

1 **Particulate organic matter drives spatial variation in denitrification
2 potential at the field scale**

3

4

5 Emily R. Stuchiner^{1,2,4†}, Wyatt A. Jernigan^{1,2}, Ziliang Zhang^{1,2}, William C. Eddy^{1,2,3}, Evan H.
6 DeLucia^{1,2,3}, Wendy H. Yang^{1,2,3}

7

8 ¹Institute for Sustainability, Energy, and Environment, University of Illinois, Urbana-
9 Champaign, IL

10 ²Agroecosystems Sustainability Center, University of Illinois, Urbana-Champaign, IL

11 ³Department of Plant Sciences, University of Illinois, Urbana-Champaign, IL

12 ⁴Renewable and Sustainable Energy Institute, University of Colorado Boulder, CO

13 [†]Emily.Stuchiner@colorado.edu

14

15

16

17 Emily. R. Stuchiner: <https://orcid.org/0000-0002-1567-0715>

18 Ziliang Zhang: <https://orcid.org/0000-0003-0787-1987>

19 William C. Eddy: <https://orcid.org/0000-0003-2215-9680>

20 Evan H. DeLucia: <https://orcid.org/0000-0003-3400-6286>

21 Wendy H. Yang: <https://orcid.org/0000-0002-2104-4796>

22

23

24 Corresponding author: Emily R. Stuchiner

25

26 Open access: At this time, data are available upon request but will be uploaded to an appropriate
27 repository pending manuscript acceptance.

28

29 **Abstract**

30 High spatiotemporal variability in soil nitrous oxide (N_2O) fluxes challenges
31 quantification and prediction of emissions to evaluate the climate change mitigation outcomes of
32 sustainable agricultural practices. Triggers for large, short-lived N_2O emission pulses, such as
33 rainfall and fertilization, alter soil oxygen (O_2) and nitrate (NO_3^-) availability to favor N_2O
34 production via denitrification. However, the organic C (OC) needed to fuel denitrification may
35 exhibit subfield variation that constrains the potential for high denitrification rates to occur,
36 leading to spatial variation in N_2O hot moments. We tested the hypothesis that the particulate
37 organic matter (POM) fraction of soil organic matter controls subfield variation in denitrification
38 potential by regulating availability of dissolved organic C (DOC), the form of OC used by
39 denitrifiers. Among 20 soil samples collected across a maize field in central Illinois, USA, we
40 found that potential denitrification rate was best predicted by POM C concentration ($R^2 = 0.35$).
41 Using multiple linear regression analysis that included other soil properties as explanatory
42 variables, we found that POM C fraction of bulk soil (mg POM C g^{-1} SOC) was the most
43 important predictor based on regression coefficient size ($P < 0.01$). Our results, which provide
44 support for our hypothesis, suggest that consideration of the link between C and N cycling may
45 be a key to predicting spatiotemporal variation in soil N_2O emissions when denitrification is the
46 dominant N_2O source process.

47

48 **Introduction**

49 The greenhouse gas nitrous oxide (N_2O) is rapidly accumulating in the atmosphere due to
50 human activities, such as nitrogen (N) fertilizer use to increase productivity in agroecosystems
51 (Ravishankara et al., 2009, Cavigelli et al. 2012, Tian et al., 2020). High spatiotemporal

52 variability in soil N₂O emissions challenges quantification and prediction of emissions to
53 evaluate the climate change mitigation benefits of sustainable agricultural practices (Groffman et
54 al. 2009, Bernhart et al. 2015). Soil N₂O production is highly sensitive to dynamic environmental
55 drivers (Butterbach-Bahl et al. 2013, Wang et al. 2023), which can cause large, short-lived N₂O
56 emission pulses, referred to as hot moments, that disproportionately contribute to annual N₂O
57 budgets (Groffman et al. 2009, Anthony et al. 2023). At the same time, soil N₂O emissions are
58 often characterized by localized areas where above-average reaction rates occur, referred to as
59 hot spots, even within homogenously managed agricultural fields (McDaniel et al. 2017,
60 Krichels et al. 2019, Zhang et al. 2023 *in prep for Nature Geosciences*). Developing a predictive
61 understanding of where N₂O hot spots can occur when hot moments are triggered will improve
62 our ability to account for spatiotemporal variability in soil N₂O emissions in both measurement
63 and modeling efforts.

64 Nitrous oxide hot moments occur when changes in the environment align to create
65 conditions that stimulate high N₂O production rates (Wagner-Riddle et al. 2020). Nitrogen
66 fertilization and large rain events are considered the major triggers of nitrification and
67 denitrification-driven hot moments in agricultural fields, respectively (Senbayram et al. 2012,
68 Molodovskaya et al. 2012, Machado et al. 2020). Nitrification is typically only an important
69 source of N₂O following fertilization, whereas denitrification can be an important N₂O source
70 throughout the growing season (Ostrom et al. 2010, Harris et al. 2021, Stuchiner and von Fischer
71 2022a). Elevated soil NO₃⁻ availability caused by nitrification or by direct fertilizer NO₃⁻ inputs
72 can support high rates of N₂O production by denitrifiers, which reduce NO₃⁻ through a series of
73 enzymatic steps to N₂O and N₂ using organic carbon (OC) as the reductant (Firestone and
74 Davidson 1989, Stuchiner and von Fischer 2022b). However, as an anaerobic process,

75 denitrification contributes to N₂O hot moments only when soil moisture conditions lead to the
76 development of soil anoxia, such as following large rain events or spring thaw (Wagner-Riddle
77 et al. 1998, Krichels et al. 2019). While fertilization and rainfall can uniformly supply N
78 substrate and soil moisture to agricultural fields, they do not uniformly induce denitrification-
79 driven N₂O hot moments within fields (McDaniel et al. 2017, Krichels et al. 2019, Zhang et al.
80 2023 *in prep for Nature Geosciences*). This suggests that subfield variation in endogenous
81 factors that regulate denitrification (e.g., O₂, NO₃⁻, OC) could constrain the potential for N₂O hot
82 moments to occur when exogenous events (e.g., fertilization, rainfall) alter environmental
83 conditions to become favorable for N₂O production.

84 Spatial variation in soil organic matter (SOM) may control the potential for
85 denitrification-driven N₂O hot moments at the subfield scale following large rain events and
86 fertilization. Subfield variation in soil texture and topography can lead to spatial variation in soil
87 drainage and NO₃⁻ leaching (Basso et al. 2012, Zhu et al. 2015), which can contribute to subfield
88 variation in N₂O emissions (Turner et al. 2016, Lawrence et al. 2021). Large rain events should
89 increase both soil moisture and microbial NO₃⁻ accessibility enough to stimulate denitrification-
90 driven N₂O emissions across agricultural fields, unless the availability of SOM, the source of
91 OC, constrains denitrification rates.

92 While the availability of SOM is ultimately modulated by where plant litter inputs
93 accumulate in fields (Kravchenko et al. 2017), the accessibility of OC to microbes depends on
94 whether the SOM resides in particulate organic matter (POM) or mineral-associated organic
95 matter (MAOM). In general, POM exhibits faster turnover rates than MAOM, which is protected
96 from decomposition by sorption to mineral surfaces or occlusion in soil micro-aggregates
97 (Lavallee et al. 2020). Thus, the POM fraction of SOM could be more accessible to microbes

98 than the MAOM fraction of SOM (Sokol et al. 2022), suggesting that it would be a more relevant
99 OM pool to consider as a control on denitrification. In addition, regardless of pool size or OM
100 quality, POM has been shown to serve as a more important source of dissolved OC (DOC) than
101 MAOM to stimulate denitrification rates (Surey et al. 2021). Indeed, higher denitrification rates
102 have been observed in regions of fields characterized by a greater abundance of crop residues, a
103 precursor of POM (Li et al. 2016, Abalos et al. 2022a, Abalos et al. 2022b).

