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Summary

Admixture between between populations and species is common in nature. Since the influx
of new genetic material might be either facilitated or hindered by selection, variation in
mixture proportions along the genome is expected in organisms undergoing recombination.
Various graph-based models have been developed to better understand these evolutionary
dynamics of population splits and mixtures. However, current models assume a single mix-
ture rates for the entire genome and do not explicitly account for linkage. Here, we introduce
TreeSwirl, a novel method for inferring branch lengths and locus-specific mixture propor-
tions by using genome-wide allele frequency data, assuming that the admixture graph is
known or has been inferred. TreeSwirl builds upon TreeMix that uses Gaussian processes
to estimate the presence of gene flow between diverged populations. However, in contrast to
TreeMix, our model infers locus-specific mixture proportions employing a Hidden Markov
Model that accounts for linkage. Through simulated data, we demonstrate that TreeSwirl
can accurately estimate locus-specific mixture proportions and handle complex demographic
scenarios. It also outperforms related D- and F-statistics in terms of accuracy and sensitivity
to detect introgressed loci.

Keywords: Gene flow, Admixture, Introgression rate, Gaussian process, Linkage, Hidden
Markov Model

1. Introduction1

Gene flow, the exchange of genetic material between populations or different species2

(Slatkin, 1985a), can occur through various mechanisms, such as migration, admixture,3

hybridization, cross-fertilization, or even by the dispersal of diaspores and pollinators (Barton4

and Hewitt, 1985; Ellstrand et al., 2003; Tung and Barreiro, 2017; Burgarella et al., 2019).5

This exchange may play a significant role in the maintenance of genetic variation, but also in6

the adaptation to multiple ecological niches (Anderson, 1949; Slatkin, 1985b, 1987; Rieseberg7

and Wendel, 1993; Barton, 2001). At sufficient levels, gene flow can lead to homogenization8
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of populations, particularly in the face of opposing genetic drift (Ellstrand, 2014). Gene9

flow might also increase genetic variation at a much higher rate than mutation (Grant and10

Grant, 1994) and impact the process of speciation by becoming a primary source of genetic11

diversity and adaptive novelty for a population (Ellstrand et al., 2003; Abbott et al., 2013).12

Several genetic analyses have shown that gene flow, both ancient and present, is a common13

phenomenon in nature (Grant and Grant, 1992; Mallet, 2005; Patterson et al., 2006; Tung14

and Barreiro, 2017), and a bifurcating tree, representing population or species historical15

relationships, fails to account for it (Kulathinal et al., 2009; Reich et al., 2009; Sousa et al.,16

2009; Green et al., 2010; Durand et al., 2011; Reich et al., 2012). This led to the development17

of methods that use allele-frequency data and graph-based models to infer population splits18

and test for the presence of gene flow between divergent populations or species (Pickrell and19

Pritchard, 2012; Patterson et al., 2012; Yang et al., 2012; Eaton and Ree, 2013; Lipson et al.,20

2013, 2014; Martin et al., 2013; Kozak et al., 2021), which, for instance, confidently settled21

the long-standing question whether gene flow occurred between modern humans and archaic22

hominins. However, these methods assume a genome-wide gene flow rate per migration23

edge, which is unrealistic in the presence of selection. In theory, the effective gene flow24

may vary significantly along the genome because of selection and genetic drift (Yamamichi25

and Innan, 2012), making it essential to quantify these variations to better understand the26

dynamics that lead to introgression (Racimo et al., 2015, 2017; Suarez-Gonzalez et al., 2018;27

Sankararaman, 2020).28

Introgression is a lasting consequence of gene flow that leads to the assimilation of vari-29

ants into the local gene pool through repeated back-crossing, resulting in their permanent30

inclusion (Anderson and Hubricht, 1938). When introgressed loci increase the fitness of the31

recipient population, this is known as “adaptive introgression”. Unlike neutral introgression,32

which can be lost over time due to drift, adaptive introgression is sustained by selection and33

can eventually lead to fixation (Zhang et al., 2021). The classic way to identify introgressed34

loci is by using population genetic summary statistics. Patterson’s D, for example, has been35

estimated in sliding windows along the genome to identify introgressed loci (Dasmahapatra36

et al., 2012; Kronforst et al., 2013; Smith and Kronforst, 2013; Rheindt et al., 2014; Fontaine37

et al., 2015). Since it was originally intended for genome-wide analysis (Martin et al., 2015),38

more suitable related statistics have been used for analyzing specific short genomic regions,39

such as fd , fdM , and df (Martin et al., 2015; Malinsky et al., 2015; Pfeifer and Kapan,40

