
Flowtigs: safety in flow decompositions for assembly graphs∗

Francisco Sena∗† , Eliel Ingervo∗† , Shahbaz Khan◦ , Andrey Prjibelski∗ ,
Sebastian Schmidt∗‡ and Alexandru I. Tomescu∗‡

∗ firstname.lastname@helsinki.fi, University of Helsinki, Finland
◦ shahbaz.khan@cs.iitr.ac.in, Indian Institute of Technology Roorkee, India

† shared first-author contribution
‡ shared last-author contribution

Abstract

A decomposition of a network flow is a set of weighted paths whose superposition equals the flow.
The problem of characterising and computing safe walks for flow decompositions has so far seen only a
partial solution by restricting the flow decomposition to consist of paths, and the graph to be directed
and acyclic (DAG). However, the problem of decomposing into closed walks in a general graph (allowing
cycles) is still open.

In this paper, we give a simple and linear-time-verifiable complete characterisation (flowtigs) of walks
that are safe in such general flow decompositions, i.e. that are subwalks of any possible flow decompo-
sition. Our characterisation generalises over the previous one for DAGs, using a more involved proof
of correctness that works around various issues introduced by cycles. We additionally provide an op-
timal O(mn)-time algorithm that identifies all maximal flowtigs and represents them inside a compact
structure. We also implement this algorithm and show that it is very fast in practice.

On the practical side, we study flowtigs in the use-case of metagenomic assembly. By using the
abundances of the metagenomic assembly graph as flow values, we can model the possible assembly
solutions as flow decompositions into closed walks. Compared to reporting unitigs or maximal safe
walks based only on the graph structure (structural contigs), reporting flowtigs results in a notably
more contiguous assembly. Specifically, on shorter contigs (75-percentile), we get an improvement in
assembly contiguity of up to 100% over unitigs, and up to 61.9% over structural contigs. For the 50-
percentile of contiguity we get an improvement of up to 17.0% over unitigs and up to 14.6% over structural
contigs. These improvements are more pronounced the more complex the assembly graphs are, and the
improvements of flowtigs over unitigs are multiple times larger compared to the improvements of previous
safe walks over unitigs.

∗This work was partially funded by the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 851093, SAFEBIO), and partially by the Academy of Finland (grants
No. 322595, 352821, 346968). Additionally, Shahbaz Khan is funded by the Startup Research Grant SRG/2022/000801 by DST
SERB, Government of India. We thank the Finnish Computing Competence Infrastructure (FCCI) for supporting this project
with computational and data storage resources.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://orcid.org/0000-0002-3508-4473
https://orcid.org/0009-0007-0494-979X
https://orcid.org/0000-0001-9352-0088
https://orcid.org/0000-0003-2816-4608
https://orcid.org/0000-0003-4878-2809
https://orcid.org/0000-0002-5747-8350
https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

1 Introduction

Network flows are a useful model in assembly problems, since they do not only take into account the graph
structure, but also abundance information. In practice, this information is often readily available. For
example, in RNA transcript assembly, many tools use splice graphs whose nodes (corresponding to exons)
and arcs (corresponding to exon junctions) are labelled with their RNA-seq read abundances [11]. As another
example, in genome or metagenomic assembly, the nodes or the arcs of an assembly graph (e.g. a de Bruijn
graph [12]) are labelled with the number of times their corresponding string has been observed in the input
reads [23, 25, 35, 39]. Given these abundances, a solution to the assembly problem can be modelled as a flow
decomposition into weighted paths or walks induced by such abundance values. In the case of perfect data,
the superposition of these weighted walks matches the given flow. As a complication, in practice, a flow
typically admits a heap of different flow decompositions. This ambiguity is a common issue in the assembly
problem (see e.g. [22]), and hence research has focused on reporting only so-called safe walks (modelling
contigs output by modern assemblers), which are partial solutions that are common to all solutions, and
hence must also be part of the true DNA or RNA sequence [49].

For splice graphs in RNA transcript assembly (which are in directed acyclic graphs, DAGs), Ma et al. [50]
gave the first algorithm to decide when a given set of arcs is safe for flow decompositions, i.e., when the arcs
in the set appear in some, and the same, path of any flow decomposition of the flow in the splice graph. When
the arcs in the set form a path, Khan et al. [21] improved the algorithm of Ma et al. [50] from quadratic-time
to linear-time, using a simple characterisation of such safe paths via the notion of excess flow. Excess flow is
the sum of flow that enters a path through its first arc and is only able to leave through its last arc, i.e. the
sum of flow that is forced to traverse the path. This also led to an optimal O(mn)-time algorithm identifying
all maximal safe paths for flow decompositions in DAGs [21], where n is the number of nodes of the graph,
and m is the number of arcs of the graph. The experimental results on perfect splice graphs from Khan
et al. [21] show that safe paths for flow decompositions cover around 18% more of the ground-truth RNA
transcripts than paths which are safe based only on the graph structure. Specifically, Khan et al. compare
against extended contigs [21] (i.e., unitigs extended forwards, as long as nodes have unit out-degree, and
backwards, as long as nodes have unit in-degree, also known as Y-to-V contigs [18, 22, 30] in the context of
genome assembly, where they are close to optimal [49], see Figure 1 (b) for an example). A reason behind
the improvement is that the differences between the abundance levels of the different RNA transcripts in a
sample can be multiple orders of magnitude [21, 26]. As such, abundant transcripts have a large excess flow
and can span over branching nodes that would otherwise break a unitig or an extended contig.

Despite these theoretical and experimental results on safe paths for flow decompositions in DAGs, the
analogous theory for non-acyclic assembly graphs is currently lacking. Motivated by the above results for
acyclic splice graphs, it is natural to include also abundance information to further restrict the set of assembly
solutions in general graphs, to obtain longer safe walks, potentially leading to longer contigs in practice.

1.1 Metagenomic assembly and previous safe walks

In this paper we choose metagenomic assembly as the application area to define a concrete notion of genome
assembly solution as a flow decomposition, and to evaluate the potential benefits of safe walks for flow
decompositions compared to maximal safe walks relative only to the graph structure (structural contigs).
Metagenomic assembly is crucial for the understanding functionality and composition of various microbiomes
containing bacteria, archaea, viruses and single-cell eukaryotes. These microorganism communities are ubiq-
uitous and can be found in multiple ecosystems and multi-cellular organisms, including soil, sea water, the
human digestive system, genitals, and others [40]. Assembling genomes from metagenomic sequencing data
remains a challenge that is noticeably harder compared to single-genome assembly [2]. Also, specifically when
using long reads, metagenomic assembly is a difficult problem, due to the high cost [8] and larger variance
in read length for PacBio HiFi technology [46] as well as the large variance in coverage [23, 46]. And even
though they are partially alleviated by using longer reads, also long intra-genomic and inter-genomic repeats
and inter- and intra-species heterogeneity [23] remain a challenge. In addition to being an important open
problem, the metagenomic assembly problem also lends itself nicely to a flow-based theoretical formulation.
As in the case of RNA transcripts, the species abundances in a typical metagenomic sample varies by multi-
ple orders of magnitude [42], and this can similarly allow safe walks from more abundant genomes to safely

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

101

10

111 112 111 114 104
10

3 3

101
1

(a) Excerpt of an example assembly graph built from four
genomes with abundances 1 (in blue), 3 (in violet), 10 (in
red) and 100 (in green). We assume that the genomes overlap
nowhere else and that each genome is circular.

(b) The maximal extended contigs (i.e. unitigs univocally ex-
tended forwards and backwards). The colours are chosen based
on the genomes the contigs are subwalks of, where dashed con-
tigs are subwalk of multiple genomes. These are arcs extended
forwards as long as there is a unique outgoing arc, and back-
wards as long as there is a unique incoming arc.

(c) The maximal structural contigs (i.e. safe walks w.r.t. arc-
covering collections of closed walks). The walks that have not
changed compared to maximal extended contigs are greyed out,
and colours are chosen based on subwalks again. This contig
is safe, because all arcs leaving it are connected only to its first
node, and all arcs entering it are (reverse) connected only to
its last node.

101

10

111 112 111 114 104
10

3 3

101
1

(d) The maximal flowtigs (i.e. safe walks w.r.t. flow decom-
positions into weighted closed walks). The walks that have
not changed are greyed out, and colours are chosen based
on subwalks again. Note that the green genome can now be
completely reconstructed through a single contig, and the red
genome can be almost completely reconstructed. This is pos-
sible because they are the most abundant genomes.

Figure 1: An example assembly graph and various -tigs. All maximal structural contigs are subwalks of flowtigs. Flowtigs
produce longer contigs especially for more abundant genomes, as they are not interrupted when meeting a low-abundant genome.

continue over crossings with less abundant genomes. For example, if a branching node has two incoming arcs
with abundances 10 and 100, and two outgoing arcs with abundances 90 and 20, then there it is certainly
safe to continue from the abundance-100 arc to the abundance-90 arc. See Figure 1 (d) for an example, and
compare with Figure 1 (b) and (c) where extended contigs and structural contigs are shorter than flowtigs.

Metagenomic assemblers usually employ overlap graphs [34] or de Bruijn graphs [12], from which they
compute unitigs [3, 8, 23, 24, 35] as maximal safe paths and then extend them using possibly unsafe heuristics.
Unitigs are non-branching paths in the assembly graph (see Figure 1 (a) for an example). They are safe,
i.e. they are guaranteed to be subwalks of some genome in the metagenome under the assumption that all
genomes are closed walks in the assembly graph such that each arc is covered by some genome, and that
the assembly graph is error-free (arc-centric model). However, recently, Acosta, Mäkinen and Tomescu [37]
have shown that there are longer walks that are safe based on the graph structure, w.r.t. solutions defined
as arc-covering collections of closed walks. They have characterised a safe walk W by the conjunction of two
conditions, and shown that these are both necessary and sufficient. First, there must be no cycle in the graph
that contains a subwalk of W , but none of its prefixes and suffixes. Such cycles are also called forbidden
paths [49]. Second, there must be a node v in the graph such that all cycles through v have W as subwalk.
Acosta, Mäkinen and Tomescu have shown that these maximal structure-based safe walks can be computed
in O(m2 + n3 log n) time in node-centric assembly graphs and in O(m2n log n) time in arc-centric assembly
graphs. Later, Cairo et al. [5] have improved this bound for node-centric assembly graphs to O(mn + o),
where o is the total length of the maximal safe walks.

