

Decoil: Reconstructing extrachromosomal DNA structural heterogeneity from long-read sequencing data

Mădălina Giurgiu^{1,2,3,4}, Nadine Wittstruck^{1,2,3},
Elias Rodriguez-Fos^{1,2,3}, Rocío Chamorro González^{1,2,3},
Lotte Brückner^{1,2,3,5}, Annabell Krienelke-Szymansky^{1,2,3},
Konstantin Helmsauer^{1,2,3}, Anne Hartebrodt⁶, Richard P. Koch⁷,
Kerstin Haase^{1,2,3†}, Knut Reinert^{4†}, Anton G. Henssen^{1,2,3,5†}

¹Department of Pediatric Oncology and Hematology, Charité – Universitätsmedizin Berlin, Berlin, Germany.

²Experimental and Clinical Research Center of the Max Delbrück Center and Charité Berlin, Berlin, Germany.

³Charité–Universitätsmedizin Berlin, Berlin, Germany.

⁴Freie Universität Berlin, Berlin, Germany.

⁵Max Delbrück Center for Molecular Medicine, Berlin, Germany.

⁶Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

⁷Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, USA.

Contributing authors: madalina.giurgiu@charite.de;

anton.henssen@charite.de;

†These authors contributed equally to this work.

Abstract

Circular extrachromosomal DNA (ecDNA) is a form of oncogene amplification found across cancer types and associated with poor outcome in patients. ecDNA can be structurally complex and contain rearranged DNA sequences derived from multiple chromosome locations. As the structure of ecDNA can impact oncogene regulation and may indicate mechanisms of its formation, disentangling it at high resolution from sequencing data is essential. Even though methods have been developed to identify and reconstruct ecDNA in cancer genome sequencing,

047 it remains challenging to resolve complex ecDNA structures, in particular amplicons with shared genomic footprints. We here introduce Decoil, a computational
048 method which combines a breakpoint-graph approach with *LASSO* regression to
049 reconstruct complex ecDNA and deconvolve co-occurring ecDNA elements with
050 overlapping genomic footprints from long-read nanopore sequencing. Decoil out-
051 performs *de-novo* assembly methods in simulated long-read sequencing data for
052 both, simple and complex ecDNAs. Applying Decoil on whole genome sequencing
053 data uncovered different ecDNA topologies and explored ecDNA structure het-
054 erogeneity in neuroblastoma tumors and cell lines, indicating that this method
055 may improve ecDNA structural analyzes in cancer.
056

057 **Keywords:** long-read, ecDNA, nanopore, reconstruction, heterogeneity
058
059
060

061 1 Introduction 062

063 Extrachromosomal DNA (ecDNA) is an important form of oncogene amplification
064 in cancer [1], which can be formed through multiple mechanisms [2–4]. As a result,
065 ecDNA can be structurally diverse, with different functional outcomes. The structure
066 of ecDNA can impact gene regulation through the rearrangement of regulatory ele-
067 ments as well as topologically associated domain (TAD) boundaries [5]. To explore
068 ecDNA diversity and complexity, high-resolution computational methods to recon-
069 struct ecDNA with high accuracy from genome sequencing data are required. The
070 reconstruction of ecDNA from sequencing data remains challenging due to the vari-
071 able complexity and intratumor heterogeneity of these elements. On the one hand, a
072 single ecDNA can be heavily rearranged and contain low-complexity sequence regions
073 (e.g. repeats), which pose a challenge to mapping and *de-novo* assembly based meth-
074 ods. On the other hand, one tumor can contain different ecDNA elements [6, 7], which
075 can either originate from different or shared genomic locations [8]. The latter scenario
076 may be very challenging for ecDNA reconstruction, as different co-occurring ecDNA
077 elements have overlapping genomic footprints, making it difficult to attribute the over-
078 lapping features to each of the different circular elements. In the past years, several
079 computational tools have been developed to reconstruct ecDNA from different input
080 data. Some methods were developed to detect circularized DNA regions by identify-
081 ing the breakpoints leading to circularization (circle-enrich-filter [9], Circle-Map [10],
082 ecc_finder [11]). These approaches are suitable for detecting simple circular amplicons,
083 but overlook complex ecDNA structures. To overcome these limitations, more recently,
084 methods focused on reconstructing complex ecDNA based on different technologies,
085 e.g. short-read whole-genome sequencing [12], optical-mapping combined with short-
086 read sequencing [13], and long-read sequencing were developed [14]. Lastly, methods
087 have been developed to delineate ecDNA structural heterogeneity [6], by isolating and
088 reconstructing individual ecDNA elements, leveraging *a priori* knowledge about the
089 ecDNA present in the sample of interest. However, a method that reconstructs com-
090 plex ecDNA structures and captures heterogeneity by distinguishing between ecDNA
091 elements with overlapping genomic footprints from whole-genome sequencing data
092

without such *a priori* knowledge is still largely missing to date. We here present Decoil, a computational method to reconstruct genome-wide complex ecDNA elements and deconvolve ecDNAs with shared genomic sequences from bulk whole-genome long-read sequencing using Nanopore technology. Decoil is a graph-based approach integrating the structural variant (SV) and coverage profiles to discover and reconstruct complex ecDNAs. It uses *LASSO* regression to infer likely ecDNA structures and estimate their proportions, by accounting for overlapping genomic footprints. This may improve future studies of ecDNA structural heterogeneity.

2 Results

2.1 An overview of the Decoil algorithm

Decoil reconstructs complex ecDNA structures from long-read nanopore sequencing data using aligned sequencing reads, structural variants and coverage profiles as input (Figure 1a). The genome is initially fragmented using a clean breakpoints set (Figure 1a #1). A weighted undirected multigraph is build to encode the structural rearrangements, where nodes are defined as genomic non-overlapping segments and edges represented the structural variants (Figure 1a #2). Next, the graph is explored using a depth-first search approach to discover genome-wide simple circular paths (Figure 1a #3). These can represent a unique circular element or be a sub-component of a more complex circular structure (Figure 1b). Subsequently, to account for circular elements containing nested circles, simple circular paths with at least one overlapping genomic fragment are merged into a derived larger circular structure. In order to identify the likely ecDNA elements present in the sample, all simple and derived circle candidates are leveraged as features to fit a *LASSO* regression against the read-alignment mean coverage profile. This model will (1) select the likely circles explaining the amplification and (2) estimate their proportions within the sample (Figure 1a #4). Using this approach, Decoil can account for ecDNA structures with overlapping genomic footprints (Figure 1c). Lastly, a filtered confident set of circular paths is generated (Figure 1a #5), together with the annotated topology (as defined below), proportion estimates and reconstruction thread visualization (Figure 1a (#6+#7)).

