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ABSTRACT

Messenger RNA splicing and degradation kinetics contribute to gene expression regulation, abnormal-
ity of which is closely associated with the development of various diseases. The RNA velocity theory
achieves optimization of the kinetic rates by applying splicing mathematical models to single-cell
transcriptome data; however, most previous methods assumed a single value for all cells. Here, we
introduce DeepKINET, a novel method for estimating splicing and degradation rates at single-cell
resolution, using a deep generative model framework. DeepKINET assumes a single-cell transcrip-
tome generation process based on a mathematical splicing model and latent cellular state-dependent
kinetic rates. Using these assumptions and optimizing real sScRNA-seq data, DeepKINET achieved
a single-cell kinetic rate estimation. We first validated the accuracy of the estimated rates using a
simulated dataset and a metabolic labeling dataset and confirmed the superiority of our method over
an existing method. We further applied DeepKINET to forebrain and breast cancer datasets to extract
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RNA-binding proteins responsible for the diversity of splicing and degradation rates and to identify
genes showing significant changes in kinetic rates across cell populations. Our results indicated
that DeepKINET is an effective method for revealing cellular heterogeneity in post-transcriptional
regulation and the molecular mechanisms that produce heterogeneity.

Keywords single-cell RNA sequencing (scRNA-seq) - RNA splicing - RNA degradation - splicing kinetics -
transcriptome dynamics - RNA-binding proteins - RNA velocity - neural network - variational autoencoder (VAE) -
deep generative model - dimensionality reduction - cell differentiation - metabolic labeling

Introduction

Messenger RNA (mRNA) splicing and degradation play essential roles in precise gene expression regulation. These
processes are vital for accurate utilization of genetic information within cells. Inappropriate splicing can lead to
production of dysfunctional proteins, potentially resulting in severe implications for fundamental cellular functions.
Recent studies have established that abnormal mRNA splicing and degradation are closely associated with development
and progression of diseases such as cancer [Bradley et al.,|2023| [Fang et al.||[2022].

Several methodologies are available to estimate mRNA splicing and degradation rates, each with its own limitations and
challenges. Metabolic labeling methods [Battich et al.l 2018|,|Qiu ef al.,[2020] are used to estimate the synthesis and
degradation rates in genome-wide RNA metabolism by integrating RNA metabolic labeling with cell-specific splicing
kinetics. However, owing to the necessity of specific metabolic labeling, this approach is limited and cannot be applied
as readily as conventional scRNA-seq data. Combination of scRNA-seq data with the RNA velocity theory [La Manno
et all|2018| Bergen et al.,|2020] was introduced to model the dynamic processes of mRNA in individual cells. However,
this approach has been criticized for assuming uniform splicing and degradation rates across cells, which may cause
misrepresentation of true biological variation. A novel relay velocity model [Li et al.,[2023] utilizes neighboring cell
information and leverages deep neural networks to estimate cell-specific kinetic rates. However, its primary intention is
to refine the RNA velocity, leaving questions regarding the accuracy of the kinetic rates for each cell.

In light of these challenges, we introduced DeepKINET (a deep generative model with single-cell RNA kinetics), an
advanced analysis framework based on deep generative modeling. This framework uses deep generative model-driven
cell states in scRNA-seq data to accurately estimate single-cell splicing and degradation kinetics. DeepKINET makes it
possible to better understand the intracellular heterogeneity of the kinetic rates of each gene in all cells. DeepKINET
also identifies RNA-binding proteins involved in the regulation of splicing and degradation processes and presents an
innovative approach to gene clustering based on the RNA splicing and degradation kinetics.

We demonstrate that DeepKINET can estimate mRNA splicing and degradation rates with greater precision than
existing methods, as evidenced by simulated and metabolic labeling experimental data. Moreover, we demonstrate its
robustness against dropouts. By applying DeepKINET to a forebrain dataset, we analyzed whether genes governed by
the same RNA-binding proteins have equivalent trends in their splicing and degradation rates, and we identified the
biological functions of these RNA-binding proteins. Furthermore, when applied to breast cancer data, DeepKINET
revealed splicing and degradation anomalies related to cancer metastasis; we provide specific examples. The results
enhance our understanding of mRNA splicing and degradation processes and help to elucidate underlying molecular
mechanisms and potential therapeutic targets.

Results

Conceptual view of DeepKINET

Figure 1 presents a clear overview of the conceptual framework of DeepKINET. This method processes both spliced
and unspliced mRNA counts from scRNA-seq data and subsequently generates comprehensive kinetic rates across
genes, including splicing and degradation rates, at single-cell resolution. DeepKINET addresses heterogeneity in kinetic
rates spanning genes and cells, which is ignored by existing methods [La Manno et al.,2018| Bergen et al., 2020].