104 Here, we hypothesized that POM pool size controls subfield variation in denitrification
105 potential by regulating DOC availability (Box 1). We predicted that soils containing more POM
106 C would have higher denitrification potential because of greater OC accessibility to microbes.
107 We measured potential denitrification rates in soil samples collected from 20 locations across a
108 working farm in maize production in Champaign County, Illinois where we have previously
109 observed spatial variation in N₂O hot moments using autochamber measurements (Zhang et al.
110 2023 *in prep for Nature Geoscience*). We allowed native OC availability to constrain potential
111 denitrification rates by omitting C amendments from the typical potential denitrification assay
112 (Tiedje et al. 1994). We measured various indices of OC availability to microbes to relate to
113 potential denitrification rates as explanatory variables, including POM C concentration, potential
114 C mineralization rate, and DOC concentrations. We found that POM C was the most important
115 explanatory variable predicting denitrification potential, providing support for our hypothesis.

116

117 **Methods**

118 *Study Site*

119 Samples were collected from a working farm in Champaign County, IL (40.006°N,
120 88.290°W) that rotates annually between maize and soybean production. The farmer uses

121 conservation tillage practices wherein vertical tillage occurs prior to planting in some but not all
122 years. Urea ammonium nitrate (UAN) fertilizer is applied to the field during maize years shortly
123 after planting at a rate of ~ 200 kg N ha^{-1} , and no fertilizer is applied during soybean years.

124 Over the period of 2014-2023 the mean annual air temperature at this site was 11 °C,
125 with highest monthly mean temperature occurring in July (23.2 °C) and the lowest occurring in
126 January (-3.5 °C, Midwestern Regional Climate Center 2023). The mean annual precipitation is
127 909 mm (Midwestern Regional Climate Center 2023). The soil at the farm consists of a roughly
128 even combination of Drummer silty clay loam, Flanagan silt loam, and Catlin silt loam (Natural
129 Resources Conservation Service).

130

131 *Experimental design*

132 In this study, we took advantage of the spatial variation we observed in N_2O fluxes across
133 20 autochamber locations at the farm during the 2021 growing season (Zhang et al. 2023 *in prep*
134 for *Nature Geosciences*). Consistent N_2O cold spots versus potential N_2O hot spots suggested
135 considerable subfield variation in denitrification potential, thereby providing an ideal setting for
136 testing our hypothesis about controls on denitrification potential. In October 2022, we collected
137 soils from the 20 locations, which are arranged into four distinct areas termed “nodes.” Each
138 node consists of five autochambers spread across a ~ 0.6 ha area within the overall study area,
139 which spans ~ 4.6 ha. Shortly after collecting the soil samples, we performed incubation assays
140 and soil chemical measurements in the lab.

141

142 *Soil collection and storage*

143 We collected soils in October 2022, approximately one week after harvest of the soybean
144 crop. At each of the 20 autochamber locations we collected four soil cores to a depth of 30 cm
145 using a 5-cm diameter soil auger. Two soil cores were bulked into each of two Ziploc bags,
146 yielding two composite samples per autochamber location and 40 composite soil samples total.

147 Soil samples were kept on ice in the field to minimize microbial activity and were
148 transported to the lab at the University of Illinois Urbana-Champaign (UIUC) within four hours
149 for immediate homogenization and sieving. We sieved soils to 8 mm to retain some soil
150 aggregate structure while removing large plant debris, roots, and rocks. Immediately after
151 sieving, soil subsamples were extracted for chemical analyses and oven-dried at 105^o C for
152 determination of gravimetric water content (GWC). The soil samples were stored at 4^o C for up
153 to 12 hr before the denitrification enzyme assay (DEA; e.g., assay that measured potential
154 denitrification rate) and C mineralization assay were initiated. The remaining soil samples were
155 air-dried at room temperature (24^o C) for several weeks prior to size fractionation, organic CN
156 analysis, and soil texture analysis using the hydrometer approach as described by Gee and
157 Bauder (1986).

158

159 *Denitrification enzyme assay*

160 We used a modified denitrification enzyme assay (DEA) protocol to measure maximum
161 denitrification rates under optimal NO₃⁻ and O₂ conditions for denitrification (i.e., excess NO₃⁻
162 and anoxia) but with the constraint of native OC availability (i.e., no C amendment as usual). We
163 weighed 25 g subsamples of sieved, fresh soil into 125 mL Wheaton bottles and brought the
164 samples to room temperature over the course of ~1 hr. To each Wheaton bottle, we added 25 mL
165 of 1 mM KNO₃⁻ solution in deionized (DI) water, capped the bottle, and then purged the

166 headspace with N₂ gas to induce anoxia. We then injected 99% acetylene gas (Airgas Industries,
167 Illinois, USA) through a septum in the bottle cap into the bottle headspace to achieve 10%
168 acetylene concentration by volume to inhibit N₂O reduction. Each bottle was shaken vigorously
169 by hand for 30 seconds and then gently shaken on an orbital shaker table for the duration of the
170 30-minute incubation period. We collected gas samples immediately after shaking (T0) and then
171 every 10 minutes for 30 minutes, totaling four time points (T0, T10, T20, T30). Gas samples
172 were analyzed for N₂O concentration on a Shimadzu GC-2014 gas chromatograph equipped with
173 an electron capture detector (Shimadzu Scientific, Illinois, USA). Since the change in N₂O
174 concentration over time for all samples was linear ($R^2 \geq 0.997$ in all cases), we calculated
175 potential denitrification rates from the slopes of simple linear regression lines.

176

177 *C mineralization assay*

178 We used a short-term C mineralization assay to estimate OC utilization by microbes as a
179 proxy for OC availability to microbes. A pilot incubation of soil samples from our study site
180 showed linear accumulation of CO₂ in the jar headspace of soil samples incubated for one week,
181 so we conducted the C mineralization assay over 72 hours. We weighed 30 g subsamples of
182 sieved, fresh soil into 0.5 L Ball jars, loosely lidded the jars, and pre-incubated the soils at room
183 temperature (24° C) for 24 hr. We pipetted DI water into the jars to bring the soil samples to 30%
184 GWC and mixed the soil using a spatula to evenly distribute the added water. Following DI
185 addition, the jars were sealed and immediately sampled to quantify the CO₂ concentration at T0.
186 Headspace gas sampling occurred again at 8, 24, 48, and 72 hr for CO₂ flux determination over
187 the 72-hour incubation period. Gas samples were stored for < 24 hr in pre-evacuated glass vials
188 sealed with rubber septa and aluminum crimps. The gas samples were analyzed for CO₂

189 concentration on the GC, which is also equipped with a thermal conductivity detector for CO₂
190 analysis. Carbon mineralization rates were determined from the linear change in CO₂
191 concentration during the incubation period.

192

193 *Soil chemical analyses*

194 To support regression analyses to predict denitrification potential, DOC concentrations,
195 and C mineralization rates, we measured a suite of soil chemical properties immediately after
196 soil collection and immediately after the C mineralization assay (hereafter referred to as pre-
197 incubation and post-incubation). We performed 2 M KCl extractions in a 5:1 ratio of KCl
198 volume to dry soil equivalent mass for colorimetric analysis of NH₄⁺ and NO₃⁻ on a SmartChem
199 200 discrete analyzer (Unity Scientific, Brookfield CT, USA). We performed DI water
200 extractions in a 3:1 ratio of DI volume to dry soil equivalent mass for DOC and TDN analysis on
201 a Shimadzu Total Organic Carbon analyzer (Shimadzu TOC-L-CSH; Shimadzu Corp., Kyoto
202 Japan) programmed to quantify non-purgeable OC and total N. Samples were vigorously shaken
203 by hand for 30 seconds, centrifuged at 3000 rpm for 15 minutes, and then vacuum filtered
204 through 0.7 µm filters that were ashed in a 450° C furnace. We performed 0.5 N HCl extractions
205 in a 30:1 ratio of HCl volume to dry soil equivalent mass for colorimetric analysis of Fe(II) and
206 Fe(III) using the ferrozine assay on a Genesys 20 spectrophotometer (Thermo Scientific
207 Spectronic, MA). We also measured soil pH in slurries consisting of 5:1 ratio DI volume to fresh
208 soil mass. Finally, we determined GWC for each pre-incubation sample by drying 5 g
209 subsamples to a constant weight in a 105° C forced air oven. All extracts were frozen prior to
210 analysis (within two weeks of extraction), except for the HCl extracts for Fe analysis which were
211 stored at 4° C.