2.2 Ranking and simulating ecDNA topologies to capture ecDNA structure diversity

Currently, no guidelines exist for the assessment of ecDNA reconstruction performance from long-read data, nor do benchmarks exist like those for single nucleotide variant (SNV), insertion-deletion (INDEL) and structural variant (SV) detection [15, 16]. The lack of a gold standard datasets for assessing ecDNA reconstruction makes the evaluation of Decoil contingent on high-quality simulated data. The read-alignment of an individual ecDNA generates a structural variant collection. This information was used as the basis to systematically rank the computational complexity of ecDNA topologies (Figure 1b). This provides an approach for performance evaluation based on modeling different SV's composition on the amplicon, i.e. deletions (DEL), duplications (DUP), inversions (INV), translocations (TRA) and inverted-duplications (INVDUP).

139 We propose seven ecDNA topologies (Figure 2): i. Simple circularization, ii. Simple
140 SV's, iii. Mixed SV's, iv. Multi-region, v. Multi-chromosomal, vi. Duplications and
141 vii. Foldbacks. These ecDNA topologies were leveraged to simulate rearrangements
142 on the amplicon in order to create a representative and comprehensive collection
143 of more than 2000 ecDNA templates (Figure 2a), based on which we generated
144 *in-silico* long-read reads at different depth of coverage. This collection serves as a
145 benchmark dataset for evaluating Decoil's reconstruction performance across varying
146 computational complexities and could be a useful dataset for future ecDNA genomic
147 studies.

148

149 **2.3 Decoil's performance evaluation to reconstruct ecDNA in
150 simulated data**

151

152 The accuracy of ecDNA reconstructions was quantified using the normalized largest
153 contig as a score to measure the assembly contiguity (Section 4.6). Decoil recon-
154 structed simple ecDNA topologies with high-fidelity (largest contig normalized of 0.99
155 for more than 500 simulations) from simulated data, i.e. topologies i, ii, iii, iv and v
156 (Figure 2c,d). For the complex topologies, i.e. vi and vii, Decoil reconstructed at least
157 60% of the true structure (largest contig normalized > 0.6, Figure 2d, Suppl. Table
158 S2), in more than 70% of the simulations (total of > 1200 simulations). Poorly resolved
159 structures (largest contig normalized < 0.6) often contained mixed rearrangements
160 including nested duplications and foldbacks, suggesting that such ecDNA elements are
161 more challenging to reconstruct computationally. To demonstrate the utility and fea-
162 sibility of the method, we compared Decoil against Shasta *de-novo* assembler [17] on
163 the simulated dataset, using different Quast metrics (e.g. largest contig, longest align-
164 ment, N50). For 70% of simple structures Shasta and Decoil largest contig covered at
165 least 90% and 99% of the true structure, whereas for 70% of complex topologies only
166 30% and 60% were covered, respectively (Figure 2d). Decoil outperformed Shasta for
167 both, simple and complex topologies in terms of structure completeness (Suppl. Table
168 S1). Thus, Decoil enables the accurate reconstruction of simple and complex ecDNA to
169 a greater extent as current state-of-the-art algorithms used for long read sequencing.

170

171 **2.4 Decoil recapitulates ecDNA complexity and their
172 co-occurrence in well characterized cancer cell lines**

173

174 To show the versatility of the Decoil algorithm, we applied it to shallow whole-genome
175 nanopore sequencing of three neuroblastoma cell lines, i.e. CHP212, STA-NB-10DM
176 and TR14, for which ecDNAs were previously reconstructed based on various circular
177 DNA enrichment methods and/or validated using fluorescence *in situ* hybridization
178 (FISH)[5, 18, 19]. Decoil's reconstructions recapitulated the previously validated
179 ecDNA element in CHP212 with high fidelity (Suppl. Fig. S1a,b). An ecDNA har-
180 boring *MYCN* and a gene fusion between *SMC6* and *FAM49A* was previously
181 observed in STA-NB-10DM cells [18], which was confirmed by Decoil's reconstruc-
182 tions (Figure 3a). The ecDNA element in STA-NB-10DM also contained additional
183 genes and was predicted to be 2.1 MB in size with an estimated 171 amplicon
184 copies, harboring an interspersed duplication according to Decoil's reconstruction

(Figure 3a). Multiple co-occurring ecDNA elements, referred to as ecDNA species in a previous report, were observed in TR14 cells [19]. The three different ecDNA elements, containing *MYCN*, *ODC1* and *MDM2* were reconstructed by Decoil with high fidelity in TR14 (Figure 3b). Additionally, Decoil identified a previously unreported 1.09 MB (Suppl. Table S3) multi-chromosomal ecDNA element containing fragments from chromosome 1 and 2, with an estimated 22 amplicon copies, harboring *SMC6* and *GEN1* (Figure 3b). This is the largest amplicon and has the lowest number of estimated copies relative to the other co-occurring ecDNA elements, which may be the reason why other reports have not been able to identify it so far.

For comparison, the reconstruction's contiguity was evaluated in cell lines using the *de-novo* assembler Shasta. For CHP212, the agreement between Decoil and the Shasta was 100% (Suppl. Fig. S1b,c). In STA-NB-10DM, the interspersed duplication on ecDNA indicates increasing structural complexity and is more challenging to reconstruct. Thus, Shasta did not assemble a contiguous circular element (Suppl. Fig. S2a), whereas Decoil identified a contiguous circular path through the graph of this ecDNA element (Figure 3a). For TR14, the structures of amplicons harboring *SMC6*, *MDM2* or *ODC1* were consistent between Decoil and Shasta (Suppl. Fig. S3, Suppl. Fig. S2b). The *MYCN*-containing ecDNA was reconstructed by Decoil (Figure 2b), but was not fully resolved by Shasta (Suppl. Fig. S4b) due to overlapping rearrangements at the *MYCN* locus. Thus, Decoil is a versatile algorithm to (1) reconstruct complex ecDNA elements in cancer cell lines and (2) discover previously unknown ecDNAs from long-read sequencing data.

2.5 Decoil can recover ecDNA structure heterogeneity

To demonstrate that Decoil captures ecDNA heterogeneity, i.e. resolve structurally distinct ecDNA elements with overlapping genomic footprint, we generated 33 *in silico* mixtures, by pair-wise combination of three neuroblastoma cell lines at different ratios, i.e. CHP212, STA-NB-10DM and TR14, each containing a structurally distinct ecDNA element with sequence overlaps at the *MYCN* gene (Figure 3d, Section 4.7). The individual amplicons were recovered in the different mixtures with an overall 93% amplicon breakpoint recall, which increased with the dilution fraction (Figure 3c). These results were dependent on the coverage and SV calling. Thus, Decoil can distinguish between different co-occurring ecDNA elements, even when they share similar sequences, enabling the measurement of structural ecDNA heterogeneity.