DeepKINET uses a deep generative model of mature and immature transcripts based on an RNA velocity equation.
This enables optimization in which the splicing and degradation rates are adjusted according to the cell state. First, we
use a variational autoencoder (VAE) to model stochastic transitions within the latent cell state space, similar to that in
our previous study [Nagaharu et al.,|2022]. DeepKINET assumes that the kinetic parameters for each cell are obtained
from transformation of the latent cell state by the neural network. We optimized both cell state dynamics and kinetic
parameters to align with the observed mature and immature transcript levels, following the RNA velocity equation.
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Figure 1: Overview of DeepKINET. a. Overview of our method for estimating single-cell transcriptome dynamics
from latent variables. DeepKINET receives scRNA-seq data that have unspliced and spliced counts and outputs kinetic
rates at the single-cell level. DeepKINET provides biologically meaningful insights by accounting for cellular
heterogeneity in kinetic rates, which is ignored by existing methods. For example, DeepKINET can be used to classify
genes by their kinetic rates, find genes that show significant rate variation among cell populations, and identify
RNA-binding proteins involved in splicing and degradation. b. RNA velocity in the mouse pancreas dataset was
estimated by DeepKINET and visualized using Uniform Manifold Approximation and Projection (UMAP) embedding.
The direction of transition in latent space is plotted in 2D coordinates in the same way as scvelo. ¢. Visualization of
expression, splicing rates, and degradation rates at the single-cell level via UMAP embedding. DeepKINET estimates
splicing and degradation rates for each cell based on the RNA velocity equation and cell states. The colors of the points
indicate the gene expression, the splicing rate, and the degradation rate per cell.

Beyond kinetic rate heterogeneity estimation across genes and cells, DeepKINET offers the following: 1. Gene
clustering based on kinetic rates, which enables identification of genes with analogous rate patterns; 2. Identification of
genes exhibiting significant rate variations by comparing different cell populations; and 3. Detection of RNA-binding
proteins that influences splicing and degradation rates of their associated targets.

DeepKINET not only delivers refined insights into RNA kinetics, but also serves as a springboard for in-depth
molecular studies, promising deeper comprehension and demystification of the complex regulatory mechanisms guiding
cellular kinetics. It is accessible as a user-friendly open-source Python package with comprehensive documentation at
https://github.com/3254c/DeepKINET.

Simulated data to demonstrate accuracy and superiority of DeepKINET

We used simulated data to evaluate the accuracy of the kinetic rates estimated using the DeepKINET software. Simulated
data were generated using SERGIO [Dibaeinia et al.,|2020], which uses gene regulatory networks and RNA velocity
equations to generate the sScCRNA-seq data. We generated scRNA-seq count data for each cell cluster with different
splicing and degradation rates.

We applied DeepKINET to each simulated dataset and confirmed that it predicted the correct direction of differentiation
(Supplementary Fig. 1a). We then estimated the kinetic rates for each single cell (Fig. 2a), averaged them over each cell
cluster, and calculated the correlation coefficient using the set value (Fig. 2b). We found positive correlations across
various dropout scenarios. Therefore, we concluded that our method is robust against data sparsity. The existing method,
cellDancer [Li et al., |2023]], showed positive correlations in splicing rates, but was less accurate than DeepKINET.
Furthermore, cellDancer showed negative correlations in degradation rates. Subsequent simulations were conducted
using varying numbers of cells. For these simulations, we used the default dropout rates. We applied DeepKINET

. the degree of influence of the RBP Cpe expression Cpe splicing rates Cpe degradation rates
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to each simulated dataset and computed correlation coefficients for the set values. DeepKINET could accurately
estimate the kinetic rates, even for small numbers of cells (Fig. 2¢). On the other hand, cellDancer also showed positive
correlations in splicing rate estimation accuracy, but it was less accurate than DeepKINET and required more cells until
the estimation accuracy stabilized. In degradation rates, cellDancer consistently failed to make correct estimates, and
the accuracy decreased as the number of cells increased.

These validations confirmed the accuracy of the splicing and degradation rates estimated by DeepKINET, marking a
clear advancement over the kinetic parameter estimation capabilities of cellDancer. Notably, the accuracy of splicing
rate estimation by cellDancer appeared to increase slowly as the number of cells increased, implying a requirement for
larger datasets than those required by DeepKINET for accurate predictions. A detailed exposition of genes that were
successfully estimated and those that were not is shown in Supplementary Figure 1.

