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Abstract

Protein structure is more conserved than protein sequence, and therefore may be useful for
phylogenetic inference beyond the "twilight zone" where sequence similarity is highly decayed.
Until recently, structural phylogenetics was constrained by the lack of solved structures for most
proteins, and the reliance on phylogenetic distance methods which made it difficult to treat
inference and uncertainty statistically. AlphaFold has mostly overcome the first problem by
making structural predictions readily available. We address the second problem by redeploying
a structural alphabet recently developed for Foldseek, a highly-efficient deep homology search
program. For each residue in a structure, Foldseek identifies a tertiary interaction
closest-neighbor residue in the structure, and classifies it into one of twenty "3Di" states. We
test the hypothesis that 3Dis can be used as standard phylogenetic characters using a dataset
of 53 structures from the ferritin-like superfamily. We performed 60 1Qtree Maximum Likelihood
runs to compare structure-free, PDB, and AlphaFold analyses, and default versus custom model
sets that include a 3DI-specific rate matrix. Analyses that combine amino acids, 3Di characters,
partitioning, and custom models produce the closest match to the structural distances tree of
Malik et al. (2020), avoiding the long-branch attraction errors of structure-free analyses.
Analyses include standard ultrafast bootstrapping confidence measures, and take minutes
instead of weeks to run on desktop computers. These results suggest that structural
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phylogenetics could soon be routine practice in protein phylogenetics, allowing the
re-exploration of many fundamental phylogenetic problems.
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Introduction

Protein structural phylogenetics is the "missing chapter in molecular evolutionary biology" (Lai
2020). It is well-known that protein structure is often remarkably conserved (Chothia & Leak
1986; Flores et al. 1993) even in the "twilight zone" (Doolittle 1986; Chung & Subbiah 1986),
where amino acid (AA) sequence similarity decays below 30%. Very low sequence similarity
limits our ability to detect homology, accurately align sequences, and resolve deep relationships.
It would therefore be advantageous to incorporate protein structural information into
phylogenetic inference.

Structural phylogenetics: progress and limitations. Researchers have taken a variety of
approaches to link structure to phylogenetic inference. Lake (1984) used visual interpretation of
low-resolution quaternary structures of the ribosome to identify gross characteristics that
seemed to support the placement of eukaryotes within archaea. More generally, except at the
coarsest levels, structural classifications of proteins suggest common ancestry (e.g. SCOP
Superfamily, CATH Homology; Andreeva et al. 2020; Sillitoe et al. 2019), but they do not resolve
within-group relationships, nor do they constitute a formal estimate of a phylogenetic tree
(Lundin et al. 2012, Malik et al. 2020).

Secondary structure (SS) and residue accessibility have been used to modify amino acid
substitution processes (Thorne et al. 1996; Le & Gascuel 2010), including joint estimation of the
secondary structure (Goldman et al. 1996; Goldman et al. 1998). A probabilistic model of amino
acid dihedral angle evolution has been used to model pairwise evolution between structures
(Golden et al. 2017), but has not been generalized for phylogenetic inference. Modifications to
substitution rates based on tertiary structure have also been explored (Choi et al. 2007). Lai et
al. (2020) extended this work to include seven DSSP-defined (Kabsch & Sander 1983)
secondary structure (SS) states as character data, estimating substitution matrices from
prealigned PDB structures.

An alternative approach to these methods is to use 3D structural superposition of structures.
Structural superposition is already popular in the related problem of structure-informed
sequence alignment (e.g., DALI, Holm & Sander 1995; TM-Align, Zhang & Skolnick 2005; SSM,
Krissinel & Henrick 2004; US-align, Zhang et al. 2022; SWAMPNN, Trinquier et al. 2022). For
phylogenetics, a matrix of pairwise distances between all structures is calculated using a metric
such as root mean square positional deviation (RMSD), or a welter of others (Hasegawa & Holm
2009), including more robust metrics such as TM-Score (Zhang & Skolnick 2005), LDDT
(Mariani et al. 2013), or Qg (Krissinel & Henrik 2004; Malik et al. 2020). Following earlier
papers using small numbers of structures (<18; Bujnicki 2000; Breitling et al. 2001; Garau et al.
2005), Lundin et al. (2012) used distance matrices to estimate a phylogenetic network using
NeighborNet with 83 PDB structures of the ferritin-like superfamily and broadly replicated
previous sequence-based results, as well as structural database classifications and
functionally-delineated groups.


https://doi.org/10.1101/2023.12.12.571181
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.12.571181; this version posted December 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Structural phylogenetics with distance methods is a simple approach, and thanks to the
AlphaFold2 revolution (Jumper et al. 2021; Skolnick et al. 2021), is no longer hindered by a
shortage of structural data. However, such approaches are restricted by the use of distance
methods to create trees, such as Neighbor Joining (NJ). For phylogeneticists, distance methods
are often considered rather "quick and dirty": they may provide a reasonable first approximation,
but their ability to converge on the true tree with increasing data is contingent on the accuracy of
the distance matrix (i.e., the method is not always statistically consistent; Bryant 2005, Gascuel
and Steel 2006). The accuracy of distances is well-defined for nucleic and amino acids, where it
measures the number of nucleotide or amino acid substitutions. However, for structural
distances, it is not known whether LDDT (Mariani et al. 2013), TM-score (Zhang & Skolnick
2004), or others are fair metrics of structural change, where the complex true process would
include not only changes in AAs, but also other changes such as binding partner or
environment. Another issue is that protein conformations vary, sometimes substantially, on
nanosecond timescales. Nevertheless, work to date (Chothia & Lesk 1986; Flores et al. 1993;
Lundin et al. 2012; Lai et al. 2020; Malik et al. 2020) suggests that structural distances correlate
with the better understood metric of sequence divergence.

A further fundamental limitation of NJ used on structural distances (unlike nucleic or amino acid
sequences) is the lack of probabilistic models describing generative processes. Probabilistic
models have many advantages, including statistical model comparison and selection, and
standard procedures to quantify statistical uncertainty, such as bootstrapping and posterior
probabilities. Moreover, generative models are explanatory and capture real biological
processes, allowing use of in silico simulations for model validation. Lastly, probabilistic models
open the pathway towards “total-evidence” approaches (Hulsenbeck et al. 1996) allowing
multiple sources of data to be combined into a single analysis. It is challenging to conceptualize
a generative model that realistically describes how secondary, tertiary, and quaternary structure
co-evolves over evolutionary time, but models of some aspects exist (Boomsma et al. 2008)

A method to ameliorate some of the above issues was proposed by Malik et al. (2020). Here,
Molecular Dynamics (MD) simulations were used to sample different conformations of each leaf
structure. Superposition, distance calculation, and NJ trees were calculated for each sample of
tip conformations, and MD-based bootstrap scores were calculated for each branch, providing a
measure of the effect of structure variability on the stability of the estimated relationships. The
method was used on a subset of Lundin et al.'s ferritin-like superfamily dataset (53 PDB
structures), retrieving similar relationships but with the advantage of reporting bootstrap
supports. Disadvantages of this approach include the slowness of the MD simulation step, its
reliance on distance methods, and the fact that sources of uncertainty other than conformational
variation are not addressed.