2.6 Exploring structural ecDNA complexity in cancer patients using Decoil

In order to explore structural ecDNA complexity in tumors, shallow whole-genome nanopore sequencing on a cohort of 13 neuroblastomas was performed, of which 10 harbored at least one ecDNA element as determined by FISH and three did not harbor ecDNAs and served as negative controls. One ecDNA-containing sample was removed from the analysis due to failed QC. Decoil did not detect any ecDNA in the negative control cohort and reconstructed at least one amplicon for the other 9 samples. The

231 reconstructed ecDNA elements varied greatly in their complexity (Figure 4f) and
232 ranged from very simple (Figure 4a) or multi-region (Figure 4b) to heavily rearranged
233 multi-fragmented structures (Figure 4c,d). Decoil reconstructed two ecDNA elements
234 with an individual estimated proportions of more than 700x in patient #4, resolving
235 the same breakpoints as previously described in single cell ecDNA sequencing data
236 from this tumor ([7]). For samples with a very high structural-variant density at the
237 genomic site of ecDNA origin, Decoil reconstructed multiple circular elements with
238 different estimated relative proportions, which indicates ecDNA structural hetero-
239 geneity (Figure 4e). The reconstructed ecDNAs originated from chromosome 2 or
240 chromosome 12. Multi-region topology, i.e. ecDNA originating from a fragments of
241 the same chromosome, seemed to be the most frequent ecDNA topology identified in
242 patients, consistent with the ecDNA elements detected in cell lines (Figure 4f). No
243 Multi-chromosomal topology was detected in this cohort.

244

245 Decoil reconstructed ecDNA elements with a mean size of 1.4 MB in cell lines and 0.7
246 MB in patient samples (Figure 4g), which is in line with mean ecDNA sizes in other
247 tumor sequencing studies [20]. Contiguous genomic fragments on ecDNA had a mean
248 size of 127 kb in cell lines and 145 kb in patient samples (Suppl. Fig. S5b). While
249 the ecDNA size was conserved for the different topologies (Suppl. Fig. S5a), complex
250 ecDNA structures had significantly shorter fragments than simple ecDNA (Figure 4h,
251 Suppl. Fig S5c). Lastly, simple ecDNA had higher copy numbers than complex ones
252 in this cohort (Figure 4i, Suppl. Fig. S5d), in line with previous reports in neurofibro-
253 lastoma. This indicates that yet unknown structural features may influence ecDNA
254 maintenance and/or oncogene regulation, resulting in differences in accumulation of
255 ecDNA elements in large cancer cell populations.

256

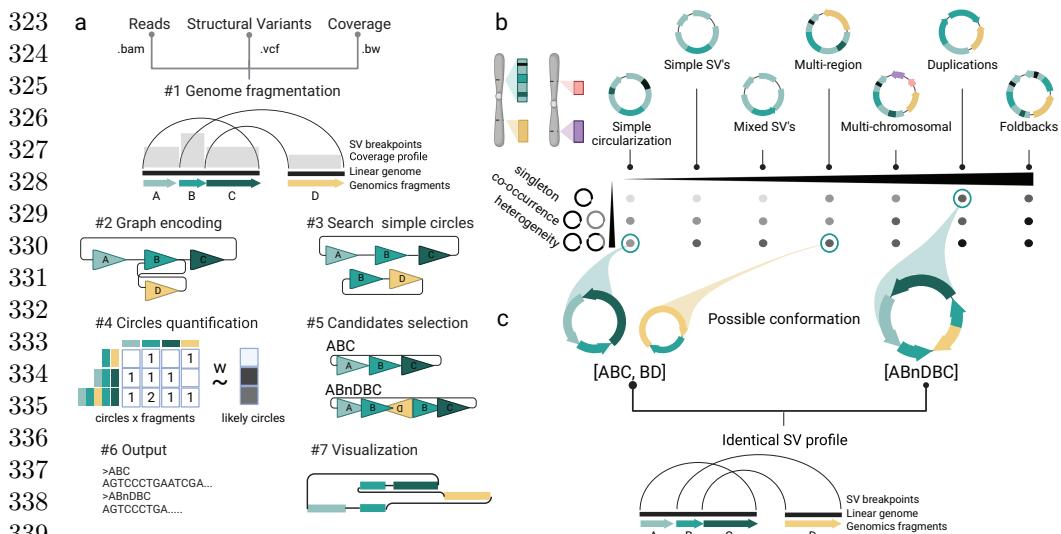
257

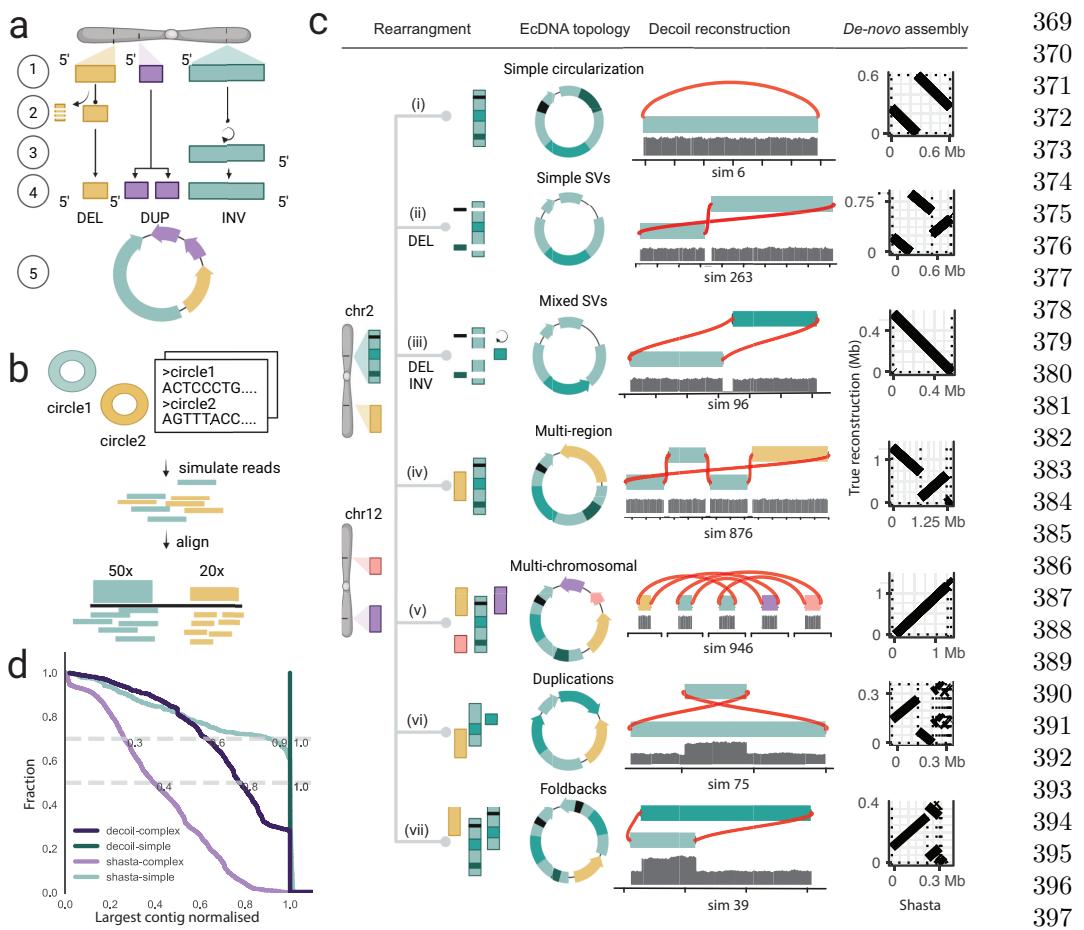
258 **3 Discussion**

259

260 The structural complexity and heterogeneity of ecDNA make its reconstruction from
261 sequencing data a challenging computational problem. We here presented Decoil, a
262 method to reconstruct co-occurring complex ecDNA elements.

