
The energy metabolic footprint of predictive processing in the human brain 
 

André Hechler1,2,*, Floris P. de Lange3, Valentin Riedl1,2 

1 Department of Neuroradiology, Neuroimaging Center, Technical University of Munich, Munich, Germany 

2 Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany 

3 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands 

*Corresponding author. Contact: andre.hechler@tum.de 

 

Abstract 

Neural activity is a highly energy-intensive process. In the human brain, signaling consumes up 

to 75% of the available energy resources with postsynaptic potentials as the largest factor. Visual 

processing is especially costly, with increases in energy consumption of up to 20% in the visual cortex. 

In recent years, vision has been cast as a constructive process, harnessing prior knowledge in a 

constant feedback loop of top-down prediction and bottom-up sensory input. Interestingly, sensory 

input that is in line with our predictions might be processed at lower energy metabolic cost. However, 

there is no evidence for this claim yet, possibly due to the scarcity of measures that quantify energy 

consumption in the human brain. 

Here, we used a novel MR method measuring the cerebral metabolic rate of oxygen during 

sensory stimulation of visual sequences that varied in their predictability. Since predictive processing 

is driven by estimates of uncertainty, we assessed how confident subjects were in their knowledge of 

the underlying patterns. We found that processing predictable sequences steeply decreased in 

energetic cost with increasing confidence. Strikingly, these energetic effects were not limited to visual 

areas, summing up to a cortical difference of 13% between high and low levels of confidence. 

Furthermore, sequences deviating from expectations were energetically cheaper than predictable 

ones for low confidence levels, but costlier for high levels. These results speak for a major role of 

predictive processing in balancing the brain’s energy budget and emphasize the impact of 

interindividual differences when learning predictive patterns. 
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Introduction 

To produce the energy that fuels neural activity, the brain needs a steady supply of oxygen and 

glucose. Neural signaling is estimated to account for 75% of the brain’s energy consumption in grey 

matter with 50% of that fraction going towards postsynaptic potentials (Howarth et al., 2012). The rate 

of energy consumption is strongly affected by sensory stimulation: In the visual cortex, up to 20% more 

energy is used during stimulation (Lin et al., 2010). Such effects cannot be reliably measured by 

conventional BOLD imaging, which is strongly driven by hemodynamic effects (Drew, 2019). While 

blood flow and energy consumption are tightly coupled at rest, the ratio differs across the cortex 

(Devonshire et al., 2012; Drew, 2022; Hyder, 2010) and is impacted by attentional state (Moradi et al., 

2012) as well as stimulation duration (Moradi & Buxton, 2013). Addressing this problem, 

multiparametric quantitative BOLD imaging (mqBOLD; Blockley et al., 2013; Bright et al., 2019; Christen 

et al., 2012) provides direct access to energy metabolic processes by measuring the cerebral metabolic 

rate of oxygen on a voxel level (CMRO2). CMRO2 has three key advantages for research on energy 

consumption: First, it represents the main resource of ATP production in the brain (Dienel, 2014; Harris 

et al., 2012) and is biologically interpretable. Second, it combines separate measurements of 

hemodynamics and blood (de-)oxygenation. This accounts for differences in neurovascular coupling, 

allowing the comparison and integration of CMRO2 across the brain. Third, due to the quantitative 

approach, CMRO2 can be analyzed in absolute values, enabling inference on conditions instead of 

contrasts while staying comparable between subjects. 

Previous studies on the energetic cost of visual perception purely focused on stimulus 

characteristics, presenting simple or complex stimuli and limiting the analysis to the visual cortex 

(Griffeth et al., 2015; Lin et al., 2010). However, perception can be understood as a constructive 

process that heavily relies on prior knowledge from higher cognitive areas to interpret sensory input 

(Clark, 2013; de Lange et al., 2018; Teufel & Fletcher, 2020). The predictive coding framework posits 

that the brain is constantly optimizing a model of the world with the goal of minimizing the surprise of 

sensory observations (Rao & Ballard, 1999). Deviations from the model lead to error signals and 

subsequent model updating which are implemented in the brain as hierarchical feedback loops (Bastos 

et al., 2012; Walsh et al., 2020). A cornerstone of predictive processing is the extraction of spatial and 

temporal patterns to infer causes from incomplete observations and predict future events from past 

and current ones. The latter ability is exemplified by studies investigating statistical learning, where a 

sensory stream is generated from specific transitional probabilities. These provide a source of 

prediction after repeated exposure (Fiser & Lengyel, 2022; Turk-Browne et al., 2009, 2010). Studies 

using such a design revealed lower activation for expected compared to unexpected stimuli across 

conventional imaging modalities (Manahova et al., 2018; Richter et al., 2018; Stefanics et al., 2011). 

This is expected when understanding predictive coding as a theory of efficient coding (Chalk et al., 
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2018; Quintela-López et al., 2022): By learning the patterns behind sensory input, our predictions can 

be optimized to the point where little to no error signals or changes to the internal model are necessary 

(for a mathematical derivation see Sengupta et al., 2013). However, there is no empirical evidence 

available that this results in reduced energy consumption. 

