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Abstract

Neural activity is a highly energy-intensive process. In the human brain, signaling consumes up
to 75% of the available energy resources with postsynaptic potentials as the largest factor. Visual
processing is especially costly, with increases in energy consumption of up to 20% in the visual cortex.
In recent years, vision has been cast as a constructive process, harnessing prior knowledge in a
constant feedback loop of top-down prediction and bottom-up sensory input. Interestingly, sensory
input that is in line with our predictions might be processed at lower energy metabolic cost. However,
there is no evidence for this claim yet, possibly due to the scarcity of measures that quantify energy
consumption in the human brain.

Here, we used a novel MR method measuring the cerebral metabolic rate of oxygen during
sensory stimulation of visual sequences that varied in their predictability. Since predictive processing
is driven by estimates of uncertainty, we assessed how confident subjects were in their knowledge of
the underlying patterns. We found that processing predictable sequences steeply decreased in
energetic cost with increasing confidence. Strikingly, these energetic effects were not limited to visual
areas, summing up to a cortical difference of 13% between high and low levels of confidence.
Furthermore, sequences deviating from expectations were energetically cheaper than predictable
ones for low confidence levels, but costlier for high levels. These results speak for a major role of
predictive processing in balancing the brain’s energy budget and emphasize the impact of

interindividual differences when learning predictive patterns.
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Introduction

To produce the energy that fuels neural activity, the brain needs a steady supply of oxygen and
glucose. Neural signaling is estimated to account for 75% of the brain’s energy consumption in grey
matter with 50% of that fraction going towards postsynaptic potentials (Howarth et al., 2012). The rate
of energy consumption is strongly affected by sensory stimulation: In the visual cortex, up to 20% more
energy is used during stimulation (Lin et al., 2010). Such effects cannot be reliably measured by
conventional BOLD imaging, which is strongly driven by hemodynamic effects (Drew, 2019). While
blood flow and energy consumption are tightly coupled at rest, the ratio differs across the cortex
(Devonshire et al., 2012; Drew, 2022; Hyder, 2010) and is impacted by attentional state (Moradi et al.,
2012) as well as stimulation duration (Moradi & Buxton, 2013). Addressing this problem,
multiparametric quantitative BOLD imaging (mgBOLD; Blockley et al., 2013; Bright et al., 2019; Christen
et al., 2012) provides direct access to energy metabolic processes by measuring the cerebral metabolic
rate of oxygen on a voxel level (CMRoz). CMRo; has three key advantages for research on energy
consumption: First, it represents the main resource of ATP production in the brain (Dienel, 2014; Harris
et al.,, 2012) and is biologically interpretable. Second, it combines separate measurements of
hemodynamics and blood (de-)oxygenation. This accounts for differences in neurovascular coupling,
allowing the comparison and integration of CMRo, across the brain. Third, due to the quantitative
approach, CMRo; can be analyzed in absolute values, enabling inference on conditions instead of
contrasts while staying comparable between subjects.

Previous studies on the energetic cost of visual perception purely focused on stimulus
characteristics, presenting simple or complex stimuli and limiting the analysis to the visual cortex
(Griffeth et al., 2015; Lin et al., 2010). However, perception can be understood as a constructive
process that heavily relies on prior knowledge from higher cognitive areas to interpret sensory input
(Clark, 2013; de Lange et al., 2018; Teufel & Fletcher, 2020). The predictive coding framework posits
that the brain is constantly optimizing a model of the world with the goal of minimizing the surprise of
sensory observations (Rao & Ballard, 1999). Deviations from the model lead to error signals and
subsequent model updating which are implemented in the brain as hierarchical feedback loops (Bastos
et al., 2012; Walsh et al., 2020). A cornerstone of predictive processing is the extraction of spatial and
temporal patterns to infer causes from incomplete observations and predict future events from past
and current ones. The latter ability is exemplified by studies investigating statistical learning, where a
sensory stream is generated from specific transitional probabilities. These provide a source of
prediction after repeated exposure (Fiser & Lengyel, 2022; Turk-Browne et al., 2009, 2010). Studies
using such a design revealed lower activation for expected compared to unexpected stimuli across
conventional imaging modalities (Manahova et al., 2018; Richter et al., 2018; Stefanics et al., 2011).

This is expected when understanding predictive coding as a theory of efficient coding (Chalk et al.,
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2018; Quintela-Lépez et al., 2022): By learning the patterns behind sensory input, our predictions can
be optimized to the point where little to no error signals or changes to the internal model are necessary
(for a mathematical derivation see Sengupta et al., 2013). However, there is no empirical evidence
available that this results in reduced energy consumption.

In the present study, we extended an established visual statistical learning design with a multi-
day training phase, maximizing consolidation of the underlying patterns. Additionally, we accounted
for individual differences in the learning process by assessing participants’ confidence in knowing the
underlying patterns (Geurts et al., 2022; Meyniel, Sigman, et al., 2015; Sanders et al., 2016). Predictive
processing theories heavily draw from Bayesian inference models where uncertainty about predictions
has a major effect on perception (Yon & Frith, 2021). While statistical learning is based on continuous,
partly implicit processes (but see Dale et al., 2012; Vadillo et al., 2016), a line of studies has shown that
intermittent confidence ratings separate from the learning process reflect the statistical confidence of
a Bayesian observer during the learning blocks (Bounmy et al., 2023; Meyniel, Schlunegger & Dehaene,
2015; Meyniel & Dehaene, 2017).

