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Summary

Admixture between between populations and species is common in nature. Since the influx
of new genetic material might be either facilitated or hindered by selection, variation in
mixture proportions along the genome is expected in organisms undergoing recombination.
Various graph-based models have been developed to better understand these evolutionary
dynamics of population splits and mixtures. However, current models assume a single mix-
ture rates for the entire genome and do not explicitly account for linkage. Here, we introduce
TreeSwirl, a novel method for inferring branch lengths and locus-specific mixture propor-
tions by using genome-wide allele frequency data, assuming that the admixture graph is
known or has been inferred. TreeSwirl builds upon TreeMix that uses Gaussian processes
to estimate the presence of gene flow between diverged populations. However, in contrast to
TreeMix, our model infers locus-specific mixture proportions employing a Hidden Markov
Model that accounts for linkage. Through simulated data, we demonstrate that TreeSwirl
can accurately estimate locus-specific mixture proportions and handle complex demographic
scenarios. It also outperforms related D- and F-statistics in terms of accuracy and sensitivity
to detect introgressed loci.

Keywords: Gene flow, Admixture, Introgression rate, Gaussian process, Linkage, Hidden
Markov Model

1 1. Introduction

2 Gene flow, the exchange of genetic material between populations or different species
3 (Slatkin, 1985a), can occur through various mechanisms, such as migration, admixture,
s+ hybridization, cross-fertilization, or even by the dispersal of diaspores and pollinators (Barton
s and Hewitt, 1985; Ellstrand et al., 2003; Tung and Barreiro, 2017; Burgarella et al., 2019).
s This exchange may play a significant role in the maintenance of genetic variation, but also in
7 the adaptation to multiple ecological niches (Anderson, 1949; Slatkin, 1985b, 1987; Rieseberg
s and Wendel, 1993; Barton, 2001). At sufficient levels, gene flow can lead to homogenization
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o of populations, particularly in the face of opposing genetic drift (Ellstrand, 2014). Gene
10 flow might also increase genetic variation at a much higher rate than mutation (Grant and
1 Grant, 1994) and impact the process of speciation by becoming a primary source of genetic
12 diversity and adaptive novelty for a population (Ellstrand et al., 2003; Abbott et al., 2013).
13 Several genetic analyses have shown that gene flow, both ancient and present, is a common
12 phenomenon in nature (Grant and Grant, 1992; Mallet, 2005; Patterson et al., 2006; Tung
15 and Barreiro, 2017), and a bifurcating tree, representing population or species historical
16 relationships, fails to account for it (Kulathinal et al., 2009; Reich et al., 2009; Sousa et al.,
17 2009; Green et al., 2010; Durand et al., 2011; Reich et al., 2012). This led to the development
18 of methods that use allele-frequency data and graph-based models to infer population splits
10 and test for the presence of gene flow between divergent populations or species (Pickrell and
2 Pritchard, 2012; Patterson et al., 2012; Yang et al., 2012; Eaton and Ree, 2013; Lipson et al.,
2 2013, 2014; Martin et al., 2013; Kozak et al., 2021), which, for instance, confidently settled
» the long-standing question whether gene flow occurred between modern humans and archaic
3 hominins. However, these methods assume a genome-wide gene flow rate per migration
2 edge, which is unrealistic in the presence of selection. In theory, the effective gene flow
s may vary significantly along the genome because of selection and genetic drift (Yamamichi
2 and Innan, 2012), making it essential to quantify these variations to better understand the
2 dynamics that lead to introgression (Racimo et al., 2015, 2017; Suarez-Gonzalez et al., 2018;
2 Sankararaman, 2020).