While these papers close the question of what are the longest walks that can safely be reported from
an assembly graph by considering only its structure, when introducing abundances, the field is much less
explored. In the case of a flow decomposition into a single walk where all arcs have abundance 1, i.e. the
decomposition into an Eulerian walk, the safe walks have been characterised [38]. This model however is
not realistic, as the abundances restricted to be only 1 forbid repeats, which are a common structure in
genomes. Additionally, a model with restricting the flow decomposition to a single closed walk (but without
restricting the abundances to value 1) was considered before [20], but not under the perspective of safety.
Such a model however would not be useful for metagenomic assembly, as it assumes just one genome.

In line with previous studies assessing the potential benefits of using longer safe paths or walks [4, 21,

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

49], in this paper we assume an error-free setting. As such, each circular genome (with its abundance)
corresponds to a weighted closed walk in the graph, and thus the superposition of these walks induces a
flow where the flow conservation property holds at every node, i.e. the sum of incoming flow equals the sum
of outgoing flow. Given only the graph and its flow, since we have no further information to decide which
flow decomposition is the correct one, a metagenomic assembly is then any decomposition of the flow (into
weighted closed walks). We study the problem of finding the safe walks in this model, i.e. finding those walks
W such that for any flow decomposition D = {D1, . . . , Dk} into closed weighted walks, there exists a closed
walk Di such that W is a subwalk of Di.

1.2 Our contributions

Characterisation. On the theoretical side, we provide the first complete characterisation of the safe walks
for flow decompositions into weighted closed walks in general graphs via flowtigs (walks with positive excess
flow). Such complete characterization was formerly only known for flow decompositions into weighted source-
to-sink paths in DAGs [21]. Surprisingly, the same characterisation as for DAGs (suitably generalised) still
works in general graphs, and it is simpler than the one of structural contigs [5, 37]. This makes it verifiable
in linear time and much simpler to implement and adapt for integrations into real assemblers.

Theorem 1 (Safety via flowtigs). A walk W is safe for an instance (G, f) of the flow decomposition problem
if and only if it is a flowtig.

Even though the characterisations are the same, when moving from DAGs to general graphs, the proof
of correctness becomes significantly more complicated. Khan et al. [21] prove the unsafety of a non-flowtig
W by constructing an arbitrary avoiding flow decomposition by taking any leaving arc of W . In general
graphs, not any leaving arc can be taken, because a wrong decision early on might forces us to traverse W in
the future, even though it would have been possible to avoid it otherwise. We show how to overcome this by
identifying a class of leaving arcs that can be appropriately used to construct such avoiding decomposition.

Enumeration algorithm. Further, we introduce an algorithm that can identify all maximal flowtigs
(possibly including duplicates) in O(mn) time in the worst case, inspired by that of Khan et al. [21]. It first
computes a flow decomposition of total size O(mn) and then identifies the subwalks of the decomposition
that are maximal flowtigs. The algorithm then reports the flow decomposition and a list of start and end
points of maximal flowtigs within the decomposition. However, the actual time complexity of the algorithm
is linear in the size of the flow decomposition, which is often much smaller than quadratic in practice, making
it competitive (in terms of runtime) against e.g. computing unitigs or extended contigs. We also give a family
of graphs which contain Θ(mn) distinct maximal flowtigs, proving that our algorithm is optimal for worst
case instances.

Theorem 2 (Optimal enumeration of flowtigs). Given a flow graph (G, f) having n vertices and m arcs,
all its maximal flowtigs can be identified in O(||D||) ⊆ O(mn) time and space, where D is some flow decom-
position of total length at most O(mn). The time and space bounds are optimal.

Application to metagenomic assembly. On the practical side, we experimentally compare flowtigs
against unitigs, extended contigs and structural contigs, on various metagenomic datasets. To focus on the
effects introduced by using flowtigs, and in line with previous studies for the DAG case [21, 50], we run
our experiments on error-free data. We show that flowtigs improve the contiguity of shorter contigs (75-
percentile) by up to 100% over unitigs, and up to 61.9% over structural contigs, which are the best competitor.
For the 50-percentile of contiguity we get an improvement of up to 17.0% over unitigs and up to 14.6% over
structural contigs. Moreover, in our experiments, extended contigs and structural contigs exhibit only minor
improvements over unitigs, while flowtigs are the only safe walks that exhibit non-negligible improvements
over unitigs. These improvements are more pronounced the more complex the assembly graph is.

Our algorithm is very fast also in practice, taking only 2 minutes and using less than 4 GiB of memory
to execute on the most complex (compacted) graph with 459 thousand nodes and 695 thousand arcs.

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

2 Preliminaries

Graphs. A directed graph G is a tuple (V,E), where V is the set of nodes and E the set of arcs. We allow
graphs to have parallel arcs, that is, two vertices may be connected by more than one arc, but we forbid
self-loops (since they can be replaced by a path of length two). As such, for an arc e ∈ E from u to v, we
define t(e) := u to be its tail, and h(e) := v to be its head. The in-neighbourhood of a node v ∈ V is the set
N−(v) of its incoming arcs, and the out-neighbourhood is the set N+(v) of its outgoing arcs.

A walk W is a sequence of nodes alternated with arcs W := (v1, e1, . . . , vℓ−1, eℓ−1, vℓ) such that t(ei) = vi
and h(ei) = vi+1. We denote by #W (e) the multiplicity of e in W (i.e. the number, possibly zero, of
occurrences of e in W). A u-v walk is a walk such that t(e1) = u and h(eℓ) = v. A closed walk is a v-v walk
for some v ∈ V . A path is a walk where all vi are unique. For paths, vℓ = v1 is allowed, in which case it is a
closed path (we interchangeably use the term cycle). In what follows, we will be usually working with walks
along cycles, so we define a recurring cycle with respect to a cycle C to be a walk beginning with C followed
by a (possibly empty) prefix of any number of concatenations of C with itself. For a walk W , we denote by
|W | its number of its arcs. For a set of walks W = {W1, . . . ,Wk} we denote its total size (number of arcs)
by ||W|| = |W1|+ · · ·+ |Wk|.

If W1 = (u1, e1, . . . , eℓ−1, uℓ) and W2 = (v1, e
′
1, . . . , e

′
p−1, vp) are walks such that uℓ = v1, then W1W2 :=

(u1, e1, . . . , eℓ−1, uℓ, e
′
1, . . . , e

′
p−1, vp) denotes their concatenation. If e = (uℓ, x), we analogously define the

concatenation of a walk with an arc as W1e := (u1, e1, . . . , uℓ−1, eℓ−1, uℓ, e, x). A graph is strongly connected
if each pair of nodes u, v ∈ V it has a u-v path.

Flows. A flow f in a graph G = (V,E) is a function f : E → Q+ such that for any node u ∈ V , its incoming
flow fin(u) :=

∑
e∈N−(v) f(e) is equal to its outgoing flow fout(u) :=

∑
e∈N+(v) f(e) (flow conservation).

Note that we assume flow conservation every node (such flows are also called circulations, see e.g., [29, 45]).
A decomposition D of a flow graph (G, f) is a multiset of weighted closed walks (Di, wi), i ∈ {1, . . . , |D|}

with an associated positive rational weight wi ∈ Q+, such that their superposition matches the flow f ,
i.e. ∀e ∈ E : f(e) =

∑
i #Di(e) · wi. The addition f = f1 + f2 of two flows is defined as ∀e ∈ E : f(e) =

f1(e) + f2(e) and the subtraction f = f1 − f2 is defined as ∀e ∈ E : f(e) = f1(e)− f2(e). The multiplication
f = k · f1 of a flow with a scalar k ∈ Q+ is defined as ∀e ∈ E : f(e) = k · f1(e). The induced flow of a walk
W is defined as f(e) := #W (e).

The following facts are well known and we refer the reader to e.g. the monographs [1, 45] for further
details.

Lemma 3. If f and f ′ are flows, then f +f ′ is a flow and f −f ′ is a flow if it contains only positive values.
A flow graph (G, f) has zero or more components all of which are strongly connected.

Subwalks and safety. In order to define our safe walks, we first define subwalks of decomposing walks.
For a walk W that is not closed we define a subwalk X to be a walk whose arcs are a substring of the arcs
of W . For a closed walk W we define a subwalk X to be a walk whose arcs are a substring of any number of
concatenations of W with itself. Specifically, X may be a substring of only W , or X starts with a (possibly
empty) suffix of W , followed by zero or more repetitions of W , and ends with a (possibly empty) prefix of
W . Note that this definition of subwalks of closed walks differs from the usual definition that does not allow
X to repeat W . We use this definition to obtain a more general definition of safety, which results in a more
general theoretical result, and in line with previous works such as [37, 49]. In our experiments, we forbid a
subwalk X from repeating W , as it results in a more realistic formulation. The corresponding theory results
can be obtained by adding only minor restrictions to the more general results, see Appendix B.1 for details.
In both cases, we are interested in all the maximal safe walks, that is, safe walks such that by extending
them with a single arc (in the beginning or the end) renders the walk unsafe.

Definition 4 (Safety). Let (G, f) be a flow graph. Then a walk W is safe in (G, f), if for each decomposition
D into weighted closed walks of (G, f), it holds that there is some closed walk D ∈ D, such that W is a subwalk
of D. A maximal safe walk is a safe walk that can not be extended without losing the safe property.

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

(a) W is a path with leakage(W) = 5 + 2 and excess(W) =
8− 7 = 1.

(b) W is a recurring cycle with leakage(W) = 1 + 1 + 1 and
excess(W) = 4− 3 = 1.