To summarize, we here used a MR-derived measure of oxygen consumption to study how
predictive characteristics of external input and internal beliefs impact the brain’s energy balance. We
hypothesized that predictable stimuli are cheaper to process than unexpected stimuli and that this
difference scales with subjective confidence in the predictable patterns. To preview our findings, the
energetic cost of predictable input indeed decreased with confidence in both sensory and higher

cognitive regions. Intriguingly, a general energetic advantage only emerged at high confidence levels.

Results
Confidence ratings and processing speed increase with repeated exposure to visual patterns

Prior to the scanning session, participants completed a three-day online training phase. They
were presented with image sequences of everyday objects that either followed a deterministic pattern
(predictable condition, P) or a random pattern (unpredictable condition, U) (Figures 1a and b). To
ensure vigilance and gaze fixation, participants had to react to upside-down objects, which occurred
irrespective of sequence predictability. Average accuracy exceeded 95% and neither accuracy nor
reaction time differed between conditions (reaction time: t(40)=-1.4, p=.17; accuracy: t(40)=1.51,
p=.14). Separate from the statistical learning blocks, we assessed the trajectory of learning both on an
objective and a subjective scale. To this end, we presented participants with incomplete sequences
and prompted them to choose the correct follow-up object. For each choice, we assessed confidence
ratings as an indicator of uncertainty regarding knowledge of the underlying patterns (Figure 1c). Over
the training days, confidence ratings increased for predictable visual sequences while they remained

constant for unpredictable input (Figure 1d, left). We also saw an objective improvement in pattern
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completion (Figure 1d, right) which was highly correlated with confidence (r=0.82, p<0.001). Since we
did not provide any feedback, this suggests that participants were highly accurate in assessing their
performance.

Directly prior to scanning, we included an additional task that aimed at detecting
improvements in an implicit marker of learning. Similar to the training phase, we presented predictable
and unpredictable sequences. Instead of performing the cover task, participants were instructed to
react to the occurrence of a target object that was shown before each sequence. The target was
randomly chosen from the upcoming objects, meaning it could be anticipated in the predictable
condition. We found that participants detected predictable objects over 10% faster (median RT
change=-10.75%, t=-5.7, p<0.001). Furthermore, this difference scaled with confidence ratings,

meaning that confident subjects gained a stronger increase in processing speed (Figure 1e).
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Figure 1. a. Experimental stimuli were sequences of five everyday objects. Predictable sequences (P) had consistent order
and composition, unpredictable ones (U) were random. During MR acquisition, surprising sequences (S) composed of P and
U were additionally shown. See Methods section for details. b. Stimulus presentation. Objects were shown sequentially and
have no interstimulus interval. With a 10% chance, an image was horizontally flipped, and participants had to react with a
button press. ¢. Sequence completion test after each training day. One to four images of a sequence were shown, and the
correct trailing object had to be chosen from five options. This was followed by a confidence rating prompt. d. Left: Subject-
wise average confidence ratings following respective training days. Black lines and markers indicate day-wise sample medians.
Right: Percentage of correctly chosen trailing images in the completion test. Averaged completion percentage is in steps of
12.5% because eight sequences were tested per day. e. Results of separate object detection task. Detecting a predictable
compared to an unpredictable target was significantly quicker for participants with high confidence (r=-0.54, p<0.001).
Negative values indicate faster reactions for predictable objects.

The interaction of predictability and confidence drives energy consumption
For our main analysis, we first created voxel-wise brain maps of CMRo; from our MR and blood
sampling data (Figure 2a and Methods). We then averaged condition-wise CMRo; values for every

subject within 400 functional regions as defined by the Schaefer parcellation (Schaefer et al., 2018).
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This was done to control for voxel-level noise and to differentiate sensory from higher cognitive
regions. Prior to analyzing the imaging data, we tested for potential confounding effects of the cover
task. Unlike during the training phase, we found differences between conditions (repeated measures
ANOVA: F(2,80)=4.44, p=0.015). Post-hoc tests showed that participants reacted most quickly to
predictable items (Figure 2b). This is surprising, given the independence of the cover task from
sequence predictability and the absence of reaction time differences in the training phase.
Consequently, we controlled for these effects in the following analyses.

In contrast to conventional GLM analyses, our aim was not to localize regions of maximum
effect, but to assess net energetic changes on a larger scale. As argued previously, evoked activity
extends far beyond local peaks which can limit results to the “tip of the iceberg” (Noble et al., 2022,
2023). To address this, we analyzed metabolic effects on the level of functional networks. We used a
whole-brain linear mixed model with predictors of condition, confidence, functional network and
reaction time in the cover task (Methods). Essentially, this model allowed us to explain regional CMRo;
as a linear combination of predictability and confidence, with separate regressors for six functional
networks while accounting for confounding effects of reaction time. The random term of the model
addresses subject-specific baselines of CMRo; on which the fixed terms are added. Confidence values
correspond to the condition-wise average after the last training day, and we used ratings from the
predictable sequences for the surprising condition. All resulting model estimates are relative to the
reference categories of the respective predictors: We used the visual network and the predictable
condition. Importantly, since CMRo; values are quantitative, the model parameters for the reference
levels can be interpreted without referring to a contrast estimate. Significant differences of surprising
and unpredictable sequences compared to predictable ones are indicated by a significant parameter
estimate for non-reference predictor levels.