29 Introgression is a lasting consequence of gene flow that leads to the assimilation of vari-
s ants into the local gene pool through repeated back-crossing, resulting in their permanent
n inclusion (Anderson and Hubricht, 1938). When introgressed loci increase the fitness of the
» recipient population, this is known as “adaptive introgression”. Unlike neutral introgression,
;3 which can be lost over time due to drift, adaptive introgression is sustained by selection and
1 can eventually lead to fixation (Zhang et al., 2021). The classic way to identify introgressed
3 loci is by using population genetic summary statistics. Patterson’s D, for example, has been
s estimated in sliding windows along the genome to identify introgressed loci (Dasmahapatra
s et al., 2012; Kronforst et al., 2013; Smith and Kronforst, 2013; Rheindt et al., 2014; Fontaine
3 et al., 2015). Since it was originally intended for genome-wide analysis (Martin et al., 2015),
3 more suitable related statistics have been used for analyzing specific short genomic regions,
w such as fy , fam, and dy (Martin et al., 2015; Malinsky et al., 2015; Pfeifer and Kapan,
s 2019; Malinsky et al., 2021). There are other statistics, for instance, S* and its variants
» that use linkage disequilibrium information to detect long introgressed haplotypes (Plagnol
s and Wall, 2006; Wall et al., 2009; Vernot and Akey, 2014; Vernot et al., 2016; Browning
w4 et al., 2018) or ArchlE that combines diverse summary statistics to detect introgressed hap-
s lotypes without a reference (Durvasula and Sankararaman, 2019, 2020). However, outlier
s scans based on such statistics are likely to ignore valuable information present in the full
« data, do not model linkage explicitly or require an arbitrary choice of large window-size and
s outliers identification. To overcome these constraints, probabilistic frameworks such as Hid-
» den Markov Models (HMMs) (Rabiner and Juang, 1986; Priifer et al., 2014; Seguin-Orlando
so et al., 2014; Skov et al., 2018; Steinriicken et al., 2018), and Conditional Random Fields
s (CRF) (Sankararaman et al., 2014) have been applied to infer the ancestry state of each
52 site. These methods are extensions of models that infer local ancestry from genotyping data
53 (Tang et al., 2006; Price et al., 2009; Wegmann et al., 2011; Lawson et al., 2012; Maples
s« et al., 2013) and while explicitly accounting for demographic history and linkage, they rely
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55 on phased and training sequence data, unadmixed or archaic reference, and detailed demo-
ss graphic models. As a consequence, such approaches are not easily applicable to non-model
57 species for which more limited data and knowledge is available.

58 To complement these methods, we here propose a model that makes use of Gaussian pro-
5o cesses to infer locus-specific mixture proportions. Gaussian processes have a rather long his-
s tory to model allele frequency differences between populations (Cavalli-Sforza and Edwards,
s 1967; Felsenstein, 1981), but have recently seen a surge in applications due to the develop-
2 ment of the popular tool TreeMix (Pickrell and Pritchard, 2012). Our method, TreeSwirl,
s3 explicitly takes an admixture graph (e.g. inferred by TreeMix) and genome-wide allele fre-
s« quencies to infer locus-specific mixture proportions. To account for linkage, we make use of
s a Hidden Markov Model (HMM), wherein the hidden states are represented by the propor-
s tion of the mixture at a particular site and the observed data is represented by the sampled
o7 allele frequencies. To evaluate the performance of our method against other tools, we sim-
¢ ulated data using various demographic models. We estimated the mixture proportions with
oo TreeSwirl and computed related D- and F-statistics using D-suite Dinvestigate (Malinsky
n et al.,, 2021). Our findings revealed that TreeSwirl surpasses the summary statistics esti-
7 mates in detecting the simulated signal of introgression under different scenarios, although
72 at an additional computational cost. Furthermore, by appling TreeSwirl to real data cases,
7z we succesfully identified candiate genomic regions where migration rates fluctuate and may
72 be subject to selection.

s 2. Materials and Methods

w6 2.1. The Model

7 Consider a set of populations m = 1,2, ..., M that are linked by a graph G which represents
7s their population history in terms of population splits and migration events. Consider as
7o well a series of diploid, bi-allelic loci [ = 1,2, ..., L, where the total number of loci L might
so constitute, for instance, consecutive SNPs along the genome. At each locus [, a total number
s of N, = (Ny,...,Nyy) alleles have been observed across the M populations, of which n; =
2 (ny1,...,nyn) were derived and the remaining ancestral (or otherwise polarized). To model
3 sampled allele counts n;|IN; we distinguish two processes: the first models the distribution
s« of the vector of the actual but unknown population frequencies y;, = (yp1,- .., ynm) given
s the graph G, and the second the distribution of the sampled allele counts n;|IN; given y,
ss (Fig 1A).

s 2.1.1. Fvolution along the graph G

88 We assume, as in (Pickrell and Pritchard, 2012), that the change in allele frequencies
o from the root to the tips of G is modeled as a Brownian motion (BM) process. For each
o locus [, the BM process starts at the root of G at a value of allele frequency which we denote
o by 1. It proceeds along the branches of G and finally gives rise to the above-mentioned
» random vector y, at the leaves of G. The probability of y, is given by the multivariate
s normal density

7T-(yl|yl7g) = N(V17 V(”)) g

e where v; = (v,...,1)" is the mean vector and V' (y;) is the variance-covariance matrix
s corresponding to the BM on G. For the construction of V' (1), which depends on the topology
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o of G and and the migration rates, we follow (Pickrell and Pritchard, 2012). We set
V() =u(l—-w)W, (1)

o7 where W only depends on the tree topology, the branch lengths and the migration rates.
% However, it was long recognized that BM with constant variance is not adequately de-
o scribing allele frequency changes, especially close to boundaries and various transformations
o to alleviate the problem have been proposed (Felsenstein, 1981). Here we will consider the
1 transformation

i = arcsin(2y, — 1) (2)

w2 from the interval [0, 1] onto [—7/2,7/2]. This has the advantage that all factors of v;(1 —1;)
103 in front of the variance matrices will be canceled. We thus replace (eq. 1) by

