieving more accurate results.

193 AVAILABILITY OF SOURCE CODE AND REQUIREMENTS

194 ® Project name: STCellbin

195 ® Project home page: https://github.com/STOmics/STCellbin
196 e Operating system(s): Platform independent

197 ® Programming language: Python

198 e Other requirements: Python 3.8
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199 e License: MIT License

200 e RRID: SCR 024438

201  DATA AVAILABILITY

202  The data that support the findings of this study have been deposited into Spatial Transcript Omics

203  DataBase (STOmics DB) of China National GeneBank DataBase (CNGBdb) with accession number

204  STTO0000048: https://db.cngb.org/stomics/project/STT0000048.

205 LIST OF ABBREVIATIONS

206  DAPIL 4,6-diamidino-2-phenylindole; H&E: hematoxylin-eosin; ssDNA: single strand DNA

207 fluorescence; mIF: multiplex immunofluorescence; CFW: calcofluor white; FFT: Fast Fourier

208 Transform.
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Figure legends

Figure 1. Overview of STCellbin. The cell nuclei and cell membrane/wall staining image tiles are stitched into

individual large images respectively. The spatial gene expression map and stitched cell membrane/wall staining

image are registered with the stitched cell nuclei staining image as a bridge. The cell mask is directly obtained from
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261 the registered cell membrane/wall staining image by cell segmentation. The single-cell spatial gene expression
262 profile is obtained by overlaying the generated cell mask and the gene expression map.

263 Figure 2. Registration of the cell membrane/wall staining image and spatial gene expression map using the cell
264 nuclei staining image as a bridge. A. Size of the cell membrane/wall staining image is adjusted to be consistent with
265 the cell nuclei staining image. B. Cell nuclei and cell membrane/wall staining images are subsampled. C. Calculating
266 the offsets of the subsampled images. D. Restoring the offsets to the scale of original images for registration. E.
267 Registering the spatial gene expression map and cell nuclei staining image by performing scaling, rotating, flipping
268 and translating, and registering the spatial gene expression map and cell membrane/wall staining image by
269  performing the same operations.

270 Figure 3. Results of STCellbin on mouse liver and Arabidopsis seed datasets. A. Results of cell segmentation, where
271 in the merged images, cell masks are set in yellow, staining images are set in cyan, and ground truths are set in red.
272 B. Evaluation of segmentation performance. C. Generation of single-cell spatial gene expression profile, and
273 statistics of cell areas, gene number per cell and gene expression per cell. D. Clustering results (left) and Umaps
274 (right) from generated single-cell spatial gene expression profiles of a slice of mouse liver and two Arabidopsis
275 seeds.

276
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