We first confirmed that our model significantly improves upon a null model that lacks the
experimental variable (BFig=131.51; X*(42)=552.6, p<0.001). Table 1 includes an overview of all
significant predictors and the full model results are provided in the supplement. The intercept of
136.33 represents the grand average CMRo; across subjects and conditions, in units of pmol
0,/min/100g. Validating our approach, this is well within the range of 120-160 usually reported for
healthy human subjects (summarized in Xu et al., 2009, see also Christen et al., 2012; Géttler et al.,
2019). With respect to our main research question, we found no main effect of condition, but a
significant interaction between condition and confidence. This means that, while energy consumption
did not differ between levels of predictability per se, the conditions were differentially affected by
confidence levels. Overall, CMRo, decreases with confidence (denoted by the negative estimate for the
reference category) but this effect is offset in the surprising condition. The linear combination of these

parameters is visualized in Figure 2e (for uncertainty of these estimates refer to Table 1). As the
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reference category corresponds to the predictable condition, our results show a steep decrease of
energetic cost with confidence for predictable sequences. Interestingly, this effect was not significantly
different for unpredictable sequences, suggesting that confidence impacted energetic cost even in the
face of objectively random stimulation. However, the corresponding parameter estimate showed a

guantitative trend towards a weaker effect of confidence.

High confidence reduces energy consumption across the whole cortex

Interestingly, while the functional networks differed in their CMRo; baseline, the interaction
between predictability and confidence was largely consistent across the cortex. The control network
is a notable exception: Here, the decrease of CMRo; with confidence was significantly weaker than in
the other networks. Regarding unpredictable sequences, the control network showed another unique
deviation. Irrespective of confidence levels, its energy consumption was significantly higher than in the
other conditions.

Given that the interaction of condition and confidence was found across networks, we
evaluated the net effect on the whole cortex. To achieve this, we used the significant model
parameters of confidence and network to calculate the predicted CMRo, for low (5" percentile),
average (50™ percentile) and high (95" percentile) confidence. Since CMRo; is a rate of consumption
relative to a tissue mass of 100g, we scaled the predicted energy consumption to the gray-matter mass
of the respective networks (Methods). Strikingly, our data suggest that high confidence reduces
cortical energy consumption by 13.25% (Cl: [0.34; 26.16]) relative to low levels of confidence (Figures

2d).
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Figure 2. a. Flowchart depicting the workflow of CMRo; calculation from experimental data*. Parameter maps show group
averages in cerebral grey matter. Details are described in the method section. b. In the cover task, participants reacted
significantly quicker to predictable than surprising objects (t(40)=-2.9, prwe=0.017) with a trend in the same direction
compared to unpredictable objects (t(40)=-2.24, prwe=0.091). Points show subject-wise averages across the scanning session
and dashed lines indicate condition-wise medians. c. Condition-wise correlations between confidence ratings and reaction
time in the cover task during scanning. We found a significant negative association for the predictable condition (r=-0.42,
prwe=0.018). The effect was similar for the surprising condition but did not survive FWE correction (r=-0.36, prwe=0.066). d.
Left: Oxygen consumption per minute (scaled to network gray-matter mass) as predicted by the significant model terms of
network and confidence. Low, average and high confidence correspond to the 5, 50t and 95t percentile of z-scaled
confidence ratings. Right: Predicted relative energy consumption for subjects with high confidence compared to low
confidence, summed over all networks. The black error bar indicates the 95t confidence interval of estimated energy
consumption in high confidence subjects based on the confidence interval of the model parameter (see Methods). e.
Predicted CMRo; across confidence levels for the reference network (Visual). Shaded areas indicate whether predictable
sequences (green) or surprising sequences (yellow) are more costly. Note that the slope for predictable and unpredictable
entirely overlaps according to our model. The regression lines are slightly offset for visualization purposes. f. Cortical CMRo;
difference between surprising and predictable sequences is explained by confidence (linear regression controlling for reaction
time: RZparial=.18, t(40)=2.92, p=0.005). Data shown are subject-wise cortical CMRo; differences between surprising and
predictable sequences in the experimental data. *Visualizations of head and vessels were created using Servier Medical Art,
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license
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Predictor level Predictor (only significant?) Estimate 95% CI p-value
(in umol 02/min/100g)
Main effect* Intercept 136.33 128.84 — <0.001
143.83
confidence -5.39 -9.88 - 0.019
-0.9
reaction time -4.84 -7.73 - 0.001
-1.95
network[control] 10.91 7.28 - <0.001
14.54
network[DMN] 8.26 5.08 — <0.001
11.43
network[SomMot] -11.81 -15.08 — <0.001
-8.54
network[salience] -17.67 -21.37 - <0.001
-13.96
Interaction condition[S]*confidence 5.67 -2.25 - 0.026
12.45
condition[U]*confidence 5.10 -0.27 - 0.1748
12.94
condition[U]*reaction time 3.12 0.16 — 0.039
6.08
condition[U]*network[control] 6.51 0.8-12.21 0.025
confidence*network[control] 5.03 1.7 - 0.003
8.35