In the present study, we extended an established visual statistical learning design with a multi-

day training phase, maximizing consolidation of the underlying patterns. Additionally, we accounted 

for individual differences in the learning process by assessing participants’ confidence in knowing the 

underlying patterns (Geurts et al., 2022; Meyniel, Sigman, et al., 2015; Sanders et al., 2016). Predictive 

processing theories heavily draw from Bayesian inference models where uncertainty about predictions 

has a major effect on perception (Yon & Frith, 2021). While statistical learning is based on continuous, 

partly implicit processes (but see Dale et al., 2012; Vadillo et al., 2016), a line of studies has shown that 

intermittent confidence ratings separate from the learning process reflect the statistical confidence of 

a Bayesian observer during the learning blocks (Bounmy et al., 2023; Meyniel, Schlunegger & Dehaene, 

2015; Meyniel & Dehaene, 2017).   

To summarize, we here used a MR-derived measure of oxygen consumption to study how 

predictive characteristics of external input and internal beliefs impact the brain’s energy balance. We 

hypothesized that predictable stimuli are cheaper to process than unexpected stimuli and that this 

difference scales with subjective confidence in the predictable patterns. To preview our findings, the 

energetic cost of predictable input indeed decreased with confidence in both sensory and higher 

cognitive regions. Intriguingly, a general energetic advantage only emerged at high confidence levels. 

 

Results 

Confidence ratings and processing speed increase with repeated exposure to visual patterns 

Prior to the scanning session, participants completed a three-day online training phase. They 

were presented with image sequences of everyday objects that either followed a deterministic pattern 

(predictable condition, P) or a random pattern (unpredictable condition, U) (Figures 1a and b). To 

ensure vigilance and gaze fixation, participants had to react to upside-down objects, which occurred 

irrespective of sequence predictability. Average accuracy exceeded 95% and neither accuracy nor 

reaction time differed between conditions (reaction time: t(40)=-1.4, p=.17; accuracy: t(40)=1.51, 

p=.14). Separate from the statistical learning blocks, we assessed the trajectory of learning both on an 

objective and a subjective scale. To this end, we presented participants with incomplete sequences 

and prompted them to choose the correct follow-up object. For each choice, we assessed confidence 

ratings as an indicator of uncertainty regarding knowledge of the underlying patterns (Figure 1c). Over 

the training days, confidence ratings increased for predictable visual sequences while they remained 

constant for unpredictable input (Figure 1d, left). We also saw an objective improvement in pattern 
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completion (Figure 1d, right) which was highly correlated with confidence (r=0.82, p<0.001). Since we 

did not provide any feedback, this suggests that participants were highly accurate in assessing their 

performance.  

Directly prior to scanning, we included an additional task that aimed at detecting 

improvements in an implicit marker of learning. Similar to the training phase, we presented predictable 

and unpredictable sequences. Instead of performing the cover task, participants were instructed to 

react to the occurrence of a target object that was shown before each sequence. The target was 

randomly chosen from the upcoming objects, meaning it could be anticipated in the predictable 

condition. We found that participants detected predictable objects over 10% faster (median RT 

change=-10.75%, t=-5.7, p<0.001). Furthermore, this difference scaled with confidence ratings, 

meaning that confident subjects gained a stronger increase in processing speed (Figure 1e).  

 
Figure 1. a. Experimental stimuli were sequences of five everyday objects. Predictable sequences (P) had consistent order 
and composition, unpredictable ones (U) were random. During MR acquisition, surprising sequences (S) composed of P and 
U were additionally shown. See Methods section for details. b. Stimulus presentation. Objects were shown sequentially and 
have no interstimulus interval. With a 10% chance, an image was horizontally flipped, and participants had to react with a 
button press. c. Sequence completion test after each training day. One to four images of a sequence were shown, and the 
correct trailing object had to be chosen from five options. This was followed by a confidence rating prompt. d. Left: Subject-
wise average confidence ratings following respective training days. Black lines and markers indicate day-wise sample medians. 
Right: Percentage of correctly chosen trailing images in the completion test. Averaged completion percentage is in steps of 
12.5% because eight sequences were tested per day. e. Results of separate object detection task. Detecting a predictable 
compared to an unpredictable target was significantly quicker for participants with high confidence (r=-0.54, p<0.001). 
Negative values indicate faster reactions for predictable objects. 

The interaction of predictability and confidence drives energy consumption 

For our main analysis, we first created voxel-wise brain maps of CMRO2 from our MR and blood 

sampling data (Figure 2a and Methods). We then averaged condition-wise CMRO2 values for every 

subject within 400 functional regions as defined by the Schaefer parcellation (Schaefer et al., 2018). 
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This was done to control for voxel-level noise and to differentiate sensory from higher cognitive 

regions. Prior to analyzing the imaging data, we tested for potential confounding effects of the cover 

task. Unlike during the training phase, we found differences between conditions (repeated measures 

ANOVA: F(2,80)=4.44, p=0.015). Post-hoc tests showed that participants reacted most quickly to 

predictable items (Figure 2b). This is surprising, given the independence of the cover task from 

sequence predictability and the absence of reaction time differences in the training phase. 

Consequently, we controlled for these effects in the following analyses. 

In contrast to conventional GLM analyses, our aim was not to localize regions of maximum 

effect, but to assess net energetic changes on a larger scale. As argued previously, evoked activity 

extends far beyond local peaks which can limit results to the “tip of the iceberg” (Noble et al., 2022, 

2023). To address this, we analyzed metabolic effects on the level of functional networks. We used a 

whole-brain linear mixed model with predictors of condition, confidence, functional network and 

reaction time in the cover task (Methods). Essentially, this model allowed us to explain regional CMRO2 

as a linear combination of predictability and confidence, with separate regressors for six functional 

networks while accounting for confounding effects of reaction time. The random term of the model 

addresses subject-specific baselines of CMRO2 on which the fixed terms are added. Confidence values 

correspond to the condition-wise average after the last training day, and we used ratings from the 

predictable sequences for the surprising condition. All resulting model estimates are relative to the 

reference categories of the respective predictors: We used the visual network and the predictable 

condition. Importantly, since CMRO2 values are quantitative, the model parameters for the reference 

levels can be interpreted without referring to a contrast estimate. Significant differences of surprising 

and unpredictable sequences compared to predictable ones are indicated by a significant parameter 

estimate for non-reference predictor levels.  

