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Abstract
The dentate gyrus of the anterior hippocampus is important for many human cognitive functions, including
regulation of learning, memory, and mood. However, the postnatal development and aging of the dentate gyrus
throughout the human lifespan has yet to be fully characterized in the same molecular and spatial detail as
other species. Here, we generated a spatially-resolved molecular atlas of the dentate gyrus in postmortem
human tissue using the 10x Genomics Visium platform to retain extranuclear transcripts and identify changes
in molecular topography across the postnatal lifespan. We found enriched expression of extracellular matrix
markers during infancy and increased expression of GABAergic cell-type markers GAD1, LAMP5, and CCK
after infancy. While we identified a conserved gene signature for mouse neuroblasts in the granule cell layer
(GCL), many of those genes are not specific to the GCL, and we found no evidence of signatures for other
granule cell lineage stages at the GCL post-infancy. We identified a wide-spread hippocampal aging signature
and an age-dependent increase in neuroinflammation associated genes. Our findings suggest major changes
to the putative neurogenic niche after infancy and identify molecular foci of brain aging in glial and neuropil
enriched tissue.
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1 | Introduction
Throughout the lifespan, humans exhibit multiple stages in the development, maturation, and decline of
cognitive processes. For example, the capacity to form long term memories does not begin until early
childhood 1,2 while cognitive decline begins in late adulthood 3–5 and is accelerated in age-related dementias,
such as Alzheimer’s Disease (AD) 6,7. The dentate gyrus (DG) of the hippocampus (HPC) is important for many
cognitive functions, including regulation of learning, memory, and mood 8–13. The development and decline of
these critical behavioral functions are tightly linked to anatomical changes in the HPC. The importance of
multicellular organization in the HPC is evidenced by the differing patterns of gene expression, morphology,
physiology, and connectivity of resident cellular populations 14,15.

The defined circuit structure and canonical cellular composition has rendered the HPC one of the most highly
studied brain regions in both humans and model organisms. While functional and anatomical differences
between species exist 16, the extent of these differences remains unclear, as illustrated by the ongoing
controversy surrounding the existence, abundance, and function of postnatal hippocampal neurogenesis in the
human brain 17. Postnatal neurogenesis and the various cell types that are characteristic of the developmental
trajectory from radial glial-like cells to immature granule cells (imGCs) have been well described in the mouse
using single-cell RNA sequencing (scRNA-seq) 18. Additionally, single nucleus RNA sequencing (snRNA-seq)
experiments in macaque tissue identified neural precursors and characterized gene markers that are
conserved and unique to these non-human primates when compared with mice 19. The majority of evidence
supporting the existence of adult neurogenesis in the human HPC comes from immunohistochemical or other
antibody-based assays 20–28. Studies using snRNA-seq in the human HPC suggest a paucity or absence of
granule cell neurogenesis in the adult, but they do however support the possibility of GABAergic adult
neurogenesis 29,30. Limits to interpretation in these snRNA-seq studies stems from the fact that the generated
molecular profiles fail to capture extranuclear transcripts, which are important for physiological processes
relevant to neural differentiation and maturation, including local translation at synaptic terminals 31–33. This is
particularly important since the molecular layer (ML) contains many neurites from the granular cell layer (GCL).
Laser-capture microdissection (LCM) retains some spatial specificity and can capture extranuclear transcripts,
but it hinders ability to examine spatial relationships within intact tissue 34. Interestingly, transcriptional profiles
obtained with LCM across the human lifespan in the GCL identified GCL-specific gene expression associated
with aging that was not detected in RNA-seq data from the whole HPC 35,36. These discrepancies highlight the
importance of retaining anatomical topography while capturing cytoplasmic transcripts to understand
human-specific aspects of neurodevelopment and age-related disorders in the HPC.

Compared to other brain regions, the HPC is particularly sensitive to the effects of development and aging.
Humans exhibit infantile amnesia in the early stages of life, which is hypothesized to correlate with prolonged
postnatal neurogenesis in the DG 37–41. Conversely, in the latter part of life, the HPC is vulnerable to neurotoxic
effects of “inflammaging” - an age-related increase in the levels of pro-inflammatory markers. Human functional
magnetic resonance imaging (fMRI) studies suggest that blood-brain barrier (BBB) permeability increases with
age in the HPC and is more pronounced in the DG 42. Aged rodent neuroblasts display a
senescence-associated secretory phenotype that induces an auto-inflammatory response 43, and glial cells,
including microglia and astrocytes, undergo senescence or age-dependent dysregulation in the DG, resulting
in decreased neurogenesis and exacerbation of neurodegeneration 44–53. In fact, activated microglia can induce
reactive astrocytes 47, which may further inflammation and neurodegeneration. Importantly, gene expression
changes found in aged mice do not fully recapitulate the expression phenotype of aged human microglia 54,
which makes human post-mortem studies extremely valuable. Additionally, mature oligodendrocytes also show
shifts in gene expression correlated to aging in the white matter (WM) of rodents 55. These findings highlight
the importance of analyzing both neuronal and non-neuronal cellular populations across species in aging.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.11.20.567883doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=605335,382309&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6143195,3377106,2406179&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=8721246,127294&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=8223625,4216347,598339,4610685,14257894,10304723&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=705709,2330890&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=243578&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6537810&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4778959&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13080235&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=312810,1746764,5287900,5052274,9217374,7009055,8349795,11904088,12762105&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=12035089,11132792&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6971324,10133680,14222291&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=10438163&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7037810,8436885&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=7086735,4859067,9170424,11788589,74164&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=148761&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10107576&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15131972,1465012,3539510,2995676,4872583,4536602,3812460,7533364,14150399,10906439&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=2995676&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3953799&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15260379&pre=&suf=&sa=0
https://doi.org/10.1101/2023.11.20.567883
http://creativecommons.org/licenses/by-nc-nd/4.0/


In this study, we generated molecular profiles for spatial domains of the human DG, and analyzed gene
expression patterns in these domains across the postnatal lifespan. Specifically, we used spatially-resolved
transcriptomics (SRT) to generate an atlas of spatial gene expression in the human DG at four stages across
the lifespan from infancy to the elderly. This experimental design facilitated the retention of cytoplasmic
transcripts while preserving the spatial topography of the DG. We performed differential expression analyses
across age groups at the level of (i) whole DG and (ii) individual DG sub-domains. We also provide an
interactive web application of this data (https://libd.shinyapps.io/Lifespan_DG/) to enable further exploration of
molecular heterogeneity in the DG across the postnatal lifespan.

2 | Results

2.1 | Experimental design and overview of spatially-resolved molecular
profiling within the dentate gyrus across the postnatal lifespan
We collected tissue blocks from 17 neurotypical donors spanning ages 0.18 years to 76.7 years (Table S1) to
characterize spatial gene expression within the DG using the 10x Genomics Visium Spatial Gene Expression
platform (Figure 1a). To increase the ability to detect distinct molecular signatures across the lifespan we
focused on distinct age brackets, rather than age as a continuum, and thus binned donors into four groups:
infant (0-2 years), teen (13-18 years), adult (30-50 years), and elderly (70+ years). Tissue blocks were
dissected from coronal slabs of fresh-frozen postmortem human brains at the level of the anterior
hippocampus. Each block was scored to isolate the DG, and cryosections were mounted on Visium slides (total
of N=17 capture areas), with each capture area containing a unique donor from a specific age group. Following
image acquisition and sequencing, we performed quality control (QC) (Methods 4.2, 4.6, Figures S1-S2) to
assess the quality of the generated libraries and qualitatively confirm DG inclusion on each capture area from
each donor. We removed donor Br3874 because it did not contain GCL (Figures S2-S3), and hence, we
retained a total of N=16 capture areas with a total of 68,685 spots for downstream analysis. Finally, we
preprocessed the Visium data to perform normalization, feature selection, and data integration using Harmony
56 to correct for batch effects (Figure S4).