2019; Malinsky et al., 2021). There are other statistics, for instance, S* and its variants41

that use linkage disequilibrium information to detect long introgressed haplotypes (Plagnol42

and Wall, 2006; Wall et al., 2009; Vernot and Akey, 2014; Vernot et al., 2016; Browning43

et al., 2018) or ArchIE that combines diverse summary statistics to detect introgressed hap-44

lotypes without a reference (Durvasula and Sankararaman, 2019, 2020). However, outlier45

scans based on such statistics are likely to ignore valuable information present in the full46

data, do not model linkage explicitly or require an arbitrary choice of large window-size and47

outliers identification. To overcome these constraints, probabilistic frameworks such as Hid-48

den Markov Models (HMMs) (Rabiner and Juang, 1986; Prüfer et al., 2014; Seguin-Orlando49

et al., 2014; Skov et al., 2018; Steinrücken et al., 2018), and Conditional Random Fields50

(CRF) (Sankararaman et al., 2014) have been applied to infer the ancestry state of each51

site. These methods are extensions of models that infer local ancestry from genotyping data52

(Tang et al., 2006; Price et al., 2009; Wegmann et al., 2011; Lawson et al., 2012; Maples53

et al., 2013) and while explicitly accounting for demographic history and linkage, they rely54
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on phased and training sequence data, unadmixed or archaic reference, and detailed demo-55

graphic models. As a consequence, such approaches are not easily applicable to non-model56

species for which more limited data and knowledge is available.57

To complement these methods, we here propose a model that makes use of Gaussian pro-58

cesses to infer locus-specific mixture proportions. Gaussian processes have a rather long his-59

tory to model allele frequency differences between populations (Cavalli-Sforza and Edwards,60

1967; Felsenstein, 1981), but have recently seen a surge in applications due to the develop-61

ment of the popular tool TreeMix (Pickrell and Pritchard, 2012). Our method, TreeSwirl,62

explicitly takes an admixture graph (e.g. inferred by TreeMix) and genome-wide allele fre-63

quencies to infer locus-specific mixture proportions. To account for linkage, we make use of64

a Hidden Markov Model (HMM), wherein the hidden states are represented by the propor-65

tion of the mixture at a particular site and the observed data is represented by the sampled66

allele frequencies. To evaluate the performance of our method against other tools, we sim-67

ulated data using various demographic models. We estimated the mixture proportions with68

TreeSwirl and computed related D- and F-statistics using D-suite Dinvestigate (Malinsky69

et al., 2021). Our findings revealed that TreeSwirl surpasses the summary statistics esti-70

mates in detecting the simulated signal of introgression under different scenarios, although71

at an additional computational cost. Furthermore, by appling TreeSwirl to real data cases,72

we succesfully identified candiate genomic regions where migration rates fluctuate and may73

be subject to selection.74

2. Materials and Methods75

2.1. The Model76

Consider a set of populationsm = 1, 2, ...,M that are linked by a graph G which represents77

their population history in terms of population splits and migration events. Consider as78

well a series of diploid, bi-allelic loci l = 1, 2, ..., L, where the total number of loci L might79

constitute, for instance, consecutive SNPs along the genome. At each locus l, a total number80

of N l = (Nl1, . . . , NlM) alleles have been observed across the M populations, of which nl =81

(nl1, . . . , nlM) were derived and the remaining ancestral (or otherwise polarized). To model82

sampled allele counts nl|N l we distinguish two processes: the first models the distribution83

of the vector of the actual but unknown population frequencies yl = (yl1, . . . , ylM)′ given84

the graph G, and the second the distribution of the sampled allele counts nl|N l given yl85

(Fig 1A).86

2.1.1. Evolution along the graph G87

We assume, as in (Pickrell and Pritchard, 2012), that the change in allele frequencies88

from the root to the tips of G is modeled as a Brownian motion (BM) process. For each89

locus l, the BM process starts at the root of G at a value of allele frequency which we denote90

by νl. It proceeds along the branches of G and finally gives rise to the above-mentioned91

random vector yl at the leaves of G. The probability of yl is given by the multivariate92

normal density93

π(yl|νl,G) = N (ν l,V (νl)) ,

where ν l = (νl, . . . , νl)
′ is the mean vector and V (νl) is the variance-covariance matrix94

corresponding to the BM on G. For the construction of V (νl), which depends on the topology95

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2023. ; https://doi.org/10.1101/2023.11.06.565831doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.06.565831
http://creativecommons.org/licenses/by/4.0/


of G and and the migration rates, we follow (Pickrell and Pritchard, 2012). We set96

V (νl) = νl(1− νl)W l, (1)

where W l only depends on the tree topology, the branch lengths and the migration rates.97