We first confirmed that our model significantly improves upon a null model that lacks the 

experimental variable (BFlog=131.51; X²(42)=552.6, p<0.001). Table 1 includes an overview of all 

significant predictors and the full model results are provided in the supplement. The intercept of 

136.33 represents the grand average CMRO2 across subjects and conditions, in units of µmol 

O2/min/100g. Validating our approach, this is well within the range of 120-160 usually reported for 

healthy human subjects (summarized in Xu et al., 2009, see also Christen et al., 2012; Göttler et al., 

2019). With respect to our main research question, we found no main effect of condition, but a 

significant interaction between condition and confidence. This means that, while energy consumption 

did not differ between levels of predictability per se, the conditions were differentially affected by 

confidence levels. Overall, CMRO2 decreases with confidence (denoted by the negative estimate for the 

reference category) but this effect is offset in the surprising condition. The linear combination of these 

parameters is visualized in Figure 2e (for uncertainty of these estimates refer to Table 1). As the 
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reference category corresponds to the predictable condition, our results show a steep decrease of 

energetic cost with confidence for predictable sequences. Interestingly, this effect was not significantly 

different for unpredictable sequences, suggesting that confidence impacted energetic cost even in the 

face of objectively random stimulation. However, the corresponding parameter estimate showed a 

quantitative trend towards a weaker effect of confidence. 

High confidence reduces energy consumption across the whole cortex 

Interestingly, while the functional networks differed in their CMRO2 baseline, the interaction 

between predictability and confidence was largely consistent across the cortex. The control network 

is a notable exception: Here, the decrease of CMRO2 with confidence was significantly weaker than in 

the other networks. Regarding unpredictable sequences, the control network showed another unique 

deviation. Irrespective of confidence levels, its energy consumption was significantly higher than in the 

other conditions. 

Given that the interaction of condition and confidence was found across networks, we 

evaluated the net effect on the whole cortex. To achieve this, we used the significant model 

parameters of confidence and network to calculate the predicted CMRO2 for low (5th percentile), 

average (50th percentile) and high (95th percentile) confidence. Since CMRO2 is a rate of consumption 

relative to a tissue mass of 100g, we scaled the predicted energy consumption to the gray-matter mass 

of the respective networks (Methods). Strikingly, our data suggest that high confidence reduces 

cortical energy consumption by 13.25% (CI: [0.34; 26.16]) relative to low levels of confidence (Figures 

2d).  
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Figure 2. a. Flowchart depicting the workflow of CMRO2 calculation from experimental data*. Parameter maps show group 
averages in cerebral grey matter. Details are described in the method section. b. In the cover task, participants reacted 
significantly quicker to predictable than surprising objects (t(40)=-2.9, pFWE=0.017) with a trend in the same direction 
compared to unpredictable objects (t(40)=-2.24, pFWE=0.091). Points show subject-wise averages across the scanning session 
and dashed lines indicate condition-wise medians. c. Condition-wise correlations between confidence ratings and reaction 
time in the cover task during scanning. We found a significant negative association for the predictable condition (r=-0.42, 
pFWE=0.018). The effect was similar for the surprising condition but did not survive FWE correction (r=-0.36, pFWE=0.066). d. 
Left: Oxygen consumption per minute (scaled to network gray-matter mass) as predicted by the significant model terms of 
network and confidence. Low, average and high confidence correspond to the 5th, 50th and 95th percentile of z-scaled 
confidence ratings. Right: Predicted relative energy consumption for subjects with high confidence compared to low 
confidence, summed over all networks. The black error bar indicates the 95th confidence interval of estimated energy 
consumption in high confidence subjects based on the confidence interval of the model parameter (see Methods). e. 
Predicted CMRO2 across confidence levels for the reference network (Visual). Shaded areas indicate whether predictable 
sequences (green) or surprising sequences (yellow) are more costly. Note that the slope for predictable and unpredictable 
entirely overlaps according to our model. The regression lines are slightly offset for visualization purposes. f. Cortical CMRO2 
difference between surprising and predictable sequences is explained by confidence (linear regression controlling for reaction 
time: R2

partial=.18, t(40)=2.92, p=0.005). Data shown are subject-wise cortical CMRO2 differences between surprising and 
predictable sequences in the experimental data. *Visualizations of head and vessels were created using Servier Medical Art, 
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license 
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Predictor level Predictor (only significant§) Estimate  
(in µmol O2/min/100g) 

