

1 Altered Hippocampal Glutamatergic Neurotransmission and Cognitive Impairment

2 in APP Knock-In Mice

3 C.A. Findley^{1, 2}, S.A. McFadden¹, T. Hill¹, M.R. Peck¹, K. Quinn¹, K.N. Hascup^{1, 2, 3}, E.R.
4 Hascup^{1, 2*}

5
6 ¹Neuroscience Institute, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Depts of
7 Neurology, ²Pharmacology, and ³Medical Microbiology, Immunology and Cell Biology, Southern Illinois University
8 School of Medicine, Springfield, IL, USA
9

10 *Erin R. Hascup, Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and
11 Treatment, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794-9628, USA. Email:
12 ehascup@siumed.edu
13

14 **Potential Keywords:** cognition, amyloid, learning, memory, sex differences,
15 Alzheimer's disease
16

17 **Running head:** Glutamate and cognition in APP^{NL-F/NL-F} mice
18

19 **Abbreviations:** Alzheimer's disease (AD), morris water maze (MWM), novel object
20 recognition (NOR), dentate gyrus (DG), amyloid-beta (A β), microelectrode array (MEA),
21 platinum (Pt), glutamate oxidase (GluOX), 1,3 phenylenediamine dihydrochloride
22 (mPD), standard error of the mean (SEM), time to 80% signal decay (T₈₀)
23

24 **Data Availability:** The data to support the findings of this study are available from the
25 corresponding author upon reasonable request.
26

27 **Funding:** This work was supported by the National Institutes of Health [R01 AG057767,
28 R01 AG061937], the Dale and Deborah Smith Center for Alzheimer's Research and
Treatment, and the Kenneth Stark Endowment.
29

30 **Conflict of Interest:** The authors have no conflicts of interest to disclose.
31

32 **Ethics Approval:** Protocols for animal use were approved by the *Institutional Animal
Care and Use Committee* at Southern Illinois University School of Medicine (Protocol
#2022-055).

33 **Abstract**

34 It is well established that glutamatergic neurotransmission plays an essential role in
35 learning and memory. Previous studies indicate that glutamate dynamics shift with
36 Alzheimer's disease (AD) progression, contributing to negative cognitive outcomes. In
37 this study, we characterized hippocampal glutamatergic signaling with age and disease
38 progression in a knock-in mouse model of AD ($APP^{NL-F/NL-F}$). At 2-4 and 18+ months old,
39 male and female $APP^{NL/NL}$, $APP^{NL-F/NL-F}$, and C57BL/6 mice underwent cognitive
40 assessment using Morris water maze (MWM) and Novel Object Recognition (NOR).
41 Then, basal and 70 mM KCl stimulus-evoked glutamate release was measured in the
42 dentate gyrus (DG), CA3, and CA1 regions of the hippocampus using a glutamate-
43 selective microelectrode in anesthetized mice. Glutamate recordings support elevated
44 stimulus-evoked glutamate release in the DG and CA3 of young $APP^{NL-F/NL-F}$ male mice
45 that declined with age compared to age-matched control mice. Young female APP^{NL-}
46 $F/NL-F$ mice exhibited increased glutamate clearance in the CA1 that slowed with age
47 compared to age-matched control mice. Male and female $APP^{NL-F/NL-F}$ mice exhibited
48 decreased CA1 basal glutamate levels, while males also showed depletion in the CA3.
49 Cognitive assessment demonstrated impaired spatial cognition in aged male and female
50 $APP^{NL-F/NL-F}$ mice, but only aged females displayed recognition memory deficits
51 compared to age-matched control mice. These findings confirm a sex-dependent hyper-
52 to-hypoactivation glutamatergic paradigm in $APP^{NL-F/NL-F}$ mice. Further, data illustrate a
53 sexually dimorphic biological aging process resulting in a more severe cognitive
54 phenotype for female $APP^{NL-F/NL-F}$ mice than their male counterparts. Research

55 outcomes mirror that of human AD pathology and provide further evidence of divergent

56 AD pathogenesis between sexes.

57

58 **Introduction**

59 Glutamate is the most abundant neurotransmitter in the brain, expressed by the vast
60 majority of excitatory neurons (Purves D *et al.* 2001). It is a central component of many
61 neurological functions, including learning and memory (McEntee and Crook 1993).
62 Glutamate dynamics are impacted by aging-related cortical thinning and synaptic
63 pruning that occurs in the hippocampus and prefrontal cortex, amongst other areas
64 (Segovia *et al.* 2001; Cox *et al.* 2022). Aging diminishes glutamate levels over time,
65 impacting pivotal processes for learning and memory and contributing to cognitive
66 decline commonly associated with age (Cox *et al.* 2022; Gasiorowska *et al.* 2021;
67 Segovia *et al.* 2001).

68 Many pathological conditions involve dysregulation of the glutamatergic system,
69 including epilepsy and aging-related neurodegenerative disorders like Alzheimer's
70 disease (AD). These conditions include loss of glutamatergic homeostasis that results in
71 neuronal death and brain atrophy (Lewerenz and Maher 2015a). Glutamatergic
72 hyperactivity has been characterized in both AD mouse models and human pathology,
73 first appearing before the onset of plaque deposition and cognitive symptomology. Prior
74 work from our laboratory demonstrated a hippocampal glutamatergic imbalance that
75 appears in young (2-6 months old) male A β PP/PS1 transgenic AD mice, and shifts in a
76 temporal-specific manner with disease progression (Hascup *et al.* 2020). The CA1 and
77 dentate gyrus (DG) subregions displayed glutamatergic hyperactivity that continued into
78 later disease stages, with a significant drop-off around 18 months of age in the CA1.
79 The pattern found in the CA1 reflects the hyper-to-hypoactivation hypothesis, describing
80 early overstimulation of glutamatergic receptors and astrocytic glutamate transporters

81 leading to dyshomeostasis at the glutamatergic synapse in AD pathology (Parsons *et al.*
82 2007; Findley *et al.* 2019; Olney *et al.* 1997). As well, our laboratory found increased
83 basal glutamate levels in the CA1, CA3, and DG of A β PP/PS1 male mice starting at 6
84 months of age and continued throughout disease progression. These findings provided
85 further evidence supporting the loss of hippocampal signal-to-noise ratio with disease
86 progression in AD pathology. Signal-to-noise ratio describes the threshold by which
87 neuronal stimulation must overcome to evoke an action potential. An imbalance in this
88 ratio indicates dyshomeostasis at the glutamatergic synapse and can hinder long-term
89 potentiation (Parsons *et al.* 2007; Findley *et al.* 2019).

90 This study aims to characterize hippocampal glutamate dynamics in a novel knock-in
91 mouse model of AD (APP^{NL-F/NL-F}). The APP^{NL-F/NL-F} mouse model may better
92 recapitulate the human condition and avoids confounding variables associated with
93 transgenic mice, such as overexpression of the amyloid precursor protein and
94 presenilin-1 (Saito *et al.* 2014). APP^{NL-F/NL-F} mice have a knock-in APP gene with an
95 endogenous promoter and humanized amyloid-beta (A β) sequence. The A β sequence
96 used also appears in most human sporadic and familial AD patients (Saito *et al.* 2014).
97 There is no genetic overexpression, however, this model does have the Swedish
98 mutation to APP (NL) that raises total A β levels. Presenillin-1 has the Iberian mutation
99 (F), which increases the A β ₄₂: A β ₄₀ ratio. This model typically shows plaque deposition
100 at around 6 months old, with steady plaque accumulation up to 18 months old (Masuda
101 *et al.* 2016; Shah *et al.* 2018; Britz *et al.* 2022).
102 To our knowledge, glutamatergic neurotransmission throughout disease progression
103 has not previously been characterized in this model. Further, investigation of sex

104 differences for AD mice is limited (Kundu *et al.* 2021; Britz *et al.* 2022; Masuda *et al.*
105 2016). Amyloidosis throughout disease progression has been observed as similar
106 between male and female APP^{NL-F/NL-F} mice, while reports of cognitive symptomology
107 yield mixed results (Britz *et al.* 2022; Kundu *et al.* 2021). Prior work from our laboratory
108 investigating glutamate dynamics has been limited to male transgenic (A β PP/PS1) mice
109 (Hascup *et al.* 2020). Thus, it remains unclear how sex may impact glutamate and
110 cognition with age and disease progression in this model.

111 To address this question, we utilized glutamate-specific *in vivo* microelectrode array
112 (MEA) recordings in the hippocampus of APP^{NL-F/NL-F} mice at young (2-4 months old)
113 and aged (18+ months old) time points. The APP^{NL/NL} control model that expresses only
114 the APP Swedish mutation was also examined. Comparing results from the APP^{NL-F/NL-F}
115 model to the APP^{NL/NL} model allows for the elimination of confounding variables such as
116 non-A β fragments of APP, including C-terminal fragments (Saito *et al.* 2014). We
117 hypothesized that APP^{NL-F/NL-F} mice would exhibit presymptomatic hippocampal
118 glutamatergic hyperactivation that shifts with age and disease progression.

119 **Materials and Methods**

120 **Animals:** Founder male and female C57BL/6 (RRID:IMSR JAX:000,664) were obtained
121 from Jackson Laboratory (Bar Harbor, ME). Founder APP^{NL/NL}
122 (RRID:IMSR_RBRC06342) and APP^{NL-F/NL-F} (RRID: IMSR_RBRC06343) male and
123 female mice were obtained from Riken (Tokyo, Japan). Founder mice of all strains were
124 used to start breeding colonies of the respective genotypes and their progeny were
125 used for all experiments. Protocols for animal use were approved by the *Institutional*
126 *Animal Care and Use Committee* at Southern Illinois University School of Medicine,

127 which is accredited by the Association for Assessment and Accreditation of Laboratory
128 Animal Care. The study was not pre-registered. Mice were group housed according to
129 sex and genotype on a 12:12 h light-dark cycle, and food and water were available *ad*
130 *libitum*. All experiments were conducted during the light phase. Mouse cages were
131 pseudo-randomized using the Microsoft Excel 2013 randomization function to generate
132 random decimal numbers between 0 and 1 for each mouse cage. No exclusion criteria
133 were pre-determined. 164 animals were used in this study including the following
134 groups: 2-4 months old males (C57BL/6 (n=13), APP^{NL/NL} (n=14), APP^{NL-F/NL-F} (n=16))
135 and females (C57BL/6 (n=14), APP^{NL/NL} (n=13), APP^{NL-F/NL-F} (n=12)); 18+ months old
136 males (C57BL/6 (n=14), APP^{NL/NL} (n=12), APP^{NL-F/NL-F} (n=15)) and females (C57BL/6
137 (n=15), APP^{NL/NL} (n=13), APP^{NL-F/NL-F} (n=13)). All mice underwent cognitive assessment
138 and *in vivo* glutamate recordings with the exception of electrode failure or death before
139 or during glutamate recordings. Immediately following anesthetized glutamate
140 recordings, mice were euthanized with an overdose of isoflurane followed by rapid
141 decapitation. Genotypes were confirmed by collecting a 5 mm tail tip for analysis by
142 TransnetYX, Inc (Cordova, TN). All mice were tattooed with unique numerical identifiers
143 to blind researchers throughout experimental paradigms.