In summary, research to date indicates that structural data could have great utility in
phylogenetics, in particular beyond the twilight zone, if the challenges of probabilistic modeling,
uncertainty estimation, and computational runtime can be overcome (Bujnicki 2000; Breitling et
al. 2001; Garau et al. 2005; Lundin et al. 2012; Lai et al. 2020; Malik et al. 2020). Combined with
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reasonably accurate AlphaFold structures now available for many proteins, such a technique
could rapidly make structural phylogenetics a routine part of protein phylogenetics.

3Di characters. A potential solution to the above challenges is provided by Foldseek (van
Kempen et al. 2023), a program designed for efficient structure-informed homology searches
deep in the twilight zone. Foldseek's 3Di alphabet encodes 3-D tertiary structure interactions in
a 1-D string of discrete states, enabling deployment of highly efficient dynamic programming

algorithms for alignment and search.
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Figure 1. Summary of Foldseek's system for classifying tertiary interactions into the 20-state 3Di alphabet. For each
residue in a protein structure (a) a virtual center is defined, and each residue is assigned a tertiary neighbor based on
the closest virtual center. (b) 10 quantitative traits are collected for each residue+neighbor interaction, and then (c)
assigned to the best-matching 3Di state using the classifier pre-trained by Van Kempen et al. 2023. The main panel
shows a two-dimensional representation of the 20 states. Examples of 3Di states are inset; each of these represents
10 pairs of backbone fragments showing the typical arrangement for a 3Di state. Graphics modified from Van

Kempen et al. 2023.
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A summary of Foldseek's procedure classifying residues into 1 of 20 3Di states is given in
Figure 1. For a full description of the classification procedure, and the derivation and training of
the 3Di alphabet, see Van Kempen et al. (2023). The 3Di alphabet was originally designed to
enable fast and sensitive homology search and structural alignment, and the alphabet was
trained for that purpose. The encoding of tertiary structure interactions seems to retain the
signal of core conserved folds in a protein, and to be robust to changes outside the core (such
as indels) that challenge traditional superposition metrics. Sensitivity in homology search
suggests that the 3Di states could be interpreted as highly conserved, phylogenetically
informative characters. In combination with the AlphaFold database, this is an immediately
appealing idea for phylogeneticists, as the Foldseek encoder could then be used to create a 3Di
character dataset to compare to, or supplement, any traditional amino acid dataset. The fact
that the 3Di alphabet has 20 states is particularly convenient, as it allows 3Di characters to be
input into traditional bioinformatic and phylogenetics programs. It is tempting to think this brings
us a step closer to the "Holy Grail": a set of easily-obtainable, highly conserved characters that
can be added to any traditional protein phylogenetics project, enabling greater resolution deeper
in the tree.

The creators of Foldseek have already taken one step in this direction with FoldTree, which
uses Foldseek's 3Di alphabet to structurally align protein structures and AA sequences, and
then calculate a "Fident" (fraction identical) distance between the AA sequences between pairs
of structures (Moi et al. 2023). Although they obtain good results with this approach (higher
taxonomic congruence and more ultrametricity), trees are estimated from distance matrices
using FastME (NJ followed by NNI/SPR optimization for the minimum evolution tree; Lefort et al.
2015), and therefore subject to the limitations discussed above.

We propose that 3Di codes can be interpreted as conventional phylogenetic characters, and
thus can be readily included in the suite of standard model-based phylogenetic estimation
procedures, including statistical model comparison, maximum likelihood phylogenetic
estimation, and bootstrapping. If it is true that 3Di characters are indeed the "Holy Grail," a
source of slowly-evolving characters, then inferences including 3Di characters should
outperform standard, structure-free AA-based inferences in the twilight zone.

As a proof-of-concept, we use both PDB and Alphafold2-predicted structures from the
ferritin-like superfamily, a group that shares the ferritin fold. From the perspective of evolutionary
enzymology, and hence phylogenetics, the ferritin fold is interesting. It likely evolved to control
the Fenton reaction (Fenton, 1894), in which ferrous iron reacts with hydrogen peroxide to form
highly reactive hydroxyl radicals. From this starting point it evolved into several major types
(Lundin et al. 2012): rubrerythrins, and similar small proteins, control reactive oxygen species
and are hence likely close to the ancestral function; the ferritins, bacterioferritins and “DPS”
proteins store insoluble ferric iron in the cell or protect from radicals; and lastly, a large group of
enzymes utilize highly reactive oxygen species for catalysis (fatty acid desaturases, bacterial
multicomponent monooxygenases, BMMs) or radical formation (ribonucleotide reductase R2
components, RNR R2). This superfamily has previously been used as a test dataset for
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structural phylogenetics (Lundin et al. 2012; Malik et al. 2020) as homology is likely, but
inter-family relationships are in the twilight zone.

Methods

Structure Data. The 53 PDB structures used by Malik et al. (2020; henceforth M20) were
downloaded from RCSB.org (Berman et al. 2000; RCSB Protein Data Bank 2023). They were
clipped to the single chains used by Malik et al. using bio3d::pdbsplit (Grant et al. 2006; Grant et
al. 2020). The list of PDB chain files was processed to AA and 3Di FASTA files using the custom
R function str_to_3di (Sl), which runs Foldseek's structureto3didescriptor command and parses
the output to FASTA files.

Reference tree. The M20 structural distances NJ tree was replicated from the original distances
matrix using SplitsTree (Huson & Bryant 2006). We used the M20 tree as the comparator for the
trees estimated by Maximum Likelihood (ML). While there is no guarantee that the M20 tree is
the exact true tree, it at least constitutes the state-of-the-art published estimate which
represents the tree obtained from the traditional superposed structural distances approach, its
clades reproduced previously-hypothesized groups recognized in structural databases, and
bootstrap confidence estimates were available for the deeper branches. M20's clade labels and
MD-based bootstraps were manually transferred to edited Newick files for automated
comparison with ML trees.

AlphaFold-predicted structures. To test whether 3Di characters derived from AlphaFold
structures would result in similar phylogenies to empirical structures, AlphaFold structures were
downloaded corresponding to each M20 structure. This was accomplished by manually
searching AlphaFold DB (https://alphafold.ebi.ac.uk/; Jumper et al. 2021; Varadi et al. 2022,
Varadi et al. 2023) against the AA sequence for each M20 structure. All but 9 AA sequences had
100% matches in AlphaFold DB; when no 100% match was found, the closest-hits AlphaFold
structure was chosen. The most distant match was 98% identical to the target AA sequence. While
100% identical sequences would be preferable, close-but-inexact matches represent a realistic
situation for researchers with a list of study sequences who are aiming to add 3Di characters to their
dataset. The average AlphaFold structure has a mean pLDDT of 94.1%, with 90% of all sites scoring
over 85.1%, suggesting that structural predictions have high levels of confidence (likely reflecting the
existence of close homologs in the protein data bank). See Sl for a breakdown of pLDDT
summaries.

