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Abstract

Marine oxygen deficient zones (ODZs) are portions of the ocean where intense nitrogen loss
occurs primarily via denitrification and anammox. Despite many decades of study, the identity of
the microbes that catalyze nitrogen loss in ODZs are still being elucidated. Intriguingly, high
transcription of genes in the same family as nitric oxide dismutase from Methylomirabilota have
been reported in the anoxic core of ODZs. Here, we show that the most abundantly transcribed
nod genes in the Eastern Tropical North Pacific ODZ belong to Rhodospirillaceae
(Alphaproteobacteria),  rather  than  Methylomirabilota as  previously  assumed.
Gammaproteobacteria and Planctomycetia also transcribe nod, but at lower relative abundance
than Rhodospirillaceae in the upper ODZ. The Rhodospirillaceae are likely methylotrophs that
oxidize methanol as a source of electrons for aerobic respiration; additional electrons may come
from sulfide oxidation. Molecular oxygen for aerobic respiration may originate from nitric oxide
dismutation via cryptic oxygen cycling. The Rhodospirillaceae also transcribe multiheme
cytochrome (here named ptd) genes for a putative porin-cytochrome protein complex of
unknown function, potentially involved in extracellular reduction electron transfer. Our results
implicate Rhodospirillaceae as a significant player in marine nitrogen loss and highlight its

potential in one-carbon, nitrogen, and sulfur metabolism in ODZs.
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Significance statement

In marine oxygen deficient zones, microbes transform bioavailable nitrogen to gaseous nitrogen,
with nitric oxide as a key intermediate. The Eastern Tropical North Pacific contains the world’s
largest oxygen deficient zone, but the identity of the microbes transforming nitric oxide remain
unknown. Here, we show that highly transcribed nitric oxide dismutase (nod) genes belong to
Rhodospirillaceae (Alphaproteobacteria). These Rhodospirillaceae perform aerobic respiration,
using oxygen potentially sourced from nitric oxide dismutase, and possess a novel porin-
cytochrome protein complex with unknown function. Gammaproteobacteria and Planctomycetia
transcribe nod at lower levels. Our results pinpoint the microbes mediating a key step in marine

nitrogen loss and reveal an unexpected metabolism for marine Alphaproteobacteria.
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Introduction

Marine oxygen deficient zones (ODZs) contribute up to half of the ocean’s nitrogen loss
(DeVries et al., 2013) and are a major source of marine emissions of the potent greenhouse gas
nitrous oxide (N2O) (Yang et al., 2020). The primary source of the N,O at the oxic-anoxic
interface and in anoxic waters in ODZs is denitrification (Babbin et al., 2015; Frey et al., 2020).
The microbial enzyme responsible for N,O production during denitrification is nitric oxide
reductase (Nor), which uses electrons from cytochrome c¢ (cNor) or quinol (qNor), to reduce
nitric oxide (NO) to N,O (Wasser et al., 2002; Zumft, 2005; Kraft et al., 2011). In the gNor
family, there are bona fide qNor enzymes and NO dismutase (NOD). NOD proteins lack the
quinol-binding site, seemingly preventing the enzyme from taking up external electrons; instead,
NOD is theorized to disproportionate NO into dinitrogen and O, in methane-oxidizing
Methylomirabilota bacteria (Ettwig et al., 2010; Ettwig et al., 2012) and alkane-oxidizing

gammaproteobacterium HAN1 (Zedelius et al., 2011).

The Eastern Tropical North and South Pacific (ETNP and ETSP) ODZs are the world’s
largest and second largest ODZs, and the subjects of extensive microbial ecology studies.
Abundant NO reductase-like genes and transcripts in the ETNP and ETSP ODZ cluster in the
same enzyme subfamily as NOD (Dalsgaard et al., 2014; Ganesh et al., 2014; Padilla et al., 2016;
Fuchsman et al., 2017). Due to the similarity of ODZ Nod proteins to those of Methylomirabilota
(NC10), it was initially presumed that ODZ bacteria also used Nod proteins to disproportionate
NO into N, and O, for use in intra-aerobic methane oxidation (Dalsgaard et al., 2014; Padilla et
al., 2016; Thamdrup et al., 2019). However, Fuchsman et al. (2017) found that the peak of nod
gene abundance in the ETNP ODZ correlates with a peak of modeled N,O production (Babbin et

al., 2015) and does not correlate with abundance of methane monooxygenase genes, suggesting
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that Nod proteins in the ETNP ODZ are potentially an important source of N,O, and are unlikely
to be involved in methane oxidation. The plausibility that Nod proteins can reduce NO to N,O is
supported by a study of a novel eukaryotic denitrification pathway in foraminifera
(Globobulimina spp.) that produces N,O while expressing Nod (Woehle et al., 2018). Yet, the
phylogenetic identity and metabolic context of marine Nod proteins, which are a key biological

source of either N,O or O,+N> in marine ODZs, remain unresolved.