W, = (j—’:)zwm. (3)

e Let @ = (zy1, ..., Ti), Ty = arcsin(2y;,, — 1) denote the transformed population allele
s frequencies. The distribution of x; thus follows the multivariate normal density

W(lel,g) :N(”’lawl) (4)

ws with g, = (pg, ... ) = 1.
107 The matrix W is constructed as follows. Let 7 be a rooted population tree with K

s oriented branches k = 2,..., K of length ¢;; the orientation of the branches points in di-
o rection of the leaves. We assume that the tree also contains [ oriented migration edges 7,
mw ¢ = 1,...,1, to which we assign no branch length. The migration edges should be placed
m such that there are no cycles in the tree. We now consider paths leading from the root of
2 the tree to a leaf taking some of the migration edges (open edges) and leaving others out
us  (closed edges). More precisely, let

b:(bl,...,b[)

s be a binary vector indicating a certain configuration of open and closed migration edges: a
us  bit b; = 1 indicates that the migration edge 7; is open and b; = 0 that the migration edge 7;
us s closed (Fig 1B). We denote by wy; the migration rate, i.e. the probability of edge 7; to be
7 open, and thus we assign to the configuration b the probability

I
wi(b) = | g (1 = wi)' ™. (5)

i=1
118 Now, for a given configuration b, pick a population (leaf) m and a branch k. There is

1o at most one path leading from the root to the population m and taking exactly the open
120 migration edges according to b. If, moreover, this path contains the branch k, we set the
121 indicator function I,,,(b) equal to 1. Otherwise we set I,,x(b) = 0.

122 Using this notation, we can now define the M x M-matrices J;; for each branch k
123 element-wise by

[Ttk = D wi(0) L (B) D wi(b) L ('), (6)
b b

4
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12a where each sum runs over all the 2! possible configurations of b and b’, respectively. Each
s matrix Jy thus reflects the probabilities that branch & was common for any pair of leaves.
126 The matrix W, after all, is given by

K

Wl('w) = ZClek. (7)

k=1

17 This construction of the variance matrix W (w;) is a generalized reformulation of an argu-
123 ment given in (Pickrell and Pritchard, 2012).

129 To unclutter the notation, we will use W; = W (w;) in the rest of this article and thus
1 not indicate its dependence on the migration rates w; = (wy, ..., wir).

wm 2.1.2. Sampling

132 We assume that the observed allele counts n,, at locus [ and population m follow a
133 binomial distribution with parameters N, and y;,,, where 1, is the true allele frequency in
13+ population m. By independence of the samples, we have

M
ﬂ—(nl‘yl) = H Bin<n1m|Nlmaylm)- (8)

m=1
135 If the sample sizes are sufficiently large, we can approximate this distribution by a mul-

13 tivariate density. Let f; = (fi1,..., fin) with fu, = nyn/Niun denote the observed allele
137 frequencies at locus [, which are approximately normally distributed with with mean y, and
s a diagonal variance-covariance matrix:

. Jyn (1 =yn) Y (1 — vnr)
dia, R, . 9
& { N Nim (©)
130 The transformed observed allele frequencies d; = (d1, . . ., djpr) with dy,, = arcsin(2f,, — 1),

1o are then approximated by a the multivariate density

7T(dl|.’El) %N(d)l,zl) (10)
141 With 1 1
>, =diag |—, ..., —
: & {Nu NZM}

w2 because the factors y;1(1 — ;1) are transformed away from the variance-covariance matrix
s (eq. 9) similar to (eq. 3).

e 2.1.3. Full likelihood for one locus
145 Given the ancestral frequency p;, we obtain the likelihood by combining (eq. 4) and
us (eq. 10) and integrating out:

r(dilju, ) = / (s (|, G) e (11)

147 Using well-known formulae for linear systems (see Thm. 4.4.1 in (Murphy, 2012)) we
us obtain for the likelihood (eq. 11) the following approximation:
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m(di|pu, G) = N(py, E + W). (12)
We now set a normal prior on y;, namely we assume that
7T(N’l) = N(Ma 02)'
Again from Thm. 4.4.1 in (Murphy, 2012) we conclude that

w(dil, 0%, G) = N (. S1) (13)
with
w,=wl, S =% +W;+0%11. (14)
Explicitly
w0, G exp [ (UL ST = )] (15)

