

1 **Feedback inhibition by a descending GABAergic neuron regulates timing of escape**
2 **behavior in *Drosophila* larvae**

3
4 Jiayi Zhu^{1,2}, Jean-Christophe Boivin^{1,2}, Alastair Garner^{1,2}, Jing Ning¹, Yi Qing Zhao¹, Tomoko
5 Ohyama^{1,2,3*}

6
7 ¹ Department of Biology, McGill University, Docteur Penfield Ave., Montreal, QC, H3A 1B1,
8 Canada

9 ² Integrated Program of Neuroscience, Pine Ave. W., McGill University, Montreal, QC, H3A
10 1A1, Canada

11 ³ Alan Edwards Center for Research on Pain, McGill University, University St., Montreal, QC,
12 H3A 2B4, Canada

13
14 *Correspondence: tomoko.ohyama@mcgill.ca

15
16
17 Keywords: escape behavior, nociceptive circuit, descending neuron, GABA, *Drosophila*

18
19 **Abstract**

20
21 Escape behaviors help animals avoid harm from predators and other threats in the environment.
22 Successful escape relies on integrating information from multiple stimulus modalities (of
23 external or internal origin) to compute trajectories toward safe locations, choose between actions
24 that satisfy competing motivations, and execute other strategies that ensure survival. To this end,
25 escape behaviors must be adaptive. When a *Drosophila melanogaster* larva encounters a noxious
26 stimulus, such as the focal pressure a parasitic wasp applies to the larval cuticle via its ovipositor,
27 it initiates a characteristic escape response. The escape sequence consists of an initial abrupt
28 bending, a corkscrew-like rolling, and finally rapid crawling. Previous work has shown that the
29 detection of noxious stimuli primarily relies on class IV multi dendritic arborization neurons
30 (Class IV neurons) located beneath the body wall, and more recent studies have identified
31 several important components in the nociceptive neural circuitry involved in rolling. However,
32 the neural mechanisms that underlie the rolling-escape sequence remain unclear. Here we present
33 both functional and anatomical evidence suggesting that bilateral descending neurons within the

34 subesophageal zone of *D. melanogaster* larva play a crucial role in regulating the termination of
35 rolling and subsequent transition to escape crawling. We demonstrate that these descending
36 neurons (designated SeIN128) are inhibitory and receive inputs from a second-order interneuron
37 upstream (Basin-2) and an ascending neuron downstream of Basin-2 (A00c). Together with
38 optogenetic experiments showing that joint stimulation of SeIN128 neurons and Basin-2
39 influence the temporal dynamics of rolling, our findings collectively suggest that the ensemble of
40 SeIN128, Basin-2, and A00c neurons forms a GABAergic feedback loop onto Basin-2, which
41 inhibits rolling and thereby facilitates the shift to escape crawling.

42

43 **Introduction**

44

45 Virtually all organisms on earth face the threat of being maimed or killed by one or more
46 predatory organisms. Not surprisingly, when organisms encounter threat-associated stimuli, they
47 exhibit a wide variety of escape responses appropriate to their biological construction and the
48 specific predators within their ecological niche (Burrell, 2017; Campagner et al., 2023; Chin &
49 Tracey, 2017; Im & Galko, 2012; Peirs & Seal, 2016). Typically, these escape responses consist
50 of a sequence of simple actions. The roundworm *C. elegans*, for example, in response to a touch
51 to its head, exhibits rapid backward locomotion coupled with a suppression of head movements,
52 followed by a deep ventral bend (omega turn) and a 180-degree reversal in the direction of
53 locomotion. This sequence allows the roundworm to escape from nematophagical fungi that
54 cohabitiate with it in organic debris (Chalfie & Sulston, 1981; Chalfie et al., 1985).

55 When *Drosophila melanogaster* larvae encounter noxious stimuli, such as the stimulation that
56 accompanies an attempt by a parasitic wasp to penetrate the larval cuticle with its ovipositor,
57 they exhibit an escape response consisting of an initial abrupt bending, followed by corkscrew-
58 like rolling, and finally, rapid crawling (Hwang et al., 2007; Ohyama et al., 2015; Onodera et al.,
59 2017; Tracey et al., 2003). Previous work has shown that noxious stimuli are primarily detected
60 by class IV dendritic arborization neurons (Class IV neurons) located beneath the body wall
61 (Tracey et al., 2003). More recent studies have identified several important components in the
62 downstream nociceptive neural circuitry, particularly those involved rolling (Burgos et al., 2018;
63 Dason et al., 2020; Hu et al., 2017; Hu et al., 2020; Imambucus et al., 2022; Kaneko et al., 2017;
64 Ohyama et al., 2015; Takagi et al., 2017; Yoshino et al., 2017). To date, however, the neural

65 mechanisms that underlie the rolling-escape sequence, notably, the transition from rolling to
66 crawling, have remained unclear.

67 In this study, we provide both functional and anatomical evidence that, bilateral descending
68 neurons in the subesophageal zone (SEZ) of *D. melanogaster* larva, which comprise part of a
69 neural circuit underlying rolling, a characteristic nocifensive escape response, potentially
70 regulates the termination of rolling and subsequent transition to escape crawling. We show that
71 these descending neurons, which we designate as SeIN128, are identical to those denoted
72 previously as SS04185 (Ohyama et al., 2015), are inhibitory neurons that receive inputs from
73 Basin-2 (a second-order interneuron upstream) and A00c (an ascending neuron downstream of
74 Basin-2), and provide GABAergic feedback onto Basin-2. Together with behavioral analyses of
75 rolling during systematic optogenetic manipulation of SeIN128 and Basin-2 activity, our findings
76 suggest that an ensemble of neurons—SeIN128, Basin-2, and A00c—forms an inhibitory
77 feedback circuit that inhibits rolling, which in turn facilitates the shift to escape crawling.

78

79 **SS04185 facilitates rolling termination and shortens the latency of crawling behavior in the
80 escape responses**

81 In a previous study, we showed that activation of all Basin neurons (Basin-1, -2, -3, and -4)
82 induced rolling followed by fast crawling (Ohyama et al., 2015). Here, we first examined
83 whether optogenetic activation of all four Basins expressing the red-shifted opsin CsChrimson
84 (using Basin-1–Basin-4 Gal4, i.e., R72F11-Gal4) could elicit the same behavior. Upon activation
85 of all Basins, we observed rolling mostly within the first 5 s, followed by crawling (Figure 1A
86 and B). Crawling speed during the activation of all Basins following rolling was ~1.5 times that
87 of the crawling speed at baseline (Figure 1B) (Ohyama et al., 2015).

88 To identify the neurons responsible for escape behavior (rolling and/or fast crawling), we
89 conducted a behavioral screening of ~250 split Gal4 lines that were labeled in the central nervous
90 system (CNS) when co-activated with all Basins. With respect to rolling, we found that
91 activation of the split-Gal4 line, SS04185 (i.e., w^{1118} ; $R54B01\text{-}Gal4^{AD}$; $R46E07\text{-}Gal4^{DBD}$),
92 significantly reduced the probability of rolling when compared to activating only the Basins
93 (Figure 1A–C).

94 The likelihood of rolling upon joint activation of SS04185 neurons and Basins might decrease
95 because activation of SS04185 neurons trigger other actions, such as crawling, head casting,

96 hunching, or stopping, and not because they solely inhibit rolling evoked by Basins. To
97 investigate this possibility, we examined the effect of SS04185 activation in isolation and found
98 that this did not induce any extra actions such as turning, hunching, or stopping (Figure 1–figure
99 supplement 1A-D). These data suggest that joint activation of Basins and SS04185 neurons
100 reduces rolling because SS4185 activation inhibits the Basin circuit.

101 Next, we explored how the quality of rolling changed during joint activation of SS04185 and
102 Basin neurons. First, we examined the amount of time animals spent rolling during Basin
103 activation. The average time spent rolling (percentage of the 30-s stimulation period) was 23.9%
104 (7.2 s out of 30 s) following activation of Basins alone, whereas it was only 5.9% following joint
105 activation of Basins with SS04185 (1.8 s out of 30 s) (Figure 1–figure supplement 1E).
106 Additionally, the duration of each rolling bout was significantly shorter when SS04185 neurons
107 were co-activated with Basins (Mann-Whitney U test, $p < 0.001$; Figure 1D).

108 The duration of a rolling bouts could decrease because of changes in the latency to initiate
109 rolling, latency to terminate rolling, or both. To investigate how SS04185 activation affects these
110 temporal parameters of rolling, we analyzed the latencies for the initiation and termination of the
111 first rolling bout. Compared to activating Basins alone, co-activating the Basins and SS04185-
112 expressing neurons only marginally increased latency to onset of the first rolling bout (Figure
113 1E), whereas it markedly reduced the latency for the termination of rolling (Mann-Whitney U
114 test, $p < 0.001$; Figure 1F). These data strongly suggest that SS04185-expressing neurons are
115 involved in terminating rolling.

116 If the rolling module inhibits crawling, then premature termination of rolling might allow
117 crawling to commence sooner than normal. Joint activation of SS04185 and Basins resulted in
118 the initiation of the first crawling bout occurring earlier than when only Basins were activated
119 (Mann Whitney U test, $p < 0.001$; Figure 1G, Figure 1–figure supplement 1F). The time from the
120 end of rolling to the start of crawling remained similar between the groups in which the Basins
121 were activated alone and in which the Basins and SS04185 were co-activated (Figure 1–figure
122 supplement 1G). This is consistent with the higher probability of crawling during activation of
123 SS04185 and Basin neurons (Figure 1–figure supplement 1H). Lastly, activation of SS04185
124 neurons in conjunction with Basins did not change the crawling speed compared to activation of
125 Basins alone (Figure 1–figure supplement 1I). These results collectively indicate that SS04185
126 activation terminates rolling and facilitates the shift to fast crawling.

127

128 **A pair of descending neurons in SS04185 contributes to termination of rolling**

129 To identify the neurons that express SS04185 upon CsChrimson activation, we examined the
130 localization of SS04185-labeled neurons. We found that SS04185 split-Gal4 strongly labeled a
131 pair of descending neurons located within the subesophageal zone (SEZ) and mushroom body
132 (MB) neurons within the brain (Figure 2A). To pinpoint which of these neurons are involved in
133 reducing the probability of rolling (Figure 1A-C), we varied the level of SS04185 expression
134 among the pair of SS04185-expressing descending neurons (SS04185-DN) and the SS04185-
135 expressing MB (SS04185-MB) neurons (jointly with the Basins as in Figure 1). These
136 manipulations allowed us to assess the resultant behavioral outcomes.

137 If SS04185-MB neurons are involved in the modulation of rolling, then reducing SS04185-MB
138 expression should reduce the extent to which activation of both SS04185-DN neurons and
139 SS04185-MB neurons decreases the probability of rolling. To test this conjecture, we expressed
140 Killer Zipper (KZip⁺), which interferes with the binding of Gal4^{AD} and Gal4^{DBD} in SS04185-MB
141 neurons with MB LexA line (R13F02-LexA), consequently leading to a significant reduction in
142 CsChrimson expression in SS04185-MB neurons (Figure 2B, Figure 2-figure supplement 1A)
143 (Dolan et al., 2017; Vogt et al., 2016). When compared to KZip⁺ controls, which do not express
144 SS04185 (Figure 2C, black bars), however, activation of SS04185 neurons with reduced
145 SS04185-MB expression (Figure 2C, red bars on the right; Figure 2-figure supplement 1B) still
146 reduced rolling probability (as well as the total duration of rolling [Figure 2-figure supplement
147 1C]) to a level no different from that of KZip⁻ controls expressing SS04185 fully in both
148 SS04185-MB and SS04185-DN neurons (Figure 2C, dark red bars in the middle). Additionally,
149 co-activation of MB Gal4 lines (MB247-Gal4) with Basins (without activation of SS04185-DN
150 neurons) did not reduce the probability of rolling (Figure 2-figure supplement 1D-E) (Pauls et
151 al., 2010). These data indicate that SS04185-DN neurons inhibit rolling.

152 To further test the role of SS04185-DN neurons, we investigated whether these neurons were
153 involved in reducing the duration of each rolling bout (Figure 1A, D, F). However, knockdown
154 of SS04185-MB neurons did not increase the duration of rolling bouts (Figure 2D). Furthermore,
155 the earlier onset of crawling triggered by the activation of SS04185 neurons remained the same
156 with knockdown of SS04185-MB neurons (Figure 2E). Collectively, these results strongly

157 suggest that the behavioral effects on both rolling and crawling, as illustrated in figure 1, are
158 primarily mediated by SS04185-DN neurons.

159 To further ascertain the role of SS04185-DN neurons in the regulation of rolling, we employed
160 the heat shock FlpOut mosaic expression approach. This technique allowed for controlled and
161 sporadic expression of CsChrimson in SS04185 neurons thorough random induction of Flippase
162 by manipulating the timing and duration of heat shock (Golic and Lindquist, 1989; Nern et al.,
163 2015). We compared larvae subjected to activation of both SS04185-MB and SS04185-DN
164 neurons (red, Figure 2-figure supplement 1F) with those subjected only to activation of
165 SS04185-MB neurons (black, Figure 2-figure supplement 1G), to assess the degree to which the
166 former showed behavioral effects. Remarkably, activation of both SS04185-MB and SS04185-
167 DN neurons resulted in a reduction in both the probability and duration of rolling when
168 compared to activation of SS04185-MB neurons alone (Figure 2F and G, Figure 2-figure
169 supplement 1H-I). Furthermore, activation of both SS04185-MB and SS04185-DN neurons
170 reduced the latency to the end of the first rolling bout and the initiation of the first crawling bout
171 (Figure 2H, Figure 2-figure supplement 1J). These findings provide compelling evidence that
172 SS04185-DN neurons, but not SS04185-MB neurons, play an important role in the termination
173 of rolling.

174

175 **Descending neurons identified by SS04185 correspond to SeIN128 neurons**

176 In a previous EM study, we identified a set of neurons designated as SeIN128, whose cell bodies
177 in the SEZ send axonal projections throughout the thoracic and abdominal segments (Figure 3A)
178 (Ohyama et al., 2015). Our immunostaining data also showed that the cell bodies of SS04185-
179 DN neurons are located in the SEZ, with axons bilaterally innervating the medial regions of the
180 VNC from the thoracic to abdominal segments A8/9 (Figure 2A), suggesting that SS04185-DN
181 and SeIN128 neurons are one and the same.

182 To verify this possibility, we examined the detailed anatomy of SS04185-DN neurons by
183 immunostaining them with several markers and compared our immunostaining images with the
184 corresponding images obtained via EM reconstruction of the entire CNS of a 1st instar
185 *Drosophila* larva (Ohyama et al., 2015; Winding et al., 2023). We confirmed that the projections
186 of SeIN128 neurons are distributed within the ventromedial neural tract (one of the six major
187 neural tracts) in *Drosophila* larvae (Figure 3A, B, and C) in EM reconstruction data. We also

188 confirmed that the cell bodies of SS04185-DN neurons were again located in the SEZ region,
189 where the most anterior of the three neuropils in the thoracic region was marked by N-cadherin
190 (Figure 3D). Viewed from the side (i.e., in the longitudinal or sagittal plane), both the cell bodies
191 and axonal arbor were located ventrally (Figure 3D, far right). Immunostaining with Fasciclin2
192 (Fas2), which labels various neural tracts in the VNC (Grenningloh et al., 1991; Santos et al.,
193 2007), showed colocalization of the axonal projections of SS04185-DN neurons and the Fas2-
194 labeled ventromedial tract (Figure 3C and E). The similarity of the locations of their cell bodies
195 and the distributions of their axonal processes suggests the identity of the SS04185-DN and
196 SeIN128 neurons.

197 A previous EM study showed that SeIN128 neurons were located downstream of Basin neurons
198 (Ohyama et al., 2015). To further confirm the identity of SS04185-DN and SeIN128 neurons, we
199 compared the distributions of the axonal projections of SS04185-DN neurons in relation to those
200 of several key neurons within the rolling circuit: the Basins, A00c neurons (a group of ascending
201 neurons downstream of the Basins, and which facilitate rolling), and mdIV neurons (nociceptive
202 sensory neurons upstream of the Basins). Immunostaining revealed that Basin projections
203 colocalize with those of SS04185-DN neurons in both the horizontal and transverse planes
204 (Figure 3F, top and lower panels, respectively), with the horizontal view showing that SS04185-
205 DN projections are distributed slightly medial to those of Basins within the ventromedial tract
206 (Figure 3F, top panels), which resembles their colocalization pattern reported in EM (Figure 3B,
207 C and G). Similarly, we compared the distributions of SS04185-DN projections with those of
208 A00c or mdIV projections. We found that the projections of A00c colocalize with those of
209 SS04185-DN in a similar fashion along the rostrocaudal axis within the ventromedial tract
210 (Figure 3H and I), with A00c projections distributed more medially than SS04185-DN
211 projections, consistent with the distribution patterns of SeIN128 projections and A00c
212 projections in the EM reconstruction dataset (Figure 3B, H and I). In contrast, the distributions of
213 mdIV projections did not colocalize with those of SS04185-DN projections, as the mdIV
214 projections were displaced more laterally relative to the SS04185-DN projections in the
215 horizontal and transverse planes (Figure 3J, top and lower panels, respectively), consistent with
216 the distribution patterns of SeIN128 and mdIV projections in the EM reconstruction dataset
217 (Figure 3K). In the transverse plane, the projections of SS04185-DN neurons were also

218 distributed dorsomedial to those of mdIV (Figure 3J, lower panel), consistent with the
219 corresponding distribution patterns in the EM reconstruction dataset (Figure 3B, C and K).
220 We conclude that the morphological findings for SS04185-DN neurons, together with data on the
221 distribution of their axonal projections in relation to that of Basin, A00c, and mdIV neurons,
222 strongly suggest the identity of SS04185-DN and SeIN128 neurons.

223

224 **Connectome and functional connectivity analyses: SeIN128 neurons receive inputs from**
225 **Basin-2 and A00c**

226 A previous study that reconstructed larval neurons involved in the rolling circuit showed that
227 Basin-2 and A00c neurons (in the VNC) make excitatory synaptic contacts onto SeIN128
228 neurons (in the CNS), which in turn make reciprocal inhibitory synaptic contacts onto Basin-2
229 and A00c neurons (Figure 4A, Figure 4—figure supplement 1A) (Ohyama et al., 2015). These
230 data suggest that SeIN128 neurons are directly activated by Basin-2 and A00C (which also
231 receives inputs from Basin-1, Basin-2, and Basin-4).

232 To assess the functional significance of these synaptic connections between SeIN128 neurons
233 and Basins or A00c, we activated either Basins or A00c neurons and examined the resultant
234 GCaMP signaling in SeIN128 neurons. Specifically, after expressing CsChrimson in Basins and
235 A00c neurons and GCaMP in SeIN128 neurons, we used a two-photon microscope (920-nm
236 laser) and monitored GCaMP signaling in SeIN128 neurons during illumination of a specimen
237 with a 620-nm LED for 1 s (0.04–1.4 μ W/mm²), which activated either Basins or A00c neurons.
238 GCaMP signals in SeIN128 neurons increased in an intensity-dependent manner when either
239 Basins and A00c were activated (Figure 4B and C). Peak activity occurred at around 3 s after the
240 onset of LED stimulation, which was similar to the results when Basins or A00c neurons were
241 stimulated (Figure 4B and C). Finally, both Basin and A00c stimulation resulted in linear dose-
242 dependent increases in SeIN128 firing (Figure 4—figure supplement 1B). These results are
243 consistent with the notion that SeIN128 neurons are downstream of Basins or A00c neurons.

244 To compare the neural responses between Basins and SeIN128 or A00c neurons, we recorded
245 neural activity in A00c neurons with GCaMP while stimulating Basin neurons in the same
246 experimental setting. Although A00c neurons displayed a similar dose-dependent increase in
247 peak axonal firing as the intensity of optogenetic stimulation of Basin neurons increased, unlike
248 SeIN128 neurons they showed no delay in peak firing activity (Figure 4D and E, Figure 4—

249 figure supplement 1B), suggesting that A00c and SeIN128 neurons function differently in the
250 rolling circuit.

251 We then investigated the anatomical locations of the synaptic outputs and inputs of SeIN128
252 neurons, and found that, whereas their outgoing projections primarily make synaptic contacts
253 along the anterior-posterior nerve axis, the inputs coming from other neurons are mainly located
254 in the SEZ (Figure 3A). These data suggest that the main synaptic inputs onto SeIN128 neurons
255 in the SEZ mediate the slow responses upon activation of Basins or A00c neurons. On the other
256 hand, SeIN128 neurons make axo-axonal contacts onto Basin-2 neurons (Figure 4—figure
257 supplement 2A-G): that is, their axons make synaptic contacts with the dorsal and medial
258 processes of Basin-2, which correspond to their axonal compartments (Figure 4—figure
259 supplement 2E-G). These axo-axonal connections could modulate the output of Basin neurons
260 without affecting the activity at their cell bodies induced by other neural inputs.