Phylogenetic analyses. To test the effect of various analysis decisions, and to see whether or not 3Di
codes function like standard phylogenetic characters, we ran a total of 60 maximum likelihood
inference runs in IQtree v. 2.2.0 (Minh et al. 2020). Analysis variations used at each step (structures,
data, alignment, trimming, models, partitioning) are described below.

Structures and Data. Analyses (alignment + phylogeny) were run using either no structures (AA-only
alignment and phylogeny, matching standard phylogenetic analysis), PDB structures, or AlphaFold
structures. For a given alignment, phylogenetic analyses were run on AAs-only, 3Dis-only, or AA+3Di
datasets.
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Alignment. Alignment for AA-only, structure-free runs was conducted with FAMSA (Deorowicz et al.
2016), which uses an MIQS substitution matrix useful for distantly-related proteins (Yamada & Tomii
2014). The first set of structure-informed runs used the Universal Structural Alignment (US-align;
Zhang et al. 2022) program's Multiple-Structure Alignment (MSTA) mode to align AAs using the 3D
structures themselves, with no involvement of the 3Di characters. The second set of
structure-informed runs used FAMSAZ3di, a version of FAMSA recompiled with Foldseek's
substitution cost matrix for the 3Di alphabet. FAMSA3di was used to align the 3Di characters. As
Foldseek produces 3Di sequences of identical length to the AA sequence of a structure, a 3Di
alignment can be transferred position-by-position to unaligned AA characters and vice versa, a
procedure we implemented in the custom R function align_3dis_to_AAs.

Trimming. The alignment trimmer trimAl 1.4 (Capella-Gutierrez et al. 2009) was used to trim all
columns of AA and 3Di alignments that were <35% data. This tended to cut regions of the alignment
that were poorly-aligned regions (which were often low-confidence regions of the AlphaFold
structures) or represented elements present in only a few structures. ML analyses were run on
trimmed as well as full, untrimmed alignments.

Substitution models. ML analyses of AA, 3Di, and AA+3Di datasets were run under "alimodels”,
using IQtree's extensive default model set, or under a custom list which contained models a priori
likely to be relevant to AA or 3Di data as well as computationally efficient. The custom list included a
custom 3Di rate matrix, which we calculated from Foldseek's 3Di substitution cost matrix, following
the method described by Tammi (2021). The custom models list (IQtree -mset input) was: Blosum62,
Dayhoff, DCMut, JTT, JTTDCMut, LG, Poisson, PMB, WAG, EX2, EX3, EHO, EX_EHO, 3DI
(non-3DI model descriptions available in Minh et al. 2022). The base frequency options used were
-mfreq FU,F (base frequencies specified by the protein matrix, or empirical base frequencies), and
the among-site rate variations used were -mrate E,G,R (Equal, Gamma, or FreeRate models of
sitewise variation).

Partitioning. A priori it is extremely likely that AA and 3Di characters will evolve under different
models, that AA models will be poor fits to 3Di data, that the 3Di matrix will be a superior fit, and that
AA+3DI datasets should be partitioned so that each partition can have an appropriate model.
However, because this is the first ML analysis using 3Di characters, and as a sanity check of the
entire pipeline described above, we decided to run both partitioned and unpartitioned analyses of the
AA+3Di alignments. Tree topology and relative branch lengths were shared across partitions.

All 1Qtree runs were conducted with 1000 ultrafast bootstraps (UFBoot), which approximate
Bayesian posterior probabilities, and 1000 replicates of SH-like approximate likelihood ratio test
(Guindon et al., 2010). Bootstraps were run with the -bnni option, which uses a hill-climbing
Nearest-Neighbor Interchange (NNI) on each bootstrap tree to reduce the risk of overestimating
UFBoot supports when the data severely violates the model (Minh et al. 2022). All runs were
conducted on a desktop 4.2 GHz Quad-Core Intel Mac.

Analysis of phylogenies. Using custom R scripts (Supporting Information) we extracted from each
IQtree run the best fit models and corresponding log-likelihood, AIC, AlCc, BIC, number of data and
number of parameters. Bootstrapped consensus trees were extracted from each run,
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midpoint-rooted and ladderized for visualization, and compared to the M20 NJ tree by a variety of
metrics. These included: number of matching bipartitions (51 possible); number of matching "deep"
bipartitions (20 possible, corresponding to named clades of the M20 tree displayed in Figure 10b of
Malik et al. 2020), and groupings of those; number of "shallow" bipartitions (all other M20
bipartitions); total tree length (sum of all branch lengths); sum of bootstrap scores across all
branches; and tree-to-tree distances available in phangorn (freedist function; Schliep 2010),
including Robinson-Foulds distance (symmetric difference), Subtree Pruning-Regrafting (SPR)
distance, approximating the number of edits required to match tree topologies; and branch-score
distance (calculated on trees where branch lengths had been divided by the total tree length, to
avoid artifacts due to comparing trees of very different total lengths). RF and SPR distances consider
only topology and ignore branch lengths, unlike the branch-score distance. Nonmetric
multidimensional scaling was used to visualize the tree-to-tree distances (Matzke et al. 2015).
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Results

Alignment. AA and 3Di alignments were visualized and compared using Jalview's percent-identity
color scheme (Waterhouse et al. 2009). 3Di characters show substantially more conservation (116
sites are over 50% conserved) than AAs (only 17 sites) (Figure 2). The conservation pattern is
particularly clear in the ferritin superfamily's 4 core alpha helices (Lundin et al. 2012).
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Figure 2. AA and 3Di alignments for 53 AlphaFold structures of the ferritin-like superfamily, displayed with Jalview's
pairwise identity color scheme, where characters matching the majority character (if any) are colored, and darker
colors are closer to 100% agreement. The 3Di alignment was generated with famsa3di; the AA alignment was
generated by one-to-one replacement of 3Di states with AAs. Sites with <35% data were trimmed. FASTA files are
available in SI.
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Figure 3. lllustrating the differences between AA and 3Di characters by zooming in on a portion of the alignment in
Fig. 2, corresponding to the end of helix 2 and beginning of the subsequent loop. Glutamic acid E77 is displayed on
the structure for reference. Top: AA alignment next to a ribbon diagram of PDB entry 2JD7:A (Tatur et al. 2007), both
colored with the ClustalX color scheme (Jeanmougin et al. 1998). Bottom: 3Di alignment using Jalview's
gecos-Sunset color scheme.

While both alignments have some repetitive structure in the depicted alpha-helical region, the 3Di
characters are more conserved and contain information that is distinct from the AAs (Figure 3). For
example, in the section of the complete alignment shown in Figure 3, sites 70-71 are both
hydrophobic AAs, but do not show obvious grouping information between type 3 and type 1 groups.
The corresponding 3Di states show a clear fixed difference at position 70 (V/L vs. S), and invariance
at 71 (S). Sites 79-80 show little AA conservation, but the corresponding 3Di sites show fixed
differences between the type 1 and type 3 groups. These "fixed" differences do not strictly hold for
the full alignment, but type 3 vs. type 1/2 grouping is evident in the 3Di alignment (Figure 2).