To take advantage of the high-dimensional nature of the data, we performed data-driven unsupervised
clustering. Using BayesSpace 57, k=10 predicted spatial domains (Figure 1b) that expressed canonical spatial
domain-specific and neuropil-enriched gene markers (Figure 1c). These 10 spatial domains qualitatively
overlap with canonical HPC regions as demarcated by H&E staining as well as histologically- and marker
gene-guided manual annotations (Figures S5-S8). Domain 7 is enriched for canonical GCL markers PROX1
and CALB1 , domain 6 is enriched for interneuron markers characteristic of the subgranular zone (SGZ)
including GAD1, GAD2, and SST, domain 2 is enriched for synaptic markers such as CAMK2A and
mitochondrial gene MT-ND6 characteristic of the ML, and domain 4 is enriched for regional markers of cornu
ammonis 3 (CA3) and CA4 including KIT and TRHDE (Figures 1c, S8). Spatial domains from other HPC
regions besides the DG and SLM (cluster 1), were not well-centered on each capture area, and thus these
domains were not equally represented in all donors (Figure S6). From visual comparison with H&E staining
and manual annotations, BayesSpace did not resolve CA3 from CA4 at k=10, so domain 4 was classified as
‘CA3&4’ (Figures S5-S6). Comparison of these predicted domains to manual annotations of Visium spots
(Figure S9a, Table S2) reveals less intermingling of spot labels in expression space as visualized using
principal components (PC) and Uniform Manifold Approximation and Projection (UMAP) (Figures S9b-S9c).
We also calculated the proportion of spot cluster label intermingling by computing the cluster neighborhood
purity 58 and found higher purity in the predicted domains than in manual annotations (Figure S9d). Therefore,
we proceeded using the predicted spatial domains as defined by BayesSpace for downstream analysis.
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To reduce the sparsity of UMI gene counts within predicted spatial domains, we followed a previously
published workflow for pseudo-bulking Visium spots 34 by summing the UMI counts of each gene for each
capture area across spots within a spatial domain (Figure 1d). This improves the ability to estimate log fold
changes when comparing spatial domains or comparing age groups within a given spatial domain. Using the
160 pseudo-bulked samples (16 capture areas x 10 spatial domains), we perform principal components
analysis (PCA) and found that the choroid plexus (CP) domain (cluster 3, Figure 1c), a secretory tissue that
produces cerebrospinal fluid, compared to non-CP domains explained the largest fraction of variation in
several principal components (Figure S10a). Based on this data, we removed that pseudo-bulked spatial
domain from our downstream analysis and repeated PCA. As a result, PC1 was associated with spatial
domains while PC2 was associated with age, specifically infant versus non-infant samples (Figures 1e, S10b),
highlighting a distinction in expression space between infants and the other age groups.

2.2 | Differential expression analysis identifies age-associated genes in the
dentate gyrus
Using the pseudo-bulked data, we combined the predicted ML, CA3&4, SGZ, and GCL spatial domains to
generate a composite DG (Figure 2a). We next performed differential expression (DE) analysis across the four
age bins to identify age-associated genes in the DG (Table S3). The largest number of differentially expressed
genes (DEGs) was identified when comparing the infant (or elderly) age groups to all others, while fewer DEGs
and smaller fold changes were found when comparing the teenage and adult age groups (Figures 2b-e).
Interestingly, we note a reversal of significant fold changes starting in the adult group with respect to
proliferative genes and immune-related genes. Specifically, some genes associated with neurogenesis were
only significantly upregulated in infant groups, while activated microglia and reactive astrocytes were
downregulated in the infant and teen groups (Figures 2b-c) but upregulated in the adult and elderly groups
(Figures 2d-e). This pattern suggests an inverse relationship between proliferative potential and glial
inflammatory activity. We also noted depletion of some GABAergic marker genes in the infant versus others
group, which were significantly enriched in the adult group; specifically LAMP5 and CCK (Figures 2b, 2d).
Gene ontology (GO) analysis suggested increased proliferation in the infant group compared to all the other
age groups and enhanced immune-related activity in adulthood continuing into old age (Figure 2f, Table S4).
We observed a repeated upregulation in the infant and elderly group for only one GO term associated with
proliferation: gliogenesis. GO terms for respiration-related processes are increased in the adult group,
suggesting increased oxidative stress, which could drive senescence and inflammation while inhibiting
proliferation 50,59–61. However, those GO terms do not remain elevated in the elderly group. Another potential
driver of inflammation is BBB disruption 50,62,63. The GO term for BBB maintenance is increased in infancy, while
the GO term for response to ischemia is decreased in infants and increased in elderly groups, suggesting
deterioration of the vasculature with age. There are also a set of reversals in GO terms from infancy to old age
related to development of synapses and dendrites, lysosomal membrane, synapse pruning, and the major
histocompatibility class II (MHC-II) immune response; the latter three suggesting increased microglial activity
(Figure 2f).

2.3 | Selective proliferation and extracellular matrix organization in infancy
with continued neuroblast signature into old age
We next investigated differential expression across the lifespan in sub-domains of the DG. Specifically, we
conducted pseudobulked DE analysis within each predicted spatial domain across the 4 lifespan stages.
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Although many of the same genes are significantly enriched or depleted as in the entire DG, there are
important regional differences that map to specific sub-domains of the DG. Interestingly, several genes
associated with interneuron subtypes or interneuron function are depleted in the infant group: GAD1 in ML and
GCL, LAMP5 in ML, GCL, and SGZ, and CCK in all DG spatial domains (Figures 3a-d, Table S5).
Surprisingly, spatial visualization for LAMP5 shows prevalent expression in the GCL, which is primarily
composed of excitatory neurons, after infancy (Figure S12a). We qualitatively validated these changes at the
GCL in GAD1 and LAMP5 using RNAscope in infant and adult donors (Figure 3e). Supporting this finding, we
queried a bulk RNA-seq dataset, which contained HPC from infant to elderly samples 35, and observed
increased LAMP5 expression with aging (Figure S12b). We also compared this bulk HPC RNA-seq dataset
with a LCM RNA-seq dataset of the GCL, which used a partially overlapping set of donors and spanned the
teens to elderly age group 35,36 and found enrichment of LAMP5 in the GCL relative to bulk HPC (Figure S12c).
CCK expression shows a similar increase after infancy in both this dataset (Figure S13a) and in the bulk HPC
RNA-seq dataset (Figure S13b), but, unlike LAMP5, is enriched in the SGZ and CA3&4. We also observed
significant depletion of pan-glial gene expression in infancy, including genes typically expressed in
oligodendrocytes and astrocytes such as GFAP in ML, GCL, and CA3&4; TMEM176 in ML, SGZ, and GCL;
S100A1, S100A13, and PTGDS in all DG spatial domains; and HHATL in ML, GCL, and CA3&4 (Figures 3a-d,
Table S5).

DE comparison of infant versus non-infant yielded the most DEGs for all the spatial domains (Figure 3f,
Figure S11, Table S5). We ruled out that this finding is a function of sampling more spots, UMIs, or detected
number of genes (Figure S14). However, we do note a decreasing trend in nuclei density per Visium spot in
the GCL (Figure S15). This could not be incorporated in our modeling as nuclei segmentation data was only
available from two Visium slides. We also investigated DEGs for the teen (Figure 3f, Table S5), adult (Figures
3f, S16a-d, Table S5), and elderly groups (Figures 3f, S16e, Table S5). Interestingly, we found no significant
DEGs for teen compared to non-teen, but we do however note that this DE analysis may be underpowered to
detect differences. Combining the top DEGs from the infant compared to non-infant DEGs for all four spatial
domains in the DG, we visualized gene expression gradients across age for each DG spatial domain (Figure
3g). This visualization illustrates rapid changes in expression after infancy of this subset of genes, which
includes many canonical neurodevelopmental markers including SOX4, SOX11, WNT5A, IGFBP2, and
DPYSL5, whose expression declines with age. In agreement with findings from snRNA-seq in human HPC 29,
we found that METTL7B, was one of the top significantly depleted genes in infancy. METTL7B expression was
depleted in the infant ML and SGZ, but then increased with age (Figure 3g, S17). Expression of DCX, a widely
used marker of adult neurogenesis in the GCL, rapidly decreased beyond infancy. In fact, spatial visualization
of DCX expression illustrates low expression levels in the GCL that rapidly decrease with age (Figure S18a).
Querying the previous bulk HPC RNA-seq dataset 35 supported the rapid decrease of DCX expression over
age (Figure S18b).

In addition to identifying DE genes, we investigated changes in estimated cell proportions for LAMP5
interneurons, oligodendrocytes, and astrocytes using one of the largest publicly-available human HPC
snRNA-seq reference datasets 29 (Figure S19) and cell2location 64, a method for cell type deconvolution 65

(Figures S20-S21). Cell2location estimated an increase in proportion of LAMP5 interneurons after infancy,
particularly in SGZ and CA3&4 (Figure S22a), oligodendrocytes in ML, SGZ, and CA&4 (Figure S22b), and
for both subtypes of astrocytes (Astro_1, GFAP+ and Astro_2,GFAP-) in the ML and SGZ (Figures S22c-d).
The data suggest that although infancy is generally a period of increased proliferation, proliferation of some cell
types occurs after infancy.

In agreement with upregulation of the GO term for ECM organization in the infant group (Figure 2f), we found
significant enrichment of many ECM-related genes in infant ML, SGZ and GCL, including POSTN, PTN, WIF1,
COL1A2, BCAN, COL6A1, HAPLN1, SERPINH1, and NPNT (Figures 3a-d, Table S5). POSTN, which
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encodes a cell adhesion molecule (periostin) that is implicated in hippocampal neurogenesis in rodents 66, is
spatially enriched in the infant GCL, and declines across aging (Figures 3b, 3d, S23).