However, it was long recognized that BM with constant variance is not adequately de-98

scribing allele frequency changes, especially close to boundaries and various transformations99

to alleviate the problem have been proposed (Felsenstein, 1981). Here we will consider the100

transformation101

µl = arcsin(2νl − 1) (2)

from the interval [0, 1] onto [−π/2, π/2]. This has the advantage that all factors of νl(1− νl)102

in front of the variance matrices will be canceled. We thus replace (eq. 1) by103

W l =

(
dµl

dνl

)2

V (νl). (3)

Let xl = (xl1, . . . , xlM), xlm = arcsin(2ylm − 1) denote the transformed population allele104

frequencies. The distribution of xl thus follows the multivariate normal density105

π(xl|µl,G) = N (µl,W l) (4)

with µl = (µl, . . . , µl) = µl1.106

The matrix W l is constructed as follows. Let T be a rooted population tree with K107

oriented branches k = 2, . . . , K of length ck; the orientation of the branches points in di-108

rection of the leaves. We assume that the tree also contains I oriented migration edges τi,109

i = 1, . . . , I, to which we assign no branch length. The migration edges should be placed110

such that there are no cycles in the tree. We now consider paths leading from the root of111

the tree to a leaf taking some of the migration edges (open edges) and leaving others out112

(closed edges). More precisely, let113

b = (b1, . . . , bI)

be a binary vector indicating a certain configuration of open and closed migration edges: a114

bit bi = 1 indicates that the migration edge τi is open and bi = 0 that the migration edge τi115

is closed (Fig 1B). We denote by wli the migration rate, i.e. the probability of edge τi to be116

open, and thus we assign to the configuration b the probability117

wl(b) =
I∏

i=1

wbi
li (1− wli)

1−bi . (5)

Now, for a given configuration b, pick a population (leaf) m and a branch k. There is118

at most one path leading from the root to the population m and taking exactly the open119

migration edges according to b. If, moreover, this path contains the branch k, we set the120

indicator function Imk(b) equal to 1. Otherwise we set Imk(b) = 0.121

Using this notation, we can now define the M × M -matrices J lk for each branch k122

element-wise by123

[J lk]mn =
∑
b

wl(b)Imk(b)
∑
b′

wl(b
′)Ink(b

′), (6)
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where each sum runs over all the 2I possible configurations of b and b′, respectively. Each124

matrix J lk thus reflects the probabilities that branch k was common for any pair of leaves.125

The matrix W l, after all, is given by126

W l(w) =
K∑
k=1

ckJ lk. (7)

This construction of the variance matrix W l(wl) is a generalized reformulation of an argu-127

ment given in (Pickrell and Pritchard, 2012).128

To unclutter the notation, we will use W l = W l(wl) in the rest of this article and thus129

not indicate its dependence on the migration rates wl = (wl1, . . . , wlI).130

2.1.2. Sampling131

We assume that the observed allele counts nlm at locus l and population m follow a132

binomial distribution with parameters Nlm and ylm, where ylm is the true allele frequency in133

population m. By independence of the samples, we have134

π(nl|yl) =
M∏

m=1

Bin(nlm|Nlm, ylm). (8)

If the sample sizes are sufficiently large, we can approximate this distribution by a mul-135

tivariate density. Let fl = (fl1, . . . , flM) with flm = nlm/Nlm denote the observed allele136

frequencies at locus l, which are approximately normally distributed with with mean yl and137

a diagonal variance-covariance matrix:138

diag

[
yl1(1− yl1)

Nl1

, . . . ,
ylM(1− ylM)

NlM

]
. (9)

The transformed observed allele frequencies dl = (dl1, . . . , dlM) with dlm = arcsin(2flm − 1),139

are then approximated by a the multivariate density140

π(dl|xl) ≈ N (xl,Σl) (10)

with141

Σl = diag

[
1

Nl1

, . . . ,
1

NlM

]
because the factors yl1(1 − yl1) are transformed away from the variance-covariance matrix142

(eq. 9) similar to (eq. 3).143

2.1.3. Full likelihood for one locus144

Given the ancestral frequency µl, we obtain the likelihood by combining (eq. 4) and145

(eq. 10) and integrating out:146

π(dl|µl,G) =
∫

π(dl|xl)π(xl|µl,G)dxl. (11)

Using well-known formulae for linear systems (see Thm. 4.4.1 in (Murphy, 2012)) we147

obtain for the likelihood (eq. 11) the following approximation:148
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π(dl|µl,G) ≈ N (µl,Σl +W ). (12)

We now set a normal prior on µl, namely we assume that

π(µl) = N (µ, σ2).