95% CI p-value 

Main effect*  Intercept  136.33 128.84 – 

143.83 

<0.001 

 confidence -5.39 -9.88 –  

-0.9  

0.019 

 reaction time -4.84 -7.73 –  

-1.95 

0.001 

 network[control] 10.91 7.28 – 

14.54 

<0.001 

 network[DMN] 8.26 5.08 – 

11.43 

<0.001 

 network[SomMot] -11.81 -15.08 –  

-8.54 

<0.001 

 network[salience] -17.67 -21.37 –  

-13.96 

<0.001 

Interaction condition[S]*confidence 5.67 -2.25 – 

12.45 

0.026 

 condition[U]*confidence 5.10 -0.27 – 

12.94 

0.174§ 

 condition[U]*reaction time 3.12 0.16 –  

6.08 

0.039 

 condition[U]*network[control] 6.51 0.8 – 12.21 0.025 

 confidence*network[control] 5.03 1.7 –  

8.35 

0.003 

Table 1. Significant predictors estimated by a robust linear mixed model with the following formula (following R conventions): 

condition*confidence*network + condition:reaction_time + (1|subject/condition). Estimates reflect absolute CMRO2 values 

and can be interpreted as a predicted change in energy consumption for a given change in (standardized) predictors. Non-

significant predictors are omitted for brevity. We provide the full model output in the supplement. *Parameters are based 

on these reference categories: condition[predictable] and network[visual] §Additional inclusions due to importance for 

experimental interpretation 

Relative cost of surprising input is a function of decreasing cost of predictable input 

As non-quantitative imaging methods are limited to contrast-based analyses, prediction error 

activity is often formalized as a relative increase in activity for surprising over predictable input. Since 

our quantitative data resolves the cost of individual conditions, it informs us about the origins of 

relative effects. Looking at the condition-wise slopes (Figure 2e), our model suggested that relative 

prediction error activity emerges as a function of the decreasing cost of predictable input. We tested 

this assumption on our empirical data, regressing the difference between CMRO2 in the surprising and 

predictable condition against confidence. As expected, prediction error activity emerged at high levels 

of confidence (Figure 2f) across the cortex. Interestingly, the opposite was true for low levels of 

confidence and both conditions had similar energetic cost at slightly above average confidence.  

Cover task reaction times play in major role for energy consumption 

According to our model, reaction times in the cover task had a general effect on cortical energy 

consumption, with a magnitude similar to the effect of confidence. The slower subjects reacted to the 
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upside-down stimuli, the lower their energy consumption was across conditions (Table 1). However, 

this effect was significantly weaker in the unpredictable condition. Since confidence was central to the 

effect of predictability on energy consumption, we wondered if it also explains differences in reaction 

time. We therefore correlated confidence ratings and reaction times for each condition separately. 

Interestingly, reaction times decreased with confidence in the predictable and the surprising 

condition, although the latter association did not survive correction for multiple comparisons (Figure 

2c). Although tentative, this pattern has an intriguing implication for the energy metabolic effects: 

While more confident subjects used less energy for predictable input, they also reacted quicker in the 

cover task, which in turn increased energy consumption. This led us to ask the question whether these 

effects even out according to our model. We recalculated the net cortical energy consumption with 

opposing effects of reaction time (methods). While the trend of a cortical CMRO2 decrease persisted 

(8.27%, CI: [-5.46; 22.03]), we found no significant evidence when factoring in opposing effects of 

reaction time.  

Discussion 

In the present study, we quantified the metabolic cost of processing visual sequences under 

different levels of objective and subjective predictability. According to the predictive coding 

framework, humans build a predictive model of the world that is updated when deviations are 

encountered (Rao & Ballard, 1999). Expected visual stimuli lead to weaker error signaling and model 

updating across processing hierarchies of the cortex (Bastos et al., 2012; Walsh et al., 2020). It has 

been argued that these predictive models balance accuracy and complexity (Friston, 2010). This might 

promote the minimization of energy usage in the brain (Sengupta et al., 2013). Due to the limited 

availability of in-vivo metabolic imaging methods, this assumption has never been tested.  

We show that cortical energy consumption is driven by the interaction between the objective 

predictability of visual input and subjective confidence in knowing the patterns. When presented with 

highly predictable input, energy consumption decreased with increasing confidence, up to a cortical 

difference of 13 percent. As a consequence, perceiving surprising input became more costly in 

comparison. These effects were remarkably consistent across the cortex, with only the control network 

showing slight deviations from the system-level effect. High confidence was also linked to quicker 

detection of predictable stimuli. In summary, we found that predictable patterns promote behavioral 

improvements and concurrent energy metabolic reductions.  

Energy metabolism and efficiency 

When formulating biologically realistic models of brain function, accounting for resource 

constraints is crucial (Roberts et al., 2014). Healthy brain function relies on constant oxygen and 

glucose delivery and shortages can have severe consequences ranging from cognitive deficits to cell 

death (Lee et al., 2020; Warren & Frier, 2005). Interestingly, the brain seems to be optimized for 
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efficiency, from the firing patterns of neurons to the architecture of functional networks (Yu & Yu, 

2017; Zhou et al., 2022). In related cognitive research, it has been argued that learning is an efficient 

process that maximizes performance while minimizing cost (Commins, 2018). These lines of research 

can be unified from an information-theoretic perspective: Akin to training algorithms in machine 

learning, the brain might aim to optimize behavioral accuracy while minimizing the complexity of 

internal representations (Zénon et al., 2019). This notion has been generalized under the Free Energy 

Principle (Friston, 2010): Humans build an internal model of the world that is continuously updated 

with new information, balancing model accuracy with model complexity. Assuming that the brain 

represents this model, the efficiency of the model might extend to the energetic efficiency of the 

underlying neural activity (Sengupta et al., 2013). Computational studies using neural networks are in 

support of this hypothesis: Networks trained to minimize their activity in a sequence prediction task 

developed predictive architectures (Ali et al., 2022) and predictive learning algorithms were expressed 

as energy-minimization algorithms (Luczak et al., 2022). Despite these theoretical and computational 

underpinnings, no direct evidence is available that predictive processing leads to metabolic efficiency. 