144 **8-Day Hidden Platform Morris Water Maze (MWM):** The MWM examines spatial
145 learning and long-term memory through requiring mice to utilize external visual cues to
146 locate the hidden platform (submerged 1 cm below the opaque water surface),
147 regardless of starting position in the pool. The MWM consists of one acclimation day,
148 five consecutive learning days, and a delayed probe challenge. The five learning days
149 include three trials, up to 90-seconds in duration starting from three different entry

150 points into the pool (order is randomized throughout the learning days) with at least a
151 20-minute inter-trial-interval to test spatial learning capabilities. After two days without
152 testing mice then undergo a probe challenge consisting of one 60-second trial with the
153 platform removed from the pool to test long-term spatial memory recall. The ANY-maze
154 video tracking system (Stoelting, Wood Dale, IL) tracks and analyzes several
155 parameters throughout the learning days and probe challenge, including average
156 speed, cumulative distance from platform, platform entries, latency to first platform
157 entry, and path efficiency to first platform entry.

158 **Novel Object Recognition (NOR)**: NOR is designed to investigate object recognition
159 memory by measuring the exploration time of a novel object compared to a familiar
160 object within a testing arena. One week after the MWM probe challenge, mice were
161 habituated to the NOR testing arena for 30 minutes. Familiarization training occurred
162 24 hours later in which two similar objects are placed into the arena and the mice were
163 allowed to explore for 5 minutes. After a 24-hour inter-session-interval, mice were
164 placed back into the arena for 5 minutes with one familiar object from the previous
165 training day and a novel object to test retention. The ANY-maze video tracking system
166 was utilized to track animals throughout the three experiment days and provides
167 measures of distance traveled, average speed, and exploration time to determine the
168 novel object discrimination index.

169 **In Vivo Electrochemistry**: Enzyme-based MEAs with platinum (Pt) recording surfaces
170 were prepared for *in vivo* glutamate measurements and calibrated through the FAST-16
171 recording software as previously described (Hascup and Hascup 2015; Hascup *et al.*
172 2020; Hascup *et al.* 2007). A glutamate oxidase (GluOX) solution was applied to a Pt

173 recording surface to allow for enzymatic degradation of glutamate to α -ketoglutarate and
174 the electroactive reporter molecule H_2O_2 . The adjacent self-referencing recording
175 surface was only coated with an inactive protein matrix and cannot enzymatically
176 generate H_2O_2 from L-glutamate. The FAST-16 system utilizes the self-referencing site
177 for offline subtraction from the GluOX coated site as a localized control mechanism. A
178 potential of + 0.7 V vs an Ag/AgCl reference electrode was applied to the recording sites
179 for oxidation of H_2O_2 . Recording sites were then electroplated with 5 mM 1,3
180 phenylenediamine dihydrochloride (mPD) in 0.05M phosphate buffered saline 72 hours
181 after enzymatic coating. mPD provides an exclusion layer that blocks the detection of
182 possible interferants that are electrochemically active at + 0.7 V. MEA calibration
183 occurred on experiment day, with an average \pm standard error of the mean (SEM)
184 glutamate sensitivity of $4.8610 \pm 0.0002 \text{ pA}/\mu\text{M}$ ($R^2 = 0.998 \pm 0.001$), selectivity ratio of
185 126 ± 11 to 1, and limit of detection of $0.9305 \pm 0.0652 \mu\text{M}$ based on a signal-to-noise
186 ratio of 3. A micropipette (inner diameter $\sim 20\mu\text{m}$) was then waxed on to the MEA (50-
187 100 μm from the electrode surface) for local application of 70mM KCl. Mice were placed
188 into a stereotaxic frame under isoflurane anesthesia and a craniotomy was performed
189 for insertion of the MEA assembly into the hippocampus. Body temperature was
190 maintained with a heated recirculating bath pump attached to a water pad. The starting
191 hemisphere and hippocampal subregion was randomized across the CA1 (AP: -2.0,
192 ML: ± 1.0 , DV: -1.7 mm) or CA3 (AP: -2.0, ML: ± 2.0 , DV: -2.2 mm)]. After CA1
193 recordings, the MEA was lowered into the DG (AP: -2.0, ML: ± 1.0 , DV: -2.2 mm).
194 MEAs were allowed to baseline for 60 minutes after initial insertion before a 10 s basal
195 glutamate determination and pressure ejection studies commenced. An additional 20-

196 minute baseline period occurred between each hippocampal subregion. Pressure
197 ejections involved a constant volume (~100-200nL) of 70mM KCl locally applied using a
198 Picospritzer (Parker Hannafin, Morton, IL) attached to the micropipette to evoke
199 glutamate release.

200 **Cresyl Violet Staining:** Mice were euthanized after stimulation by isoflurane overdose
201 and rapid decapitation with sharp scissors. The brain was extracted and fixed in 4%
202 paraformaldehyde for 48 hours and then transferred to 30% sucrose for storage. A
203 cryostat (Model HM525 NX, Thermo Fisher Scientific) was used to obtain 20-micron
204 coronal sections throughout the hippocampus. Slices were mounted on a glass slide,
205 stained with cresyl violet, and coverslipped to verify MEA placement for each mouse.

206 **Statistical Analysis:** Sample size was determined based on previous MWM and
207 electrochemical data using multiple mouse models. GraphPad Prism 9 Software (La
208 Jolla, CA; RRID:SCR 002798) was used for statistical analyses. Statistical tests are
209 listed in each figure legend. Data were not assessed for normality. A single Grubb's test
210 (alpha = 0.05) was utilized to identify significant outliers in each group. Data are
211 represented as mean \pm SEM and statistical significance was defined as $p < 0.05$.

212 **Results**

213 **Alterations to glutamatergic neurotransmission before cognitive symptoms in 214 young AD mice**

215 At 2-4 months of age, APP^{NL/NL}, APP^{NL-F/NL-F}, and C57BL/6 mice underwent a cognitive
216 battery to assess spatial navigation and retention memory. As expected, no significant
217 genotype differences were observed for either sex in spatial learning and memory

218 (Supplementary Figure 1A-E). During the NOR retention day, male mice showed no
219 genotype differences in exploratory behavior and retention memory (Supplementary
220 Figure 1G-I). A main effect for genotype was observed for distance travelled ($F(2.36)=$
221 12.90, $p<0.0001$) and average speed ($F(2.36)= 12.72$, $p<0.0001$) in female mice.
222 Female APP^{NL-F/NL-F} mice showed significantly increased distance travelled and average
223 speed compared to age-matched APP^{NL/NL} ($p<0.0001$; $p=<0.0001$) and C57BL/6 mice
224 ($p=0.0066$; $p=0.0068$), respectively, that was only exhibited during the retention day. No
225 genotype differences were observed in retention memory for female mice. These
226 findings indicate elevated exploratory behavior in female APP^{NL-F/NL-F} mice during
227 cognitive testing in agreement with previous studies (Kundu *et al.* 2021).

228 To characterize possible changes in hippocampal glutamate dynamics before cognitive
229 decline, *in vivo* glutamate recordings were conducted on anesthetized mice following
230 completion of the behavioral assays. For male mice, representative traces are shown in
231 Figure 1A. No significant differences were observed in basal glutamate levels for any
232 hippocampal subregion (Figure 1B). However, stimulation of surrounding neurons with
233 70mM KCl yielded a significant main effect for evoked glutamate release in the DG
234 ($F(2,29)= 11.01$, $p=0.003$) and CA3 ($F(2,26)= 6.920$, $p=0.0039$) for male mice (Figure
235 1C). APP^{NL-F/NL-F} male mice showed elevated stimulus-evoked glutamate release
236 compared to age-matched APP^{NL/NL} ($p=0.0016$, $p=0.0128$) and C57BL/6 mice
237 ($p=0.0008$, $p= 0.0087$) in the DG and CA3. Time to 80% signal decay (T_{80}) was used to
238 characterize glutamate clearance after stimulation, an important factor for maintaining
239 glutamatergic homeostasis (Rudy *et al.* 2015; Revett *et al.* 2013; Valladolid-Acebes *et*
240 *al.* 2012). Examination of T_{80} glutamate clearance indicated no significant differences for

241 male mice in any hippocampal subregion. These findings demonstrate early
242 hyperactivation of glutamatergic neurotransmission prior to the onset of cognitive
243 symptoms in male APP^{NL-F/NL-F} mice.

244 Representative traces for young female mice are shown in Figure 2A. No significant
245 differences in basal glutamate levels or stimulus-evoked glutamate release for any
246 hippocampal subregion were observed (Figure 2B-C). Analysis of glutamate signal
247 decay time yielded a significant main effect in the CA1 alone for female mice ($F(2,28)=$
248 4.577, $p=0.0191$) (Figure 2D). APP^{NL-F/NL-F} females exhibited faster T_{80} clearance of
249 glutamate compared to age-matched APP^{NL/NL} ($p=0.0324$) and C57BL/6 mice
250 ($p=0.0390$). Data support potentially altered glutamate clearance in the CA1 of young
251 female APP^{NL-F/NL-F} mice that may act as an early compensatory mechanism to prevent
252 hyperactivity.

253 **Aged AD mice exhibit sex-dependent selective cognitive decline**

254 Previous literature indicates progressive cognitive decline in APP^{NL-F/NL-F} mice, with
255 modest deficits in spatial reversal learning and place preference learning observed at
256 13-17 months (Masuda *et al.* 2016) and spatial working memory at 18 months (Saito *et*
257 *al.* 2014). At 18+ months old, no significant differences were observed for male mice
258 during the learning trials (Figure 3A). A main effect for genotype was observed with
259 cumulative distance from the platform ($F(2, 38)= 9.828$, $p= 0.0004$) and area under the
260 curve (AUC) ($F(2,38)= 9.322$, $p=0.0005$) in female mice (Figure 3B). AUC for the five
261 trial days was significantly elevated for female APP^{NL-F/NL-F} mice compared to age-
262 matched APP^{NL/NL} ($p=0.0331$) and C57BL/6 mice ($p=0.0003$). Overall, female APP^{NL-}
263 ^{F/NL-F} mice had a slower spatial learning curve compared to age-matched C57BL/6 mice.