Again from Thm. 4.4.1 in (Murphy, 2012) we conclude that149

π(dl|µl, σ
2,G) = N (µl,Sl) (13)

with150

µl = µl1, Sl = Σl +W l + σ211′. (14)

Explicitly151

π(dl|µl, σ
2,G)≈ 1√

(2π)M |Sl|
exp

[
−(dl − µl1)

′S−1
l (dl − µl1)

2

]
. (15)

152

153

2.2. Hidden Markov Model154

We develop a Hidden Markov Model (HMM) for multiple loci l = 1, . . . , L with varying155

migration rates for each of the I migration edges of graph G. We assume that the locus and156

specific migration rates wli take values out of a small set of discrete numbers between 0 and157

1:158

wli ∈ {wi1, wi2, . . . , wiJi}.

We thus have J1 · J2 · . . . · JI possible combinations and these combinations will constitute
the hidden states of our Markov model. We denote the hidden state at locus l by zl. Each
state zl corresponds to a multiindex

j = (j1, j2, . . . , jI)

that defines the migration values (w1j1 , . . . , wIjI ) of the migration edges. Thus, knowing the159

state zl is tantamount to knowing the combination of migration rates at the given site which160

in turn determines the matrix W in eq. (eq. 7) via (eq. 5) and (eq. 6).161

To account for linkage between loci, we assume that the locus-specific transition matrix162

P(zl = j′|zl−1 = j) is based on physical or genetic distances δl between loci. We assume163

independence of the transition probabilities of the different migration edges:164

P(zl = j′|zl−1 = j) = Pl(j, j
′) =

I∏
i=1

P li(ji, j
′
i).

Each one of the factors in this product is an element of a a ladder-type Markov matrix P li165

which is defined via a transition rate matrix κiΛi:166

P li = eδlκiΛi . (16)

Here, κi is a positive scaling parameter pertaining to migration edge i, the distances δl are167

known constants corresponding to the linking distances.168
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Further, the Ji × Ji-matrices Λi reflect a transition model similar to that of (Galimberti169

et al., 2020), which is governed by an attractor state ai ∈ {wi1, . . . , wiJi} reflecting the back-170

ground migration rate and two parameters ϕi and ζi describing the number of loci deviating171

from the attractor state and the degree of that deviation, respectively (see Galimberti et al.,172

2020, for an illustration). Specifically, we have173

Λi =



−1 1 0 0 . . . 0 0 0 0
ζi −1− ζi 1 0 . . . 0 0 0 0
0 ζi −1− ζi 1 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 1 −1− ζi ζi 0
0 0 0 0 . . . 0 1 −1− ζi ζi
0 0 0 0 . . . 0 1 1 −1


with the attractor row given by174

( 0 . . . 0 ϕiζi −2ϕiζi ϕiζi 0 . . . 0). (17)

See supplementary text for some examples.175

Note that the κi, ϕi and ζi all must be strictly positive. However, we limit ϕi and ζi to176

the range (0,1] to ensure that the stationary probability of the attractor state ai is higher177

than for any other state.178

We can also easily define a transition rate matrix that does not depend on an attractor179

state ai and the parameters, ϕi and ζi. This can be done as follows:180

Λi =



−1 1 0 0 . . . 0 0 0
1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 1 −2 1
0 0 0 0 . . . 0 1 −1


Note that this simplifies the inference of transition probabilities, as they now depend181

solely on the scaling factor κi rather than four parameters (κi, ai, ϕi, and ζi). As a result,182

instead of using a Nelder-Mead (Nelder and Mead, 1965) optimization to maximize the183

Q-function of the transition probabilities, it is now feasible to numerically solve it with a184

linear search. This approach could be more realistic for certain cases where there is no clear185

background migration rate.186

Finally, the emission probabilities are generated via the marginal likelihood (eq. 15):187

P(dl|zl = j) = π(dl|µl, σ
2,Gj), (18)

where Gj denotes the population graph with migration rates according to the state zl = j188

and µl is the root state at site l.189
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2.3. Inference190

We developed an empirical Bayes inference scheme for the hidden states under the as-191

sumption that the topology of the admixture graph is either known or was previously192

obtained. Specifically, we first infer both the emission and transition probabilities using193

the Baum-Welch algorithm (Baum et al., 1970) and then posterior state probabilities un-194

der the inferred parameters. As detailed in the Supplementary Information (see section195

”Baum-Welch”), the Baum-Welch algorithm requires numerical optimization in each itera-196

tion. While the parameter of the root prior µ can be optimized analytically, we resort to197

Newton-Raphson optimization (Nocedal and Wright, 2006; Lange, 2010) for the root prior198

σ2 and for parameters of the population graph (i.e. the branch lengths ci, . . . , cK) and to199