Since many proliferative markers are enriched in the infant group but decrease with age, we queried previously
collated gene sets representing discrete stages of neurogenesis from animal and human scRNA-seq and
snRNA-seq studies. Specifically, we examined gene sets identified from three different studies: three gene sets
from a scRNA-seq study of mouse DG spanning postnatal day 12 to day 35 for neuronal intermediate
progenitors (nIPC), neuroblast type 1 (NB1), and NB2, a gene set of shared markers with the above mentioned
mouse study and a scRNA-seq study of adult macaques for neuronal progenitor cells (NPC), and two gene
sets [one shared with mouse and one unique to human] from a snRNA-seq study of human immature granular
cells (imGC) from prenatal to 92 years old [terminology adopted from each publication] 18,19,67. One gene set
consistently showed significant enrichment in the GCL for all age groups: mouse late-stage neuroblasts (NB2)
(Figure 4a). In the developmental trajectory of hippocampal neurogenesis and differentiation from rodent
models, the NB2 stage is characterized by the cessation of proliferation and the initiation of differentiation into
neurons 18. When we examine genes in the N2B gene set, we find that many of these genes are widely
expressed throughout the DG, as opposed to restricted to the GCL/SGZ (Figure 4b, S24). These results
suggest that the majority of these mouse-derived markers may be non-specific for canonical adult
neurogenesis of human granule cells. However, some genes are preferentially enriched in the GCL, including
BHLHE22, PPFIA2, SEMA5A, RASL10A, and SEMA3C (Figure 4b, S24). Visualization of spatial gene
expression within the HPC for two canonical neuroblast markers from the NB2 gene set - BHLHE22 and
NEUROD2 - shows expression in the GCL as well as other neuron-rich spatial domains across all four ages
groups (Figures 4c-d). Interestingly, the gene sets for immature granular cells (imGCs) (both shared with mice
and those exclusive to humans), derived from a machine learning-based analytical approach trained on
snRNA-seq data, showed more enrichment in the CA3&4 spatial domain compared to any other domain, and
enrichment decreased to non-significance in the elderly group (Figure 4a). This data suggests that genes that
were identified as markers for neural differentiation in mouse studies are expressed in the human HPC
throughout the lifespan, but do not appear to be specific markers of imGC proliferation within the GCL. This
data also highlights the limitations of training machine learning algorithms only on snRNA-seq data.

2.4 | A minimal gene set tracks wide-spread hippocampal tissue changes
with aging
Given the strong age-associations from many gene markers of, for example proliferation and inflammation
(Figure 2), we then asked if a minimal set of these genes can be used to assay which spatial domains change
the most with age. To this end, we adapted a previously published, data-driven workflow 55 that used a set of
DEGs produced by comparing older age groups to the youngest group (in our case, infant) in order to compute
a common aging score (CAS) for bulk RNA-seq, scRNA-seq and Visium in the mouse brain throughout
postnatal life. Each CAS is a single-valued summary of the contrast between transcriptional programs that
represent biological conditions: in our case younger versus older age conditions. To control for possible
differences in cell types across spatial domains, we performed differential expression within each
pseudo-bulked spatial domain (excluding CP) for each non-infant age group compared to the infant group.
Genes were selected based on thresholds of adjusted p-values smaller than 0.05 and a log2 fold change of at
least 1.5 in at least two of the differential expression tests and were shared with at least 3 spatial domains. This
resulted in a minimal, signed (+/-), gene set of 46 positively and 13 negatively associated genes to aging
relative to the infant group (Table S6). Some of the wide-spread aging DEGs show decreasing expression of
proliferative markers such as DCX, SOX11, and SOX4, with an increased expression of genes for
oligodendrogenesis such as MAL and OPALIN, or MHC class II associated inflammatory signaling genes, such
as many HLA genes (Figure 5a, S25). GO analysis suggested downregulation of neural proliferation,
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upregulation of inflammatory activity and myelination, and both upregulation and downregulation of subsets of
genes associated with gliogenesis and oligodendrogenesis (Figure 5b) similar to previous comparisons within
the DG across all age groups (Figure 2).

Using this wide-spread aging gene set as input, we employed the Vision package 68 to compute the CAS per
Visium spot for all of our Visium capture areas (Figure S26). First, we investigated the relationship between
CAS scores and the predicted proportion of cell types at each spot to assess if changes in cell type proportions
were associated with changes in CAS scores. Using the predicted cell2location mean abundance estimates,
we applied PCA to extract top PCs that explained the most variation per spot, following a similar workflow 69.
While we found a relationship between the spot-level CAS scores and spot-level predicted cell type proportions
(PCs 1-4 explained 38% of the variation), particularly for oligodendrocytes, differences in the predicted cell type
proportions were not sufficient to explain the majority of the variation in CAS scores (Figure S27). We note that
the identified relationship for oligodendrocytes is not due to differences in the proportion of collected WM spots
in infants (Figure S7), but rather may be driven by increases in oligodendrogenesis, which are documented as
increasing in animal models following infancy 70. When CAS values for individual Visium spots are organized by
age and spatial domain we found that the trajectory rapidly increased from infancy to the teenage years for all
HPC spatial domains, but the increases in scores and variability of scores were larger in glial- and
neuropil-enriched Visium spots relative to neuron-enriched spots (Figure 5c), accurately summarizing the
changes in expression for genes from the aging gene signature (Figure 5a). Spatially, spots within WM have
the largest CAS value changes relative to other Visium spots, but show heterogeneity in scores even within
WM regions (Figures 5c-5d, S28). Comparing our CAS values to values derived from the whole-brain aging
gene set in the original mouse study 55 highlights the importance of having an infant group. In the mouse
whole-brain study, the youngest age group was 3 month old mice, which correlates approximately to humans in
their mid-twenties 71,72. As a result, although we do see a similarity in spatial assignment of CAS values (Figure
S28a), our values were more sensitive to Visium spots rich in oligodendrocytes (Figure S26-S27, S28b). It is
important to note that our DEGs and CAS results could not take into account cell density changes per Visium
spot with age (Figure S15), which have decreasing trends for the GCL and increasing trends for WM.

As previously demonstrated 55, approximating the CAS trajectories with linear modeling (Figure 5e) allowed us
to use the slope to infer a “CAS velocity” for each spatial domain. With these slopes we approximated which
HPC spatial domains exhibit a higher rate of aging-associated changes (captured by our gene set) compared
to other spatial domains. Similar to Visium data from mice, even though the DEGs are relative to infancy in our
case, the CAS baseline (i.e. CAS assigned to the infant Visium spots) did not strongly predict a spatial
domain’s CAS velocity across age (Figure 5f). Comparing the CAS velocities for each HPC spatial domain
suggests that glial enriched spatial domains have the largest CAS velocities, followed by neuropil enriched
spatial domains (Figure 5g). This is in agreement with previously mentioned work showing that more
age-associated changes were observed in glial-rich regions, including WM. Of note, the most neuropil-enriched
spatial domain of the DG, the ML, had a significantly larger CAS velocity than any of other DG sub-domains.

2.5 | Neuroinflammatory activity is a robust signature of aging in many
regions of the hippocampus
We identified antigen processing and presentation of peptide or polysaccharide antigen via MHC class II as a
GO term that was inversely expressed between the infant and adult group in the DG, with persistent
upregulation in the elderly group (Figure 2f). We also observed many genes associated with MHC class II
inflammatory signaling in our wide-spread aging gene set (Figure 5b, Table S6). Since MHC-II peptides are
highly expressed by late-stage activated microglia 49, we investigated the spatial heterogeneity of markers for
activated microglia in the DG throughout the lifespan by performing spatial gene set enrichment analysis on
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gene sets derived from activated microglia 49,73 across the spatial domains from all samples. Genes associated
with late-stage activated microglia were enriched in neuropil- and WM-rich spatial domains outside of the DG,
especially the SLM (Figure 6a). The SLM is well-represented in nearly all Visium capture areas and thus can
be included in our differential expression tests (Figures S6-S7). Many genes that comprise the MHC-II immune
response show an age-dependent increase in expression in DG and SLM spatial domains (Figure 6b).
Although CD74 is not significantly enriched in the individual spatial domains, it is enriched in the composite DG
of the elderly group (Figure 2d), and its expression increases with age (Figure S29a). We also find an
increase in its expression in the previous bulk HPC lifespan data (Figure S29b). Importantly, we observe
upregulation of genes such as C1QB and IL4R that are included in core signatures of microglial markers
derived from human snRNA-seq studies 54 when comparing elderly versus non-elderly ML and CA3&4
(Figures 6d, f). We also note that, although not significantly enriched in any specific DG spatial domain, the
canonical microglial marker TREM2 is enriched in the composite DG of the adult and elderly groups (Figures
2d-e). Activated microglia can induce reactive astrocytes 47 and we detect enrichment of genes markers for
reactive astrocytes such as CD14 in ML, SGZ, CA4&3, and SLM, and S100A10 in the ML (Figures 6c, 6f). In
the composite elderly DG, we also detect enrichment of other reactive astrocyte markers such as GFAP, C3,
SERPINA3, EMP1, CD109, CD44, SERPING1, and FKBP5 (Figure 2e, Table S3).