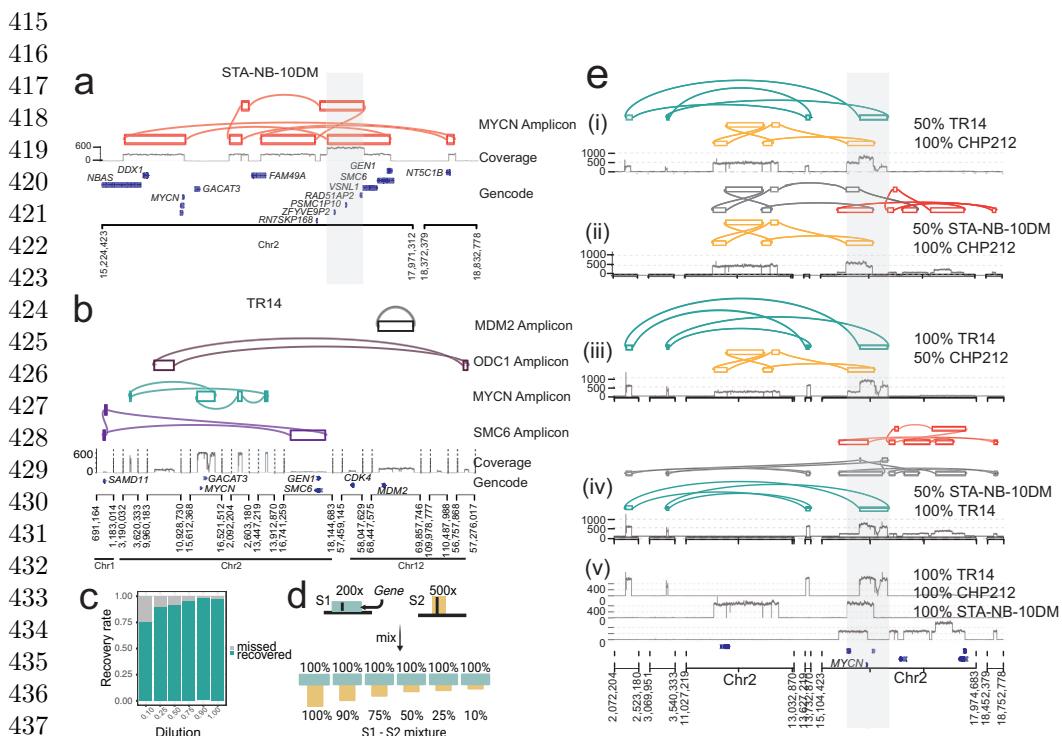
263


264 Due to their random mitotic segregation, many ecDNA elements, which may struc-
265 turally differ, co-occur in the same cancer cells [7]. Disentangling ecDNA with shared
266 genomic regions has not yet been addressed by other methods, and it cannot be
267 resolved by *de-novo* assemblers (e.g. Shasta) when sequencing reads are smaller than
268 the size of genomic fragments (mean length > 125 kb in our cohort) within an ecDNA
269 element. Decoil uses *LASSO* regression to reconstruct distinct ecDNA elements with
270 overlapping genomic footprint, which enables the exploration of ecDNA structural
271 heterogeneity. We have chosen this approach as it performed reasonably in our
272 hands compared to other linear regression models (Suppl. Fig. S6). One limitation
273 of our methods represent the correct decomposition into distinct ecDNA elements
274 for structures containing repetitive regions. This would lead to incomplete structural
275 resolution, e.g. the order of the repeat-containing genomic segments might remain
276 ambiguous. Furthermore, ecDNA present at low abundance or SVs not detected


due to computational limits may affect Decoil's performance. Measuring the limit of detection of Decoil was not addressed in this manuscript, as it will require comprehensive tumor datasets with validated ecDNA structures. Ultra-long read sequencing (>100 kb) at high coverage, or other sequencing technologies, may improve the SV detection and structural resolution of ecDNA using Decoil, but aforementioned scenarios may remain difficult to resolve. 277
278
279
280
281
282
283

A structure-function relationship was first demonstrated for ecDNA by reports 284
describing regulatory elements on ecDNA [5, 9, 19, 21]. These reports revealed that 285
complex ecDNA rewire tissue-specific enhancer elements to sustain high oncogene 286
expression [5, 22]. This also occurs through formation of new topologically associated 287
domains [5]. Decoil was able to identify multi-region ecDNA elements, which were 288
previously linked to enhancer hijacking [5], suggesting that it may help map such 289
alterations in cancer. We envision that combining Decoil with DNA methylation 290
analysis from the same nanopore sequencing reads may enable exploration of potential 291
regulatory heterogeneity in co-occurring ecDNA elements, which was not previously 292
possible. 293
294

The reconstruction of ecDNA in a cohort of neuroblastoma tumors and cell lines 295
using Decoil suggested that structurally simple ecDNA elements occurred at higher 296
copy numbers and were larger in size compared to complex ecDNA. This might be 297
due to computational biases, as complex structures are more difficult to reconstruct, 298
and certainly needs to be verified in larger tumor cohorts. However, it is reasonable to 299
speculate that ecDNA complexity could influence ecDNA maintenance or impact its 300
copy number in yet unidentified ways. Future analyzes using Decoil may help verify 301
this observation and address such questions. 302
303


In summary, we envision that Decoil will advance the exploration of ecDNA structural 304
heterogeneity in cancer and beyond, which is essential to better understand mechanisms 305
of ecDNA formation and its structural evolution and may serve as the basis to 306
identify DNA elements required for oncogene regulation and ecDNA maintenance. 307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