261

262 **SeIN128 neurons are GABAergic and inhibitory**

263 The results thus far indicate that activation of SeIN128 neurons inhibits rolling (Figure 1A–C)
264 and that SeIN128 neurons provide inputs onto Basin-2 and A00c (Figure 4A). These findings
265 suggest that SeIN128 neurons might be inhibitory. To test this possibility, we performed
266 immunostaining experiments and found that SeIN128 neurons colocalized with glutamic acid
267 decarboxylase (Gad)-positive neurons but not with acetylcholine- or glutamate-positive neurons,
268 suggesting that SeIN128 neurons are GABAergic inhibitory neurons (Figure 5A, Figure 5—figure
269 supplement 1A, and B).

270 We reasoned that if GABA in SeIN128 neurons is necessary for inhibiting rolling, then
271 selectively knocking down GABA secretion in SeIN128 neurons should enhance rolling. When
272 we expressed RNAi *HMS02355* in SeIN128 neurons to knock down vesicular GABA transporter
273 (VGAT) expression and suppress the release of GABA, the population-level rolling probability
274 increased from 23.6% to 45.2% (Figure 5B and C) (Kallman et al., 2015; Zhao et al., 2019).
275 Furthermore, the duration of each bout of rolling increased from 0.8 s to 1.4 s (Figure 5D). These
276 data support the idea that SeIN128 neurons inhibit rolling via GABAergic transmission.

277

278 **Inhibition of SeIN128 increases probability and duration of rolling**

279 To further test whether the release of GABA upon activating SeIN128 neurons is necessary for
280 inhibiting rolling, we expressed tetanus toxin (TNT) in SeIN128 neurons to block synaptic
281 transmission. Silencing SeIN128 neurons via TNT while triggering rolling by optogenetically
282 activating Basin neurons via *R72F11-LexA>LexAop-CsChrimson* significantly increased the
283 probability of rolling compared to controls (Figure 6A and B). Silencing SeIN128 neurons via
284 TNT extended the duration of each rolling bout, as well as the total rolling duration, in each larva
285 (Figure 6C and D). We also examined the rolling-escape crawling sequence upon silencing
286 SeIN128 neurons, and found that the time to offset of rolling and the time onset of crawling were
287 both delayed relative to controls (Figure 6E and F).

288 Given that TNT is expressed constitutively during development, long-term compensatory
289 changes in the nervous system could have contributed to alterations in the parameters of rolling
290 and crawling. To test whether similar results could be replicated with the use of a temporally
291 specific intervention, we expressed *shibire^{ts1}* (*shi^{ts1}*) in SeIN128 neurons to block synaptic
292 transmission at temperatures above 30°C (van de Goor et al., 1995; Kitamoto, 2001). Silencing
293 SeIN128 neurons via *shibire^{ts1}* increased the probability of rolling from 60.4% to 79.7% (Figure
294 6-figure supplement 1A and B). The total duration of rolling per animal during stimulation
295 increased from 10 to 12 s (Figure 6-figure supplement 1C). Although the duration of each rolling
296 bout and the time to onset of the first rolling bout did not differ from those of controls (Figure 6-
297 figure supplement 1D and E), the time to offset of the first rolling bout and time to onset of the
298 first crawling bout were both delayed relative to those of controls ($p = 0.013$ for Figure 6-figure
299 supplement 1F; $p = 0.11$ for Figure 6-figure supplement 1G). Together with the results showing
300 that activation of SeIN128 neurons inhibits rolling, these findings suggest that the activity of
301 SeIN128 neurons is important in controlling the duration of rolling and the shift to crawling.

302

303 **Basins receive GABAergic inputs that inhibit rolling**

304 Given that Basins receive axo-axonal inputs from SeIN128 neurons and GABA signaling in
305 SeIN128 neurons inhibits rolling, we next used RNA interference (RNAi) to test whether Basins
306 receive GABAergic signals from SeIN128. We hypothesized that knockdown of GABA receptors
307 in Basin neurons would increase the probability and duration of rolling at the population level.
308 To knock down ionotropic GABA-A receptors (GABA-A-R) and G-protein-coupled GABA-B
309 receptors (GABA-B-R1 and GABA-B-R2), we tested Basin neurons with GABA-A-R, GABA-

310 B-R1, and GABA-B-R2 RNAi lines (i.e., *HMC03643* for GABA-A-R, *HMC03388* for GABA-
311 B-R1¹, *JF02989* for GABA-B-R1² and *HMC02975* for GABA-B-R2, respectively). For all RNAi
312 lines, the rolling probability at the population level increased from 80% to 90% or even higher
313 (Figure 7A), while the total rolling duration at the individual level increased for each larva
314 throughout the stimulation window (Figure 7–figure supplement 1A). All GABA receptor
315 knockdown groups showed significant increases in rolling duration across multiple bouts (Figure
316 7B); all groups except for GABA-B-R1¹ showed a reduced time to onset of the first rolling bout
317 (Figure 7–figure supplement 1B); and only the GABA-B-R2 and GABA-A-R groups showed a
318 delayed offset of the first rolling bout (Figure 7–figure supplement 1C). None of the groups
319 differed from controls in the time to onset of the first crawling bout (Figure 7–figure supplement
320 1D). The greatest increase in the probability and duration of rolling was seen during knockdown
321 of ionotropic GABA-A-R (*Rdl*), suggesting that *Rdl* contributes most to the inhibition of Basin
322 neurons (Figure 7A and B).

323 To investigate whether SeIN128 neurons actually inhibit Basins, we recorded the activity of all
324 Basins during activation of SeIN128 neurons. We compared GCaMP signaling in the Basins
325 when they were co-activated with SeIN128 neurons (experimental treatment) or when they were
326 activated alone (control treatment), with the intensity of optogenetic stimulation varied from 0.04
327 to 1.4 $\mu\text{W}/\text{mm}^2$. We found that Basins in the experimental group showed reductions in GCaMP
328 signaling by 8% to 33% compared to those in the control group (Figure 7C, Figure 7–figure
329 supplement 1E and F). The reductions were observed at all stimulation intensities when
330 contrasting peak GCaMP responses, and statistically significant at intensities of 0.3 and 0.5
331 $\mu\text{W}/\text{mm}^2$ (Figure 7C, Figure 7–figure supplement 1E and F). Collectively, these data support the
332 idea that SeIN128 neurons directly inhibit the activity of Basins via GABA.

333

334 **Effects of SeIN128 activation on rolling elicited by activating individual Basins**

335 In the studies above, we measured the activity of all Basins while manipulating the activity of
336 SeIN128 neurons. Connectome and behavioral analyses indicate, however, that of the four types
337 of Basins, only Basin-2 and Basin-4 receive nociceptive input from mdIV and trigger rolling
338 (Ohyama et al., 2015). Moreover, as noted above, an examination of the larval connectome
339 (Ohyama et al., 2015; Winding et al., 2023) revealed that Basin-2 both receives axo-axonal
340 inputs from SeIN128 neurons and sends excitatory projections to the same SeIN128 neurons,

341 whereas a similar examination revealed that Basin-4 neither receives inputs from, nor sends any
342 outputs to, SeIN128 neurons. Therefore, we hypothesized that activation of SeIN128 neurons
343 would inhibit rolling elicited by Basin-2 activation and modify the temporal parameters of
344 rolling, but not affect rolling elicited by Basin-4 activation.

345 We first examined the pattern of rolling evoked by optogenetically activating Basin-2. Basin-2
346 activation induced multiple bouts of rolling throughout the stimulation window (Figure8–figure
347 supplement 1A). Furthermore, the rolling elicited by Basin-2 activation tended to be sustained
348 (Figure8–figure supplement 1A). Next, to determine how SeIN128 activation affects the pattern
349 of rolling elicited by Basin-2 activation, we optogenetically activated SeIN128 neurons and
350 Basin-2 simultaneously. As expected, compared to the probability of rolling in control animals in
351 which only Basin-2 was activated, the probability of rolling in experimental animals in which
352 Basin-2 and SeIN128 neurons were simultaneously activated was significantly lower (66.7% vs
353 24.4%; Figure 8A, Figure 8–figure supplement 1D). We also examined other parameters of
354 rolling, including the time from the start (onset) of stimulation to the onset of the first rolling
355 bout, termination (offset) of the first rolling bout, and onset of the first crawling bout, as well as
356 the duration of the rolling bout (i.e., the time from its onset to its offset). Consistent with the
357 hypothesis that SeIN128 activation inhibits Basin-2 activity, the duration of the rolling bout
358 significantly decreased (Figure 8B, Mann-Whitney test, $p = 0.0034$, Cohen's $d = 0.351$) and the
359 time to onset of the first rolling bout significantly increased in experimental animals compared to
360 controls (Figure 8–figure supplement 1E; Mann-Whitney test, $p < 0.001$). In addition, as
361 expected, the time to offset of the first rolling bout (Figure 8C; Mann-Whitney test, $p = 0.0047$,
362 Cohen's $d = 0.607$) and time to onset of the first crawling bout (Figure 8D; Mann-Whitney test, p
363 = 0.0074, Cohen's $d = 0.548$) both significantly decreased in experimental animals compared to
364 controls. Collectively, these findings suggest that Basin-2 neurons play a major role in mediating
365 the effects of SeIN128 activation on rolling induced by optogenetic activation of all Basin
366 neurons.

367 To ascertain our expectation that SeIN128 activation would have little if any effect on the pattern
368 of rolling elicited by Basin-4 activation, given the absence of any identifiable synaptic contacts
369 between Basin-4 neurons and SeIN128 neurons based on available information on the larval
370 connectome, we also carried out the same analyses as those described above for rolling elicited
371 by Basin-2 activation. We examined the pattern of rolling evoked by optogenetically activating

372 Basin-4, and found that this manipulation induced rolling mostly within the first 5 s of
373 stimulation (Figure 8—figure supplement 1B and F). Consequently, at the population level, rolling
374 elicited by Basin-4 activation was transient compared to the rolling elicited by Basin-2 activation
375 (compare Figure 8—figure supplement 1A vs 1B) (Figure 8—figure supplement 1C).
376 We then assessed whether SeIN128 activation would affect rolling elicited by Basin-4 activation.
377 Surprisingly, compared to control animals, the probability of rolling in experimental animals was
378 significantly lower (66.7% vs 26.8%; Figure 8E), much as was the case for rolling elicited by
379 Basin-2 activation. We also examined the other rolling parameters, and found that the duration of
380 the rolling bouts (Figure 8F; Mann-Whitney test, $p = 0.032$, Cohen's $d = 0.248$), time to offset of
381 the first rolling bout (Figure 8G; Mann-Whitney test, $p < 0.0047$, Cohen's $d = 0.427$), and time to
382 onset of the first crawling bout (Figure 8H; Mann-Whitney test, $p < 0.001$, Cohen's $d = 1.039$)
383 all significantly decreased in experimental animals compared to controls, although the effect
384 sizes were smaller compared to those observed for rolling elicited by Basin-2 activation. The
385 time to onset of the first rolling bout, however, did not significantly differ between experimental
386 animals and controls (Figure 8—figure supplement 1G). These findings suggest the possibility
387 that sites further downstream of Basin-4 neurons may be involved in inhibitory processes that
388 affect rolling elicited by Basin-4 activation.

389

390 **Discussion**

391 In this study, we provide both anatomical and functional evidence that, bilateral descending
392 neurons in the brain of *D. melanogaster* larva, which comprise part of a neural circuit underlying
393 a characteristic rolling response that larvae exhibit when evading parasitization by wasps,
394 potentially regulates the termination of rolling and the subsequent transition to escape crawling.
395 We showed that these descending neurons, which we designated as SeIN128, were identical to
396 those previously identified as a component of the nociceptive circuit; were inhibitory neurons
397 that receive excitatory inputs from Basin-2, a second-order interneuron upstream, and A00c, an
398 ascending neuron downstream of Basin-2; and provided GABAergic feedback onto Basin-2,
399 presumably via the axo-axonal synaptic contacts made by the axon terminal endings of SeIN128
400 neurons onto the axons of Basin-2. Optogenetic activation studies further showed that joint
401 stimulation of SeIN128 and Basin-2 neurons systematically altered the temporal dynamics of
402 rolling and subsequent escape crawling. Collectively, the evidence suggests that the ensemble of

403 SeIN128, Basin-2, and A00c neurons constitutes a novel inhibitory feedback circuit that provides
404 reduces Basin-2 activity, which in turn, here influence the activity of a key interneuron of the
405 rolling circuit via a novel inhibitory mechanism.

406 **Feedback inhibition in a nociceptive circuit**

407 Feedback inhibition occurs when an excitatory neuron sends projections to an inhibitory neuron,
408 which in turn sends projections back onto the same excitatory neuron, often at its presynaptic
409 terminals (Isaacson & Scanziani, 2011; Kapfer et al., 2007; Ray et al., 2020; Stokes & Isaacson,
410 2010; Yoshimura & Callaway, 2005). The hallmark of feedback inhibition lies in its ability to
411 modulate the duration and magnitude of incoming excitatory signals, thereby fine-tuning neural
412 responses and maintaining homeostasis (Kapfer et al., 2007; Papadopoulou et al., 2011; Stokes &
413 Isaacson, 2010; Yoshimura & Callaway, 2005). Compared to the fast temporal dynamics of
414 feedforward inhibition, in which an inhibitory neuron directly inhibits an excitatory neuron
415 downstream of it, the temporal dynamics of feedback inhibition are slower, primarily due to the
416 added synaptic delays (two or more) following activation of an excitatory neuron (Papadopoulou
417 et al., 2011; Ray et al., 2020; Stokes & Isaacson, 2010). The slow temporal dynamics serve to
418 inhibit the sustained neural activity and magnitude of incoming excitatory signals (Papadopoulou
419 et al., 2011; Ray et al., 2020; Stokes & Isaacson, 2010).

420 In this study, we showed that SeIN128 neurons are descending neurons whose main inputs arrive
421 in the brain and SEZ regions, and whose outputs target the VNC. We also found that SeIN128
422 neurons receive excitatory inputs from Basin-2 as well as its downstream neuron A00c, and in
423 turn send inhibitory projections back to these neurons in the VNC, potentially establishing a
424 feedback inhibition motif that modulates the nociceptive rolling circuit. The interplay we
425 observed among SeIN128 neurons, Basin-2, and A00c are consistent with this view. Our findings
426 revealed that activation of SeIN128 neurons has a suppressive effect on Basin-2 activity and,
427 notably, on the duration of rolling. These observations support the idea that feedback inhibition is
428 critical in regulating the temporal aspects of nociceptive responses.

429 **Inhibition of Basin-2 by SeIN128 neurons is mediated by axo-axonal synapses**

430 Neurons form a wide variety of neural networks that perform various computations in the brain.
431 Typically, a neuron receives inputs via axo-dendritic synapses (i.e., contacts made by the axon
432 terminals of an upstream neuron with its dendrites), which play a role in the spatial and temporal
433 computations that lead to the firing of action potentials. Less commonly, the axon terminals of an

434 upstream neuron may contact the soma (i.e., via axo-somatic synapses) or axon (i.e., via axo-
435 axonal synapses) of a downstream neuron (Palay, 1956; Pinault et al., 1997; Zheng et al., 2018).
436 Axo-axonal synapses have a subtle effect on neurotransmission at the network level because the
437 activity in presynaptic neurons does not alter the membrane potential (Cattaert & El Manira,
438 1999; Guo & Hu, 2014; McGann, 2013). Axo-axonal synapses mainly affect the release
439 probability of neurotransmitter vesicles in response to an action potential triggered in the
440 postsynaptic neuron (McGann, 2013; Oleson et al., 2012).

441 Recent studies suggest that the activity of axo-axonal synapses can prevent the transmission of
442 action potentials. For example, it has been reported that, neurotransmission mediated by type-B
443 muscarinic receptors at lateral axo-axonal connections between *Drosophila* Kenyon Cells is
444 critical for stimulus specificity learning in drosophila (Manoim et al., 2022); inhibitory axo-
445 axonal connections between Chandelier cells and CA1 pyramidal cells are important for activity-
446 dependent plasticity (Pan-Vazquez et al., 2020; Schneider-Mizell et al., 2021); and GABAergic
447 axo-axonal interneurons in the amygdala are crucial for generating action potentials in the
448 principal output cells (Veres et al., 2023). Furthermore, EM connectome analyses of the entire
449 larval brain reveal that ~70% of all synapses in drosophila larvae are axo-dendritic whereas
450 ~30% are axo-axonal, suggesting that the latter may have considerable influence over network
451 function (Winding et al., 2023).

452 In this study, we found a feedback connection between SeIN128 and Basin-2 mediated by axo-
453 axonal synapses (Figure4 – supplementary 2E-G). The slow increase of SeIN128 activity in
454 response to Basin-2 or A00c activation could potentially occur because of these axo-axonal
455 connections. This delayed activity may play an important role in the feedback inhibition of
456 Basin-2 activity, and in turn, the termination of rolling.

457 **Roles of Basin-2 and Basin-4 in escape behavior**

458 Previous studies have shown that, Basin-2 and Basin-4 receive both chordotonal sensory and
459 nociceptive sensory inputs, and in addition, play a critical role in escape behavior (Ohyama et al.,
460 2015). Here we investigated the differences between rolling induced by activation of Basin-2 or
461 Basin-4. We found that activation of Basin-2 induced rolling that was sustained. Furthermore,
462 activation of SeIN128 neurons reduced the duration of rolling induced by joint activation of
463 Basin-2, which resulted in a delay in the onset of rolling and an earlier termination of rolling.
464 These data indicate that activation of Basin-2 serves to maintain rolling. Connectome data

465 indicate that SeIN128 neurons provide inhibitory input onto Basin-2, which is consistent with the
466 finding that SeIN128 activation reduces the duration of rolling.

467 On the other hand, activation of Basin-4 induced rolling that was transient, which was then
468 followed by rapid crawling. Furthermore, activation of SeIN128 neurons reduced the probability
469 of rolling but did not affect the duration of rolling (Figure 8F). This suggests that activation of
470 Basin-4 is important for the induction of rolling, but not its maintenance. The behavioral effects
471 of coactivating SeIN128 and Basin-4, together with connectome data indicating the lack of any
472 connections between SeIN128 neurons and Basin-4, suggest that these descending neurons target
473 neurons downstream of Basin-4 neurons.

474 **Other inputs onto SeIN128 neurons modify escape behavior**

475 The dendritic regions of SeIN128 neurons are located in the SEZ and brain, suggesting that
476 SeIN128 neurons receive other inputs from SEZ and brain neurons. In this study, we did not
477 examine these inputs. Connectome data indicate that MB output neurons project onto SeIN128
478 neurons (Ohyama et al., 2015). Given the well-established role of MB neurons in learning, this
479 finding suggests that SeIN128 neurons could play a role in experience-dependent modulation of
480 rolling. Two recent studies have shown that descending neurons inhibit nociceptive neurons
481 (Nakamizo-Dojo et al., 2023; Oikawa et al., 2023). Specifically, one study showed that insulin
482 signaling modulates escape behavior by activating GABAergic descending neurons that inhibit
483 nociceptive sensory neurons (Nakamizo-Dojo et al., 2023), whereas the other demonstrated an
484 inhibitory mechanism mediated by the neuropeptide Drosulfakinin, a homologue of
485 cholecystokinin in mammals (Oikawa et al., 2023). Whether SeIN128 neurons are also
486 influenced by insulin signaling or Drusulfakinin, however, remains to be seen.

487 In summary, our study delineates a neuronal ensemble consisting of a set of descending
488 inhibitory neurons, a first-order interneuron (Basin-2), and an ascending neuron (A00c) in fruit
489 fly larvae, which functions as an inhibitory feedback circuit that regulates the probability and
490 duration of rolling, and thereby facilitates the transition from rolling to crawling. This work
491 represents another example of how detailed analyses of connectomes and functional analyses of
492 neural and behavioral activity can identify mechanistic explanations of behavioral phenomena at
493 the level of neural circuits—in this case, how neuronal ensembles generate behavioral sequences.