Figure 2: Examples of flowtigs W in green with their leaving arcs in red. The numbers denote the flow values of the arcs.

3 Characterisation and enumeration of safe walks

We begin by recalling some key notions introduced by Khan et al. [21] for the DAG case. First, we define
an arc to be leaving from a walk if it is out-going from one of its internal nodes.

Definition 5 (Leaving arc [21]). A leaving arc of a walk W = (v1, e1, . . . , vℓ−1, eℓ−1, vℓ) is an arc e such
that ∃i ∈ {2, . . . , ℓ− 1} : t(e) = t(ei) and h(e) ̸= h(ei).

Next, we recall the notions of leakage of a walk (as the total amount of flow that leaves the walk before
it ends), and the notion of excess flow of a walk (as the flow entering the walk through its first arc, minus
its leakage). These concepts will be crucial for showing that a given walk is safe or unsafe. Note that our
definition below applies to general graphs, not only to DAGs as in [21]. For example, if there is a leaving
arc from a node v for a walk W , then its flow value contributes to the leakage of W as many times as the
number of occurrence of v as internal node of W .

Definition 6 (Leakage and Excess flow [21]). The leakage leakage(W) and the excess flow excess(W) of
a walk W = (v1, e1, . . . , vℓ−1, eℓ−1, vℓ) are defined as:

leakage(W) :=
ℓ−1∑
i=2

fout(vi)− f(ei), excess(W) := f(e1)− leakage(W).

The core idea of the characterisation of safe walks for weighted flow decompositions into source-to-sink
paths in DAGs by Khan et al. [21] is to ask where the incoming flow of a given walk can go: certainly, it
can flow through the entire walk, but it can also flow through its leaving arcs. The relation between the
incoming flow and the leakage (i.e., positive excess flow) is what fully characterises safe walks in DAGs.

For general graphs, we define flowtigs as those walks with positive excess flow; see Figure 2 for examples.

Definition 7 (Flowtig). A walk W is a flowtig if excess(W) > 0.

Our first result below allows us to focus on only two particular types of walks when reasoning about
safety, as it imposes restrictions on the shape of any potential safe walk.

Lemma 8. Any cycle followed or preceded by a single arc
a) is not safe, and
b) its excess flow is non-positive.

Proof. Let W = PC be a walk consisting of a path made up from a single arc P = (u, e, v) followed by a
cycle C = (v, e1, . . . , v). The case of a cycle followed by an arc is completely symmetric.

For a), let w = mine∈C f(e) and let D = (C,w) be a closed walk (in fact, a cycle) of weight w. The walk
W = PC is not a subwalk of any closed walk belonging to a decomposition containing D, thus W is unsafe.

For b), we first observe that trivially f(e) ≤ fin(v) holds (in general, equality does not hold because
other arcs may be entering v). Due to flow conservation, fin(v) units of flow must be carried from v along
C, and they must eventually exit from C (at latest, in v). Note that the nodes of C are exactly the internal
nodes of the walk W . Thus fin(v) ≤ leakage(W) (again, in general equality does not hold because other arcs
may be entering C). Thus f(e) ≤ fin(v) ≤ leakage(W), and thus W has non-positive excess flow.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

1
1

(a) A flow decomposition avoiding W ′,
where each direct leaving arc li is used in
a separate closed walk, escaping W ′ via
the last occurrence of their tail in W ′.

1
2

(b) A flow decomposition not avoiding
W ′, constructed via a closed walk that
uses both direct leaving arcs l1 and l2.

1
2

1

(c) A flow decomposition not avoiding
W ′, constructed via an escaping walk for
l1 (in violet), but before the last occur-
rence of t(l1) in W ′ (compare with the
violet walk in Figure 3a).

Figure 3: Consider the flow graph from Figure 2b and consider the unsafe recurring cycle W ′ obtained by extending the green
(safe) walk W forward with the arc of flow value 2. Here we show three flow decompositions of the graph, whose walks are in
blue, violet and cyan; their corresponding weights are represented by the boxed numbers.

Consequently, any extension of walks of this form are unsafe, and, therefore, any safe walk is either a
recurring cycle or a path (see Figure 2). Importantly, such walks cannot contain leaving arcs of themselves,
a fact that we will use in the next results.

Corollary 9. Any safe walk for an instance (G, f) of the flow decomposition problem into closed walks is
either a recurring cycle or a path.

To prove our characterisation, we will routinely build closed walks that contain a proper prefix of the
given walk and then escape via one of its leaving arcs. Furthermore, we wish to escape in a particular way,
for which we identify a special class of leaving arcs. The following definitions address these needs.

Definition 10 (Escaping walk). An escaping walk of a walk W = (v1, e1, . . . , vℓ−1, eℓ−1, vℓ) is any closed
walk containing a non-empty prefix of W , but not containing W as a subwalk.

Definition 11 (Direct leaving arc). A direct leaving arc l of a walk W is any leaving arc of W for which
there exists an escaping walk Wl of W containing l and not containing any other leaving arc of W .

We can now show that whenever a walk has positive leakage and does not contain any of its leaving arcs,
it admits an escaping walk via a direct leaving arc. In fact, if we consider escaping walks that use other
leaving arcs, then we may not be able to avoid an unsafe walk W .

Lemma 12. Let (G, f) be a flow graph and let W = (v1, e1, . . . , vℓ−1, eℓ−1, vℓ) be a walk with leakage(W) > 0
and such that W does not contain any leaving arc of W itself. Then W has a direct leaving arc l, with the
additional property that for any occurrence of t(l) in W , there is a corresponding escaping walk Wl traversing
W until that occurrence of t(l).

Proof. Let l be any leaving arc of W (which must exist since leakage(W) > 0). Let W1 be the walk along
W from v1 to any occurrence of t(l) in W and let P2 be a path from h(l) to v1. Such path P2 always exists
by Lemma 3 (note that v and v1 are in the same component). In case P2 uses any additional leaving arcs
of W , we take l to be the last leaving arc occurring in P2, and change P2 to be the path from h(l) to v1.
Moreover, for any occurrence of t(l) in W , we can change the prefix W1 to be until that occurrence of t(l).

Now, for any W1 we can define the closed walk Wl := W1lP2. We claim that l is a direct leaving arc of
W with corresponding escaping walk Wl (in fact, one escaping walk per occurrence of t(l) in W). First, note
that Wl does not contain W as subwalk, because W1 is a proper prefix of W and the only occurrence of v1
in P2 is at the end of P2. Therefore, Wl is an escaping walk of W . Finally, l is a direct leaving arc of W for
any Wl, since Wl is an escaping walk of W , W1 does not contain any leaving arcs of W by initial assumption,
and P2, by construction, also cannot contain leaving arcs of W , thus Wl contains only l as leaving arc.

We now have everything needed to show our theorem characterising safe walks. To show that a walk W
with non-positive excess flow is unsafe, we give a constructive argument that builds a flow decomposition
where W is not a subwalk of any closed walk of the decomposition. We handle separately the two cases from
Corollary 9 for a walk to be safe. The idea is to use Lemma 12 which will allow us to escape from W in a
way that we can control both the decrease in the flow value of the first arc of W and in the leakage of W .

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

Theorem 1 (Safety via flowtigs). A walk W is safe for an instance (G, f) of the flow decomposition problem
if and only if it is a flowtig.

Proof. Let W := (v1, e1, . . . , vℓ−1, eℓ−1, vℓ). We prove both directions of the statement.
(⇐) Suppose W is a flowtig, i.e., f(e1) > leakage(W). We prove that W is also safe for (G, f). Each

decomposition of (G, f) can carry at most leakage(W) flow through closed walks that contain e1 but do not
have W as subwalk. Therefore, since f(e1) > leakage(W), it follows that each decomposition must contain
a closed walk having W as a subwalk, so W is safe for (G, f).

(⇒) Suppose W is safe, and assume for contradiction that W is not a flowtig, i.e. f(e1) ≤ leakage(W).
We argue separately over the two possible cases shown in Corollary 9 for a walk to be safe. In both cases
we make use of Lemma 12 to iteratively build a decomposition D = {D1, . . . , Dk} into closed walks where
W is not a subwalk of any Di.

Case 1. W is a path. As such, it does not contain leaving arcs of itself, and by our assumption,
leakage(W) > 0. Thus, Lemma 12 gives a direct leaving arc l with one corresponding escaping walk Wl (note

that the tail of every leaving arc of W occurs only once in W). Let w := mine∈Wl

f(e)
#Wl

(e) be the “bottleneck”

of Wl (i.e., w is the largest weight for which the closed walk Wl with weight w “fits” into the flow f) and
add (Wl, w) to D. In doing so, we update f by subtracting the flow induced by w · Wl and remove arcs
whose flow value becomes zero (so that each w > 0), resulting in a new flow by Lemma 3. We repeat this
procedure until some arc e ∈ W disappears from the graph (i.e., its current flow value becomes 0), and then
decompose the remaining flow arbitrarily. If this happens, then no walk of the constructed decomposition
contains P as subwalk, and thus P is unsafe for (G, f).

To conclude, that if no arc of W disappears from the graph before e1 during our construction, then e1 will
eventually disappear. Since P is a path, both e1 and t(l) appear only once in Wl, and moreover l contributes
only once in leakage(W). Then, in each iteration we decrease both f(e1) and leakage(W) by exactly w, and
since initially f(e1) ≤ leakage(W), f(e1) will eventually become zero.

Case 2. W is a recurring cycle. The main difference with respect to the previous case is that a leaving
arc l of W may contribute in leakage(W) multiple times due to the fact that W is a recurring cycle. In fact,
if t(l) occurs q times as an internal node of W , then l contributes to the leakage of W exactly q times. Then,
when subtracting the flow induced by w ·Wl, the leakage of W will decrease exactly by q · w independently
of how long the prefix of W is in Wl (recall that Wl contains only one leaving arc of W), whereas the flow
of e1 will decrease only p ·w times, where p can be at most the number of times that t(e1) occurs in W . So,
even if we build our walk Wl using only one leaving arc of W , we may still end up by consuming more from
leakage(W) than from the flow in e1, possibly making the walk have positive excess flow (see Figure 3c for
an example of a decomposition built wrongly in this manner). To overcome this, we will escape W via the
last occurrence of a direct leaving arc of W , which will ensure that f(e1) and leakage(W) decrease equally.