In this study, we sought to determine the identity, metabolism, and environmental niche
of the ODZ organism responsible for the highly transcribed nod genes first discovered in Padilla
et al. (2016). We found that the most abundantly transcribed nod genes in the ETNP ODZ belong
to Alphaproteobacteria related to Rhodospirillaceae. Significant transcription of nod genes was
limited to waters with <1 uM O,. These nod-transcribing alphaproteobacteria also transcribe
genes involved in aerobic respiration, which was unexpected given that they inhabit anoxic
waters, as well as genes involved in oxidation of formaldehyde, likely indicating methylotrophy.
Genes encoding multi-heme cytochrome proteins potentially implicated in nitrogen or iron

cycling were also transcribed.

Results

Transcribed nod sequences in the ETNP ODZ belong to Alphaproteobacteria,
Gammaproteobacteria, and Planctomycetia. Our reanalysis of highly transcribed nod genes
(“ETNP 2014 Stn10 150m” and “ETNP 2013 Stn6 300m”) in the ETNP ODZ (Padilla et al.,
2016) shows that these genes belong to Alphaproteobacteria rather than a member of
Methylomirabilota as previously assumed. Querying the Nod amino acid sequences from Padilla

et al. (2016) against ETNP ODZ metagenomes in the IMG-JGI database returned multiple 100%
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84  identity matches, including a gene co-occurring on a scaffold (Ga0066848 10003785) with
85  hypothetical genes with 100% identity to Rhodospirillaceae metagenome-assembled genomes
86 (MAGs) from the ETNP ODZ (Uzun et al., 2020) (Table S1). Binning of ETNP ODZ
87  metagenomes Ga0066848 (ETNP201310SV72) and Ga0066829 (ETNP201306SV43) placed the
88 two contigs with the most highly transcribed nod genes into MAGs assigned to
89  Alphaproteobacteria (GTDB taxonomy: UBA11136 sp002686135; GTDB species
90 representative: Rhodospirillaceae bacterium isolate ARS27) with 97% average nucleotide
91 identity. Querying the Nod amino acid sequences from Padilla et al. (2016) against NCBI’s non-
92  redundant protein database returned matches to Alphaproteobacteria/Rhodospirillaceae MAGs
93  from low-oxygen marine settings (ETNP, Saanich Inlet, and the Black Sea; 78-80% identity), the
94  marine magnetotactic alphaproteobacterium Magnetovibrio blakemorei MV-1 (75% identity),
95  Gammproteobacterium HdAN1 (66% identity), and Methylomirabilota spp. (66% identity; Table

9% S2).

97 To glean additional insights into the evolutionary relationships of ODZ nod genes, we
98 gathered Nod amino acid sequences from cultured organisms and large ODZ metagenome
99 datasets (ETNP and Saanich Inlet), and created a Nod phylogeny (Figure 1A; Table S3). The
100 topology was generally consistent with a previous phylogeny from Fuchsman et al. (2017), with
101  additional taxonomic data from MAGSs in the TARA oceans dataset further constraining Nod
102  placement (Tully et al., 2018). Six unique Nod ODZ protein sequences (two of which were
103  present in multiple metagenomes) clustered with Planctomycetia (OTU | in Fuchsman et al.
104  (2017), hereafter “Planctomycetia-type Nod”), and were primarily found in free-living cells (0.2-
105 1.6 micron, “FL”). Four wunique ODZ Nod sequences clustered with marine