The role of subjective confidence during statistical learning 

The ability to extract transitional probabilities from sequential stimulation is often termed 

statistical learning and has a rich tradition in cognitive research (Schapiro & Turk-Browne, 2015). 

Previous work focused on the assumed automaticity of the learning process, which can happen in the 

absence of intention or awareness (Alamia et al., 2016; Turk-Browne et al., 2005). However, recent 

work showed that, while implicit processes are a prerequisite, explicit knowledge can be acquired in 

parallel (Batterink et al., 2015; Dale et al., 2012). Blurring the lines further, Conway (2020) argued that 

most designs studying the learning process of transitional probabilities tap into the same underlying 

process. However, there is evidence for a difference in the neuroanatomical substrates of implicit and 

explicit statistical learning, so comparisons between studies should be drawn with care (Aizenstein, 

2004). Recently, it has been suggested that a general Bayesian inference process underscores all 

probabilistic computation (Fiser & Lengyel, 2022). Consequently, instead of addressing a specific 

paradigm, the current work used streams of visual sequences as a tool to elicit probabilistic learning. 

  By including confidence ratings, we addressed a major parameter of Bayesian inference: 

Uncertainty (often referred to by its inverse, precision). Both perception and decisions are subject to 

uncertainty, stemming from both external sources (e.g. the visibility of a stimulus) and internal sources 

(e.g. noise in neural transmission) (Bach & Dolan, 2012). These sources have downstream effects on 

the identification of rules in our environment or the prediction of likely outcomes of a decision. 

Furthermore, while Bayesian inference is a powerful model of human cognition, individuals often 

deviate from the idealized performance (Acerbi et al., 2014; Beck et al., 2012). These lines of research 

suggest that considerable interindividual differences are to be expected when submitting a group of 
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participants to the same task. To account for this variance, we used confidence ratings as a proxy for 

individual uncertainty. 

The exact interpretation and implementation of confidence ratings is still debated. Previously, 

it has been defined as the posterior probability that a choice is correct, given the evidence (Pouget et 

al., 2016). For a statistically precise estimate, a neural representation of probability distributions is 

needed, an assumption that has been called into question (Koblinger et al., 2021). A promising 

explanation are probabilistic population codes (Knill & Pouget, 2004). Under this model, neurons are 

sensitive to different expressions of internal or external variables, adjusting their firing pattern or 

frequency according to the similarity of the stimulus to their preferred values. A population of neurons 

can then serve as a probability distribution over possible values of the variable (for a review of the 

evidence see Ma & Jazayeri, 2014). In this context, confidence ratings provide a summary statistic over 

this distribution, indicating the spread of the probability distribution around the central tendency 

(Meyniel, Sigman & Mainen, 2015). However, multiple alternative explanations have been developed, 

ranging from approximations to non-Bayesian accounts of confidence (Adler & Ma, 2018). 

Nevertheless, most formulations agree that some form of confidence-weighting is central to the 

human inference process. 

The effect of subjective confidence on energetic cost 

Our results confirm that confidence determines energy consumption during varying levels of 

objective predictability. The link between confidence and brain activation during probabilistic learning 

has been investigated in a previous line of studies using conventional BOLD (Bounmy et al., 2023; 

Meyniel, Schlunegger & Dehaene, 2015; Meyniel & Dehaene, 2017). Three caveats apply when 

comparing these studies to our results. First, we presented long blocks with stable transitional 

probabilities, while the underlying parameters were volatile in their design. Second, local BOLD effects 

do not necessarily correspond to energy consumption (Drew, 2019), especially when extending the 

analysis above local peaks as in our case. Lastly, our data represents an average of multiple minutes of 

visual input. Transient brain responses as revealed by BOLD analyses may not correspond to the net 

efficiency of a given neural process. Consequently, our data is reflective of the aggregate cost of 

continuous precision-weighted updating. 

The aforementioned studies found that BOLD activity decreased with confidence while it 

increased with surprise in various areas. They also report results for regions most sensitive to precision-

weighted updating: Here, surprising input elicited higher signal across confidence levels. In contrast, 

we found that predictable input leads to higher energy consumption than surprising input for low 

confidence, while the inverse was true for high confidence. Furthermore, the cost of surprising input 

did not change with confidence in our data. A possible explanation is the length of the presentation 

blocks in our study: While deviations from the learned sequences were initially surprising, participants 
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might have learned the increased variance of the presentation. This would make the surprising 

sequences more akin to sequences of intermediate (probabilistic) predictability. In line with this 

argument, humans have been shown to track changes in environmental statistics, discounting previous 

observations (Beierholm et al., 2020; Maheu et al., 2022). In this case, confidence ratings from the 

previously predictable condition would have no lasting effect on the ”surprising” condition. 

Nevertheless, we still reproduced the classical pattern of higher cost for surprising compared 

to predictable input. In our data, this effect only emerged at high confidence levels due to the 

decreasing cost of predictable input. This addresses the arbitration between two potential processes 

behind prediction errors: Surprise enhancement assumes that surprising stimuli evoke stronger signals 

while expectation suppression assumes decreased signals for predictable input (Feuerriegel et al., 

2021; Manahova et al., 2018). From the perspective of energy consumption, our data is suggestive of 

expectation suppression as the source of relative prediction errors. This contrasts with results from 

BOLD and EEG studies, where evidence for surprise enhancement is stronger (reviewed in Feuerriegel, 

Vogels & Kovács (2021)).  