Accuracy of DeepKINET for real data evaluated using metabolic labeling data

We next evaluated the accuracy of DeepKINET for real data using multicellular-level kinetic rates derived from
metabolic labeling experimental data. The values obtained from the metabolic labeling experiments depended on the
assumptions of the mathematical model used and did not represent the perfect ground truth. Nevertheless, the temporal
resolution inherent in the metabolic experimental data lost in sScRNA-seq provides a benchmark from which to assess
the similarity to extrapolated kinetic rates. Li et al.[Li ef al.,[2023]] used scEU-seq to qualitatively assess the accuracy of
cellDancer, which is limited to cell cycle genes.

Using the same scEU-seq cell cycle dataset [Battich ef al.,|2018]], we evaluated the accuracy of DeepKINET. scEU-seq
methodology can be used to estimate multicellular-level kinetic rates by observing temporal variations in the fraction of
5-ethynyl-uridine(EU)-labeled mRNA. Battich et al. did not differentiate between unspliced and spliced mRNAs when
modeling mRNA metabolism. Conversely, Dynamo [|Q1u ef al., 2022] can estimate kinetic rates, including splicing
rates, by accounting for splicing events in the scEU-seq data. We partitioned the cell cycle dataset into PULSE and
CHASE experimental categories, each distinctly modeling mRNA metabolism. Six clusters, each with an equal number
of cells across the cell cycle trajectory, were established. Dynamo was used to determine the splicing and degradation
rates for each cluster.

Next, we estimated the RNA velocity using DeepKINET and confirmed that the estimated future states of individual
cells followed the order of the cell cycle (Fig. 3a). We then estimated the single-cell splicing and degradation rates,
averaged them across clusters, and calculated the correlation coefficient using the kinetic rates determined using
Dynamo. Our method showed positive correlations, outperforming cellDancer in the PULSE experiment, and showed
comparable performance in the CHASE experiment (Fig. 3b, Supplementary Fig. 2). Notably, the PULSE experimental
data were considered more reliable because the proportion of cells in different cell cycles was constant.

Using the PULSE experimental data, we estimated the splicing and degradation rates for each cell and clustered the
genes using these rates (Fig. 3c). We then derived the correlation coefficients between the splicing and degradation
rates. Genes related to the cell cycle were concentrated in one cluster, and related terms were detected using Gene
Ontology (GO) analysis (Fig. 3d). Finally, we classified the genes using the correlation coefficients between splicing
and degradation rates (Fig. 3e).

DeepKINET to investigate functions of RNA-binding proteins and RNA-binding proteins that regulate gene
clusters

We applied DeepKINET to a forebrain dataset [La Manno et al.,2018]] to examine the functions of RNA-binding
proteins. DeepKINET can classify genes based on their kinetic rates and identify RNA-binding proteins that govern
these clusters. Additionally, DeepKINET can determine whether an RNA-binding protein regulates the splicing or
degradation of its target genes.

First, we confirmed that the direction of RNA velocity estimated by DeepKINET was consistent with the known
trajectories of cell differentiation (Fig. 4a). We then used DeepKINET to estimate the single-cell splicing and
degradation rates and used these rates separately to cluster the genes. Separate gene clustering based on splicing and
degradation rates revealed that RNA-binding proteins contribute to either splicing or degradation mechanisms. We
examined whether the gene clusters by kinetic rates matched the gene list of RNA-binding protein targets using Fisher’s
exact test (Fig. 4b). We found clusters that matched the target gene lists, indicating that genes regulated by the same
RNA-binding protein have similar splicing and degradation rate changes.