(2m)M]S)] 2

2.2. Hidden Markov Model
We develop a Hidden Markov Model (HMM) for multiple loci [ = 1,..., L with varying
migration rates for each of the I migration edges of graph G. We assume that the locus and
specific migration rates wy; take values out of a small set of discrete numbers between 0 and
1:
wy; € {wir, Wig, . .., Wi, )
We thus have J; - Js - ... J; possible combinations and these combinations will constitute

the hidden states of our Markov model. We denote the hidden state at locus [ by z;. Each
state z; corresponds to a multiindex

j: (j1’j27"'7.j1)

that defines the migration values (wy;,, ..., wy;,) of the migration edges. Thus, knowing the
state z; is tantamount to knowing the combination of migration rates at the given site which
in turn determines the matrix W in eq. (eq. 7) via (eq. 5) and (eq. 6).

To account for linkage between loci, we assume that the locus-specific transition matrix
P(z; = j'|z—1 = j) is based on physical or genetic distances ¢; between loci. We assume
independence of the transition probabilities of the different migration edges:

I
P(z = j'|la = §) = Pi(j. ) = [ [ Pulii. 57)-
=1

Each one of the factors in this product is an element of a a ladder-type Markov matrix Py,
which is defined via a transition rate matrix x;A;:

Py, = etrildi, (16)

Here, k; is a positive scaling parameter pertaining to migration edge 7, the distances 9; are
known constants corresponding to the linking distances.
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169 Further, the J; x J;-matrices A; reflect a transition model similar to that of (Galimberti
o et al., 2020), which is governed by an attractor state a; € {w;1, ..., w; , } reflecting the back-
i ground migration rate and two parameters ¢; and (; describing the number of loci deviating
12 from the attractor state and the degree of that deviation, respectively (see Galimberti et al.,
113 2020, for an illustration). Specifically, we have

-1 1 0 0 ... 0 0 0 0

G —-1—-¢ 1 0 0 0 0 0

0 G —-1-¢ 1 0 0 0 0

A= : : : : :

0 0 0 0 1 -1-G G 0

0 0 0 0 ... 0 1 -1-¢ ¢

0 0 0 0 ... 0 1 1 -1
7 with the attractor row given by

(0 .. 0 &G —26G &G 0 ... 0). (17)

175 See supplementary text for some examples.

176 Note that the x;, ¢; and (; all must be strictly positive. However, we limit ¢; and (; to
177 the range (0,1] to ensure that the stationary probability of the attractor state a; is higher
s than for any other state.

179 We can also easily define a transition rate matrix that does not depend on an attractor
10 state a; and the parameters, ¢; and (;. This can be done as follows:

-1 1 0O 0 ... 0 0 0
1 -2 1 0 ...0 0 0
0 1 -2 1 ... 0 0 0
A=
0 0 O o0 ... 1 =2 1
o 0 0 0 ...0 1 -1
181 Note that this simplifies the inference of transition probabilities, as they now depend

1.2 solely on the scaling factor ; rather than four parameters (k;, a;, ¢;, and ¢;). As a result,
183 instead of using a Nelder-Mead (Nelder and Mead, 1965) optimization to maximize the
18s (Q-function of the transition probabilities, it is now feasible to numerically solve it with a
15 linear search. This approach could be more realistic for certain cases where there is no clear
185 background migration rate.

187 Finally, the emission probabilities are generated via the marginal likelihood (eq. 15):
P(dy|z = j) = w(di|, 02, G;), (18)

s where G, denotes the population graph with migration rates according to the state z; = j
19 and g is the root state at site [.
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wo  2.3. Inference

101 We developed an empirical Bayes inference scheme for the hidden states under the as-
12 sumption that the topology of the admixture graph is either known or was previously
103 obtained. Specifically, we first infer both the emission and transition probabilities using
e the Baum-Welch algorithm (Baum et al., 1970) and then posterior state probabilities un-
s der the inferred parameters. As detailed in the Supplementary Information (see section
s "Baum-Welch”), the Baum-Welch algorithm requires numerical optimization in each itera-
107 tion. While the parameter of the root prior y can be optimized analytically, we resort to
s Newton-Raphson optimization (Nocedal and Wright, 2006; Lange, 2010) for the root prior
w0 09 and for parameters of the population graph (i.e. the branch lengths ¢;, ..., ck) and to
20 Nelder-Mead optimization (Nelder and Mead, 1965) for the parameters regarding the tran-
201 sition matrices with attractors (i.e. the k;, ¢;, ¢; and a;) or a linear search for transition
200 matrices with no attractors (i.e. the ;).

