

Inference of Locus-Specific Population Mixtures From Linked Genome-Wide Allele Frequencies

Carlos S. Reyna-Blanco^{a,b,c}, Madleina Caduff^{a,b,c}, Marco Galimberti¹,
Christoph Leuenberger^e, Daniel Wegmann^{a,b,*}

^aThese authors contributed equally

^bDepartment of Biology, Université de Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland

^cSwiss Institute of Bioinformatics, 1700 Fribourg, Switzerland

^dYale School of Medicine, New Haven, CT

^eDepartment of Mathematics, Université de Fribourg, Chemin du Musée 23, CH-1700 Fribourg, Switzerland

Summary

Admixture between populations and species is common in nature. Since the influx of new genetic material might be either facilitated or hindered by selection, variation in mixture proportions along the genome is expected in organisms undergoing recombination. Various graph-based models have been developed to better understand these evolutionary dynamics of population splits and mixtures. However, current models assume a single mixture rates for the entire genome and do not explicitly account for linkage. Here, we introduce **TreeSwirl**, a novel method for inferring branch lengths and locus-specific mixture proportions by using genome-wide allele frequency data, assuming that the admixture graph is known or has been inferred. **TreeSwirl** builds upon **TreeMix** that uses Gaussian processes to estimate the presence of gene flow between diverged populations. However, in contrast to **TreeMix**, our model infers locus-specific mixture proportions employing a Hidden Markov Model that accounts for linkage. Through simulated data, we demonstrate that **TreeSwirl** can accurately estimate locus-specific mixture proportions and handle complex demographic scenarios. It also outperforms related D- and F-statistics in terms of accuracy and sensitivity to detect introgressed loci.

Keywords: Gene flow, Admixture, Introgression rate, Gaussian process, Linkage, Hidden Markov Model

¹ 1. Introduction

² Gene flow, the exchange of genetic material between populations or different species
³ (Slatkin, 1985a), can occur through various mechanisms, such as migration, admixture,
⁴ hybridization, cross-fertilization, or even by the dispersal of diaspores and pollinators (Barton
⁵ and Hewitt, 1985; Ellstrand et al., 2003; Tung and Barreiro, 2017; Burgarella et al., 2019).
⁶ This exchange may play a significant role in the maintenance of genetic variation, but also in
⁷ the adaptation to multiple ecological niches (Anderson, 1949; Slatkin, 1985b, 1987; Rieseberg
⁸ and Wendel, 1993; Barton, 2001). At sufficient levels, gene flow can lead to homogenization

^{*}Corresponding author

Email address: daniel.wegmann@unifr.ch (Daniel Wegmann)

9 of populations, particularly in the face of opposing genetic drift (Ellstrand, 2014). Gene
10 flow might also increase genetic variation at a much higher rate than mutation (Grant and
11 Grant, 1994) and impact the process of speciation by becoming a primary source of genetic
12 diversity and adaptive novelty for a population (Ellstrand et al., 2003; Abbott et al., 2013).
13 Several genetic analyses have shown that gene flow, both ancient and present, is a common
14 phenomenon in nature (Grant and Grant, 1992; Mallet, 2005; Patterson et al., 2006; Tung
15 and Barreiro, 2017), and a bifurcating tree, representing population or species historical
16 relationships, fails to account for it (Kulathinal et al., 2009; Reich et al., 2009; Sousa et al.,
17 2009; Green et al., 2010; Durand et al., 2011; Reich et al., 2012). This led to the development
18 of methods that use allele-frequency data and graph-based models to infer population splits
19 and test for the presence of gene flow between divergent populations or species (Pickrell and
20 Pritchard, 2012; Patterson et al., 2012; Yang et al., 2012; Eaton and Ree, 2013; Lipson et al.,
21 2013, 2014; Martin et al., 2013; Kozak et al., 2021), which, for instance, confidently settled
22 the long-standing question whether gene flow occurred between modern humans and archaic
23 hominins. However, these methods assume a genome-wide gene flow rate per migration
24 edge, which is unrealistic in the presence of selection. In theory, the effective gene flow
25 may vary significantly along the genome because of selection and genetic drift (Yamamichi
26 and Innan, 2012), making it essential to quantify these variations to better understand the
27 dynamics that lead to introgression (Racimo et al., 2015, 2017; Suarez-Gonzalez et al., 2018;
28 Sankararaman, 2020).