494 **Materials and Methods:**

495 **Key resources table**

Reagent or resource	Source or reference	Identifiers
Antibodies		
Mouse anti-Brp monoclonal antibody, clone nc82	Developmental Studies Hybridoma Bank	Cat# nc82, RRID:AB_2314866
Mouse 1D4 anti-fasciclin II antibody	Developmental Studies Hybridoma Bank	Cat# 1D4 anti-Fasciclin II, RRID:AB_528235
Rat anti-cadherin, DN- (extracellular domain) antibody	Developmental Studies Hybridoma Bank	Cat# DN-Ex #8, RRID:AB_528121
Chicken anti-GFP antibody	Abcam	Cat# ab13970, RRID:AB_300798
Rabbit anti-GFP polyclonal antibody, unconjugated	Thermo Fisher Scientific	Cat# A-6455, RRID:AB_221570
Rabbit anti-DsRed polyclonal antibody	Takara Bio	Cat# 632496, RRID:AB_10013483
Mouse anti-Drosophila choline acetyltransferase monoclonal antibody, unconjugated	Developmental Studies Hybridoma Bank	Cat# chat4b1, RRID:AB_528122
Rabbit anti-GABA	Millipore Sigma	Cat # A2052
Rabbit anti-GLUT1	Gift from Aberbe lab	
Goat anti-chicken IgY (H+L) secondary antibody, Alexa Fluor™ 488	Thermo Fisher Scientific	Cat# A-11039, RRID:AB_2534096
Goat anti-rabbit IgG (H+L) highly cross-adsorbed secondary antibody, Alexa Fluor™ 488	Thermo Fisher Scientific	Cat# A-11034, RRID:AB_2576217
Goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor™ 568	Thermo Fisher Scientific	Cat# A-11011, RRID:AB_143157
Goat anti-mouse IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor™ 568	Thermo Fisher Scientific	Cat# A-11004, RRID:AB_2534072
Goat anti-rat IgG (H+L) Alexa Fluor™ 568	Thermo Fisher Scientific	Cat# A-11077, RRID:AB_2534121
Chemicals		
PBS, Phosphate Buffered Saline, 10x solution	Fisher Scientific	Cat# BP399-1
Triton X-100	Millipore Sigma	Cat# X100-100ML
Paraformaldehyde 20% aqueous solution	Electron Microscopy Sciences	Cat# 15713
Normal goat serum	Gibco	PCN5000
VECTASHIELD antifade mounting medium	Vector Laboratories	Cat# H-1000-10
Drosophila Agar	Diamed	Cat# GEN66-103
All Trans Retinal	Toronto Research Chemicals Inc.	Cat# R24000
Poly-L-lysine	Sigma-Aldrich	Cat# P1524
Fly strains		
R72F11-Gal4 (attp2)	Bloomington Drosophila Stock Center	RRID: BDRC_39786
R71A10-Gal4 (attp2)	Bloomington Drosophila Stock Center	RRID: BDRC_39562
w; R54B01-Gal4 ^{AD} ; R46E07-Gal4 ^{DBD} (SS04185)	Gift from Zlatic lab	N/A
w; R72F11-Gal4 ^{AD} ; R38H09-Gal4 ^{DBD} (SS00739)	Gift from Zlatic lab	N/A
w; R72F11-Gal4 ^{AD} ; R57F07-Gal4 ^{DBD} (SS00740)	Gift from Zlatic lab	N/A
MB247-Gal4, mef2-Gal4	Bloomington Drosophila	RRID:

	Stock Center	BDRC_50742
R13F02-LexA (attP40)	Bloomington Drosophila Stock Center	RRID: BDRC_52460
R72F11-LexA (attP40)	Bloomington Drosophila Stock Center	RRID: BDRC_94661
R71A10-LexA (attP40)	Gift from Zlatic lab	N/A
Mi{Trojan-LexA-QFAD.2}Gad1	Bloomington Drosophila Stock Center	RRID: BDRC_60324
20xUAS-IVS-CsChrimson::mVenus (attP2)	Bloomington Drosophila Stock Center	RRID: BDRC_55134
20xUAS-IVS-CsChrimson::mVenus (attP18)	Bloomington Drosophila Stock Center	RRID: BDRC_55136
20xUAS-IVS-CsChrimson::mVenus (attP18);;R72F11-Gal4 (attP2)	Bloomington Drosophila Stock Center	RRID: BDRC_79599
13xLexAop2-IVS-CsChrimson::mVenus (attP18)	Bloomington Drosophila Stock Center	RRID: BDRC_55137
13xLexAop2-IVS-CsChrimson::tdTomato (attP18)	Gift from Rubin lab	N/A
13xLexAop2-IVS-CsChrimson::tdTomato (vk000005)	Bloomington Drosophila Stock Center	RRID: BDRC_82183
20xUAS(FRT.stop)CsChrimson.mVenus(attP18), pBPhsFlp2::Pest (AttP3)	Gift from Rubin lab	N/A
hs(KDRT.stop)FLP (attP18)	Bloomington Drosophila Stock Center	RRID: BDRC_67091
20xUAS(FRT.stop)-CsChrimson::mVenus	Gift from Rubin lab	N/A
UAS-TeTxLC.tnt	Bloomington Drosophila Stock Center	RRID: BDRC_28838
20xUAS-TTS-Shibire ^{ts1} -p10(vk00005)	Bloomington Drosophila Stock Center	PRID: BDRC_66600
10xUAS-IVS-mry::GFP (attP18)	Gift from Rubin lab	N/A
13xLexAop-dsRed (attP2)	Gift from Rubin lab	N/A
20xUAS-IVS-GCaMP6s (vk00005)	Bloomington Drosophila Stock Center	RRID: BDRC_4279
20xLexAop-IVS-Syn21-GCaMP6s (su(HW)attP8)	Gift from Rubin lab	N/A
20xUAS-Syn21-opGCaMP6s (su(Hw)attP8)	Gift from Rubin lab	N/A
10xUAS-Syn21-CsChrimson88::tdTomato(attP18)	Gift from Rubin lab	N/A
HMS02355	Bloomington Drosophila Stock Center	RRID: BDRC_41958
HMC03388	Bloomington Drosophila Stock Center	RRID: BDRC_51817
JF02989	Bloomington Drosophila Stock Center	RRID: BDRC_28353
HMC02975	Bloomington Drosophila Stock Center	RRID: BDRC_50608
HMC03643	Bloomington Drosophila Stock Center	RRID: BDRC_52903
Software and algorithms		
FIJI	https://fiji.sc/	RRID: SCR_002285
MATLAB	MathWorks	RRID: SCR_001622
CATMAID	https://catmaid.readthedocs.org/	RRID: SCR_006278
Multi Worm Tracker	http://sourceforge.net/projects/mwt	N/A
ZEN	Carl Zeiss Microscopy	Version 2.1 (blue edition)

Affinity Designer	Affinity	Version 1.10.5
ScanImage	MBF Bioscience	N/A

496

497 **Fly stocks and maintenance**

498 All *D. melanogaster* stock lines used in this study were raised on Bloomington Drosophila Stock
 499 Center cornmeal food. Flies were maintained in a humidity- and temperature-controlled chamber
 500 kept at 18°C or 25°C, 40% humidity, and set to a 12-hour light/dark cycle. All crosses for
 501 experiments were reared at 25°C and 40% humidity.

502 **Fly genotypes used in experiments**

503 **-Main figures**

Fig.	Panel	Labels	Genotypes
1	A	Basin	20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4/+
1	A	Basin + SS04185	20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DB/ R72F11-Gal4
1	B, D- G	-	20xUAS-IVS-CsChrimson::mVenus/+; +; R72F11-Gal4/+
1	B, D- G	SS04185	20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DB/ R72F11-Gal4
1	C	- / UAS-CsChrim	20xUAS-IVS-CsChrimson::mVenus/+;
1	C	SS04185 / UAS-CsChrim	20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DB/+
1	C	- / 72F11>CsChrim	20xUAS-IVS-CsChrimson::mVenus/+; +; R72F11-Gal4/+
1	C	SS04185 / 72F11>CsChrim	20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DB/ R72F11-Gal4
2	A		10xUAS-IVS-mry::GFP/+; R54B01-Gal4.AD/+; R46E07-Gal4.DB/+
2	B	control	20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DB/ R72F11-Gal4
2	B	MB>KZip ⁺	20xUAS-IVS-CsChrimson::mVenus/+; R13F02-LexA,LexAop-KZip ⁺ /R54B01-Gal4.AD; R72F11-Gal4/R46E07-Gal4.DB
2	C-E	MB>KZip ⁺	20xUAS-IVS-CsChrimson::mVenus/+; R13F02-LexA,LexAop-KZip ⁺ /; R72F11-Gal4/+
2	C-E	SS04185	20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DB/ R72F11-Gal4
2	C-E	MB>KZip ⁺ , SS04185	20xUAS-IVS-CsChrimson::mVenus/+; R13F02-LexA,LexAop-KZip ⁺ /R54B01-Gal4.AD; R72F11-Gal4/R46E07-Gal4.DB
2	F-H	-	w+, hs(KDRT.stop)FLP/13xLexAop2-IVS-CsChrimson::tdTomato; R54B01-Gal4.AD/72F11-LexA; 20xUAS-(FRT.stop)-CsChrimson::mVenus/R46E07-Gal4.DB
2	F-H	SS04185-DN	w+, hs(KDRT.stop)FLP/13xLexAop2-IVS-CsChrimson::tdTomato; R54B01-Gal4.AD/72F11-LexA; 20xUAS-(FRT.stop)-CsChrimson::mVenus/R46E07-Gal4.DB
3	D, E		10xUAS-IVS-mry::GFP/+; R54B01-Gal4.AD/+; R46E07-Gal4.DB/+
3	F		w; R54B01-Gal4.AD/R72F11-LexA; R46E07-Gal4.DB/13xLexAop2-IVS-CsChrimson::tdTomata, 20xUAS-IVS-GCaMP6s
3	H		w; R54B01-Gal4.AD/R71A10-LexA; R46E07-Gal4.DB/13xLexAop2-IVS-CsChrimson::tdTomata, 20xUAS-IVS-GCaMP6s

3	J		w; <i>R54B01-Gal4.AD/ppk1.9-LexA; CsChrimson::tdTomata, 20xUAS-IVS-GCaMP6s</i>	<i>R46E07-Gal4.DBD/13xLexAop2-IVS-</i>
4	B		w; <i>R72F11-LexA/R54B01-Gal4.AD; 13xLexAop-CsChrimson, 20xUAS-IVS-UAS-GCaMP6s/R46E07-Gal4.DBD</i>	<i>-</i>
4	C		w; <i>R71A10-LexA/R54B01-Gal4.AD; 13xLexAop-CsChrimson, 20xUAS-IVS-UAS-GCaMP6s/R46E07-Gal4.DBD</i>	<i>-</i>
4	D		w; <i>R72F11-LexA/+; 13xLexAop2-IVS -CsChrimson::tdTomato, 20xUAS-IVS-UAS-GCaMP6s/R71A10-Gal4</i>	<i>-</i>
4	E	A00c	w; <i>R72F11-LexA/+; 13xLexAop2-IVS -CsChrimson::tdTomato, 20xUAS-IVS-UAS-GCaMP6s/R71A10-Gal4</i>	<i>-</i>
4	E	SS04185	w; <i>R72F11-LexA/R54B01-Gal4.AD; 13xLexAop2-IVS -CsChrimson::tdTomato, 20xUAS-IVS-UAS-GCaMP6s/R46E07-Gal4.DBD</i>	<i>-</i>
5	A		<i>10xUAS-mryGFP; R54B01-Gal4.AD/13x-LexAop-dsRed; R46E07-Gal4.DBD/ Mi{Trojan-LexA-QFAD.2}Gad1</i>	<i>-</i>
5	B-D	-	<i>13xLexAop2-IVS-CsChrimson::mVenus; R72F11-lexA/+; HMS02355/+</i>	<i>-</i>
5	B-D	SS04185	<i>13xLexAop2-IVS-CsChrimson::mVenus; HMS02355/R46E07-Gal4.DBD</i>	<i>R72F11-lexA/R54B01-Gal4.AD;</i>
6	A-F	-	<i>13xLexAop2-IVS-CsChrimson::mVenus; R72F11-LexA/+; UAS-TeTxLC.tnt /+</i>	<i>-</i>
6	A-F	SS04185	<i>13xLexAop2-IVS-CsChrimson::mVenus; R72F11-LexA/R54B01-Gal4.AD; UAS-TeTxLC.tnt/R46E07-Gal4.DBD</i>	<i>-</i>
7	A, B	-	<i>20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4/+</i>	<i>-</i>
7	A, B	GABA-B-R1 ¹	<i>20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4/UAS-HMC03388</i>	<i>-</i>
7	A, B	GABA-B-R1 ²	<i>20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4/UAS-JF02989</i>	<i>-</i>
7	A, B	GABA-B-R2	<i>20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4/UAS-HMC02975</i>	<i>-</i>
7	A, B	GABA-A-R	<i>20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4/UAS-HMC03643</i>	<i>-</i>
7	C	Basin activation	<i>20xUAS-Syn21-opGCaMP6s, 10XUAS-Syn21-CsChrimson88::tdTomato/+; CyO/+; TM6/R72F11-Gal4</i>	<i>-</i>
7	C	SS04185 and Basin activation	<i>20xUAS-Syn21-opGCaMP6s, 10XUAS-Syn21-CsChrimson88::tdTomato/+; CyO/R54B01-Gal4.AD; R72F11-Gal4/R46E07-Gal4.DBD</i>	<i>-</i>
8	A-D	-	<i>20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4.AD/+; R38H09-Gal4.DBD/+</i>	<i>-</i>
8	A-D	SS04185	<i>20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4.AD/R54B01-Gal4.AD; R38H09-Gal4.DBD/R46E07-Gal4.DBD</i>	<i>-</i>
8	E-H	-	<i>20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4.AD/+; R57F07-Gal4.DBD/+</i>	<i>-</i>
8	E-H	SS04185	<i>20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4.AD/R54B01-Gal4.AD; R57F07-Gal4.DBD/R46E07-Gal4.DBD</i>	<i>-</i>

504

-Supplementary figures

Fig.	Panel	Labels	Genotypes
1	A-D	-	<i>20xUAS-IVS-CsChrimson::mVenus/+;</i>
1	A-D	SS04185	<i>20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DBD/+</i>
1	E-H	-	<i>20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4/+</i>
1	E-H	SS04185	<i>20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DBD/R72F11-Gal4</i>
1	I	- / UAS-CsChrim	<i>20xUAS-IVS-CsChrimson::mVenus/+;</i>
1	I	SS04185 / UAS-CsChrim	<i>20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DBD/+</i>
1	I	- / 72F11>CsChrim	<i>20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4/+</i>

1	I	SS04185 72F11>CsChrim	/ 20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DBD/R72F11-Gal4
2	A		20xUAS-IVS-CsChrimson::mVenus/+; R13F02-LexA,LexAop-KZip ⁺ /R54B01-Gal4.AD; R72F11-Gal4/R46E07-Gal4.DBD
2	B, C	MB>Kzip ⁺	20xUAS-IVS-CsChrimson::mVenus/+; R13F02-LexA,LexAop-KZip ⁺ /; R72F11-Gal4/+
2	B, C	SS04185	20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DBD/R72F11-Gal4
2	B, C	MB>Kzip ⁺ , SS04185	20xUAS-IVS-CsChrimson::mVenus/+; R13F02-LexA,LexAop-KZip ⁺ /R54B01-Gal4.AD; R72F11-Gal4/R46E07-Gal4.DBD
2	D, E	control	20xUAS-IVS-CsChrimson::mVenus/+; +; R72F11-Gal4/+
2	D, E	MB247	20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DBD/R72F11-Gal4
2	F, G		w+, hs(KDRT.stop)FLP/13xLexAop-CsChrimson::tdTomato; R54B01-Gal4.AD/72F11-LexA; 20xUAS-(FRT.stop)-CsChrimson::mVenus/R46E07-Gal4.DBD
2	H-J	control	w+, hs(KDRT.stop)FLP/13xLexAop-CsChrimson::tdTomato; R54B01-Gal4.AD/72F11-LexA; 20xUAS-(FRT.stop)-CsChrimson::mVenus/R46E07-Gal4.DBD
2	H-J	SS04185-DN	w+, hs(KDRT.stop)FLP/13xLexAop-CsChrimson::tdTomato; R54B01-Gal4.AD/72F11-LexA; 20xUAS-(FRT.stop)-CsChrimson::mVenus/R46E07-Gal4.DBD
4		SelN128 (Basin activation)	w; R72F11-LexA/R54B01-Gal4.AD; 13xLexAop2-IVS -CsChrimson::tdTomato, 20xUAS-IVS- GCaMP6s/R46E07-Gal4.DBD
4		SelN128 (A00c activation)	w; R71A10-LexA/R54B01-Gal4.AD; 13xLexAop2-IVS -CsChrimson::tdTomato, 20xUAS-IVS-GCaMP6s/R46E07-Gal4.DBD
4		A00c (Basin activation)	w; R72F11-LexA/+; 13xLexAop2-IVS -CsChrimson::tdTomato, 20xUAS-IVS-GCaMP6s/R71A10-Gal4
5	A, B		10xUAS-IVS-mry::GFP/+; R54B01-Gal4.AD/+; R46E07-Gal4.DBD/+
6	A-G	-	13xLexAop2-IVS-CsChrimson::mVenus; R72F11-LexA/+; 20xUAS-TTS-Shibire ^{ts1} /+
6	A-G	SS04185	13xLexAop2-IVS-CsChrimson::mVenus; R72F11-LexA/R54B01-Gal4.AD; 20xUAS-TTS-Shibire ^{ts1} /R46E07-Gal4.DBD
7	A-D	-	20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4/+
7	A-D	GABA-B-R1 ¹	20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4/UAS-HMC03388
7	A-D	GABA-B-R1 ²	20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4/UAS-JF02989
7	A-D	GABA-B-R2	20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4/UAS-HMC02975
7	A-D	GABA-A-R	20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4/UAS-HMC03643
7	E	Basin activation	20xUAS-Syn2I-opGCaMP6s,10XUAS-Syn2I-CsChrimson88::tdTomato/+; CyO/+; TM6/R72F11-Gal4
7	F	Basin + SelN128	20xUAS-Syn2I-opGCaMP6s,10XUAS-Syn2I-CsChrimson88::tdTomato/+; CyO/R54B01-Gal4.AD; R72F11-Gal4/R46E07-Gal4.DBD
8	A, C	Basin-2	20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4.AD/+; R38H09-Gal4.DBD/+
8	B, C	Basin-4	20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4.AD/+; R57F07-Gal4.DBD/+
8	D, E	-	20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4.AD/+; R38H09-Gal4.DBD/+
8	D, E	SS04185	20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4.AD/R54B01-Gal4.AD; R38H09-Gal4.DBD/R46E07-Gal4.DBD
8	F, G	-	20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4.AD/+; R57F07-Gal4.DBD/+
8	F, G	SS04185	20xUAS-IVS-CsChrimson::mVenus/+; R72F11-Gal4.AD/R54B01-Gal4.AD; R57F07-Gal4.DBD/R46E07-Gal4.DBD

506 **Behavior assay**

507 Larvae were kept in the dark at 25°C for four days to grow to the 3rd instar stage. To
508 optogenetically stimulate neurons, larvae were raised on fly food plates with 0.2 mM trans-
509 retinal (Toronto Research Chemicals, R240000). Before the experiment, food plates with larvae
510 were rinsed with a 15% sucrose solution to separate the larvae from the food. Larvae were then
511 moved to a sieve, washed with water, dried, and placed evenly on 2% agar plates. The agar plate
512 with animals were placed under a camera in the arena of the behavior rig.

513 - **Behavior apparatus**

514 The behavior rig consisted of several apparatuses, including a C-MOS camera (Grasshopper
515 Camera USB3, GS3-U3-41C6M-C, FLIR), infrared illumination, a 610-nm light-emitting diode
516 (LED) for optogenetic manipulations, a computer, and a heating panel. Both the camera and LED
517 source were controlled by the computer. LED stimuli were controlled by customized software
518 while larval behaviors were recorded using the Multi-Worm Tracker (MWT) software
519 (Swierczek et al., 2011). These two pieces of software were synchronized in the behavior assay
520 to precisely deliver the stimulation during specified time windows.

521 - **Optogenetic stimulation**

522 Before delivering optogenetic stimulation, larvae were placed in the arena for 45 s. Subsequently,
523 two 30-s 624-nm LED stimuli were presented successively with a 30-s interval between them.
524 The LED intensity used in each experiment is shown below.