264 By the final training session, all mice had learned the location of the hidden escape
265 platform. During the probe challenge that is used to evaluate long-term memory recall, a
266 significant main effect was observed for cumulative distance from the platform in female
267 mice ($F(2,38)= 7.716$, $p=0.0015$). Female APP^{NL-F/NL-F} mice exhibited increased
268 cumulative distance compared to age-matched APP^{NL/NL} ($p= 0.0064$) and C57BL/6 mice
269 ($p=0.0029$) (Figure 3C). No significant differences in cumulative distance were observed
270 for male mice. However, analysis of platform entries per distance swam indicated a
271 significant main effect for male mice ($F(2,38)= 5.978$, $p=0.0055$). APP^{NL-F/NL-F} ($p=0.0043$)
272 male mice showed a significant decrease in number of platform entries compared to
273 age-matched C57BL/6 mice (Figure 3D). No significant genotype differences were
274 observed for female mice on platform entries. Path efficiency to first platform entry was
275 also examined and yielded no significant findings for either sex (Figure 3E).
276 Representative path traces are shown in Figure 3F. These findings indicate sex
277 differences in spatial learning and memory impairment with age in APP^{NL-F/NL-F} mice, in
278 agreement with prior aging literature examining this mouse model (Britz *et al.* 2022).
279 Data from the NOR task indicated no significant genotype differences on any
280 parameters during the retention day for male mice (Figure 3G-I). Significant main effects
281 were observed for distance ($F(2,37)= 3.947$, $p= 0.0279$), average speed ($F(2,37)=$
282 4.006 , $p= 0.0266$), and novelty preference ($F(2,37)= 3.108$, $p= 0.0565$) in female mice.
283 Female APP^{NL/NL} female mice alone exhibited decreased distance ($p= 0.0310$) and
284 average speed ($p= 0.0266$) compared to age-matched C57BL/6 mice (Figure 3G-H).
285 APP^{NL-F/NL-F} female mice showed significantly decreased novelty preference compared
286 to age-matched C57BL/6 mice ($p=0.0453$) (Figure 3I). Together, data support impaired

287 spatial cognition and selective impairment of recognition memory in aged female APP^{NL-}
288 F/NL-F mice, indicating a potentially more severe cognitive phenotype for aged females
289 than males in the APP^{NL-F/NL-F} mouse model.

290 **Temporal-specific alterations to hippocampal glutamate dynamics in aged AD
291 mice**

292 *In vivo* glutamate recordings were also conducted in aged mice to investigate possible
293 changes in hippocampal glutamate dynamics with age and disease progression.
294 Representative traces for aged male mice are shown in Figure 4A. Analysis of basal
295 glutamate indicated a significant main effect in the CA3 ($F(2, 27)= 6.486$, $p=0.0050$) and
296 the CA1 ($F(2, 25)= 3.437$, $p=0.0480$) for male mice (Figure 4B). APP^{NL-F/NL-F} male mice
297 exhibited decreased basal glutamate levels in the CA3 ($p=0.0193$) and the CA1 ($p=$
298 0.0488) compared to age-matched C57BL/6 male mice. No significant differences in
299 basal glutamate were observed for APP^{NL/NL} mice in any hippocampal subregion. A
300 significant main effect for evoked glutamate release was observed in the DG ($F(2, 27)=$
301 12.06, $p=0.0002$) and CA3 ($F(2, 28)= 5.313$, $p=0.0111$) for male mice (Figure 4C).
302 APP^{NL/NL} ($p=0.0006$, $p=0.0209$) and APP^{NL-F/NL-F} ($p=0.0009$, $p=0.0280$) male mice
303 showed decreased stimulus-evoked glutamate release in the DG and CA3 compared to
304 age-matched C57BL/6 mice. Analysis of T_{80} also indicated a significant main effect in
305 the DG for aged male mice ($F(2, 27)= 3.579$, $p= 0.0418$). APP^{NL/NL} male mice showed
306 increased clearance time compared to C57BL/6 male mice ($p= 0.0333$; Figure 4D).
307 These findings indicate a potentially subregion-specific hypoglutamatergic environment
308 in the hippocampus of aged male AD mice and effectively demonstrate the hyper-to-

309 hypoactivation phenomenon for glutamatergic neurotransmission throughout disease
310 progression in APP^{NL-F/NL-F} male mice.

311 Representative traces for aged female mice are shown in Figure 5A. A significant main
312 effect ($F(2, 29) = 5.080$, $p=0.0128$) was observed for basal glutamate levels in the CA1
313 alone for female mice (Figure 5B). Female APP^{NL-F/NL-F} mice displayed decreased CA1
314 basal glutamate compared to age-matched C57BL/6 mice ($p=0.0093$). No differences in
315 basal glutamate were observed for APP^{NL/NL} female mice in any hippocampal subregion.
316 Data support no significant differences in stimulus-evoked glutamate release in any
317 subregion for aged female mice (Figure 5C). A main effect for T_{80} was observed in the
318 DG for female mice ($F(2, 27) = 3.579$, $p=0.0418$). APP^{NL/NL} female mice alone exhibited
319 faster T_{80} than age-matched C57BL/6 mice ($p=0.0333$) (Figure 5D). Together, data
320 support potential alterations in glutamate clearance and regulation of the glutamatergic
321 homeostasis with age in female APP^{NL-F/NL-F} mice and a unique biological aging process
322 from that observed in male APP^{NL-F/NL-F} mice.

323 **Discussion**

324 This study aimed to characterize glutamatergic neurotransmission throughout disease
325 progression in the APP^{NL-F/NL-F} mouse model of AD. We utilized a glutamate biosensor
326 to record hippocampal glutamatergic neurotransmission *in vivo* in both sexes at young
327 (2-4 months old) and aged (18+ months old) time points to address this question.
328 Further, we implemented the use of multiple sex- and age-matched C57BL/6 groups,
329 including the APP^{NL/NL} model, to eliminate confounding variables and better analyze the
330 role of A β_{42} pathology. We hypothesized that APP^{NL-F/NL-F} mice would exhibit
331 presymptomatic hippocampal glutamatergic hyperactivation that shifts with age and

332 disease progression. Our findings indicated a more severe cognitive phenotype in aged
333 female APP^{NL-F/NL-F} mice than genotype- and age-matched males, and demonstrated
334 sex differences in hippocampal glutamate dynamics throughout the lifespan. These
335 outcomes reflect that of human AD pathology, in which females bear a heavier disease
336 burden and distinct cognitive profile (Alzheimer's Association 2022; Podcsay and
337 Epperson 2016; Laws *et al.* 2016).

338 Hippocampal glutamate recordings demonstrated a hyper-to-hypoactivation event for
339 glutamatergic neurotransmission throughout the lifespan of APP^{NL-F/NL-F} male mice.
340 Before the onset of cognitive symptoms, young male APP^{NL-F/NL-F} mice displayed
341 increased evoked glutamate release in the DG and CA3 hippocampal subregions.
342 These were the same subregions in which we observed depleted evoked glutamate
343 release in aged APP^{NL-F/NL-F} male mice. A decrease in basal glutamate in the CA1 and
344 CA3 subregions was also observed in these mice, supporting a hypoactive
345 glutamatergic environment with age and disease progression. Loss of glutamatergic
346 stimulation of postsynaptic receptors would impair hippocampal long-term potentiation
347 and confer impaired performance on memory tasks (Findley *et al.* 2019; Hascup *et al.*
348 2020; Parsons *et al.* 2007). Soluble A β ₄₂ appears as a likely driver of hyper-to-
349 hypoactivation, as early hyperactivation was not observed in young male APP^{NL/NL} mice
350 that only express increased total amyloid levels and not specific preference for A β ₄₂
351 production. Soluble A β ₄₂ has been shown to directly interact with the glutamatergic
352 synapse and drive dyshomeostasis with disease progression (Findley *et al.* 2019;
353 Hascup *et al.* 2022; Hascup and Hascup 2016; Ferreira and Klein 2011; Wilcox *et al.*
354 2011). Further, elevated soluble A β ₄₂ has been characterized in male APP^{NL-F/NL-F} mice

355 beginning around 2 months of age, concurrent with the window of hyperactivation
356 observed in this study (Saito *et al.* 2014; Masuda *et al.* 2016). However, aged male
357 APP^{NL/NL} mice showed decreased evoked glutamate release in the same subregions as
358 age-matched APP^{NL-F/NL-F} mice, leaving open the possibility of multiple drivers for
359 glutamatergic hypoactivation in later disease stages.

360 Data from glutamate recordings in male APP^{NL-F/NL-F} mice varies from that previously
361 obtained by our laboratory in transgenic A β PP/PS1 male mice (Hascup *et al.* 2020).
362 Namely, we observed a steady incline in basal glutamate levels in all subregions of the
363 hippocampus in A β PP/PS1 male mice that was absent in male APP^{NL-F/NL-F} mice—and
364 juxtaposed for the CA3 and CA1 with age and disease progression. Further, a similar
365 hyper-to-hypoactivation event occurred with disease progression in male A β PP/PS1
366 mice, but primarily in the CA1 instead of the DG and CA3 as observed in APP^{NL-F/NL-F}
367 male mice. This divergence could be due to differences between the mouse models
368 including gene overexpression and transgenic versus knock-in genetic manipulation.
369 A β PP/PS1 exhibit greater amyloid burden, higher early attrition rate, and more
370 aggressive cognitive decline (Britz *et al.* 2022). However, previous studies have shown
371 a similar amyloidosis timeline between A β PP/PS1 and APP^{NL-F/NL-F} mice, first appearing
372 in cortex and hippocampus (Saito *et al.* 2014; Masuda *et al.* 2016; Hascup *et al.* 2020;
373 Britz *et al.* 2022). Temporal progression through the hippocampus is also similar
374 between the models, occurring first and primarily in the CA1 and then moving into the
375 DG and CA3 (Britz *et al.* 2022; Hascup *et al.* 2020). Yet, the temporal progression for
376 amyloidosis and glutamate hyperactivity in male A β PP/PS1 mice mirror each other,
377 unlike that observed in APP^{NL-F/NL-F} mice. Other intermediating factors may come into

378 play – such as mouse model differences in the expression of key glutamate synaptic
379 components across hippocampal subregions – and should be explored in future studies.

380 Female APP^{NL-F/NL-F} mice underwent a unique and divergent biological aging process to
381 that characterized in male APP^{NL-F/NL-F} mice. No alterations in evoked glutamate release
382 appeared throughout the lifespan for APP^{NL-F/NL-F} female mice — their story pertained
383 more to glutamate clearance and homeostatic maintenance. Young APP^{NL-F/NL-F} female
384 mice showed faster glutamate clearance times compared to age-matched APP^{NL/NL} and
385 C57BL/6 mice in the CA1. The same subregion then showed a loss of basal glutamate
386 levels in aged female APP^{NL-F/NL-F} mice, indicating a possible early compensatory
387 mechanism to maintain glutamatergic homeostasis that failed with disease progression.