29 Introgression is a lasting consequence of gene flow that leads to the assimilation of vari-
30 ants into the local gene pool through repeated back-crossing, resulting in their permanent
31 inclusion (Anderson and Hubricht, 1938). When introgressed loci increase the fitness of the
32 recipient population, this is known as “adaptive introgression”. Unlike neutral introgression,
33 which can be lost over time due to drift, adaptive introgression is sustained by selection and
34 can eventually lead to fixation (Zhang et al., 2021). The classic way to identify introgressed
35 loci is by using population genetic summary statistics. Patterson’s D, for example, has been
36 estimated in sliding windows along the genome to identify introgressed loci (Dasmahapatra
37 et al., 2012; Kronforst et al., 2013; Smith and Kronforst, 2013; Rheindt et al., 2014; Fontaine
38 et al., 2015). Since it was originally intended for genome-wide analysis (Martin et al., 2015),
39 more suitable related statistics have been used for analyzing specific short genomic regions,
40 such as f_d , f_{AM} , and d_f (Martin et al., 2015; Malinsky et al., 2015; Pfeifer and Kapan,
41 2019; Malinsky et al., 2021). There are other statistics, for instance, S^* and its variants
42 that use linkage disequilibrium information to detect long introgressed haplotypes (Plagnol
43 and Wall, 2006; Wall et al., 2009; Vernot and Akey, 2014; Vernot et al., 2016; Browning
44 et al., 2018) or ArchIE that combines diverse summary statistics to detect introgressed hap-
45 lotypes without a reference (Durvasula and Sankararaman, 2019, 2020). However, outlier
46 scans based on such statistics are likely to ignore valuable information present in the full
47 data, do not model linkage explicitly or require an arbitrary choice of large window-size and
48 outliers identification. To overcome these constraints, probabilistic frameworks such as Hid-
49 den Markov Models (HMMs) (Rabiner and Juang, 1986; Prüfer et al., 2014; Seguin-Orlando
50 et al., 2014; Skov et al., 2018; Steinrücken et al., 2018), and Conditional Random Fields
51 (CRF) (Sankararaman et al., 2014) have been applied to infer the ancestry state of each
52 site. These methods are extensions of models that infer local ancestry from genotyping data
53 (Tang et al., 2006; Price et al., 2009; Wegmann et al., 2011; Lawson et al., 2012; Maples
54 et al., 2013) and while explicitly accounting for demographic history and linkage, they rely

55 on phased and training sequence data, unadmixed or archaic reference, and detailed demo-
56 graphic models. As a consequence, such approaches are not easily applicable to non-model
57 species for which more limited data and knowledge is available.

58 To complement these methods, we here propose a model that makes use of Gaussian pro-
59 cesses to infer locus-specific mixture proportions. Gaussian processes have a rather long his-
60 tory to model allele frequency differences between populations (Cavalli-Sforza and Edwards,
61 1967; Felsenstein, 1981), but have recently seen a surge in applications due to the develop-
62 ment of the popular tool **TreeMix** (Pickrell and Pritchard, 2012). Our method, **TreeSwirl**,
63 explicitly takes an admixture graph (e.g. inferred by TreeMix) and genome-wide allele fre-
64 quencies to infer locus-specific mixture proportions. To account for linkage, we make use of
65 a Hidden Markov Model (HMM), wherein the hidden states are represented by the propor-
66 tion of the mixture at a particular site and the observed data is represented by the sampled
67 allele frequencies. To evaluate the performance of our method against other tools, we sim-
68 ualized data using various demographic models. We estimated the mixture proportions with
69 **TreeSwirl** and computed related D- and F-statistics using D-suite Dinvestigate (Malinsky
70 et al., 2021). Our findings revealed that **TreeSwirl** surpasses the summary statistics esti-
71 mates in detecting the simulated signal of introgression under different scenarios, although
72 at an additional computational cost. Furthermore, by applying **TreeSwirl** to real data cases,
73 we successfully identified candidate genomic regions where migration rates fluctuate and may
74 be subject to selection.