Interestingly, the effect of confidence on cortical cost was not significantly different between 

predictable and objectively random input. Since we gave no feedback during the sequence prediction 

task, it is possible that participants thought they detected a pattern in the random sequences. This is 

supported by the low, but far from minimal confidence ratings for unpredictable sequences during 

training. Humans tend to perceive structure even in random sequences (Huettel et al., 2002) which 

might drive perceptual inference in the absence of feedback. Future studies are needed to examine to 

which extent the effect of precise priors is independent of their objective accuracy. We also found that 

reaction times in the cover task increase with confidence during predictable and surprising sequences. 

This indicates that highly confident subjects improved their performance in a concurrent, but unrelated 

task. A tentative interpretation is that participants shifted their resources from model updating to 

lower-level perception of the objects’ orientations. Under this assumption, the brain does not aim to 

decrease energy consumption per se, but rather reassigns resources dynamically under the constraints 

of energy availability (Christie & Schrater, 2015).  

Energetic changes on a cortical level 

In summary, our results show that an experimental manipulation as seemingly small as a 

change to transitional probabilities can lead to large differences in energy consumption. Surprisingly, 

these effects were highly consistent over the cortex, affecting both sensory and higher cognitive 

networks. Importantly, our study does not speak to the functional specificity of these energetic 

changes. Rather, we provide evidence for the net effect of perceptual inference on the cortex. The 

widespread changes in energy metabolism are in line with recent accounts of brain function as a highly 

integrated system (Pessoa, 2023). The focus on localization in neuroimaging research might have been 
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supported by traditional mass-univariate analyses, which restrict the view of the brain to the “tip of 

the iceberg” (Noble et al., 2022, 2023). Specific to predictive processing, a recent meta-studied found 

a brain-spanning prediction network that encompassed functionally connected regions across the 

brain (Ficco et al., 2021). Furthermore, a recent preprint reported representations of prior information 

across all levels of processing in the mouse cortex (Findling et al., 2023). In line with these works, we 

propose that the efficiency of a highly integrative system is best evaluated over a correspondingly large 

spatial extent.  

Oxidative versus glycolytically driven energy metabolism 

Lastly, a recent paper developed an integrative framework drawing a direct link between 

predictive processing and differential patterns of BOLD, CMRO2 and CMRGlc (the cerebral metabolic rate 

of glucose) (Theriault et al., 2023). The authors argue that the ratio between ATP-yielding metabolites 

differs between bottom-up prediction errors and top-down predictions: Prediction errors rely on fast 

and flexible ATP generation via non-oxidative glycolysis, while prediction is based on the more efficient 

but less flexible oxidative phosphorylation. Importantly, the BOLD signal is driven by blood flow, which 

indicates oxygen availability but not necessarily oxygen consumption (Fox et al., 1988). As blood flow 

is more closely related to glucose use than oxygen use, BOLD is a better reflection of CMRGlc than CMRO2 

(Raichle & Mintun, 2006). It follows that, on the one hand, our CMRO2 data might be less sensitive to 

changes in error signaling but on the other hand, it could unveil prediction-related changes that BOLD 

does not capture. Future studies could dig deeper into these assumptions with the aim of providing a 

complete picture of the energy metabolism of the brain during predictive processing.  

Methods 

Participants 

We recruited 44 participants including students, doctoral researchers, clinic staff and the 

general population of Munich. The sample size was based on a-priori analysis, aiming to detect at least 

a medium effect size (d>=0.5, alpha=0.05, beta=0.9). All participants took part in a familiarization MRI 

session (20 minutes), an online training phase over three days and the main MRI session (70 minutes) 

on the day after training completion. Two participants were excluded due to technical problems during 

data acquisition. One further subject was excluded from analysis because their data indicated that the 

training phase was not properly performed: The same button was pressed for every confidence rating 

prompt and performance was still at chance level after the full training phase. The remaining 41 

participants (18 female, age [mean(std)] = 27(3.9)) were included for all analyses. The study was 

approved by the ethics board of the Technical University of Munich (TUM), and we acquired written 

informed consent from all participants. 
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Visual stimuli 
We selected 224 full-color images of everyday objects from a larger image set (Brady et al., 

2008). The stimuli were chosen to be maximally homogenous regarding salience, e.g., by excluding 

food items and bright colors. All allocations of stimuli to subjects and conditions were random. Figure 

1a visualizes the creation of the visual streams. A pool of 80 images was generated for every subject, 

with half assigned to the predictable condition and the other half to the unpredictable condition. Based 

on these images, eight predictable sequences were created for every subject. These objects could only 

occur in the sequence and position determined during stimulus creation. For the unpredictable 

condition, a starting set of eight sequences was created. After all were presented during the training 

or scanning phase, eight completely new sequences were randomly created for every repetition. 

Consequently, these objects never occurred in the same sequence or position, but the total number 

of occurrences was the same as for predictable objects. Lastly, only for the scanning phase, half of the 

predictable sequences and half of the unpredictable objects were combined into surprising sequences. 

Predictable sequences formed the basis but had one to three objects between position two and five 

replaced with a random object from the unpredictable condition. The first object was always 

unchanged to trigger conditional predictions based on the learned transition probabilities. 

Experimental design 
Implementation. We used Psychopy (Peirce et al., 2019) to implement the design. The online training 

sessions were realized using pavlovia.org, where Javascript-translated Psychopy experiments can be 

run online with millisecond precision (Bridges et al., 2020; Sauter et al., 2020). 