Since W does not contain any of its leaving arcs and leakage(W) > 0, we can apply Lemma 12. As such,
we obtain a direct leaving arc l with a corresponding escaping walk Wl, which we require to traverse W until

the last occurrence of t(l) in W . We proceed as in Case 1 and analogously let w := mine∈Wl

f(e)
#Wl

(e) be the

bottleneck of Wl and add (Wl, w) to D until some arc of W disappears from the graph (and then decompose
the remaining flow arbitrarily).

We again show that during our construction if no arc of W disappears from the graph before e1, then
e1 will eventually disappear. Note that in each iteration we decrease both f(e1) and leakage(W) exactly by
#Wl

(e1) ·w, because #Wl
(e1) equals the number of times t(l) occurs in W (since we took the last occurrence

of t(l) ∈ W) which also equals the number of times l contributes in leakage(W), and finally Wl contains no
other leaving arc of W . Since initially f(e1) ≤ leakage(W), and we are decreasing some positive value from
leakage(W) at every step (since all w’s are positive), f(e1) will eventually become zero.

We use Theorem 1 to obtain an enumeration algorithm via a standard method, also used by e.g. Khan et
al. [21] for the DAG case: first construct an arbitrary flow decomposition into weighted closed walks (which
we can do in O(mn) time and space), and then use a two-pointer approach to check which subwalks of the
decomposition walks are maximal flowtigs (since all safe walks are subwalks in any flow decomposition).
However, since a flowtig can also loop around a closed walk a number of times depending on the flow values
(in the worst case), we additionally show that we can avoid this pseudo-polynomial time complexity with an

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

simple7 medium20 complex32 JGI HMP

#genomes 7 20 32 26 44
#bases 20.8M 72.8M 120M 105M 83.0M
#DBG nodes 10.8k 42.4k 459k 169k 71.6k
#DBG arcs 16.9k 65.8k 695k 260k 111k
flow decomposition size 301k 614k 9,547k 2,650k 999k

Table 1: Statistics of the datasets we use. The DBG is an arc-centric de Bruijn graph of order k = 31. The flow decomposition
is that computed by our enumeration algorithm.

argument related to the ratio between the flow value of the first arc and the leakage of the closed walk. As
such, we obtain the following theorem:

Theorem 2 (Optimal enumeration of flowtigs). Given a flow graph (G, f) having n vertices and m arcs,
all its maximal flowtigs can be identified in O(||D||) ⊆ O(mn) time and space, where D is some flow decom-
position of total length at most O(mn). The time and space bounds are optimal.

See Appendix A for the full proof of this theorem. Therein, we show a family of graphs containing Θ(mn)
distinct maximal flowtigs, which allows us to conclude that that our algorithm is worst-case optimal. Finally,
our algorithm may produce duplicate maximal flowtigs. Therein we also show how to address this using a
suffix tree with suffix links, similarly to the approach of Obscura et al. [37]. This increases the runtime of
our algorithm to O(||D|| logm).

4 Experiments

We compare flowtigs against unitigs, extended contigs and structural contigs on various datasets. See
Appendix B.2 for details about the implementation. As explained in Appendix B.1, we use a stricter
definition of the term “subwalk” for our practical experiments, forbidding the subwalk from repeating its
superwalk. This specifically disallows reporting flowtigs that are not paths or cycles, but recurring cycles.
Such flowtigs could possibly be superstrings of (circular) genomes instead of substrings, which we want to
avoid. Instead, we report all maximal flowtigs that are paths and cycles, by using a slightly simplified
enumeration algorithm as described in Appendix B.1.

As this work primarily focuses on improving assembly contiguity, for storage and deduplication of the
assembly sequences we exploited standard Rust libraries, which may not be optimal in terms memory con-
sumption. Although the choice of such string processing methods has no effect on the assembly contiguity,
for a more efficient practical implementation one may use more optimised string algorithms and libraries.

Since flowtigs overlap, we cannot use standard metrics for contiguity such as NGA50, because they get
artificially inflated through overlaps. Instead, we use the EA50 family of metrics, which is an improvement
over NGA50 that is robust against overlapping contigs [44]. The EA50 is computed by aligning the contigs
to the reference, and for each reference base identifying the longest contig that aligns to it. These lengths
are then sorted and for e.g. EA50, the 50-percentile is reported. EA75 works analogously, by reporting the
75-percentile of largest values. For non-overlapping contigs NGAx is equal to EAx for all x.

Datasets. See Table 1 for an overview of the metagenomic datasets we use for our experiments. The
datasets simple7, medium20 and complex32 are from Shafranskaya et al. [47]. Simple7 and medium20 include
two members of the genus Corynebacterium, and complex32 is made of two strains of E. coli, 3 members of
the genus Shigella, 2 members of the genus Salmonella, 4 members of the genus Lactobacillus, 2 members of
the genus Corynebacterium and 2 members of the genus Desulfosporosinus. We selected these datasets to
be able to see the effects of flowtigs on bacterial communities with various complexities. Additionally, we
also include the mock community JGI [48] which contains 23 bacterial and 3 archaeal strains with finished
genomes, which we select as a microbiome that does not only contain bacteria.

For more realistic datasets, we select HMP [27], which contains 44 high-quality assembled genomes of a
real waste water sample. Since the datasets JGI and HMP are missing abundance profiles, we simulate them
using the log-normal distribution. This is used by various state-of-the-art metagenomic read simulators [9,

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

10]. We parameterise the log-normal distribution with a mean of 0 and a standard deviation of 2, which
results in a realistic abundance profile for e.g. the human gut [42]. To the best of our knowlarc, JGI and
HMP are not motivated by specific real metagenomes with available abundance profiles, hence we use this
parameterisation to simulate their abundance profiles. To get integer abundances, we round the output of
the log-normal distribution up. And for reproducibility, we fix the seed for the random generator. The
datasets used for our experiments are available on Zenodo [15].

dataset metric unitigs extended contigs
+ unitigs

structural contigs
+ unitigs

flowtigs
+ unitigs

simple7

EA50 21.8k (13.0%) 21.9k (12.9%) 21.9k (12.9%) 24.7k
EA75 10.5k (15.6%) 10.8k (12.9%) 10.8k (12.9%) 12.2k
gen. frac. 99.75% 99.99% 99.99% 99.99%
time (s) 26.8 1.94 5.43 3.47

medium20

EA50 22.5k (13.5%) 22.8k (12.3%) 22.8k (12.3%) 25.6k
EA75 10.3k (18.9%) 10.7k (15.2%) 10.7k (15.2%) 12.3k
gen. frac. 99.55% 99.97% 99.97% 99.98%
time (s) 44.2 6.51 58.9 10.6

complex32

EA50 11.1k (13.0%) 11.3k (10.9%) 11.3k (10.9%) 12.5k
EA75 535 (100%) 662 (61.9%) 662 (61.9%) 1.07k
gen. frac. 94.24% 99.85% 99.85% 99.77%
time (s) 54.7 11.8 18,300 118

JGI

EA50 16.5k (17.0%) 16.8k (14.6%) 16.8k (14.6%) 19.3k
EA75 4.67k (26.2%) 4.88k (20.7%) 4.88k (20.7%) 5.89k
gen. frac. 99.14% 99.96% 99.96% 99.97%
time (s) 98.3 9.90 1,200 25.2

HMP

EA50 19.4k (13.9%) 19.6k (12.8%) 19.6k (12.8%) 22.1k
EA75 8.62k (14.4%) 8.79k (12.1%) 8.79k (12.1%) 9.86k
gen. frac. 99.22% 99.91% 99.91% 99.95%
time (s) 51.8 7.42 151 14.8

Table 2: Assembly contiguity and computation time of various tigs. The EA50 and EA75 metrics are an extension of the
NGA50 and NGA75 metrics that are robust against overlapping and repeated contigs. “gen. frac.” is the percentage of the
metagenomic reference that is covered by the contigs. Since we work with perfect data, this should always be exactly 100%.
But since QUAST uses approximate alignment, it is not. See Appendix B.2 for more details. “k” is the SI multiplier by 1, 000.
In parentheses, we give the improvement of flowtigs + unitigs over the respective competing contigs. Unitigs are computed with
BCALM2 [6]. All other algorithms take unitigs as input, but for readability we do not include the computation of unitigs in
their performance metrics. The computation of flowtigs contains also the run of a separate tool that transforms the node-centric
DBG output by BCALM2 into an arc-centric one, since the flowtigs tool cannot directly read the output of BCALM2.

Comparing assembly contiguity. Our results are displayed in Table 2. Except for HMP, our improve-
ments are larger on shorter contigs (EA75) than longer contigs (EA50). On longer contigs, flowtigs improve
up to 17% over unitigs and up to 14.6% over structural contigs, which are the state of the art. On shorter
contigs, flowtigs improve up to 100% over unitigs and up to 61.9% over structural contigs. While the im-
provements are more homogenous for longer contigs, for shorter contigs the maxima appear to be related
to the complexity of the genome graph, as the largest assembly graphs (complex32, JGI) result in the most
significant improvements. Further, on all datasets but the simplest (simple7), the improvements between
structural contigs and flowtigs are a significantly larger than those between unitigs and structural contigs,
often by a small integer factor. For example for complex32, the improvement in EA50 from unitigs to struc-
tural contigs is around 2%, while the improvement from structural contigs to flowtigs is 10.9%. In EA75,
the improvement from unitigs to structural contigs is 24%, while the improvement from structural contigs
to flowtigs is 61.9%. We include the genome fraction in our table even though in theory it should be 100%
in each case since we add unitigs and work on error-free data. In practice it is slightly lower, since QUAST
uses approximate alignment that does not align very short contigs. If it was a much lower than 100%, this
may be an indicator that our EAx statistics are skewed, as they are based on alignments. However, it is
above 99% in all but one cases and only very short contigs are unaligned, specifically all unaligned contigs
are shorter than 150bp in all datasets. For the unitigs of complex32, we can assume that they contain a lot
of very short contigs, as the graph is very complex, which explains why the genome fraction is only 94%

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

in this case. The EAx metrics are based on the longest contigs, similar to the well-known NGAx metrics.
Hence, we take the genome fraction as an indicator that our statistics are accurate.