75 2. Materials and Methods

76 2.1. The Model

77 Consider a set of populations $m = 1, 2, \dots, M$ that are linked by a graph \mathcal{G} which represents
78 their population history in terms of population splits and migration events. Consider as
79 well a series of diploid, bi-allelic loci $l = 1, 2, \dots, L$, where the total number of loci L might
80 constitute, for instance, consecutive SNPs along the genome. At each locus l , a total number
81 of $\mathbf{N}_l = (N_{l1}, \dots, N_{lM})$ alleles have been observed across the M populations, of which $\mathbf{n}_l =$
82 (n_{l1}, \dots, n_{lM}) were derived and the remaining ancestral (or otherwise polarized). To model
83 sampled allele counts $\mathbf{n}_l | \mathbf{N}_l$ we distinguish two processes: the first models the distribution
84 of the vector of the actual but unknown population frequencies $\mathbf{y}_l = (y_{l1}, \dots, y_{lM})'$ given
85 the graph \mathcal{G} , and the second the distribution of the sampled allele counts $\mathbf{n}_l | \mathbf{N}_l$ given \mathbf{y}_l
86 (Fig 1A).

87 2.1.1. Evolution along the graph \mathcal{G}

88 We assume, as in (Pickrell and Pritchard, 2012), that the change in allele frequencies
89 from the root to the tips of \mathcal{G} is modeled as a Brownian motion (BM) process. For each
90 locus l , the BM process starts at the root of \mathcal{G} at a value of allele frequency which we denote
91 by ν_l . It proceeds along the branches of \mathcal{G} and finally gives rise to the above-mentioned
92 random vector \mathbf{y}_l at the leaves of \mathcal{G} . The probability of \mathbf{y}_l is given by the multivariate
93 normal density

$$\pi(\mathbf{y}_l | \nu_l, \mathcal{G}) = \mathcal{N}(\boldsymbol{\nu}_l, \mathbf{V}(\nu_l)),$$

94 where $\boldsymbol{\nu}_l = (\nu_l, \dots, \nu_l)'$ is the mean vector and $\mathbf{V}(\nu_l)$ is the variance-covariance matrix
95 corresponding to the BM on \mathcal{G} . For the construction of $\mathbf{V}(\nu_l)$, which depends on the topology

96 of \mathcal{G} and the migration rates, we follow (Pickrell and Pritchard, 2012). We set

$$\mathbf{V}(\nu_l) = \nu_l(1 - \nu_l)\mathbf{W}_l, \quad (1)$$

97 where \mathbf{W}_l only depends on the tree topology, the branch lengths and the migration rates.

98 However, it was long recognized that BM with constant variance is not adequately de-
99 scribing allele frequency changes, especially close to boundaries and various transformations
100 to alleviate the problem have been proposed (Felsenstein, 1981). Here we will consider the
101 transformation

$$\mu_l = \arcsin(2\nu_l - 1) \quad (2)$$

102 from the interval $[0, 1]$ onto $[-\pi/2, \pi/2]$. This has the advantage that all factors of $\nu_l(1 - \nu_l)$
103 in front of the variance matrices will be canceled. We thus replace (eq. 1) by

$$\mathbf{W}_l = \left(\frac{d\mu_l}{d\nu_l} \right)^2 \mathbf{V}(\nu_l). \quad (3)$$

104 Let $\mathbf{x}_l = (x_{l1}, \dots, x_{lM}), x_{lm} = \arcsin(2y_{lm} - 1)$ denote the transformed population allele
105 frequencies. The distribution of \mathbf{x}_l thus follows the multivariate normal density

$$\pi(\mathbf{x}_l | \mu_l, \mathcal{G}) = \mathcal{N}(\mu_l, \mathbf{W}_l) \quad (4)$$

106 with $\mu_l = (\mu_{l1}, \dots, \mu_{lM}) = \mu_l \mathbf{1}$.