106  Gammaproteobacteria (OTU Il in Fuchsman et al. (2017), hereafter “Gamma-type Nod”); these
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107  sequences were monophyletic with a cluster of gammaproteobacterial Nod cluster sequences
108  from sewage sludge, including gammproteobacterium HAN1 (Ehrenreich et al., 2000) and other
109  wastewater gammproteobacteria. Multiple ETNP ODZ metagenomes contained Gamma-type
110  Nod sequences identical to those of Gammaproteobacteria NP964 (MBP20251). Several ODZ
111 Nod sequences, all from the particle fraction (>1.6 micron, “PF”) clustered with marine
112  Deltaproteobacteria in a clade monophyletic with Methylomirobalis, Deltaproteobacteria, and
113 Acidobacteria MAGs from groundwater. As expected based on the binning and BLAST results,
114 the Nod sequence from Padilla et al. (2016) clustered phylogenetically with marine
115  alphaproteobacteria (OTU Il in Fuchsman et al. (2017), hereafter “Alpha-type Nod”); this clade
116  contained three unique sequences, all of which were present in multiple metagenomes and all
117  from the free-living fraction, and one of which was identical to that of Rhodospirillaceae
118 NP1106 (MBV28360). Intriguingly, two ODZ sequences clustered in the eukaryotic

119  Globobulimina clade.

120 We investigated gene neighborhoods surrounding ODZ nod genes in the three main
121  phylogenetic clusters of ODZ sequences: Planctomycetia-type Nod, Gamma-type Nod, and
122 Alpha-type Nod. Whereas “unknown Nor-related” marine Bacteroidota sequences were located
123  on an operon with other nor genes, there was no consistent gene neighborhood for nod sequences
124 (Figure 1B). Planctomycetia-type nod genes were not located in the vicinity of any genes with
125  recognizable related function. Gamma-type nod gene neighborhoods contained ferredoxins and
126  cytochrome bsg; genes for electron transport. Upstream of the Alpha-type nod in
127  Rhodospirillaceae NP1106 is a cluster of formylmethanofuran dehydrogenase genes (fmd/fwd)

128  used in C1 metabolism via tetranydromethanopterin/methanofuran-linked reactions.
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129 Immediately upstream or downstream of nod genes, helix-turn-helix transcriptional
130 regulators were common (Figure 1B). Neighboring Gamma-type and Methylomirobalis nod
131  genes, LuxR-type regulators were common; these regulators have diverse functions and their
132  potential connection to Nod remains unclear. Neighboring Alpha-type and Bacteroidota (e.g.
133  Cecembia calidifontis) nod genes, Rrf2-type regulators were present. The protein NsrR in the
134  Rrf2 family regulates global cellular response to NO toxification by directly sensing NO with an
135 iron-sulfur cluster (Bodenmiller and Spiro, 2006; Tucker et al., 2010). The presence of this
136  NsrR-like regulator suggests that Nod in marine Rhodospirillaceae and Bacteroidota may be

137  involved in nitrosative stress response and NO detoxification.

138 Alphaproteobacterial nod is highly transcribed in anoxic waters. We assessed
139 transcription of Alpha, Gamma-, and Planctomycetia-type nod genes from the oxycline to upper
140 ODZ (secondary nitrite maximum) using ETNP ODZ metatranscriptomes from an onshore
141  station with a shallower oxycline (P1; Figure 1C) and an offshore station with a deeper oxycline
142  (P2; Figure 1D) (Mattes et al., 2022). In both oxyclines, transcription was low (4-10 reads per
143  kilobase per million mapped reads (RPKM), n=8) for all three nod types (Figure 1C, D). Below
144 the oxyclines, nod transcripts began to rise and were highest at the secondary nitrite maxima,
145  with Alpha-type (184-274 RPKM, n=4) > Gamma-type (55-95 RPKM, n=4) > Planctomycetia-
146  type (13-19 RPKM, n=4; Table S4).

147 Alphaproteobacteria transcribe genes for formate metabolism, aerobic respiration, and
148 a multiheme cytochrome complex. To glean insight into potential roles for Nod in cellular
149  context, we sought to reconstruct the electron transport chain of the alphaproteobacterium that
150  most highly transcribed nod genes (Alphaproteobacterium MAG ETNP2013_S06_300m_15 and