203 The Baum-Welch algorithm may be sensitive to initial conditions. We obtain initial
200 estimated of all parameter values as follows (see Supplementary Information for more details):

205 1. We use the observed variance-covariance matrix of the transformed observed frequen-
206 cies as an initial guess of the variance covariance matrix W.

207 2. To account for variation in W among loci, we refine this initial estimates using a
208 Gaussian Mixture Model (GMM) under which the transformed observed frequencies
209 are modeled by one of ¢ = 1, ..., () multi-variate Gaussian distributions with variance-
210 covariances matrices W, but shared root priors ;1 and o3. This model assumes no con-
on straints regarding the structure of the W, and can be optimized with an Expectation-
212 Maximization (EM) algorithm with analytic updates.

213 3. We next use a Nelder-Mead algorithm to coerce the inferred variance-covariance ma-
214 trices W, ..., W onto the population graph. Specifically, we seek to find the set of
215 branch lengths c¢;...c; and partition-specific migration rate w, that best explain the
216 previously learned variance-covariance matrices using the weighted Residuals Sum of
217 Squares.

218 4. To initialize the transition parameters, we first determine the posterior mean state p;
219 for each each migration edge ¢ and locus [ under uniform priors and the above learned
220 branch lengths and root prior. We then infer the transition parameters x;, ¢;, ¢; and
221 a; using a simplified HMM that models the p; using beta distributions.

222 Despite this initialization, we noticed that the Baum-Welch algorithm may settle on

23 a non-optimal attractor state a; too early. After initial convergence of the algorithm we
24 therefore check if some neighboring attractor states may lead to a higher likelihood when
»s allowed a few additional Baum-Welch iterations.

226 Once maximum likelihood estimates for the branch lengths c¢;,...,ck, the transition
27 parameters k;, ¢;, (; and a; as well as the root prior p and o, are obtained, we infer state
»s posterior probabilities P(z|d, @) given the full data d and the learned parameters collectively
29 denoted by 6, see Fig 1C. We further determined the posterior mean migration rates as

Wi =Y wi,P(z = j|d, 6). (19)

J
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230 To identify candidate regions under selection, i.e. exhibiting either excess or dearth intro-
o gression compared to the genome-wide average, we summarized these posterior probabilities
232 asS

P(z > a;|d, 8) = Y Z(ji > a;)P(z|d, 6),
j

P(z < a;]d, 8) = Y T(ji < a;)P(z[d, 6),
j

23 where Z(-) denotes the indicator function. We then determined for each locus [ the false
2 discovery rates (FDR) for excess (¢.(1)) and dearth (gq(1)) introgression as

(1) =1—=P(z > a;]d, 0),
q@(l) =1-P(z < a4/d, 0).

235 2.4. Implementation

236 We implemented the proposed inference scheme as a user-friendly C++ program TreeSwirl,
237 which is available, along with documentation, through a git repository at https://bitbucket.
28 org/wegmannlab/treeswirl.

230 To streamline computations, we employ a straightforward clustering method to reduce
20 the number of sampling size variance matrices ¥; that need to be considered to either a
2 default or user-specified number, following these steps:

242 1. Sort the vector of sample sizes according to the frequency of each occurrence.

243 2. To cluster, identify the pair of vectors with the least occurrences and compute their
204 weighted average.

25 3. Retain the weighted vector of sample sizes, remove the pair, and update the occurrence
246 count as the sum of the deleted pair counts.

247 4. Repeat steps 1 through 3 until the desired number of ¥; is obtained.

248 Given a limited number u of such matrices and given that we use a finite number of
29 discrete migration rates, there exist also an only finite number of matrices S; that can be

50 pre-computed in each Baum-Welch iteration to speed up the forward-backward pass through
1 the HMM.

w0 2.5. Sitmulations

3 2.5.1. fastsimcoalZ

254 To compare TreeSwirl to competing methods, we used fastsimcoal2 (Excoffier et al.,
25 2021) to simulate genomic data under five different demographic scenarios only consisting of
256 population splits and admixture pulses (but no population growth or continuous migration,
»7 Figure 2). We maintained a constant effective population size of N, = 10,000 and used a
s sample size of N = 100 for each population in all cases.