One of the most enriched transcripts in the elderly SLM is HAMP (Figure 6c), which encodes hepcidin and is
important for iron storage in microglia, astrocytes, and neurons. While it is not significantly enriched in any
individual spatial domain comprising the DG, it is enriched in the composite DG in the elderly group (Table S3).
Inflammatory stimuli can induce iron accumulation in microglia and neurons in vitro via hepcidin and related
molecules 74, which is important because iron overloading is consistently observed in aging microglia that
express a senescent or dystrophic phenotype 51,52.

Interestingly, we observe a variety of immune-related gene expression. Some of the observed genes are
expressed in activated human microglia, while others are also found in immune-related cell types
(FCGR1A-3A). For example, FCGR3A, which shows enrichment in ML, SGZ, CA3&4, and SLM (Figures 6c,
6f), is important for survival and proliferation of natural killer (NK) cells75,76, which are recruited by aged
neuroblasts in the rodent HPC, and contribute to impaired adult neurogenesis 43. cell2location cell type
deconvolution estimated an increasing proportion of microglia in the SGZ with age (Figure S30a), followed by
a similar pattern for T-cells (Figure S30c). While NK cells, T-cells and microglia share some overlapping
transcriptional signatures, the extent of overlap, particularly in humans, is unclear. FCER1G, a gene enriched
in the elderly SLM and CA3&4, is a part of the MHC II immune response and has previously been detected in
both microglia and NK cells 77–80. There is conflicting evidence regarding the presence of invasive immune cells
in the HPC as the result of BBB disruption or local proliferation 43,81–83. It is important to note that, in our data,
SERPINA3, a reactive astrocyte marker upregulated in the elderly DG (Figure 2d), is involved in BBB
disruption through astrocytic activity 84. Additionally, we observed that the response to ischemia GO term was
downregulated in the infant groups and upregulated in the elderly group (Figure 2e), supporting the notion of
BBB disruption with aging.

3 | Discussion
In summary, we identified several changes to the molecular topography of the human DG that are unique to
specific life stages by assaying spatial gene expression across the postnatal lifespan. In infancy, we observed
selective increases in proliferative markers and enrichment of ECM-related genes. To determine which spatial
domains of the HPC were most susceptible to age-related changes, we calculated DEGs across age-groups
relative to infancy, and found that these genes correspond to glial- and neuropil-rich domains. Over the
lifespan, these regions were also enriched for expression of genes associated with inflammatory signaling in
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glial populations. Our data also suggest that other populations of immune cells, such as NKs, may be involved
in “inflammaging”. Although we detected a molecular signature of neuroblasts that were localized to the GCL
and throughout the lifespan, many of the genes comprising this neuroblast signature were not exclusive to the
GCL, and we did not observe other published neurogenesis-related gene sets at the GCL beyond infancy.
Depletion of inhibitory markers in the infant group suggests delayed development or migration of GAD1+,
LAMP5+, and CCK+ neurons in the human HPC. Finally, our data is made fully available as a neuro-resource
for further exploration and investigation.

To date, most high-throughput transcriptomics of the human HPC across development and aging have been
limited to bulk RNA-seq, laser-capture, or snRNA-seq studies 29,30,35,36,67,73. For bulk or laser-captured tissue,
studies become constrained by experimental microdissections, which for some small regions can be difficult to
isolate or sparse in transcripts. Due to the large size and relative fragility of human neurons, and because most
available postmortem human tissue is frozen, whole cell preparations for single cell applications are difficult or
infeasible. Hence, most studies have been conducted with snRNA-seq 34, which unfortunately lacks spatial
information, and does not contain transcriptomic information from cytosolic compartments, such as neuronal
processes. In addition, variations in sample preparation workflows can bias against preservation of some cell
types or can affect expression profiles 85–88. Some SRT technologies are based on variations of single-molecule
fluorescent in situ hybridization (smFISH), which is considered the gold standard for validating the spatial
localization of transcripts 89. However, although technologies to label hundreds to thousands of transcripts have
recently been developed, limitations to these strategies include intracellular molecular crowding, limited
number of fluorescent markers, and the time- and labor- intensive nature of these strategies 90,91. In the human
hippocampus, accuracy of nuclear and transcript segmentation is critical given the density of neurons, and
controlling for the effects of confounding lipofuscin auto-fluorescence, particularly over aging, is challenging. To
obtain transcriptome-wide resolution, while retaining cytosolic transcripts and spatial accuracy, we used the
10x Genomics Visium Spatial Gene Expression platform. This allowed us to leverage deep sequencing and
imaging-based spatial coordinates for the DG beyond the nucleus. As an example, previous snRNA-seq
studies were unable to detect age-related changes to GFAP+ astrocytes in the ML 73, whereas here, we
resolve an age-dependent increase for some astrocyte markers in the ML. We used cell type deconvolution to
infer a possible age-dependent increase in cell abundance for GFAP+ astrocytes within the ML. Additionally,
we were able to show an enrichment of age-related changes in the ML compared to other spatial domains of
the DG.

While the Visium platform allowed us to capture non-nuclear transcripts within the intact tissue architecture to
fill epistemic gaps in our understanding of differential age-related changes in the HPC, there are important
limitations to our experimental design. The biggest limitation is sample size, as evidenced by fewer DEGs
resulting from age comparisons with teen and adult age groups. More technical caveats include the
comparatively large size of Visium spots (55 μm diameter), being limited to H&E staining to define histology as
opposed to alternative staining methods that could provide orthogonal measures of cellular structure, absence
of nuclei segmentation for some samples, and being limited to transcriptomic information as opposed to
proteomic information. Given the relatively large spot diameter, Visium spots can contain multiple cell types
and a heterogeneity of cell density. Thus, age-related statistics, such as the CAS values, are subject to cell
compositional and abundance changes and do not represent a truly cell-independent signature of aging.
Future experiments using in situ hybridization and immunofluorescence methods can be designed to further
investigate the age-related changes we detected at cellular resolution.

Cellular-resolution transcriptomic technologies will be useful to validate and further characterize the
development of certain cellular populations, including GAD1+, LAMP5+, and CCK+ cells during infancy and post
infancy. This is especially important since our data suggests that some GABAergic markers, such as GAD1,
are enriched at the GCL, a layer primarily composed of excitatory neurons, along with late-stage neuroblast
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markers into old age. This trend is not detected for the other cell types that make up the developmental
trajectory of granule cell neurogenesis, and supports previous findings from other studies. For example,
overlap of DCX with GAD1 was reported using immunohistochemical techniques in the adult GCL 29,
suggesting the possibility of prolonged interneuron development rather than the presence of imGCs in human
GCL. In the case of LAMP5, since LAMP5 protein is localized to GABAergic axon terminals, mRNA may be
trafficked and locally translated at GCL synapses as opposed to cell bodies of LAMP5+ interneurons being
located at the GCL 92. However, these data do not rule out the possibility of increased LAMP5+ interneuron
proliferation in the GCL or SGZ. Since LAMP5+ interneurons tend to have smaller neuronal arbors than other
interneurons 93 the presence of their transcripts suggests spatial proximity of their nuclei. Another possibility is
that expression of LAMP5 in human GCs may increase with age. Interestingly, LAMP5+ excitatory neurons are
found in layer 2/3 of the human cortex and in the basolateral amygdala, with both inhibitory and excitatory
subtypes having higher abundance in humans as compared to mice 94,95. Therefore, it is important to further
investigate LAMP5 expression quantitatively in the DG to determine whether our results arise from increased
LAMP5 expression within already expressing cells, expansion of the LAMP5 expression in previously
non-expressing cells, or proliferation of a specific cell type with age. This has implications for functional studies
since reducing expression of LAMP5 in mice reduces odor discrimination 92, while LAMP5 reduction in AD mice
models show increased hyperexcitability in HPC and further impairs spatial learning and memory formation 96.