107 The matrix \mathbf{W}_l is constructed as follows. Let \mathcal{T} be a rooted population tree with K
108 oriented branches $k = 2, \dots, K$ of length c_k ; the orientation of the branches points in di-
109 rection of the leaves. We assume that the tree also contains I oriented migration edges τ_i ,
110 $i = 1, \dots, I$, to which we assign no branch length. The migration edges should be placed
111 such that there are no cycles in the tree. We now consider paths leading from the root of
112 the tree to a leaf taking some of the migration edges (open edges) and leaving others out
113 (closed edges). More precisely, let

$$\mathbf{b} = (b_1, \dots, b_I)$$

114 be a binary vector indicating a certain configuration of open and closed migration edges: a
115 bit $b_i = 1$ indicates that the migration edge τ_i is open and $b_i = 0$ that the migration edge τ_i
116 is closed (Fig 1B). We denote by w_{li} the migration rate, i.e. the probability of edge τ_i to be
117 open, and thus we assign to the configuration \mathbf{b} the probability

$$w_l(\mathbf{b}) = \prod_{i=1}^I w_{li}^{b_i} (1 - w_{li})^{1-b_i}. \quad (5)$$

118 Now, for a given configuration \mathbf{b} , pick a population (leaf) m and a branch k . There is
119 at most one path leading from the root to the population m and taking exactly the open
120 migration edges according to \mathbf{b} . If, moreover, this path contains the branch k , we set the
121 indicator function $I_{mk}(\mathbf{b})$ equal to 1. Otherwise we set $I_{mk}(\mathbf{b}) = 0$.

122 Using this notation, we can now define the $M \times M$ -matrices \mathbf{J}_{lk} for each branch k
123 element-wise by

$$[\mathbf{J}_{lk}]_{mn} = \sum_{\mathbf{b}} w_l(\mathbf{b}) I_{mk}(\mathbf{b}) \sum_{\mathbf{b}'} w_l(\mathbf{b}') I_{nk}(\mathbf{b}'), \quad (6)$$

124 where each sum runs over all the 2^I possible configurations of \mathbf{b} and \mathbf{b}' , respectively. Each
125 matrix \mathbf{J}_{lk} thus reflects the probabilities that branch k was common for any pair of leaves.
126 The matrix \mathbf{W}_l , after all, is given by

$$\mathbf{W}_l(\mathbf{w}) = \sum_{k=1}^K c_k \mathbf{J}_{lk}. \quad (7)$$

127 This construction of the variance matrix $\mathbf{W}_l(\mathbf{w}_l)$ is a generalized reformulation of an argu-
128 ment given in (Pickrell and Pritchard, 2012).

129 To unclutter the notation, we will use $\mathbf{W}_l = \mathbf{W}_l(\mathbf{w}_l)$ in the rest of this article and thus
130 not indicate its dependence on the migration rates $\mathbf{w}_l = (w_{l1}, \dots, w_{lI})$.