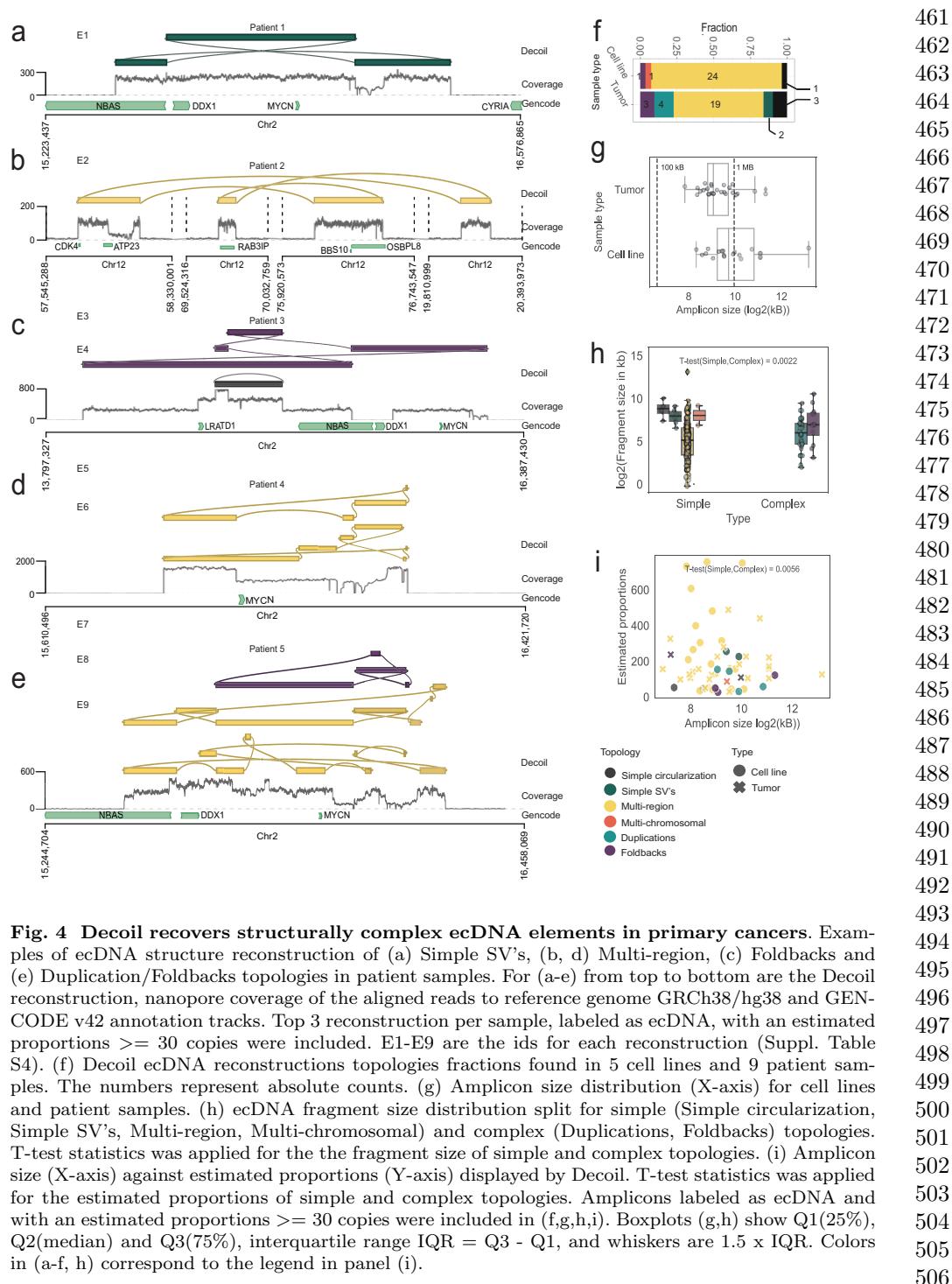


Fig. 2 Decoil reconstructs complex ecDNA elements with high fidelity from simulated data. (a) Simulation strategy for individual ecDNA templates generation, describing the main steps: 1 - choose genomic position, 2 - simulate small deletions (DEL), 3 - simulate inversion (INV), 4 - simulate tandem-duplication (DUP), 5 - generate DNA sequence template. The example shows ecDNA template containing three genomic fragments and different structural variants, i.e. 1xDEL (yellow), 1xDUP (purple), and 1xINV (green). (b) *In-silico* long-reads simulation pipeline, based on one or more ecDNA templates, at different depth of coverage. (c) EcDNA topologies, ranked with increased computational complexity, covering different simple SV mixtures: i - Simple circularization (no rearrangement on the ecDNA element), ii - Simple SV's (either DEL's or INV's series allowed), iii - Mixed SV's (mixtures of DEL's and INV's), iv - Multi-region (DEL's, INV's, TRA's mixtures originating from a single chromosome), v - Multi-chromosomal (DEL's, INV's, TRA's mixtures with fragments from multiple chromosome), vi - Duplications (DUP's + other simple rearrangements), vii - Foldbacks (INVDUP's + all other simple SV's). For each topology we show the Decoil ecDNA reconstruction together with the read coverage track. The right panel displays the *de-novo* assembly performed by Shasta (X-axis) against the true structure (Y-axis). (d) Decoil and Shasta assembly contiguity for simple (i, ii, iii, iv and v topologies) and complex topologies (vi and vii). X-axis represents the larger contig normalized by the true structure length (1 - a good reconstruction, 0 - poor reconstruction, values > 1 refer to reconstructions larger than the true structure) and Y-axis shows the fraction of reconstructions with the specific contiguity. The gray horizontal lines are at 0.5 and 0.7 fraction.

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

Fig. 3 Decoil captures the ecDNA structure complexity and heterogeneity in neuroblastoma cell lines. (a) STA-NB-10DM amplicon reconstruction by Decoil (top), coverage track (middle) of the aligned reads to reference genome GRCh38/hg38 and GENCODE v42 annotation (bottom). The grey highlighted region *chr2 : 17221081 – 17538185* (GRCh38/hg38) is an interspersed duplication, covering *RAD51AP2*, *PSMC1P10* and *ZFYVE9P2* genes. (b) TR14 amplicons co-occurrence reconstructed by Decoil (top four tracks), together with the coverage track (middle) and GENCODE V42 annotation (bottom). Created with BioRender.com. (c) Recovery rate of the amplicon breakpoints (Y-axis) for *in-silico* ecDNA mixtures, in the different dilutions (X-axis). Every dot in the plot is a breakpoint which is present in the reconstruction (green) or missed (grey). The *MYCN*-amplicon for CHP212, TR14 and STA-NB-10DM is composed of 10, 8 and 14 breakpoints, respectively. For TR14 we included all ecDNA breakpoints, originating from *MYCN*, *ODC1* (4 breakpoints), *MDM2* (2 breakpoints) and *SMC6* (6 breakpoints) amplicons. (d) Dilutions strategy. Mix 100% of one sample with a fraction (10%, 25%, 50%, 75%, 90%) of another sample. Use TR14, STA-NB-10DM and CHP212 with known ecDNA structure to create the dilutions. (e) Examples of ecDNA reconstruction by Decoil for *in-silico* ecDNA mixtures. TR14 (green) and CHP212 (yellow) recovered *MYCN* amplicons in a (i) 50% to 100% and (iii) 100% to 50% mixture. (ii) STA-NB-10DM (orange) and CHP212 (yellow) recovered *MYCN* ecDNA in a 50% to 100% mixture. (iv) STA-NB-10DM (orange) and TR14 (green) recovered *MYCN* ecDNA in a 50% to 100% mixture. (v) Coverage track for pure TR14, CHP212 and STA-NB-10DM samples, at 100%. Grey amplicon regions are misassemblies. The grey shadow highlights the overlapping genomic region of the amplicons containing *MYCN*.