Figure number	Optogenetic stimulation ($\mu\text{W}/\text{mm}^2$)	irradiance
Figure 1	0.84	
Figure 1 – supplementary figure-1	0.84	
Figure 2C-E	5.9	
Figure 2F-H	1.8	
Figure 2 – supplementary figure-1B-C	5.9	
Figure 2 – supplementary figure-1D-E	0.84	
Figure 2 – supplementary figure-1H-J	1.8	
Figure 5B-D	1.8	
Figure 6	1.8	
Figure 6 – supplementary figure-1	1.8	
Figure 7A-B	0.84	
Figure 7 – supplementary figure-1A-D	0.84	
Figure 8A-D	3.9	
Figure 8E-H	1.8	
Figure 8 – supplementary figure-1A-C	1.8	
Figure 8 – supplementary figure-1D-E	3.9	
Figure 8 – supplementary figure-1F-G	1.8	

525

526 **Thermal stimulation**

527 To provide heat stimulation, we built thermal control systems with a proportional-integral-
528 derivative (PID) temperature controller (ITC-106VH, Inkbird), a solid-state relay for temperature
529 controllers (SSR-25A, Inkbird), a K-Type thermocouple to detect temperature, and a heat panel.
530 The thermal control system was connected to a custom-built incubator designed to maintain a
531 steady temperature inside the behavior rig at 32°C and warm the agar plates. The temperature of
532 the agar plates was monitored by a thermometer gun (62 MAX+ Compact Infrared Thermometer,
533 Fluke) before and after the experiment to verify the appropriate temperature for *shibire^{ts1}* to be
534 functional. Larvae were sealed in a plastic sieve and pre-heated in a water bath for 10 min to
535 reach 32°C before the test. In order to maintain the temperature above 30°C during the test, a
536 replica of the thermal control system mentioned above was installed in the behavior rig, and the
537 behavior rig was pre-heated overnight before any thermal experiment.

538 For *shibire^{ts1}* experiments with heat stimulation, during the first 5 s of the test, larvae were left on
539 the agar plates without LED stimulation. Subsequently, the larvae were optogenetically
540 stimulated with a 624-nm LED for 30 s.

541 **Behavior analysis**

542 Larvae were tracked in real-time using MWT software
543 (<https://github.com/Ichoran/choreography>). Objects that were tracked for less than 5 s or moved
544 less than one body length of a larva were rejected. The contour, spine, and center of mass were
545 generated and recorded by MWT as a function of time. From these tracking data, the key
546 parameters of larval motion were computed using specific Choreography (a component of the
547 MWT software package) variables tailored for *Drosophila* larvae (as opposed to *C. elegans*) as
548 described previously (Ohyama et al., 2013; Ohyama et al., 2015). We refer readers to the open-
549 source package for further details of the software implementations for the above calculations.

550 - **Behavior detection**

551 After extracting features from Choreography, we used an unsupervised machine learning
552 behavior classification algorithm to detect and quantify the following behaviors: hunching
553 (Hunch), head-bending (Turn), stopping (Stop), and peristaltic crawling (Crawl) as previously
554 reported (Masson et al., 2020). Escape rolling (Roll) was detected with a classifier developed
555 with Janelia Automatic Animal Behavior Annotator (JAABA) (Kabra et al., 2013; Ohyama et al.,

556 2015). JAABA transformed the MWT tracking data into a collection of ‘per-frame’ features and
557 regenerated videos of the tracked larvae. Behaviors were then labeled manually frame-by-frame
558 with these regenerated videos. We labeled roll, non-roll, and unknown frames in the randomly
559 chosen ~10,000 frames to train the algorithm to correctly classify larval rolling behavior. This
560 classifier, which has false negative and false positive rates of 7.4% and 7.8%, respectively
561 (n=102), was utilized to detect rolling in this paper.

562 **- Behavior quantification**

563 The outputs of these behavior detection pipelines served as the input to a customized follow-up
564 MATLAB-based analysis. Only the larvae being tracked fully during the stimulation window
565 were selected for analysis. The percentages of animals performing given behaviors as well as
566 their crawling speed in time series at a frame rate of 10 fps were plotted to depict the behavioral
567 responses. To quantify the behavioral phenotype at the population level, the proportions of larvae
568 that performed given behaviors at least once in the first 5 s after the onset of the stimulation were
569 calculated in percentages. A collection of individual-level parameters (e.g., aggregated durations
570 of rolling throughout the stimulation window, starts and ends of the first rolling event after
571 stimulus onset, starts of the first crawling event after the first rolling event in the stimulation
572 window) were generated and analyzed to describe the effects of stimulation on escape behaviors.
573 Specifically, the starts of the first crawling events after the first rolling events were recorded as
574 30 s by default if larvae rolled but never initiated crawling during the stimulation window.
575 Furthermore, the cumulative plots of the durations of each rolling event were contrasted to
576 describe the event-level differences.

577 **Larval dissections and immunohistochemistry**

578 The CNSs of *Drosophila* larvae were dissected in phosphate-buffered saline (PBS). After
579 dissection, tissues were fixed with 4% paraformaldehyde for 20 min, washed with PBS 3 times
580 and then washed with 0.4% Triton X-100 in PBS (PBST) twice. Samples were incubated at room
581 temperature with a blocking solution (5% normal goat serum [NGS]) for 1 h. Next, the samples
582 were incubated with the primary antibody solutions at 4°C overnight. The primary antibodies
583 were diluted at concentrations of 1:3000 for chicken anti-GFP; 1:1000 for rabbit anti-GFP and
584 rabbit anti-dsRed; 1:50 for mouse nc82; and 1:20 for rat anti-DN-Cadherin, mouse anti-Fas2,
585 mouse anti-choline acetyltransferase (ChAT), and rabbit anti-GLUT1 in 5% NGS. CNS samples
586 were then incubated with a secondary antibody solution at 4°C overnight. The secondary

587 antibodies, including anti-chicken Alexa488, anti-rabbit Alexa488, anti-mouse Alexa568, anti-
588 rabbit Alexa568, and anti-rat Alexa568, were all diluted at the concentration of 1:500. These
589 samples were mounted in VECTASHIELD antifade mounting medium and imaged by a Zeiss
590 LSM 710 confocal microscope with a 20x/NA0.8 objective lens (Zeiss) and Zen digital imaging
591 software (Zeiss). All images were processed using Fiji software (<https://imagej.net/Fiji>, ImageJ,
592 NIH Bethesda).

593 **Two-photon calcium imaging assay**

594 The CNSs of third instar larvae were dissected out in cold Baines external physiological saline
595 (135 mM NaCl, 5 mM KCl, 5 mM TES, 36 mM sucrose, 2 mM CaCl₂-2H₂O, 4 mM MgCl₂-
596 6H₂O, pH 7.15), and secured on a poly-L-lysine coated cover glass placed in a small Sylgard
597 plate.

598 Functional calcium imaging experiments were performed on a customized two-photon
599 microscope equipped with a Galvo-Resonant Scanner (Cambridge) controlled by Scanimage
600 software (mbf BIOSCIENCE) using a 40x/0.80NA water immersion objective (LUMPlanFL,
601 Olympus). A Mai Tai®, Ti:Sapphire Ultrafast Laser (Spectra Physics) tuned to 925 nm was used
602 for excitation of GCaMP protein. Fluorescence signals were collected with photomultiplier tubes
603 (Hamamatsu) after bandpass filtering. Images were acquired by the Galvo-Resonant Scanner for
604 a single plane of the CNS.

605 Each larva was stimulated by a 620-nm LED (Thorlabs) through the objective three times with a
606 30-s interval between periods of stimulation. Every stimulus consisted of a 30-ms pulse given
607 every 100 ms for a total of 1 s. Light intensity was measured to be 0.8-1.4 mW/mm². Images
608 were acquired at a resolution of 512 x 512 pixels with a frame rate of 30 fps. Fluorescence
609 intensities were averaged to 6 fps and processed in FIJI, and analyzed in MATLAB with
610 customized scripts. Regions of interest (ROI) were determined by the standard deviation of the
611 full recording. $\Delta F = (F - F_0)/F_0$. F_0 is the average of images taken 10 frames (i.e., 1.7 s) before
612 stimulation. F is the mean value of the fluorescence in the ROI averaged every 5 frames from the
613 start of the 5-s period before stimulation to end of the 15-s period after the onset of each
614 stimulation. For each larva, ΔF is obtained through averaging the ΔF during the three stimulation
615 periods. The peak ΔF s were the maximal values selected from the onset of stimulation to 15 s
616 after stimulus onset.

617 **Statistics**

618 The probabilities for each response were analyzed by Chi-square tests. For the other parameters,
619 when multiple groups were tested, their normality was examined first. If the normality
620 assumption was rejected, Kruskal-Wallis tests were performed for multiple group variance
621 comparisons, followed by multiple-comparison-corrected Wilcoxon–Mann–Whitney tests as post
622 hoc pairwise comparisons. If normality was met, analysis of variance (ANOVA) was performed
623 for variance comparisons and multiple-comparison-corrected student's t-tests were utilized for
624 pairwise comparisons. For two group comparisons, the Wilcoxon–Mann–Whitney test was
625 conducted if the normality assumption was offended, and the student's t-test was applied if
626 normality was met. All analyses were conducted with MATLAB.

627 **Data availability statement**

628 The original contributions presented in this study are included in the article/supplemental
629 material; further inquiries may be directed to the corresponding author.

630

631 **Conflict of interests**

632 The authors declare that the research was conducted in the absence of any commercial or
633 financial relationships that could be construed as a potential conflict of interests.

634

635 **Author contributions**

636 Conceptualization, J.Z. and T.O. Writing – Original Draft, J.Z. and T.O; Writing – Review &
637 Editing, J.Z., J-C.B., and T.O. Formal Analysis, J.Z., J-C.B., and T.O. Performing experiments,
638 J.Z., J-C.B., J.N., Y.Q.Z., and T.O. Supervision, T.O.

639

640 **Funding**

641 This work was funded by McGill University, the National Sciences and Engineering Research
642 Council (NSERC, RGPIN/04781-2017), the Canadian Institute of Health Research (CIHR, PTJ-
643 376836), the Fonds de recherche du Québec - Nature et technologies (FRQNT, 2019-N-25523),
644 and the Canada Foundation for Innovation (CFI, CFI365333). J-C.B was supported by Fonds de
645 recherche du Québec-Santé (FRQS) graduate training award.

646

647 **Acknowledgements**

648 We thank J.W. Truman, A. Cardona and M. Zlatic for generating and sharing the split Gal4 lines.
649 J. Truman and M. Zlatic for constructive inputs on the project. Confocal images were collected at
650 the McGill University Advanced Bio Imaging Facility (ABIF), RRID:SCR_017697. We also
651 thank the Bloomington stock center for providing fly stocks. We thank members of Ohyama lab
652 for critical comments on the manuscript.

653

654 **Inclusion and diversity**

655 One or more of authors of this paper self-identifies as a member of the LGBTYQ+ community.

656

657

658 **Figure legends:**

659 **Figure 1. Activation of SS04185 inhibits rolling evoked by activation of Basin neurons**

660 (A) Ethograms of Basin activation (top panel) and co-activation of SS04185 and Basins (bottom panel). Each row represents an individual larva. Pink, blue, green, orange, and purple lines represent bouts of rolling, turning, crawling, backward crawling, and hunching. The red bar and dashed lines indicate the time window during which neural activation was present. Genotypes: 664 *20xUAS-IVS-CsChrimson::mVenus/+;+; R72F11-Gal4/+* (top); *20xUAS-IVS-665 CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DB/ R72F11-Gal4* (bottom). 666 Genotypes in (B, D-G) are the same as those mentioned here.

667 (B) Time series of rolling probabilities of larvae during co-activation of SS04185 and Basins (red) and activation of Basins alone (black), as well as crawling speed of larvae during activation 668 of Basins alone (green). Shaded areas represent 95% confidential intervals for rolling 669 probabilities. The red bar and dashed lines denote the optogenetic stimulation window.

671 (C) Rolling probabilities of larvae with activation of different neurons. Error bars represent the 672 95% confidence interval. Genotypes from left to right: 1) *20xUAS-IVS-673 CsChrimson::mVenus/+; ; , 2) 20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; 674 R46E07-Gal4.DB/+, 3) 20xUAS-IVS-CsChrimson::mVenus/+; ; R72F11-Gal4/+, 4) 20xUAS-675 IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DB/ R72F11-Gal4*. n = 120, 676 118, 231, 155 from left to right. Statistics: Chi-square test, $\chi^2 = 0$, $p > 0.05$ for the first two 677 groups; $\chi^2 = 83.85$, $p < 0.001$ for the last two groups; and $\chi^2 = 365.51$, $p < 0.001$ for the 678 comparison between the first two groups and the last two groups.

679 (D) Cumulative plot of rolling duration. Statistics: Mann-Whitney test, $p < 0.001$, n = 652, 120.

680 (E) A violin plot showing start of first rolling bout for each larva during stimulation. Statistics: 681 Mann-Whitney test, $p = 0.027$, n = 225, 89.

682 (F) A violin plot displaying end of first rolling bout for each larva during stimulation. Statistics: 683 Mann-Whitney test, $p < 0.001$, n = 225, 89.

684 (G) A violin plot presenting start of first crawling bout for each larva during stimulation. 685 Statistics: Mann-Whitney test, $p < 0.001$, n = 214, 70.

686 $^{**}p < 0.01$, $^{***}p < 0.001$.

687

688 **Figure 2. SS04185-DN, but not SS04185-MB, inhibits rolling when co-activated with Basins**

689 (A) Morphology of SS04185 neurons. GFP, grey (left), green (right); nc82, magenta. Anterior,
690 up; dorsal view; scale bar, 100 μ m. Genotype: 10xUAS-IVS-mry::GFP/+; R54B01-Gal4.AD/+;
691 R46E07-Gal4.DBD/+.

692 (B) Kenyon cells are less labeled in SS04185 with MB>Kipper Zipper. CsChrimson expression
693 in Kenyon cells of SS04185 in Control and SS04185 with Killer Zipper in mushroom body
694 (MB). GFP, grey (left), green (right); nc82, magenta. Anterior, up; dorsal view; scale bar, 20 μ m.
695 Genotype: 20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DBD/+
696 (Control); 20xUAS-IVS-CsChrimson::mVenus/+; R13F02-LexA,LexAop-KZip⁺/R54B01-
697 Gal4.AD; R72F11-Gal4/R46E07-Gal4.DBD (MB>KZip⁺).

698 (C) Rolling probabilities of larvae with activation of SS04185 reduce the expression of
699 CsChrimson in mushroom body (MB) neurons. Error bars, 95% confidence interval. n = 78, 55,
700 100 from left to right. Statistics: Chi-square test, $\chi^2 = 2.32$, $p > 0.05$ for the two groups with
701 SS04185 expression; $\chi^2 = 37.50$, $p < 0.001$ for the comparison between the two groups on the
702 left; $\chi^2 = 70.45$, $p < 0.001$ for the comparison between the groups with MB>KZip⁺ expression
703 which reduce expression of CsChrimson in MB. Genotypes: 20xUAS-IVS-
704 CsChrimson::mVenus/+; R13F02-LexA,LexAop-KZip⁺/+; R72F11-Gal4/+ (black); 20xUAS-IVS-
705 CsChrimson::mVenusR54B01-Gal4.AD/+; R46E07-Gal4.DBD/R72F11-Gal4 (dark red);
706 20xUAS-IVS-CsChrimson::mVenus/+; R13F02-LexA,LexAop-KZip⁺/R54B01-Gal4.AD; R72F11-
707 Gal4/R46E07-Gal4.DBD (red). Genotypes in (D-E) are the same as mentioned here.

708 (D) Cumulative plot of rolling duration. Statistics: Kruskal-Wallis test: H = 8.28, $p = 0.016$;
709 Bonferroni-corrected Mann-Whitney test, $p > 0.05$ for all pairwise post-hoc tests, n = 103, 20, 27
710 from left to right.

711 (E) A violin plot of start of first crawling bout for each larva during stimulation. Statistics:
712 Kruskal-Wallis test: H = 15.02, $p < 0.001$; Bonferroni-corrected Mann-Whitney test, $p > 0.05$ for
713 the two groups with SS04185 expression; $p < 0.001$ for the comparison between the group
714 without SS04185 expression and the groups with full SS04185 expression, n = 65, 20, 7 from left
715 to right.

716 (F) The probabilities of larval rolling during first 5 s of stimulation. Error bars, 95% confidence
717 interval. n = 101, 126. Statistics: Chi-square test, $\chi^2 = 4.27$, $p = 0.039$. Genotype: 13xLexAop2-
718 IVS-CsChrimson::tdTomato/w⁺, hs-FLP; R54B01-Gal4.AD/72F11-LexA; 20XUAS-(FRT.stop)-
719 CsChrimson::mVenus/R46E07-Gal4.DBD. Genotypes in (G-H) are the same as mentioned here.

720 (G) Cumulative plot of rolling duration. Statistics: Mann-Whitney test, $p < 0.001$, n = 350, 473.
721 (H) A violin plot of start of first crawling bout for each larva during stimulation. Statistics:
722 Mann-Whitney test, $p < 0.001$, n = 97, 120.
723 ** $p < 0.01$, *** $p < 0.001$.

724

725 **Figure 3. SS04185-DN is identical to SeIN128**

726 (A) TEM neuron reconstruction of SeIN128 neurons. Left panel: anterior, up; dorsal view. Right
727 panel: anterior, up; dorsal, right; lateral view. Red dots, presynaptic sites. Cyan dots, postsynaptic
728 sites.

729 (B) A transverse section of larval CNS from EM reconstruction data. SeIN128 (green), Basins
730 (blue), and A00c (orange) are located in ventromedial tract (VM). mdIV, red; magenta, neural
731 tracts. DM, dorsomedial tract; VM, ventromedial tract. Dorsal, up; anterior view; scale bar, 1
732 μm .

733 (C) Cartoon generated based on transverse section of SeIN128, Basin-1 to Basin-4, A00c, and
734 mdIV from EM neuron reconstruction data and (D). Nerve tracts are shown in magenta. Dorsal,
735 up; posterior view. DM, dorsomedial tract; VM, ventromedial tract; CI, central-intermediate
736 tract; CL, central-lateral tract; DL, dorsolateral tract; VL, ventrolateral tract. SeIN128, green;
737 Basin-1 to Basin-4, blue; A00c, orange; mdIV, red.

738 (D) SS04185-expressing neurons co-stained with N-Cadherin. A cell body of SS04185-
739 Descending neuron located in ventral part of the subesophageal zone (SEZ). SS04185, Green; N-
740 Cadherin, magenta. Anterior, up; left, dorsal view; right, longitudinal section; scale bar, 100 μm .
741 Genotype: 10xUAS-IVS-mry::GFP/+; R54B01-Gal4.AD/+; R46E07-Gal4.DBD/+.

742 SS04185, Green; Cadherin, magenta. Anterior, left, dorsal, up; lateral view; scale bar, 100 μm .

743 (E) Transverse section of SS04185-DN co-stained with Fas2. SS04185-DN located at
744 ventromedial tract (VM). SS04185, Green; Fas2, magenta. Dorsal, up; posterior view; scale bar,
745 20 μm . DM, dorsomedial tract; VM, ventromedial tract; CI, central-intermediate tract; CL,
746 central-lateral tract; DL, dorsolateral tract; VL, ventrolateral tract. Genotype: 10xUAS-IVS-
747 mry::GFP/+; R54B01-Gal4.AD/+; R46E07-Gal4.DBD/+.

748 (F, H, J) SS04185-DN co-localized with Basins or A00C neuron tract but not MdIV. SS04185,
749 Green; Basins (F), A00c (H) or mdIV (J), magenta;. Genotype: w; R54B01-Gal4.AD/R72F11-
750 LexA(F) 71A10-LexA(H) or ppk1.9-LexA(J); R46E07-Gal4.DBD/I3xLexAop2-IVS-

751 *CsChrimson::tdTomato, 20xUAS-IVS-GCaMP6s*. Top panel: anterior, up; dorsal view; scale bar,
752 10 μ m. Bottom panel: dorsal, up; posterior view; scale bar, 5 μ m.

753 (G, I, K) SeIN128, Basin-2, A00c or mdIV morphologies from the TEM neural reconstruction.
754 Anterior, up; dorsal view. SS04185, green; Basin-2, blue; A00C, orange; mdIV, red.

755

756 **Figure 4. SeIN128 receives input from Basin and A00c neurons**

757 (A) Summary of the connectivity between SeIN128 and the escape circuit. SeIN128 receives
758 inputs from Basin-2 and A00c and provide feedback to Basin-2 and A00c. Synapse number
759 shown next to connection arrows, where line width is proportional to synapse number. All
760 connections in the ventral nerve cord are shown except unilateral synapses, <5 synapses,
761 between neurons. Each polygon represents a pair of the indicated neuron and segment (segment
762 number is shown under the neuron name). SeIN128, green; Basin-2, blue; A00c, orange; mdIV,
763 red.

764 (B, C) SeIN128 is functionally downstream of Basins (B) or A00c (C). Calcium transients, $\Delta F/F_0$
765 traces of GCaMP6s in SeIN128 axons (black line, mean) during 610-nm optogenetic activation
766 of Basins at various intensities. Vertical gray line represents optogenetic activation. Genotype: *w*;
767 *R72F11-LexA* (B) or *R71A10-LexA* (C) /*R54B01-Gal4.AD*; *13xLexAop2-IVS—*
768 *CsChrimson::tdTomato, 20xUAS-IVS-GCaMP6s/R46E07-Gal4.DBD*.