212 To test our hypothesis that spatial variation in POM leads to spatial variation in
213 denitrification potential, we measured OC and TN concentrations in bulk soil as well as POM
214 and MAOM size fractions. We present OC and TN in the POM and MAOM size fractions using
215 two different measures: (1) as concentration relative to bulk soil mass, or (2) as bulk fraction
216 relative to the bulk SOC or bulk soil TN (Table S1). For bulk soil, sieved soil samples were air-
217 dried for four weeks and then oven-dried at 60° C for an additional 12 hr to remove residual
218 moisture. Soils were ground to a fine powder using mortar and pestle, and then combusted for
219 CN elemental analysis on a Elementar Vario Cube elemental analyzer (Hanau, Germany).

220 We separated POM and MAOM by size using the method described in Cotrufo et al.
221 (2019). Briefly, the air-dried and 8 mm-sieved soils were sieved to 2 mm and then oven-dried at
222 60° C an additional 12 hr. The soil samples were then dispersed in 0.5% sodium
223 hexametaphosphate and glass beads on a low-speed reciprocal shaker table for 18 hr. Dispersed
224 soils were size-fractionated with a 53 µm sieve, and the > 53 µm fraction was washed with DI
225 until the water ran clear. POM (> 53 µm) and MAOM (< 53 µm) fractions were dried at 60° C
226 for four days and then weighed. Percent mass recovery ranged from 95% to 105% across all
227 samples. The POM and MAOM samples were ground by hand using a mortar and pestle and
228 then combusted for CN elemental analysis on a Velp 802 elemental analyzer (Velp Scientifica,
229 New York, USA) at the Colorado State University EcoCore.

230

231 *Statistical analyses*

232 Statistical analyses were performed in RStudio (version 4.2.2 (2022-10-31) -- "Innocent
233 and Trusting" © 2022 The R Foundation for Statistical Computing). In all analyses, residuals
234 were examined for departure from normality. All denitrification potential and C mineralization

235 data were log-transformed to meet assumptions of normality in residuals, and all other data were
236 normally distributed. During the DEA, one set of paired samples (i.e., the replicates from the
237 same autochamber location) did not produce any N₂O, presumably due to operator error while
238 setting up the soil incubations. As such, these two samples were excluded from all statistical
239 analysis, resulting in N = 38.

240 We calculated response ratios for soil properties that were measured before and after the
241 C mineralization assay to understand the drivers of denitrification potential. Response ratios
242 were quantified as the quotient of post-incubation over pre-incubation values. Thus, for ratios >1,
243 the value increased during the C mineralization incubation, whereas for ratios <1, the value
244 decreased during the C mineralization incubation. For the C mineralization assay, we held the
245 soils in conditions that had previously demonstrated denitrification to be the dominant N₂O-
246 generating source process in the field (Zhang et al. 2023 *in prep for Nature Geosciences*). As
247 such, measuring the response ratios of soil properties from the C mineralization assay allowed us
248 to examine how differences in spatial drivers could trigger hot moments of denitrification under
249 field-relevant conditions.

250 We used simple linear regressions to examine the drivers of the final DOC concentration
251 (e.g., DOC post-incubation), and we used both simple and multiple linear regression to examine
252 the drivers of denitrification potential. With simple linear regression we investigated the
253 interaction between individual SOM pools and denitrification potential, and with multiple
254 regression we predicted denitrification potential using all the measured soil variables as potential
255 explanatory variables.

256 To avoid multicollinearity in the multiple linear regression model, prior to parameterizing
257 the model, we performed principal components analysis (PCA) to identify which variables were

258 co-correlated within three groups of data: soil/redox properties, N-related properties, and C-
259 related properties. If two variables loaded along the same vector in the PCA, we removed the
260 more weakly loaded variable from the multiple linear regression model (Figure S1). Through this
261 procedure, we removed the NO_3^- - response ratio, DOC response ratio, and TDN response ratio
262 because they correlated with %SON, MAOM C, and MAOM N, respectively. The MAOM C
263 bulk fraction correlated with C mineralization rate, but both predictors were directly relevant to
264 our research question, so we ran two multiple linear regression models, one parameterized
265 without MAOM C bulk fraction and one parameterized without C mineralization rate. All
266 remaining variables (not co-correlated), either response ratios or directly measured values, were
267 included in the model, and we used backwards stepwise selection to identify the most
268 parsimonious model. We also performed multiple linear regression analysis to predict C
269 mineralization rate using the same approach as described for the denitrification potential models.
270

271 **Results**

272 *Subfield variation in denitrification potential and soil properties*

273 The 4.6 ha study area of the agricultural field exhibited considerable variation in
274 denitrification potential and the soil properties that may control denitrification potential (Table
275 1). Denitrification potential spanned two orders of magnitude, from 3.95 to 338 ng $\text{N}_2\text{O-N g}^{-1}$ dry
276 soil d^{-1} . Soil NH_4^+ concentrations measured prior to the C mineralization incubation also spanned
277 two orders of magnitude, from 0.05 to 8.8 $\mu\text{g N g}^{-1}$ dry soil, whereas pre-incubation soil NO_3^-
278 concentrations varied only four-fold, from 1.7 to 6.8 $\mu\text{g N g}^{-1}$ dry soil. Similarly, C
279 mineralization rates varied six-fold, from 403 to 2396 mg $\text{CO}_2\text{-C g}^{-1}$ dry soil d^{-1} , and bulk SOC,
280 POM C, and MAOM C concentrations varied two-fold (Table 1). Bulk SOC ranged from 14.8 to

281 30.1 mg C g⁻¹ dry soil, with MAOM C consistently accounting for the majority of bulk SOC (89-
282 96%). Water-extractable DOC measured prior to the C mineralization incubation also ranged
283 three-fold from 18.8 to 47.8 µg C g⁻¹ dry soil, with the ratio of post- to pre-incubation DOC
284 varying from 0.58 to 1.

285

286 *Predictors of subfield variation in denitrification potential*

287 Simple linear regression suggested that POM C concentration best predicted subfield
288 variation in denitrification potential. Particulate organic matter C concentration explained 35% of
289 the variation in denitrification potential ($p < 0.0001$; Figure 1A). Denitrification potential also
290 exhibited a positive but weaker relationship with water-extractable DOC measured after the 72-
291 hour C mineralization assay ($R^2 = 0.19$, $p = 0.006$; Figure 1B). In contrast, MAOM C
292 concentration did not significantly correlate with denitrification potential (Figure 1C). Likewise,
293 neither C mineralization rates nor pre-incubation DOC significantly correlated with
294 denitrification potential (data not shown).

295 Multiple linear regression analyses also showed that POM C was the best predictor of
296 denitrification potential (Figure 2). In a model including MAOM C bulk fraction but not C
297 mineralization rate, POM C bulk fraction had the largest regression coefficient ($\hat{B} = 12.81$) and
298 was a highly significant predictor ($p = 0.00182$; Figure 2A). All other statistically significant
299 explanatory variables in the model had small regression coefficients (ranging from -1.7 to 0.05),
300 including MAOM C concentration, MAOM C bulk fraction, the ratio of NH₄⁺ concentration
301 from pre-incubation to post-incubation, and sand content (Figure 2B). In a model including C
302 mineralization rate but not MAOM C bulk fraction, POM C bulk fraction still had the largest
303 regression coefficient ($\hat{B} = 12.45$) and was a highly statistically significant predictor of

304 denitrification potential ($p = 0.00304$; Figure 2B). The % SOC and % sand were statistically
305 significant, but again had small regression coefficients (0.67 and 0.01, respectively; Figure 2B).