The increased abundance of markers for ECM molecules that we observe in the infant DG suggests that they
may play a role in supporting the neurogenic niche. Many of these genes are associated with brain
development, but remain understudied. For example, WIF1 is important for rodent brain development 97,98, and
PTN is upregulated in tandem with increases in adult neurogenesis following exposure to environmental
enrichment in a mouse model of senescence 99. PTN overexpression, or pharmacological activation of AKT
signaling downstream of the PTN receptor, PTPRZ1 (note that PTPRZ1 expression in the DG decreases with
age in our data (Table S3)), ameliorates aging-related neurogenesis declines in this same model of
senescence 100. HALPN1, which encodes hyaluronan and proteoglycan link protein 1, is important for the
maturation of perineuronal nets surrounding PV+ interneurons in the mouse dorsal CA1, which affects
neuronal allocation and memory precision 101. In the context of HPC neurogenesis, neural stem cell
proliferation and differentiation into neurons and astrocytes increases in vitro after adenovirus transduction with
POSTN, while transduction of POSTN into the lateral ventricles of neonatal rat brains stimulated proliferation
and differentiation in the SGZ, but only after hypoxic-ischemic brain injury 66. Given its importance in rodent
HPC development and its enrichment in human infant HPC, assaying changes to the ECM’s composition,
density, and localization with age in a spatial domain-specific manner can provide insight into strategies to
manipulate cellular proliferation in humans.

We also note that inflammatory signaling increases with age in our data. Genes associated with
neuroinflammation constituted a large portion of our CAS, and were enriched when comparing the elderly
group to all other age groups. However, it is important to identify inflammatory markers with little to no overlap
in microglia and other immune cells, such as NK cells. Our data is also inconclusive as to whether invasive
immune cells are present as a result of BBB disruption. Since locally proliferating NK cells affect adult
neurogenesis in mice 43, it would be interesting to examine if this phenomenon is limited to NK cells. CD74 is
expressed by microglia, but CD74 protein is also detected in Aβ plaques and neurofibrillary tangles in the HPC
of brain donors diagnosed with Alzheimer's (AD), suggesting neuronal expression of CD74 102. In fact,
overexpressing CD74 decreases Aβ production in CA1-3 pyramidal neurons in an AD mouse model, and in in
vitro fetal human neurons 103. We detected a small, but significant, depletion of APP in infant DG, and
enrichment in elderly DG (Table S3). Although CD74 expression has been observed in pyramidal neurons in
the HPC, this evidence is limited to immunohistochemical labeling 102–104, and has not been reported in the
human DG. Since CD74 is involved in neuroinflammation and proteinopathies, identifying the cellular origin of
increased CD74 expression across aging is important.
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A major limitation to studies with human brain tissue is an inability to investigate causality. However, several
findings from this study can be directly tested in rodent models. For example, investigating the physiology of
orthogonal GAD1+, LAMP5+, and CCK+ interneuron subtypes in mice can elucidate the timing and functional
changes of critical periods in the early development of the HPC due to changes in circuit physiology. Given
mouse studies that reveal LAMP5’s importance for HPC excitability, as well as spatial memory and learning,
manipulating LAMP5+ interneurons at the GCL/SGZ may elucidate how processes important for learning and
memory, such as pattern separation by inhibitory gating or filtering, changes with age. Modulating the
expression of genes such as POSTN in perinatal and adult mice could elucidate the role of the ECM in the DG
neurogenic niche by revealing how the milieu of ECM and neurogenic signaling evolves with time. CD74
expression could also be manipulated in a spatial domain-specific and age-specific manner to dissect its role in
neuroinflammatory signaling and Aβ load in the DG. Microglia show a robust cellular signature of aging in the
DG, and thus may represent a promising target for future manipulation studies. Our data contributes to existing
evidence that aged/senescent/dystrophic microglia accumulate throughout the DG and SLM across aging.
Using alternative methods such as iron staining can help confirm that these are indeed
aged/senescent/dystrophic microglia, and future strategies to perturb this accumulation can ascertain their
potential relationship with reactive astrocytes in the human brain. Aged microglia may be a promising target for
future therapies in age-associated neurodegeneration and cognitive decline.

4 | Methods

4.1 | Tissue samples
Postmortem human brain tissue from male and female neurotypical donors of European and/or African
ancestry spanning ages 0.18 years to 76.7 years were obtained by brain donations (N=17) collected through
the following locations and protocols at the time of autopsy: the Office of the Chief Medical Examiner of the
State of Maryland, under the Maryland Department of Health’s IRB protocol #12–24, the Departments of
Pathology at Western Michigan University Homer Stryker MD School of Medicine, the University of North
Dakota School of Medicine and Health Sciences, and the County of Santa Clara Medical Examiner-Coroner
Office, all under WCG IRB protocol #20111080. One additional sample was consented through the National
Institute of Mental Health Intramural Research Program (NIH protocol #90-M-0142), and was acquired by LIBD
via material transfer agreement, all with informed consent from the legal next of kin. All donors here were
negative for illicit drugs of abuse. Demographics for the 17 donors are listed in Supplementary Table S1.
Clinical characterization, diagnoses, macro- and microscopic neuropathological examinations, were performed
on all samples using a standardized paradigm; and then subjects with evidence of macro- or microscopic
neuropathology were excluded. Details of tissue acquisition, handling, processing, dissection, clinical
characterizations, diagnoses, neuropathological examinations, RNA extraction and quality control (QC)
measures have been described previously 105. Briefly, the anterior half of the HPC containing dentate gyrus
was microdissected using a hand-held dental drill as previously described 35, staying within the anterior half of
the HPC as guided by visual inspection of the HPC itself and up to visual presence of the lateral geniculate
nucleus and shrinkage of the putamen. Tissue blocks were then stored at -80°C.

4.2 | Tissue processing and quality control
Frozen brain blocks were embedded on the posterior end in OCT (TissueTek Sakura) and cryosectioned at
−10°C (Thermo Cryostar). Brain blocks were cryosectioned and stained with hematoxylin and eosin (H&E) to
verify the presence of anatomical landmarks of the dentate gyrus such as the GCL. Sections were placed on

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.11.20.567883doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=655682&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7037810&pre=&suf=&sa=0
https://doi.org/10.1101/2023.11.20.567883
http://creativecommons.org/licenses/by-nc-nd/4.0/


chilled Visium Tissue Optimization Slides (catalog no. 3000394, 10x Genomics) and Visium Spatial Gene
Expression Slides (catalog no. 2000233, 10x Genomics), and adhesion of tissue to slide was facilitated by
warming the back of the slide. Tissue sections were then fixed in chilled methanol, and stained according to the
Methanol Fixation, H&E Staining & Imaging for Visium Spatial Protocol (catalog no. CG000160 Rev C, 10x
Genomics) or Visium Spatial Tissue Optimization User Guide (catalog no. CG000238 Rev C, 10x Genomics).
Visium Tissue Optimization Slides were used to choose the optimal permeabilization time. For gene expression
samples, tissue was permeabilized for 18 min, which was selected as the optimal time based on tissue
optimization time-course experiments. Brightfield histology images of H&E stained sections were taken on a
Leica Aperio CS2 slide scanner equipped with a color camera and a 20x/0.75 NA objective with a 2x optical
magnification changer for 40x scanning. For tissue optimization experiments, fluorescent images were taken
with a Cytation C10 Confocal Imaging Reader (Agilent) equipped with TRITC filter (ex 556/em 600) and 10x
objective at approximately 400ms exposure time. Sample Br3874 contained no GCL as verified by H&E
staining and incorrect spatial domain assignment by BayesSpace and was removed from downstream
analyses.

4.3 | Visium data generation
Libraries were prepared according to the Visium Spatial Gene Expression User Guide (CG000239 Rev C, 10x
Genomics). For two slides, Visium Spatial Gene Expression Slides were shipped to 10x Genomics after tissue
mounting for H&E staining, and imaging, cDNA synthesis, and library preparation. Libraries were quality
controlled with Agilent Bioanalyzer High Sensitivity dsDNA chips and sequenced on a NovaSeq 6000 System
(Illumina) at a sequencing depth of a minimum of 60,000 reads per Visium spot. Sequencing was performed
using the following read protocol: read 1: 28 cycles; i7 index read: 10 cycles; i5 index read: 10 cycles; and read
2: 90 cycles.

4.4 | Visium raw data processing
The manual alignment of raw histology images were processed by sample using 10x Genomics Loupe browser
[v.6.0.0]. Raw sequencing data files (FASTQ files) for the sequenced libraries were processed using 10x
Genomics Space Ranger software [v. 1.3.1], which uses human genome reference transcriptome version
GRCh38 2020-A (July 7, 2020) provided by 10x Genomics for genome alignment. Software tools for
performing spatial gene expression data analysis are available at:
https://www.10xgenomics.com/support/spatial-gene-expression-fresh-frozen/documentation/software-analysis.
The preprocessed Visium data for each sample, integrated with the output from VistoSeg 106 (see Methods
Section 4.5, Visium H&E image segmentation and processing), were stored in a R/Bioconductor S4 class using
the SpatialExperiment v.1.6.1 R/Bioconductor package 107.