Comparing performance. We also compare the performance of the various algorithms in Table 2. Note
that unitigs are computed with BCALM2 [6], a highly engineered parallel external memory algorithm, while
all other algorithms run single-threaded with a less engineered proof-of-concept implementation. Further,
unitigs are the input to all other algorithms, but we report the runtimes of the other algorithms without that
of unitigs. In a practical assembler, the graph will likely be computed with a different tool than BCALM2,
hence we get a better comparison between the algorithms if we ignore the initial graph-building step.

The algorithm for extended contigs is very simple and runs in linear time, which is visible in its great
performance compared to structural contigs and flowtigs. Structural contigs are computed with an O(mn)
algorithm, which becomes notable on the larger graphs of complex32 and JGI, where the runtime is signifi-
cantly higher than that of the other algorithms. But while flowtigs are computed with an O(||Df ||) algorithm
which is O(mn) in the worst case as well, the actual size of the flow decomposition in our graphs is much
lower than that as shown in Table 1. Hence, it runs much faster and behaves more like the linear-time ex-
tended contig algorithm than the quadratic structural contig algorithm. See Appendix B.3 for an evaluation
of the memory consumption of the algorithms.

5 Discussion and future work

In this paper we introduced flowtigs (as generalizing the safe walks in DAGs from [21]) and compared
them to previous safe contigs. On all the analised datasets, flowtigs are the only safe contigs that exhibit
non-negligible improvements over unitigs.

We believe that flowtigs are more easily applicable to real data than structural contigs, since their
definition is very simple and only based the local information of excess flow (and thus leakage through
leaving arcs). This implies that any errors in the real data will only have local effects, as opposed to structural
contigs, where a single false positive or false negative node or arc can have global effects. Moreover, flowtigs
are much less sensitive to local errors, because they take abundances into account. This way, arcs that are
of low abundance and hence on the verge of deletion by an error-correction algorithm can be left untouched,
and will affect the resulting flowtigs only lightly. Thus, for the first time in general graphs, we have a notion
of safe walks enjoying the same and in parts even better favourable robustness properties as unitigs and
extended contigs, while resulting in a much larger improvement in assembly contiguity.

In the future, we hope that we can obtain even longer safe walks than flowtigs by making use of more
information that is usually available during a modern assembly process. Flowtigs use all information that
is available through the structure of the assembly graph and the abundance values on the arcs. Hence,
based just on this information, no further improvement can be obtained. However, in a modern assembly
process, there is typically more information available that we have so far ignored. For example, the number
of chromosomes in single-genome assembly is typically known. Further, in the most recent assembly of
the human genome [36], an assembly graph was constructed using shorter but very accurate reads (PacBio
HiFi) and then longer reads (Oxford Nanopore) were aligned to that graph. These longer reads were used
to obtain very long contigs by heuristically bridging through even complex tangles in the assembly graph.
Having proven their potential, it would be very interesting to see what information can safely be extracted
from them in a theoretically sound model, e.g. by using them as subpath constraints for a flow decomposition.
This could also result in an assembly pipeline that completely automates genome assembly such as that of
Rautiainen et al. [41], but by using only safe algorithms. Such a pipeline would have the desirably property
that it produces no errors given error-free data. This sets it apart from pipelines as such by Rautiainen et
al., which would require manual changes for every improvement in sequencing technologies that shifts the
various biases that are used as assumptions in its heuristics. The safe pipeline would improve together with
the sequencing technologies, but without any changes.

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algorithms,
and Applications. USA: Prentice-Hall, Inc., 1993. isbn: 013617549X.

[2] Martin Ayling, Matthew D Clark, and Richard M Leggett. “New approaches for metagenome assembly
with short reads”. In: Briefings in Bioinformatics 21.2 (Feb. 2019), pp. 584–594. issn: 1477-4054. doi:
10.1093/bib/bbz020. eprint: https://academic.oup.com/bib/article-pdf/21/2/584/33583908
/bbz020.pdf.

[3] Gaëtan Benoit, Sébastien Raguideau, Robert James, Adam M. Phillippy, Rayan Chikhi, and Christo-
pher Quince. “Efficient High-Quality Metagenome Assembly from Long Accurate Reads using Mi-
nimizer-space de Bruijn Graphs”. In: bioRxiv (2023). doi: 10.1101/2023.07.07.548136. eprint:
https://www.biorxiv.org/content/early/2023/07/08/2023.07.07.548136.full.pdf.

[4] Manuel Cáceres, Brendan Mumey, Edin Husić, Romeo Rizzi, Massimo Cairo, Kristoffer Sahlin, and
Alexandru I. Tomescu. “Safety in multi-assembly via paths appearing in all path covers of a DAG”. In:
IEEE/ACM Transactions on Computational Biology and Bioinformatics 19.6 (2022), pp. 3673–3684.
url: https://doi.org/10.1109/TCBB.2021.3131203.

[5] Massimo Cairo, Shahbaz Khan, Romeo Rizzi, Sebastian Schmidt, Alexandru I Tomescu, and Elia C
Zirondelli. “Cut Paths and Their Remainder Structure, with Applications”. In: 40th International
Symposium on Theoretical Aspects of Computer Science (STACS 2023). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik. 2023.

[6] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. “Compacting de Bruijn graphs from sequencing
data quickly and in low memory”. In: Bioinformatics 32.12 (2016), pp. i201–i208.

[7] Martin Farach. “Optimal suffix tree construction with large alphabets”. In: Proceedings 38th Annual
Symposium on Foundations of Computer Science. IEEE. 1997, pp. 137–143.

[8] Xiaowen Feng, Haoyu Cheng, Daniel Portik, and Heng Li. “Metagenome assembly of high-fidelity long
reads with hifiasm-meta”. In: Nature Methods 19.6 (2022), pp. 671–674.

[9] Adrian Fritz, Peter Hofmann, Stephan Majda, Eik Dahms, Johannes Dröge, Jessika Fiedler, Till
R Lesker, Peter Belmann, Matthew Z DeMaere, Aaron E Darling, et al. “CAMISIM: simulating
metagenomes and microbial communities”. In: Microbiome 7.1 (2019), pp. 1–12.

[10] Hadrien Gourlé, Oskar Karlsson-Lindsjö, Juliette Hayer, and Erik Bongcam-Rudloff. “Simulating Illu-
mina metagenomic data with InSilicoSeq”. In: Bioinformatics 35.3 (2019), pp. 521–522.

[11] Steffen Heber, Max Alekseyev, Sing-Hoi Sze, Haixu Tang, and Pavel A Pevzner. “Splicing graphs and
EST assembly problem”. In: Bioinformatics 18.suppl 1 (2002), S181–S188.

[12] Ramana M Idury and Michael S Waterman. “A new algorithm for DNA sequence assembly”. In:
Journal of Computational Biology 2.2 (1995), pp. 291–306.

[13] Eliel Ingervo. Flowtigs. Version 1.0.1. Oct. 2023. url: https://github.com/elieling/flowtigs.

[14] [SW] Eliel Ingervo, Flowtigs 2023. swhid: ⟨swh:1:rev:2685085eab02c124b8a62787bf75e4922b2528
82;origin=https://github.com/elieling/flowtigs;visit=swh:1:snp:924fdd2f176a8c0c2f049

8debb423ab4e33ea7f7⟩.
[15] Eliel Ingervo. Flowtigs datasets. Version v1. 2023. doi: 10.5281/zenodo.8434267.

[16] [SW] Eliel Ingervo, Flowtigs experiment pipeline 2023. swhid: ⟨swh:1:rev:c5db004c628c665c0cd40
43a0550011d0502c67f;origin=https://github.com/elieling/safe-paths-with-flowtigs;visi

t=swh:1:snp:4f699a2bd0ea9ec8740492c6e77956bbcb426ecb⟩.
[17] [SW] Eliel Ingervo and Sebastian Schmidt, Quast 2023. swhid: ⟨swh:1:rev:cf3870b84449d69de76c

bb704f989c433a34e6f0;origin=https://github.com/elieling/quast;visit=swh:1:snp:7e09bc

de042226387c692410a0fbbc3dd8c06332⟩.
[18] Benjamin Grant Jackson. Parallel methods for short read assembly. Iowa State University, Ph.D. thesis,