151  Alphaproteobacterium MAG ETNP2013 S10 300m_22, 69% and 73% estimated completeness,
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152  respectively) at the secondary nitrite maximum. In both MAGs, nod was in the top three most
153  transcribed genes in the ETNP ODZ (~44,000 FPKM; Table S5), after a bacterial nucleoid
154  DNA-binding protein and a potassium gated channel protein. In addition to nod, we found that
155  genes for formaldehyde oxidation via tetrahydromethanopterin/methanofuran-linked reactions,
156 including formylmethanofuran  dehydrogenase (fwd/fmd) and formylmethanofuran--
157  tetrahydromethanopterin N-formyltransferase (ftr), were transcribed in both MAGs (Table S5).
158 Both MAGs also transcribed NAD-dependent formate dehydrogenase (Table S5). Thus, the
159  alphaproteobacterium appears to be capable of conversion of formaldehyde to formate and use of
160 formate as a source of electrons for NADH:ubiquinone oxidoreductase (Complex I; Figure 2).
161  The source of formaldehyde is likely methanol oxidation, as pyrroloquinoline quinone (PQQ)-
162  dependent ethanol/methanol dehydrogenases were found in Rhodospirillaceae MAGs from low-
163  oxygen marine settings (Table S6). Methane monooxygenase genes were not found in the partial
164  Rhodospirillaceae MAGs, precluding our ability to rule out the possibility of these genes in the
165 missing portions of the genomes. The Rhodospirillaceae PQQ-dependent dehydrogenase genes
166  contained the motif DYDG (Table S6), which is characteristic of the lanthanide-containing form

167  of the enzymes rather than calcium form (Keltjens et al., 2014).

168 A full aerobic electron transport chain (Complex I, I, I11, and 1V) and FOF1-type ATP
169  synthase were transcribed in both bins (Table S5). Complex IV (cytochrome ¢ oxidase) was type
170 Al according to the Sousa et al. (2012) classification, and the cox operon in the GTDB species
171  representative Rhodospirallaceae ARS27 was subtype b (COX2-COX1-CtaB-CtaG_Cox11-
172 COX3-DUF983-SURF1-CtaAl-M32-Tsy-M16B) according to the Geiger et al. (2023)

173  classification. Sulfur oxidation genes, including flavocytochrome c sulfide dehydrogenase
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174  (FccAB), sulfane hydrogenase (SoxCD), and carrier protein SoxYZ, were also transcribed, as

175  were numerous transposes (Table S5).

176 Genes for a multiheme cytochrome complex were transcribed in both bins. To our
177  knowledge, this putative operon has not previously been described. Hereafter, we designate it the
178  ptdABCDEFG operon for its sequence of penta/tetra/deca-heme proteins, interspersed with other
179  conserved proteins. ptdAB genes are highly transcribed in our Rhodospirillaceae MAGs, but it is
180 unclear if the rest of the operon is also highly transcribed, because it was truncated in our MAGs’
181  scaffolds. The ptd gene cluster consists of a penta-heme protein with a C-terminal beta-sandwich
182  (PtdA), a porin (PtdB), a FAD/NAD(P)-binding oxidoreductase (PtdC), a periplasmic tetra-heme
183  protein (PtdD), a cyclic nucleotide-binding domain protein with two 4Fe-4S clusters (PtdE), a
184  cytoplasmic transmembrane ferric reductase-like protein (PtdF), and a periplasmic deca-heme
185  protein (PtdG; Figure 2; Tables S7, S8). The function of this complex is unknown, but the
186  presence of genes encoding a porin and multiple multiheme proteins resembles porin-
187  cytochrome protein complexes involved in extracellular reduction electron transfer during Fe(l1l)
188 and Mn(IV) reduction (Richardson et al., 2012; Shi et al., 2014). PtdA has a homolog to a penta-
189 heme cytochrome css; protein of unknown function in a thermophilic purple sulfur
190 gammproteobacterium (Chen et al., 2019) and is in the same COG family (COG3303) as formate
191  dependent nitrite reductase, NrfA. ptdABCDEFG genes were prevalent in Alphaproteobacteria,
192  Gammaproteobacteria, Nitrospirales, and Planctomycetes MAGs from marine or high salinity

193  environments (Figure 3).
194

195 Discussion
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196  This study illuminates the previously ambiguous identity of the microorganisms that make the
197  dominant nitric oxide-transforming protein (Nod) in the world’s largest ODZ, the Eastern
198  Tropical North Pacific. Extensive horizontal gene transfer of nod genes between microbial
199  genomes is evident from the lack of conservation of gene neighborhood and patchy phylogeny
200  (Fuchsman et al., 2017), which may be mediated by viral infection (Gazitda et al., 2021). We
201  found that the most transcriptionally active nod genes in the ETNP upper ODZ belong to
202  Alphaproteobacteria related to Rhodospirillaceae. Alpha-type nod transcript abundances (~200
203  RPKM) are similar to those of dissimilatory nitrate reductase (narG) in the ODZ (Tsementzi et
204  al., 2016). The nod-transcribing Rhodospirillaceae are likely methylotrophs, and transcribe genes
205 for formaldehyde oxidation, likely as a source of electrons to the respiratory chain via NAD
206  reduction by formate dehydrogenase. Sulfide may be used as a supplemental electron donor
207  and/or may be concomitantly oxidized for detoxification (Callbeck et al., 2021; Schmitz et al.,

208 2023).