Table 1. Significant predictors estimated by a robust linear mixed model with the following formula (following R conventions):
condition*confidence*network + condition:reaction_time + (1|subject/condition). Estimates reflect absolute CMRo; values
and can be interpreted as a predicted change in energy consumption for a given change in (standardized) predictors. Non-
significant predictors are omitted for brevity. We provide the full model output in the supplement. *Parameters are based
on these reference categories: condition[predictable] and network[visual] SAdditional inclusions due to importance for
experimental interpretation

Relative cost of surprising input is a function of decreasing cost of predictable input

As non-quantitative imaging methods are limited to contrast-based analyses, prediction error
activity is often formalized as a relative increase in activity for surprising over predictable input. Since
our quantitative data resolves the cost of individual conditions, it informs us about the origins of
relative effects. Looking at the condition-wise slopes (Figure 2e), our model suggested that relative
prediction error activity emerges as a function of the decreasing cost of predictable input. We tested
this assumption on our empirical data, regressing the difference between CMRo; in the surprising and
predictable condition against confidence. As expected, prediction error activity emerged at high levels
of confidence (Figure 2f) across the cortex. Interestingly, the opposite was true for low levels of

confidence and both conditions had similar energetic cost at slightly above average confidence.

Cover task reaction times play in major role for energy consumption
According to our model, reaction times in the cover task had a general effect on cortical energy

consumption, with a magnitude similar to the effect of confidence. The slower subjects reacted to the
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upside-down stimuli, the lower their energy consumption was across conditions (Table 1). However,
this effect was significantly weaker in the unpredictable condition. Since confidence was central to the
effect of predictability on energy consumption, we wondered if it also explains differences in reaction
time. We therefore correlated confidence ratings and reaction times for each condition separately.
Interestingly, reaction times decreased with confidence in the predictable and the surprising
condition, although the latter association did not survive correction for multiple comparisons (Figure
2c). Although tentative, this pattern has an intriguing implication for the energy metabolic effects:
While more confident subjects used less energy for predictable input, they also reacted quicker in the
cover task, which in turn increased energy consumption. This led us to ask the question whether these
effects even out according to our model. We recalculated the net cortical energy consumption with
opposing effects of reaction time (methods). While the trend of a cortical CMRo; decrease persisted
(8.27%, Cl: [-5.46; 22.03]), we found no significant evidence when factoring in opposing effects of

reaction time.

Discussion

In the present study, we quantified the metabolic cost of processing visual sequences under
different levels of objective and subjective predictability. According to the predictive coding
framework, humans build a predictive model of the world that is updated when deviations are
encountered (Rao & Ballard, 1999). Expected visual stimuli lead to weaker error signaling and model
updating across processing hierarchies of the cortex (Bastos et al., 2012; Walsh et al., 2020). It has
been argued that these predictive models balance accuracy and complexity (Friston, 2010). This might
promote the minimization of energy usage in the brain (Sengupta et al., 2013). Due to the limited
availability of in-vivo metabolic imaging methods, this assumption has never been tested.

We show that cortical energy consumption is driven by the interaction between the objective
predictability of visual input and subjective confidence in knowing the patterns. When presented with
highly predictable input, energy consumption decreased with increasing confidence, up to a cortical
difference of 13 percent. As a consequence, perceiving surprising input became more costly in
comparison. These effects were remarkably consistent across the cortex, with only the control network
showing slight deviations from the system-level effect. High confidence was also linked to quicker
detection of predictable stimuli. In summary, we found that predictable patterns promote behavioral

improvements and concurrent energy metabolic reductions.

Energy metabolism and efficiency

When formulating biologically realistic models of brain function, accounting for resource
constraints is crucial (Roberts et al., 2014). Healthy brain function relies on constant oxygen and
glucose delivery and shortages can have severe consequences ranging from cognitive deficits to cell

death (Lee et al., 2020; Warren & Frier, 2005). Interestingly, the brain seems to be optimized for
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efficiency, from the firing patterns of neurons to the architecture of functional networks (Yu & Yu,
2017; Zhou et al., 2022). In related cognitive research, it has been argued that learning is an efficient
process that maximizes performance while minimizing cost (Commins, 2018). These lines of research
can be unified from an information-theoretic perspective: Akin to training algorithms in machine
learning, the brain might aim to optimize behavioral accuracy while minimizing the complexity of
internal representations (Zénon et al., 2019). This notion has been generalized under the Free Energy
Principle (Friston, 2010): Humans build an internal model of the world that is continuously updated
with new information, balancing model accuracy with model complexity. Assuming that the brain
represents this model, the efficiency of the model might extend to the energetic efficiency of the
underlying neural activity (Sengupta et al., 2013). Computational studies using neural networks are in
support of this hypothesis: Networks trained to minimize their activity in a sequence prediction task
developed predictive architectures (Ali et al., 2022) and predictive learning algorithms were expressed
as energy-minimization algorithms (Luczak et al., 2022). Despite these theoretical and computational

underpinnings, no direct evidence is available that predictive processing leads to metabolic efficiency.