2009.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1093/bib/bbz020
https://academic.oup.com/bib/article-pdf/21/2/584/33583908/bbz020.pdf
https://academic.oup.com/bib/article-pdf/21/2/584/33583908/bbz020.pdf
https://doi.org/10.1101/2023.07.07.548136
https://www.biorxiv.org/content/early/2023/07/08/2023.07.07.548136.full.pdf
https://doi.org/10.1109/TCBB.2021.3131203
https://github.com/elieling/flowtigs
http://archive.softwareheritage.org/swh:1:rev:2685085eab02c124b8a62787bf75e4922b252882;origin=https://github.com/elieling/flowtigs;visit=swh:1:snp:924fdd2f176a8c0c2f0498debb423ab4e33ea7f7
http://archive.softwareheritage.org/swh:1:rev:2685085eab02c124b8a62787bf75e4922b252882;origin=https://github.com/elieling/flowtigs;visit=swh:1:snp:924fdd2f176a8c0c2f0498debb423ab4e33ea7f7
http://archive.softwareheritage.org/swh:1:rev:2685085eab02c124b8a62787bf75e4922b252882;origin=https://github.com/elieling/flowtigs;visit=swh:1:snp:924fdd2f176a8c0c2f0498debb423ab4e33ea7f7
https://doi.org/10.5281/zenodo.8434267
http://archive.softwareheritage.org/swh:1:rev:c5db004c628c665c0cd4043a0550011d0502c67f;origin=https://github.com/elieling/safe-paths-with-flowtigs;visit=swh:1:snp:4f699a2bd0ea9ec8740492c6e77956bbcb426ecb
http://archive.softwareheritage.org/swh:1:rev:c5db004c628c665c0cd4043a0550011d0502c67f;origin=https://github.com/elieling/safe-paths-with-flowtigs;visit=swh:1:snp:4f699a2bd0ea9ec8740492c6e77956bbcb426ecb
http://archive.softwareheritage.org/swh:1:rev:c5db004c628c665c0cd4043a0550011d0502c67f;origin=https://github.com/elieling/safe-paths-with-flowtigs;visit=swh:1:snp:4f699a2bd0ea9ec8740492c6e77956bbcb426ecb
http://archive.softwareheritage.org/swh:1:rev:cf3870b84449d69de76cbb704f989c433a34e6f0;origin=https://github.com/elieling/quast;visit=swh:1:snp:7e09bcde042226387c692410a0fbbc3dd8c06332
http://archive.softwareheritage.org/swh:1:rev:cf3870b84449d69de76cbb704f989c433a34e6f0;origin=https://github.com/elieling/quast;visit=swh:1:snp:7e09bcde042226387c692410a0fbbc3dd8c06332
http://archive.softwareheritage.org/swh:1:rev:cf3870b84449d69de76cbb704f989c433a34e6f0;origin=https://github.com/elieling/quast;visit=swh:1:snp:7e09bcde042226387c692410a0fbbc3dd8c06332
https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

[19] Chirag Jain. “Coverage-preserving sparsification of overlap graphs for long-read assembly”. In: Bioin-
formatics 39.3 (2023), btad124.

[20] Evgeny Kapun and Fedor Tsarev. “De Bruijn Superwalk with Multiplicities Problem is NP-hard”. In:
BMC Bioinformatics 14 Supplement 5.S7 (2013), pp. 1–4. doi: 10.1186/1471-2105-14-S5-S7.

[21] Shahbaz Khan, Milla Kortelainen, Manuel Cáceres, Lucia Williams, and Alexandru I. Tomescu. “Safety
and Completeness in Flow Decompositions for RNA Assembly”. In: RECOMB 2022 - 26th Annual
International Conference on Research in Computational Molecular Biology. Vol. 13278. Lecture Notes
in Computer Science. Springer, 2022, pp. 177–192. doi: 10.1007/978-3-031-04749-7_11.

[22] Carl Kingsford, Michael C. Schatz, and Mihai Pop. “Assembly complexity of prokaryotic genomes using
short reads”. In: BMC Bioinformatics 11.21 (2010), pp. 1–11. doi: 10.1186/1471-2105-11-21.

[23] Mikhail Kolmogorov, Derek M Bickhart, Bahar Behsaz, Alexey Gurevich, Mikhail Rayko, Sung Bong
Shin, Kristen Kuhn, Jeffrey Yuan, Evgeny Polevikov, Timothy PL Smith, et al. “metaFlye: scalable
long-read metagenome assembly using repeat graphs”. In: Nature Methods 17.11 (2020), pp. 1103–1110.

[24] Mikhail Kolmogorov, Jeffrey Yuan, Yu Lin, and Pavel A Pevzner. “Assembly of long, error-prone reads
using repeat graphs”. In: Nature Biotechnology 37.5 (2019), pp. 540–546.

[25] Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam. “MEGAHIT: an
ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn
graph”. In: Bioinformatics 31.10 (2015), pp. 1674–1676.

[26] Wei Li. RNASeqReadSimulator: a simple RNA-seq read simulator. 2014. url: http://alumni.cs.uc
r.edu/~liw/rnaseqreadsimulator.html.

[27] Lei Liu, Yulin Wang, You Che, Yiqiang Chen, Yu Xia, Ruibang Luo, Suk Hang Cheng, Chunmiao
Zheng, and Tong Zhang. “High-quality bacterial genomes of a partial-nitritation/anammox system by
an iterative hybrid assembly method”. In: Microbiome 8 (2020), pp. 1–17.

[28] Moritz G Maaß. “Computing suffix links for suffix trees and arrays”. In: Information Processing Letters
101.6 (2007), pp. 250–254.

[29] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I Tomescu. Genome-Scale Algorithm
Design: Bioinformatics in the Era of High-Throughput Sequencing. Cambridge University Press, 2023.

[30] Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael Brudno. “Computability of models
for sequence assembly”. In: International workshop on algorithms in bioinformatics. Springer. 2007,
pp. 289–301.

[31] Alla Mikheenko, Andrey Prjibelski, Vladislav Saveliev, Dmitry Antipov, and Alexey Gurevich. “Ver-
satile genome assembly evaluation with QUAST-LG”. In: Bioinformatics 34.13 (2018), pp. i142–i150.

[32] Alla Mikheenko, Vladislav Saveliev, and Alexey Gurevich. “MetaQUAST: evaluation of metagenome
assemblies”. In: Bioinformatics 32.7 (2016), pp. 1088–1090.

[33] Felix Mölder, Kim Philipp Jablonski, Brice Letcher, Michael B Hall, Christopher H Tomkins-Tinch,
Vanessa Sochat, Jan Forster, Soohyun Lee, Sven O Twardziok, Alexander Kanitz, et al. “Sustainable
data analysis with Snakemake”. In: F1000Research 10 (2021).

[34] Eugene W Myers. “The fragment assembly string graph”. In: Bioinformatics 21.suppl 2 (2005),
ii79–ii85.

[35] Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A Pevzner. “metaSPAdes: a new
versatile metagenomic assembler”. In: Genome research 27.5 (2017), pp. 824–834.

[36] Sergey Nurk et al. “The complete sequence of a human genome”. In: Science 376.6588 (2022), pp. 44–
53. doi: 10.1126/science.abj6987.

[37] Nidia Obscura Acosta, Veli Mäkinen, and Alexandru I Tomescu. “A safe and complete algorithm for
metagenomic assembly”. In: Algorithms for Molecular Biology 13.3 (2018), pp. 1–12.

[38] Nidia Obscura Acosta and Alexandru I. Tomescu. “Simplicity in Eulerian circuits: Uniqueness and
safety”. In: Information Processing Letters 183 (2024), p. 106421. issn: 0020-0190. doi: https://doi
.org/10.1016/j.ipl.2023.106421.

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1186/1471-2105-14-S5-S7
https://doi.org/10.1007/978-3-031-04749-7_11
https://doi.org/10.1186/1471-2105-11-21
http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
https://doi.org/10.1126/science.abj6987
https://doi.org/https://doi.org/10.1016/j.ipl.2023.106421
https://doi.org/https://doi.org/10.1016/j.ipl.2023.106421
https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

[39] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. “Meta-IDBA: a de Novo assembler
for metagenomic data”. In: Bioinformatics 27.13 (2011), pp. i94–i101.

[40] Christopher Quince, Alan WWalker, Jared T Simpson, Nicholas J Loman, and Nicola Segata. “Shotgun
metagenomics, from sampling to analysis”. In: Nature Biotechnology 35.9 (Sept. 2017), pp. 833–844.
issn: 1546-1696. doi: 10.1038/nbt.3935.

[41] Mikko Rautiainen, Sergey Nurk, Brian P. Walenz, Glennis A. Logsdon, David Porubsky, Arang Rhie,
Evan E. Eichler, Adam M. Phillippy, and Sergey Koren. “Telomere-to-telomere assembly of diploid
chromosomes with Verkko”. In: Nature Biotechnology (Feb. 2023). issn: 1546-1696. doi: 10.1038/s4
1587-023-01662-6. url: https://doi.org/10.1038/s41587-023-01662-6.

[42] Claudia Sala, Silvia Vitali, Enrico Giampieri, Ìtalo Faria do Valle, Daniel Remondini, Paolo Garag-
nani, Matteo Bersanelli, Ettore Mosca, Luciano Milanesi, and Gastone Castellani. “Stochastic neutral
modelling of the Gut Microbiota’s relative species abundance from next generation sequencing data”.
In: BMC Bioinformatics 17.2 (Jan. 2016), S16. issn: 1471-2105. doi: 10.1186/s12859-015-0858-8.

[43] [SW] Sebastian Schmidt, practical omnitigs 2023. swhid: ⟨swh:1:rev:9fa8497c8de99a70c05474c8f
a8318dce49ddeb9;origin=https://github.com/algbio/practical-omnitigs;visit=swh:1:snp:

04e6ac0423d201dfab2c8d8ebe834756a6f88de9⟩.
[44] Sebastian Schmidt, Santeri Toivonen, Paul Medvedev, and Alexandru I Tomescu. “The omnitig frame-

work can improve genome assembly contiguity in practice”. In: bioRxiv (2023). doi: 10.1101/2023.0
1.30.526175.

[45] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Vol. 24. 2. Springer, 2003.

[46] Mantas Sereika, Rasmus Hansen Kirkegaard, Søren Michael Karst, Thomas Yssing Michaelsen, Emil
Aarre Sørensen, Rasmus Dam Wollenberg, and Mads Albertsen. “Oxford Nanopore R10.4 long-read se-
quencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes
without short-read or reference polishing”. In: Nature Methods 19.7 (July 2022), pp. 823–826. issn:
1548-7105. doi: 10.1038/s41592-022-01539-7.

[47] Daria Shafranskaya, Varsha Kale, Rob Finn, Alla L. Lapidus, Anton Korobeynikov, and Andrey D. Pr-
jibelski. “MetaGT: A pipeline for de novo assembly of metatranscriptomes with the aid of metagenomic
data”. In: Frontiers in Microbiology 13 (2022). issn: 1664-302X. doi: 10.3389/fmicb.2022.981458.