Model selection. AA data are typically best fit by Blosum62 or LG, standard matrices for highly
diverged AA sequences, or by EX3+FU, a mixture model containing three matrices modeling

different transition rates and AA frequencies for exposed, intermediate, and buried sites (Le et
al. 2008). Interestingly, LG is selected only for AA data aligned by a structure-free method. All
3Di alignments are best-fit by the 3Di substitution matrix with empirical base frequencies, with
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minor variations in the treatment of among-site rate variation (G4, R3-R5) (Table 1, Supporting
Information).

Table 1. Best-fit substitution models for |Qtree runs, according to log-likelihood (InL) and BIC. IQtree inferences were
conducted using the BIC-best model. Runs are sorted by deep & shallow similarity to the M20 tree (first line). Results
are shown only for IQtree runs using the custom model list (with partitioning for AA+3Di datasets) which included the
3Di substitution matrix. k represents the number of free parameters in the substitution model; all runs also included
103 free branch-length parameters in the BIC calculation. Note: InL & BIC values can only be compared within lines,

not between them, as they are only comparable for identical alignments.

# bipartitions

Structure Alignment Alignment Phylogeny matched Best log-likelihood models: Best BIC models:

souce  data  method  data |, . ’I‘:: Lk Model BIC Lk Model
PDB structures Superpose Qscore 51 22 129
alphafold struct.+AAs USalign AA+3di, trim | 40 20 20 | -24477.7 27 EX3+FU+G; 3DI+F+R3 49728.3 -24477.7 27 EX3+FU+G; 3DI+F+R3
PDB 3di famsa3di AA+3di 39 20 19 |-39984.6 48 Blosumb62+F+G4; 3DI+F+R5| 810816 -399846 48 Blosumb2+F+G4; 3DI+F+R5
alphafold struct.+AAs USalign  AA+3di 39 20 19 |-43208.6 47 Blosumb2+F+R3; 3DI+F+R3 87609.2 -43208.6 47 Blosum62+F+R3; 3DI+F+R3
PDB 3di famsa3di AA+3di trim| 37 20 17 |-29156.4 41 Blosumb2+F+G4; 3DI+F+G4| 59179.9 -29156.4 41 Blosum62+F+G4; 3DI+F+G4
PDB struct.+AAs USalign AA 37 19 18 |-15160.7 25 Blosumb2+F+R4 30976.0 -15208.7 4 Blosum62+R3
alphafold 3di famsa3di AA+3di 36 19 17 | -42057.8 44 Blosumb62+F+G4; 3DI+F+R3 | 851954 -42057.8 44 Blosum62+F+G4; 3DI+F+R3
PDB struct.+AAs USalign AA+3di 34 19 15 |-40816.9 47 Blosumb2+F+R3; 3DI+F+R3 | 827725 -40816.9 47 Blosum62+F+R3; 3DI+F+R3
alphafold struct.+AAs USalign AA, trim 38 18 20 |-16270.9 25 Blosumb2+F+R4 33187.1 -16315.2 3 EX3+FU+G
PDB 3di famsa3di AA 36 18 18 |-24783.6 25 Blosumb2+F+R4 50404.9 -24792.0 20 Blosum62+F+G4
alphafold struct.+AAs USalign  AA 36 18 18 |-27095.9 25 Blosumb2+F+R4 55106.9 -27107.4 20 Blosum62+F+G4
PDB struct.+AAs USalign AA 36 18 18 |-24877.6 25 Blosumb2+F+R4 50631.3 -24881.1 23 Blosum62+F+R3
PDB struct.+AAs USalign AA+3di, trim| 33 18 15 |-23679.1 25 Blosum62+R3; 3DI+F+G4 48115.0 -23679.1 25 Blosum62+R3; 3DI+F+G4
alphafold 3di famsa3di AA+3di trim| 36 17 19 | -30459.0 27 EX3+FU+G; 3DI+F+R3 61715.6 -30459.0 27 EX3+FU+G; 3DI+F+R3
alphafold 3di famsa3di 3di 32 17 15 |-14950.2 25 3DI+F+R4 30745.2 -14853.6 23 3DI+F+R3
alphafold struct.+AAs USalign 3di 31 16 15 | -15985.7 25 3DI+F+R4 32886.3 -15586.2 23 3DI+F+R3
alphafold 3di famsa3di AA 32 14 18 |-26932.0 27 Blosumb2+F+R5 54691.6 -26993.3 3 EX3+FU+G
alphafold 3di famsa3di 3di, trim 31 14 17 |-10259.3 27 3DI+F+R5 21218.1 -10260.7 25 3DI+F+R4
PDB 3di famsa3di AA, trim 30 14 16 |-18633.2 25 Blosumb2+F+R4 37938.1 -18641.4 20 Blosum62+F+G4
PDB struct.+AAs USalign 3di, trim 23 14 9 -8173.4 25 3DI+F+R4 17006.9 -8174.6 23 3DI+F+R3
PDB struct.+AAs USalign 3di 22 14 8 |-15612.5 23 3DI+F+R3 32094.1 -15612.5 23 3DI+F+R3
alphafold struct.+AAs USalign 3di, trim 28 13 15 -8037.0 25 3DI+F+R4 16740.9 -8039.5 23 3DI+F+R3
PDB 3di famsa3di 3di, trim 25 13 12 | -10215.4 25 3DI+F+R4 21107.5 -10218.1 23 3DI+F+R3
none AAs famsa AA, trim 30 12 18 | -2413659 23 LG+F+R3 49084.3 -24139.0 20 LG+F+G4
alphafold 3di famsa3di AA, trim 29 12 17 | -20019.9 25 LG+F+R4 40665.8 -20044.4 3 EX3+FU+G
PDB 3di famsa3di 3di 24 12 12 | -14851.9 25 3DI+F+R4 30553.0 -14856.1 23 3DI+F+R3
none AAs famsa AA 29 10 19 |-18766.59 25 LG+F+R4 38190.2 -18813.5 1 LG+G4

Standard AA models fit best to AA data, with comparatively small differences between
Blosum62, LG, and EX3. A much worse fit is the Poisson model, a Jukes-Cantor-style model
which assumes that transition rates are equal between all residues. Finally, the least fitting
model for AA data is the 3Di rate matrix. On the other hand, for 3Di data, the pattern is
reversed, where the 3Di model dominates, followed by Poisson and then the AA models (Table
2).
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Table 2. lllustrative models compared on AA and 3Di datasets. Alignment source: USalign on AlphaFold
structures+AAs, trimmed sites with <35% data; phylogeny estimated with IQtree on custom model list including 3DI
substitution matrix.