388 Glutamatergic transport is the crux of homeostasis at the tripartite glutamate synapse —
389 dysregulation of astrocytic glutamate clearance can significantly impact cognitive
390 outcomes (Varga *et al.* 2015; Lewerenz and Maher 2015b; Sheldon and Robinson
391 2007). Of note, a prior study from our laboratory found that local A β ₄₂ application
392 stimulated lactate release only in the CA1 of female C57BL/6 mice, a possible indication
393 of A β ₄₂-mediated increased glutamate clearance localized to this hippocampal
394 subregion in female mice (Hascup *et al.* 2022). It is possible that glutamatergic
395 alterations exist more in tonic or spontaneous activity for APP^{NL-F/NL-F} female mice than
396 with stimulus-evoked glutamate release. Such a possibility would explain the absence of
397 effects to evoked glutamate release, and provide more context to faster glutamate
398 clearance times in young APP^{NL-F/NL-F} female mice. Another possible explanation may
399 reside in astrocyte activity and response to pathology, in which prior studies indicate
400 sexual dimorphism and emphasize the neuromodulatory role of estrogen (Chowen and

401 Garcia-Segura 2021). Estrogen can protect against glutamate hyperexcitability by
402 supporting astrocyte function and inhibitory regulation (Spencer *et al.* 2008; Nematipour
403 *et al.* 2020) — and yield devastating biological consequences when lost during
404 menopause (Wang *et al.* 2020; Georgakis *et al.* 2019). Taken together, there are likely
405 multiple factors contributing to the difference in hippocampal glutamate dynamics with
406 disease progression for female APP^{NL-F/NL-F} mice.

407 Glutamate findings in female APP^{NL-F/NL-F} mice contrast that of previous studies from
408 other laboratories in female A β PP/PS1 mice (Minkeviciene *et al.* 2008). A loss of
409 hippocampal evoked glutamate response with disease progression was reported, with
410 no alterations to basal glutamate throughout the lifespan. Prior examination of amyloid
411 pathology from both models indicate more aggressive amyloidosis in female A β PP/PS1
412 mice, with both models following a similar temporal progression observed in their male
413 counterparts (Britz *et al.* 2022). At 12 months of age, female A β PP/PS1 mice display
414 more severe amyloid pathology, especially in the hippocampus, than male A β PP/PS1
415 mice (Jiao *et al.* 2016). It is possible that the severity of amyloid pathology observed in
416 female A β PP/PS1 mice drove the glutamatergic hypoactivity observed in later disease
417 stages and would explain the absence of this effect in APP^{NL-F/NL-F} female mice.

418 Further considerations should also be given to the role of estrogen between these
419 models. Female C57BL/6 mice — and AD mice on a C57BL/6 background — reach
420 reproductive senescence and become acyclic between 12-16 months of age (Holinka *et*
421 *al.* 1979; Mobbs *et al.* 1984; Clinton *et al.* 2007). Studies have found that aging reduces
422 the neuroprotective action of 17 β -estradiol treatment in transgenic AD mice
423 (Christensen *et al.* 2020). To that end, data support that 17 β -estradiol replacement in

424 ovariectomized female A β PP/PS1 mice only exerts procognitive effects in early stages
425 (4 months of age) (Qin *et al.* 2020). A β PP/PS1 female mice also display an increased
426 pro-inflammatory profile and greater neuronal and synaptic degeneration than that of
427 their male counterparts, which may be driven in-part by loss of responsiveness to
428 estrogen (Jiao *et al.* 2016). It remains uncertain whether APP^{NL-F/NL-F} female mice
429 display similar deficiencies, which would impact both the glutamate and cognitive
430 outcomes observed in this study (Luo *et al.* 2022; Barth *et al.* 2015; Nematipour *et al.*
431 2020).

432 Results from our behavioral analysis indicated sexual dimorphism in cognitive deficits
433 for APP^{NL-F/NL-F} aged mice. Aged male APP^{NL-F/NL-F} mice exhibited impaired spatial long-
434 term memory during the MWM, but did not show any loss in recognition memory. These
435 findings are congruent with previous studies examining cognition in APP^{NL-F/NL-F} mice
436 (Masuda *et al.* 2016; Saito *et al.* 2014; Britz *et al.* 2022; Mazzei *et al.* 2021). Aged
437 APP^{NL/NL} male mice did not exhibit deficits in spatial or retention memory, in agreement
438 with previous studies examining 24-month-old male APP^{NL/NL} mice (Salas *et al.* 2018). It
439 is possible that prolonged glutamatergic dyshomeostasis in multiple subregions for
440 APP^{NL-F/NL-F} male mice contributed to an earlier onset of cognitive symptoms than
441 APP^{NL/NL} mice. Aged female APP^{NL-F/NL-F} mice showed impaired spatial learning and
442 memory and recognition memory, collectively displaying a more severe cognitive
443 phenotype than that observed in male mice. As previously discussed, this may be due
444 to loss of astrocytic homeostatic regulation of the glutamatergic synapse with disease
445 progression. This finding mirrors previous studies indicating that AD tends to be more
446 aggressive in female AD mice and in humans (Mielke 2018; Jiao *et al.* 2016). Spatial

447 long-term memory impairment for female APP^{NL-F/NL-F} mice was also observed on a
448 different parameter than genotype- and age-matched male mice during the MWM probe
449 challenge. It is possible that sex differences in spatial navigation and wayfinding could
450 have impacted the parameters by which cognitive deficits were observed (Andreano
451 and Cahill 2009). Previous studies would indicate that this divergence between sexes is
452 unlikely to be attributed to sex differences in executive function (Grissom and Reyes
453 2019). Sexual dimorphism in glutamate and cognition have been previously described
454 (Giacometti and Barker 2020; Barth *et al.* 2015; Hädel *et al.* 2013), and support that
455 differences in hippocampal glutamate dynamics observed throughout the lifespan may
456 have also influenced sex differences in cognitive decline for this model.

457 Collectively, these findings indicate genotype and sex differences in glutamate
458 dynamics and cognition for knock-in AD mice. APP^{NL/NL} mice provided a necessary
459 middle ground between C57BL/6 littermates and APP^{NL-F/NL-F} mice to delineate the role
460 of A β ₄₂ in study outcomes. Further, these genotype differences also support that APP
461 knock-in alone exerts moderate pathology, which is compounded by increased A β ₄₂
462 production generating a more severe cognitive profile. Biological differences in sex add
463 on another layer of complexity to the observed findings and point to worsened pathology
464 in female mice likely implicating a hormonal impact to glutamate and cognition with age
465 and disease progression that warrants further study.

466 Sexually dimorphic rates of biological aging may also contribute to the differences in
467 glutamate dynamics and cognitive performance. Evidence suggests females maintain
468 better cellular health for most of their life, but become frailer when approaching older
469 age than males (Hägg and Jylhävä 2021). Divergent disease progression between the

470 sexes would hold important implications for therapeutic treatment. Interventional
471 strategies must evaluate opportune windows for treatment that are tailored to the sex-
472 specific degeneration timelines and broader disease pathogenesis to maximize efficacy.
473 Further, these findings also reinforce that experimentation protocols for therapeutic
474 candidates need to include evaluations of male and female participants. It is entirely
475 plausible that intervention strategies may produce variable outcomes between sexes
476 due to hormonal neuromodulation and sex-dependent pathogenic phenotype.

477

478 **Author Contribution**

479 CAF executed electrochemistry recordings, behavioral assays, data analysis and
480 interpretation, and drafting of the manuscript. SAM assisted with conducting behavioral
481 assays. TH assisted with cryosectioning and cresyl violet staining. MRP and KQ
482 managed the breeding colony. KNH and ERH conceived and supervised the study,
483 imparted surgical and electrochemistry training, , and provided manuscript revisions.

484 **Acknowledgements**

485 The authors have no acknowledgments to report.

486 References

487 Alzheimer's Association (2022) 2022 Alzheimer's disease facts and figures. **18**, 700–
488 789.

489 Andreano J. M., Cahill L. (2009) Sex influences on the neurobiology of learning and
490 memory. *Learn. Mem.* **16**, 248–266.

491 Barth C., Villringer A., Sacher J. (2015) *Sex hormones affect neurotransmitters and*
492 *shape the adult female brain during hormonal transition periods.* Frontiers
493 Research Foundation.

494 Britz J., Ojo E., Dhukhwa A., Saito T., Saido T. C., Hascup E. R., Hascup K. N.,
495 Tischkau S. A. (2022) Assessing Sex-Specific Circadian, Metabolic, and Cognitive
496 Phenotypes in the A β PP/PS1 and APPNL-F/NL-F Models of Alzheimer's Disease.
497 *J. Alzheimer's Dis.* **85**, 1077–1093.

498 Chowen J. A., Garcia-Segura L. M. (2021) Role of glial cells in the generation of sex
499 differences in neurodegenerative diseases and brain aging. *Mech. Ageing Dev.*
500 **196**, 111473.

501 Christensen A., Liu J., Pike C. J. (2020) Aging Reduces Estradiol Protection Against
502 Neural but Not Metabolic Effects of Obesity in Female 3xTg-AD Mice. *Front. Aging*
503 *Neurosci.* **12**, 113.

504 Clinton L. K., Billings L. M., Green K. N., Caccamo A., Ngo J., Oddo S., McGaugh J. L.,
505 LaFerla F. M. (2007) Age-dependent sexual dimorphism in cognition and stress
506 response in the 3xTg-AD mice. *Neurobiol. Dis.* **28**, 76–82.

507 Cox M. F., Hascup E. R., Bartke A., Hascup K. N. (2022) Friend or Foe? Defining the
508 Role of Glutamate in Aging and Alzheimer's Disease. *Front. Aging* **3**, 65.

509 Ferreira S. T., Klein W. L. (2011) The A β oligomer hypothesis for synapse failure and
510 memory loss in Alzheimer's disease. *Neurobiol. Learn. Mem.* **96**, 529–543.

511 Findley C. A. C. A., Bartke A., Hascup K. N. K. N., Hascup E. R. E. R. (2019) Amyloid
512 Beta-Related Alterations to Glutamate Signaling Dynamics During Alzheimer's
513 Disease Progression. *ASN Neuro* **11**, 1–20.

514 Gasiorowska A., Wydrych M., Drapich P., Zadrożny M., Steczkowska M., Niewiadomski
515 W., Niewiadomska G. (2021) *The Biology and Pathobiology of Glutamatergic,*
516 *Cholinergic, and Dopaminergic Signaling in the Aging Brain.* Frontiers Media S.A.

517 Georgakis M. K., Beskou-Kontou T., Theodoridis I., Skalkidou A., Petridou E. T. (2019)
518 Surgical menopause in association with cognitive function and risk of dementia: A
519 systematic review and meta-analysis. *Psychoneuroendocrinology* **106**, 9–19.

520 Giacometti L. L., Barker J. M. (2020) *Sex differences in the glutamate system:*
521 *Implications for addiction.* Elsevier Ltd.