259 To simulate variation in admixture pulses along chromosomes, we composed each chromo-
0 some of seven blocks, each containing many independent loci of length 1000 bp, fully-linked
261 (i.e. within-locus recombination rate of 0.0), a mutation rate of le — 8, and a transition rate
%2 of 0.33. Odd-numbered blocks reflected the neutral genomic background, each contained
23 N, = 3,500 loci and an admixture pulse of a,, = 0.05. Conversely, even-numbered blocks
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w4 reflected loci under selection. While all three selected blocks shared parameters in one sim-
s Ulation, we varied the number of loci n, and migration rates o, across different simulations.
266 We generated 10 replicates for each parameter combination and used a custom script to
7 transform the generated output files into standard VCF files and concatenating the seven
x8  blocks corresponding to a single chromosome. We then applied a minimum allele frequency
20 filter of maf = 0.05 with VCFtools (Danecek et al., 2011). These filtered VCFs served as
o0 input for estimating sliding window F; for simulated data only consisting of two or three
on populations as well as for running D-suite Dinvestigate (Malinsky et al., 2021) with
o»  varying window sizes s = (10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500), a sliding locus of
o3 1, and the true trio and corresponding outgroup for demographic scenarios with more than
oa three populations. Concurrently, we executed TreeSwirl using the same filtered data and
s the expected tree topology.

276 We employed a receiver operating characteristic (ROC) curve analysis to assess the area
27 under the curve (AUC), which summarizes the performance of the method in distinguishing
s introgression from the “neutral state” iz. For the ROC analysis, we used the estimated mean
o9 posteriors obtained from TreeSwirl, along with the computed values of F;, Patterson’s D,
20 fa, fam, and dy for various window sizes. For each comparison, we then used the statistics
1 and window-size that resulted in the best AUC.

22 2.0. Data Processing

83 2.0.1. Anopheles gambiae species complex

284 We downloaded the mosquito dataset from https://datadryad.org/stash/dataset/
25 d0i:10.5061/dryad.f4114. The VCF file contains data for chromosome 3La, encompassing
26 eight populations and a total of 71 samples. When converting the data into allele counts,
27 we excluded the Anopheles gambiae and Anopheles coluzzii populations and only kept sites
s at which all populations had data and with a minimum allele frequency (maf) of 0.05. The
289 resulting dataset consisted of 295,017 SNPs across six populations with a total of 37 samples.
200 The admixture graph was derived from Figure 1C in Fontaine et al. (2015).

21 2.7. Data Availability Statement

202 No new data were generated or analysed in support of this research.

203 3. Results

20 3.1. Comparison to related D- and F-statistic methods

205 We used fastsimcoal2 to extensively generate coalescent simulations from five demo-
206 graphic histories of population splits and mixtures. The simulation parameters were chosen
207 to be reasonable. We used an effective population size of N, = 10,000, a sample size of
208 N = 100 and a shared common ancestor for all populations dating back approximately 2000
20 generations (Fig 2, first column). Each simulated chromosome involved seven genomic blocks
s0 with variable lengths and migration rates. To evaluate our method, we applied TreeSwirl
31 to the simulated data derived from the five models with distinct histories (Fig 2, second
32 column), estimated Fy, and computed summary statistics using D-suite Dinvestigate for
303 all applicable simulation scenarios.
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304 Compared to the best-performing summary statistic and window size, TreeSwirl demon-
55 strated a higher power to estimate introgression across all simulations. Our method show-
506 cases higher sensitivity and specificity, allowing for the identification of a greater number of
w7 true introgressed loci while maintaining an exceptionally low false-positive rate (Fig 2, third
w8 and fourth column). The underperformance of related D- and F-statistic methods may be
300 attributed to the effect of recombination, as our simulations assume no recombination. It
;0 has been reported that these methods are more accurate as recombination rate increases,
sn - which can be explained by the growth in the number of independent sites within an ana-
sz lyzed region. In the case of TreeSwirl, exploiting information from linked sites to detect
a3 introgression can substantially enhance power, particularly when linkage spans numerous
s1a loci.

315 TreeSwirl also exhibits consistency in identifying introgressed loci across all demographic
s models, even for models featuring two- and three-taxon topologies. This presents a significant
sz advantage over fy-stat methods, which are constrained to four-taxon configurations and
s defining an outgroup. Intriguingly, TreeSwirl encounters difficulties in accurately inferring
10 mixture proportions for very short introgressed regions (approximately 100 loci) in graphs
»o  with two sister lineages (Fig 2, first row). This pronounced pattern is not observed when
s the length of the introgressed region increases, although the actual mixture proportions are
3 incorrectly estimated in some instances compared to F; results. This suggests that, in a
23 two-taxon topology, our method may exhibit limitations in detecting regions under selection,
24 particularly when they encompass a minimal number of loci.