131 *2.1.2. Sampling*

132 We assume that the observed allele counts \mathbf{n}_{lm} at locus l and population m follow a
133 binomial distribution with parameters N_{lm} and y_{lm} , where y_{lm} is the true allele frequency in
134 population m . By independence of the samples, we have

$$\pi(\mathbf{n}_l | \mathbf{y}_l) = \prod_{m=1}^M \text{Bin}(n_{lm} | N_{lm}, y_{lm}). \quad (8)$$

135 If the sample sizes are sufficiently large, we can approximate this distribution by a mul-
136 tivariate density. Let $\mathbf{f}_l = (f_{l1}, \dots, f_{lM})$ with $f_{lm} = n_{lm}/N_{lm}$ denote the observed allele
137 frequencies at locus l , which are approximately normally distributed with mean \mathbf{y}_l and
138 a diagonal variance-covariance matrix:

$$\text{diag} \left[\frac{y_{l1}(1 - y_{l1})}{N_{l1}}, \dots, \frac{y_{lM}(1 - y_{lM})}{N_{lM}} \right]. \quad (9)$$

139 The transformed observed allele frequencies $\mathbf{d}_l = (d_{l1}, \dots, d_{lM})$ with $d_{lm} = \arcsin(2f_{lm} - 1)$,
140 are then approximated by a the multivariate density

$$\pi(\mathbf{d}_l | \mathbf{x}_l) \approx \mathcal{N}(\mathbf{x}_l, \Sigma_l) \quad (10)$$

141 with

$$\Sigma_l = \text{diag} \left[\frac{1}{N_{l1}}, \dots, \frac{1}{N_{lM}} \right]$$

142 because the factors $y_{l1}(1 - y_{l1})$ are transformed away from the variance-covariance matrix
143 (eq. 9) similar to (eq. 3).

144 *2.1.3. Full likelihood for one locus*

145 Given the ancestral frequency μ_l , we obtain the likelihood by combining (eq. 4) and
146 (eq. 10) and integrating out:

$$\pi(\mathbf{d}_l | \mu_l, \mathcal{G}) = \int \pi(\mathbf{d}_l | \mathbf{x}_l) \pi(\mathbf{x}_l | \mu_l, \mathcal{G}) d\mathbf{x}_l. \quad (11)$$

147 Using well-known formulae for linear systems (see Thm. 4.4.1 in (Murphy, 2012)) we
148 obtain for the likelihood (eq. 11) the following approximation:

$$\pi(\mathbf{d}_l | \mu_l, \mathcal{G}) \approx \mathcal{N}(\boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l + \mathbf{W}). \quad (12)$$

We now set a normal prior on μ_l , namely we assume that

$$\pi(\mu_l) = \mathcal{N}(\mu, \sigma^2).$$

149 Again from Thm. 4.4.1 in (Murphy, 2012) we conclude that

$$\pi(\mathbf{d}_l | \mu_l, \sigma^2, \mathcal{G}) = \mathcal{N}(\boldsymbol{\mu}_l, \mathbf{S}_l) \quad (13)$$

150 with

$$\boldsymbol{\mu}_l = \mu_l \mathbf{1}, \quad \mathbf{S}_l = \boldsymbol{\Sigma}_l + \mathbf{W}_l + \sigma^2 \mathbf{1} \mathbf{1}'.$$

151 Explicitly

$$\pi(\mathbf{d}_l | \mu_l, \sigma^2, \mathcal{G}) \approx \frac{1}{\sqrt{(2\pi)^M |\mathbf{S}_l|}} \exp \left[-\frac{(\mathbf{d}_l - \mu_l \mathbf{1})' \mathbf{S}_l^{-1} (\mathbf{d}_l - \mu_l \mathbf{1})}{2} \right]. \quad (15)$$

152

153

154 *2.2. Hidden Markov Model*

155 We develop a Hidden Markov Model (HMM) for multiple loci $l = 1, \dots, L$ with varying
 156 migration rates for each of the I migration edges of graph \mathcal{G} . We assume that the locus and
 157 specific migration rates w_{li} take values out of a small set of discrete numbers between 0 and
 158 1:

$$w_{li} \in \{w_{i1}, w_{i2}, \dots, w_{iJ_i}\}.$$

We thus have $J_1 \cdot J_2 \cdot \dots \cdot J_I$ possible combinations and these combinations will constitute the hidden states of our Markov model. We denote the hidden state at locus l by z_l . Each state z_l corresponds to a multiindex

$$j = (j_1, j_2, \dots, j_I)$$

159 that defines the migration values $(w_{1j_1}, \dots, w_{Ij_I})$ of the migration edges. Thus, knowing the
 160 state z_l is tantamount to knowing the combination of migration rates at the given site which
 161 in turn determines the matrix \mathbf{W} in eq. (eq. 7) via (eq. 5) and (eq. 6).