4.5 | Visium H&E image segmentation and processing
For two Visium slides, histology images were processed and nuclei were successfully segmented using
VistoSeg, a MATLAB-based software package 106. Briefly, a high-resolution 40x TIFF image of the entire Visium
slide is read as a RGB matrix and split in the X-direction into 4 equal matrices. The individual capture areas are
saved as TIFF files at 70% resolution. Gaussian smoothing and contrast adjustment were performed to
enhance the nuclei in the image. The image is converted L*a*b color space. The a*b color space is extracted
from the L*a*b-converted image and is given to a K-means clustering function, along with the number of colors
(k) the user visually identifies in the image. The function outputs a binary mask for each of the (k)
distinguishable color gradients in the image. The segmentation is further refined by extracting the intensity of
the pixels from the binary mask of nuclei and applying an intensity threshold to separate the darker nuclei
regions at center from the lighter regions at the borders. Loupe Browser v.6.0.0 produces a JSON file for each
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full-resolution capture area tiff from VistoSeg, encoding properties of the image e,g., spot diameter in pixels.
Space Ranger provides a .csv file for each full-resolution capture area tiff that includes information for each
spot with an identification barcode and pixel coordinates for the center of the spots. The VistoSeg package
integrates these files with the segmented imaging data to provide a final table with nuclei count per Visium spot
for each capture area/array.

4.6 | Spot-level data processing
All Visium data analyses were performed using a SpatialExperiment (spe) S4 class storing the object
constructed with the SpatialExperiment v.1.6.1 R/Bioconductor package 107. The spe class extends the
SingleCellExperiment class used for scRNA-seq data for spatial context, with observations at the level of
Visium spots rather than cells. Objects in the spe class hold additional spatial information e.g., colData has
information on whether Visium spots overlap with the tissue from imaging data, spatialCoords has the x-
and y-coordinates of the Visium capture areas, and imgData holds the imaging files and information
pertaining to the images (such as pixel resolution). To the spe class, we added information including the sum of
segmented cells per spot computed from the VistoSeg package, the sum of UMIs per spot, the sum of genes
expressed per spot, donor age, donor sex, RNA integrity numbers (RIN), race, and post-mortem interval (PMI)
hours.

Spot level analysis was performed using the same workflow as previously described 34. Briefly, spot level
quality control (QC) were evaluated using the perCellQCMetrics function from the scuttle package v.1.6.2 R
Bioconductor package 108 and low quality spots having low UMI counts, low gene counts, or high percent of
mitochondrial genetic expression were dropped using the isOutlier function of the same package. The scran
v.1.24.0 R Bioconductor package 109 functions quickCluster (blocking for each brain donor) and
computeSumFactors, then logNormCounts function from the scuttle package were used to compute the
log-transformed and normalized gene expression counts at the spot level. The scran package functions
modelGeneVar was used to model the gene mean expression and variance (blocking for each brain donor),
and getTopHVGs was used to identify the top 10% HVGs. The top 10% HVGs were used to compute 50
principal components (PCs) with the runPCA function from scater v.1.24.0R Bioconductor package 108 and
runUMAP, from the same package, was used for Uniform Manifold Approximation and Projection (UMAP)
dimensionality reduction. Primarily for the purposes of unsupervised spatial clustering, corrections for potential
batch effects and high dataset variabilities were performed by employing an transcriptomic data integration
algorithm that projects Visium spots into a shared dimensionally reduced PC embedding (Harmony
embeddings), which encourages spots to group by spot type rather than by dataset-specific conditions. The
above mentioned algorithm was implemented by employing the HarmonyMatrix function from the Harmony
v.0.1.0 R package 56 on a matrix containing reduced dimension coordinates for Visium spots in PC space
constructed with the reducedDim function from the SingleCellExperiment v.1.18.0 R Bioconductor package 110.
This results in a QCed and batch-corrected spe object.

4.7 | Spatial clustering
To enable inspection of the spe, we generated an interactive shiny v.1.7.5 R package web application at
https://libd.shinyapps.io/Lifespan_DG/ using spatialLIBD v.1.12.0 R Bioconductor package 111. A blinded
experimenter (A.R.P.) manually assigned spots to anatomical domains following consideration of marker gene
expression and histological staining (Figure S5). Simultaneously, generation of unsupervised spatial domains
were performed on the spe object by a separate experimenter (A.D.R.) using the spatialCluster function from
the BayesSpace v.1.6.0 R Bioconductor package as previously described 57. Briefly, the number of clusters are
determined a priori by biological/anatomical knowledge and fixed prior to spatial clustering. For each Visium
spot, a low dimensional representation of the gene expression vector is obtained from the Harmony
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embeddings. Bayesian priors are determined by an initial non-spatial clustering with Mclust 112 and compared
with a Markov random field given by the Potts model, which encodes information on all the spots and their
neighboring spots; this allows for smoothing of initial clusters by encouraging neighboring spots to be grouped
in the same cluster. The resulting Baysian model is a fixed precision matrix model, where iterative Gibbs
sampling is used for updating most of the parameters in the Metropolis–Hastings algorithm; Markov chain
Monte Carlo (MCMC) method is used to update latent clusters iteratively produced by the Potts model. The
mode (average) of the chain for each cluster label of a spot is assigned as the final cluster label of that spot.
The number of repetitions was set empirically via trial by trial basis. We chose k=10 as the number of clusters
and ran BayesSpace at 50,000 iterations. At k > 10 we saw less smoothing of spatial domains and bifurcation
of the GCL into two clusters with mixing of the ML. Additionally, we noted that some of the capture areas
contained thalamic regions, which are enriched for inhibitory cell markers and thus included in spatial domain 6
(Figure S6). Since this could interfere with differential expression results pertaining to the SGZ, we set a
threshold of logcount < 1 for expression of the pan-thalamic marker TCF7L2, which removed virtually all
thalamus-containing Visium spots before pseudo-bulking and running differential expression. A total of 65,782
spots were retained for subsequent analyses. To assess cluster neighborhood purity for each Visium spot, we
used the neighborPurity function from the bluster v.1.10.0 Bioconductor package, which uses a
hypersphere-based approach to compute the “purity” of each cluster based on the number of contaminating
spots from different clusters in its neighborhood.

4.8 | Spatial domain-level processing
For gene modeling and functional enrichment analyses, the spots were pseudo-bulked by the generated
spatial domain and donor, as previously described 34. Briefly, taking the QCed and batch-corrected spe object,
we summed the raw gene-expression counts, for a given gene, across all spots in a given donor and a given
spatial domain, and repeated this procedure for each gene with the aggregateAcrossCells function from the
scuttle package. We filtered for genes that have statistically sufficiently large counts in the pseudo-bulked
spatial domains with the filterByExpr function and calculated log normalized counts with the calcNormFactors
function, both functions from the edgeR v.3.38.4 R Bioconductor package 113. We also filtered for
pseudo-bulked low Visium spot count by setting a threshold for >50 spots. Principal component analysis of the
pseudo-bulked spots revealed that BayesSpace domain 3 had variation in many of the principal components
that separated it from the other clusters, thus minimizing the variance between HPC spatial domains (Figures
S8, S10). Examination of cluster 3 gene markers suggested that this cluster was choroid plexus (CP) (Figure
1c). To prevent masking of variance within the HPC proper, BayesSpace domain 3 was removed from
downstream analyses.

4.9 | Spatial domain-level gene modeling of age groups
Using the pseudo-bulked spatial domain-level data, spatial domains of interest were isolated or combined and
the pseudoBulkDGE function, from the edgeR v.3.38.4 R Bioconductor package, was used following the
limma-voom method with eBayes for differential modeling comparing one age group to all of the other age
groups. We computed Student’s t-test statistics, log2FC, and adjusted p-values.

For comparing differential expression across the pseudo-bulked spatial domain-level data, gene modeling was
performed using the spatialLIBD package. Briefly, the BayesSpace spatial domain labels were set as the
registration_variable. The registration_model function was used to define the statistical model for computing
the block correlation, with age and sex as covariates. The registration_block_cor function was used to compute
the block correlation using the donor sample IDs as the blocking factor. Then the functions
registration_stats_enrichment, registration_stats_pairwise, registration_stats_anova were used, employing the
limma-voom method with eBayes, to fit enrichment, pairwise, and ANOVA models, respectively.
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4.10 | Functional enrichment analyses
Lists of genes with adjusted p-values < 0.05 were compiled from pseudo-bulked spatial domains and age
groups after DE analysis with pseudoBulkDGE. Each list of genes were computed with Over Representation
Analysis (ORA) 114 to determine whether known biological functions are over-represented in each spatial
domain or age group, by large gene expression differences, for the follow aspects: cellular component
(intracellular locations where gene products are active, CC), molecular function (documented molecular
activities associated with gene products, MF), and biological processes (sets of pathways and broader
biological functions made up of the activities of multiple gene products, BP). ORA was computed with the
enrichGO function as an argument within the compareCluster function from the clusterProfiler v.4.4.4 R
Bioconductor package 115.