306

307 *Predictors of DOC concentrations*

308 Pre- and post-incubation as well as the response ratio of water-extractable DOC
309 concentrations were poorly predicted by all measures of POM C and MAOM C considered (only
310 post-incubation data shown). Both POM C and MAOM C concentrations exhibited statistically
311 significant but weak positive relationships with post-incubation DOC ($R^2 = 0.14$ and $R^2 = 0.16$,
312 respectively, Table 2). None of the other POM C and MAOM C variables, including bulk
313 fraction and C:N ratio, significantly correlated with post-incubation DOC concentrations (Table
314 2).

315

316 *Predictors of C mineralization rates*

317 Carbon mineralization rates could not be predicted using any of the variables measured.
318 After backwards stepwise selection, the multiple regression model included only two explanatory
319 variables, POM C concentration and the post- to pre-incubation ratio of NH_4^+ concentrations
320 (Figure 3); however, both variables had small effect sizes and were only marginally statistically
321 significant ($p = 0.06$ and 0.08, respectively). In contrast, the y-intercept had a large positive
322 effect size on C mineralization rate ($p < 0.0001$), indicating that most of the variation in C
323 mineralization rate could not be explained by the variables we measured.

324

325 **Discussion**

326 Spatial and temporal variability in soil N₂O emissions has persistently challenged
327 measurement and modeling of N₂O emissions to hinder N₂O accounting and mitigation efforts
328 (Barton et al. 2015, Lawrence et al. 2021). When changes in environmental conditions trigger
329 high N₂O emissions, N₂O hot moments do not occur consistently even within homogenously
330 managed agricultural fields (McDaniel et al. 2017, Krichels et al. 2019, Zhang et al. 2023 *in prep*
331 for *Nature Geosciences*). By assaying soil samples from within a field that exhibited low versus
332 high potential for N₂O hot moments based on hourly N₂O flux measurements (Zhang et al. 2023
333 *in prep for Nature Geosciences*), we found support for our hypothesis that spatial variation in
334 denitrification potential at the subfield scale is determined by the accessibility of OC (Figure 1,
335 Figure 2), a substrate that can limit denitrification rates when rainfall or fertilization depletes soil
336 O₂ or increases NO₃⁻ supply, respectively (Box 1). Variables representing OC abundance in the
337 POM pool of SOM were the strongest predictors of denitrification potential (Figure 1, Figure 2),
338 which spanned over two orders of magnitude across the 20 sampling locations within 4.6 ha of a
339 single agricultural field (Table 1). This suggests that OC from POM serves as a constraint on
340 maximum denitrification rates under high soil moisture and NO₃⁻. As such, understanding spatial
341 variation in POM can help improve predictions of where high N₂O emissions can occur within
342 agricultural fields when hot moment triggers occur.

343 Particulate organic matter has faster C turnover than MAOM (Gentsch et al. 2015,
344 Cotrufo et al. 2019, Lavallee et al. 2020), yet its functional importance in driving N cycling is
345 underappreciated. While models are moving toward representing soil C cycling with separate
346 POM and MAOM pools (Daly et al. 2021, Heckman et al. 2022), denitrification rates continue to
347 be predicted based on bulk SOC properties (Yanai et al. 2003, Giltrap et al. 2010, Saha et al.
348 2021). Although MAOM C dominantly contributes to SOC across most sites (Sokol et al. 2022),

349 including ours (Table 1), more OC can be leached from POM compared to MAOM (Surey et al.
350 2021). It is this DOC that is accessible for heterotrophic microbes such as denitrifiers to utilize
351 because they must pass the OC across their cell membranes (Marschner and Kalbitz 2003). We
352 did not find a correlation between DOC concentrations and denitrification potential (Figure 1B),
353 and we did not see a correlation between DOC concentrations and microbial respiration either
354 (Figure 3), likely because simultaneously high rates of DOC leaching and consumption
355 confounded these relationships (Boddy et al. 2007, Gjettermann et al. 2008, Jones et al. 2009).
356 Although we found that DOC concentrations were weakly correlated to both POM and MAOM
357 (Table 2), the DOC derived from POM has been previously shown to stimulate denitrification
358 more so than the DOC derived from MAOM (Surey et al. 2021). The strong positive correlations
359 between denitrification potential and variables related to the POM pool support that POM
360 represents the major source of OC accessible to denitrifiers (Figure 1, Figure 2). Furthermore,
361 another high spatial resolution analysis conducted the prior year at our study site demonstrated a
362 positive link between POM C and field-measured gross N₂O production rates across the growing
363 season (Zhang et al. 2023 *in prep for Nature Geosciences*). We therefore assert that predictions
364 of spatial variation in soil N₂O emissions can be improved by accounting for POM as the source
365 of OC accessible to denitrifiers.

366 Understanding spatial variation in POM may be the key to improving predictions of
367 where N₂O hot moments occur, but this presents a new challenge. Whereas the spatial
368 distribution of MAOM C is often positively correlated to soil clay content due to the role of clay
369 minerals in adsorbing OC (Lavallee et al. 2020), POM C is more likely related to plant litter
370 inputs (Kravchenko et al. 2017). In annual cropping systems where aboveground biomass is
371 harvested, root biomass is the dominant plant litter input. However, given the difficulty in

372 quantifying belowground productivity, root biomass data are sparse and characterized by high
373 uncertainty due to small-scale spatial variation (Pausch and Kuzyakov 2018). Plasticity in root
374 production in response to water availability can lead to variability in above- to belowground
375 productivity that could manifest at the subfield scale with spatial variation in soil drainage
376 (Gherardi and Sala 2020), so estimations of belowground productivity from aboveground
377 productivity may be uncertain (Hui and Jackson 2006), making it difficult to predict POM spatial
378 distribution from root biomass data. Nonetheless, in contrast to process-based predictions of
379 spatial variation in POM C, machine learning algorithms trained on large datasets have been
380 used to predict POM C at regional scales (Cotrufo et al. 2019, Lugato et al. 2021). Advances in
381 streamlining SOM fractionation procedures to increase sample throughput to generate these
382 types of datasets could help improve predictive modeling efforts of POM spatial distribution
383 (Lugato et al. 2021).

384 Our findings have implications for understanding how agricultural management practices
385 aimed at increasing SOC storage may have unintended effects on soil N₂O emissions to
386 counteract desired climate mitigation outcomes (Xia et al. 2018, Guenet et al. 2020). No-till or
387 conservation-till cropping systems promote plant residues and subsequent SOM accumulation in
388 croplands (Wang et al. 2020), leading to larger POM pools than in conventionally tilled systems
389 (Six et al. 1999). Our study suggests that greater POM C can lead to greater soil N₂O emissions.
390 Indeed, denitrification rates have been shown to be higher in conservation tillage sites compared
391 to conventional tillage sites (Mei et al. 2018, Ejack et al. 2020), although this depends on the
392 crop residues present (Velthof et al. 2002). Although more labile residues can be readily
393 metabolized by the soil microbial community and stabilized as MAOM (Cotrufo et al. 2013),
394 many plant residues are primarily decomposed into POM before they are eventually turned over

395 as microbial necromass to MAOM (Marucci et al. 2015, St. Luce et al. 2021). Accounting for the
396 link between POM and denitrification will be necessary for improving predictions of climate
397 mitigation outcomes from agricultural management practices.

398 In conclusion, we have demonstrated that OC accessibility via POM can help explain
399 spatial and temporal variability in soil N₂O emissions in an agricultural field that exhibits
400 consistent N₂O cold spots and potential N₂O hot spots (Zhang et al. 2023 *in prep for Nature
401 Geosciences*). Of the three major factors controlling denitrification rates (i.e., soil moisture, NO₃⁻
402 , and OC), only OC is constrained to endogenous sources within the ecosystem. Therefore, when
403 exogenous inputs of rainfall or fertilizer increase soil moisture or NO₃⁻ to stimulate
404 denitrification rates, the endogenous supply of OC largely from POM can limit denitrification
405 rates to create spatial variation in soil N₂O emissions. This connection between C and N cycling
406 may be a key to predicting spatial and temporal variation in soil N₂O emissions when
407 denitrification is the dominant N₂O source process.