522 Grissom N. M., Reyes T. M. (2019) *Let's call the whole thing off: evaluating gender and*
523 *sex differences in executive function.* Nature Publishing Group.

524 Hädel S., Wirth C., Rapp M., Gallinat J., Schubert F. (2013) Effects of age and sex on
525 the concentrations of glutamate and glutamine in the human brain. *J. Magn. Reson.*
526 *Imaging* **38**, 1480–1487.

527 Hägg S., Jylhävä J. (2021) Sex differences in biological aging with a focus on human
528 studies. *Elife* **10**.

529 Hascup E. R., Sime L. N., Peck M. R., Hascup K. N. (2022) Amyloid- β 42 stimulated
530 hippocampal lactate release is coupled to glutamate uptake. *Sci. Reports* **2022** *12*
531 **12**, 1–11.

532 Hascup K. N., Findley C. A., Sime L. N., Hascup E. R. (2020) Hippocampal alterations
533 in glutamatergic signaling during amyloid progression in A β PP/PS1 mice. *Sci. Rep.*
534 **10**, 14503.

535 Hascup K. N., Hascup E. R. (2015) Altered neurotransmission prior to cognitive decline
536 in A β PP/PS1 mice, a model of Alzheimer's disease. *J. Alzheimer's Dis.* **44**, 771–
537 776.

538 Hascup K. N., Hascup E. R. (2016) Soluble Amyloid- β 42 Stimulates Glutamate Release
539 through Activation of the α 7 Nicotinic Acetylcholine Receptor. *J. Alzheimer's Dis.*
540 **53**, 337–347.

541 Hascup K. N., Rutherford E. C., Quintero J. E., Day B. K., Nickell J. R., Pomerleau F.,
542 Huettl P., Burmeister J. J., Gerhardt G. A. (2007) Second-by-Second Measures of
543 L-Glutamate and Other Neurotransmitters Using Enzyme-Based Microelectrode
544 Arrays, in *Electrochem. Methods Neurosci.* CRC Press/Taylor & Francis.

545 Holinka C. F., Tseng Y.-C., Finch C. E. (1979) Reproductive Aging in C57BL/6J Mice:
546 Plasma Progesterone, Viable Embryos and Resorption Frequency throughout
547 Pregnancy. *Biol. Reprod.* **20**, 1201–1211.

548 Jiao S. S., Bu X. Le, Liu Y. H., Zhu C., Wang Q. H., Shen L. L., Liu C. H., Wang Y. R.,
549 Yao X. Q., Wang Y. J. (2016) Sex Dimorphism Profile of Alzheimer's Disease-Type
550 Pathologies in an APP/PS1 Mouse Model. *Neurotox. Res.* **29**, 256–266.

551 Kundu P., Torres E. R. S., Stagaman K., Kasschau K., Okhovat M., Holden S., Ward S.,
552 Neponen K. A., Davis B. A., Saito T., Saido T. C., Carbone L., Sharpton T. J.,
553 Raber J. (2021) Integrated analysis of behavioral, epigenetic, and gut microbiome
554 analyses in App NL-G-F, App NL-F, and wild type mice. *Sci. Rep.* **11**, 4678.

555 Laws K. R., Irvine K., Gale T. M. (2016) Sex differences in cognitive impairment in
556 Alzheimer's disease. *World J. Psychiatry* **6**, 54.

557 Lewerenz J., Maher P. (2015a) *Chronic glutamate toxicity in neurodegenerative*
558 *diseases-What is the evidence?* Frontiers Media S.A.

559 Lewerenz J., Maher P. (2015b) *Chronic glutamate toxicity in neurodegenerative*
560 *diseases-What is the evidence?* Frontiers Media S.A.

561 Luo M., Zeng Q., Jiang K., Zhao Y., Long Z., Du Y., Wang K., He G. (2022) Estrogen
562 deficiency exacerbates learning and memory deficits associated with glucose

563 metabolism disorder in APP/PS1 double transgenic female mice. *Genes Dis.* **9**,
564 1315–1331.

565 Masuda A., Kobayashi Y., Kogo N., Saito T., Saido T. C., Itohara S. (2016) Cognitive
566 deficits in single App knock-in mouse models. *Neurobiol. Learn. Mem.* **135**, 73–82.

567 Mazzei G., Ikegami R., Abolhassani N., Haruyama N., Sakumi K., Saito T., Saido T. C.,
568 Nakabeppu Y. (2021) A high-fat diet exacerbates the Alzheimer's disease
569 pathology in the hippocampus of the App NL-F/NL-F knock-in mouse model.
570 *Aging Cell* **20**, e13429.

571 McEntee W. J., Crook T. H. (1993) *Glutamate: its role in learning, memory, and the*
572 *aging brain*. Springer-Verlag.

573 Mielke M. M. (2018) Sex and gender differences in Alzheimer disease dementia.
574 *Psychiatr. Times* **35**, 14–15.

575 Minkeviciene R., Ihlainen J., Malm T., Matilainen O., Keksa-Goldsteine V., Goldsteins
576 G., Iivonen H., Leguit N., Glennon J., Koistinaho J., Banerjee P., Tanila H. (2008)
577 Age-related decrease in stimulated glutamate release and vesicular glutamate
578 transporters in APP/PS1 transgenic and wild-type mice. *J. Neurochem.* **105**, 584–
579 594.

580 Mobbs C. V., Gee D. M., Finch C. E. (1984) Reproductive senescence in female
581 C57BL/6J mice: Ovarian impairments and neuroendocrine impairments that are
582 partially reversible and delayable by ovariectomy. *Endocrinology* **115**, 1653–1662.

583 Nematipour S., Vahidinia Z., Nejati M., Naderian H., Beyer C., Tameh A. A. (2020)
584 Estrogen and progesterone attenuate glutamate neurotoxicity via regulation of
585 EAAT3 and GLT-1 in a rat model of ischemic stroke. *Iran. J. Basic Med. Sci.* **23**,
586 1346–1352.

587 Olney J. W., Wozniak D. F., Farber N. B. (1997) Excitotoxic neurodegeneration in
588 Alzheimer disease. New hypothesis and new therapeutic strategies. *Arch. Neurol.*
589 **54**, 1234–40.

590 Parsons C. G., Stöffler A., Danysz W. (2007) Memantine: a NMDA receptor antagonist
591 that improves memory by restoration of homeostasis in the glutamatergic system -
592 too little activation is bad, too much is even worse. *Neuropharmacology* **53**, 699–
593 723.

594 Podcsay J. L., Epperson C. N. (2016) Considering sex and gender in Alzheimer disease
595 and other dementias. *Dialogues Clin. Neurosci.* **18**, 437–446.

596 Purves D, Augustine GJ, Fitzpatrick D (2001) Glutamate, in *Neuroscience*. Sinauer
597 Associates, Sunderland (MA).

598 Qin Y., An D., Xu W., Qi X., Wang X., Chen L., Chen L., Sha S. (2020) Estradiol
599 Replacement at the Critical Period Protects Hippocampal Neural Stem Cells to
600 Improve Cognition in APP/PS1 Mice. *Front. Aging Neurosci.* **12**, 240.

601 Revett T. J., Baker G. B., Jhamandas J., Kar S. (2013) Glutamate system, amyloid β

602 peptides and tau protein: functional interrelationships and relevance to Alzheimer
603 disease pathology. *J. Psychiatry Neurosci.* **38**, 6–23.

604 Rudy C. C., Hunsberger H. C., Weitzner D. S., Reed M. N. (2015) The Role of the
605 Tripartite Glutamatergic Synapse in the Pathophysiology of Alzheimer's Disease.
606 *Aging Dis.* **6**, 131–148.

607 Saito T., Matsuba Y., Mihira N., Takano J., Nilsson P., Itohara S., Iwata N., Saido T. C.
608 (2014) Single App knock-in mouse models of Alzheimer's disease. *Nat. Neurosci.*
609 **17**, 661–663.

610 Salas I. H., Callaerts-Vegh Z., D'Hooge R., Saido T. C., Dotti C. G., Strooper B. De,
611 D'Hooge R., Saido T. C., Dotti C. G., Strooper B. De (2018) Increased Insoluble
612 Amyloid- β Induces Negligible Cognitive Deficits in Old APPNL/NL Knock-In Mice.
613 **66**, 801–809.

614 Segovia G., Porras A., Arco A. Del, Mora F. (2001) Glutamatergic neurotransmission in
615 aging: A critical perspective. *Mech. Ageing Dev.* **122**, 1–29.

616 Shah D., Latif-Hernandez A., Strooper B. De, Saito T., Saido T., Verhoye M., D'Hooge
617 R., Linden A. Van der, D'Hooge R., Linden A. Van der (2018) Spatial reversal
618 learning defect coincides with hypersynchronous telencephalic BOLD functional
619 connectivity in APPNL-F/NL-F knock-in mice. **8**, 6264.

620 Sheldon A. L., Robinson M. B. (2007) *The role of glutamate transporters in
621 neurodegenerative diseases and potential opportunities for intervention*. Elsevier
622 Ltd.

623 Spencer J. L., Waters E. M., Romeo R. D., Wood G. E., Milner T. A., McEwen B. S.
624 (2008) *Uncovering the mechanisms of estrogen effects on hippocampal function*.
625 NIH Public Access.

626 Valladolid-Acebes I., Merino B., Principato A., Fole A., Barbas C., Lorenzo M. P., García
627 A., Olmo N. Del, Ruiz-Gayo M., Cano V. (2012) High-fat diets induce changes in
628 hippocampal glutamate metabolism and neurotransmission. *Am. J. Physiol. Metab.*
629 **302**, E396–E402.

630 Varga E., Juhász G., Bozsó Z., Penke B., Fülöp L., Szegedi V. (2015) Amyloid- β 1-42
631 Disrupts Synaptic Plasticity by Altering Glutamate Recycling at the Synapse. *J.
632 Alzheimers. Dis.* **45**, 449–456.

633 Wang Y., Shang Y., Mishra A., Bacon E., Yin F., Brinton R. (2020) Midlife Chronological
634 and Endocrinological Transitions in Brain Metabolism: System Biology Basis for
635 Increased Alzheimer's Risk in Female Brain. *Sci. Rep.* **10**, 8528–8528.

636 Wilcox K. C., Lacor P. N., Pitt J., Klein W. L. (2011) A β Oligomer-Induced Synapse
637 Degeneration in Alzheimer's Disease. *Cell. Mol. Neurobiol.* **31**, 939–948.

638

639 **Figure Legend**

640 **Figure 1: Elevated evoked glutamate release in 2-4 months old APP^{NL-F/NL-F} male mice.**

641 A) Representative traces of 70 mM KCl stimulus-evoked glutamate recordings in the

642 DG, CA3, and CA1 hippocampal subregions. B-C) Basal and stimulus-evoked

643 glutamate concentration by subregion. Inset depicts average amount of 70 mM KCl

644 locally applied to evoke glutamate release. D) Time to 80% of glutamate clearance.