Nelder-Mead optimization (Nelder and Mead, 1965) for the parameters regarding the tran-200

sition matrices with attractors (i.e. the κi, ϕi, ζi and ai) or a linear search for transition201

matrices with no attractors (i.e. the κi).202

The Baum-Welch algorithm may be sensitive to initial conditions. We obtain initial203

estimated of all parameter values as follows (see Supplementary Information for more details):204

1. We use the observed variance-covariance matrix of the transformed observed frequen-205

cies as an initial guess of the variance covariance matrix W .206

2. To account for variation in W among loci, we refine this initial estimates using a207

Gaussian Mixture Model (GMM) under which the transformed observed frequencies208

are modeled by one of q = 1, . . . , Q multi-variate Gaussian distributions with variance-209

covariances matrices W q but shared root priors µ and σ2. This model assumes no con-210

straints regarding the structure of the W q and can be optimized with an Expectation-211

Maximization (EM) algorithm with analytic updates.212

3. We next use a Nelder-Mead algorithm to coerce the inferred variance-covariance ma-213

trices W 1, . . . ,WQ onto the population graph. Specifically, we seek to find the set of214

branch lengths c1...ck and partition-specific migration rate wq that best explain the215

previously learned variance-covariance matrices using the weighted Residuals Sum of216

Squares.217

4. To initialize the transition parameters, we first determine the posterior mean state pil218

for each each migration edge i and locus l under uniform priors and the above learned219

branch lengths and root prior. We then infer the transition parameters κi, ϕi, ζi and220

ai using a simplified HMM that models the pil using beta distributions.221

Despite this initialization, we noticed that the Baum-Welch algorithm may settle on222

a non-optimal attractor state ai too early. After initial convergence of the algorithm we223

therefore check if some neighboring attractor states may lead to a higher likelihood when224

allowed a few additional Baum-Welch iterations.225

Once maximum likelihood estimates for the branch lengths ci, . . . , cK , the transition226

parameters κi, ϕi, ζi and ai as well as the root prior µ and σ2 are obtained, we infer state227

posterior probabilities P (zl|d,θ) given the full data d and the learned parameters collectively228

denoted by θ, see Fig 1C. We further determined the posterior mean migration rates as229

w̄il =
∑
j

wijiP(zl = j|d,θ). (19)
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To identify candidate regions under selection, i.e. exhibiting either excess or dearth intro-230

gression compared to the genome-wide average, we summarized these posterior probabilities231

as232

P(zl > ai|d,θ) =
∑
j

I(ji > ai)P(zl|d,θ),

P(zl < ai|d,θ) =
∑
j

I(ji < ai)P(zl|d,θ),

where I(·) denotes the indicator function. We then determined for each locus l the false233

discovery rates (FDR) for excess (qe(l)) and dearth (qd(l)) introgression as234

qe(l) = 1− P(zl > ai|d,θ),
qd(l) = 1− P(zl < ai|d,θ).

2.4. Implementation235

We implemented the proposed inference scheme as a user-friendly C++ program TreeSwirl,236

which is available, along with documentation, through a git repository at https://bitbucket.237

org/wegmannlab/treeswirl.238

To streamline computations, we employ a straightforward clustering method to reduce239

the number of sampling size variance matrices Σl that need to be considered to either a240

default or user-specified number, following these steps:241

1. Sort the vector of sample sizes according to the frequency of each occurrence.242

2. To cluster, identify the pair of vectors with the least occurrences and compute their243

weighted average.244

3. Retain the weighted vector of sample sizes, remove the pair, and update the occurrence245

count as the sum of the deleted pair counts.246

4. Repeat steps 1 through 3 until the desired number of Σl is obtained.247

Given a limited number u of such matrices and given that we use a finite number of248

discrete migration rates, there exist also an only finite number of matrices Sl that can be249

pre-computed in each Baum-Welch iteration to speed up the forward-backward pass through250

the HMM.251

2.5. Simulations252

2.5.1. fastsimcoal2253

To compare TreeSwirl to competing methods, we used fastsimcoal2 (Excoffier et al.,254

2021) to simulate genomic data under five different demographic scenarios only consisting of255

population splits and admixture pulses (but no population growth or continuous migration,256

Figure 2). We maintained a constant effective population size of Ne = 10, 000 and used a257

sample size of N = 100 for each population in all cases.258

To simulate variation in admixture pulses along chromosomes, we composed each chromo-259

some of seven blocks, each containing many independent loci of length 1000 bp, fully-linked260