769 (D) A00c responses are faster and stronger than SeIN128 responses during activation of Basins.
770 Calcium transients (black line, mean; gray line, single recording) represented by $\Delta F/F_0$ in A00c
771 by of 610-nm optogenetic activation of Basins at various intensities. Genotype: *w*; *R72F11-*
772 *LexA/+; 13xLexAop2-IVS-CsChrimson::tdTomato, 20xUAS-IVS-GCaMP6s/R71A10-Gal4*.

773 For (B) to (D), irradiances from left to right are 0.04, 0.1, 0.3, 0.5, and 1.4 μ W/mm². For each
774 irradiance (n = 6), individual traces are shown with gray lines whereas the average of individuals
775 is shown in black. The shaded gray area indicates the period of optogenetic activation (0 to 1 s).

776 (E) The timing of the peak $\Delta F/F_0$ correlated with the identity of the neurons but not the peak
777 $\Delta F/F_0$ value. SeIN128 neurons are shown as orange dots, whereas A00c is shown as a green dot.

778

779 **Figure 5. SeIN128 is GABAergic and negatively controls rolling**

780 (A) Immunostaining of SeIN128 cell body (green) and GABAergic neuron (magenta). Genotype:
781 *10xUAS-IVS-mryGFP; R54B01-Gal4.AD/13xLexAop-dsRed; R46E07-Gal4.DBD/Trojan-GAD-*

782 *T2A-LexA*. White triangles indicate locations of SeIN128 cell bodies. Anterior, up; dorsal view;
783 scale bar, 10 μ m.

784 (B) Time series of rolling probabilities of larvae with Basin activation (black), or VGAT RNAi in
785 SS04185 and Basin activation (red). The red bar and dashed lines display the window of
786 optogenetic stimulation eliciting larval escape responses. Shaded areas show 95% confidential
787 intervals of rolling probabilities. Genotypes: *13xLexAop2-IVS-CsChrimson::mVenus*; *R72F11-*
788 *LexA*/+; *HMS02355*/+ (black); *13xLexAop2-IVS-CsChrimson::mVenus*; *R72F11-LexA/R54B01-*
789 *Gal4.AD*; *HMS02355/R46E07-Gal4.DB*D (red). Genotypes in (C, D) are the same as mentioned
790 here.

791 (C) Binned larval rolling probabilities during first 5 s of stimulation in (A). Error bars, 95%
792 confidence interval. n = 110, 73. Statistics: Chi-square test, $\chi^2 = 9.34, p < 0.001$.

793 (D) Cumulative plot of rolling duration. Statistics: Mann-Whitney test, $p = 0.015$, n = 55, 73.

794 ** $p < 0.01$, *** $p < 0.001$.

795

796 **Figure 6. Inhibition of SeIN128 prolongs rolling and delays initiation of crawling**

797 (A) Time series of rolling probabilities of larvae with Basin activation (black), or SS04185
798 inhibition and Basin activation (red). Shaded regions show 95% confidential intervals of rolling
799 probabilities. Genotypes: *13xLexAop2-IVS-CsChrimson::mVenus*; *R72F11-LexA*/+; *UAS-*
800 *TeTxLC.tnt*/+ (black); *13xLexAop2-IVS-CsChrimson::mVenus*; *R72F11-LexA/R54B01-Gal4.AD*;
801 *UAS-TeTxLC.tnt/R46E07-Gal4.DB*D (red). Genotypes in (B-F) are the same as mentioned here.

802 (B) Rolling probabilities during first 5 s of stimulation in (A). Error bars, 95% confidence
803 interval. n = 241, 164. Statistics: Chi-square test, $\chi^2 = 44.02, p < 0.001$.

804 (C) A violin plot of total time spent rolling for each individual larva during stimulation.
805 Statistics: Mann-Whitney test, $p < 0.001$, n = 221, 258.

806 (D) Cumulative plot of rolling duration. Statistics: Mann-Whitney test, $p < 0.001$, n = 160, 154.

807 (E) A violin plot of end of first rolling bout for each larva during stimulation. Statistics: Mann-
808 Whitney test, $p < 0.001$, n = 160, 154.

809 (F) A violin plot of start of first crawling bout for each larva during stimulation. Statistics: Mann-
810 Whitney test, $p < 0.001$, n = 65, 105.

811 ** $p < 0.01$, *** $p < 0.001$.

812

813 **Figure 7. SeIN128 sends feedback inhibition to Basins**

814 (A) Rolling probabilities for larvae with GABAR-RNAi in their Basin neurons. From left to
815 right, the genotypes are $20xUAS-IVS-CsChrimson::mVenus/+$; ; $R72F11-Gal4/+$ (black),
816 $20xUAS-IVS-CsChrimson::mVenus/+$; ; $R72F11-Gal4/UAS-HMC03388$ (dark green), $20xUAS-$
817 $IVS-CsChrimson::mVenus/+$; ; $R72F11-Gal4/UAS-JF02989$ (light green), $20xUAS-IVS-$
818 $CsChrimson::mVenus/+$; ; $R72F11-Gal4/UAS-HMC02975$ (yellow), and $20xUAS-IVS-$
819 $CsChrimson::mVenus/+$; ; $R72F11-Gal4/UAS-HMC03643$ (orange). Genotypes in (B) are the
820 same as mentioned here. $N = 320, 205, 159, 183, 182$ from left to right. Statistics: Chi-square
821 test, Bonferroni correction. GABA-B-R1¹ group: $\chi^2 = 8.76, p = 0.012$. GABA-B-R1² group: $\chi^2 =$
822 $24.70, p < 0.001$. GABA-B-R2 group: $\chi^2 = 25.77, p < 0.001$. GABA-A-R group: $\chi^2 = 16.29, p <$
823 0.001 .

824 (B) Cumulative plot of rolling duration. Statistics: Kruskal-Wallis test: $H = 69.52, p < 0.001$;
825 Bonferroni-corrected Mann-Whitney test, $p < 0.001$ for GABA-B-R1², GABA-B-R2, and
826 GABA-A-R RNAi groups, $n = 520, 488, 387, 582, 306$ from left to right.

827 (C) Summary of peak $\Delta F/F_0$ in Basin axons with or without SeIN128 activation under various
828 irradiances. Control groups shown in black are without SeIN128 activation while experimental
829 groups shown in red are with SeIN128 activation. Statistics: Mann-Whitney test, $p > 0.05$ for
830 irradiances of 0.04, 0.1, 1.4 $\mu\text{W}/\text{mm}^2$; $p = 0.016$ for irradiance of 0.3 $\mu\text{W}/\text{mm}^2$; $p = 0.032$ for
831 irradiance of 0.5 $\mu\text{W}/\text{mm}^2$. Genotype: $20xUAS-Syn21-opGCaMP6s$, $10xUAS-Syn21-$
832 $CsChrimson88::tdTomato/+$; $CyO/+;R72F11-Gal4/TM6$ (black); $20xUAS-Syn21-$
833 $opGCaMP6s, 10xUAS-Syn21-CsChrimson88::tdTomato/+; CyO/R54B01-Gal4.AD; R72F11-$
834 $Gal4/R46E07-Gal4.DB$ (red).

835 $**p < 0.01$, $***p < 0.001$.

836

837 **Figure 8. SeIN128 inhibits rolling elicited by both Basin-2 and Basin-4 activation**

838 (A) Binned larval rolling probabilities during the first 5 s of stimulation. Error bars, 95%
839 confidence interval. $n = 81, 119$. Statistics: Chi-square test, $\chi^2 = 35.51, p < 0.001$. Genotypes:
840 $20xUAS-IVS-CsChrimson::mVenus/+$; $R72F11-Gal4.AD/+$; $R38H09-Gal4.DB$ (black);
841 $20xUAS-IVS-CsChrimson::mVenus/+$; $R72F11-Gal4.AD/R54B01-Gal4.AD$; $R38H09-$
842 $Gal4.DB/R46E07-Gal4.DB$ (red). Genotypes in (B-D) are the same as mentioned here.

843 (B) Cumulative plot of rolling duration. Statistics: Mann-Whitney test, $p = 0.0034, n = 206, 83$.

844 (C) A violin plot of end of first rolling bout for each larva during stimulation. Statistics: Mann-
845 Whitney test, $p = 0.0047$, $n = 57, 38$.

846 (D) A violin plot of start of first crawling bout for each larva during stimulation. Statistics:
847 Mann-Whitney test, $p = 0.045$, $n = 107, 38$.

848 (E) Binned larval rolling probabilities during first 5 s of stimulation. Error bars, 95% confidence
849 interval. $n = 192, 213$. Statistics: Chi-square test, $\chi^2 = 64.81$, $p < 0.001$. Genotypes: $20xUAS-IVS-$
850 *CsChrimson::mVenus/+; R72F11-Gal4.AD/+; R57F07-Gal4.DBD/+* (black); $20xUAS-IVS-$
851 *CsChrimson::mVenus/+; R72F11-Gal4.AD/R54B01-Gal4.AD; R57F07-Gal4.DBD/R46E07-*
852 *Gal4.DBD* (red). Genotypes in (F-H) are the same as mentioned here.

853 (F) Cumulative plot of rolling duration. Statistics: Mann-Whitney test, $p = 0.032$, $n = 231, 71$.

854 (G) A violin plot of end of first rolling bout for each larva during stimulation. Statistics: Mann-
855 Whitney test, $p = 0.0047$, $n = 129, 61$.

856 (H) A violin plot of start of first crawling bout for each larva during stimulation. Statistics:
857 Mann-Whitney test, $p < 0.001$, $n = 159, 71$.

858 $^{**}p < 0.01$, $^{***}p < 0.001$.

859

860 **Legends for Supplementary figures**

861 **Figure S1. SS04185 inhibits rolling**

862 (A) Crawling probabilities of larvae with the activation of SS04185-expressing neurons. Error
863 bars, 95% confidence interval. Genotypes: *20xUAS-IVS-CsChrimson::mVenus/+;* (black);
864 *20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+;* *R46E07-Gal4.DBD/+* (blue).
865 Genotypes in (B-D) are the same as shown here. n = 308, 172. Statistics: Chi-square test, $\chi^2 =$
866 2.32, $p > 0.05$.

867 (B) Turning probabilities of larvae with activation of SS04185-expressing neurons. Error bars,
868 95% confidence interval. n = 308, 172. Statistics: Chi-square test, $\chi^2 = 1.77, p > 0.05$.

869 (C) Hunching probabilities of larvae with activation of SS04185-expressing neurons. Error bars,
870 95% confidence interval. n = 308, 172. Statistics: Chi-square test, $\chi^2 = 0.35, p > 0.05$.

871 (D) Stopping probabilities of larvae with activation of SS04185-expressing neurons. Error bars,
872 95% confidence interval. n = 308, 172. Statistics: Chi-square test, $\chi^2 = 3.97, p = 0.046$.

873 (E) A violin plot of total time spent rolling for each individual larva during stimulation. Statistics:
874 Mann-Whitney test, $p < 0.001$, n = 225, 89.

875 (F) Time series of crawling probabilities of SS04185 and Basin coactivation larvae (green) and
876 Basin activation only larvae (black). Shaded areas show 95% confidential intervals of the
877 crawling probabilities. Dashed lines display the window of optogenetic stimulation. Genotypes:
878 *20xUAS-IVS-CsChrimson::mVenus/+;* +; *R72F11-Gal4/+* (control); *20xUAS-IVS-*
879 *CsChrimson::mVenus/+; R54B01-Gal4.AD/+;* *R46E07-Gal4.DBD/R72F11-Gal4* (SS04185).
880 Genotypes in (G-H) are the same as mentioned here. n = 228, 124.

881 (G) A violin plot of interval between first roll and next crawl. Statistics: Mann-Whitney test, $p >$
882 0.05, n = 151, 74.

883 (H) Crawling probabilities of SS04185 and Basin coactivation larvae (green) and Basin
884 activation only larvae (black). Error bars, 95% confidence interval. n = 228, 124. Statistics: Chi-
885 square test, $\chi^2 = 28.36, p < 0.001$.

886 (I) A violin plot of crawling speed ratio of larvae with null, SS04185 neuron, Basin, SS04185
887 neuron and Basin activation (from left to right). Crawling speed ratio = crawling speed 5 to 10 s
888 after stimulation onset / crawling speed 0 to 5 s before stimulation onset. Statistics: Kruskal-
889 Wallis test: H = 144, $p < 0.001$; Bonferroni corrected Mann-Whitney test: $p > 0.05$ for two
890 groups on the left and two groups on the right. n = 308, 172, 227, 124. Genotypes from left to

891 right: 1) *20xUAS-IVS-CsChrimson::mVenus/+;; 2) 20xUAS-IVS-CsChrimson::mVenus/+;*
892 *R54B01-Gal4.AD/+; R46E07-Gal4.DBD/+; 3) 20xUAS-IVS-CsChrimson::mVenus/+;; R72F11-*
893 *Gal4/+; 4) 20xUAS-IVS-CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-*
894 *Gal4.DBD/R72F11-Gal4.*

895 $**p < 0.01$, $***p < 0.001$.

896 **Figure S2. SS04185-DN inhibits rolling**

897 (A) Morphology of SS04185 neurons with split Gal4 inhibition in mushroom body (MB). GFP,
898 Green. Anterior, up; dorsal view; scale bar, 100 μ m. Genotype: *20xUAS-IVS-*
899 *CsChrimson::mVenus/+; R13F02-LexA,LexAop-KZip⁺/R54B01-Gal4.AD; R72F11-*
900 *Gal4/R46E07-Gal4.DBD.*

901 (B) Time series of rolling probabilities of larvae with split Gal4 inhibition in MB (black),
902 SS04185 activation (dark red), and both SS04185 activation and split Gal4 inhibition in MB
903 (red). Shaded areas show 95% confidential intervals of rolling probabilities. The red bar and
904 dashed lines display the window of optogenetic stimulation. Genotypes: *20xUAS-IVS-*
905 *CsChrimson::mVenus/+; R13F02-LexA,LexAop-KZip⁺/+; R72F11-Gal4/+* (black); *20xUAS-IVS-*
906 *CsChrimson::mVenus/+; R54B01-Gal4.AD/+; R46E07-Gal4.DBD/R72F11-Gal4* (dark red);
907 *20xUAS-IVS-CsChrimson::mVenus/+; R13F02-LexA,LexAop-KZip⁺/R54B01-Gal4.AD; R72F11-*
908 *Gal4/R46E07-Gal4.DBD* (red). Genotypes in (C) are the same as mentioned here.

909 (C) A violin plot of total time spent rolling for each individual larva during stimulation.
910 Statistics: Kruskal-Wallis test: $H = 21.05, p < 0.001$; Bonferroni-corrected Mann-Whitney test, p
911 > 0.05 for the two groups with SS04185 expression; $p < 0.001$ for the comparison between the
912 group without SS04185 expression and the two groups with SS04185 expression, $n = 66, 17, 21$
913 from left to right.

914 (D) Time series of rolling probabilities of larvae with Basin activation (black), or Basin and MB
915 coactivation (red). The red bar and dashed lines display the window of optogenetic stimulation
916 eliciting larval escape responses. Shaded areas show 95% confidential intervals of rolling
917 probabilities. $n = 150, 143$. Genotype: *20xUAS-IVS-CsChrimson::mVenus/+; +; R72F11-Gal4/+*
918 (control); *20xUAS-IVS-CsChrimson::mVenus/+; +; MB247-Gal4/R72F11-Gal4* (MB247).
919 Genotypes in (E) are the same as mentioned here.

920 (E) Binned larval rolling probabilities during the first 5 s of stimulation in (D). Error bars, 95%
921 confidence interval. $n = 150, 143$. Statistics: Chi-square test, $\chi^2 = 3.80, p > 0.05$.

922 (F) and (G) show immunostaining of SS04185-expressing neurons. SS04185, Green. Anterior,
923 up; dorsal view; scale bar, 100 μ m Genotype: *w⁺, hs(KDRT.stop)FLP/13xLexAop2-IVS-*
924 *CsChrimson::tdTomato; R54B01-Gal4.AD/72F11-LexA; 20xUAS-FRT(stop)-*
925 *CsChrimson::mVenus/R46E07-Gal4.DB*. Genotypes in (H-K) are the same as mentioned here.
926 (F) has only SS04185-MB expression, and (G) has both SS04185-DN and SS04185-MB
927 expression.
928 (H) Time series of rolling probabilities of larvae with SS04185-MB activation (black), or
929 SS04185-MB and SS04185-DN coactivation (red). The red bar and dashed lines display the
930 window of optogenetic stimulation eliciting larval escape responses. Shaded areas show 95%
931 confidential intervals of rolling probabilities.
932 (I) A violin plot of total time spent rolling for each individual larva during stimulation. Statistics:
933 Mann-Whitney test, $p < 0.001$, n = 99, 124.
934 (J) A violin plot of end of first rolling bout for each larva during stimulation. Statistics: Mann-
935 Whitney test, $p < 0.001$, n = 99, 124.
936 ** $p < 0.01$, *** $p < 0.001$.

937

938 **Figure S4-1. SeIN128 is downstream of Basin and A00c neurons**

939 (A) Connectivity among Basin, A00c, and SeIN128. Each line represents synaptic connections
940 from the pre-synaptic neurons (left) to the post-synaptic neurons (right). Line widths are
941 proportional to the counts of the synapses.
942 (B) Peak $\Delta F/F_0$ increased with increasing irradiance in both SeIN128 and A00c neurons. The
943 orange line corresponds with Figure 4B; yellow line corresponds with Figure 4C; and green line
944 corresponds with Figure 4D.

945

946 **Figure S4-2. Synapses from SeIN128 to Basin-2 are located near Basin-2 outputs**

947 (A) Basin-2 morphology and cell body location reported in EM reconstruction dataset (A1, left
948 hemi-segment). Dorsal view. Red lines, presynaptic sites; cyan lines, postsynaptic sites.
949 (B) A zoomed-in view of the square in (A).
950 (C) SeIN128 morphology and cell body location reported in EM reconstruction dataset (right).
951 Dorsal view. Red lines, presynaptic sites; cyan lines, postsynaptic sites.
952 (D) A zoomed-in view of the square in (C).

953 (E) Connections between SeIN128 and Basin-2. Dorsal view. Red lines, presynaptic sites of
954 SeIN128; cyan lines, postsynaptic sites of Basin-2; brown lines, presynaptic sites of Basin-2.
955 (F) Zoomed-in views of squares in (E).
956 (G) EM view of left top panel in (F). Green, SeIN128. Blue, Basin-2. White arrows show
957 SeIN128 presynaptic sites adjacent to Basin-2. Yellow arrows are two presynaptic sites of Basin-
958 2.
959

960 **Figure S5. SeIN128 is GABAergic**

961 (A) Immunostaining of SeIN128 cell body (green) and glutamatergic neuron (magenta).
962 Genotype: *10xUAS-IVS-mry::GFP/+; R54B01-Gal4.AD/+; R46E07-Gal4.DB*D/+.
963 (B) Immunostaining of SeIN128 cell body (green) and cholinergic neuron (magenta). Genotype:
964 *10xUAS-IVS-mry::GFP/+; R54B01-Gal4.AD/+; R46E07-Gal4.DB*D/+.
965 In (A)-(B), white triangles indicate locations of SeIN128 cell bodies. Anterior, up; dorsal view;
966 scale bar, 10 μ m.
967

968 **Figure S6. SeIN128 inhibition enhances rolling**

969 (A) Time series of rolling probabilities of larvae with Basin activation (black), or SS04185
970 inhibition and Basin activation (red). Larvae were incubated with heat to trigger the effect of
971 shibire^{ts1}. The red bar and dashed lines display the window of optogenetic stimulation eliciting
972 larval escape responses. Shaded areas show 95% confidential intervals of rolling probabilities.
973 Genotypes: *13xLexAop2-IVS-CsChrimson::mVenus; R72F11-LexA/+; 20xUAS-TTS-Shibire/+*
974 (black); *13xLexAop2-IVS-CsChrimson::mVenus; R72F11-LexA/R54B01-Gal4.AD; 20xUAS-TTS-*
975 *Shibire/R46E07-Gal4.DB*D (red). Genotypes in (B-G) are the same as mentioned here.
976 (B) Binned larval rolling probabilities during first 5 s of stimulation in (A). Error bars, 95%
977 confidence interval. n = 134, 143. Statistics: Chi-square test, $\chi^2 = 12.33, p < 0.001$.
978 (C) A violin plot of total time spent rolling for each individual larva during stimulation.
979 Statistics: Mann-Whitney test, $p > 0.05$, n = 85, 115.
980 (D) Cumulative plot of rolling duration. Statistics: Mann-Whitney test, $p > 0.05$, n = 219, 352.
981 (E) A violin plot of start of first rolling bout for each larva during stimulation. Statistics: Mann-
982 Whitney test, $p > 0.05$, n = 85, 115.