645 One-way ANOVA, Tukey's post-hoc, *p<0.05, **p<0.01.

646 **Figure 2: Altered glutamate clearance in the CA1 of 2-4 months old female APP^{NL-F/NL-F}**

647 mice. A) Representative traces of 70 mM KCl stimulus-evoked glutamate recordings in

648 the DG, CA3, and CA1 hippocampal subregions. B-C) Basal and stimulus-evoked

649 glutamate concentration by subregion. Inset depicts average amount of 70 mM KCl

650 locally applied to evoke glutamate release. D). Time to 80% of glutamate clearance.

651 One-way ANOVA, Tukey's post-hoc, *p<0.05.

652 **Figure 3: Sex-dependent cognitive decline in aged AD mice.** A-B) Cumulative distance

653 to the platform throughout the five trial days for male (A) and female (B) mice. Insets

654 depict area under the curve (AUC) for the five-day learning period. C-E) Probe

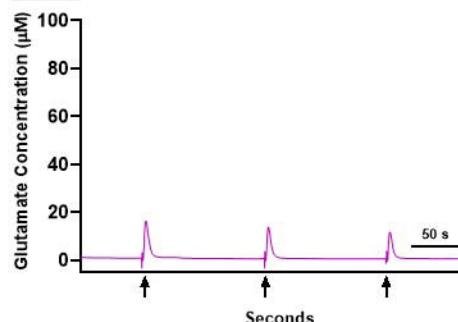
655 challenge measures include: cumulative distance, platform entries per distance swam,

656 and path efficiency to first entry. F) Representative track plots from the probe challenge

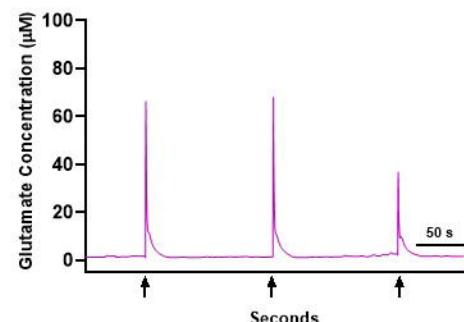
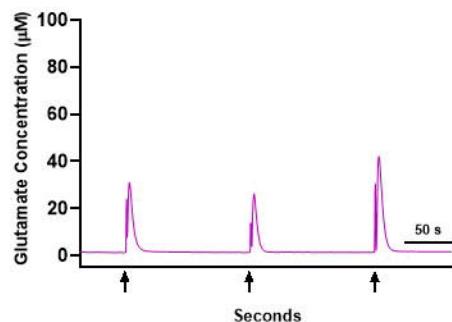
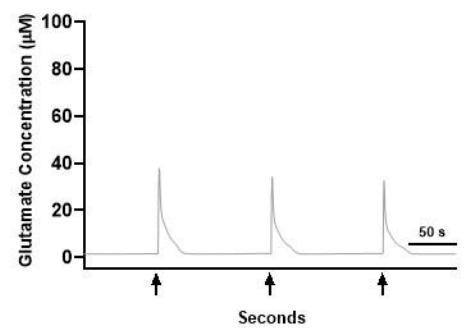
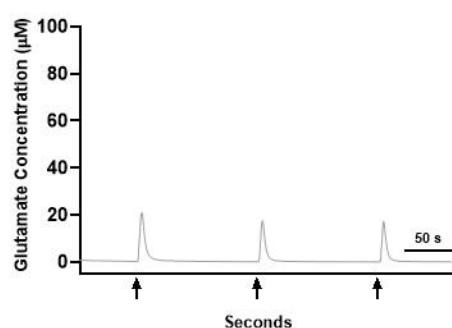
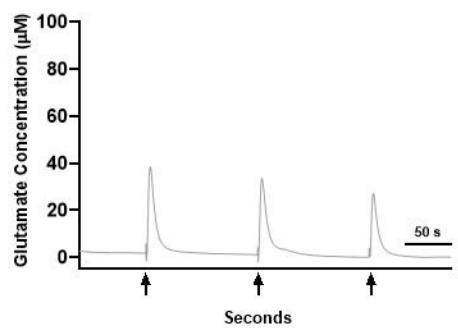
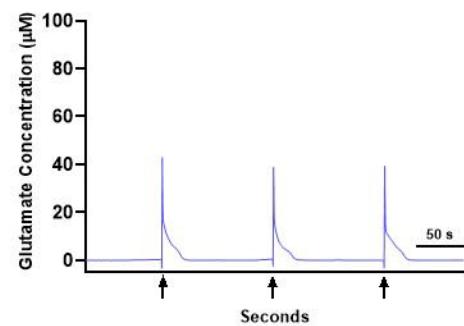
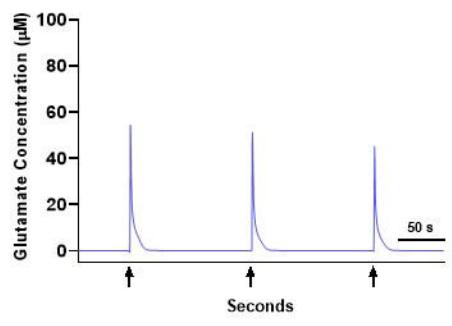
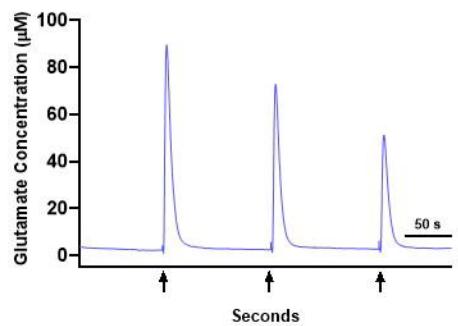
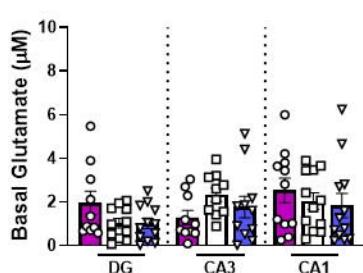
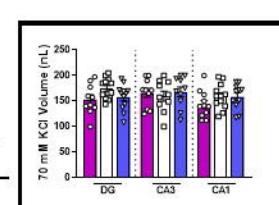
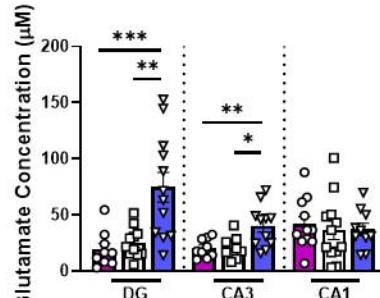
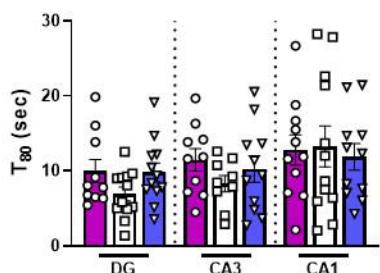
657 for each sex and genotype. G-H) Distance and average speed during the novel object

658 retention day. I) Evaluation of retention memory through novelty preference. MWM

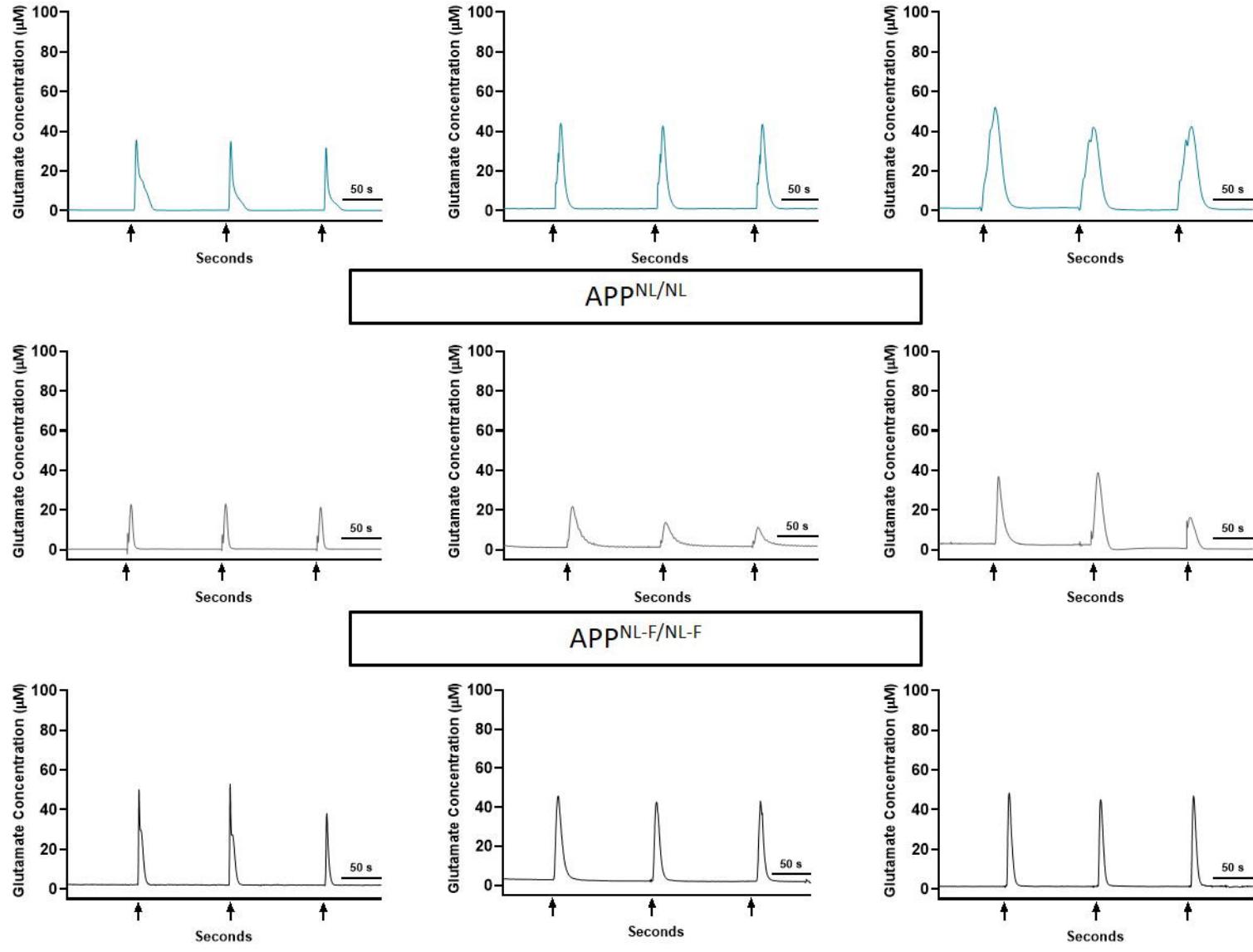
659 Trials: Two-way ANOVA, Tukey's post-hoc; MWM Probe and NOR: One-way ANOVA,