Fig. 4 Decoil recovers structurally complex ecDNA elements in primary cancers. Examples of ecDNA structure reconstruction of (a) Simple SV's, (b, d) Multi-region, (c) Foldbacks and (e) Duplication/Foldbacks topologies in patient samples. For (a-e) from top to bottom are the Decoil reconstruction, nanopore coverage of the aligned reads to reference genome GRCh38/hg38 and GENCODE v42 annotation tracks. Top 3 reconstruction per sample, labeled as ecDNA, with an estimated proportions ≥ 30 copies were included. E1-E9 are the ids for each reconstruction (Suppl. Table S4). (f) Decoil ecDNA reconstructions topologies fractions found in 5 cell lines and 9 patient samples. The numbers represent absolute counts. (g) Amplicon size distribution (X-axis) for cell lines and patient samples. (h) ecDNA fragment size distribution split for simple (Simple circularization, Simple SV's, Multi-region, Multi-chromosomal) and complex (Duplications, Foldbacks) topologies. T-test statistics was applied for the the fragment size of simple and complex topologies. (i) Amplicon size (X-axis) against estimated proportions (Y-axis) displayed by Decoil. T-test statistics was applied for the estimated proportions of simple and complex topologies. Amplicons labeled as ecDNA and with an estimated proportions ≥ 30 copies were included in (f,g,h,i). Boxplots (g,h) show Q1(25%), Q2(median) and Q3(75%), interquartile range IQR = Q3 - Q1, and whiskers are 1.5 x IQR. Colors in (a-f, h) correspond to the legend in panel (i).

507 4 Methods

508 509 4.1 Decoil algorithm

510 Decoil (deconvolve extrachromosomal circular DNA isoforms from long-read data) is
511 a graph-based method to reconstruct circular DNA variants from shallow long-read
512 WGS data. This uses the (1) structural variants (SV) and (2) focal amplification infor-
513 mation to reconstruct circular ecDNA elements. The algorithm consists of six modules:
514 genome fragmentation, graph encoding, search simple circles, circles quantification,
515 candidates selection, output, and visualization.
516

517 518 Genome fragmentation

519 The SVs are filtered based on multiple criteria. Only SVs flagged as 'PASS' or
520 'STRANDBIAS', having on target coverage $\geq 5X$ (default) and VAF (Variant Allele
521 Frequency) ≥ 0.2 (default) are kept. Breakpoints in a window size of 50 bp are
522 merged. This curated breakpoints set s is used to segment the genome into $n + 1$
523 non-overlapping fragments $f \in F$, where F represents the non-overlapping fragments
524 set.
525

526 527 Graph encoding

528 The coverage profile, read alignment data and fragments set F are combined to build
529 a weighted undirected multigraph, denoted as $G = (V, E)$. In G , a vertex f repre-
530 sents a genomic fragment from the set F , and an edge e represents a SV connecting
531 two fragments. Fragments with a mean coverage $\leq 5X$ (default) or standalone
532 ($\text{degree}(v) = 0$) are discarded from the graph.
533

534 535 Search simple circles

536 Decoil continues by searching all simple circular paths c in the graph G using weighted
537 depth-first search (DFS) approach. A cycle in a DFS tree is defined as a path where
538 two visited nodes, u and v , are connected through a backedge (u, v) , with u being
539 the ancestor of v . This approach conducts a genome-wide search for circular paths.
540 Duplicated cycles are removed during tree exploration. The final set S contains unique
541 simple cycles, allowing for shared sub-paths. Simple overlapping circular paths $c \in S$
542 (≥ 1 overlapping genomic fragment) are grouped into M non-overlapping clusters.
543

544 545 Circles quantification

546 To allow reconstruction of complex structures, e.g. containing large duplications, a
547 set of derived cycles (D) was created. To distinguish between true possible circular
548 DNAs and artifacts a *LASSO* regression is fitted against targets Y , with input X ,
549 where $x_{jik} \in X$ is the occurrence of fragment f_{jk} in circle c_{ik} and $y_{jk} \in Y$ represents
550 the total mean coverage spanning fragment j , belonging to cluster m_k . The obtained
551 *LASSO* coefficient represent the estimated proportions of each cycle c_{ik} . The higher
552 the value the more likely is the cycle to be a true ecDNA element.

Candidates selection	553
From the candidates list we filter out cycles with an estimated proportions <= mean WGS coverage (default). Lastly, circular elements larger than 0.1 MB (threshold published by [12]) are labeled as ecDNA.	554 555 556 557 558 559
Output and Visualization	560 561 562 563 564 565
The algorithm outputs the candidates list as *.bed, *.fasta, including the mean coverage and orientation per fragment, estimated proportions of circular element. The <i>summary.txt</i> displays all found circular elements, which includes small circles and ecDNA. The reconstructions labeled as ecDNA are visualised using gGnome (https://github.com/mskilab/gGnome).	566 567
4.2 DNA extraction and nanopore sequencing	568 569 570 571 572 573 574 575 576 577
High molecular weight (HMW) DNA was extracted from 5 to 10 million cells or 15 to 25 mg of tissue using the MagAttract HMW DNA kit (Qiagen N.V., Venlo, Netherlands) according to the manufacturer's protocol. DNA concentration was measured with a Qubit 3.0 Fluorometer (Thermo Fisher) and quality control was performed using a 4200 TapeStation System (Agilent Technologies, Inc., Santa Clara, CA). For library preparation, the Ligation Sequencing Kit (SQK-LSK109 or SQK-LSK110, Oxford Nanopore Technologies Ltd, Oxford, UK) was used. All libraries were sequenced on a R9.4.1 MinION flowcell (FLO-MIN106, Oxford Nanopore Technologies Ltd, Oxford, UK) for more than 24 h.	578 579
4.3 Ranking ecDNA topologies definition	580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
To assess Decoil's reconstruction performance, we generated an <i>in-silico</i> collection of ecDNA elements, spanning various sequence complexities for systematic evaluation. We introduced a ranking system and defined seven topologies of increasing computational complexity, based on the SV's contained on the ecDNA element: (1) <i>Simple circularization</i> - no structural variants on the ecDNA template, (2) <i>Simple SV's</i> - ecDNA contains either a series of inversions or deletions, (3) <i>Mixed SV's</i> - ecDNA has a combination of inversions and deletions, (4) <i>Multi-region</i> - ecDNA contains different genomic regions from the same chromosome (DEL, INV and TRA allowed), (5) <i>Multi-chromosomal</i> - ecDNA originates from multiple chromosomes (DEL, INV and TRA allowed), (6) <i>Duplications</i> - ecDNA contains duplications defined as a region larger than 50 bp repeated on the amplicon (DUP's + other simple rearrangements), (7) <i>Foldbacks</i> - ecDNA contains a foldback defined as a two consecutive fragments which overlap in the genomic space, with different orientations (INVDUP's + all other simple SV's). Every topology can contain a mixture of all other low-rank topologies.	595 596
4.4 Simulate ecDNA sequence templates	597 598
The simulation framework contains probabilistic variables, which model the chromosome weights, fragment position, fragment length, small deletion ratio, inversion ratio,	599

599 foldback ratio, and tandem-duplication ratio. To cover a wide range of possible con-
600 formations we generate more than 2000 ecDNA sequence templates. See Extended
601 Methods for detailed description.