Data Model InL AlnL k BIC
EX3+FU+G -16315.2 359 106 33187.1
amin acids Blosum62+F+G4 -16279.2 0.0 123 33204.5
(n=191 LG+F+G4 -16289.1 98 123 33224.2
sites) EX3+F+G -16299.1 19.8 125 33254.6
Poisson+F+G4  -16888.9 609.7 123 344239
3DI+F+G4 -17950.8  1671.5 123 36547.6
3DI+F+G4 -8054.9 0.0 123 167559
3Di Poisson+F+G4 -8329.4 2745 123  17304.9
characters Blosum62+F+G4  -8485.0 4300 123 17616.0
(n=191 EX3+F+G -8620.9 566.0 125 178983
sites) LG+F+G4 -8734.1 679.1 123 18114.1
EX3+FU+G -10415.9  2361.0 106 21388.6

Phylogenetic analyses. |Qtree custom-model runs by the number of deep and shallow
bipartitions that match the reference M20 tree are shown in Table 1. Results for all 60 ML runs
are shown in Figure 4. Our results indicate that runs using both AA+3Di do best at matching the
M20 tree topology, although with substantial overlap with structure-aligned AA runs. 3Di-only
runs are consistently lower ranked.
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Figure 4. Similarity of all 60 |Qtree runs to the Malik et al. (2020) structural-distances NJ tree (M20) for the ferritin-like
superfamily. (a) Robinson-Foulds (RF) distance vs. Subtree Pruning-Regrafting (SPR) distance. SPR approximates
the number of edits required to match the M20 topology. The closest matches to M20 on both metrics tend to be
AA+3Di analyses with partitioning. AA-only and 3Di-only analyses tend to fare worse. (b) RF distance vs.
branch-score distance, which takes branch lengths into account, unlike RF and SPR. 3Di-only match M20 well on the
branch-score measure, but poorly on RF; however, AA+3Di performs well on both. (¢) Number of M20 deep
bipartitions matched vs. shallow bipartitions matched. "Deep" bipartitions are those annotated by Malik et al. to
indicate major well-recognised categories, and groupings of those. Shallow bipartitions are all others, e.g. groups of
2-5 structures near the tips of the unrooted tree. AA-only runs retrieved shallow bipartitions but not deep ones;
3Di-only was weak on both, but AA+3Di retrieved both shallow and deep. Note: Points have been jittered for visibility.

Phylogenetic analyses using 3Di-only tend to be competitive in branch score difference.
Structure-aligned AA-only runs are somewhat competitive in RF distance; only both AA+3Di
runs are competitive in both (Figure 4b).

Amino-acid-only (structure-free) analyses are competitive for resolving shallow bipartitions, but

are systematically poorer for deep bipartitions. 3Di-only analyses are poor for both. However, in
combined analyses, the AA and 3Di data together seem to mutually compensate for the
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weaknesses of each individually and produce the best matching of both shallow and deep
bipartitions (Figure 4c).

Also of interest are cases where differences in method do not seem to produce major
differences in performance. It appears that PDB and AlphaFold structural data are equivalent in
terms of phylogenetic results matching the M20 tree. Trimming, or not, also does not appear to
make a major difference. Model partitioning did not seem to produce a consistent difference in
terms of tree similarity to the M20 tree. However, lack of partitioning produces higher bootstrap
supports. When bootstrap percent scores are summed across the tree for all 60 models (see
Sl), all 12 of the AA+3Di runs without partitioning were ranked in the top 15 (sum of bootstraps:
4219-4374). The next 16 runs contain 13 AA+3Di partitioned runs and 3 structure-aligned
AA-only runs (sum of bootstraps: 4091-4216). The following 15 runs are all AA-only
(3815-4087), with structure-free AA runs representing the last 4 (3815-3924), and the final 14
runs are all 3Di-only (3471-3799). While declining bootstraps for the noisier AA-only and
3Di-only datasets accords with expectations, elevated bootstraps for non-partitioned AA+3Di
datasets probably represents artificial elevation of confidence due to a single model poorly fitting
two very different partitions.

stress = 0.12
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+
o _
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W _
o ©° A &
=
=
e |
|
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| | | |
=20 0 20 40
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Fig. 5. Nonmetric Multidimensional Scaling (NMDS) representation of the 61x61 matrix of RF distances between all
ML trees (60 IQtree runs + the M20 tree). Values <0.1 are typically taken to indicate "excellent," and <0.2 "good,"
2-dimensional approximations of the original distances (Clarke 1993). Legend as in Figure 4. M20 tree = +. The trees
using both AA+3Di data ("B") show a merger of both signals and cluster tightly, compared to the variability between
the AA-only or (particularly) 3Di-only trees.
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The nonmetric multidimensional scaling (NMDS) analysis of the RF distances between all ML
trees and the M20 tree ("+") is shown in Figure 5. An NMDS stress value of 0.12 indicates that
AA-only and 3Di-only runs clearly explore different parts of tree space and supports the
contention that they are not redundant data sources. The structure-free AA-only runs (Figure 5,
red "A") cluster apart from the structure-aligned AA-only runs, suggesting that AA alignments
based on structure may pick up phylogenetic signal that structure-free AA alignments miss.
3Di-only analyses are much more scattered than other runs, suggesting larger variation in
inferred tree topology, perhaps due to the fact that some 3Di runs were using the default IQtree
model list, which does not include a 3Di-specific model. The AA+3Di runs (Figure 5,"B") appear
to combine both signals and cluster more tightly than AA-only or 3Di-only runs. The NMDS plot
also indicates a difference between alignment methods. USalign-based AA and 3Di alignments
(Figure 5, light blue "A" and "3"), all tend to be closer to the M20 tree than famsa3di-based
alignments (light orange). This may indicate that USalign, by simultaneously aligning AAs and
the 3D backbone of the structures, without considering 3Di states, is more directly capturing
structural distance information that is also used by the M20 tree. However, this difference
between USalign and famsa3di methods appears to be much reduced in the AA+3Di analyses
(Figure 5, "B").

For PDB structural data, the phylogenetic tree that best matched the M20 tree (Figure 6) was
generated using famsa3di on 3Di characters generated from the PDB structures. The BIC
best-fit models for the AA and 3Di partitions were Blosum62+F+G4 and 3DI+F+R5. This tree
shared 19 deep and 20 shallow bipartitions with the M20 tree. Similarity is apparent in both the
unrooted (top) and midpoint rooted/re-rooted (bottom) depictions (Figure 6). The most notable
topology differences are in the placement of two structures on long, isolated branches in M20:
2fzf A, a Pyrococcus furiosus rubrerythrin domain-containing protein, and 1z60_M, a ferritin
chain from the cabbage looper butterfly Trichoplusia ni which interacts with 1z60_A from the
same species. In the PDB AA+3Di tree, 2fzf A groups with the other rubrerythrins (albeit with
low support, 57%), and 1z60_M is sister to 1z60_A (93% support), suggesting within-structure
gene duplication. These are both highly plausible placements, improving on the M20 tree.