983 (F) A violin plot of end of first rolling bout for each larva during stimulation. Statistics: Mann-
984 Whitney test, $p = 0.013$, $n = 85, 115$.
985 (G) A violin plot of start of first crawling bout for each larva during stimulation. Statistics:
986 Mann-Whitney test, $p = 0.034$, $n = 32, 22$.
987 $**p < 0.01$, $***p < 0.001$.

988
989 **Figure S7. SeIN128 sends feedback inhibition to Basins**
990 (A) A violin plot of total time spent rolling for each individual larva with GABAR-RNAi in their
991 Basin neurons during stimulation. Statistics: Kruskal-Wallis test: $H = 112.43$, $p < 0.001$;
992 Bonferroni-corrected Mann-Whitney test, $p < 0.001$ for all RNAi groups, $n = 271, 194, 154, 178$,
993 174 from left to right.
994 (B) A violin plot of start of first rolling bout for each larva during stimulation. Statistics:
995 Kruskal-Wallis test: $H = 86.50$, $p < 0.001$; Bonferroni-corrected Mann-Whitney test, $p < 0.001$
996 for GABA-B-R1², GABA-B-R2, and GABA-A-R groups, $n = 271, 194, 154, 178, 174$ from left
997 to right.
998 (C) A violin plot of end of first rolling bout for each larva during stimulation. Statistics: Kruskal-
999 Wallis test: $H=35.99$, $p < 0.001$; Bonferroni-corrected Mann-Whitney test, $p < 0.001$ for GABA-
1000 B-R2 and GABA-A-R groups, $n = 271, 194, 154, 178, 174$ from left to right.
1001 (D) A violin plot of start of first crawling bout for each larva during stimulation. Statistics:
1002 Kruskal-Wallis test: $H = 53.07$, $p < 0.001$; Bonferroni-corrected Mann-Whitney test, $p < 0.001$
1003 for GABA-B-R1² group, $n = 89, 119, 139, 135, 137$ from left to right.
1004 (E) Calcium transients (mean \pm s.e.m.) represented by $\Delta F/F_0$ are evoked in Basin axons by
1005 optogenetic activation of Basin neurons various intensities. $N = 9$. Genotype: *20xUAS-Syn21-*
1006 *opGCaMP6s, 10XUAS-Syn21-CsChrimson88::tdTomato/+; CyO/+; TM6/R72F11-Gal4*.
1007 (F) Calcium transients (mean \pm s.e.m.) in Basin axons represented by $\Delta F/F_0$ are decreased by
1008 optogenetic activation of SeIN128 neurons at various intensities. $N = 10$. Genotype: *20xUAS-*
1009 *Syn21-opGCaMP6s, 10XUAS-Syn21-CsChrimson88::tdTomato/+; CyO/R54B01-*
1010 *Gal4.AD; R72F11-Gal4/R46E07-Gal4.DBD*.
1011 For (E) to (F), irradiances from left to right are 0.04, 0.1, 0.3, 0.5, and 1.4 $\mu\text{W/mm}^2$. For each
1012 irradiance, individual traces are shown with gray lines, whereas the average of individuals is
1013 shown in black. Shaded gray area denotes period of optogenetic activation (0 to 1 s).

1014 ** $p < 0.01$, *** $p < 0.001$.

1015

1016 **Figure S8. SeIN128 inhibits rolling elicited by both Basin-2 and Basin-4 activation.**

1017 (A) and (B) show ethograms of Basin-2 activation (A) and Basin-4 activation (B). Each row
1018 represents an individual larva. Pink, blue, green, orange, and purple lines represent bouts of
1019 rolling, turning, crawling, backward crawling, and hunching. The red bar and dashed lines denote
1020 the time window during the period of neural activation. Genotypes: 20xUAS-IVS-
1021 *CsChrimson::mVenus*/+; *R72F11-Gal4.AD*/+; *R38H09-Gal4.DB*D/+ (A); 20xUAS-IVS-
1022 *CsChrimson::mVenus*/+; *R72F11-Gal4.AD*/+; *R57F07-Gal4.DB*D/+ (B). Genotypes in (C) are
1023 the same as mentioned here.

1024 (C) Cumulative plot of rolling duration. Statistics: Mann-Whitney test, $p < 0.001$, n = 681, 141.

1025 (D) Time series of rolling probabilities of larvae with Basin-2 activation (black), or SS04185 and
1026 Basin-2 coactivation (red). The red bar and dashed lines display the window of optogenetic
1027 stimulation eliciting larval escape responses. Shaded areas show 95% confidential intervals of
1028 rolling probabilities. Genotypes: 20xUAS-IVS-*CsChrimson::mVenus*/+; *R72F11-Gal4.AD*/+;
1029 *R38H09-Gal4.DB*D/+ (black); 20xUAS-IVS-*CsChrimson::mVenus*/+; *R72F11-*
1030 *Gal4.AD/R54B01-Gal4.AD*; *R38H09-Gal4.DB*D/*R46E07-Gal4.DB*D (red). Genotypes in (E) are
1031 the same as mentioned here.

1032 (E) A violin plot of start of first rolling bout for each larva during stimulation. Statistics: Mann-
1033 Whitney test, $p < 0.001$, n = 57, 38.

1034 (F) Time series of rolling probabilities of larvae with Basin-4 activation (black), or SS04185 and
1035 Basin-4 coactivation (red). The red bar and dashed lines display the window of optogenetic
1036 stimulation eliciting larval escape responses. Shaded areas show 95% confidential intervals of
1037 rolling probabilities. Genotypes: 20xUAS-IVS-*CsChrimson::mVenus*/+; *R72F11-Gal4.AD*/+;
1038 *R57F07-Gal4.DB*D/+ (black); 20xUAS-IVS-*CsChrimson::mVenus*/+; *R72F11-Gal4.AD/R54B01-*
1039 *Gal4.AD*; *R57F07-Gal4.DB*D/*R46E07-Gal4.DB*D (red). Genotypes in (G) are the same as
1040 mentioned here.

1041 (G) A violin plot of start of first rolling bout for each larva during stimulation. Statistics: Mann-
1042 Whitney test, $p > 0.05$, n = 129, 61.

1043 ** $p < 0.01$, *** $p < 0.001$.

1044

1045 **References**

1046 Burgos, A., Honjo, K., Ohyama, T., Qian, C. S., Shin, G. J., Gohl, D. M., Silies, M., Tracey, W.
1047 D., Zlatic, M., Cardona, A., & Grueber, W. B. (2018). Nociceptive interneurons control
1048 modular motor pathways to promote escape behavior in *Drosophila*. *Elife*, 7.
1049 <https://doi.org/10.7554/eLife.26016>

1050 Burrell, B. D. (2017). Comparative biology of pain: What invertebrates can tell us about how
1051 nociception works. *J Neurophysiol*, 117(4), 1461-1473.
1052 <https://doi.org/10.1152/jn.00600.2016>

1053 Campagner, D., Vale, R., Tan, Y. L., Iordanidou, P., Pavon Aucas, O., Claudi, F., Stempel, A. V.,
1054 Keshavarzi, S., Petersen, R. S., Margrie, T. W., & Branco, T. (2023). A cortico-collicular
1055 circuit for orienting to shelter during escape. *Nature*, 613(7942), 111-119.
1056 <https://doi.org/10.1038/s41586-022-05553-9>

1057 Cattaert, D., & El Manira, A. (1999). Shunting versus inactivation: analysis of presynaptic
1058 inhibitory mechanisms in primary afferents of the crayfish. *J Neurosci*, 19(14), 6079-
1059 6089. <https://doi.org/10.1523/JNEUROSCI.19-14-06079.1999>

1060 Chalfie, M., & Sulston, J. (1981). Developmental genetics of the mechanosensory neurons of
1061 *Caenorhabditis elegans*. *Dev Biol*, 82(2), 358-370. [https://doi.org/10.1016/0012-1606\(81\)90459-0](https://doi.org/10.1016/0012-1606(81)90459-0)

1063 Chalfie, M., Sulston, J. E., White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1985).
1064 The neural circuit for touch sensitivity in *Caenorhabditis elegans*. *J Neurosci*, 5(4), 956-
1065 964. <https://doi.org/10.1523/JNEUROSCI.05-04-00956.1985>

1066 Chin, M. R., & Tracey, W. D., Jr. (2017). Nociceptive Circuits: Can't Escape Detection. *Curr
1067 Biol*, 27(16), R796-R798. <https://doi.org/10.1016/j.cub.2017.07.031>

1068 Dason, J. S., Cheung, A., Anreiter, I., Montemurri, V. A., Allen, A. M., & Sokolowski, M. B.
1069 (2020). *Drosophila melanogaster* foraging regulates a nociceptive-like escape behavior
1070 through a developmentally plastic sensory circuit. *Proc Natl Acad Sci U S A*, 117(38),
1071 23286-23291. <https://doi.org/10.1073/pnas.1820840116>

1072 Dolan, M. J., Luan, H., Shropshire, W. C., Sutcliffe, B., Cocanougher, B., Scott, R. L., Frechter,
1073 S., Zlatic, M., Jefferis, G., & White, B. H. (2017). Facilitating Neuron-Specific Genetic
1074 Manipulations in *Drosophila melanogaster* Using a Split GAL4 Repressor. *Genetics*,
1075 206(2), 775-784. <https://doi.org/10.1534/genetics.116.199687>

1076 Guo, D., & Hu, J. (2014). Spinal presynaptic inhibition in pain control. *Neuroscience*, 283, 95-
1077 106. <https://doi.org/10.1016/j.neuroscience.2014.09.032>

1078 Hu, C., Petersen, M., Hoyer, N., Spitzweck, B., Tenedini, F., Wang, D., Gruschka, A., Burchardt,
1079 L. S., Szpotowicz, E., Schweizer, M., Guntur, A. R., Yang, C. H., & Soba, P. (2017).
1080 Sensory integration and neuromodulatory feedback facilitate Drosophila
1081 mechanonociceptive behavior. *Nat Neurosci*, 20(8), 1085-1095.
1082 <https://doi.org/10.1038/nn.4580>

1083 Hu, Y., Wang, C., Yang, L., Pan, G., Liu, H., Yu, G., & Ye, B. (2020). A Neural Basis for
1084 Categorizing Sensory Stimuli to Enhance Decision Accuracy. *Curr Biol*, 30(24), 4896-
1085 4909 e4896. <https://doi.org/10.1016/j.cub.2020.09.045>

1086 Hwang, R. Y., Zhong, L., Xu, Y., Johnson, T., Zhang, F., Deisseroth, K., & Tracey, W. D. (2007).
1087 Nociceptive neurons protect Drosophila larvae from parasitoid wasps. *Curr Biol*, 17(24),
1088 2105-2116. <https://doi.org/10.1016/j.cub.2007.11.029>

1089 Im, S. H., & Galko, M. J. (2012). Pokes, sunburn, and hot sauce: Drosophila as an emerging
1090 model for the biology of nociception. *Dev Dyn*, 241(1), 16-26.
1091 <https://doi.org/10.1002/dvdy.22737>

1092 Imambucus, B. N., Zhou, F., Formozov, A., Wittich, A., Tenedini, F. M., Hu, C., Sauter, K.,
1093 Macarenhas Varela, E., Heredia, F., Casimiro, A. P., Macedo, A., Schlegel, P., Yang, C.
1094 H., Miguel-Aliaga, I., Wiegert, J. S., Pankratz, M. J., Gontijo, A. M., Cardona, A., &
1095 Soba, P. (2022). A neuropeptidergic circuit gates selective escape behavior of Drosophila
1096 larvae. *Curr Biol*, 32(1), 149-163 e148. <https://doi.org/10.1016/j.cub.2021.10.069>

1097 Isaacson, J. S., & Scanziani, M. (2011). How inhibition shapes cortical activity. *Neuron*, 72(2),
1098 231-243. <https://doi.org/10.1016/j.neuron.2011.09.027>

1099 Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S., & Branson, K. (2013). JAABA:
1100 interactive machine learning for automatic annotation of animal behavior. *Nat Methods*,
1101 10(1), 64-67. <https://doi.org/10.1038/nmeth.2281>

1102 Kaneko, T., Macara, A. M., Li, R., Hu, Y., Iwasaki, K., Dunnings, Z., Firestone, E., Horvatic, S.,
1103 Guntur, A., Shafer, O. T., Yang, C. H., Zhou, J., & Ye, B. (2017). Serotonergic
1104 Modulation Enables Pathway-Specific Plasticity in a Developing Sensory Circuit in
1105 Drosophila. *Neuron*, 95(3), 722. <https://doi.org/10.1016/j.neuron.2017.07.023>

1106 Kapfer, C., Glickfeld, L. L., Atallah, B. V., & Scanziani, M. (2007). Supralinear increase of
1107 recurrent inhibition during sparse activity in the somatosensory cortex. *Nat Neurosci*,
1108 10(6), 743-753. <https://doi.org/10.1038/nn1909>

1109 Manoim, J. E., Davidson, A. M., Weiss, S., Hige, T., & Parnas, M. (2022). Lateral axonal
1110 modulation is required for stimulus-specific olfactory conditioning in Drosophila. *Curr
1111 Biol*, 32(20), 4438-4450 e4435. <https://doi.org/10.1016/j.cub.2022.09.007>

1112 Masson, J. B., Laurent, F., Cardona, A., Barre, C., Skatchkovsky, N., Zlatic, M., & Jovanic, T.
1113 (2020). Identifying neural substrates of competitive interactions and sequence transitions
1114 during mechanosensory responses in Drosophila. *PLoS Genet*, 16(2), e1008589.
1115 <https://doi.org/10.1371/journal.pgen.1008589>

1116 McGann, J. P. (2013). Presynaptic inhibition of olfactory sensory neurons: new mechanisms and
1117 potential functions. *Chem Senses*, 38(6), 459-474. <https://doi.org/10.1093/chemse/bjt018>

1118 Nakamizo-Dojo, M., Ishii, K., Yoshino, J., Tsuji, M., & Emoto, K. (2023). Descending
1119 GABAergic pathway links brain sugar-sensing to peripheral nociceptive gating in
1120 Drosophila. *Nat Commun*, 14(1), 6515. <https://doi.org/10.1038/s41467-023-42202-9>

1121 Ohyama, T., Jovanic, T., Denisov, G., Dang, T. C., Hoffmann, D., Kerr, R. A., & Zlatic, M.
1122 (2013). High-throughput analysis of stimulus-evoked behaviors in Drosophila larva
1123 reveals multiple modality-specific escape strategies. *PLoS One*, 8(8), e71706.
1124 <https://doi.org/10.1371/journal.pone.0071706>

1125 Ohyama, T., Schneider-Mizell, C. M., Fetter, R. D., Aleman, J. V., Franconville, R., Rivera-Alba,
1126 M., Mensh, B. D., Branson, K. M., Simpson, J. H., Truman, J. W., Cardona, A., & Zlatic,
1127 M. (2015). A multilevel multimodal circuit enhances action selection in Drosophila.
1128 *Nature*, 520(7549), 633-639. <https://doi.org/10.1038/nature14297>

1129 Oikawa, I., Kondo, S., Hashimoto, K., Yoshida, A., Hamajima, M., Tanimoto, H., Furukubo-
1130 Tokunaga, K., & Honjo, K. (2023). A descending inhibitory mechanism of nociception
1131 mediated by an evolutionarily conserved neuropeptide system in Drosophila. *eLife*, 12.
1132 <https://doi.org/10.7554/eLife.85760>

1133 Oleson, E. B., Beckert, M. V., Morra, J. T., Lansink, C. S., Cachope, R., Abdullah, R. A.,
1134 Loriaux, A. L., Schetters, D., Pattij, T., Roitman, M. F., Lichtman, A. H., & Cheer, J. F.
1135 (2012). Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1

1136 receptor activation in the ventral tegmentum. *Neuron*, 73(2), 360-373.
1137 <https://doi.org/10.1016/j.neuron.2011.11.018>

1138 Onodera, K., Baba, S., Murakami, A., Uemura, T., & Usui, T. (2017). Small conductance Ca(2+)-
1139 activated K(+) channels induce the firing pause periods during the activation of
1140 Drosophila nociceptive neurons. *Elife*, 6. <https://doi.org/10.7554/eLife.29754>

1141 Palay, S. L. (1956). Synapses in the central nervous system. *J Biophys Biochem Cytol*, 2(4
1142 Suppl), 193-202. <https://doi.org/10.1083/jcb.2.4.193>

1143 Pan-Vazquez, A., Wefelmeyer, W., Gonzalez Sabater, V., Neves, G., & Burrone, J. (2020).
1144 Activity-Dependent Plasticity of Axo-axonic Synapses at the Axon Initial Segment.
1145 *Neuron*, 106(2), 265-276 e266. <https://doi.org/10.1016/j.neuron.2020.01.037>

1146 Papadopoulou, M., Cassenaer, S., Nowotny, T., & Laurent, G. (2011). Normalization for sparse
1147 encoding of odors by a wide-field interneuron. *Science*, 332(6030), 721-725.
1148 <https://doi.org/10.1126/science.1201835>

1149 Peirs, C., & Seal, R. P. (2016). Neural circuits for pain: Recent advances and current views.
1150 *Science*, 354(6312), 578-584. <https://doi.org/10.1126/science.aaf8933>

1151 Pinault, D., Smith, Y., & Deschenes, M. (1997). Dendrodendritic and axoaxonic synapses in the
1152 thalamic reticular nucleus of the adult rat. *J Neurosci*, 17(9), 3215-3233.
1153 <https://doi.org/10.1523/JNEUROSCI.17-09-03215.1997>

1154 Ray, S., Aldworth, Z. N., & Stopfer, M. A. (2020). Feedback inhibition and its control in an
1155 insect olfactory circuit. *Elife*, 9. <https://doi.org/10.7554/eLife.53281>

1156 Schneider-Mizell, C. M., Bodor, A. L., Collman, F., Brittain, D., Bleckert, A., Dorkenwald, S.,
1157 Turner, N. L., Macrina, T., Lee, K., Lu, R., Wu, J., Zhuang, J., Nandi, A., Hu, B.,
1158 Buchanan, J., Takeno, M. M., Torres, R., Mahalingam, G., Bumbarger, D. J., . . . Costa,
1159 N. M. D. (2021). Structure and function of axo-axonic inhibition. *Elife*, 10.
1160 <https://doi.org/10.7554/eLife.73783>

1161 Stokes, C. C., & Isaacson, J. S. (2010). From dendrite to soma: dynamic routing of inhibition by
1162 complementary interneuron microcircuits in olfactory cortex. *Neuron*, 67(3), 452-465.
1163 <https://doi.org/10.1016/j.neuron.2010.06.029>

1164 Swierczek, N. A., Giles, A. C., Rankin, C. H., & Kerr, R. A. (2011). High-throughput behavioral
1165 analysis in *C. elegans*. *Nat Methods*, 8(7), 592-598. <https://doi.org/10.1038/nmeth.1625>

1166 Takagi, S., Cocanougher, B. T., Niki, S., Miyamoto, D., Kohsaka, H., Kazama, H., Fetter, R. D.,
1167 Truman, J. W., Zlatic, M., Cardona, A., & Nose, A. (2017). Divergent Connectivity of
1168 Homologous Command-like Neurons Mediates Segment-Specific Touch Responses in
1169 Drosophila. *Neuron*, 96(6), 1373-1387 e1376.
1170 <https://doi.org/10.1016/j.neuron.2017.10.030>

1171 Tracey, W. D., Jr., Wilson, R. I., Laurent, G., & Benzer, S. (2003). *painless*, a Drosophila gene
1172 essential for nociception. *Cell*, 113(2), 261-273. [https://doi.org/10.1016/s0092-8674\(03\)00272-1](https://doi.org/10.1016/s0092-8674(03)00272-1)

1173 Veres, J. M., Fekete, Z., Muller, K., Andras, T., Rovira-Esteban, L., Barabas, B., Papp, O. I., &
1174 Hajos, N. (2023). Fear learning and aversive stimuli differentially change excitatory
1175 synaptic transmission in perisomatic inhibitory cells of the basal amygdala. *Front Cell
1176 Neurosci*, 17, 1120338. <https://doi.org/10.3389/fncel.2023.1120338>

1177 Vogt, K., Aso, Y., Hige, T., Knapek, S., Ichinose, T., Friedrich, A. B., Turner, G. C., Rubin, G.
1178 M., & Tanimoto, H. (2016). Direct neural pathways convey distinct visual information to
1179 Drosophila mushroom bodies. *Elife*, 5. <https://doi.org/10.7554/eLife.14009>

1180 Winding, M., Pedigo, B. D., Barnes, C. L., Patsolic, H. G., Park, Y., Kazimiers, T., Fushiki, A.,
1181 Andrade, I. V., Khandelwal, A., Valdes-Aleman, J., Li, F., Randel, N., Barsotti, E.,
1182 Correia, A., Fetter, R. D., Hartenstein, V., Priebe, C. E., Vogelstein, J. T., Cardona, A., &
1183 Zlatic, M. (2023). The connectome of an insect brain. *Science*, 379(6636), eadd9330.
1184 <https://doi.org/10.1126/science.add9330>