602

603 **4.5 Simulate *in-silico* long-read ecDNA-containing samples**

604

605 To assess ecDNA reconstruction performance, *in-silico* ecDNA-containing samples
606 were generated based on the ecDNA sequence templates collection. The workflow
607 takes as input the defined ecDNA elements in .bed format and generates its associ-
608 ated .fasta reference. Afterwards, noisy long-reads, with an average length of 7,000 bp,
609 are sampled from this reference using an adapted version of PBSIM2 (Ono et al. 2021
610 [23]), at a specified depth of coverage. This package was customized for the purpose
611 of this paper to (1) allow reads sampling from a circular reference, and (2) provide
612 a better coverage uniformity of the reads at fragments boundary by using Mersenne
613 twister (Harase 2014 [24]) instead of the pseudorandom number generator included in
614 the original package (<https://github.com/madagiurgiu25/pbsim2>). The *in-silico* reads
615 are stored in .fastq format. This workflow steps is part of the benchmarking pipeline
616 <https://github.com/madagiurgiu25/ecDNA-simulate-validate-pipeline>.

617

618 **4.6 Performance evaluation on simulated data**

619

620 The *in-silico* ecDNA-containing samples were used to assess the reconstruction per-
621 formance for both, Decoil and Shasta. To reconstruct the ecDNA the reads were
622 pre-filtered using NanoFilt [25] 2.6.0 (-l 300 -q 20 -headcrop 20 -tailcrop 20).
623 To reconstruct simulated ecDNA using *de-novo* assembly Shasta [17] 0.10.0 was
624 used with parameters –config Nanopore-May2022 –Reads.minReadLength 1000 –
625 Kmers.distanceThreshold 500 –Kmers.probability 0.5. To reconstruct ecDNA using
626 Decoil the samples were preprocessed, i.e. reads were aligned to the reference genome
627 GRCh38/hg38 using ngmlr [26] 0.2.7 with standard parameters, structural variant
628 calling was performed using sniffles [26] 1.0.12 (-min_homo_af 0.7 –min_het_af 0.1
629 –min_length 50 –cluster –min_support 4) and the bigWig coverage tracks were com-
630 puted using bamCoverage (-50 bins) from deepTools [27] 3.5.1 suite. Afterwards, Decoil
631 was applied with the parameters –min-vaf 0.01 –min-cov-alt 6 –min-cov 8 –max-
632 explog-threshold 0.01 –fragment-min-cov 10 –fragment-min-size 500. To evaluate the
633 correctness of reconstruction for both, Decoil and Shasta, Quast [28] 5.2.0 was applied
634 to compute different metrics (<https://quast.sourceforge.net/docs/manual.html>). To
635 overall reconstruction performance was quantified as the mean and standard deviation
636 of the largest contig metric.

637

638 **4.7 Evaluate amplicon's breakpoints recovery in ecDNA 639 mixtures**

640

641 To evaluate how well we reconstruct amplicons with overlapping footprints we gener-
642 ate a series of dilutions by mixing the CHP212, STA-NB-10DM and TR14 cell lines
643 at different ratios. We generated two types of mixtures. First, we combine 100% of
644 one sample with different percentages of another sample, i.e. 10, 25, 50, 75, 90, 100%
(Figure 3c). Secondly, we generate mixtures at different ratios for both samples (10-90,

25-75, 50-50, 75-25, 90-10%). Picard 2.26 (<https://broadinstitute.github.io/picard/>) was used to downsample the .bam file to 10, 25, 50, 75, 90% and samtools 1.9 to merge the different ratios to create *in-silico* ecDNA mixture. SV calling was performed using sniffles [26] 1.0.12 with same parameters as for the original 100% .bam files, i.e. –min_homo_af 0.7 –min_het_af 0.1 –min_length 50 –cluster –min_support 4. Decoil was run on all these mixtures with parameters –min_vaf 0.01 –min_cov_alt 10 –min_cov 10 –max_explg_threshold 0.01 –fragment_min_cov 10 –fragment_min_size 500. The completeness of the reconstructed ecDNA elements in mixtures was evaluated by counting how many breakpoints are identical compared to the true ecDNA elements in the 100% samples.

4.8 Preprocess nanopore sequencing data from cell lines and patient samples

The cell lines CHP212, TR14, STA-NB-10DM, and all patient samples were preprocessed by performing base-calling using Guppy 5.0.14 (dna_r9.4.1_450bps_hac model), followed by a quality check using NanoPlot 1.38.1. The reads were filtered by quality using NanoFilt [25] 2.8.0 (-1 300 –headcrop 50 –tailcrop 50) and aligned using ngmlr [26] 0.2.7 against the reference genome GRCh38/hg38. The structural variant calling was performed using sniffles [26] 1.0.12 (–min_homo_af 0.7 –min_het_af 0.1 –min_length 50 –min_support 4). The bigWig coverage tracks were obtained by applying bamCoverage (-50 bins) from deepTools [27] 3.5.1 suite. The cell lines LAN-5 and CHP126 were similarly processed using the reference genome GRCh37/hg19. The pipeline is available under <https://github.com/henssen-lab/nano-wgs>.

4.9 Reconstruct ecDNA elements for cell lines and patient samples using Decoil

To reconstruct the ecDNA elements for CHP212, TR14 and STA-NB-10DM Decoil was applied using the parameters –min_vaf 0.1 –min_cov_alt 10 –min_cov 8 –fragment_min_cov 10 –fragment_min_size 1000 –filter_score 35 or –min_vaf 0.01 –min_cov_alt 10 –min_cov 10 –max_explg_threshold 0.01 –fragment_min_cov 10 –fragment_min_size 500, the reference genome GRCh38/hg38 and annotation GENCODE v42. Similarly, for LAN-5 and CHP126 the ecDNA reconstruction was performed using Decoil with same parameters, reference genome GRCh19/hg19 and annotation GENCODE v41. The ecDNA elements in patient samples were reconstructed by Decoil using –min_vaf 0.1 –min_cov_alt 10 –min_cov 30 –max_explg_threshold 0.01 –fragment_min_cov 20 –fragment_min_size 100.