408

409

410 **Acknowledgements:** We would like to thank Michelle Haddix and the Cotrufo lab for their
411 generous assistance with soil size fractionations. We would also like to thank the EcoCore staff
412 at Colorado State University for allowing us to use their Elemental Analyzer. None of this work
413 would have been possible without the generous field and laboratory support from the Yang lab
414 research specialists Chloe Yates and Haley Ware. This work was funded with support from the
415 DOE ARPA-E Smartfarm Program.

416

417

418 Works Cited

- 419 1. Abalos, D., Recous, S., Butterbach-Bahl, K., De Notaris, C., Rittl, T. F., Topp, C. F., ... &
420 Olesen, J. E. (2022). A review and meta-analysis of mitigation measures for nitrous oxide
421 emissions from crop residues. *Science of the Total Environment*, 828, 154388.
- 422
- 423 2. Abalos, D., Rittl, T. F., Recous, S., Thiébeau, P., Topp, C. F., van Groenigen, K. J., ... &
424 Hansen, S. (2022). Predicting field N₂O emissions from crop residues based on their
425 biochemical composition: A meta-analytical approach. *Science of the Total
426 Environment*, 812, 152532.
- 427
- 428 3. Anthony, T. L., Szutu, D. J., Verfaillie, J. G., Baldocchi, D. D., & Silver, W. L. (2023).
429 Carbon-sink potential of continuous alfalfa agriculture lowered by short-term nitrous
430 oxide emission events. *Nature communications*, 14(1), 1926.
- 431
- 432 4. Barton, L., Wolf, B., Rowlings, D., Scheer, C., Kiese, R., Grace, P., ... & Butterbach-
433 Bahl, K. (2015). Sampling frequency affects estimates of annual nitrous oxide
434 fluxes. *Scientific reports*, 5(1), 15912.
- 435
- 436 5. Basso, B., Sartori, L., Cammarano, D., Fiorentino, C., Grace, P. R., Fountas, S., &
437 Sorensen, C. A. (2012). Environmental and economic evaluation of N fertilizer rates in a
438 maize crop in Italy: A spatial and temporal analysis using crop models. *Biosystems
439 Engineering*, 113(2), 103-111.
- 440
- 441 6. Bernhardt, E. S., Blaszcak, J. R., Ficken, C. D., Fork, M. L., Kaiser, K. E., & Seybold,
442 E. C. (2017). Control points in ecosystems: moving beyond the hot spot hot moment
443 concept. *Ecosystems*, 20, 665-682.
- 444
- 445 7. Boddy, E., Hill, P. W., Farrar, J., & Jones, D. L. (2007). Fast turnover of low molecular
446 weight components of the dissolved organic carbon pool of temperate grassland field
447 soils. *Soil Biology and Biochemistry*, 39(4), 827-835.
- 448
- 449 8. Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-
450 Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand
451 the processes and their controls?. *Philosophical Transactions of the Royal Society B:
452 Biological Sciences*, 368(1621), 20130122.
- 453
- 454 9. Cavigelli, M. A., Grosso, S. J. D., Liebig, M. A., Snyder, C. S., Fixen, P. E., Venterea, R.
455 T., ... & Watts, D. B. (2012). US agricultural nitrous oxide emissions: context, status, and
456 trends. *Frontiers in Ecology and the Environment*, 10(10), 537-546.
- 457
- 458 10. Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The M
459 icrobial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter
460 decomposition with soil organic matter stabilization: Do labile plant inputs form stable
461 soil organic matter?. *Global change biology*, 19(4), 988-995.
- 462

463 11. Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., & Lugato, E. (2019). Soil carbon
464 storage informed by particulate and mineral-associated organic matter. *Nature
465 Geoscience*, 12(12), 989-994.

466

467 12. Daly, A. B., Jilling, A., Bowles, T. M., Buchkowski, R. W., Frey, S. D., Kallenbach, C.
468 M., ... & Grandy, A. S. (2021). A holistic framework integrating plant-microbe-mineral
469 regulation of soil bioavailable nitrogen. *Biogeochemistry*, 154(2), 211-229.

470

471 13. Ejack, L., Whalen, J. K., & Madramootoo, C. A. (2020). Carbon availability limits the
472 denitrification potential of sandy loam soil from corn agroecosystems with long-term
473 tillage and residue management. *Canadian Journal of Soil Science*, 101(1), 172-176.

474

475 14. Firestone, M. K., & Davidson, E. A. (1989). Microbiological basis of NO and N₂O
476 production and consumption in soil. *Exchange of trace gases between terrestrial
477 ecosystems and the atmosphere*, 47, 7-21.

478

479 15. Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), *Methods of
480 soil analysis. Part 1. Physical and mineralogical methods* (second, Vol. 9, pp. 383-411).
481 Madison, WI: American Society of Agronomy, Soil Science Society of America.

482

483 16. Gentsch, N., Mikutta, R., Alves, R. J. E., Barta, J., Čapek, P., Gittel, A., ... &
484 Guggenberger, G. (2015). Storage and transformation of organic matter fractions in
485 cryoturbated permafrost soils across the Siberian Arctic. *Biogeosciences*, 12(14), 4525-
486 4542.

487

488 17. Gherardi, L. A., & Sala, O. E. (2020). Global patterns and climatic controls of
489 belowground net carbon fixation. *Proceedings of the National Academy of
490 Sciences*, 117(33), 20038-20043.

491

492 18. Giltrap, D. L., Singh, J., Saggar, S., & Zaman, M. (2010). A preliminary study to model
493 the effects of a nitrification inhibitor on nitrous oxide emissions from urine-amended
494 pasture. *Agriculture, ecosystems & environment*, 136(3-4), 310-317.

495

496 19. Gjettermann, B., Styczen, M., Hansen, S., Borggaard, O. K., & Hansen, H. C. B. (2007).
497 Sorption and fractionation of dissolved organic matter and associated phosphorus in
498 agricultural soil. *Journal of environmental quality*, 36(3), 753-763.

499

500 20. Groffman, P. M., Butterbach-Bahl, K., Fulweiler, R. W., Gold, A. J., Morse, J. L.,
501 Stander, E. K., ... & Vidon, P. (2009). Challenges to incorporating spatially and
502 temporally explicit phenomena (hotspots and hot moments) in denitrification
503 models. *Biogeochemistry*, 93, 49-77.

504

505 21. Guenet, B., Gabrielle, B., Chenu, C., Arrouays, D., Balesdent, J., Bernoux, M., Bruni, E.,
506 Caliman, J.P., Cardinael, R., Chen, S. and Ciais, P., 2021. Can N₂O emissions offset the
507 benefits from soil organic carbon storage?. *Global Change Biology*, 27(2), pp.237-256.

508

509 22. Harris, E., Diaz-Pines, E., Stoll, E., Schloter, M., Schulz, S., Duffner, C., ... & Bahn, M.
510 (2021). Denitrifying pathways dominate nitrous oxide emissions from managed grassland
511 during drought and rewetting. *Science advances*, 7(6), eabb7118.

512

513 23. Heckman, K., Hicks Pries, C. E., Lawrence, C. R., Rasmussen, C., Crow, S. E., Hoyt, A.
514 M., ... & Wagai, R. (2022). Beyond bulk: Density fractions explain heterogeneity in
515 global soil carbon abundance and persistence. *Global Change Biology*, 28(3), 1178-1196.

516

517 24. Hui, D., & Jackson, R. B. (2006). Geographical and interannual variability in biomass
518 partitioning in grassland ecosystems: a synthesis of field data. *New phytologist*, 169(1),
519 85-93.

520

521 25. Jones, T. G., Freeman, C., Lloyd, A., & Mills, G. (2009). Impacts of elevated atmospheric
522 ozone on peatland below-ground DOC characteristics. *Ecological engineering*, 35(6),
523 971-977.