209 Our discovery of a putative porin-cytochrome complex (ptd operon) in marine bacteria
210 was unexpected. Porin-cytochrome complexes have been best studied for their role in
211  extracellular electron transport, particularly for respiratory metal reduction and oxidation
212  (Richardson et al., 2012; Shi et al., 2014). It is conceivable that the Ptd complex is involved in
213  iron reduction in ODZs; there is iron reduction at the secondary nitrite maximum and it is
214 hypothesized to be bacterially mediated, but the microbes involved have yet to be determined
215  (Moffett et al., 2007; Glass et al., 2015). Alternatively, the presence of ptdABCDEFG genes in
216  numerous nitrite-oxidizing bacteria (Nitrospirales) could imply the involvement of these genes in
217  nitrogen cycling; PtdA was in the same COG family as formate-dependent nitrite reductase

218  (Simon et al., 2000) and PtdC is similar to a flavohemoprotein with predicted nitric oxide
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219  dioxygenase activity, also annotated as hydroxylamine oxidoreductase-linked cytochrome. The
220  function of PtdABCDEFG remains completely unknown and requires future biochemical

221  characterization.

222 On the other end of the electron transport chain, high transcription of a heme/copper
223  terminal oxidase suggests that O, is being used as the terminal election acceptor in nod-
224  transcribing Rhodospirillaceae. The transcribed heme/copper oxidase is Al-type (low O,
225  affinity), also present in mitochondria, and adapted for high O, concentrations. Low O, affinity
226  Al-type heme/copper oxidases are transcribed in other anoxic environments (Berg et al., 2022).
227  Because ODZs have extremely low concentrations of molecular oxygen below the oxycline, O,
228  for aerobic respiration may be generated in situ and rapidly consumed. Given that the function of
229  Nod is proposed to be dismutation of two NO molecules into N, and O, (Ettwig et al., 2010), it is
230  possible that the O, source for aerobic respiration in Rhodospirillaceae is NO dismutation,
231  although other sources of O, in anoxic waters are also conceivable (Garcia-Robledo et al., 2017).
232  The physiological uses of Gamma-type and Planctomycetia-type Nod may be different from

233  Alpha-type Nod, although this remains to be investigated.

234 The source of NO, the presumed substrate for Nod, may be generated in the same
235 organism using Nod, or generated by a different organism (or chemical pathway). Nitric oxide
236 was positively correlated with nitrite in the Eastern Tropical South Pacific ODZ, and was only
237  detectable when O, was <1-2 uM (Lutterbeck et al., 2018). In the Eastern Tropical North Pacific,
238  NO concentration and turnover rates were elevated at O, <100 uM (Ward and Zafiriou, 1988).
239  Both studies suggest that the NO in ODZs likely originates from nitrification or nitrifier
240  denitrification, while genomic analyses indicate that the copper-containing nitrite reductase

241  (nirK) in SAR11 bacteria (presumably performing denitrification) may be a key source of NO
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242  (Fuchsman et al., 2017). Because most ODZ denitrifiers specialize in only one of the three steps
243  (NO;7 reduction, NO reduction, and N,O reduction) (Zhang et al., 2023), and known nitrite
244  reductases were not identified in our MAGsS, existing data indicate that the NO that is used as a
245  substrate for Rhodospirillaceae Nod is not generated in vivo. (Only 4 out of 32 nod-containing
246  MAGs contained a nitrite reductase gene: two Gammaproteobacteria MAGs contained nirK, one
247  Myxococcota MAG contained nirS, and one Scalindua MAG contained nirS). It is also possible

248  that another uncharacterized enzyme produces NO.