162 To account for linkage between loci, we assume that the locus-specific transition matrix
 163 $\mathbb{P}(z_l = j' | z_{l-1} = j)$ is based on physical or genetic distances δ_l between loci. We assume
 164 independence of the transition probabilities of the different migration edges:

$$\mathbb{P}(z_l = j' | z_{l-1} = j) = \mathbb{P}_l(j, j') = \prod_{i=1}^I \mathbf{P}_{li}(j_i, j'_i).$$

165 Each one of the factors in this product is an element of a ladder-type Markov matrix \mathbf{P}_{li}
 166 which is defined via a transition rate matrix $\kappa_i \boldsymbol{\Lambda}_i$:

$$\mathbf{P}_{li} = e^{\delta_l \kappa_i \boldsymbol{\Lambda}_i}. \quad (16)$$

167 Here, κ_i is a positive scaling parameter pertaining to migration edge i , the distances δ_l are
 168 known constants corresponding to the linking distances.

169 Further, the $J_i \times J_i$ -matrices Λ_i reflect a transition model similar to that of (Galimberti
170 et al., 2020), which is governed by an attractor state $a_i \in \{w_{i1}, \dots, w_{iJ_i}\}$ reflecting the back-
171 ground migration rate and two parameters ϕ_i and ζ_i describing the number of loci deviating
172 from the attractor state and the degree of that deviation, respectively (see Galimberti et al.,
173 2020, for an illustration). Specifically, we have

$$\Lambda_i = \begin{pmatrix} -1 & 1 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ \zeta_i & -1 - \zeta_i & 1 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & \zeta_i & -1 - \zeta_i & 1 & \dots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & -1 - \zeta_i & \zeta_i & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 & -1 - \zeta_i & \zeta_i \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 & 1 & -1 \end{pmatrix}$$

174 with the attractor row given by

$$(0 \dots 0 \ \phi_i \zeta_i \ -2\phi_i \zeta_i \ \phi_i \zeta_i \ 0 \ \dots \ 0). \quad (17)$$

175 See supplementary text for some examples.

176 Note that the κ_i , ϕ_i and ζ_i all must be strictly positive. However, we limit ϕ_i and ζ_i to
177 the range $(0,1]$ to ensure that the stationary probability of the attractor state a_i is higher
178 than for any other state.

179 We can also easily define a transition rate matrix that does not depend on an attractor
180 state a_i and the parameters, ϕ_i and ζ_i . This can be done as follows:

$$\Lambda_i = \begin{pmatrix} -1 & 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 & -1 \end{pmatrix}$$

181 Note that this simplifies the inference of transition probabilities, as they now depend
182 solely on the scaling factor κ_i rather than four parameters (κ_i , a_i , ϕ_i , and ζ_i). As a result,
183 instead of using a Nelder-Mead (Nelder and Mead, 1965) optimization to maximize the
184 Q-function of the transition probabilities, it is now feasible to numerically solve it with a
185 linear search. This approach could be more realistic for certain cases where there is no clear
186 background migration rate.

187 Finally, the emission probabilities are generated via the marginal likelihood (eq. 15):

$$\mathbb{P}(\mathbf{d}_l | z_l = j) = \pi(\mathbf{d}_l | \mu_l, \sigma^2, \mathcal{G}_j), \quad (18)$$

188 where \mathcal{G}_j denotes the population graph with migration rates according to the state $z_l = j$
189 and μ_l is the root state at site l .