524

525 26. Kravchenko, A. N., Toosi, E. R., Guber, A. K., Ostrom, N. E., Yu, J., Azeem, K., ... &
526 Robertson, G. P. (2017). Hotspots of soil N₂O emission enhanced through water
527 absorption by plant residue. *Nature Geoscience*, 10(7), 496-500.

528

529 27. Krichels, A. H., & Yang, W. H. (2019). Dynamic controls on field-scale soil nitrous oxide
530 hot spots and hot moments across a microtopographic gradient. *Journal of Geophysical
531 Research: Biogeosciences*, 124(11), 3618-3634.

532

533 28. Lavallee, J. M., Soong, J. L., & Cotrufo, M. F. (2020). Conceptualizing soil organic
534 matter into particulate and mineral-associated forms to address global change in the 21st
535 century. *Global change biology*, 26(1), 261-273.

536

537 29. Lawrence, N. C., Tenesaca, C. G., VanLoocke, A., & Hall, S. J. (2021). Nitrous oxide
538 emissions from agricultural soils challenge climate sustainability in the US Corn
539 Belt. *Proceedings of the National Academy of Sciences*, 118(46), e2112108118.

540

541 30. Li, S., Gu, X., Zhuang, J., An, T., Pei, J., Xie, H., ... & Wang, J. (2016). Distribution and
542 storage of crop residue carbon in aggregates and its contribution to organic carbon of soil
543 with low fertility. *Soil and Tillage Research*, 155, 199-206.

544

545 31. Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P., & Cotrufo, M. F. (2021).
546 Different climate sensitivity of particulate and mineral-associated soil organic
547 matter. *Nature Geoscience*, 14(5), 295-300.

548

549 32. Machado, P. V. F., Neufeld, K., Brown, S. E., Voroney, P. R., Bruulsema, T. W., &
550 Wagner-Riddle, C. (2020). High temporal resolution nitrous oxide fluxes from corn (*Zea*
551 *mays* L.) in response to the combined use of nitrification and urease
552 inhibitors. *Agriculture, Ecosystems & Environment*, 300, 106996.

553

554 33. Marschner, B., & Kalbitz, K. (2003). Controls of bioavailability and biodegradability of
555 dissolved organic matter in soils. *Geoderma*, 113(3-4), 211-235.

556

557 34. Marucci, A., Mazzetti, E., & Mastrogregori, F. (2015). Satellite system for precision
558 farming in hilly areas. *Informatore Agrario*, 71(43), 48-51.

559

560 35. McDaniel, M. D., Simpson, R. R., Malone, B. P., McBratney, A. B., Minasny, B., &
561 Adams, M. A. (2017). Quantifying and predicting spatio-temporal variability of soil CH₄
562 and N₂O fluxes from a seemingly homogeneous Australian agricultural
563 field. *Agriculture, Ecosystems & Environment*, 240, 182-193.

564

565 36. Mei, K., Wang, Z., Huang, H., Zhang, C., Shang, X., Dahlgren, R. A., ... & Xia, F. (2018).
566 Stimulation of N₂O emission by conservation tillage management in agricultural lands: A
567 meta-analysis. *Soil and Tillage Research*, 182, 86-93.

568

569 37. Midwestern Regional Climate Center. (2023). *Sub-daily Data Lister*. Retrieved from /
570 /CLIMATE/Hourly/StnHourBTD.jsp.

571

572 38. Molodovskaya, M., Singurindy, O., Richards, B. K., Warland, J., Johnson, M. S., &
573 Steenhuis, T. S. (2012). Temporal variability of nitrous oxide from fertilized croplands:
574 hot moment analysis. *Soil Science Society of America Journal*, 76(5), 1728-1740.

575

576 39. Ostrom, N. E., Sutka, R., Ostrom, P. H., Grandy, A. S., Huizinga, K. M., Gandhi, H., ... &
577 Robertson, G. P. (2010). Isotopologue data reveal bacterial denitrification as the primary
578 source of N₂O during a high flux event following cultivation of a native temperate
579 grassland. *Soil Biology and Biochemistry*, 42(3), 499-506.

580

581 40. Pausch, J., & Kuzyakov, Y. (2018). Carbon input by roots into the soil: quantification of
582 rhizodeposition from root to ecosystem scale. *Global change biology*, 24(1), 1-12.

583

584 41. Ravishankara, A. R., Daniel, J. S., & Portmann, R. W. (2009). Nitrous oxide (N₂O): the
585 dominant ozone-depleting substance emitted in the 21st century. *science*, 326(5949), 123-
586 125.

587

588 42. Saha, D., Kaye, J. P., Bhowmik, A., Bruns, M. A., Wallace, J. M., & Kemanian, A. R.
589 (2021). Organic fertility inputs synergistically increase denitrification-derived nitrous
590 oxide emissions in agroecosystems. *Ecological Applications*, 31(7), e02403.

591

592 43. Senbayram, M., Chen, R., Budai, A., Bakken, L., & Ditttert, K. (2012). N₂O emission and
593 the N₂O/(N₂O+N₂) product ratio of denitrification as controlled by available carbon
594 substrates and nitrate concentrations. *Agriculture, Ecosystems & Environment*, 147, 4-12.

595 44. Sokol, N. W., Whalen, E. D., Jilling, A., Kallenbach, C., Pett-Ridge, J., & Georgiou, K.
596 (2022). Global distribution, formation and fate of mineral-associated soil organic matter
597 under a changing climate: A trait-based perspective. *Functional Ecology*, 36(6), 1411-
598 1429.

599

600 45. St. Luce, M., Ziadi, N., Chantigny, M. H., & Braun, J. (2021). Long-term effects of
601 tillage and nitrogen fertilization on soil C and N fractions in a corn–soybean
602 rotation. *Canadian Journal of Soil Science*, 102(2), 277-292.

603

604 46. Stuchiner, E. R., & von Fischer, J. C. (2022). Characterizing the importance of
605 denitrification for N₂O production in soils using natural abundance and isotopic labeling
606 techniques. *Journal of Geophysical Research: Biogeosciences*, 127(5), e2021JG006555.

607

608 47. Stuchiner, E. R., & von Fischer, J. C. (2022). Using isotope pool dilution to understand
609 how organic carbon additions affect N₂O consumption in diverse soils. *Global Change
610 Biology*, 28(13), 4163-4179.

611 48. Surey et al. 2021

612

613 49. Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., ...
614 & Yao, Y. (2020). A comprehensive quantification of global nitrous oxide sources and
615 sinks. *Nature*, 586(7828), 248-256.

616

617 50. Tiedje JM (1994) Denitrifiers. In: *Methods of Soil Analysis, Part 2. Microbiological and
618 Biochemical Properties* (eds RW Weaver, JS Angle, PJ Bottomly), pp. 256–267. Soil
619 Science Society of America, Madison, WI.

620

621 51. Turner, P. A., Griffis, T. J., Mulla, D. J., Baker, J. M., & Venterea, R. T. (2016). A
622 geostatistical approach to identify and mitigate agricultural nitrous oxide emission
623 hotspots. *Science of the Total Environment*, 572, 442-449.

624

625 52. Velthof, G. L., Kuikman, P. J., & Oenema, O. (2002). Nitrous oxide emission from soils
626 amended with crop residues. *Nutrient cycling in agroecosystems*, 62, 249-261.

627

628 53. Wagner-Riddle, C., & Thurtell, G. W. (1998). Nitrous oxide emissions from agricultural
629 fields during winter and spring thaw as affected by management practices. *Nutrient
630 Cycling in Agroecosystems*, 52(2-3), 151-163.

631

632 54. Wagner-Riddle, C., Baggs, E. M., Clough, T. J., Fuchs, K., & Petersen, S. O. (2020).
633 Mitigation of nitrous oxide emissions in the context of nitrogen loss reduction from
634 agroecosystems: managing hot spots and hot moments. *Current Opinion in
635 Environmental Sustainability*, 47, 46-53.

636

637 55. Wang, X., He, C., Liu, B., Zhao, X., Liu, Y., Wang, Q., & Zhang, H. (2020). Effects of
638 residue returning on soil organic carbon storage and sequestration rate in China's
639 croplands: A meta-analysis. *Agronomy*, 10(5), 691.