(i.e. within-locus recombination rate of 0.0), a mutation rate of 1e− 8, and a transition rate261

of 0.33. Odd-numbered blocks reflected the neutral genomic background, each contained262

nn = 3, 500 loci and an admixture pulse of αn = 0.05. Conversely, even-numbered blocks263
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reflected loci under selection. While all three selected blocks shared parameters in one sim-264

ulation, we varied the number of loci ns and migration rates αs across different simulations.265

We generated 10 replicates for each parameter combination and used a custom script to266

transform the generated output files into standard VCF files and concatenating the seven267

blocks corresponding to a single chromosome. We then applied a minimum allele frequency268

filter of maf = 0.05 with VCFtools (Danecek et al., 2011). These filtered VCFs served as269

input for estimating sliding window Fst for simulated data only consisting of two or three270

populations as well as for running D-suite Dinvestigate (Malinsky et al., 2021) with271

varying window sizes s = (10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500), a sliding locus of272

1, and the true trio and corresponding outgroup for demographic scenarios with more than273

three populations. Concurrently, we executed TreeSwirl using the same filtered data and274

the expected tree topology.275

We employed a receiver operating characteristic (ROC) curve analysis to assess the area276

under the curve (AUC), which summarizes the performance of the method in distinguishing277

introgression from the “neutral state” ix. For the ROC analysis, we used the estimated mean278

posteriors obtained from TreeSwirl, along with the computed values of Fst, Patterson’s D,279

fd, fdM , and df for various window sizes. For each comparison, we then used the statistics280

and window-size that resulted in the best AUC.281

2.6. Data Processing282

2.6.1. Anopheles gambiae species complex283

We downloaded the mosquito dataset from https://datadryad.org/stash/dataset/284

doi:10.5061/dryad.f4114. The VCF file contains data for chromosome 3La, encompassing285

eight populations and a total of 71 samples. When converting the data into allele counts,286

we excluded the Anopheles gambiae and Anopheles coluzzii populations and only kept sites287

at which all populations had data and with a minimum allele frequency (maf) of 0.05. The288

resulting dataset consisted of 295,017 SNPs across six populations with a total of 37 samples.289

The admixture graph was derived from Figure 1C in Fontaine et al. (2015).290

2.7. Data Availability Statement291

No new data were generated or analysed in support of this research.292

3. Results293

3.1. Comparison to related D- and F-statistic methods294

We used fastsimcoal2 to extensively generate coalescent simulations from five demo-295

graphic histories of population splits and mixtures. The simulation parameters were chosen296

to be reasonable. We used an effective population size of Ne = 10, 000, a sample size of297

N = 100 and a shared common ancestor for all populations dating back approximately 2000298

generations (Fig 2, first column). Each simulated chromosome involved seven genomic blocks299

with variable lengths and migration rates. To evaluate our method, we applied TreeSwirl300

to the simulated data derived from the five models with distinct histories (Fig 2, second301

column), estimated Fst and computed summary statistics using D-suite Dinvestigate for302

all applicable simulation scenarios.303
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Compared to the best-performing summary statistic and window size, TreeSwirl demon-304

strated a higher power to estimate introgression across all simulations. Our method show-305

cases higher sensitivity and specificity, allowing for the identification of a greater number of306

true introgressed loci while maintaining an exceptionally low false-positive rate (Fig 2, third307

and fourth column). The underperformance of related D- and F-statistic methods may be308

attributed to the effect of recombination, as our simulations assume no recombination. It309

has been reported that these methods are more accurate as recombination rate increases,310

which can be explained by the growth in the number of independent sites within an ana-311

lyzed region. In the case of TreeSwirl, exploiting information from linked sites to detect312

introgression can substantially enhance power, particularly when linkage spans numerous313

loci.314

TreeSwirl also exhibits consistency in identifying introgressed loci across all demographic315

models, even for models featuring two- and three-taxon topologies. This presents a significant316

advantage over f4-stat methods, which are constrained to four-taxon configurations and317

defining an outgroup. Intriguingly, TreeSwirl encounters difficulties in accurately inferring318

mixture proportions for very short introgressed regions (approximately 100 loci) in graphs319

with two sister lineages (Fig 2, first row). This pronounced pattern is not observed when320

the length of the introgressed region increases, although the actual mixture proportions are321

incorrectly estimated in some instances compared to Fst results. This suggests that, in a322

two-taxon topology, our method may exhibit limitations in detecting regions under selection,323

particularly when they encompass a minimal number of loci.324

While the power of inference for all methods is comparable in cases of strong introgression,325

TreeSwirl clearly demonstrates superior performance across simulations with low migration326

rates and short lengths, even for regions of approximately 100 loci where related D- and F-327

statistics yield the lowest AUC values. However, it is worth noting that, despite the ability of328

our method to detect weak signals of introgression, TreeSwirl also struggles to accurately329

infer mixture proportions when the introgression rate is very close to the attractor state330