190 2.3. Inference

191 We developed an empirical Bayes inference scheme for the hidden states under the as-
192 sumption that the topology of the admixture graph is either known or was previously
193 obtained. Specifically, we first infer both the emission and transition probabilities using
194 the Baum-Welch algorithm (Baum et al., 1970) and then posterior state probabilities un-
195 der the inferred parameters. As detailed in the Supplementary Information (see section
196 "Baum-Welch"), the Baum-Welch algorithm requires numerical optimization in each iter-
197 ation. While the parameter of the root prior μ can be optimized analytically, we resort to
198 Newton-Raphson optimization (Nocedal and Wright, 2006; Lange, 2010) for the root prior
199 σ_2 and for parameters of the population graph (i.e. the branch lengths c_i, \dots, c_K) and to
200 Nelder-Mead optimization (Nelder and Mead, 1965) for the parameters regarding the trans-
201 sition matrices with attractors (i.e. the $\kappa_i, \phi_i, \zeta_i$ and a_i) or a linear search for transition
202 matrices with no attractors (i.e. the κ_i).

203 The Baum-Welch algorithm may be sensitive to initial conditions. We obtain initial
204 estimated of all parameter values as follows (see Supplementary Information for more details):

- 205 1. We use the observed variance-covariance matrix of the transformed observed frequen-
206 cies as an initial guess of the variance covariance matrix \mathbf{W} .
- 207 2. To account for variation in \mathbf{W} among loci, we refine this initial estimates using a
208 Gaussian Mixture Model (GMM) under which the transformed observed frequencies
209 are modeled by one of $q = 1, \dots, Q$ multi-variate Gaussian distributions with variance-
210 covariances matrices \mathbf{W}_q but shared root priors μ and σ_2 . This model assumes no con-
211 straints regarding the structure of the \mathbf{W}_q and can be optimized with an Expectation-
212 Maximization (EM) algorithm with analytic updates.
- 213 3. We next use a Nelder-Mead algorithm to coerce the inferred variance-covariance ma-
214 trices $\mathbf{W}_1, \dots, \mathbf{W}_Q$ onto the population graph. Specifically, we seek to find the set of
215 branch lengths $\mathbf{c}_1 \dots \mathbf{c}_k$ and partition-specific migration rate \mathbf{w}_q that best explain the
216 previously learned variance-covariance matrices using the weighted Residuals Sum of
217 Squares.
- 218 4. To initialize the transition parameters, we first determine the posterior mean state p_{il}
219 for each each migration edge i and locus l under uniform priors and the above learned
220 branch lengths and root prior. We then infer the transition parameters $\kappa_i, \phi_i, \zeta_i$ and
221 a_i using a simplified HMM that models the p_{il} using beta distributions.

222 Despite this initialization, we noticed that the Baum-Welch algorithm may settle on
223 a non-optimal attractor state a_i too early. After initial convergence of the algorithm we
224 therefore check if some neighboring attractor states may lead to a higher likelihood when
225 allowed a few additional Baum-Welch iterations.

226 Once maximum likelihood estimates for the branch lengths c_i, \dots, c_K , the transition
227 parameters $\kappa_i, \phi_i, \zeta_i$ and a_i as well as the root prior μ and σ_2 are obtained, we infer state
228 posterior probabilities $P(z_l | \mathbf{d}, \boldsymbol{\theta})$ given the full data \mathbf{d} and the learned parameters collectively
229 denoted by $\boldsymbol{\theta}$, see Fig 1C. We further determined the posterior mean migration rates as

$$\bar{w}_{il} = \sum_j w_{ij} \mathbb{P}(z_l = j | \mathbf{d}, \boldsymbol{\theta}). \quad (19)$$