Next, we examined the relationship between the expression levels of each RNA-binding protein and the splicing and
degradation rates of the target genes. A significant correlation indicates their involvement in these post-transcriptional
processes. We calculated the average correlation coefficients for both target and non-target genes for all remaining
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Figure 2: DeepKINET is robust to dropout rates and cell numbers in simulated data, and its performance
exceeds that of cellDancer. a. Visualization of the UMAP embedding of the expression, set kinetic rates, and
estimated kinetic rates. The gene with the highest correlation in splicing rate and the gene with the highest correlation
in degradation rate are shown. To prevent extreme values from affecting the visualization, the minimum or maximum
value of the top 1% was forced to the 1% and 99% quantile values. b. Scatter plot of correlation coefficient averages of
splicing rates and degradation rates for each dataset. Ten datasets were generated for each of the 20 different generation
conditions. We applied DeepKINET and cellDancer once to each dataset and calculated the correlation coefficient
between the set rates and the estimated rates by DeepKINET and cellDancer. DeepKINET’s accuracy exceeds that of
cellDancer. c. Box plot of correlation coefficient averages when varying the number of cells in a cluster. Ten datasets
were generated for each of the 13 different generation conditions. DeepKINET always had a positive correlation
coefficient and outperformed cellDancer.
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Figure 3: DeepKINET is also accurate for real data and outperforms cellDancer. a. The clusters and velocities of
the PULSE data were visualized on the pre-defined embedding based on the Geminin-GFP and Cdt1-RFP signals. The
cells were divided into six cell clusters based on cell cycle positions. The PULSE data showed an even distribution of
cells with respect to cell cycle positions compared to the CHASE data. DeepKINET is able to estimate the correct
direction along the cell cycle. b. Box plot of correlation coefficient averages between estimated rates by Dynamo and
estimated rates by DeepKINET or cellDancer using the PULSE experimental data. A one-tailed #-test was used to test
the alternative hypothesis that DeepKINET’s estimation accuracy is superior to that of cellDancer. Compared with
cellDancer estimation, DeepKINET estimation correlates better with estimates from metabolic labeling. ¢. Heatmaps of
splicing rates (left) and degradation rates (right). To prevent extreme values from affecting the visualization, the
minimum or maximum value of the top 1% was forced to the 1% and 99% quantile values. The genes were clustered by
splicing and degradation rates and sorted by their clusters. The cells were sorted by cell cycle positions. The correlation
coefficients between splicing and degradation rates for each gene are indicated by colored bars. The genes related to the
cell cycle are also shown. Cluster 9 has a large number of genes related to the cell cycle. d. Gene Ontology (GO) terms
enriched in the gene list belonging to cluster 9 obtained by g:Profiler. One-thousand genes in this analysis were used as
background. e. Genes with different correlations between splicing and degradation rates. DeepKINET can extract genes
by the value of the correlation between splicing and degradation rates. The minimum or maximum value of the top 1%
was forced to the 1% and 99% quantile values.
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RNA-binding proteins from expression preprocessing and observed stronger correlations for target genes (Fig. 4c).
This suggests that DeepKINET accurately reflects the regulatory roles of RNA-binding proteins with respect to their
target genes. Further analysis of the highly variable genes that substantially affected the kinetic rates of their targets
revealed that the expression levels of RBFOXI and RBFOX?2 correlated with the target splicing rates (Fig. 4d), which is
in agreement with established research identifying RBFOX1 and RBFOX?2 as regulators of mRNA splicing [Conboy
et al.,|2017]]. Therefore, DeepKINET demonstrated proficiency in deducing the contributions of RNA-binding proteins
to splicing and degradation within the dataset, as well as in identifying genes that are potentially regulated by specific
RNA-binding proteins (Fig. 4e).

DeepKINET reveals heterogeneity in cancer cell populations

Next, we applied DeepKINET to breast cancer data to identify genes with significant changes in kinetic rates and
RNA-binding proteins that exhibit distinct functions across different cell populations. Previous studies have highlighted
the critical roles of splicing and degradation abnormalities in cancer development and progression [Bradley ef al.l
2023, [Fang et al.,|2022]. Additionally, the significant involvement of RNA-binding proteins in cancer has been well
documented [[Pereira ef al.l 2017} |Qin et al.l 2020]. Cell Ranger [Zheng et al.,2020] and Velocyto [La Manno et al.
2018|] were used to create matrices of the spliced and unspliced breast cancer data [Liu et al.,2022].

We applied DeepKINET to malignant epithelial cells from the breast cancer data and confirmed that the estimated
velocities were in the direction from primary cells to metastatic cells (Fig. 5a). We then estimated the single-cell kinetic
rates and identified genes that exhibited marked differences in their splicing or degradation rates when primary cells
were compared with metastatic cells (Fig. 5b, ¢). Among these, KDM6A [Xiao et al.|[2022], PGR [Fowler et al.,[2020],
PIK3CA [Fusco et al[2021]], PRKAAI (Yi et all,2020], TPM?2 [Zhang et al.,[2018]], TP63 [Gatti et al.l 2019], USP9X
[Guan et al.,|2022]], and TIMP2 [Peeney et al.,|2020] have been implicated in breast cancer metastasis. These variations
in the kinetic rates may play a pivotal role in metastasis.