(here 0.05). For instance, our method has the most false positives when the migration rate331

is between 0.1 and 0.15, regardless of the model and the length of the introgressed region,332

suggesting that there may be insufficient power to differentiate regions under selection. In333

such cases, it could be beneficial to increase the number of discretized migration rates when334

running TreeSwirl (by default 21 states). By doing so, our method may gain increased335

power to discern weak signals that are close to the attractor state.336

3.2. Applications337

3.2.1. Anopheles gambiae species complex338

To showcase the performance of TreeSwirl with real data, we applied it to the Anopheles339

gambiae species complex. This complex represents a medically significant group of Afrotrop-340

ical mosquito sibling species, as they serve as primary vectors of human malaria. The pop-341

ulation genetic history of this Afrotropical complex was recently explored, revealing that342

traits enhancing vectorial capacity may be acquired through extensive introgression events343

(Fontaine et al., 2015). Among the most remarkable introgressed regions was a continuous344

segment aligned with the 3L arm chromosomal inversion. In this region, the original sequence345

found in ancestral populations of An. quadriannulatus has been completely supplanted by346

the corresponding sequence from An. merus.347
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We, thus, used the admixture graph from Figure 1C in Fontaine et al. (2015) to infer the348

mixture proportions from An. merus into An. quadriannulatus, particularly concentrating349

on the 3L arm. As depicted in Figure 3, our analysis uncovered multiple candidate regions for350

strong introgression within the 3La inversion, along with a limited number of outliers outside351

this region, even when using a highly conservative false discovery rate (FDR) of 0.0001.352

Our findings not only support the robust introgression signal on the 3L arm chromosomal353

inversion, as previously reported in (Fontaine et al., 2015; Pfeifer and Kapan, 2019), but also354

provide a more fine-grained resolution, as smaller genome regions experiencing introgression355

are detected. Hence, this may contribute to elucidate signals of adaptive introgression,356

such as insecticide resistance and an increased ability to transmit malaria within human357

populations.358

3.3. Runtime considerations359

The computational performance of TreeSwirl is influenced by multiple factors, such as360

the number of discrete states J , the number of matrices Σ, and the total number of sites361

and admixture events. Computation times scales linearly with the number of loci, making362

it less practical for whole-genome applications in a single run. However, the computations363

can be efficiently distributed across multiple computer nodes by dividing the genome into364

independent segments, such as individual chromosomes or chromosome arms. This approach365

is valid because linkage does not persist across chromosome boundaries and is typically weak366

across the centromere. Moreover, it should be noted that the computation time grows367

exponentially with an increasing number of migration edges i and states J .368

4. Discussion369

One approach to infer historical relationships among populations is to model allele fre-370

quency changes along a phylogenetic tree as a Gaussian process (Cavalli-Sforza and Edwards,371

1967; Felsenstein, 1981). This rather old concept was recently revived by extending the model372

to a graph with migration edges and by providing a user-friendly tool to infer parameters373

under such a graph (Pickrell and Pritchard, 2012). However, this model assumes migration374

rates to be constant along the genome, an assumption that may not hold in the face of375

selection or strong genetic drift. Indeed, theory predicts variation in the rate of effective376

gene flow along the genome (Harrison, 1993), in which local barriers to gene flow are an-377

ticipated to emerge from the random accumulation of Dobzhansky-Muller incompatibilities,378

both under models of secondary contact after isolation (Barton and Gale, 1993) as well as379

under models of continuous gene flow during speciation (Wu, 2001). In the case of gene380

flow between highly divergent gene pools, selection is likely to act as the primary driving381

force for variation in effective gene flow along the genome, with rates of introgression being382

particularly low in genomic regions involved in adaptation, so called islands of speciation,383

but potentially much higher in regions free from the selection pressure (Dasmahapatra et al.,384

2012).385

In light of these considerations, we here present TreeSwirl, an extension of the model386

described in Pickrell and Pritchard (2012) that allows for mixture proportions to vary along387

the genome in an auto-correlated way that reflects the effect of linkage. We evaluated the per-388

formance of our model to identify such variation in comparison to existing methods related389

to D- and F -statistics, such as Fst, Patterson’s D (Patterson et al., 2012), fd (Martin et al.,390
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2015), fdM (Malinsky et al., 2015), and df (Pfeifer and Kapan, 2019), which have been fre-391

quently applied to identify signatures of introgression using arbitrary genomic window sizes.392