325 While the power of inference for all methods is comparable in cases of strong introgression,
ws  TreeSwirl clearly demonstrates superior performance across simulations with low migration
w7 rates and short lengths, even for regions of approximately 100 loci where related D- and F-
»s statistics yield the lowest AUC values. However, it is worth noting that, despite the ability of
n9 our method to detect weak signals of introgression, TreeSwirl also struggles to accurately
10 infer mixture proportions when the introgression rate is very close to the attractor state
s (here 0.05). For instance, our method has the most false positives when the migration rate
;2 is between 0.1 and 0.15, regardless of the model and the length of the introgressed region,
;3 suggesting that there may be insufficient power to differentiate regions under selection. In
;14 such cases, it could be beneficial to increase the number of discretized migration rates when
1 running TreeSwirl (by default 21 states). By doing so, our method may gain increased
16 power to discern weak signals that are close to the attractor state.

s 3.2. Applications

18 3.2.1. Anopheles gambiae species complex

339 To showcase the performance of TreeSwirl with real data, we applied it to the Anopheles
s gambiae species complex. This complex represents a medically significant group of Afrotrop-
s ical mosquito sibling species, as they serve as primary vectors of human malaria. The pop-
s ulation genetic history of this Afrotropical complex was recently explored, revealing that
us  traits enhancing vectorial capacity may be acquired through extensive introgression events
1 (Fontaine et al., 2015). Among the most remarkable introgressed regions was a continuous
us  segment aligned with the 3L arm chromosomal inversion. In this region, the original sequence
us  found in ancestral populations of An. quadriannulatus has been completely supplanted by
w7 the corresponding sequence from An. merus.
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348 We, thus, used the admixture graph from Figure 1C in Fontaine et al. (2015) to infer the
u9  mixture proportions from An. merus into An. quadriannulatus, particularly concentrating
30 on the 3L arm. As depicted in Figure 3, our analysis uncovered multiple candidate regions for
31 strong introgression within the 3La inversion, along with a limited number of outliers outside
32 this region, even when using a highly conservative false discovery rate (FDR) of 0.0001.
33 Our findings not only support the robust introgression signal on the 3L arm chromosomal
3 inversion, as previously reported in (Fontaine et al., 2015; Pfeifer and Kapan, 2019), but also
35 provide a more fine-grained resolution, as smaller genome regions experiencing introgression
36 are detected. Hence, this may contribute to elucidate signals of adaptive introgression,
57 such as insecticide resistance and an increased ability to transmit malaria within human
38 populations.

0 3.3. Runtime considerations

360 The computational performance of TreeSwirl is influenced by multiple factors, such as
31 the number of discrete states .J, the number of matrices Y, and the total number of sites
32 and admixture events. Computation times scales linearly with the number of loci, making
w3 it less practical for whole-genome applications in a single run. However, the computations
s can be efficiently distributed across multiple computer nodes by dividing the genome into
s independent segments, such as individual chromosomes or chromosome arms. This approach
s 18 valid because linkage does not persist across chromosome boundaries and is typically weak
ss7  across the centromere. Moreover, it should be noted that the computation time grows
s exponentially with an increasing number of migration edges ¢ and states J.

0 4. Discussion

370 One approach to infer historical relationships among populations is to model allele fre-
s quency changes along a phylogenetic tree as a Gaussian process (Cavalli-Sforza and Edwards,
w2 1967; Felsenstein, 1981). This rather old concept was recently revived by extending the model
w3 to a graph with migration edges and by providing a user-friendly tool to infer parameters
s under such a graph (Pickrell and Pritchard, 2012). However, this model assumes migration
;s rates to be constant along the genome, an assumption that may not hold in the face of
we selection or strong genetic drift. Indeed, theory predicts variation in the rate of effective
w7 gene flow along the genome (Harrison, 1993), in which local barriers to gene flow are an-
ws  ticipated to emerge from the random accumulation of Dobzhansky-Muller incompatibilities,
w9 both under models of secondary contact after isolation (Barton and Gale, 1993) as well as
3 under models of continuous gene flow during speciation (Wu, 2001). In the case of gene
;21 flow between highly divergent gene pools, selection is likely to act as the primary driving
s2 force for variation in effective gene flow along the genome, with rates of introgression being
;3 particularly low in genomic regions involved in adaptation, so called islands of speciation,
3 but potentially much higher in regions free from the selection pressure (Dasmahapatra et al.,
35 2012).

386 In light of these considerations, we here present TreeSwirl, an extension of the model
7 described in Pickrell and Pritchard (2012) that allows for mixture proportions to vary along
1 the genome in an auto-correlated way that reflects the effect of linkage. We evaluated the per-
;9 formance of our model to identify such variation in comparison to existing methods related
w0 to D- and F-statistics, such as Fy;, Patterson’s D (Patterson et al., 2012), f; (Martin et al.,
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;0 2015), fanr (Malinsky et al., 2015), and dy (Pfeifer and Kapan, 2019), which have been fre-
;2 quently applied to identify signatures of introgression using arbitrary genomic window sizes.
33 As we show using extensive simulations, our method had superior accuracy and sensitivity
s in detecting retrogressed loci under a wide range of demographic histories characterized by
35 single admixture pulses.