The role of subjective confidence during statistical learning
The ability to extract transitional probabilities from sequential stimulation is often termed
statistical learning and has a rich tradition in cognitive research (Schapiro & Turk-Browne, 2015).
Previous work focused on the assumed automaticity of the learning process, which can happen in the
absence of intention or awareness (Alamia et al., 2016; Turk-Browne et al., 2005). However, recent
work showed that, while implicit processes are a prerequisite, explicit knowledge can be acquired in
parallel (Batterink et al., 2015; Dale et al., 2012). Blurring the lines further, Conway (2020) argued that
most designs studying the learning process of transitional probabilities tap into the same underlying
process. However, there is evidence for a difference in the neuroanatomical substrates of implicit and
explicit statistical learning, so comparisons between studies should be drawn with care (Aizenstein,
2004). Recently, it has been suggested that a general Bayesian inference process underscores all
probabilistic computation (Fiser & Lengyel, 2022). Consequently, instead of addressing a specific
paradigm, the current work used streams of visual sequences as a tool to elicit probabilistic learning.
By including confidence ratings, we addressed a major parameter of Bayesian inference:
Uncertainty (often referred to by its inverse, precision). Both perception and decisions are subject to
uncertainty, stemming from both external sources (e.g. the visibility of a stimulus) and internal sources
(e.g. noise in neural transmission) (Bach & Dolan, 2012). These sources have downstream effects on
the identification of rules in our environment or the prediction of likely outcomes of a decision.
Furthermore, while Bayesian inference is a powerful model of human cognition, individuals often
deviate from the idealized performance (Acerbi et al., 2014; Beck et al., 2012). These lines of research

suggest that considerable interindividual differences are to be expected when submitting a group of
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participants to the same task. To account for this variance, we used confidence ratings as a proxy for
individual uncertainty.

The exact interpretation and implementation of confidence ratings is still debated. Previously,
it has been defined as the posterior probability that a choice is correct, given the evidence (Pouget et
al., 2016). For a statistically precise estimate, a neural representation of probability distributions is
needed, an assumption that has been called into question (Koblinger et al.,, 2021). A promising
explanation are probabilistic population codes (Knill & Pouget, 2004). Under this model, neurons are
sensitive to different expressions of internal or external variables, adjusting their firing pattern or
frequency according to the similarity of the stimulus to their preferred values. A population of neurons
can then serve as a probability distribution over possible values of the variable (for a review of the
evidence see Ma & Jazayeri, 2014). In this context, confidence ratings provide a summary statistic over
this distribution, indicating the spread of the probability distribution around the central tendency
(Meyniel, Sigman & Mainen, 2015). However, multiple alternative explanations have been developed,
ranging from approximations to non-Bayesian accounts of confidence (Adler & Ma, 2018).
Nevertheless, most formulations agree that some form of confidence-weighting is central to the

human inference process.

The effect of subjective confidence on energetic cost

Our results confirm that confidence determines energy consumption during varying levels of
objective predictability. The link between confidence and brain activation during probabilistic learning
has been investigated in a previous line of studies using conventional BOLD (Bounmy et al., 2023;
Meyniel, Schlunegger & Dehaene, 2015; Meyniel & Dehaene, 2017). Three caveats apply when
comparing these studies to our results. First, we presented long blocks with stable transitional
probabilities, while the underlying parameters were volatile in their design. Second, local BOLD effects
do not necessarily correspond to energy consumption (Drew, 2019), especially when extending the
analysis above local peaks as in our case. Lastly, our data represents an average of multiple minutes of
visual input. Transient brain responses as revealed by BOLD analyses may not correspond to the net
efficiency of a given neural process. Consequently, our data is reflective of the aggregate cost of
continuous precision-weighted updating.

The aforementioned studies found that BOLD activity decreased with confidence while it
increased with surprise in various areas. They also report results for regions most sensitive to precision-
weighted updating: Here, surprising input elicited higher signal across confidence levels. In contrast,
we found that predictable input leads to higher energy consumption than surprising input for low
confidence, while the inverse was true for high confidence. Furthermore, the cost of surprising input
did not change with confidence in our data. A possible explanation is the length of the presentation

blocks in our study: While deviations from the learned sequences were initially surprising, participants
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might have learned the increased variance of the presentation. This would make the surprising
sequences more akin to sequences of intermediate (probabilistic) predictability. In line with this
argument, humans have been shown to track changes in environmental statistics, discounting previous
observations (Beierholm et al., 2020; Maheu et al., 2022). In this case, confidence ratings from the
previously predictable condition would have no lasting effect on the ”surprising” condition.

Nevertheless, we still reproduced the classical pattern of higher cost for surprising compared
to predictable input. In our data, this effect only emerged at high confidence levels due to the
decreasing cost of predictable input. This addresses the arbitration between two potential processes
behind prediction errors: Surprise enhancement assumes that surprising stimuli evoke stronger signals
while expectation suppression assumes decreased signals for predictable input (Feuerriegel et al.,
2021; Manahova et al., 2018). From the perspective of energy consumption, our data is suggestive of
expectation suppression as the source of relative prediction errors. This contrasts with results from
BOLD and EEG studies, where evidence for surprise enhancement is stronger (reviewed in Feuerriegel,
Vogels & Kovécs (2021)).