Main task. We presented participants with continuous visual streams based on the described object 

sequences. Each stimulus was presented for 800ms with no inter-stimulus interval within sequence 

and a 1100ms fixation cross between sequences. When all unique sequences of a condition were 

shown, their order was reshuffled for continued presentation with the constraint that objects (or 

sequences) could not appear twice in a row. This was done to minimize confounding effects of 

repetition suppression. To ensure fixation and concentration, participants were instructed to quickly 

react to occurrences of upside-down objects. These appeared with a probability of 10%, independent 

of condition. 

Training phase. Over the course of three days prior to the main scanning session, participants followed 

an online implementation of the main design. This phase only included the predictable und 

unpredictable sequences. We instructed every participant to perform the training in a quiet 

environment without distractions. Stimulation blocks lasted 20 minutes per day, with a break of one 

minute after 10 minutes. Instructions were shown on screen before the stimulation began and the first 

day included a five-minute familiarization block with on-screen feedback regarding cover-task button 

presses. The instructions stressed the importance of the cover task, but also noted that questions 

regarding the order of objects in a sequence would follow each training day. During this task, 
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participants saw eight incomplete sequences (the first one to four objects were shown) for both 

conditions (to keep image familiarity the same across conditions). After every sequence, participants 

chose what they assumed would be the correct trailing object from five options and gave a confidence 

rating on a scale of one to seven. No feedback was given regarding performance and no information 

on the underlying conditions was disclosed. 

Imaging phase. During scanning, stimuli were presented against a grey background and subtended 4° 

of visual angle. Each condition was presented for three long blocks, during a pcASL sequence (6 

minutes), a T2* sequence (5.5 minutes) and a DSC sequence (2.5 minutes). The order was randomized, 

although a condition could not occur three times in a row. We left breaks of one minute between each 

consecutive sequence. During the T2 sequence, there was no experimental stimulation. Per condition, 

a total of 169 object sequences over a stimulation time of approximately 14 minutes were presented. 

Before every scanning sequence, a reminder regarding the cover task was shown on screen. 

Additionally, participants got feedback on their mean reaction time after each sequence to promote 

attentiveness and motivation. We disclosed no information regarding the sequence patterns and the 

imaging session included no sequence completion test. 

Object detection task. On the day of the imaging session, prior to entering the scanner room, 

participants performed an object detection task on a laptop. The presentation format followed the 

specifications of the main task, except for transitions between sequences. We presented eight 

unpredictable (reshuffled) and eight predictable (as learnt) sequences in random order. Prior to every 

sequence, a target object from the following sequence was shown. An onscreen prompt instructed 

participants to react as quickly as possible to the presentation of the target image by pressing the 

Arrow Up button. During the task, the target image was presented for five seconds. To allow for 

anticipation, it could only match positions two to five of the following sequence.  

MRI acquisition 
For CMRO2 mapping, the following sequences were acquired:  

• Multi-echo spin-echo T2 mapping: 3D gradient spin echo (GRASE) readout as described 

previously (Kaczmarz et al., 2020), 8 echoes, TE1 = ΔTE = 16ms, TR=251ms, α=90°, voxel size 

2x2x3.3mm3, 35 slices. T2 data was acquired once per subject, without any task.  

• Multi-echo gradient-echo T2* mapping: As described previously (Hirsch et al., 2014; Kaczmarz 

et al., 2020), 12 echoes, TE1 = ΔTE = 5ms, TR=2229ms, α=30°, voxel size 2x2x3mm3, gap 0.3mm, 

35 slices. T2* was acquired for all conditions. 

• Dynamic susceptibility imaging (DSC): As described previously (Hedderich et al., 2019). 

Injection of gadolinium-based contrast agent as a bolus after 5 dynamic scans, 0.1ml/kg 

(maximum: 8ml per injection, 16ml per session), flow rate: 4ml/s, plus 25ml NaCl. Single-shot 

GRE-EPI, EPI factor 49, 80 dynamic scans, TR = 2.0s, α=60°, acquisition voxel size 2x2x3.5mm3, 
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35 slices. To stay within the limits of a full clinical dosage (16ml), we acquired DSC in two 

conditions only: Predictable and unpredictable. Processing of the data in the surprising 

condition used DSC from the predictable condition. 

• Pseudo-continuous arterial spin labeling (pcASL): As described previously (Alsop et al., 2015), 

and implemented according to (Göttler et al., 2019; Kaczmarz et al., 2020). PLD 1800ms, label 

duration 1800ms, 4 background suppression pulses, 2D EPI readout, TE=11ms, 

TR=4500ms, α=90°, 20 slices, EPI factor 29, acquisition voxel size 3.28x3.5x6.0mm3, gap 

0.6mm, 30 dynamic scans including a proton density weighted M0 scan. ASL was acquired for 

all conditions. 

Prior to data acquisition, a venous catheter was placed by a medical doctor through which 

blood samples were taken and sent to our in-house clinical chemistry laboratory. Creatinin values were 

analyzed as an indicator of healthy kidney function and contrast agent was only applied for subjects 

below a threshold of 1.3. No subject exceeded this value. Hemoglobin and hematocrit were requested 

and used in modelling of CMRO2. Finally, arterial oxygen saturation was measured via a pulse oximeter 

(Nonin 7500FO, Nonin Medical B.V., The Netherlands). 