Furthermore, we explored the correlation coefficients between the expression of highly variable RNA-binding proteins
and the kinetic rates of their target genes. Within this dataset, the effect of RBM47 on the splicing rate of its target
genes was significant (Supplementary Fig. 3). Because RBM47 is involved in RNA splicing and metastasis, including
that of breast cancer [Kim ef al.; 2019, |Vanharanta et al.|[2014} \Guo et al.|[2022]], this result indicates the capacity of
DeepKINET to accurately reflect authentic biological processes. We also investigated whether the relationship between
RBMA47 and its target genes differed significantly between primary and metastatic cells. We performed linear regression
on the expression of RBM47 and the splicing rates of its targets, and examined whether the slope of the regression
varied significantly between primary and metastatic cells. We corrected the p-values using multiple testing corrections
and extracted significantly altered genes (Fig. 5d, e). Among these genes, CTSC [Xiao et al.,|2021]], PSD3 [Jin et al.,
2021]], TGFBR3 [JovanoviC et al.,[2014]], and USP53 [Liu et al.l2023] are involved in breast cancer metastasis. CD2AP
[Xie et al,2020], GFRAI [Ma et all2020], and EPB41 [Yuan et al.2021]] are implicated in the metastasis of other
cancers, but no findings on breast cancer metastasis have been reported. These findings imply that changes in the effect
of RBM47 expression on the splicing rates of its target genes are associated with cellular transitions critical for cancer
metastasis.

Discussion

In this study, we introduced DeepKINET, a groundbreaking method for accurately estimating splicing and degradation
rates at single-cell resolution. By harnessing cell state information and RNA velocity, DeepKINET advances beyond
conventional models that assign static splicing and degradation rates to genes, offering dynamic and cell-specific analysis.
This innovation marks the first instance in which such kinetic rates have been estimated and validated for accuracy at the
single-cell level using both simulated and metabolic labeling data, thereby enabling a more nuanced understanding of
gene expression regulation. Our approach facilitates a variety of biological analyses, including clustering by the kinetic
rate, identifying genes with highly variable kinetics across cell types, and detecting RNA-binding proteins that influence
splicing and degradation processes. Importantly, DeepKINET utilizes readily available scRNA-seq data, avoids the
need for complex metabolic labeling, and paves the way for novel investigations of gene expression kinetics. Using this
method, one can gain insights into the regulatory mechanisms of gene expression and uncover potential therapeutic
targets for diseases in which splicing and degradation are dysregulated, such as cancer. These insights will be critical in
elucidating variations in gene expression among cells and populations, bringing to light complex regulatory networks.

Despite its advantages, DeepKINET has several inherent limitations. It employs a unified model to estimate splicing
and degradation rates, which can lead to correlation trends among these rates (Supplementary Fig. 4). Nonetheless,
the fidelity of our estimates was supported by simulated and metabolic labeling data. Furthermore, while kinetic rate
estimation at the single-cell level improves the details of RNA velocity calculations [Li et al.,[2023]], the simultaneous
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Figure 4: RNA-binding protein analysis of the forebrain dataset by DeepKINET. a. Visualization of the
velocities of the forebrain dataset estimated by DeepKINET. b. Dot heatmap showing the association of each
RNA-binding protein targets with each gene cluster. The genes were clustered using splicing and degradation rates
separately, and Fisher’s exact test was used to determine if a list of RNA-binding protein target genes were enriched in
a particular cluster. The colors indicate the corrected p-values for Fisher’s exact test. The circle size indicates the ratio
of the proportion of RNA-binding protein targets in the cluster to the proportion of RNA-binding protein targets in all
genes. c¢. Joint plot of the mean correlation coefficient between RNA-binding protein expression levels and the splicing
and degradation rates of each target or non-target. Compared with non-target genes, target genes have higher
correlations with the expression of RNA-binding proteins. d. Box plots show correlation coefficients between RBFOX1
and RBFOX2 expression and the splicing rates of each target or non-target gene. e. Visualization of the UMAP
embedding of the expression of RBFOXI and RBFOX?2 and the splicing rates of target genes that are highly correlated
with RBFOX1 and RBFOX?2 expression.
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Visualization of UMAP embedding of the velocities estimated by DeepKINET and pre-defined classifications for
malignant epithelial cells of breast cancer. There are 15,269 primary cells and 642 metastatic cells. The velocities
indicate the direction from the primary cancer to the metastatic cancer. b. Genes with large changes in their splicing
rates (left) and degradation rates (right) between primary and metastatic cells as determined using ¢-test. These genes
include those involved in cancer metastasis and breast cancer. ¢. Visualization of UMAP embedding of expression
levels and kinetic rates of the genes with the largest changes in their splicing or degradation rates. These genes are
involved in breast cancer metastasis. To prevent the effect of extreme values in the visualization, the minimum or
maximum value of the top 1% was forced to the 1% and 99% quantile values. d. Bar plot of corrected p-values for
genes whose slopes changed significantly between primary and metastatic cells when linear regression was performed
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and metastasis of other cancers. e. Scatter plot of RBM47 expression and splicing rates of CD2AP, the gene with the
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estimation of RNA velocity and kinetic rates presents a challenge, indicating the need for further methodological
enhancements and additional constraints for improved accuracy in estimating kinetic rates.