4.11 | Spot-level deconvolution of cell types
To perform spot-level deconvolution of cell types within Visium spots, snRNA-seq data from Franjic et al., 2022
was truncated to only the DG and used as a reference dataset . We used the cell2location v0.1.3 Python
package 64 to perform negative binomial regression to estimate reference cell type signatures. Cell2location
establishes Baysian priors of cell abundances by using the spatial and count data from Visium, and two
manually entered hyperparameters: N_cells_per_location = 5 & detection_alpha = 20. A value of 3 for
N_cells_per_location is typically recommended for cortex, but, due to the cell density within the GCL, we
increased the estimation. Variational Bayesian Inference is employed to produce posterior distributions of
estimated cell abundances for each individual Visium spot. The mean of these distributions were then assigned
to each Visium spot. Cell proportions per Visium spot were derived from the mean cell abundances per Visium
spot.

4.12 | Single-molecule fluorescent in situ hybridization (smFISH/RNAscope),
imaging, and analysis

Infant (n=1) and adult (n=1) hippocampal sections (10μm) were fixed in 10% neutral buffered formalin (catalog
no. HT501128, Sigma-Aldrich) for 30 minutes at RT, followed by ethanol-based serial dehydration.
Hybridization assays were performed according to manufacturer instructions using the RNAscope Multiplex
Fluorescent Reagent Kit V2 (catalog no. 323100, Advanced Cell Diagnostics [ACD]) and the 4-plex ancillary kit
V2 (catalog no. 323120, ACD). Briefly, sections were pretreated with hydrogen peroxide for 10 minutes and
then permeabilized with Protease IV for 30 minutes at RT. Probes for PROX1 (catalog no. 530241, ACD),
LAMP5 (catalog no. 487691-C2, ACD), GAD1 (catalog no. 404031-C3, ACD), and SLC17A7 (catalog no.
415611-C4, ACD) were applied to the slide and allowed to hybridize for 2 hours at 40 °C. Slides were washed
briefly and stored in 4x saline sodium citrate (catalog no. 351–003-101, Quality Biological) overnight at 4 °C.
The next day, probes were amplified and fluorescently labeled with Opal dyes as follows: PROX1 was labeled
with 1:500 Opal 520 (catalog no. FP1487001KT, Akoya Biosciences [AB]), LAMP5 was labeled with 1:500 Opal
690 (catalog no. FP1497001KT, AB), GAD1 was labeled with 1:500 Opal 570 (catalog no. FP1488001KT, AB)
and SLC17A7 was labeled with 1:500 Opal 620 (catalog no. FP1495001KT, AB). DAPI was applied to each
slide for 20 seconds prior to mounting with Fluoromount-G (catalog no. 00-4958-02, ThermoFisher).

Slides were imaged on an AX Nikon Ti2-E confocal fluorescence microscope equipped with NIS-Elements
(v5.42.02). The DG, from the ML to the CA4, was captured with a combination of tiles (30-60 tiles/image, 2048
x 2048 pixels per tile) and z-stacks (7 steps, 2μm/step, 12μm range) at 20x magnification (Nikon PLAN APO λ
20x/0.80) with a pinhole of 1.0 AU. Fluorescently-tagged probes were captured using a custom 6-channel,
3-track experiment setup that includes DAPI (405nm excitation laser, 420-500nm filter), Opal 520 (488nm

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.11.20.567883doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=956080&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11321768&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12264030&pre=&suf=&sa=0
https://doi.org/10.1101/2023.11.20.567883
http://creativecommons.org/licenses/by-nc-nd/4.0/


excitation laser, 500-535nm filter), Opal 570 (561nm excitation laser, 580-600nm filter), Opal 620 (561nm
excitation laser, 610-630nm filter), Opal 690 (640nm excitation laser, 675-700nm filter) and a lipofuscin channel
(488nm excitation laser, 700-750nm filter). All images were captured using the same laser power (LP) and gain
(G) settings as follows: DAPI: 28 LP/5 G, Opal 520: 28 LP/5 G, Opal 570: 6 LP/2 G, Opal 620: 6 LP/0.5 G,
Opal 690: 9 LP/1 G, Lipo: 28 LP/15 G. After capture, individual tiles were stitched together prior to
max-intensity projecting. Linear unmixing was performed using Opal dye spectral standards and a human
post-mortem lipofuscin spectral standard. Opal dye standards were previously created using single-positive
POLR2A stained, wild-type mouse, coronal sections, where each section was stained singularly with one Opal
dye (520, 570, 620, 690). After images were unmixed, they were exported as single channel .tiff files for
analysis.

4.13 | Aging gene signature generation and score calculation
Computation of the common aging score (CAS) was performed similarly as previously described 55. Using each
individual pseudo-bulked spatial domain-level data to control for differences in spatial domains, the
pseudoBulkDGE function, from the edgeR v.3.38.4 R Bioconductor package, was used following the
limma-voom method with eBayes for differential modeling comparing each age group (teen, adult, elderly) to
the infant age group. We computed Student’s t-test statistics, log2FC, and adjusted p-values. Membership in
the aging signature gene set was determined by being a DEG in at least two of the age-based differential
modeling with thresholds of adjusted p-values smaller than 0.05 and a log2 fold change of at least 1.5, and
shared by at least 3 spatial domains. The constructed signed gene set assigned genes with a value of 1 if
positively associated with aging and -1 if negatively associated with aging. The Visium QCed count data, with
no log normalization, was UMI-scaled and, along with the signed gene set, used as input for the Visium
function then further processed with the analyze function from the VISION package v.3.0.1. Briefly, signature
aging scores for every spot is calculated with the analyze function by first log-transformation and removing
global cell-specific distributional effects from the signature scores by Z-normalizing the expression data, then
taking the sum of expression values for positive genes minus the sum of expression values for the negative
genes divided by the total amount of genes in the signed gene set. This results in a score that summaries the
contrast between the positive and negative signed gene set.

To construct CAS velocities, linear modeling of CAS from age and spatial domain was performed with the lm
function in R. The lstrends function from the lsmeans package v.2.30.0 with Tukey’s HSD test within all
possible spatial domain-to-spatial domain comparisons was used to estimate and compare the slopes of fitted
lines for each spatial domain to assess significant slope differences.

Statistics and reproducibility
No statistical methods were used to predetermine sample sizes. Supplementary Table (Table S1) contains the
demographic information for the 17 donor brains we used to generate a total of 17 section images. All box plots
display the median as the center, Interquartile ranges (IQR) (25th & 75th percentiles) as the box edges, and
1.5× the IQR for the whiskers. All reported P values were two sized and were adjusted for multiple testing with
Benjamini–Hochberg correction unless otherwise stated. Distributions of the residuals of the linear modeling
were assumed to be normally distributed across all genes and models, but this was not formally tested.
Wilcoxon signed-rank test used for comparing mean cell abundances between two age groups. Tukey’s HSD
test was used across all possible spatial domain-to-spatial domain comparisons of CAS slopes. Visium spots
that were outside of tissue or did not pass QC checks were omitted from all analyses. We used the brain
donors as a blocking factor in our analyses, as they were also unique for each Visium capture area. Data
collection and analysis were not performed blind to the conditions of the experiments. Plots in R were created
either in base R or with the ggplot2 R package 116. Figures were compiled with the help of BioRender.com.
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Additional resources
To visualize the spot-level Visium data and as a resource to the neuroscience community, we created a shiny
117 interactive browser available at https://libd.shinyapps.io/Lifespan_DG/ which is powered by the spatialLIBD
v.1.8.11 R Bioconductor package 111.

4.14 | Data Availability
The raw and processed data are publicly available through Zenodo listed at
https://doi.org/10.5281/zenodo.10126688 118. The raw data provided through Zenodo include all the FASTQ
files and raw image files. The processed data include two spe objects: (1) with the untransformed feature
counts, and (2) with normalized log2 transformed feature counts, batch correction, unsupervised spatial
clustering, and cell-type deconvolution.

4.15 | Code Availability
The code for this project is publicly available through GitHub at
https://github.com/LieberInstitute/spatial_DG_lifespan 119 and is described in the associated README.md file.
Analyses were performed using R v.4.2.1 with Bioconductor v.3.15.2. cell2location v0.1.3 was employed via
reticulate R package v.1.28.
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5 | Supplementary Materials

5.1 | Supplementary Tables
Supplementary Table 1
Demographic information on brain donors, including information on brain id # (BrNum), age of death, slide and
capture area for each Visium slide, sex, ancestry, RIN for PFC tissue (Screening RIN PFC, performed at time
of collection), post mortem interval (PMI), and psychiatric diagnoses (PrimaryDx).