249 This study suggests that marine alphaproteobacteria (Rhodospirillaceae) are actively
250  reducing NO under anoxia, as implied by their abundant transcription of nod genes. While we
251 can be fairly certain that the substrate for Nod is NO, the products of this enzyme (N,O vs.
252  N2+0Oy) remain uncertain. Nod is theorized to disproportionate NO into N, and O, in methane-
253 oxidizing Methylomirabilota bacteria (Ettwig et al., 2010; Ettwig et al., 2012), but no
254  biochemical characterizations of Nod have been published to date, and foraminifera expressing
255  Nod produce N,O (Woehle et al., 2018). The apparent lack of other denitrification genes in nod-
256  transcribing Rhodospirillaceae is consistent with the observation that denitrification in ODZ is
257  largely divided into distinct microbial taxa (Dalsgaard et al., 2014; Fuchsman et al., 2017; Zhang
258 et al.,, 2023). For example, although nitrate reductase (narG) genes are widely distributed
259 amongst ODZ microbes (Zhang et al., 2023), SAR11 bacteria appear to dominate in narG
260 transcriptional activity (Tsementzi et al., 2016). Our finding that the transcription of nod is
261  catalyzed primarily by marine alphaproteobacteria implies that this taxa contributes significantly

262  to marine nitrogen loss.
263

264 METHODS
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265  Nod phylogeny and gene neighborhood. Amino acid sequences of highly transcribed nod genes
266  “ETNP 2014 Stnl10 150m” and “ETNP 2013 Stn6 300m” were acquired from the authors of
267  Padilla et al. (2016) (see Table S2 for sequences). These sequences were used for BLASTP
268  searches of ODZ metagenomes in the IMG-JGI database and the non-redundant protein (nr)
269  database in NCBI. Sequences (n=53, 731 gap-free sites) were aligned using the MAFFT online
270  server with the L-INS-i method (Katoh et al., 2019). A phylogeny was generated with 1000
271  bootstraps using model LG+I+G4 using W-1Q-Tree (Trifinopoulos et al., 2016). The phylogeny
272  was visualized using FigTree v.1.4.4, and the fasta file (Trimmed_NOD tree) is available as a
273  supplemental figure. Gene neighborhoods were generated using the EFI Gene Neighborhood
274 Tool (Zallot et al., 2019) with single sequence BLAST of the UniProt database using the amino
275  acid sequence Ga0066848_100037855 (JGI IMG) as the Nod query with an e-value cutoff of 10

276  °and with 10 genes upstream and downstream the gene of interest.

277 Transcription of nod genes in ETNP ODZ depth profiles. Magic Basic Local Alignment
278  Search Tool (Boratyn et al.,, 2019) was used to search ETNP ODZ metatranscriptomes
279  (PRINA727903; Mattes et al. (2022)) using representative nucleotide sequences for
280  Planctomycetia-like (Ga0066826 100064333 JGlI IMG)), Gamma-like
281  (PBRC01000062.1:19833-22205 (NCBI)), and Alpha-like (Ga0066848 100037855 (JGI IMG))
282  nod genes. Default parameters were used except for the score threshold (18). Read hits were

283  normalized to reads per kilobase million (RPKM).

284 Metagenomic binning. Binning of metagenome-assembled genomes (MAGs) and
285  metatranscriptomic mapping to MAGs was performed using the KBase platform (Arkin et al.,
286  2018). Assemblies for the ETNP ODZ metagenomes containing Alpha-type nod genes

287 (ETNP201310SV72 (GOLD Analysis Project ID Ga0066848; stnl0 300m) and
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288 ETNP201306SV43 (GOLD Analysis Project ID Ga0066829; stn6 300m) were imported from
289  JGI IMG into Kbase. Metagenomic assemblies were binned into MAGs using MaxBin2 v2.2.4
290 (Wu et al., 2016). The two MAGs containing nod genes (MAG ETNP2013_S10_300m_22 from
291 ETNP201310SV72 and ETNP2013_S06 _300m_15 from ETNP201306SV43) were selected for
292  further analysis. Average nucleotide identity was calculated using FastANI (Jain et al., 2018).
293 MAG taxonomy was evaluated by GTDB-Tk v2.3.2 (Chaumeil et al., 2022). MAGs were

294  annotated with RASTtk v1.073 (Brettin et al., 2015).