660 Tukey's post-hoc, *p<0.05, **p<0.01, ***p<0.001.

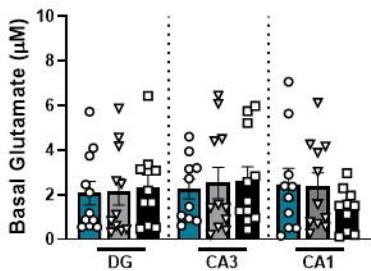
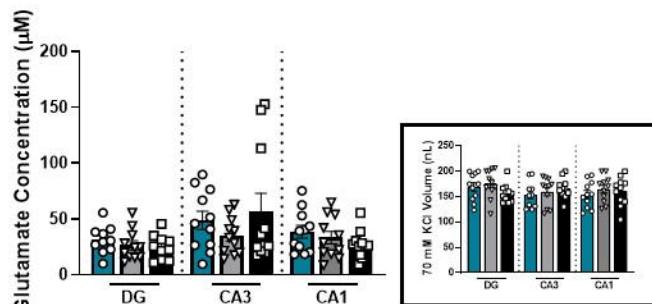
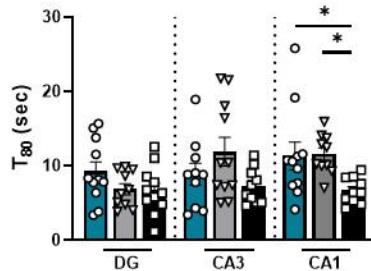
661 **Figure 4: Hypoactive glutamate dynamics in the hippocampus of 18+ months old male**
662 *AD mice.* A) Representative traces from 70 mM KCl stimulus-evoked glutamate
663 recordings in the DG, CA3, and CA1 hippocampal subregions. B-C) Basal and stimulus-
664 evoked glutamate concentration by subregion. Inset depicts average amount of 70 mM
665 KCl locally applied to evoke glutamate release. D) Time to 80% of glutamate clearance.

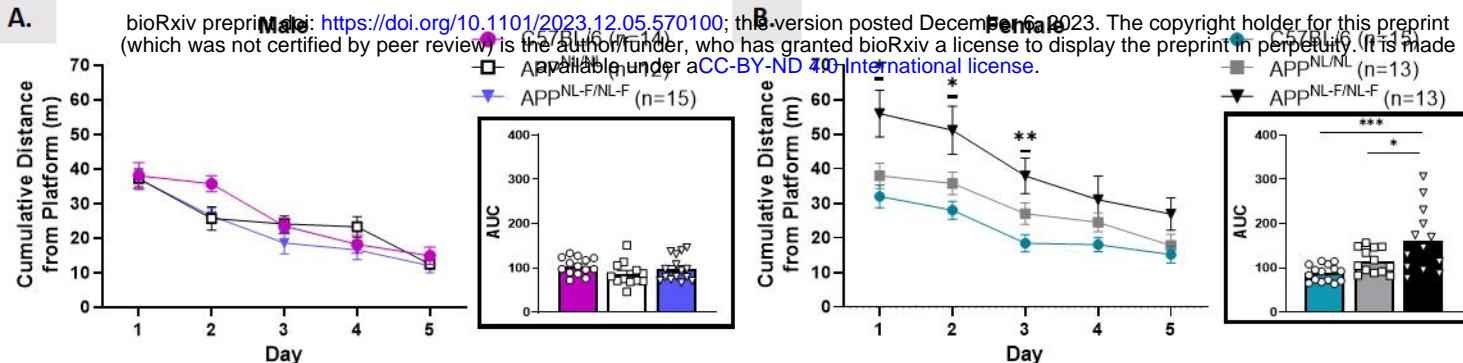
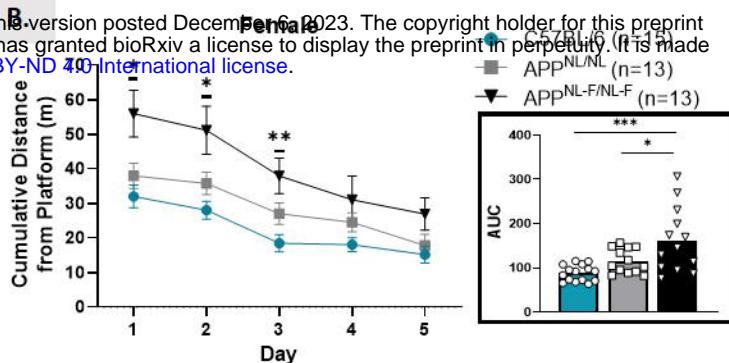
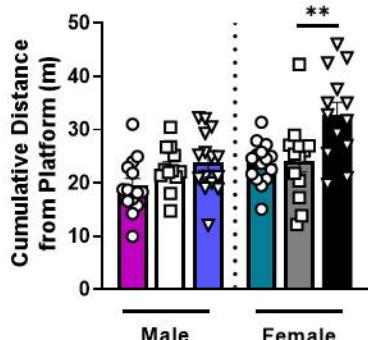
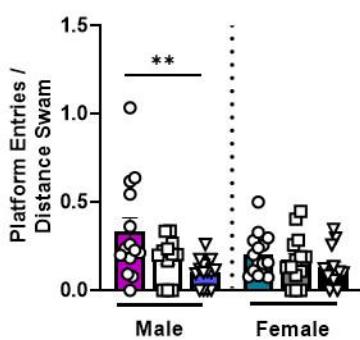
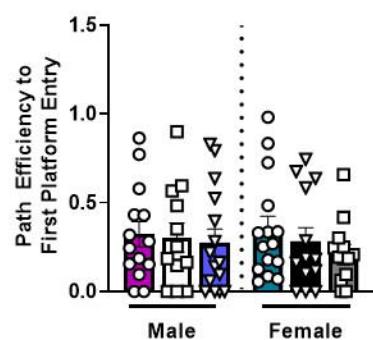
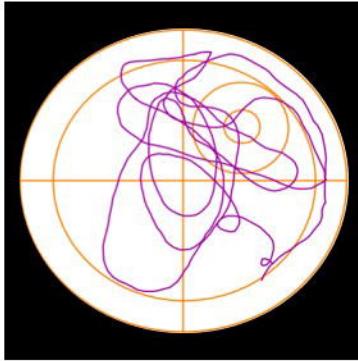












666 One-way ANOVA, Tukey's post-hoc, *p<0.05, ***p<0.001.

667 **Figure 5: Decreased basal glutamate levels in the CA1 of 18+ months old female**
668 *APP^{NL-F/NL-F} mice.* A) Representative traces from the DG, CA3, and CA1. B-C) Basal
669 and stimulus-evoked glutamate concentration by subregion. Inset depicts average
670 amount of 70 mM KCl locally applied to evoke glutamate release. D) Time to 80% of
671 glutamate clearance. One-way ANOVA, Tukey's post-hoc, *p<0.05, **p<0.01.

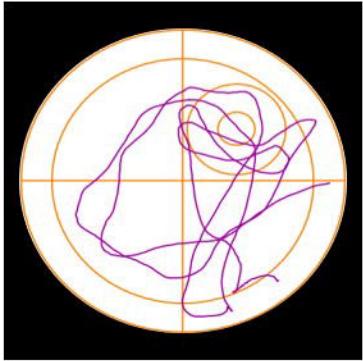

672 **Supplementary Figure 1: No memory deficits present in 2-4 months old knock-in AD**
673 *mice.* A-B) Spatial learning performance evaluated by cumulative distance from the
674 platform area throughout the five trial days for male (A) and female (B) mice. C-E) Long-
675 term spatial memory recall performance during probe challenge was measured by:
676 cumulative distance, platform entries per distance swam, and path efficiency to first
677 entry. G-H) Distance and average speed during the novel object retention day. I)
678 Evaluation of retention memory through novelty preference. MWM Trials: Two-way
679 ANOVA, Tukey's post-hoc; MWM Probe and NOR: One-way ANOVA, Tukey's post-hoc,
680 **p<0.01, ****p<0.0001

DG**CA3****CA1****A.**

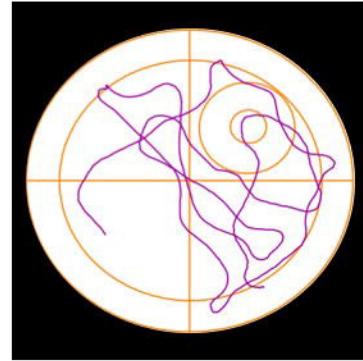



C57BL/6







APP^{NL/NL}APP^{NL-F/NL-F}**B.****C.****D.**

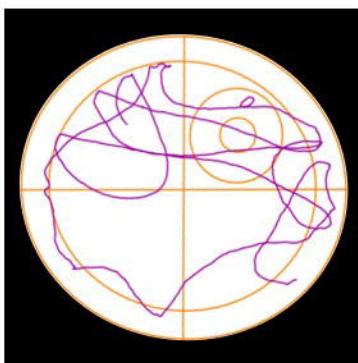
■ C57BL/6 Male
 □ APP^{NL/NL} Male
 ▲ APP^{NL-F/NL-F} Male

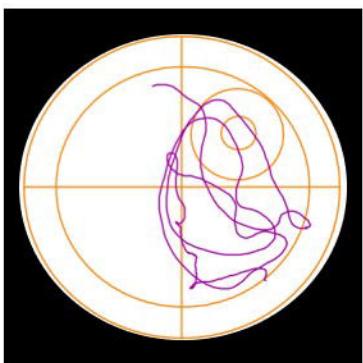

DG**CA3****CA1****A.**

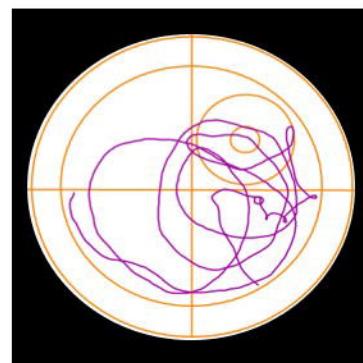
C57BL/6 Female

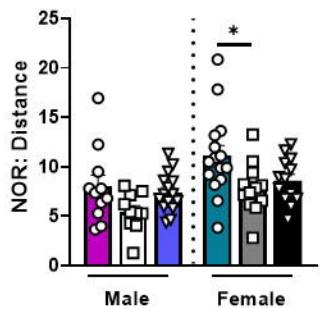
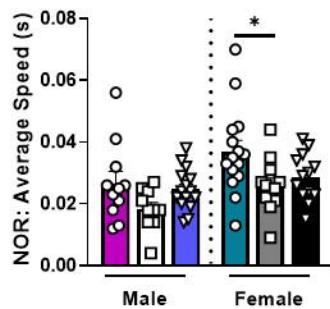
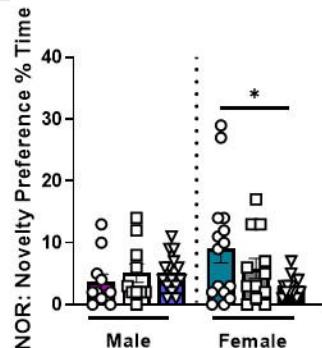