As we show using extensive simulations, our method had superior accuracy and sensitivity393

in detecting retrogressed loci under a wide range of demographic histories characterized by394

single admixture pulses.395

The approach presented here also addresses numerous constraints inherent to the use of396

relatedD- and F -statistics. First, these summary statistics are limited to bi-bifurcating four-397

population topologies. In cases involving graphs of five or more populations, the simplest398

option is to subsample a section of the graph in the appropriate configuration, as done in399

Dsuite (Malinsky et al., 2021) and replicated in our simulation tests involving six-population400

topologies (and five?). In cases involving two- or three-population topologies, one would need401

to resort to FST -based metrics. In contrast, the method presented here is not constraint by402

topology, working well with any number of populations and also under topologies that include403

polytomies.404

Second, our HMM-based approach to model linkage eliminates the need to specify window405

sizes. Instead, the parameters governing auto-correlation are directly inferred from the data406

along with introgression rates. In our simulations, the choice of window sizes, as well as407

the choice of the specific statistics to use, had a big impact on power. To ensure a fair408

comparison between methods, we thus tested all available summary statistics for a wide409

range of window sizes and only report the results of the combination of summary statistics410

and window size that was optimal for each individual case. In applications to real data,411

however, such explorations are not possible, likely leading to an even larger difference in412

power between TreeSwirl and these summary statistics.413

Third, and although not explored here, TreeSwirl supports graphs with multiple migra-414

tion edges for which introgression rates are learned simultaneously. However, it is important415

to note that the performance of TreeSwirl likely dependent on the quality of the tree416

topology used as input and may not perform well if the tree topology is poorly resolved or417

incorrect.418

We also reexamined datasets from mosquito populations, which hold significant economic419

and ecological importance and have been reported to experience introgression. Our analysis420

indeed identified multiple introgressed loci within these populations, consistent with previ-421

ous findings, which further validates our model. The broader implications of introgression422

in species evolution, however, remain a subject of debate and are not yet thoroughly doc-423

umented, primarily due to the challenges associated with accurately inferring introgressed424

loci. In fact, the potential for adaptive introgression to serve as a source of adaptation in425

response to ongoing global changes has often been underestimated (Suarez-Gonzalez et al.,426

2018). With our tool, we anticipate facilitating a deeper understanding of complex genetic427

histories within populations and shedding light on the processes that have shaped the genetic428

diversity patterns observed today.429

Data and code availability430

The authors affirm that all data required to validate the conclusions of this article431

are either included within the article itself or accessible through the indicated reposito-432

ries. The source code for TreeSwirl can be found in the following Git repository: https:433

//bitbucket.org/wegmannlab/treeswirl2/, which also contains a user manual. Addi-434
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tional scripts utilized for simulations are available upon request. This study did not generate435

any new data.436
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Sanchez, G., Gómez-Vázquez, M.J., Molina, J., Carracedo, Á., Salas, A., Gallo, C.,
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Figure 1: Inference example. A: admixture graph with two migration edges marked in different colors.
Parameters of interest are shown on the graph (root priot and branch lengths) as well as the untransformed
and transformed ancient, sampling and population allele frequency variables. B: All possible configurations
of b for two migration events when they are open or closed. C: Example of inference under our TreeSwirl
model for each migration event. The top panel shows the posterior mean mixture proportions ŵl compared
to simulated estimates and the bottom panel shows the identified candidate regions under possible selection,
where the false discovery rates (FDR) for excess (qe) and dearth (qd) introgression was determined for each
locus as explained in the ”Inference” section.
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Figure 2: Performance of TreeSwirl and f4-stats methods to measure the amount of introgression under
different demographic histories with an background migration rate α = 0.05. Firs column: simulated
demographic histories. Second column: schematic of the topology models. Third and fourth column: AUC
measures for TreeSwirl and F- and D-related stats (best summary statistic and window size were chosen).
Different symbols are used for simulated blocks with lengths 100 to 2000 loci. Because of the minimum allele
frequency filter, the sizes are relative.
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Figure 3: Inference of introgressed loci on the 3La inversion of Anopheles gambiae. First column: Topology
of Anopheles gambiae rooted by An. epiroticus (E) and An. christyi (C), depicting one introgression event
(orange arrow). The graph was taken from Figure 1C, Fontaine et al. (2015). Second column: confirmed
signal of introgression on the 3L arm from An. merus (R) to An. quadriannulatus (Q). TreeSwirl was run
with the depicted topology using 21 states and 10 Sigmas (Σ, sample size variance matrix). Estimated mean
posteriors (ŵ) are shown on top. Candidate regions of introgression are shaded in gray at a false discovery
rate (FDR) of 0.0001. The introgressed chromosomal inversion is delineated between the vertical dashed
blue lines. Horizontal dashed lines indicate the 0.01 and 0.0001 FDR threshold.
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