295 Mapping transcripts to metagenomic bins. Metatranscriptomic fragments were imported
296  from the depth with highest nod transcription at the secondary nitrite maximum (NCBI run
297 SRR14460584). Fragments were aligned to MAGs using Bowtie2 (Langmead and Salzberg,
298 2012). Transcripts were assembled from RNA-seq read alignments using Cufflinks v2.2.1
299  (Trapnell et al., 2012). Fragment hits were normalized to fragments per kilobase million
300 (FPKM), which differ from the above RPKM because fragments are derived from paired-end

301 RNA-seq data where there can be two reads corresponding to a single fragment.

302 Cellular localization and heme numbers. Cellular locations of Ptd proteins were
303  predicted using PSORTb v3.0.3 analysis (Yu et al., 2010). Numbers of heme-binding motifs per
304  protein were identified by counting CXXCH sequences. Ptd gene neighborhoods was generated
305 using the EFI Gene Neighborhood Tool (Zallot et al., 2019) with single sequence BLAST of the
306  UniProt database using the amino acid sequence Ga0066848 100031354 (JGI IMG) as the PtdA
307  query, with an e-value cutoff of 10 and with 10 genes upstream and downstream the gene of

308 interest.
309

310 Data availability
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The Kbase bioinformatic pipeline and MAGs are at https://narrative.kbase.us/narrative/106999.

MAGs were also deposited into BioProject PRINA375524 (ETNP201306SV43) and BioProject

PRINA375542 (ETNP201310SV72).
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321  Figure 1. Marine Nod clades, gene neighborhoods, and depth profiles of transcription. (A)
322  Maximum likelihood phylogeny of nitric oxide dismutase (Nod) amino acid sequences in marine
323  (blue) and select terrestrial (brown) taxa. Branch support was evaluated using 1000 rapid
324  bootstrap replicates, with bootstrap values shown for deep branches. The tree is drawn to scale,
325  with branch lengths in number of substitutions per site. Bold sequences represent those present in
326  multiple ETNP ODZ metagenomes (see Table S3 for duplicate accession numbers). “PF”
327 indicates genes from the particle fraction (> 1.6 micron fraction) of filters. “FL” indicates genes
328  from the free-living fraction (0.2-1.6 micron) collected on Sterivex filters. The most highly
329  transcribed ETNP ODZ sequence is indicated with an asterisk. The gNor sequence Geobacillus
330 stearothermophilus was used as the outgroup. (B) Gene neighborhoods surrounding nod genes in
331 select taxa. GenBank contigs: Cecembia calfifontis SGXG01000001, Scalindua japonica
332 BAOS01000045, Gammaproteobacteria NP964 PBRC01000062, Gammaproteobacterium HdN1
333  FP929140, Deltaproteobacteria NZCL01000067, Candidatus Methylomirabilis oxyfera
334  FP565575, and Rhodospirillaceae NP1106 PCBZ01000014. Unlabeled gray genes are
335  hypothetical. (C) Oxygen and nitrite concentrations, and nod transcripts (reads per kilobase per
336 million mapped reads (RKPM)) with depth in ETNP ODZ P1 (onshore) and P2 (offshore) sites

337  (Mattes et al., 2022).
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339 Figure 2. Schematic of the electron transport chain in nod-containing ODZ

338

340 Rhodospiralleace. Enzymes were included based on presence and transcriptional activity of
341  metagenome-assembled genomes (MAGS) assigned to Alphaproteobacteria (GTDB taxonomy:
342 UBA11136 sp002686135; see text). The color of each protein is chosen according to
343  transcriptional activity and represented from 0-100, 100-1,000, 1,000-10,000, and 10,000-

344 100,000 FPKM in gradient from lighter to darker blue (Table S5). Heme proteins are indicated
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by red circular hemes with the cartoon number corresponding to the number of actual hemes
present on each protein. Hypothetical Ptd proteins are labelled A, B, C, D, E, F, and G, and
location within the cell is determined using Psort bacterial localization prediction tool (Table
S8). ETC complexes I-V found in Rhodospirillaceae MAGs are labelled with proposed
interactions between formate oxidation and complex I NADH electron transfer. Highly
transcribed NOD protein and predicted O, generation is shown as feeding into Al type CCO
complex IV reduction. Additional electrons for CytC and the ETC are proposed to come from
sulfur oxidation carried out by the flavocytochrome c sulfide dehydrogenase (FccAB, FCC), and

sulfane-sulfur dehydrogenase (SoxCD) with the multi-enzyme carrier complex (SoxYZ).
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355 Figure 3. Gene neighborhoods of petaheme-tetraheme-decaheme genes from select

356  organisms. Depicted heme spacing is approximate.
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