1185 Yoshimura, Y., & Callaway, E. M. (2005). Fine-scale specificity of cortical networks depends on
1186 inhibitory cell type and connectivity. *Nat Neurosci*, 8(11), 1552-1559.
1187 <https://doi.org/10.1038/nn1565>

1188 Yoshino, J., Morikawa, R. K., Hasegawa, E., & Emoto, K. (2017). Neural Circuitry that Evokes
1189 Escape Behavior upon Activation of Nociceptive Sensory Neurons in Drosophila Larvae.
1190 *Curr Biol*, 27(16), 2499-2504 e2493. <https://doi.org/10.1016/j.cub.2017.06.068>

1191 Zheng, Z., Lauritzen, J. S., Perlman, E., Robinson, C. G., Nichols, M., Milkie, D., Torrens, O.,
1192 Price, J., Fisher, C. B., Sharifi, N., Calle-Schuler, S. A., Kmecova, L., Ali, I. J., Karsh, B.,
1193 Trautman, E. T., Bogovic, J. A., Hanslovsky, P., Jefferis, G., Kazhdan, M., . . . Bock, D.
1194 D. (2018). A Complete Electron Microscopy Volume of the Brain of Adult Drosophila
1195 melanogaster. *Cell*, 174(3), 730-743 e722. <https://doi.org/10.1016/j.cell.2018.06.019>

1196

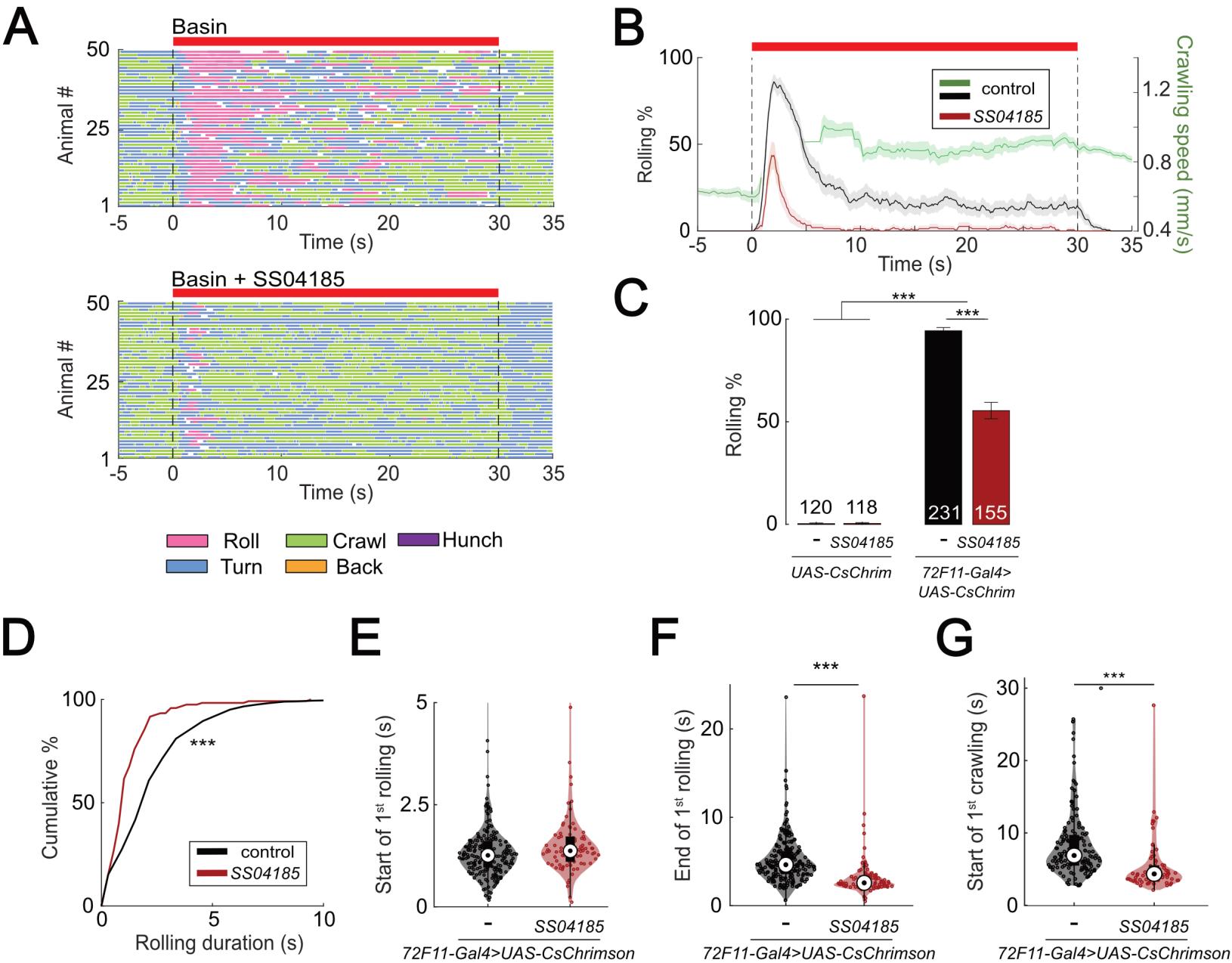
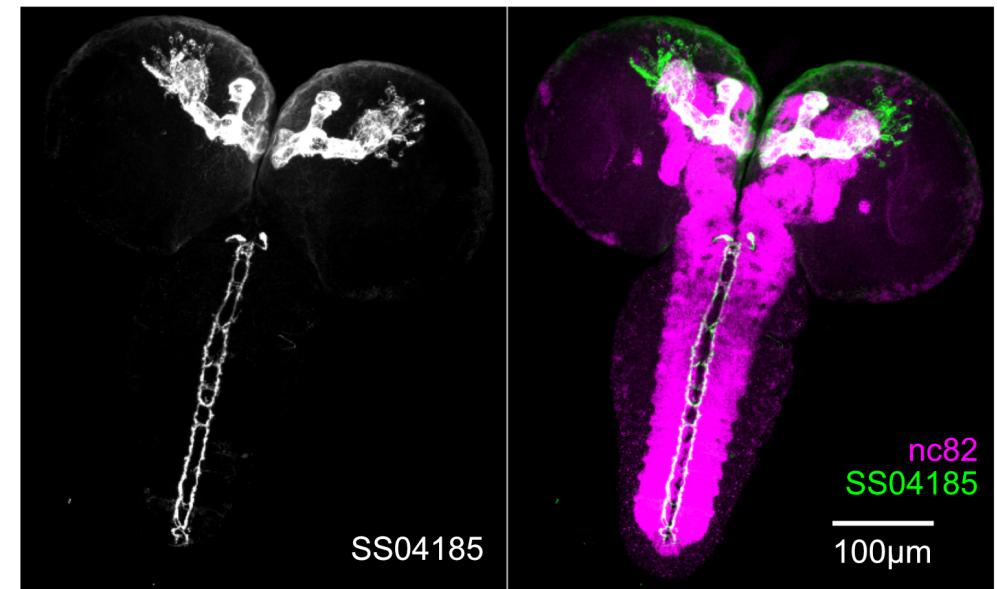
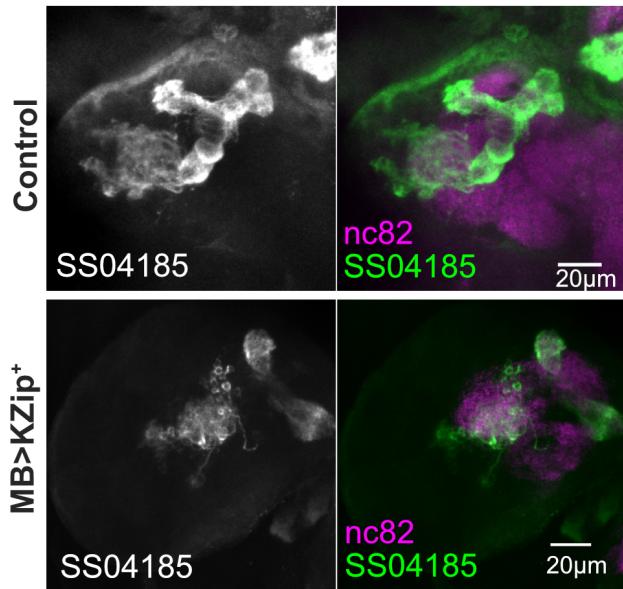
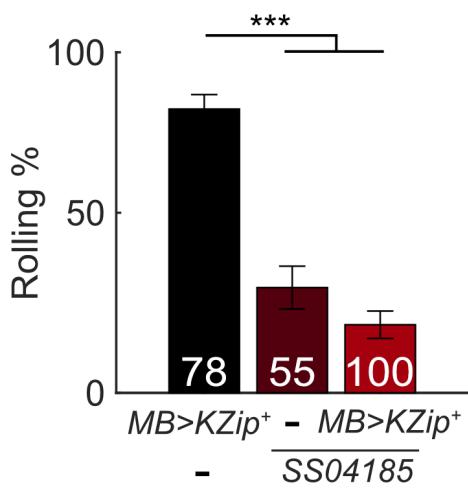
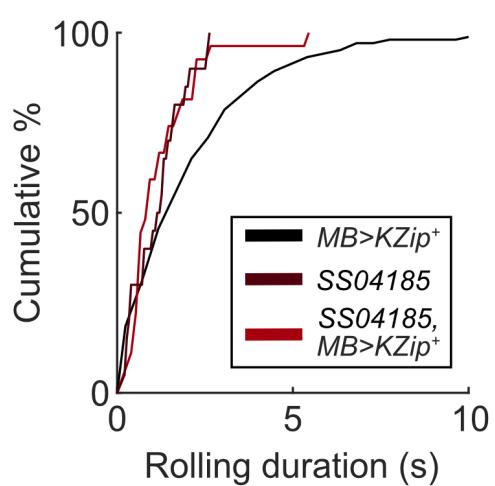
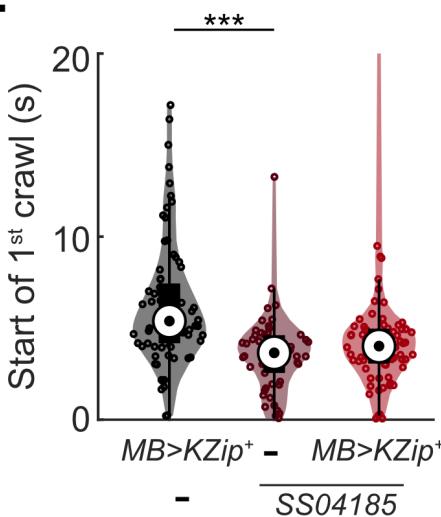
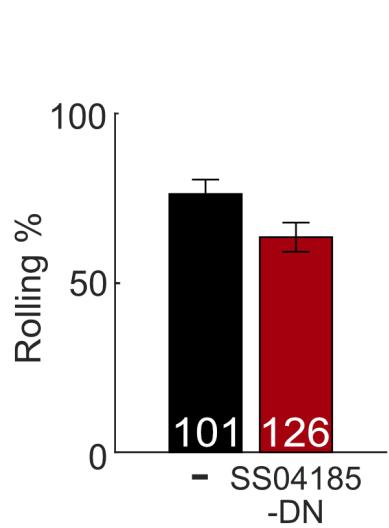




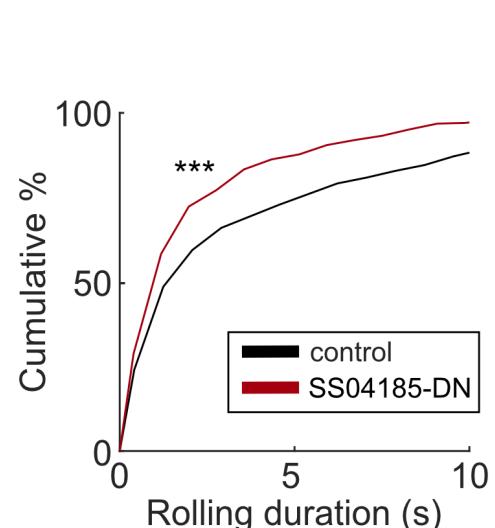
Figure 1. Activation of SS04185 inhibits rolling evoked by activation of Basin neurons


A


B


C


D


E

F

G

H

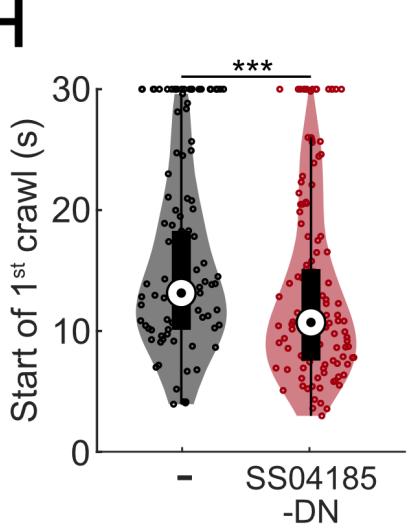


Figure 2. SS04185-DN, but not SS04185-MB, inhibits rolling when co-activated with Basins

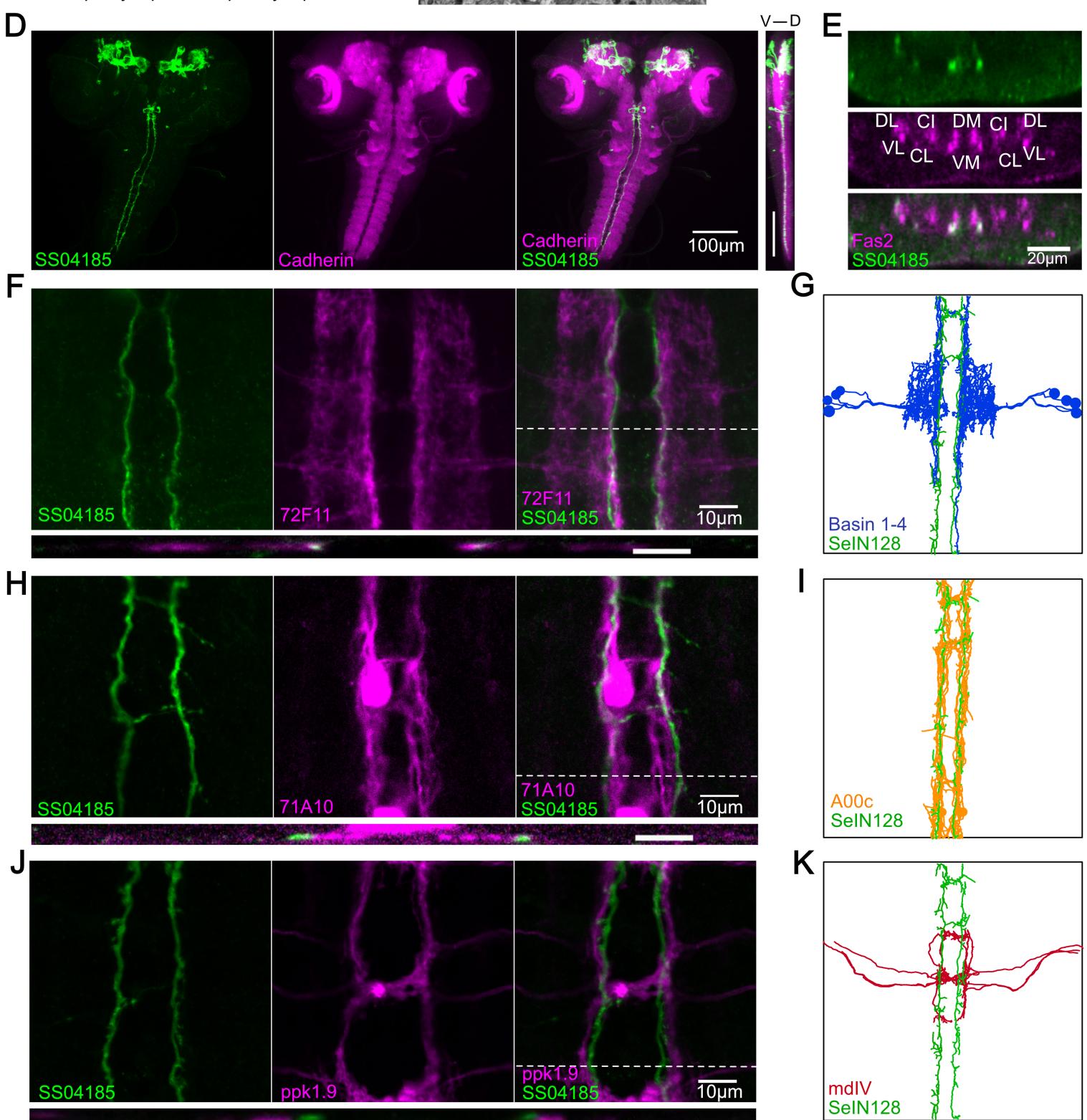
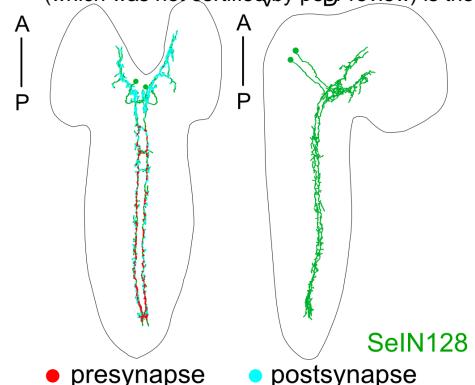