The best-match IQtree analysis overall (Figure 7) used AlphaFold structure predictions, jointly
aligned structures and AAs using USalign, with Alphafold-derived 3Di characters then mapped
to the aligned AA positions. The alignment was trimmed, and the BIC best-fit models for the AA
and 3Di partitions were EX3+FU+G and 3DI+F+R3. This tree shared 20 deep and 20 shallow
bipartitions with the M20 tree. This analysis also groups 2fzf_A with other rubrerythrins (similar
low support, 60%) and 1z60_M with 1z60_A (70% support). The other major difference is that
the dimer geometry type 2 group of fatty acid desaturases is nested within the type 1 group, as
sister to RNR R2, although with low support (69%).
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Figure 6. Comparison of trees using PDB structures. Left: M20 structural distances tree, with MD-based bootstraps
where available in Malik et al. 2020. Right: the closest-match PDB-based IQtree analysis using AAs+3Dis from PDB
structural data. This tree shares 20 deep and 19 shallow bipartitions with M20. Top row: unrooted trees. Bottom:
arbitrary rooting for visual comparison. Branch length units for the M20 tree are Q,..-based distances; for the ML
tree they are expected substitutions per site. The types refer to dimer geometries, likely slowly evolving structural
characters (Lundin et al. 2012).
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Figure 7. AlphaFold-based ML AA+3Di tree (right) compared to the M20 structural distances tree (left). This ML run
was the closest overall topology match to the M20 tree, and shares 20 deep and 20 shallow bipartitions with M20. Tip
labels are Uniprot IDs for which AlphaFold predictions were downloaded. Each Uniprot label on the right represents
the closest AA match to the corresponding PDB structure on the left, with the exception of two tips marked with
asterisks; here, FRI1_LITCT corresponds to 1bh7_A, and FTMT_HUMAN corresponds to 1r03_A. The types refer to
dimer geometries, likely slowly evolving structural characters (Lundin et al. 2012).

The resulting topology from a “standard”, sequence-only, structure-free alignment (Figure 8)
shares 19 shallow bipartitions with M20, but only 12 deep ones. Severe long-branch attraction
effects are evident; instead of 2fzf_A grouping with the rubrerythrins and 1z60_A with 1z60_M
and other ferritins, they instead form a group of oddballs along with the long-branched 1otk_A.
The BMM- group breaks apart and renders fatty acid desaturases and ferritins paraphyletic.
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Figure 8. Structure, AA-only ML tree (right) compared to the M20 structural distances tree (left). ML tree is from the
closest match "standard" AA-only analysis. The tree shares 12 deep and 19 shallow bipartitions with M20. The types
refer to dimer geometries, likely slowly evolving structural characters (Lundin et al. 2012).

In terms of computational run-time, these results are a dramatic improvement. The Malik et al.
2020 MD-based bootstrapping of ferritins took approximately 3 weeks of wall-clock time to run,
even making use of parallel processing, as each of the 53 structures had simulate 100
nanoseconds (ns) of conformational change with Molecular Dynamics. Even longer simulations
(>500 ns) would be preferred in a new analysis, which would imply a 5x increase in runtime.
Although this may be ameliorated with newer technology and greater cluster resources when
available. On the other hand, the focal PDB and AlphaFold AA+3Di IQtree runs, complete with
partitioning, automated model selection, and 1000 ultrafast bootstraps, took 13.6 and 25.25
minutes on a standard desktop computer. The latest approach makes structural phylogenetics
more accessible since it can be performed with small computational resources.

Discussion

Although protein structural phylogenetics has been explored for decades, its use has been
limited by the availability of structural data, the lack of ready-to-use inference methods other
than distance-based neighbor-joining, and the challenges of integrating distance-based
methods into the model-based framework of modern statistical phylogenetics. Highly desirable
tools like parametric model fitting, statistical model comparison, Maximum Likelihood and
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Bayesian inference, statistical measurement of uncertainty through bootstrapping, posterior
probabilities or other techniques, integration of multiple data sources in a unified statistical
framework, and simulation-based in silico tests of inference methods, all remained challenging
in a distance-based framework.

The combination of two developments, namely AlphaFold and the Foldseek tertiary interaction
encoder, raises the prospect that this barrier has suddenly fallen, and the way is open for the
emergence of model-based structural phylogenetics. Our study represents a proof-of-concept: a
complete pipeline stepping from amino acid sequences, to AlphaFold structures, to
structure-informed alignments, to 3Di character datasets that appear to be well-behaved, and
helpful, in statistical model selection (Table 2) and phylogenetic inference (Figs. 4-8).

In the case of the ferritin-like superfamily, the application of this pipeline produced estimated
phylogenies, with formal ultrafast bootstrapping estimates of uncertainty, in minutes instead of
the weeks required in the previous state-of-the-art analysis of Malik et al. (2020). Across the
different IQtree run conditions, the phylogenies that were the best topological matches to the
Malik et al. (2020) were the ones that one might predict a priori to be phylogenetic best-practice
(Table 1): combining both AA and 3Di alignments, using structure to inform the alignment, using
a custom model list that included a 3DI-specific substitution model, and using statistical model
comparison on the partitioned dataset to find the best-fit model separately for AA and 3Di
characters. Combining AA+3Di characters seemed to ameliorate long-branch attraction artifacts
found in AA-only analyses (Figs. 6-8), and also produced closer matching to the Malik et al. tree
on the branch-score distance (Fig. 4b). Probably these are related phenomena, suggesting that
AA+3Di analyses are less affected by saturation of sequence divergence on deep branches. All
of these results are just what would be expected when a set of characters even more conserved
than amino acids are added to an amino acid dataset.

In summary, our results suggest that the inferred structure-informed phylogenies are
comparable, and perhaps superior, to a previously-published phylogeny of the ferritin-like
superfamily using structural distances. The addition of 3Di characters to ML phylogenetic
inference is appealing because of the approach's ease-of-use, computational speed, and
potential to add highly-conserved, slowly-evolving characters just where they are typically
needed: deep in phylogenies, where AA sequence similarity is highly decayed. Therefore, it is
tempting to suggest that this approach can, and should, be tried on almost every tough problem
in protein phylogenetics. While we do encourage researchers to explore and build on this
approach, our study highlights a number of considerations that should be kept in mind.

In the case of the ferritin-like superfamily, AlphaFold-predicted structures have high confidence
scores (see Supporting Information) and performed equally well to PDB structures in our
analyses. However, while AlphaFold has been a huge step forward in structural prediction,
some limitations have become evident. AlphaFold predictions will tend to be more accurate on
structures more similar to its (admittedly vast) training set. Protein types that have fewer solved
high-resolution structures (membrane-embedded proteins or those with no stable fold) will have
more uncertain AlphaFold predictions and therefore will presumably have noisier 3Di
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characters. Intrinsically disordered proteins/regions/loops are also poorly predicted by
AlphaFold (Ruff & Pappu 2021; Bertoline et al. 2023), although such regions are likely to be less
conserved anyway. The AlphaFold database also has the limitation of holding only structural
predictions of monomers. Interactions with cofactors, chaperones, and/or within multimers will
all potentially change a predicted structure (Perrakis & Sixma 2021) and thus any extracted
characters. Interactions can be modeled with AlphaFold, but for the moment this is a bespoke
process rather than a precalculated database.