MRI data processing 
To calculate CMRO2, the following parameters were integrated and derived as described below: 

The oxygen content of blood (O2 saturation and Hematocrit), the flow of blood (CBF), and the relative 

oxygen extraction (OEF). The processing of the quantitative parameter maps was performed with in-

house scripts in MATLAB and SPM12 (Wellcome Trust Centre for Neuroimaging, UCL, London, UK). T2* 

images were corrected for macroscopic magnetic background gradients with a standard sinc-Gauss 

excitation pulse (Baudrexel et al., 2009; Hirsch & Preibisch, 2013). Motion correction was performed 

using redundant acquisitions of k-space center (Nöth et al., 2014). R2’ maps are derived from T2 and 

T2* images and yield the transverse, reversible relaxation rate that is dependent on the vascular dHb 

content (Blockley et al., 2013, 2015; Bright et al., 2019). However, confounds from uncorrectable 

strong magnetic field inhomogeneities at air-tissue boundaries, iron deposition in deep GM structures 

as well as white matter structure need to be considered (Hirsch & Preibisch, 2013; Kaczmarz et al., 

2020). The cerebral blood volume (CBV) was derived from DSC MRI via full integration of leakage-

corrected ΔR2*-curves (Boxermann, J.L., Schmainda, K.M., Weisskoff, R.M., 2006) and normalization 

to a white matter value of 2.5% (Leenders et al., 1990) as described previously (Hedderich et al., 2019; 

Kluge et al., 2016). From R2’ and CBV parameter maps, the oxygen extraction fraction (OEF) was 

calculated (Christen et al., 2012; Hirsch et al., 2014; Yablonskiy & Haacke, 1994). CBF maps were 

calculated from pcASL data, based on average pairwise differences of motion-corrected label and 

control images and a proton-density weighted image. 
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For each subject and condition, we calculated CMRO2 in a voxel-wise manner by combining all 

parameter maps via Fick’s principle 

CMRO2 = OEF · CBF · CaO2                                                      

where CaO2 is the oxygen carrying capacity of hemoglobin and was calculated as CaO2 = 0.334 · 

Hct · 55.6 · O2sat, with O2sat being the oxygen saturation measured by the pulse oximeter (Bright et 

al., 2019; Y. Ma et al., 2020) and Hct representing Hematocrit as measured by blood sampling prior to 

scanning. CBF was upscaled by 25% to account for systematic CBF underestimation due to four 

background-suppression pulses (Garcia et al., 2005; Mutsaerts et al., 2014). All parameter maps of 

each individual subject were registered to the first echo of their multi echo T2 data. 

For statistical analysis of CMRO2, we only included voxels with a grey matter probability of > 

0.5. Furthermore, the images were masked using an intersection mask to exclude voxels with excessive 

susceptibility, indicative of artefacts (T2 and T2* > 120ms, R2’ > 9ms) and voxels with biologically 

unlikely CBF (> 90 ml/min/100g) or OEF (> 90%). 

Statistical analysis 
Mixed models. We used robust linear mixed models as implemented in the R package robustlmer 

(Koller, 2016) to minimize the effect of outliers. This method uses the Huber loss function, which is 

quadratic for small differences, but linear for large differences. The random model term was used to 

specify conditions as repeated (nested) measurements within subjects. Consequently, our model 

estimated a subject-wise CMRO2 baseline for each condition. The fixed effects included a three-way 

interaction of condition, confidence and network as well as a two-way interaction of condition and 

reaction time in the covertask. Confidence values were based on the average condition-wise ratings 

after the last training day. Since surprising sequences were based on predictable ones, we assigned 

the same confidence ratings.  

The input to our model were condition-wise regional CMRO2 values, obtained by the median 

voxel value within 400 functional areas (100 for model replication) as defined by the Schaefer 

parcellation (Schaefer et al., 2018). 30 of the 400 areas, mainly in the temporal pole and orbitofrontal 

cortex, had to be excluded from the analysis. This was due to susceptibility artefacts in the R2’ maps, 

leading to signal dropout in these regions. The limbic network is therefore not covered by our model. 

Across subjects and areas, a total of 45507 observations entered the model estimation. We z-

standardized the behavioral predictors and left the outcome CMRO2 values unchanged. For model 

estimation, we chose the predictable condition and the visual network as reference categories. A 

significant reference effect in the absence of significant parameter estimates for other categories 

means that the effect of the predictor does not vary across categorical levels. This also means that a 

significant effect for a non-reference category level has to be interpreted in relation to the main effect. 

Finally, we compared our model to a null model without the condition predictor using the performance 
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package (Lüdecke et al., 2021) for standard mixed models as implemented in lme4. Since the model 

outcome represents absolute CMRO2, parameter estimates can be interpreted as the predicted change 

in energy cost for a given change in standardized predictors. 

Model-based CMRO2 cost predictions. For model-based predictions, we added the corresponding 

parameter estimates as described in the results. Total CMRO2 was therefore calculated as the sum of 

the intercept (the sample baseline in the visual network), the network main effect (the difference of 

the network baseline from the intercept) and the main effect of confidence. We calculated the 

predicted cortical CMRO2 for weakly confident (5th percentile, confidence(z)=-1.96), average (50th 

percentile, confidence(z)=0) and highly confident (95th percentile, confidence(z)=1.96) subjects. The 

outcome was then scaled to the grey matter mass of each network in MNI space, approximated by 

grey matter voxel count multiplied by a tissue mass of 0.0014 gram per cubic millimeter (Barber et al., 

1970; IT’IS Foundation, 2022). Finally, predicted CMRO2 was summed over networks to obtain cortical 

values. We repeated this procedure for the 5th and 95th percentile of the confidence parameter 

estimate (Table 1) to obtain an upper and lower bound of the predicted energy cost.  
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