A notable challenge lies in the current limitations of RNA velocity analysis in distinguishing mRNA isoforms [[Gorin
et al.,[2022]], with implications particularly relevant to diseases such as cancer, where alternative splicing is prevalent.
Addressing this issue in future versions of DeepKINET could provide deeper biological insights and a more authentic
portrayal of variations in mRNA splicing.

In summary, DeepKINET is a significant contributor to the field of single-cell biology, offering a novel analytical
framework that not only advances the current understanding, but also sets the stage for future innovations that will
further elucidate the complexities of cellular kinetics.

Methods

In DeepKINET, the cell states and RNA velocity were first estimated, as in VICDYF [Nagaharu et al.,[2022]], and the
learned parameters of the encoders and decoders were fixed. Subsequently, decoders are created that take the cell states
as the input and output the splicing and degradation rates at the single-cell level. These decoders are trained to better
reconstruct unspliced mRNA amounts.

Derivation of single-cell splicing and degradation rates

The cell state and RNA velocity were estimated as described in the previous VICDYF method. The standard normal
distribution is used as a prior for the latent variable z,, € R of cell n and the direction of small change d,, € R” on
the latent variable z,,. D is the dimension of the latent cell space and the default value is 20.

p(zn) = N(0,1),
p(dn) = N(0, pI)

where p is a scaling factor, and I is the identity matrix. The direction of the small change d,, needs to have a small
scale with respect to z,,; thus, we set p = 0.01 to be the same as in VICDYF. Unspliced and spliced transcriptomes of
a single cell are indicated by u,, € RY and s,, € RY, where g is the number of genes. Poisson or negative binomial
distributions were assumed for the distributions of u,, and the distribution of s,, given z,,. A Poisson distribution was
assumed for all analyses in this research.

8n = ls, Ao (zn);

p(sn|zn) = Poisson(s,)

where [;, € RY is the mean of spliced counts across all genes in the single cell, and A\g(2,) € RY is the decoding
neural network of the latent cell states with 100 hidden units, one hidden layer, and layer normalization. We derived
the approximate time change in the mean parameter of the spliced transcriptome by decoding a small change in the
latent cell state. In VICDYF, only s is used as input for the VAE to quantify the uncertainty of u given s. However, in
DeepKINET, both u and s are used as inputs because we do not focus on the uncertainty of u. Moreover, to determine
the small change in s, we differentiate the decoder transformation from z to s by z using a functorch instead of using
the central difference approximation in VICDYF.

oA
Vo = 75(%)61”. (1
Zn
Here, we assumed that the mean parameter of the abundance of spliced and unspliced transcriptomes was represented
by the differential equation of splicing kinetics as an RNA velocity estimation.

_ v + dtvys,

Un A by, = 3 @

where 5 € RY is a vector of gene-specific splicing rates of unspliced transcripts and v € RY is a vector of gene-specific
degradation rates of spliced transcripts. Here, 8 and « are the same value for each cell. [, € RY is the mean of
unspliced counts across all genes in the single cell. By combining (1) and (2), we can approximate the mean parameter
of the abundance of unspliced transcripts as follows:
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g (zn —~
i, +diys,
dt3

Up = 1y,

We assumed that the abundance of unspliced transcriptomes v has a Poisson distribution, as follows: where dt is the
small interval and is set to 1.

p(Un|2zn, dn) = Poisson(u, )

The generative model and variational posterior distribution were optimized by minimizing the following loss function:
Minimizing this loss function is equivalent to maximizing the variational lower bound (ELBO) of transcriptome
distribution. This minimization allowed us to learn about the variational autoencoder of the spliced transcriptome, RNA
velocity, and the reconstruction of the unspliced transcriptome.

p(8n7un>znadn)
L(6,¢)=—F,, s, uy) 108 ———————
( ) q(2n,dn|Sn, )[ g q(zn7dn|5n7un,)]

> = 10gp(£n|zn/) - Ing(un|Zn/»dn/) + DKL(Q(Zn‘Snaun)Hp(zn)) + DKL(q(dn|an)”p(dn))

where z,” and d,," are derived through reparametrized sampling from q(zy|sn, un) and q(dy|2,), and Ep, ) [f(2)]
represents the expectation of f(x) given & ~ p(x). The encoding neural network had 100 hidden units, two hidden
layers, and layer normalization. To minimize the loss function, the Adam W optimizer was used with a learning rate of
0.001 and a mini-batch size of 100. Learning ended when the average loss of the 10 epochs was not been updated for
10 epochs.