Unresolved questions about 3Di characters. The prospect of estimating phylogenies with the
assistance of a 3Di character dataset that might change based on how protein structures are
modeled and predicted may give pause to many molecular phylogeneticists who are used to
sequence data being fixed and highly confident (leaving aside cases of sequencing error and
contamination). A broader focus on the kinds of characters that have been used in
phylogenetics generally might help bridge this gap. In organismal biology and paleontology,
sources of characters have included morphology of bones as well as soft tissue, ultrastructure,
characters observable only in a particular sex (antlers) or embryonic developmental stage
(post-anal tail), characters that are revealed only after substantial processing or imaging of a
specimen (biochemical fossils, internal bone structure), or even ephemeral events like bird
songs or stereotyped mating behaviors. Just like 3Di characters, many of these other data
sources produce characters that are dependent on a particular ascertainment method. As long
as an ascertainment method can be described and replicated by other researchers, it is a
potentially valid data source, and its utility for phylogenetics becomes an empirical question. For
a novel data source, tree structure in character data, phylogenetic congruence with other
evidence, and reliability of character coding under perturbation of the input material are all
standard research questions that can be answered statistically (Matzke 2015).

A case can be made that 3Di states are actually easier to accept as phylogenetic characters
than routinely accepted data sources like discrete morphological characters. Morphologists
often encounter difficult questions such as: How should continuous data be discretized? Is a
character state not observed because it is not present in the organism, or is it missing due to
specimen incompleteness, decay or damage (taphonomy; Sansom et al. 2010), the specimen
being a juvenile, or population-level, environmental, or random variation in development?
Sometimes there is an element of subjectivity in the judgment calls made in morphological
character coding that can be difficult to completely remove. In comparison, 3Di characters have
no such difficulties. For a given experimental or AlphaFold-predicted structure file, the output
3Di characters are a deterministic result that is easily repeatable by any researcher. It is, of
course, likely that future improvements in structural prediction and in tertiary-interaction
encoding will produce variant datasets, but these will also be replicable and subject to statistical
tests for phylogenetic signal. Replicability will require that any future iterations on structural
character encoding schemes are given clear version numbers that are reliably reported by
researchers, and also that old versions of encoders are kept available in software packages for
backwards comparability.
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Despite the good arguments for the validity of 3Di states as characters, many questions do
need further research. We caution that it remains unclear how sensitive the 3Di encoding is to
small perturbations in the protein structure, such as indels, or minor errors made during protein
structure solving or prediction. As 3Di characters are based on minimum distances between
residues, small changes in one region of the protein might sometimes induce rippling effects
that perturb the 3Di characters elsewhere, potentially disrupting the phylogenetic signal.
However, the success of Foldseek for remote homology search, and our results showing high
conservation over vast evolutionary distances (Fig. 2), as well as congruence between PDB-
and AlphaFold-derived phylogenies (Figs. 6-7), suggest that 3Di characters are likely to be fairly
robust to perturbations. We would, however, caution that it may be hazardous to "mix and
match" structures from different sources: for example, a dataset consisting of some PDB
experimental structures, some AlphaFold-database monomer predictions, and some bespoke
AlphaFold predictions of chains in a multimeric conformation might result in systematic biases
that end up grouping structures by method rather than by history. (On the other hand, it is also
possible that in some structures, the evolutionary-conserved tertiary structure is best
observed/predicted in the multimeric state.)

Other caveats. Model-based phylogenetic estimation using discretized structural characters is
novel, and several classic questions in statistical phylogenetics need to be revisited when the
methods are applied to 3Di characters. First, programs like IQtree employ the standard
phylogenetic assumption of site independence in their likelihood calculations. This assumption
allows the log-likelihood of each site in the alignment to be calculated independently; summing
across sites allows rapid calculation of the total log-likelihood. The very definition of 3Di
characters as descriptors of tertiary interactions between pairs of residues identified as closest
neighbors arguably violates this assumption, although the question is complex as neighbor
relationships do not have to be symmetric. Violations of the site independence assumption in
other data are already well-known; for example, in coevolution of AA sites (Korber et al. 1993),
or in co-variation of morphological characters due to a shared developmental pathway or
convergence on an ecological role. These are usually not considered fatal for phylogenetic
inference, but co-dependence may be even greater for 3Di characters. Failure to account for
site correlation may lead to spurious results by placing overconfidence in the wrong tree (i.e.,
inflated bootstrap or posterior supports), as information is being double counted (Nasrallah et al.
2011).

IQtree also assumes independence between AA and 3Di sequences. While inspection of AA
and 3Di alignments proves that they are far from identical, and clearly have some
nonoverlapping grouping information, ideally any nonindependence between the datasets could
be measured and corrected for.

Another limitation concerns phylogenetic information that 3Di characters may be missing. 3Dis
describe the tertiary relationships between segments of a structure's backbone. This approach
does not directly capture structural changes that only affect side chains. In addition, the dihedral
angles that directly describe the changes in backbone orientation from one residue to the next
are not directly captured by 3Di. Whether these additional kinds of structure-derived datasets
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could be combined with AAs and 3Di in a total-evidence analysis, or this would only exacerbate
the non-independence problem, is an open question.

Future outlook. Alongside the methodological questions above, 3Di characters present
phylogeneticists with a number of additional research opportunities. Just as DNA models
advanced from Jukes-Cantor to GTR and codon models, and just as AA models advanced from
PAM and BLOSUM matrices to LG and mixture models, character-based structural
phylogenetics is likely to advance from the Poisson and 3DI matrices to matrices optimized for
different kinds of proteins and protein regions. It is likely that the frequencies of different 3Di
character states change between alpha-helix and beta-sheet regions of proteins, so an obvious
first step would be to explore the potential of partitioning a 3Di dataset on a protein family
containing both (the ferritin fold is largely alpha-helical).

The speed of ML analyses including 3Di structural information also means that Bayesian
structural phylogenetics is clearly feasible. This would allow the incorporation of additional
modeling flexibility and sources of information, including relaxed clocks, absolute and relative
(Shih and Matzke, 2013) time constraints, joint inference of substitution model and tree, and
potentially even uncertainty in structural prediction and the derived 3Di characters.

Finally, while a priori considerations and our proof-of-concept study strongly suggest that the
addition of 3Di characters to AA datasets will improve phylogenetic inference, especially deep in
the twilight zone, the ideal study would test this hypothesis in a situation where the true
phylogenetic tree is known. While an in silico test would be relatively easy to perform under the
model assumed by IQtree, where 3Dis are just another 20-state character where every site
evolves independently under the 3DI rate matrix, this form of simulation-inference experiment is
only of limited interest as it does not model the evolution of the 3-dimensional protein structure.
While models of structural evolution are beginning to be developed, a realistically complex
forward model of protein structural evolution remains a major challenge. An alternative source of
known phylogenies could be experiments, but this would require a system where AA sequence
identity could decay from 100% to <30% in the course of the experiment, all while retaining
substantial structural similarity. It may be that this could be achieved in a rapidly-evolving virus
system, although whether this would imitate protein structural evolution at billion-year timescales
could be debated.