[48] Esther Singer, Bill Andreopoulos, Robert M Bowers, Janey Lee, Shweta Deshpande, Jennifer Chiniquy,
Doina Ciobanu, Hans-Peter Klenk, Matthew Zane, Christopher Daum, et al. “Next generation sequenc-
ing data of a defined microbial mock community”. In: Scientific data 3.1 (2016), pp. 1–8.

[49] Alexandru I Tomescu and Paul Medvedev. “Safe and complete contig assembly through omnitigs”. In:
Journal of Computational Biology 24.6 (2017), pp. 590–602.

[50] Hongyu Zheng, Cong Ma, and Carl Kingsford. “Deriving Ranges of Optimal Estimated Transcript Ex-
pression due to Nonidentifiability”. In: J. Comput. Biol. 29.2 (2022). Proceedings paper from RECOMB
2021, pp. 121–139. doi: 10.1089/cmb.2021.0444. url: https://doi.org/10.1089/cmb.2021.0444.

A Enumerating all maximal flowtigs

Overview. The maximal flowtigs can be identified in O(mn) time by first computing a decomposition D
of (G, f) into closed walks and verifying the safety of its subwalks using a two-pointer approach together
with our excess flow characterisation. This is correct by definition, since safe walks are subwalks of some
closed walk in any flow decomposition.

For the decomposition step, we iteratively find a closed path P (which is also a closed walk) and add
(P,mine∈P f(e)) to our decomposition until (G, f) is decomposed. This works in O(mn) time and space,
since in each iteration we fully decompose at least one out of the m arcs of (G, f) and each closed path uses
O(n) vertices.

During the two-pointer step, a recurrent operation is that of updating the excess flow of a walk when
extending it in the end or the beginning. For that we present a lemma originally presented in Khan et al. [21]
for DAGs, which also holds for our case as excess flow does not depend on the type of graph in question.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1038/nbt.3935
https://doi.org/10.1038/s41587-023-01662-6
https://doi.org/10.1038/s41587-023-01662-6
https://doi.org/10.1038/s41587-023-01662-6
https://doi.org/10.1186/s12859-015-0858-8
http://archive.softwareheritage.org/swh:1:rev:9fa8497c8de99a70c05474c8fa8318dce49ddeb9;origin=https://github.com/algbio/practical-omnitigs;visit=swh:1:snp:04e6ac0423d201dfab2c8d8ebe834756a6f88de9
http://archive.softwareheritage.org/swh:1:rev:9fa8497c8de99a70c05474c8fa8318dce49ddeb9;origin=https://github.com/algbio/practical-omnitigs;visit=swh:1:snp:04e6ac0423d201dfab2c8d8ebe834756a6f88de9
http://archive.softwareheritage.org/swh:1:rev:9fa8497c8de99a70c05474c8fa8318dce49ddeb9;origin=https://github.com/algbio/practical-omnitigs;visit=swh:1:snp:04e6ac0423d201dfab2c8d8ebe834756a6f88de9
https://doi.org/10.1101/2023.01.30.526175
https://doi.org/10.1101/2023.01.30.526175
https://doi.org/10.1038/s41592-022-01539-7
https://doi.org/10.3389/fmicb.2022.981458
https://doi.org/10.1089/cmb.2021.0444
https://doi.org/10.1089/cmb.2021.0444
https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

Lemma 13 ([21]). For any walk in a flow graph (G, f), adding an arc e = (u, v) to its start or its end, reduces
its excess flow by fin(v)−f(e), or fout(u)−f(e), respectively. Analogously, removing the arc e = (u, v) from
its start or its end, increases its excess flow by fin(v)− f(e), or fout(u)− f(e), respectively. The quantities
fin(v) and fout(v) can be computed in O(m+ n) time.

Two-pointer phase. Based on a decomposition of (G, f), we can compute the maximal flowtigs along
each closed walk D ∈ D using a two-pointer algorithm as follows. We start with the subwalk containing the
first arc of D. We compute its excess flow x, and while x > 0 we append the next arc to the walk on the
right and incrementally compute its excess flow by Lemma 13. Whenever x ≤ 0, we store the flowtig between
the left pointer and the arc preceding the right pointer, and we move the left pointer forward, effectively
removing the first arc of the walk, and update the excess flow similarly by Lemma 13. Note that these
updates take constant time. We stop when the left pointer returns to the first arc of D, implying that we
have tried every possible arc in D to be the beginning of a flowtig.

Ensuring maximality. Note that these flowtigs may only be maximal with respect to the closed walk from
where they were scanned. That is, it may happen that a flowtig can be extended using arcs from another
closed walk of the decomposition. In any case, to ensure maximality, we check if the walk can be extended
on the right and then on the left using arcs of maximum flow. Extending a walk with an arc of maximum
flow maximises the excess flow of the extended walk, and thus the unsafety of such an extension implies the
unsafety of all other extensions. Therefore, if any extension (left or right) preserves safety, then the walk
is not maximal safe since we can make it longer. On the other hand, if both extensions individually render
the walk unsafe, then the walk is maximal safe. This check can be done in constant time by precomputing
a flow-maximum incoming and outgoing arc of every node, which can be done in O(m+ n).

Handling recurring cycles. There is an important detail that must be handled in order to achieve the
claimed O(mn) runtime, which is in computing safe recurring cycles, i.e. walks along closed walks that repeat
arcs as long as their excess flow is positive (note that in Figure 2b we can make the flow values of the inner
square arbitrarily large while preserving flow conservation in every node, e.g. by adding a value k ∈ Q+ to
every arc of the square. In turn, this would make the length of the flowtig drawn in green arbitrarily large).
Thus, applying a standard two pointer algorithm would yield an algorithm with only pseudo-polynomial
runtime, as the length of such walks depend on the flow values of the arcs. To avoid this, we use the
following lemma, together with an argument based on flow conservation.

Lemma 14. A safe recurring cycle W with respect to a cycle C = (v1, e1, . . . , vℓ, eℓ, v1) crosses from eℓ to

e1 at most ⌈ f(e1)
L ⌉ − 1 times, where L denotes the leakage of the walk Ce1.

Proof. Suppose that the recurring walk W consists of c > 0 repetitions of the cycle C, followed non-empty
prefix of C. If W is a cycle, then it does not cross from ek to e1. Otherwise, every time W walks over
Ce1 it leaks exactly L flow, and so it would leak c · L when doing so c times. Since W is safe, we have

c·L < f(e1) ⇒ c < f(e1)
L . Thus, c is at most the greatest integer strictly smaller than f(e1)

L , i.e. ⌈ f(e1)
L ⌉−1.

Now we will argue that bootstrapping the two pointer phase with Lemma 14 in the first scanned arc of
D ∈ D is enough to achieve the desired runtime. Clearly, the left pointer moves n times, so it remains to
analyse the behaviour of the right pointer.

Note that while the left pointer moves from the first to the last arc of D it decreases the leakage by
at most L. Now, if fM and fm denote the maximum and minimum flow occurring in the arcs of D, then
fM − fm ≤ L, since to get from fM to fm we need to leak at least L, otherwise fm would not be the
minimum flow value occurring in D. Then, when the left pointer reaches the last arc of D it has introduced
at most 2 · L of flow to be consumed by the right pointer. Since the right pointer consumes L units of flow
per complete round around D (plus the next arc) and since the computation of the suffix of the first flowtig
uses in the worst case n − 1 arcs (after the initial “jump”) we conclude that the right pointer does O(n)
transitions in total.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

Figure 4: A family of graphs parameterized by k ≥ 1 with Θ(k) nodes, at least Θ(k) arcs (sparsest case) and
at most Θ(k2) arcs (densest case). The black arcs have k flow, the red arcs have unit flow, and the remaining
arcs are according to flow conservation. Such flow graphs contain Θ(mn) unique maximal flowtigs, showing
that our algorithm is optimal.

Storing walks efficiently. A similar problem to that of computing safe recurring cycles is in their repre-
sentation since we can not afford to store them explicitly as sequences of arcs. Instead, we use a compact
representation inspired by Khan et al. [21]. Let D = {D1, . . . , Dk} be a flow decomposition and let W be
a flowtig. Then, we represent W by three integers (i, j, l), where i points to the closed walk Di ∈ D where
W occurs, j points to the first arc of W in Di, and l denotes the length of W . This encoding allows us to
uniquely identify flowtigs with additional constant space per flowtig.

Optimal enumeration of flowtigs. From the discussion above, we conclude that we can identify every
maximal flowtig in an instance (G, f) of the flow decomposition problem. We summarise this in the following
theorem.

Theorem 2 (Optimal enumeration of flowtigs). Given a flow graph (G, f) having n vertices and m arcs,
all its maximal flowtigs can be identified in O(||D||) ⊆ O(mn) time and space, where D is some flow decom-
position of total length at most O(mn). The time and space bounds are optimal.

In Figure 4 we present a family of graphs requiring Ω(mn) total space to decompose its flow and containing
Θ(mn) distinct maximal flowtigs. This structure is identical to the one presented in [21], except that we add
an arc from bk to a1 to make the graph into a circulation.

About the structure of the graph, observe that by choosing k = n/4 and any subset of connections
between C = {c1, . . . , ck} and D = {d1, . . . , dk} that make the graph strongly connected, we get a graph
with any n and m. Let there be flow k on the black arcs and unit flow on the red arcs. The remaining arcs
are according to flow conservation. Further, note that m = Θ(|C ×D|) and that n = Θ(k).

For the analysis of the flow decomposition D, note that each arc in C ×D necessarily contributes in D
with at least one closed walk of length at least Θ(k), implying that ||D|| = Ω(mn).

For the analysis of the maximal flowtigs, observe that there are |C × D| distinct flowtigs from ai to bi
for all 1 ≤ i ≤ k because every path from ai to b1 has excess flow i. For all 2 ≤ j ≤ k − 1, the aj-bj flowtigs
are maximal, and the a1-b1 and ak-bk flowtigs can only be extended by adding the green and blue arc to the
beginning and end, respectively. Therefore, we have Ω(|C ×D| · k) = Ω(mn) distinct maximal flowtigs.