Interestingly, the effect of confidence on cortical cost was not significantly different between
predictable and objectively random input. Since we gave no feedback during the sequence prediction
task, it is possible that participants thought they detected a pattern in the random sequences. This is
supported by the low, but far from minimal confidence ratings for unpredictable sequences during
training. Humans tend to perceive structure even in random sequences (Huettel et al., 2002) which
might drive perceptual inference in the absence of feedback. Future studies are needed to examine to
which extent the effect of precise priors is independent of their objective accuracy. We also found that
reaction times in the cover task increase with confidence during predictable and surprising sequences.
This indicates that highly confident subjects improved their performance in a concurrent, but unrelated
task. A tentative interpretation is that participants shifted their resources from model updating to
lower-level perception of the objects’ orientations. Under this assumption, the brain does not aim to
decrease energy consumption per se, but rather reassigns resources dynamically under the constraints

of energy availability (Christie & Schrater, 2015).

Energetic changes on a cortical level

In summary, our results show that an experimental manipulation as seemingly small as a
change to transitional probabilities can lead to large differences in energy consumption. Surprisingly,
these effects were highly consistent over the cortex, affecting both sensory and higher cognitive
networks. Importantly, our study does not speak to the functional specificity of these energetic
changes. Rather, we provide evidence for the net effect of perceptual inference on the cortex. The
widespread changes in energy metabolism are in line with recent accounts of brain function as a highly

integrated system (Pessoa, 2023). The focus on localization in neuroimaging research might have been
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supported by traditional mass-univariate analyses, which restrict the view of the brain to the “tip of
the iceberg” (Noble et al., 2022, 2023). Specific to predictive processing, a recent meta-studied found
a brain-spanning prediction network that encompassed functionally connected regions across the
brain (Ficco et al., 2021). Furthermore, a recent preprint reported representations of prior information
across all levels of processing in the mouse cortex (Findling et al., 2023). In line with these works, we
propose that the efficiency of a highly integrative system is best evaluated over a correspondingly large
spatial extent.
Oxidative versus glycolytically driven energy metabolism

Lastly, a recent paper developed an integrative framework drawing a direct link between
predictive processing and differential patterns of BOLD, CMRg;and CMRgc (the cerebral metabolic rate
of glucose) (Theriault et al., 2023). The authors argue that the ratio between ATP-yielding metabolites
differs between bottom-up prediction errors and top-down predictions: Prediction errors rely on fast
and flexible ATP generation via non-oxidative glycolysis, while prediction is based on the more efficient
but less flexible oxidative phosphorylation. Importantly, the BOLD signal is driven by blood flow, which
indicates oxygen availability but not necessarily oxygen consumption (Fox et al., 1988). As blood flow
is more closely related to glucose use than oxygen use, BOLD is a better reflection of CMRgi. than CMRo;
(Raichle & Mintun, 2006). It follows that, on the one hand, our CMRo, data might be less sensitive to
changes in error signaling but on the other hand, it could unveil prediction-related changes that BOLD
does not capture. Future studies could dig deeper into these assumptions with the aim of providing a

complete picture of the energy metabolism of the brain during predictive processing.

Methods

Participants
We recruited 44 participants including students, doctoral researchers, clinic staff and the

general population of Munich. The sample size was based on a-priori analysis, aiming to detect at least
a medium effect size (d>=0.5, alpha=0.05, beta=0.9). All participants took part in a familiarization MRI
session (20 minutes), an online training phase over three days and the main MRI session (70 minutes)
on the day after training completion. Two participants were excluded due to technical problems during
data acquisition. One further subject was excluded from analysis because their data indicated that the
training phase was not properly performed: The same button was pressed for every confidence rating
prompt and performance was still at chance level after the full training phase. The remaining 41
participants (18 female, age [mean(std)] = 27(3.9)) were included for all analyses. The study was
approved by the ethics board of the Technical University of Munich (TUM), and we acquired written

informed consent from all participants.
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Visual stimuli
We selected 224 full-color images of everyday objects from a larger image set (Brady et al.,

2008). The stimuli were chosen to be maximally homogenous regarding salience, e.g., by excluding
food items and bright colors. All allocations of stimuli to subjects and conditions were random. Figure
1a visualizes the creation of the visual streams. A pool of 80 images was generated for every subject,
with half assigned to the predictable condition and the other half to the unpredictable condition. Based
on these images, eight predictable sequences were created for every subject. These objects could only
occur in the sequence and position determined during stimulus creation. For the unpredictable
condition, a starting set of eight sequences was created. After all were presented during the training
or scanning phase, eight completely new sequences were randomly created for every repetition.
Consequently, these objects never occurred in the same sequence or position, but the total number
of occurrences was the same as for predictable objects. Lastly, only for the scanning phase, half of the
predictable sequences and half of the unpredictable objects were combined into surprising sequences.
Predictable sequences formed the basis but had one to three objects between position two and five
replaced with a random object from the unpredictable condition. The first object was always

unchanged to trigger conditional predictions based on the learned transition probabilities.

Experimental design
Implementation. We used Psychopy (Peirce et al., 2019) to implement the design. The online training

sessions were realized using pavlovia.org, where Javascript-translated Psychopy experiments can be
run online with millisecond precision (Bridges et al., 2020; Sauter et al., 2020).