Figure 3. SS04185-DN is identical to SelN128

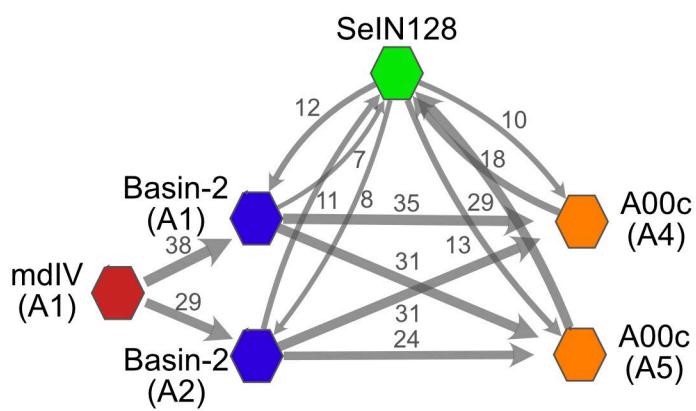
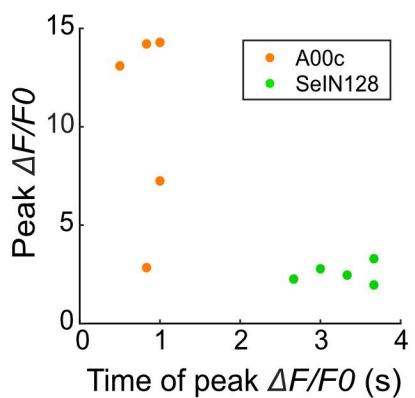
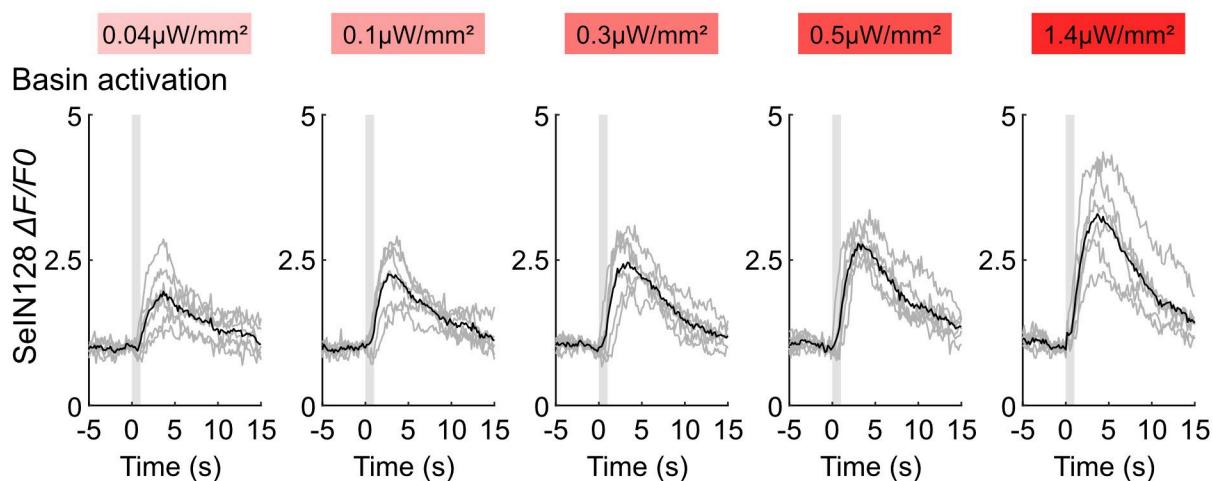
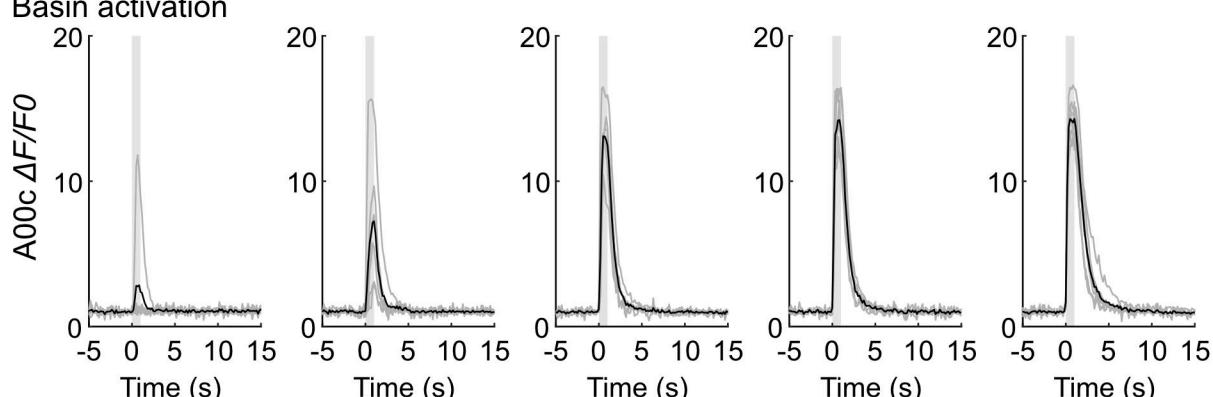
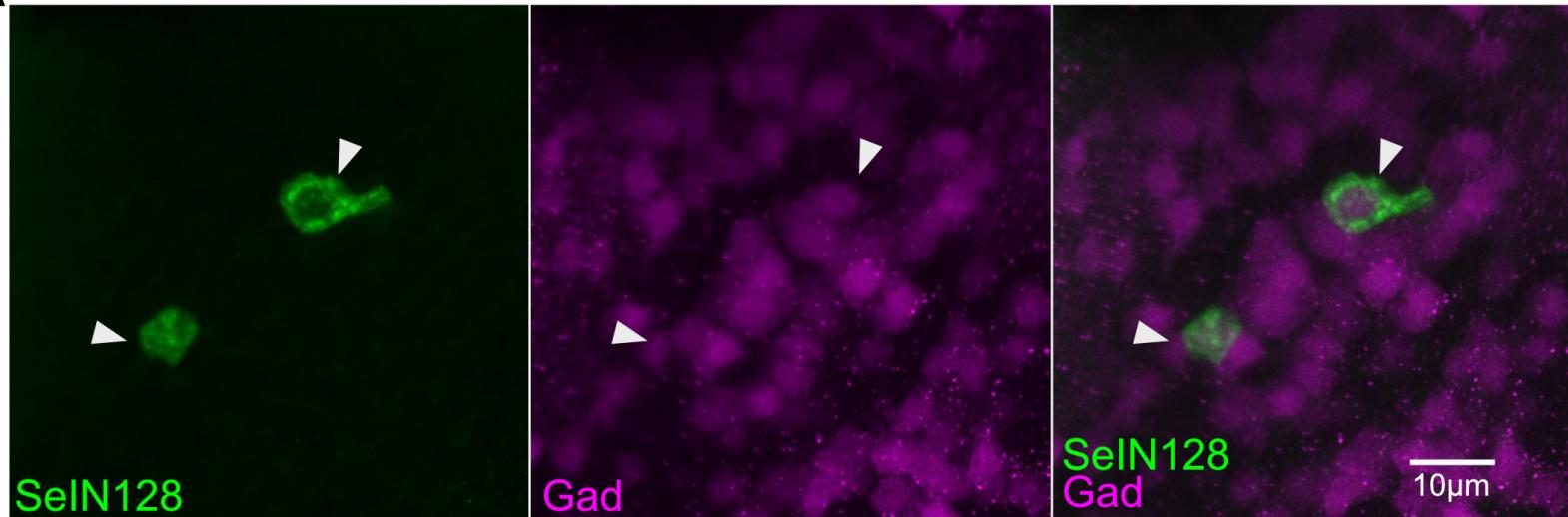
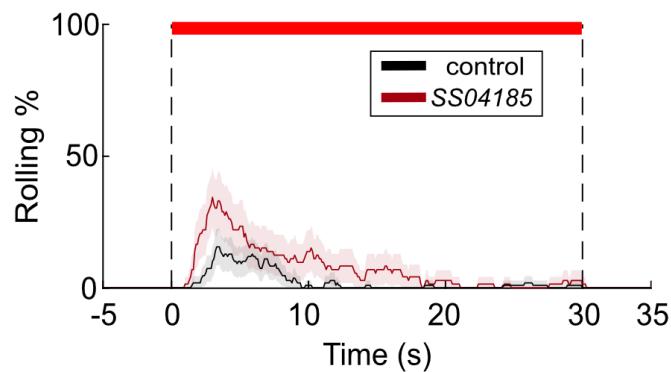






A**E****B****C****D**

Figure 4. SelN128 receives input from Basin and A00c neurons

A

B

C

D

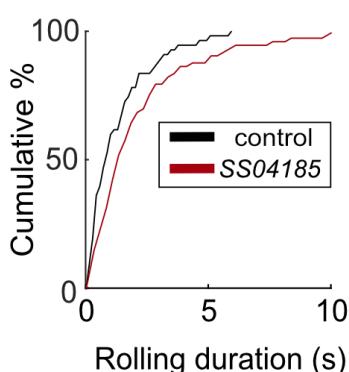


Figure 5. SelN128 is GABAergic and negatively controls rolling

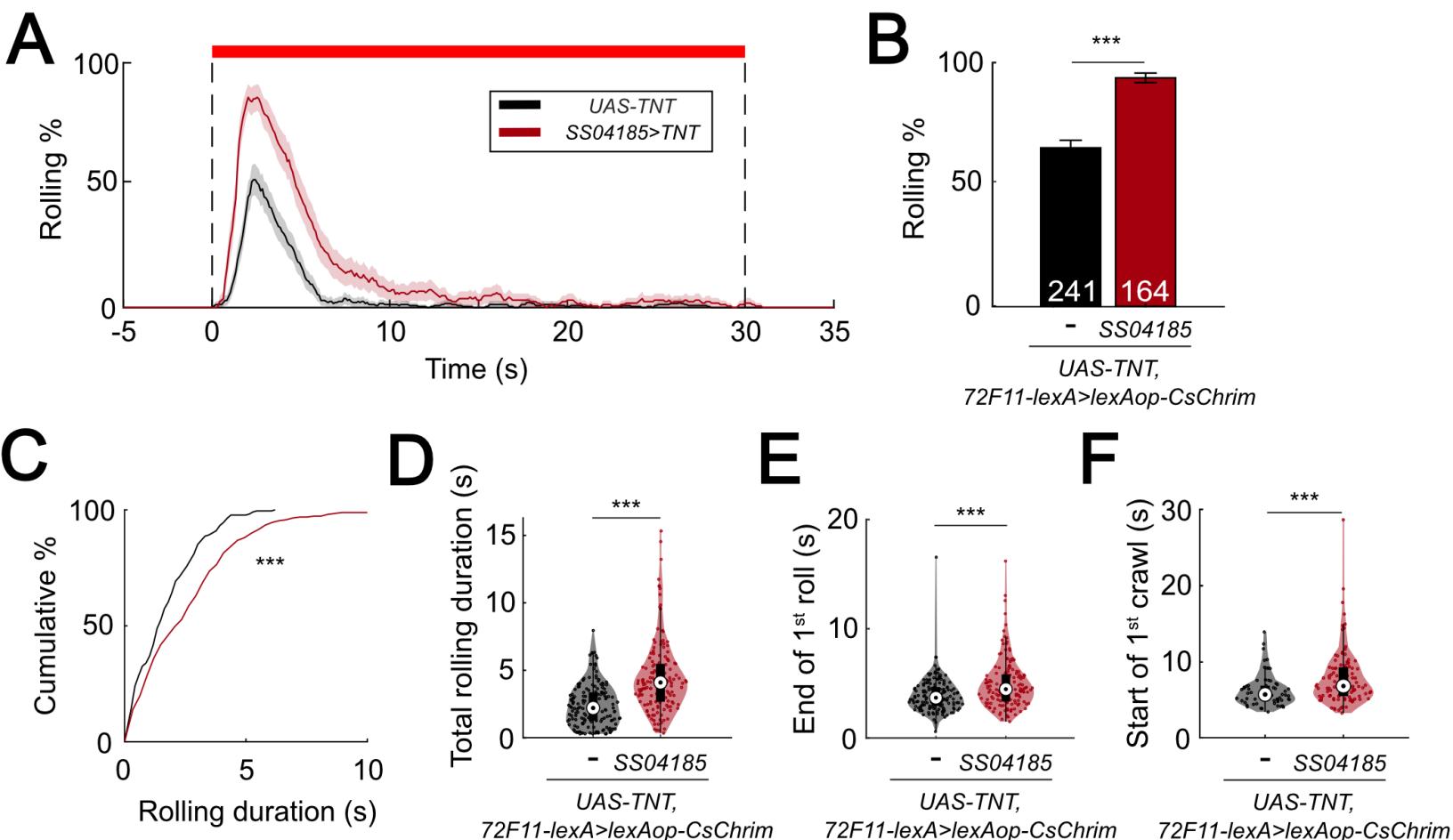
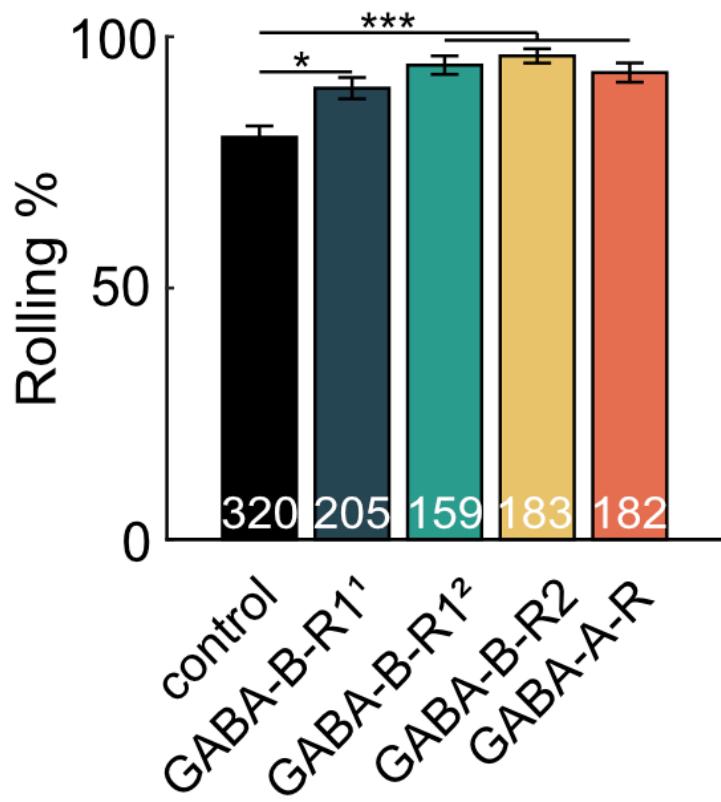
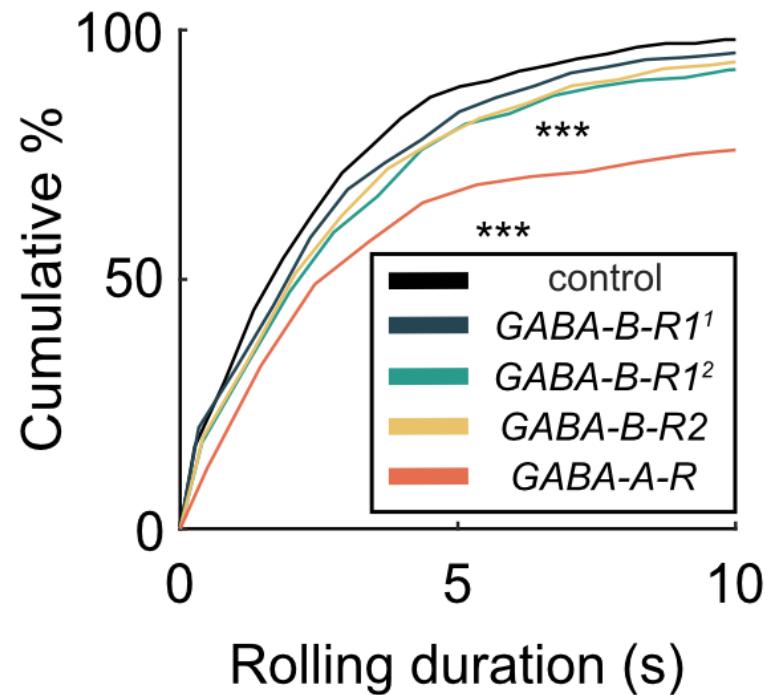




Figure 6. Inhibition of SelN128 prolongs rolling and delays initiation of crawling

A

B

C

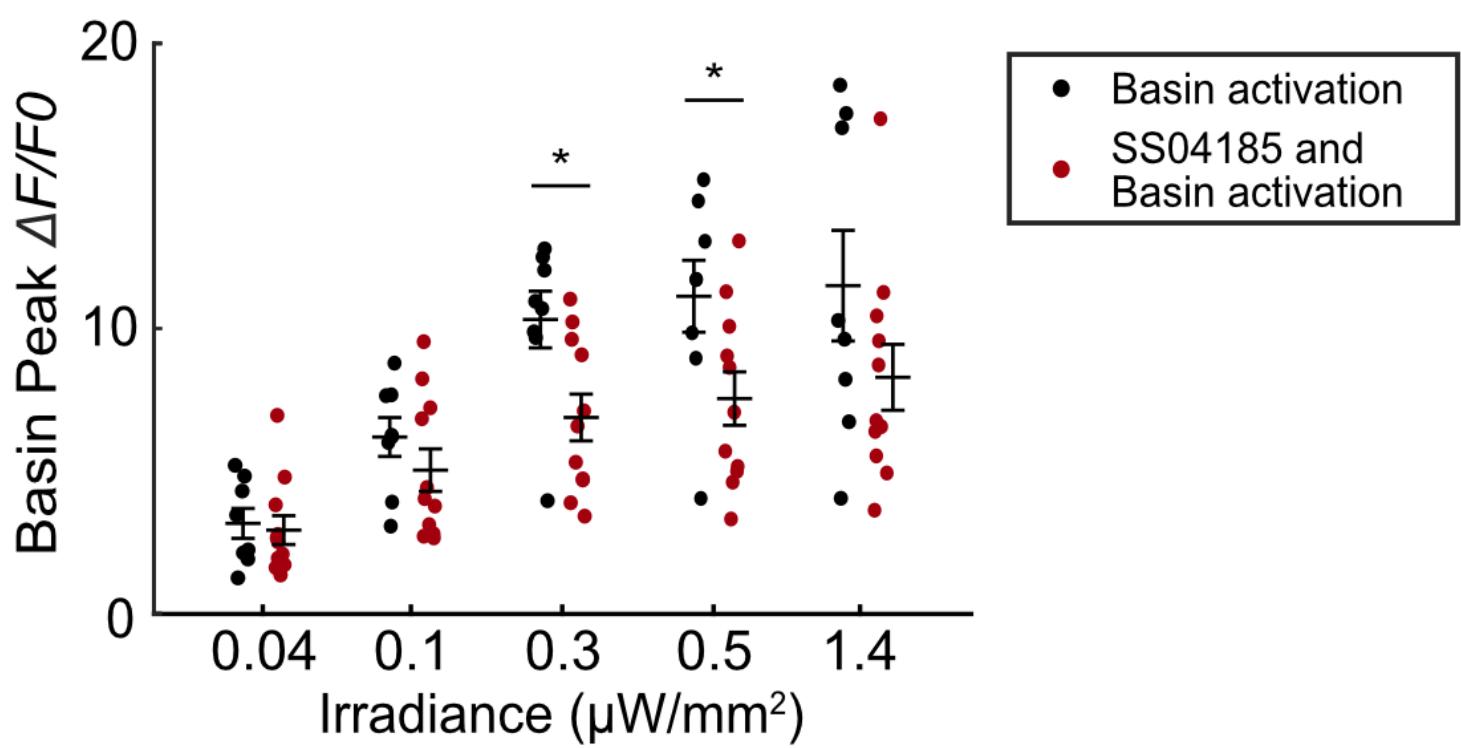


Figure 7. SelN128 sends feedback inhibition to Basins

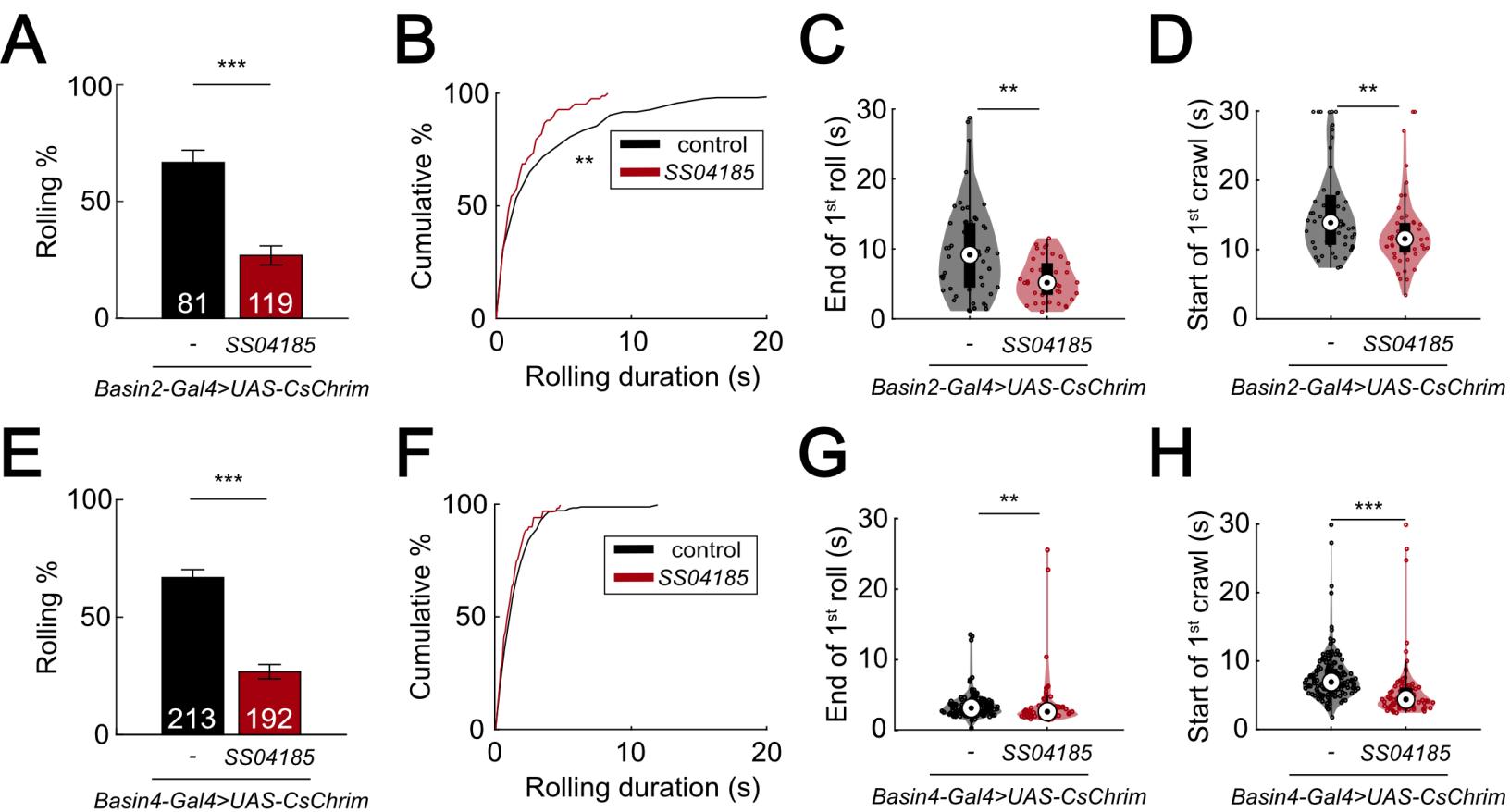


Figure 8. SelN128 inhibits rolling elicited by both Basin-2 and Basin-4 activation