To conclude our analysis, recall that for any flow graph there is a O(mn)-sized flow decomposition, and
so the graph shown in Figure 4 only admits flow decompositions of size Θ(mn). Moreover, the number of
distinct maximal flowtigs is bounded above by the size of the smallest flow decomposition in the underlying
graph. Indeed, this is true by definition of safety, and due to the fact that in any closed walk D ∈ D we have
at most one unique maximal flowtig per arc in D. Then, Figure 4 has Θ(mn) distinct maximal flowtigs, as
we wanted. This shows that our algorithm is optimal in time and space.

Deduplication. Finally, our algorithm may produce duplicate maximal flowtigs. To address this we use
a suffix tree with suffix links to identify the set of maximal flowtigs without duplicates, similar to Obscura
et al. [37]. This increases the runtime of our algorithm to O(||Df || logm).

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

A maximal flowtig may be reported multiple times when there exist distinct Di, Dj ∈ D such that
Di ∩ Dj ̸= ∅. However, maximal flowtigs that repeat any arc cannot be reported multiple times, as that
would imply that there exist two equivalent cycles in the decomposition, which can not happen in our
algorithm. Hence, we only need to deduplicate paths and cycles.

For filtering out duplicates efficiently, we can apply an idea similar to that of Obscura et al. [37]. We
build a string S := D1D1D1D1D1D1#D2D2D2D2D2D2# · · ·#DkDkDkDkDkDk of length O(||Df ||) for our
decomposition {D1, . . . , Dk} which contains the arcs of our decomposing cycles. Then we build a suffix tree
in O(||Df ||) time using an algorithm by Farach [7], which we can apply because our nodes form an integer
alphabet. Then we add suffix links into the tree using a linear-time algorithm by Maaß [28]. Suffix links are
arcs that point from a string a1 · · · aℓ to a string a2 · · · aℓ.

Now, we can walk along the suffix tree while executing the two-pointer algorithm. After finding the
initial walk in the two-pointer algorithm, we check if the initial walk completes the decomposing cycle at
least twice. If it does, then all maximal flowtigs reported by the two-pointer algorithm will repeat at least
one arc, and hence cannot have duplicates. In this case, we do not need to use the suffix tree.

If on the other hand the initial walk completes the decomposing cycle less than two times, we make use
of the suffix tree. We first traverse the suffix tree from the root to find the initial walk, and then traverse
one step deeper for each move of the right pointer, and use a suffix link for each move of the left pointer.
Since the right pointer moves at most three times around the cycle, and the initial walk repeats the cycle
less than two times, repeating each decomposing cycle six times in the string S is enough for never entering
a leaf when moving the right pointer.

Using a suffix link takes constant time. However, when stepping deeper into the tree, we have up to O(m)
options, of which only is correct. To choose the right one we can use binary search which takes O(logm)
time. Hence, while executing the two-pointer algorithm, we can traverse the suffix tree in constant time for
each left pointer update, and in O(logm) for each right pointer update. In total this takes O(||Df || logm)
time for all executions of the two-pointer algorithm.

Using the simultaneous traversal of the suffix tree, we can mark nodes of the suffix tree whenever we
output a maximal flowtig. Then, before we output a maximal flowtig, we check if the corresponding node
was marked already, and only output it if the node is unmarked.

B Additional experimental details

B.1 Avoiding arc-repetition

With the subwalk definition in the main matter we allow flowtigs to repeat arcs of their superwalks. However,
this subwalk definition is not directly applicable to metagenomic assembly, as we want to compute contigs
that are substrings of the genomes and that do not repeat a genome multiple times. To alleviate that, in
our implementation we instead use a formulation where subwalks cannot repeat arcs from their superwalk.
This results in only a subset of the flowtigs being safe. In particular, any flowtig that repeats no arc is safe,
because if it is a subwalk of each flow decomposition where a subwalk is allowed to repeat arcs, then it is
also a subwalk of each flow decomposition where a subwalk is not allowed to repeat arcs. Hence, we get
that the safe walks in the strict model are exactly the subwalks of the safe walks in the relaxed model that
are paths or cycles. This results also in a simple modification to our enumeration algorithm: whenever a
decomposing walk admits safe walks that repeat an arc, we report only the safe walks that do not repeat
any arcs instead. This still results in reporting at most one safe maximal safe walk beginning in each arc in
the flow decomposition, and the deduplication works the same as well, and hence this has no effect on the
algorithm’s runtime.

B.2 Implementation and evaluation

We implement the flowtig algorithm in Rust. Instead of the complex deduplication algorithm we use a hash
set to deduplicate the output. The implementation is available on github [13] and on Software Heritage [14]
under the BSD-2-Clause license. Our experiment pipeline is written with snakemake [33] and available on
Software Heritage [16] under the BSD-2-Clause license. To compare against extended and structural contigs,
we use the implementation by Schmidt available on Software Heritage [43] under the BSD-2-Clause license.

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

Genome only flowtigs flowtigs + unitigs

simple7 99.96 99.99
medium20 99.96 99.98
complex32 99.29 99.77
HMP 99.92 99.95
JGI 99.94 99.97

Table 3: Genome fraction of flowtigs without and with adding unitigs.

The algorithms for extended contigs and structural contigs use a compact representation of the input
strings, storing all strings 2-bit encoded in a single bitvector. Further, they never make any copies of these
strings, and hence use only a low amount of memory. Compared to that, our flowtig implementation stores
strings in ASCII format. During deduplication, it copies the unitigs into the flowtigs and stores them inside
a hash set, hence it holds the input strings and all flowtigs simultaneously in memory. This causes it to use
around an order of magnitude more memory. If we were to use the compact string format for flowtigs as
well and would deduplicate while storing the flowtigs as sequences of arcs without copying the strings, then
our memory usage would likely be similar to that of structural contigs.

When computing longer safe walks, we get an issue with a lower genome fraction that was already noticed
by Jain [19] on overlap graphs. By only using maximal contigs, some genomes may be left with a gap where
no contig aligns, even on perfect data. See for example Figure 1, where in (c) the middle horizontal arc is
not covered by any contig that aligns to the red genome, and in (d) there is no contig that aligns to the
blue genome outside of the repeat. To mitigate this effect, we always run our evaluations on the maximal
contigs combined with unitigs. For example with flowtigs on complex32, the genome fraction would only be
99.29% without adding unitigs, while it is 99.77% with adding unitigs. See Table 3 for the genome fractions
of flowtigs on all datasets with and without adding unitigs.

We compare flowtigs against unitigs, extended contigs, and structural contigs. For each metagenomic
reference, we circularise each genome, and then compute a compacted de Bruijn graph for with k-mer
abundances for k = 31 using bcalm2 [6]. Since bcalm2 does not support setting a multiplier for each
genome, we simply feed bcalm2 a copies for a genome with abundance a. The sizes of the de Bruijn graphs
are displayed in Table 1. From the compacted de Bruijn graph we then compute the various tigs. We
evaluate the tigs with QUAST [31] using various common metrics. Since we use error-free data, we do not
use metaQUAST [32], because its changes over QUAST are only regarding erroneous data. In addition
to QUAST’s metrics, because flowtigs can overlap a lot, we add the EA50 family of metrics, which is
an improvement over NGA50 that is robust against overlapping contigs [44]. The EA50 is computed by
aligning the contigs to the reference, and for each reference base identifying the longest contig that aligns to
it. These lengths are then sorted and for e.g. EA50, the 50-percentile is reported. EA75 works analogously,
by reporting the 75-percentile of largest values. We implement this metric in a modified version of QUAST
which additionally computes average contig lengths and does not filter out short contigs. It is available on
Software Heritage [17] under QUAST’s original custom license.

Note that QUAST filters alignments below a length of 65 regardless of its parameterisation, hence very
short contigs do not align in our evaluation, and we get a genome fraction below 100% even though we work
with perfect data and safe algorithms only.

B.3 Comparing memory usage

We compare the performance of the various algorithms including also memory usage in Table 4. We see that
extended contigs and structural contigs are very similar, while flowtigs use roughly an order of magnitude
more memory, up to almost 4GiB. This is because extended contigs and structural contigs use compact data
structures to store strings and do not require deduplication, while our flowtigs implementation uses simpler
methods to store strings as well as a simple method for deduplication. We assume that using a more compact
method to store strings and an optimised way to do deduplication would reduce the RAM usage of flowtigs
down to around that of structural contigs. See Appendix B.2 for details.

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

dataset metric unitigs extended contigs structural contigs flowtigs

simple7
time (s) 26.8 1.94 5.43 3.47
RAM (MiB) 1,370 12.7 16.9 113

medium20
time (s) 44.2 6.51 58.9 10.6
RAM (MiB) 1,660 37.7 53.9 339

complex32
time (s) 54.7 11.8 18,300 118
RAM (MiB) 1,860 209 363 3,800

JGI
time (s) 98.3 9.90 1,200 25.2
RAM (MiB) 5,370 96.0 156 947

HMP
time (s) 51.8 7.42 151 14.8
RAM (MiB) 2,360 52.1 78.1 542

Table 4: Performance for computing various tigs. Values are rounded to the three most significant digits. Unitigs are computed
by BCALM2 [6] which uses external memory and runs in parallel. All other algorithms take unitigs as input, but for readability
we do not include the computation of unitigs in their performance metrics. The computation of flowtigs contains also the run
of a separate tool that transforms the node-centric DBG output by BCALM2 into an arc-centric one, since the flowtigs tool
cannot directly read the output of BCALM2.

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 20, 2023. ; https://doi.org/10.1101/2023.11.17.567499doi: bioRxiv preprint

https://doi.org/10.1101/2023.11.17.567499
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Metagenomic assembly and previous safe walks
	Our contributions

	Preliminaries
	Characterisation and enumeration of safe walks
	Experiments
	Discussion and future work
	Enumerating all maximal flowtigs
	Additional experimental details
	Avoiding arc-repetition
	Implementation and evaluation
	Comparing memory usage