Supplementary Table 2
Manual annotations across all Visium spots from scientist blinded to experiments. Contains information on
donor tissue sample (sample_id), spatial barcode (spot_name), and manual annotation.

Supplementary Table 3
DEGs across aggregated DG spatial domains for each age group vs. all others. Contains information on
ENSEMBL gene id (gene_id), gene name (gene_name), protein coding or not (gene_type), p-value, adjusted
p-value, and log2 fold-change.

Supplementary Table 4
All significant upregulated/downregulated GO terms from DG age groups vs. all others. Contains information
on age group (Cluster), upregulated or downregulated, accession ID (ID), GO term description, ratio of genes
from gene set in GO term (GeneRatio), ratio of genes from all genes (BgRatio), p-value, adjusted p-value,
q-values, list of genes in GO term (geneID), and number of genes from gene set in GO term (Count).

Supplementary Table 5
DEGs from age groups vs. all others for each separate DG spatial domain and the SLM. Contains information
on ENSEMBL gene id (gene_id), gene name (gene_name), protein coding or not (gene_type), p-value,
adjusted p-value, and log2 fold-change.

Supplementary Table 6
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Signed gene set that makes up the common HPC aging signature. Contains information on ENSEMBL gene id
(gene_id), gene name (gene_name), protein coding or not (gene_type), and sign for positively associated
aging genes or negatively associated aging genes.
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6 | Main Figures and Legends

Figure 1: Spatially-resolved transcriptomic profiling and unsupervised spatial domain detection in the human dentate gyrus
across the postnatal lifespan. (a) (i) Schematic of experimental design to molecularly profile the human dentate gyrus (DG) from four
age groups: infant (0-2 years), teen (13-18 years), adult (30-50 years), and elderly (70+ years). (ii) Tissue blocks were dissected from
frozen brain slabs and scored to isolate the DG, then (iii) cryosectioned at 10μm, mounted onto 10x Genomics Visium slides, and
stained using hematoxylin and eosin (H&E) to visualize tissue morphology. (iv) On-slide cDNA synthesis was performed, followed by
library construction and Illumina sequencing, resulting in spatially barcoded transcript counts as illustrated by SNAP25 expression. (b)
Example spot plot of a capture area from donor Br1412 covering the DG where Visium spots are labeled by the BayesSpace spatial
domain detection algorithm (k=10). (c) Dot plot for canonical spatial domain-specific and neuropil-enriched gene markers averaged
across gene (columns) for 10 domains (rows). Dots are sized by the proportion of spots with nonzero expression and colored by mean
log2 normalized counts, centered and scaled. (d) Illustration of pseudo-bulking spots across predicted spatial domains for each of the
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N=16 capture areas. (e) Scatter plot of the first two principal components (PCs) after pseudo-bulking spots for each capture area and
spatial domain (excluding cluster 3) colored by spatial domain and shaped by age bin, with percent variance explained in parentheses.
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Figure 2. Differential expression analysis composite DG identifies genes associated with specific lifespan stages (infant, teen,
adult, elderly). (a) Predicted spatial domains (ML, GCL, SGZ and CA3&4) were collapsed and pseudo-bulked to generate molecular
profiles representing the composite DG region for each donor. (b-e) Volcano plots after performing differential expression using
pseudo-bulked DG samples, comparing one age group to all others. Point colors highlight select genes associated with major hallmarks
of aging such as neurogenesis (green), activated microglia (light blue), and reactive astroglia (dark green). The x-axis is the log2 fold
change in expression highlighting genes ≥1.5 logFC or ≤-1.5 logFC and the y-axis is the negative log10 adjusted p-values (y-axis range
varies across four plots). (f) Dot plots for major gene ontology terms. Dot plots are faceted by age groups with their down- and
up-regulation columns colored by blue and red, respectively; dot size represents the fraction of gene set that was differentially
expressed (Gene ratio), while black gradient represents adjusted p-value.
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Figure 3. Differential gene expression of infant versus non-infant in sub-domains of the DG. (a-d) Volcano plots of infant versus
non-infant for individual spatial domains: ML (a), GCL (b), SGZ (c) and CA3&4 (d). The x-axis is the log2 fold change in expression and
the y-axis is the negative log10 adjusted p-values. (e) Representative smFISH images of coronal sections for the infant GCL (top row)
and adult GCL (bottom row) for the following genes: PROX1 (green), SLC17A7 (magenta), GAD1 (yellow), and LAMP5 (white). Scale
bar is 100 μm. (f) Stacked barplot of the number of differentially expressed genes (DEGs) for each spatial domain of the dentate gyrus
(DG), stacked by age group. X-axis on log scale. (g) Heatmap of the mean log2 normalized counts (centered and scaled) for top 10
enriched and depleted genes with ≥1.5 logFC or ≤-1.5 logFC from each spatial domain. Pseudo-bulked data limited to the spatial
domains of the DG. Hierarchical clustering was performed across rows. Columns are organized by spatial domains corresponding to
DG regions.
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Figure 4. Late stage mouse neuroblast gene signature is enriched in the GCL across the lifespan. (a) Enrichment analyses using
Fisher’s exact tests for predefined gene sets for neural precursor cells (nIPC and NPC), neuroblasts (NB1 and NB2), and immature
granular cells (imGC). Nomenclature was adopted from each publication 18,19,67. Color indicates negative log10 p-values while numbers
within each significant heatmap cell indicates the odds ratios for the enrichment. (b) Heatmap of the mean log2 normalized counts
(centered and scaled) for the NB2 gene set 18 on pseudo-bulked data limited to the spatial domains of the DG. Hierarchical clustering
was performed across rows. Columns are organized by spatial domains corresponding to DG regions. (c) Data visualization of the
Visium spots of mean log2 normalized counts four representative samples from each age group (rows from top to bottom: infant
(Br8533), teen (Br1412), adult (Br3942), elderly (Br6023)) for spatial domain (1st column), BHLHE22 (2nd column), and NEUROD2 (3rd
column). Spots in the1st column are colored by spatial domain, while in 2nd and 3rd columns, spots are colored by logcounts of the
respective gene. (d) Violin plots of BHLHE22 and NEUROD2 for GCL Visium spots. X-axis are age groups and y-axis are logcounts.
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Figure 5. Wide-spread HPC aging signature identifies regions of local tissue that change more with age. (a) Heatmap of the
mean log2 normalized counts (centered and scaled) for the wide-spread aging signature gene set. Hierarchical clustering was
performed across rows. Columns are organized by spatial domains corresponding to HPC spatial domains. Labeled genes are those
that show strong increasing age gradients across many spatial domains. (b) Dot plot for major gene ontology terms from aging
signature gene set. Dot plots are faceted by their down- and up-regulation columns colored by blue and red, respectively; dot size
represents the fraction of gene set that was differentially expressed (Gene ratio), while black gradient represents adjusted p-value. (c)
Boxplots of CAS (in arbitrary units) of individual Visium spots versus age, faceted by HPC spatial domain and fitted with LOESS line.
(d) Data visualization of the Visium spots for four representative samples from each age group (infant (Br8533), teen (Br1412), adult
(Br3942), elderly (Br5242)). Color of spots are for CAS in arbitrary units. (e) CAS trajectories of all HPC spatial domains vs. age
approximated via LOESS and linear regression. (f) Offset of linear fit and slope comparison from linear modeling of CAS across all
Visium spots. (g) CAS slope of linear approximations in e, colored by slope, for each spatial domain. Mean ± 95% confidence intervals.
Adjusted p-values derived from two-sided Tukey’s HSD test.
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Figure 6. Expression of inflammatory markers enriched in SLM, ML, SGZ, and CA3&4 domains in elderly age group. (a)
Enrichment analyses using Fisher’s exact tests for predefined gene sets for activated microglial markers. Nomenclature adopted from
each publication: microglial clusters for early_activated_1, early_activated_2, late_activated 49, and human microglial cluster 1 (MG1) 73.
Color indicates negative log10 p-values while numbers within significant heatmap cells indicate odds ratios for the enrichments. (b)
Heatmap of the mean log2 normalized counts (centered and scaled) of pseudo-bulked data limited to the SLM and spatial domains of
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the DG with genes, which satisfy gene ontology accession GO:0002504. Hierarchical clustering was performed across all rows.
Columns are organized by spatial domains corresponding to DG regions and the SLM, and by age-group. (c-f) Volcano plots of elderly
vs. non-elderly for individual spatial domains: SLM (c), ML (d), SGZ (e) and CA3&4 (f). The x-axis is the log2 fold change in expression
and the y-axis is the negative log10 adjusted p-values.
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