Main task. We presented participants with continuous visual streams based on the described object
sequences. Each stimulus was presented for 800ms with no inter-stimulus interval within sequence
and a 1100ms fixation cross between sequences. When all unique sequences of a condition were
shown, their order was reshuffled for continued presentation with the constraint that objects (or
sequences) could not appear twice in a row. This was done to minimize confounding effects of
repetition suppression. To ensure fixation and concentration, participants were instructed to quickly
react to occurrences of upside-down objects. These appeared with a probability of 10%, independent
of condition.

Training phase. Over the course of three days prior to the main scanning session, participants followed
an online implementation of the main design. This phase only included the predictable und
unpredictable sequences. We instructed every participant to perform the training in a quiet
environment without distractions. Stimulation blocks lasted 20 minutes per day, with a break of one
minute after 10 minutes. Instructions were shown on screen before the stimulation began and the first
day included a five-minute familiarization block with on-screen feedback regarding cover-task button
presses. The instructions stressed the importance of the cover task, but also noted that questions

regarding the order of objects in a sequence would follow each training day. During this task,
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participants saw eight incomplete sequences (the first one to four objects were shown) for both
conditions (to keep image familiarity the same across conditions). After every sequence, participants
chose what they assumed would be the correct trailing object from five options and gave a confidence
rating on a scale of one to seven. No feedback was given regarding performance and no information
on the underlying conditions was disclosed.

Imaging phase. During scanning, stimuli were presented against a grey background and subtended 4°
of visual angle. Each condition was presented for three long blocks, during a pcASL sequence (6
minutes), a T2* sequence (5.5 minutes) and a DSC sequence (2.5 minutes). The order was randomized,
although a condition could not occur three times in a row. We left breaks of one minute between each
consecutive sequence. During the T2 sequence, there was no experimental stimulation. Per condition,
a total of 169 object sequences over a stimulation time of approximately 14 minutes were presented.
Before every scanning sequence, a reminder regarding the cover task was shown on screen.
Additionally, participants got feedback on their mean reaction time after each sequence to promote
attentiveness and motivation. We disclosed no information regarding the sequence patterns and the
imaging session included no sequence completion test.

Object detection task. On the day of the imaging session, prior to entering the scanner room,
participants performed an object detection task on a laptop. The presentation format followed the
specifications of the main task, except for transitions between sequences. We presented eight
unpredictable (reshuffled) and eight predictable (as learnt) sequences in random order. Prior to every
sequence, a target object from the following sequence was shown. An onscreen prompt instructed
participants to react as quickly as possible to the presentation of the target image by pressing the
Arrow Up button. During the task, the target image was presented for five seconds. To allow for

anticipation, it could only match positions two to five of the following sequence.

MRI acquisition
For CMRo2 mapping, the following sequences were acquired:

e  Multi-echo spin-echo T2 mapping: 3D gradient spin echo (GRASE) readout as described
previously (Kaczmarz et al., 2020), 8 echoes, TE1 = ATE = 16ms, TR=251ms, a=90°, voxel size
2x2x3.3mm?, 35 slices. T2 data was acquired once per subject, without any task.

e  Multi-echo gradient-echo T2* mapping: As described previously (Hirsch et al., 2014; Kaczmarz
etal., 2020), 12 echoes, TE1 = ATE = 5ms, TR=2229ms, a=30°, voxel size 2x2x3mm?3, gap 0.3mm,
35 slices. T2* was acquired for all conditions.

e Dynamic susceptibility imaging (DSC): As described previously (Hedderich et al., 2019).
Injection of gadolinium-based contrast agent as a bolus after 5 dynamic scans, 0.1ml/kg
(maximum: 8ml per injection, 16ml per session), flow rate: 4ml/s, plus 25ml NaCl. Single-shot

GRE-EPI, EPI factor 49, 80 dynamic scans, TR = 2.0s, a=60°, acquisition voxel size 2x2x3.5mm?3,
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35 slices. To stay within the limits of a full clinical dosage (16ml), we acquired DSC in two
conditions only: Predictable and unpredictable. Processing of the data in the surprising
condition used DSC from the predictable condition.

e Pseudo-continuous arterial spin labeling (pcASL): As described previously (Alsop et al., 2015),
and implemented according to (Gottler et al., 2019; Kaczmarz et al., 2020). PLD 1800ms, label
duration 1800ms, 4 background suppression pulses, 2D EPI readout, TE=11lms,
TR=4500ms, a=90°, 20 slices, EPI factor 29, acquisition voxel size 3.28x3.5x6.0mm?3, gap
0.6mm, 30 dynamic scans including a proton density weighted MO scan. ASL was acquired for

all conditions.

Prior to data acquisition, a venous catheter was placed by a medical doctor through which
blood samples were taken and sent to our in-house clinical chemistry laboratory. Creatinin values were
analyzed as an indicator of healthy kidney function and contrast agent was only applied for subjects
below a threshold of 1.3. No subject exceeded this value. Hemoglobin and hematocrit were requested
and used in modelling of CMRos>. Finally, arterial oxygen saturation was measured via a pulse oximeter

(Nonin 7500FO, Nonin Medical B.V., The Netherlands).