After learning the VAE and RNA velocity and reconstructing the unspliced transcripts as described above, all encoder
and decoder parameters were fixed. Next, we create decoders that take latent variables as inputs and output splicing rate
By, and degradation rate -y, at the single cell level. When reconstructing unspliced transcripts, they were substituted for
the previous splicing and degradation rates. By estimating the splicing and degradation rates as cell-state-dependent
values, the rates for cells with similar cell states will be similar, weakening the indeterminacy of the solution.

Ron) g 4 iy, s,

—~ Ozn
dtpy

Uy, /2y,
The same loss function described above was used to learn the splicing and degradation rates at the single-cell level.

Creating simulated datasets

We used SERGIO to generate the scRNA-seq count data with varying splicing and degradation rates per cluster. We
used the DS6 differentiation process and the gene network from SERGIO. The SERGIO source code was rewritten
to allow the splicing and degradation rates to change on a cluster-by-cluster basis. The base rate for each cell cluster
was set by multiplying the SERGIO default splicing and degradation rate values by values sampled from a uniform
distribution of 0.5 to 1.5. The base kinetic rates were then multiplied by values sampled from a uniform distribution of
0.75 to 1.25 for each cluster to establish different rates for each cluster. Each cluster contained 300 cells. In experiments
with varying dropout rates, the dropout indicator dynamics function was used. Twenty dropout rate conditions
were set with shape=1 and five increments from percentile=0 to percentile=95. For the experiments in which the
number of cells was varied, 13 conditions were set for the number of cells using a default dropout rate of shape=1
and percentile=65. Ten datasets were created for each condition using different splicing and degradation rates.
DeepKINET and cellDancer were used once for each dataset.

Validation using metabolic labeling experimental dataset

Using the scEU-seq cell cycle dataset, we determined the splicing and degradation rates for each cluster using Dynamo
[Qiu et al., 2022]] and compared the estimates with those from DeepKINET and cellDancer. We split the cell cycle into
PULSE and CHASE data and performed default gene filtering using Dynamo to extract 1000 genes. We divided each
dataset into six clusters based on the cell cycle position, with each cluster containing the same number of cells. We then
modified the dynamo.tl.recipe_kin_data and dynamo.tl.recipe_deg_data functions to calculate the kinetic
rates for each cluster. Using other parameters and following the default values of Dynamo, we derived the splicing and
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degradation rates for each cluster. We then applied DeepKINET and cellDancer to the PULSE and CHASE data 100
times each and derived the correlation coefficients each time.

Clustering by Kinetic rates

The splicing and degradation rates of each cell were estimated using DeepKINET and Z-transformation. Principal
component analysis was then performed using the rates. Leiden clustering was performed on the principal components
to cluster the genes (Fig. 3c).

Functional enrichment analysis

We performed gene clustering using kinetic rates on the cell cycle PULSE data. GO analysis was performed on each
gene cluster (Fig. 3d). We used g:Profiler [Raudvere ef al.,2019] for the analysis. When deriving GO terms, we used
the genes used to estimate splicing and degradation rates as the background.

Enrichment test of RNA-binding protein targets

Using the forebrain dataset, we performed gene clustering based on the kinetic rates. We examined whether the genes
in each cluster were enriched for RNA-binding protein targets (Fig. 4b). We selected RNA-binding proteins that were
included in the 1000 highly variable genes selected by preprocessing, for which eCLIP data were available in the
CLIPdb [Yang et al.,[2015]]. Genes with at least one binding site in the eCLIP data were considered as targets. After
performing Fisher’s exact test, we used the Benjamini-Hochberg method for multiple testing correction.

Analysis of the relationship between expression of RNA-binding proteins and kinetic rates of their targets

As a preprocessing step, we used scvelo.pp.filter_and_normalize() withmin_shared_counts = 20 for the
forebrain dataset and min_shared_counts = 100 for the breast cancer dataset. To ensure accuracy, we estimated
the kinetic rates of genes with high variability. When all the remaining RNA-binding proteins from the expression
preprocessing were used in the analysis, the expression was averaged over the neighborhoods. For the forebrain dataset,
we used n_neighbors=30. When analyzing only the RNA-binding proteins in the highly variable genes, we used
the expression reconstructed from the latent variables. The top 1000 genes in the forebrain dataset and the top 2,000
genes in the breast cancer dataset were used as highly variable genes. When comparing the expression of a specific
RNA-binding protein to its target or non-target Kinetic rates, we used a t-test to determine any significant difference in
the correlation coefficients between targets and non-targets.