640

641 56. Wang, H., Yan, Z., Ju, X., Song, X., Zhang, J., Li, S., & Zhu-Barker, X. (2023).
642 Quantifying nitrous oxide production rates from nitrification and denitrification under
643 various moisture conditions in agricultural soils: Laboratory study and literature
644 synthesis. *Frontiers in Microbiology*, 13, 1110151.

645

646 57. Xia, Longlong, Shu Kee Lam, Benjamin Wolf, Ralf Kiese, Deli Chen, and Klaus
647 Butterbach-Bahl. Trade-offs between soil carbon sequestration and reactive nitrogen
648 losses under straw return in global agroecosystems. *Global Change Biology* 24, no. 12
649 (2018): 5919-5932.

650

651 58. Yanai, J., Sawamoto, T., Oe, T., Kusa, K., Yamakawa, K., Sakamoto, K., ... & Kosaki, T.
652 (2003). Spatial variability of nitrous oxide emissions and their soil-related determining
653 factors in an agricultural field. *Journal of environmental quality*, 32(6), 1965-1977.

654

655 59. Zhang, Z., Eddy, W.C., Stuchiner, E.R., DeLucia, E.H., Yang, W.H. (2023). Spatial
656 variation in temporal patterns of soil nitrous oxide production and consumption a maize
657 field. For *Nature Geoscience* (In Prep).

658

659 60. Zhu, Q., Schmidt, J. P., & Bryant, R. B. (2015). Maize (*Zea mays* L.) yield response to
660 nitrogen as influenced by spatio-temporal variations of soil–water-topography
661 dynamics. *Soil and Tillage Research*, 146, 174-183.

Table 1. Soil properties measured immediately after soil collection (pre-incubation) and at the end of the 72-hr C mineralization assay (post-incubation). In all cases, N = 38.

Soil property	Pre-incubation			Post-incubation		
	Mean (± SE)	Minimum	Maximum	Mean (± SE)	Minimum	Maximum
Potential denitrification rate (ng N ₂ O-N g ⁻¹ dry soil d ⁻¹)*				39.2 ± 9.52	3.95	338
C-mineralization rate (μg CO ₂ -C g ⁻¹ dry soil d ⁻¹)				733 ± 60.5	403	2400
NH ₄ ⁺ (μg N g ⁻¹ dry soil)	1.48 ± 0.341	0.049	8.78	0.736 ± 0.304	0.019	9.69
NO ₃ ⁻ (μg N g ⁻¹ dry soil)	4.58 ± 0.238	1.65	6.80	9.85 ± 0.543	5.34	22.9
Fe (II) (μg-Fe g ⁻¹ dry soil)	10.1 ± 0.621	5.22	29.7	11.4 ± 0.357	7.98	17.0
Fe (III) (μg-Fe g ⁻¹ dry soil)	471 ± 13.7	274	661	529 ± 27.5	248	823
DOC (μg C g ⁻¹ dry soil)	27.0 ± 0.961	18.8	47.7	31.8 ± 1.09	19.6	43.9
TDN (μg N g ⁻¹ dry soil)	14.8 ± 0.640	8.67	26.1	18.3 ± 1.51	7.94	52.1
Soil pH	6.42 ± 0.062	5.77	7.32	6.97 ± 0.062	6.29	7.74
SOC (mg C g ⁻¹ soil)	22.2 ± 0.676	14.8	30.1			
TN (mg N g ⁻¹ soil)	1.94 ± 0.044	1.48	2.39			
POM C conc. (mg POM C g ⁻¹ soil)	1.60 ± 0.057	1.00	2.37			
MAOM C conc. (mg MAOM C g ⁻¹ soil)	20.5 ± 0.640	13.3	28.2			
POM N conc. (mg POM N g ⁻¹ soil)	0.130 ± 0.007	0.069	0.285			
MAOM N conc. (mg MAOM N g ⁻¹ soil)	2.13 ± 0.066	1.34	3.07			
Soil clay (%)	21.9 ± 0.342	17.5	27.5			
Soil sand (%)	29.4 (± 1.64)	8.22	54.0			

*Potential denitrification rates were measured in a separate assay from the C mineralization assay.

Table 2. Results from simple linear regressions for POM and MAOM properties as predictors of DOC concentration (mg C g⁻¹ dry soil) after the 72-hour C mineralization assay incubation under moist conditions. Asterisks correspond to statistically significant correlations. In all regression models, N = 38.

Predictor of post-incubation DOC concentration	Equation	R ²	p-value
POM C concentration	y = 7.14 x + 20.39	0.14	0.02*
MAOM C concentration	y = 0.69 x + 17.74	0.16	0.01*
POM C bulk fraction	y = 11.56 x + 30.96	0.001	0.88
MAOM C bulk fraction	y = -2.55 x + 34.17	0.001	0.86
POM C:N	y = -0.04 x + 32.29	< 0.001	0.92
MAOM C:N	y = 0.74 x + 24.65	0.01	0.48