4.10 Patient sample and clinical access

Patients were registered and treated according to the trial protocols of the German Society of Pediatric Oncology and Hematology (GPOH). This study was conducted in accordance with the World Medical Association Declaration of Helsinki (2013) and good clinical practice; informed consent was obtained from all patients or their guardians. The collection and use of patient specimens was approved by the institutional review boards of Charité-Universitätsmedizin Berlin and the Medical Faculty,

691 University of Cologne. Specimens and clinical data were archived and made available
692 by Charité-Universitätsmedizin Berlin or the National Neuroblastoma Biobank and
693 Neuroblastoma Trial Registry (University Children's Hospital Cologne) of the GPOH.
694 The MYCN gene copy number was determined as a routine diagnostic method using
695 FISH.

696

697 **5 Acknowledgements**

698

699 We would like to acknowledge Roland F. Schwarz, Julia Markowski, and Svenja
700 Mehringer for their input and thoughtful suggestions during the development of this
701 paper. We thank the Berlin Institute of Health (BIH) team for the support and providing
702 the necessary infrastructure. Computation was performed on the HPC for Research
703 cluster of the BIH. We thank the patients and their parents for granting access to the
704 tumor specimens and clinical information that were analyzed in this study. We thank
705 the Neuroblastoma Biobank and Neuroblastoma Trial Registry (University Children's
706 Hospital Cologne) of the GPOH for providing samples.

707

708 **6 Declarations**

709

710 **6.1 Funding**

711

712 This project has received funding from the European Research Council under the
713 European Union's Horizon 2020 Research and Innovation Programme (grant no.
714 949172). A.G.H. is supported by the Deutsche Forschungsgemeinschaft (DFG) (grant
715 no. 398299703). A.G.H. is supported by the Deutsche Forschungsgemeinschaft (DFG,
716 German Research Foundation, 398299703). A.G.H. is supported by the Deutsche Krebs-
717 hilfe (German Cancer Aid) Mildred Scheel Professorship program – 70114107. This
718 project received funding from the NIH/CRUK (398299703, the eDynamic Cancer
719 Grand Challenge).

720

721 **6.2 Competing interests**

722

723 A.G.H. is founder of Econic Biosciences Ltd.

724

725 **6.3 Ethics approval**

726

727 Patients were registered and treated according to the trial protocols of the German
728 Society of Pediatric Oncology and Hematology (GPOH). This study was conducted
729 in accordance with the World Medical Association Declaration of Helsinki (2013)
730 and good clinical practice; informed consent was obtained from all patients or their
731 guardians. The collection and use of patient specimens was approved by the institutional
732 review boards of Charité-Universitätsmedizin Berlin and the Medical Faculty,
733 University of Cologne. Specimens and clinical data were archived and made available
734 by Charité-Universitätsmedizin Berlin or the National Neuroblastoma Biobank and
735 Neuroblastoma Trial Registry (University Children's Hospital Cologne) of the GPOH.
736 The MYCN gene copy number was determined as a routine diagnostic method using
737 FISH.

6.4 Consent to participate	737
Not applicable	738
6.5 Consent for publication	739
Not applicable	740
6.6 Availability of data and materials	741
The sequencing data generated in this study are available at the European Genome-phenome Archive under accession no. XXXX. All other data are available from the corresponding author upon reasonable request. Source data are provided with this paper.	742
	743
	744
	745
7 Code availability	746
With this article we publish several associated tools.	747
Decoil: https://github.com/madagiurgiu25/decoil-pre	748
Simulate ecDNA sequence based on specified topology:	749
https://github.com/madagiurgiu25/ecDNA-sim	750
Simulate long-reads (adapted PBSIM2 for circular reference):	751
https://github.com/madagiurgiu25/pbsim2	752
Benchmarking pipeline for <i>in-silico</i> long-read samples:	753
https://github.com/madagiurgiu25/ecDNA-simulate-validate-pipeline	754
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776
	777
	778
	779
	780
	781
	782

783 [7] Chamorro González, R. *et al.* Parallel sequencing of extrachromosomal circular
784 DNAs and transcriptomes in single cancer cells. *Nature Genetics* (2023).

785

786 [8] Verhaak, R. G., Bafna, V. & Mischel, P. S. Extrachromosomal oncogene
787 amplification in tumour pathogenesis and evolution (2019).

788

789 [9] Koche, R. P. *et al.* Extrachromosomal circular DNA drives oncogenic genome
790 remodeling in neuroblastoma (2020).

791

792 [10] Prada-Luengo, I., Krogh, A., Maretty, L. & Regenberg, B. Sensitive detection of
793 circular DNAs at single-nucleotide resolution using guided realignment of partially
794 aligned reads. *BMC Bioinformatics* **20** (2019).

795

796 [11] Zhang, P., Peng, H., Llauro, C., Bucher, E. & Mirouze, M. ecc_finder: A
797 Robust and Accurate Tool for Detecting Extrachromosomal Circular DNA From
798 Sequencing Data. *Frontiers in Plant Science* **12** (2021).

799

800 [12] Deshpande, V. *et al.* Exploring the landscape of focal amplifications in cancer
801 using AmpliconArchitect. *Nature Communications* **10** (2019).

802

803 [13] Luebeck, J. *et al.* AmpliconReconstructor integrates NGS and optical mapping
804 to resolve the complex structures of focal amplifications. *Nature Communications*
805 **11** (2020).

806

807 [14] Wanchai, V. *et al.* CReSIL: accurate identification of extrachromosomal circular
808 DNA from long-read sequences. *Briefings in Bioinformatics* **23** (2022).

809

810 [15] Olsen, N. D. *et al.* precisionFDA Truth Challenge V2: Calling variants from
811 short- and long-reads in difficult-to-map Regions. *bioRxiv* (2020). URL [https://www.cell.com/cell-genomics/pdf/S2666-979X\(22\)00058-1.pdf](https://www.cell.com/cell-genomics/pdf/S2666-979X(22)00058-1.pdf).

812

813 [16] Olson, N. D. *et al.* Variant calling and benchmarking in an era of complete human
814 genome sequences. *Nature Reviews Genetics* (2023).

815

816 [17] Shafin, K. *et al.* Nanopore sequencing and the Shasta toolkit enable efficient de
817 novo assembly of eleven human genomes. *Nature Biotechnology* **38** (2020).

818

819 [18] Storlazzi, C. T. *et al.* Gene amplification as doubleminutes or homogeneously
820 staining regions in solid tumors: Origin and structure. *Genome Research* **20**
821 (2010).

822

823 [19] Hung, K. L. *et al.* ecDNA hubs drive cooperative intermolecular oncogene
824 expression. *Nature* **600**, 731–736 (2021).

825

826 [20] Pecorino, L. T., Verhaak, R. G., Henssen, A. & Mischel, P. S. Extrachromosomal
827 DNA (ecDNA): an origin of tumor heterogeneity, genomic remodeling, and drug
828 resistance (2022).

[21] Morton, A. R. *et al.* Functional Enhancers Shape Extrachromosomal Oncogene Amplifications. *Cell* **179** (2019). 829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874