Apart from methodological investigations, the major research opportunity presented by
character-based structural phylogenetics is a potential revolution in the study of deep
phylogenetics questions stretching back before the Last Universal Common Ancestor. The
origin and evolution of protein families and fundamental cellular machinery can potentially be
addressed or re-addressed with more data and more confidence. The deepest, hardest to
resolve relationships — the relationships of the bacterial phyla, of archaea and eukaryotes, and
of different classes of viruses, may all become more accessible. However, it may also be that
structural characters will be useful even for improving the resolution of shallower relationships,
as reported by Moi et al. (2023). We think it likely that structural phylogenetics will soon move
from revolutionary to routine.
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Table 1. Best-fit substitution models for IQtree runs, according to log-likelihood (InL) and BIC. IQtree inferences were conducted using the BIC-best model. Runs are sorted by deep
& shallow similarity to the M20 tree (first line). Results are shown only for IQtree runs using the custom model list (with partitioning for AA+3Di dataset) which included the 3Di
substitution matrix. k represents the number of free parametersin the substitution model; all runsalso included 103 free branch-length parametersin the BIC calculation. Note:
InL & BIC values can only be compared within lines, not between them, as they are only comparable for identical alignments.

# bipartitions
Structure Alignment Alignment Phylogeny matched Best log-likelihood models: Best BIC models:
source  data  method data |, goepshal L & Model BIC L k Model
low
PDB structures Superpose Qscore 51 22 29
alphafold struct.+AAs USalign  AA+3di, trim| 40 20 20 | -24477.7 27 EX3+FU+G; 3DI+F+R3 49728.3 -24477.7 27 EX3+FU+G; 3DI+F+R3
PDB 3di famsa3di AA+3di 39 20 19 | -39984.6 48 Blosum62+F+G4; 3DI+F+R5| 81081.6 -39984.6 48 Blosum62+F+G4; 3DI+F+R5
alphafold struct.+AAs USalign  AA+3di 39 20 19 |-43208.6 47 Blosum62+F+R3; 3DI+F+R3 | 87609.2 -43208.6 47 Blosum62+F+R3; 3DI+F+R3
PDB 3di famsa3di AA+3di, trim| 37 20 17 | -29156.4 41 Blosum62+F+G4; 3DI+F+G4| 59179.9 -29156.4 41 Blosum62+F+G4; 3DI+F+G4
PDB struct.+AAs USalign  AA 37 19 18 | -15160.7 25 Blosum62+F+R4 30976.0 -15208.7 4 Blosum62+R3
alphafold 3di famsa3di AA+3di 36 19 17 | -42057.8 44 Blosum62+F+G4; 3DI+F+R3| 85195.4 -42057.8 44 Blosum62+F+G4; 3DI+F+R3
PDB struct.+AAs USalign AA+3di 34 19 15 | -40816.9 47 Blosum62+F+R3; 3DI+F+R3 | 82772.5 -40816.9 47 Blosum62+F+R3; 3DI+F+R3
alphafold struct.+AAs USalign  AA, trim 38 18 20 |-16270.9 25 Blosum62+F+R4 33187.1 -16315.2 3 EX3+FU+G
PDB 3di famsa3di AA 36 18 18 | -24783.6 25 Blosum62+F+R4 50404.9 -24792.0 20 Blosum62+F+G4
alphafold struct.+AAs USalign  AA 36 18 18 |-27095.9 25 Blosum62+F+R4 55106.9 -27107.4 20 Blosum62+F+G4
PDB struct.+AAs USalign AA 36 18 18 | -24877.6 25 Blosum62+F+R4 50631.3 -24881.1 23 Blosum62+F+R3
PDB struct.+AAs USalign AA+3di, trim| 33 18 15 | -23679.1 25 Blosum62+R3; 3DI+F+G4 48115.0 -23679.1 25 Blosum62+R3; 3DI+F+G4
alphafold 3di famsa3di AA+3di, trim| 36 17 19 | -30459.0 27 EX3+FU+G; 3DI+F+R3 61715.6 -30459.0 27 EX3+FU+G; 3DI+F+R3
alphafold 3di famsa3di 3di 32 17 15 | -14950.2 25 3DI+F+R4 30745.2 -14953.6 23 3DI+F+R3
alphafold struct.+AAs USalign  3di 31 16 15 | -15985.7 25 3DI+F+R4 32886.3 -15986.2 23 3DI+F+R3
alphafold 3di famsa3di AA 32 14 18 |-26932.0 27 Blosum62+F+R5 54691.6 -26993.3 3 EX3+FU+G
alphafold 3di famsa3di 3di, trim 31 14 17 | -10259.3 27 3DI+F+R5 21218.1 -10260.7 25 3DI+F+R4
PDB 3di famsa3di AA, trim 30 14 16 | -18633.2 25 Blosumb62+F+R4 37938.1 -18641.4 20 Blosum62+F+G4
PDB struct.+AAs USalign 3di, trim 23 14 9 -8173.4 25 3DI+F+R4 17006.9 -8174.6 23 3DI+F+R3
PDB struct.+AAs USalign  3di 22 14 8 | -15612.5 23 3DI+F+R3 32094.1 -15612.5 23 3DI+F+R3
alphafold struct.+AAs USalign  3di, trim 28 13 15| -8037.0 25 3DI+F+R4 16740.9 -8039.5 23 3DI+F+R3
PDB 3di famsa3di 3di, trim 25 13 12 | -10215.4 25 3DI+F+R4 21107.5 -10218.1 23 3DI+F+R3
none AAs famsa AA, trim 30 12 18 |-24136.9 23 LG+F+R3 49084.3 -24139.0 20 LG+F+G4
alphafold 3di famsa3di AA, trim 29 12 17 |-20019.9 25 LG+F+R4 40665.8 -20044.4 3 EX3+FU+G
PDB 3di famsa3di 3di 24 12 12 | -14851.9 25 3DI+F+R4 30553.0 -14856.1 23 3DI+F+R3
none AAs famsa AA 29 10 19 | -18766.9 25 LG+F+R4 38190.2 -18813.5 1 LG+G4
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Alignment source: USalign on alphafold structures+AAs, trimmed

sites with <35% data.

Data Model InL AlnL k BIC
EX3+FU+G -16315.2 359 106 33187.1
. ., Blosum62+F+G4 -16279.2 0.0 123 33204.5

amino acids

(n=191 LG+F+G4 -16289.1 9.8 123 33224.2
sites) EX3+F+G -16299.1 19.8 125 33254.6
Poisson+F+G4 -16888.9 609.7 123 344239
3DI+F+G4 -17950.8 1671.5 123 36547.6
3DI+F+G4 -8054.9 0.0 123 16755.9
3Di Poisson+F+G4 -8329.4 2745 123 17304.9
characters Blosum62+F+G4  -8485.0 430.0 123 17616.0
(n=191 EX3+F+G -8620.9 566.0 125 17898.3
sites) LG+F+G4 -8734.1 679.1 123 18114.1

EX3+FU+G -10415.9 2361.0 106 21388.6
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