Figure legends

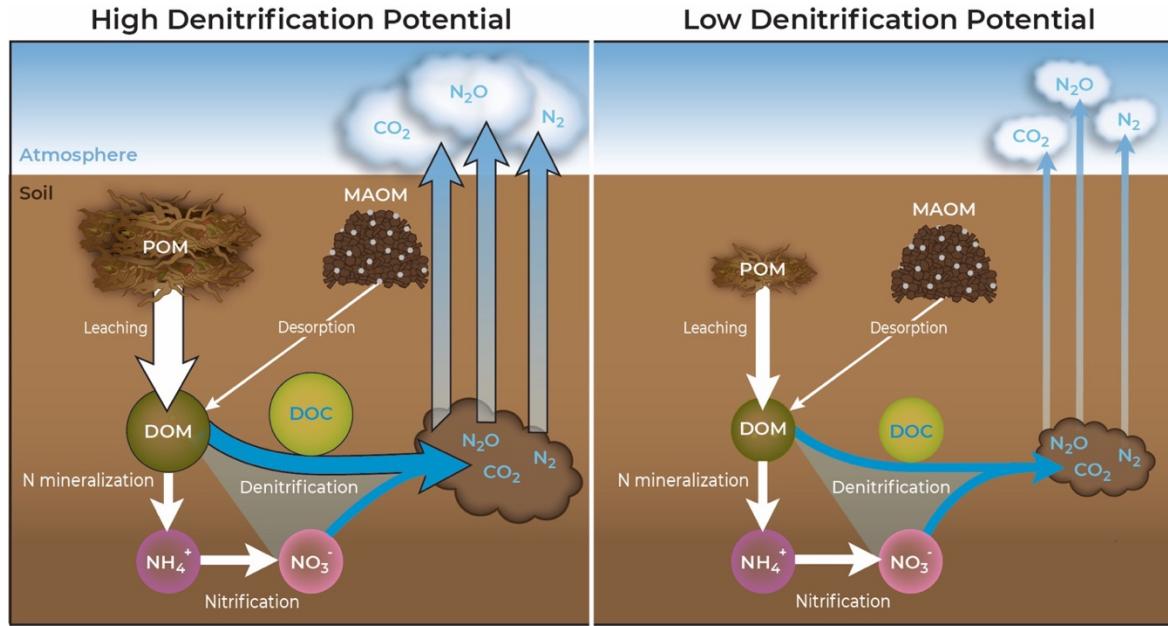
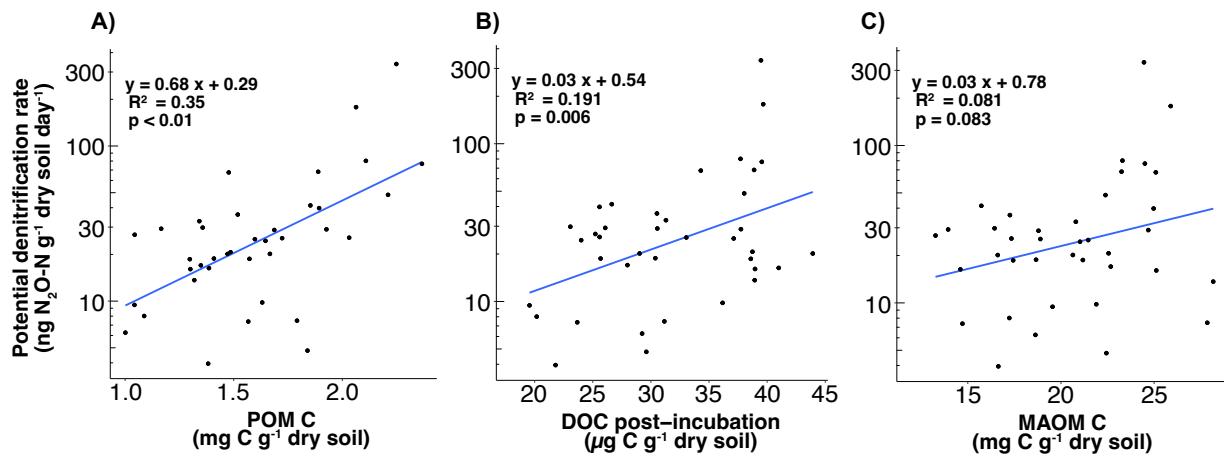
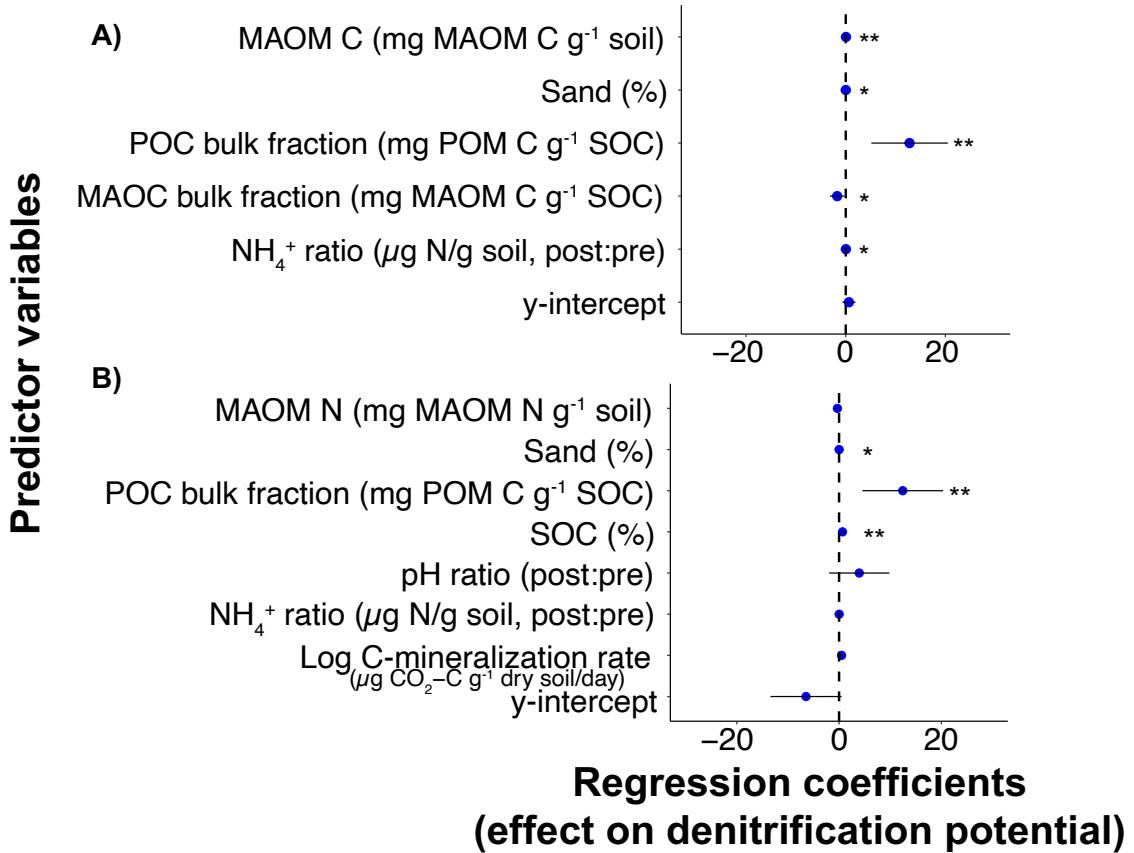

Box 1. Conceptual diagram illustrating hypothesized role of the particulate organic matter (POM) pool size in regulating denitrification potential via leaching of dissolved organic matter (DOM) containing microbially accessible dissolved organic carbon (DOC). DOC is needed to fuel denitrification as the electron donor to reduce nitrate (NO_3^-) to nitrous oxide (N_2O). Areas of fields with greater POM abundance therefore have high denitrification potential such that the onset of high soil moisture and NO_3^- availability can trigger high N_2O emissions (left panel). In contrast, areas of low POM abundance have low denitrification potential which constrain the response of N_2O emissions to hot moment triggers (right panel). The relative sizes of icons and arrows represent approximate comparisons of pool sizes and process rates, respectively.

Figure 1. Simple linear regressions between log-transformed denitrification potential and concentrations of different OC pools, including (A) POM C, (B) water-extractable DOC at the end of the 72-hour incubation under moist soil conditions for the C mineralization assay, and (C) MAOM C. In all cases, $N = 38$.


Figure 2. Plots of regression coefficients summarizing the multiple linear regression models of soil physical and chemical properties predicting denitrification potential. (A) shows the results of the multiple linear regression in which MAOM C bulk fraction was included in the model but C mineralization rate was not ($R^2 = 0.50$), and (B) shows the results of the multiple linear regression in which C mineralization rate was included in the model but MAOM C bulk fraction

was not ($R^2 = 0.57$). In both models, $N = 38$, and bars represent $\pm 95\%$ CI. Asterisks correspond to statistically significant correlations (** indicates $p < 0.01$, * indicates $p < 0.05$).


Figure 3. Effect size plot summarizing a multiple linear regression model of soil physical and chemical properties predicting C mineralization rates. In all cases, $N = 38$, and bars represent $\pm 95\%$ CI. Asterisks correspond to statistically significant correlations (** indicates $p < 0.001$).

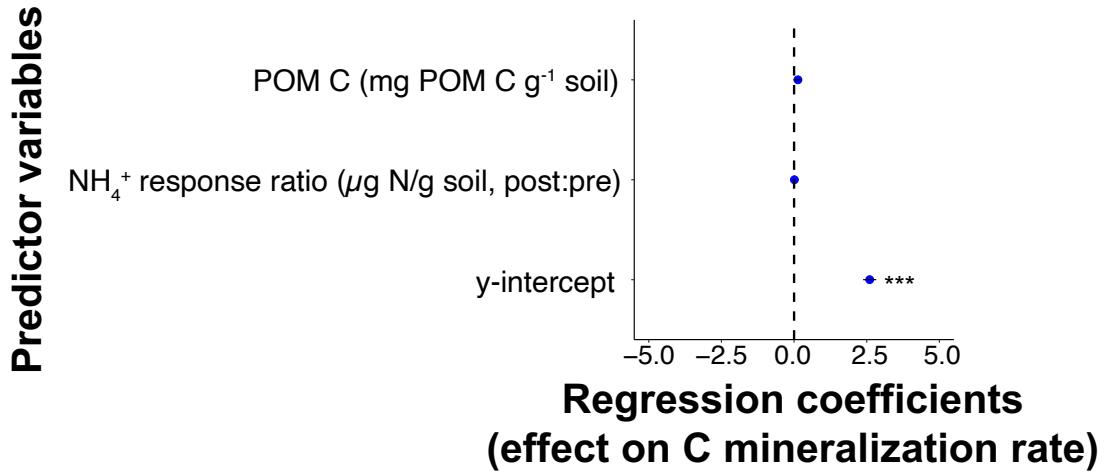

Box 1.

Figure 1.

Figure 2.

Figure 3.