Preparation of breast cancer data

We downloaded the FASTQ files from the public data of Liu et al. We then created BAM files using Cell Ranger [Zheng
et al.l2020]. Next, Velocyto [La Manno et al., 2018]] was used to create count matrices for unspliced and spliced
mRNA. We used EPCAM and KRT19 as markers of epithelial cells, following the method described by Liu et al. We
used inferCNVpy to extract the cancer cells. Among the seven patients, cells from patient 5 were selected and used for
further analysis because the other patients contained few metastatic cells or, conversely, too many metastatic cells or a
low number of breast cancer epithelial cells. Cells with at least 100 expressed genes, and a total count of at least 500
cells were used. After averaging and normalizing the expression in 100 neighboring cells, 2,000 genes were extracted
and used for analysis.

Identification of targets differentially regulated by different cell populations

We performed the following linear regression using the expression levels of RNA-binding proteins and the kinetic
rates of their targets. We then examined whether the slope of the regression line differed significantly among the cell
populations.

y = Bo + Brx1 + Paxor + B3z + €

where x is the label of the cell population, O for primary cells and 1 for metastatic cells, x; is the expression of a
RNA-binding protein, and §j to 3 are the regression coefficients. We set 83 = 0 as the null hypothesis and used
statsmodels.regression.linear_model.OLS() to perform regression and testing. We corrected the p-values
using the Benjamini—Hochberg method.
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Two-dimensional embedding of velocity

We projected the transitions in the latent space onto two-dimensional coordinates following the method described by
Bergen et al [Bergen et al.,[2020]. We used z; — z; as the change in the latent space of cell 7 to cell j and d; as the
velocity in the latent space of cell 7. We computed a neighborhood graph, calculated the transition probabilities, and
projected them onto two-dimensional coordinates using Scvelo’s functions.
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Supplementary Figure 1: Differences in accuracy of the estimation of each gene in the simulated data. a.
Visualization of the UMAP embedding of the velocities and cluster number. Each cluster contained 300 cells. b.
Visualization of UMAP embedding of expression and splicing rates of a gene with the lowest correlation in splicing
rates. ¢. Visualization of UMAP embedding of expression and degradation rates of a gene with the lowest correlation in
degradation rates. To prevent extreme values from affecting the visualization, the minimum or maximum value of the
top 1% was forced to the 1% and 99% quantile values. d. Box plot of correlation coefficient averages when genes are
separated by the sum of their expression. We applied DeepKINET once for each of the 10 data generated under the
default dropout rate condition. Correlation coefficients tend to be higher for genes with higher expression.
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Supplementary Figure 2: DeepKINET shows accuracy comparable to that of cellDancer in the CHASE data.
a. Clusters and velocities of the CHASE dataset were visualized on the pre-defined embedding based on the
Geminin-GFP and Cdt1-RFP signals. DeepKINET can estimate the correct direction throughout the cell cycle.
Clustering by equivalent number of cells. CHASE data are biased for cell density. b. Box plot of correlation
coefficients between estimated rates by Dynamo and estimated rates by DeepKINET and cellDancer using the CHASE
experimental data. A one-tailed 7-test was used to test the alternative hypothesis that cellDancer’s estimation accuracy is
superior to that of DeepKINET. The results show comparable estimation performance.
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Supplementary Figure 3: DeepKINET reveals genes differentially associated with RNA-binding proteins in
primary and metastatic cells. a. Mean of correlation coefficients between highly variable RNA-binding protein
expression and the splicing and degradation rates of each target or non-target. b. RBM47 expression correlated with
target splicing rates relative to non-target splicing rates. A significant difference was indicated by the 7-test. ¢. Genes
that change the slope of linear regression between primary and metastatic cells (arranged in the order of decreasing
corrected p-value). d. Expression of RBM47 and splicing rates of target CD2AP were visualized using UMAP
embedding. To prevent extreme values from affecting the visualization, the minimum or maximum value of the top 1%
was forced to the 1% and 99% quantile values. e. Scatter plot of RBM47 expression and splicing rate of the gene with
the smallest change in slope of the regression line.

17


https://doi.org/10.1101/2023.11.25.568659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.25.568659; this version posted November 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A PREPRINT - NOVEMBER 26, 2023

Correlation between splicing and degradation rates

0
0.10 T
0.05 -
S
= 0.00 1
3 ]
et
5 0
© _0.05 '
¢
¢ 4
%
0.10 .
° f
¢
! $
-0.15 R
Pancreas Cell cycle PULSE Cell cycle CHASE Forebrain Breast cancer

Supplementary Figure 4: Correlation between DeepKINET estimated Kkinetic rates. The correlation coefficients
between splicing and degradation rates were estimated 100 times for each dataset. Splicing and degradation are weakly
correlated. However, the accuracy of DeepKINET has been confirmed with simulated data and metabolic label data;

thus, it captures real values.
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