APP^{NL/NL} FemaleAPP^{NL-F/NL-F} Female**B.****C.****D.**

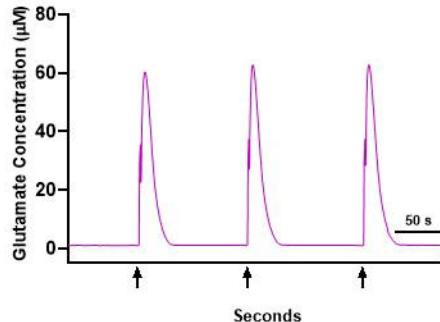
A.**B.****C.****D.****E.****F.**


C57BL/6 Male

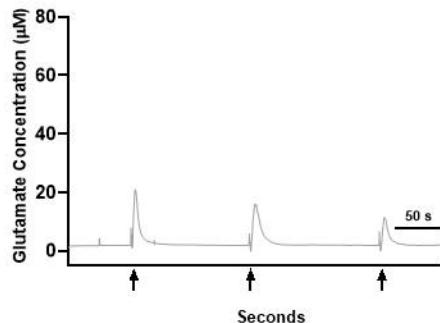
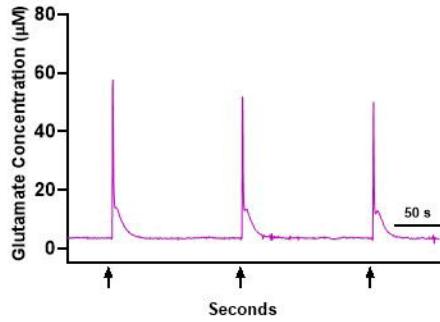
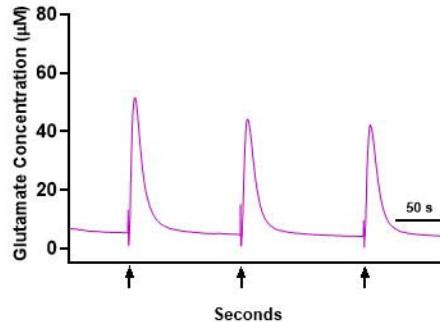
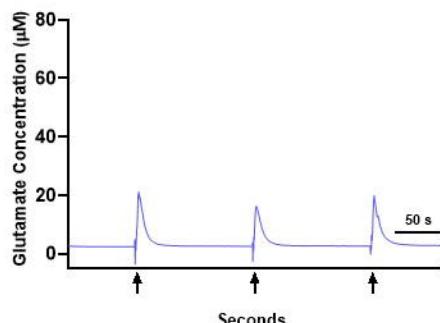
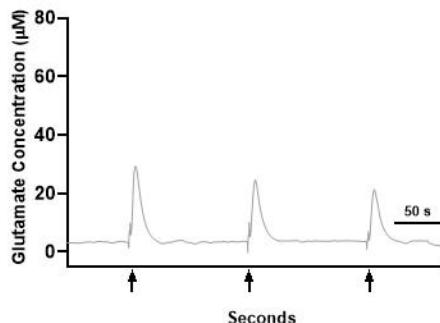
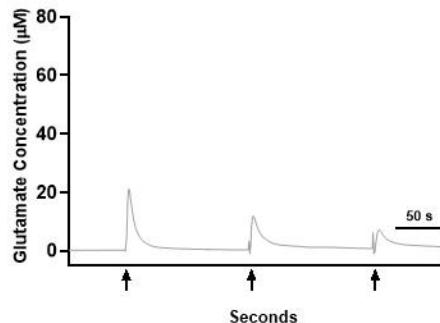
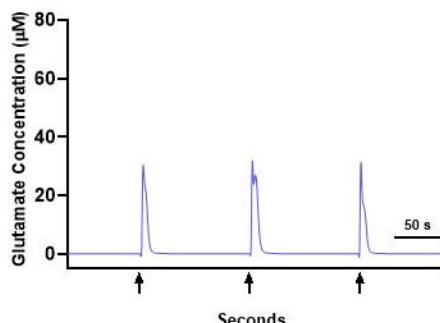
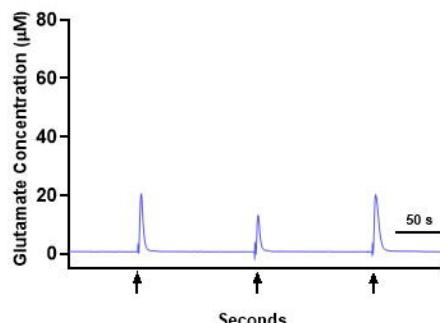
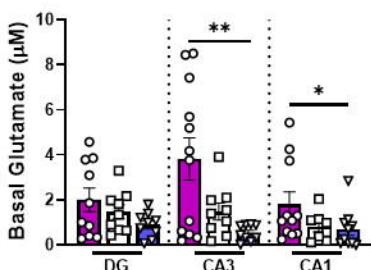
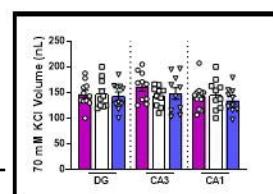
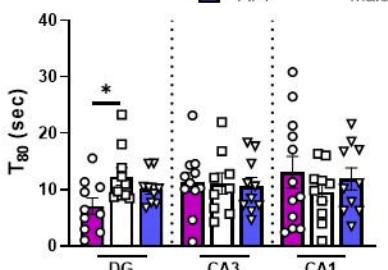

APPNL/NL Male


APPNL-F/NL-F Male




C57BL/6 Female

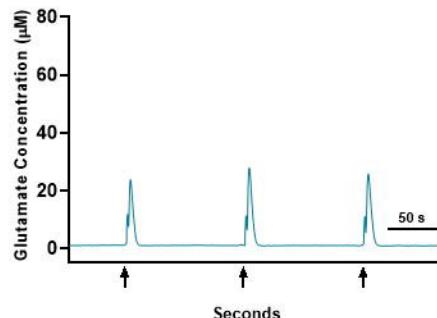
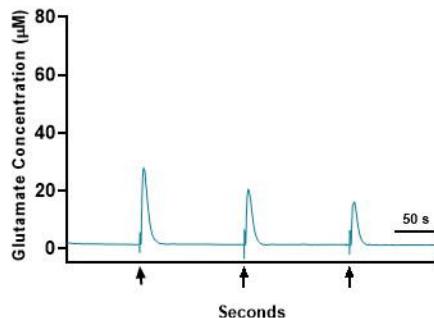
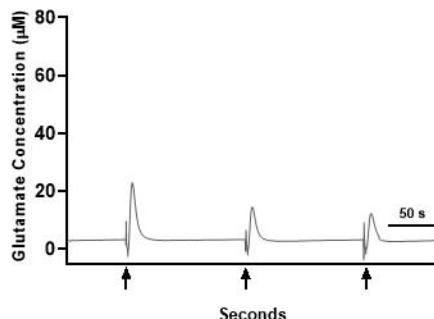
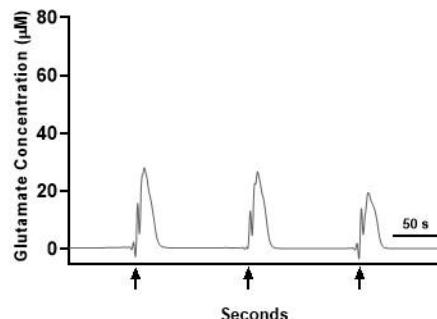
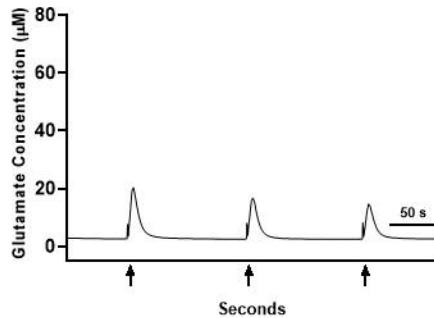
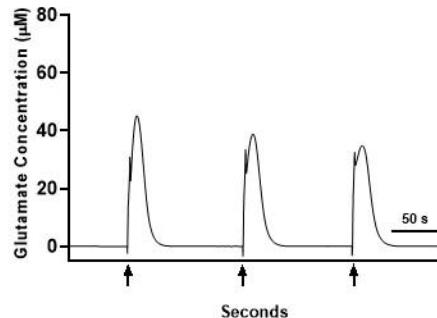
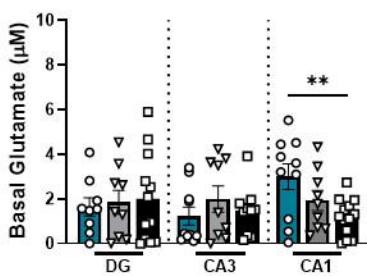
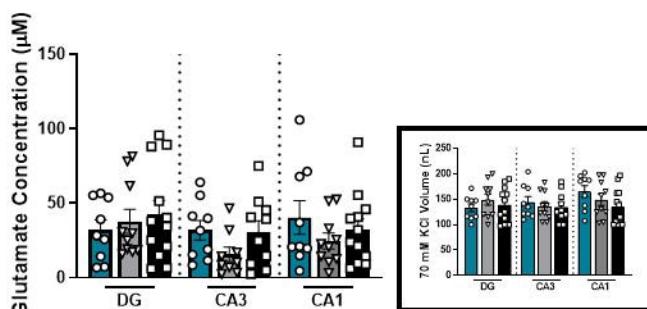
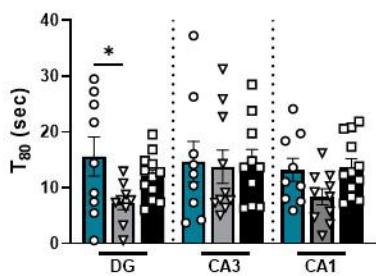


APPNL/NL Female

APPNL-F/NL-F Female

G.**H.****I.**










DG**CA3****CA1****A.**

C57BL/6

APP^{NL/NL}APP^{NL-F/NL-F}**B.****C.****D.**

C57BL/6 Male

APP^{NL/NL} MaleAPP^{NL-F/NL-F} Male

DG**CA3****CA1****A.****C57BL/6****APP^{NL/NL}****APP^{NL-F/NL-F}****B.****C.****D.**