396 The approach presented here also addresses numerous constraints inherent to the use of
so7 related D- and F-statistics. First, these summary statistics are limited to bi-bifurcating four-
s population topologies. In cases involving graphs of five or more populations, the simplest
39 option is to subsample a section of the graph in the appropriate configuration, as done in
w0 Dsuite (Malinsky et al., 2021) and replicated in our simulation tests involving six-population
w1 topologies (and five?). In cases involving two- or three-population topologies, one would need
w2 to resort to Fgp-based metrics. In contrast, the method presented here is not constraint by
w03 topology, working well with any number of populations and also under topologies that include
s polytomies.

405 Second, our HMM-based approach to model linkage eliminates the need to specify window
ws sizes. Instead, the parameters governing auto-correlation are directly inferred from the data
w7 along with introgression rates. In our simulations, the choice of window sizes, as well as
ws the choice of the specific statistics to use, had a big impact on power. To ensure a fair
w0 comparison between methods, we thus tested all available summary statistics for a wide
a0 range of window sizes and only report the results of the combination of summary statistics
a1 and window size that was optimal for each individual case. In applications to real data,
sz however, such explorations are not possible, likely leading to an even larger difference in
a3 power between TreeSwirl and these summary statistics.

a14 Third, and although not explored here, TreeSwirl supports graphs with multiple migra-
a5 tion edges for which introgression rates are learned simultaneously. However, it is important
a6 to note that the performance of TreeSwirl likely dependent on the quality of the tree
a7 topology used as input and may not perform well if the tree topology is poorly resolved or
a8 incorrect.

410 We also reexamined datasets from mosquito populations, which hold significant economic
w20 and ecological importance and have been reported to experience introgression. Our analysis
a1 indeed identified multiple introgressed loci within these populations, consistent with previ-
22 ous findings, which further validates our model. The broader implications of introgression
23 in species evolution, however, remain a subject of debate and are not yet thoroughly doc-
w22 umented, primarily due to the challenges associated with accurately inferring introgressed
w5 loci. In fact, the potential for adaptive introgression to serve as a source of adaptation in
26 response to ongoing global changes has often been underestimated (Suarez-Gonzalez et al.,
2 2018). With our tool, we anticipate facilitating a deeper understanding of complex genetic
w28 histories within populations and shedding light on the processes that have shaped the genetic
w0 diversity patterns observed today.

10 Data and code availability

431 The authors affirm that all data required to validate the conclusions of this article
s are either included within the article itself or accessible through the indicated reposito-
33 ries. The source code for TreeSwirl can be found in the following Git repository: https:
s //bitbucket.org/wegmannlab/treeswirl2/, which also contains a user manual. Addi-
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s tional scripts utilized for simulations are available upon request. This study did not generate
136 any new data.
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Figure 1: Inference example. A: admixture graph with two migration edges marked in different colors.
Parameters of interest are shown on the graph (root priot and branch lengths) as well as the untransformed
and transformed ancient, sampling and population allele frequency variables. B: All possible configurations
of b for two migration events when they are open or closed. C: Example of inference under our TreeSwirl
model for each migration event. The top panel shows the posterior mean mixture proportions w; compared
to simulated estimates and the bottom panel shows the identified candidate regions under possible selection,
where the false discovery rates (FDR) for excess (g.) and dearth (¢q4) introgression was determined for each
locus as explained in the ”Inference” section.
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Figure 2: Performance of TreeSwirl and fy-stats methods to measure the amount of introgression under
different demographic histories with an background migration rate o = 0.05. Firs column: simulated
demographic histories. Second column: schematic of the topology models. Third and fourth column: AUC
measures for TreeSwirl and F- and D-related stats (best summary statistic and window size were chosen).
Different symbols are used for simulated blocks with lengths 100 to 2000 loci. Because of the minimum allele
frequency filter, the sizes are relative.
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Figure 3: Inference of introgressed loci on the 3La inversion of Anopheles gambiae. First column: Topology
of Anopheles gambiae rooted by An. epiroticus (E) and An. christyi (C), depicting one introgression event
(orange arrow). The graph was taken from Figure 1C, Fontaine et al. (2015). Second column: confirmed
signal of introgression on the 3L arm from An. merus (R) to An. quadriannulatus (Q). TreeSwirl was run
with the depicted topology using 21 states and 10 Sigmas (X, sample size variance matrix). Estimated mean
posteriors (w) are shown on top. Candidate regions of introgression are shaded in gray at a false discovery
rate (FDR) of 0.0001. The introgressed chromosomal inversion is delineated between the vertical dashed
blue lines. Horizontal dashed lines indicate the 0.01 and 0.0001 FDR threshold.
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