MRI data processing
To calculate CMRo,, the following parameters were integrated and derived as described below:

The oxygen content of blood (O, saturation and Hematocrit), the flow of blood (CBF), and the relative
oxygen extraction (OEF). The processing of the quantitative parameter maps was performed with in-
house scripts in MATLAB and SPM12 (Wellcome Trust Centre for Neuroimaging, UCL, London, UK). T2*
images were corrected for macroscopic magnetic background gradients with a standard sinc-Gauss
excitation pulse (Baudrexel et al., 2009; Hirsch & Preibisch, 2013). Motion correction was performed
using redundant acquisitions of k-space center (N6th et al., 2014). R2’ maps are derived from T2 and
T2* images and yield the transverse, reversible relaxation rate that is dependent on the vascular dHb
content (Blockley et al., 2013, 2015; Bright et al., 2019). However, confounds from uncorrectable
strong magnetic field inhomogeneities at air-tissue boundaries, iron deposition in deep GM structures
as well as white matter structure need to be considered (Hirsch & Preibisch, 2013; Kaczmarz et al.,
2020). The cerebral blood volume (CBV) was derived from DSC MRI via full integration of leakage-
corrected AR2*-curves (Boxermann, J.L., Schmainda, K.M., Weisskoff, R.M., 2006) and normalization
to a white matter value of 2.5% (Leenders et al., 1990) as described previously (Hedderich et al., 2019;
Kluge et al., 2016). From R2’ and CBV parameter maps, the oxygen extraction fraction (OEF) was
calculated (Christen et al., 2012; Hirsch et al., 2014; Yablonskiy & Haacke, 1994). CBF maps were
calculated from pcASL data, based on average pairwise differences of motion-corrected label and

control images and a proton-density weighted image.
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For each subject and condition, we calculated CMRo; in a voxel-wise manner by combining all

parameter maps via Fick’s principle
CMRo; = OEF - CBF - Cao:

where Cao; is the oxygen carrying capacity of hemoglobin and was calculated as Cag, = 0.334 -
Hct - 55.6 - O,sat, with O,sat being the oxygen saturation measured by the pulse oximeter (Bright et
al., 2019; Y. Ma et al., 2020) and Hct representing Hematocrit as measured by blood sampling prior to
scanning. CBF was upscaled by 25% to account for systematic CBF underestimation due to four
background-suppression pulses (Garcia et al., 2005; Mutsaerts et al., 2014). All parameter maps of
each individual subject were registered to the first echo of their multi echo T2 data.

For statistical analysis of CMRo2, we only included voxels with a grey matter probability of >
0.5. Furthermore, the images were masked using an intersection mask to exclude voxels with excessive
susceptibility, indicative of artefacts (T2 and T2* > 120ms, R2’ > 9ms) and voxels with biologically

unlikely CBF (> 90 ml/min/100g) or OEF (> 90%).

Statistical analysis
Mixed models. We used robust linear mixed models as implemented in the R package robustimer

(Koller, 2016) to minimize the effect of outliers. This method uses the Huber loss function, which is
guadratic for small differences, but linear for large differences. The random model term was used to
specify conditions as repeated (nested) measurements within subjects. Consequently, our model
estimated a subject-wise CMRo; baseline for each condition. The fixed effects included a three-way
interaction of condition, confidence and network as well as a two-way interaction of condition and
reaction time in the covertask. Confidence values were based on the average condition-wise ratings
after the last training day. Since surprising sequences were based on predictable ones, we assigned
the same confidence ratings.

The input to our model were condition-wise regional CMRo; values, obtained by the median
voxel value within 400 functional areas (100 for model replication) as defined by the Schaefer
parcellation (Schaefer et al., 2018). 30 of the 400 areas, mainly in the temporal pole and orbitofrontal
cortex, had to be excluded from the analysis. This was due to susceptibility artefacts in the R2’ maps,
leading to signal dropout in these regions. The limbic network is therefore not covered by our model.
Across subjects and areas, a total of 45507 observations entered the model estimation. We z-
standardized the behavioral predictors and left the outcome CMRo; values unchanged. For model
estimation, we chose the predictable condition and the visual network as reference categories. A
significant reference effect in the absence of significant parameter estimates for other categories
means that the effect of the predictor does not vary across categorical levels. This also means that a
significant effect for a non-reference category level has to be interpreted in relation to the main effect.

Finally, we compared our model to a null model without the condition predictor using the performance
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package (Lidecke et al., 2021) for standard mixed models as implemented in Ime4. Since the model
outcome represents absolute CMRo;, parameter estimates can be interpreted as the predicted change
in energy cost for a given change in standardized predictors.

Model-based CMRo; cost predictions. For model-based predictions, we added the corresponding
parameter estimates as described in the results. Total CMRo, was therefore calculated as the sum of
the intercept (the sample baseline in the visual network), the network main effect (the difference of
the network baseline from the intercept) and the main effect of confidence. We calculated the
predicted cortical CMRo, for weakly confident (5" percentile, confidence(z)=-1.96), average (50"
percentile, confidence(z)=0) and highly confident (95" percentile, confidence(z)=1.96) subjects. The
outcome was then scaled to the grey matter mass of each network in MNI space, approximated by
grey matter voxel count multiplied by a tissue mass of 0.0014 gram per cubic millimeter (Barber et al.,
1970; IT'IS Foundation, 2022). Finally, predicted CMRo, was summed over networks to obtain cortical
values. We repeated this procedure for the 5" and 95" percentile of the confidence parameter

estimate (Table 1) to obtain an upper and lower bound of the predicted energy cost.
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