230 To identify candidate regions under selection, i.e. exhibiting either excess or dearth intro-
231 gression compared to the genome-wide average, we summarized these posterior probabilities
232 as

$$\mathbb{P}(z_l > a_i | \mathbf{d}, \boldsymbol{\theta}) = \sum_j \mathcal{I}(j_i > a_i) \mathbb{P}(z_l | \mathbf{d}, \boldsymbol{\theta}),$$
$$\mathbb{P}(z_l < a_i | \mathbf{d}, \boldsymbol{\theta}) = \sum_j \mathcal{I}(j_i < a_i) \mathbb{P}(z_l | \mathbf{d}, \boldsymbol{\theta}),$$

233 where $\mathcal{I}(\cdot)$ denotes the indicator function. We then determined for each locus l the false
234 discovery rates (FDR) for excess ($q_e(l)$) and dearth ($q_d(l)$) introgression as

$$q_e(l) = 1 - \mathbb{P}(z_l > a_i | \mathbf{d}, \boldsymbol{\theta}),$$
$$q_d(l) = 1 - \mathbb{P}(z_l < a_i | \mathbf{d}, \boldsymbol{\theta}).$$

235 2.4. Implementation

236 We implemented the proposed inference scheme as a user-friendly C++ program **TreeSwirl**,
237 which is available, along with documentation, through a git repository at <https://bitbucket.org/wegmannlab/treeswirl>.

238 To streamline computations, we employ a straightforward clustering method to reduce
239 the number of sampling size variance matrices Σ_l that need to be considered to either a
240 default or user-specified number, following these steps:

- 242 1. Sort the vector of sample sizes according to the frequency of each occurrence.
- 243 2. To cluster, identify the pair of vectors with the least occurrences and compute their
244 weighted average.
- 245 3. Retain the weighted vector of sample sizes, remove the pair, and update the occurrence
246 count as the sum of the deleted pair counts.
- 247 4. Repeat steps 1 through 3 until the desired number of Σ_l is obtained.

248 Given a limited number u of such matrices and given that we use a finite number of
249 discrete migration rates, there exist also an only finite number of matrices \mathbf{S}_l that can be
250 pre-computed in each Baum-Welch iteration to speed up the forward-backward pass through
251 the HMM.

252 2.5. Simulations

253 2.5.1. **fastsimcoal2**

254 To compare **TreeSwirl** to competing methods, we used **fastsimcoal2** (Excoffier et al.,
255 2021) to simulate genomic data under five different demographic scenarios only consisting of
256 population splits and admixture pulses (but no population growth or continuous migration,
257 Figure 2). We maintained a constant effective population size of $N_e = 10,000$ and used a
258 sample size of $N = 100$ for each population in all cases.

259 To simulate variation in admixture pulses along chromosomes, we composed each chromo-
260 some of seven blocks, each containing many independent loci of length 1000 bp, fully-linked
261 (i.e. within-locus recombination rate of 0.0), a mutation rate of $1e - 8$, and a transition rate
262 of 0.33. Odd-numbered blocks reflected the neutral genomic background, each contained
263 $n_n = 3,500$ loci and an admixture pulse of $\alpha_n = 0.05$. Conversely, even-numbered blocks

264 reflected loci under selection. While all three selected blocks shared parameters in one sim-
265 ulation, we varied the number of loci n_s and migration rates α_s across different simulations.

266 We generated 10 replicates for each parameter combination and used a custom script to
267 transform the generated output files into standard VCF files and concatenating the seven
268 blocks corresponding to a single chromosome. We then applied a minimum allele frequency
269 filter of $maf = 0.05$ with VCFtools (Danecek et al., 2011). These filtered VCFs served as
270 input for estimating sliding window F_{st} for simulated data only consisting of two or three
271 populations as well as for running D-suite Dinvestigate (Malinsky et al., 2021) with
272 varying window sizes $s = (10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500)$, a sliding locus of
273 1, and the true trio and corresponding outgroup for demographic scenarios with more than
274 three populations. Concurrently, we executed TreeSwirl using the same filtered data and
275 the expected tree topology.

276 We employed a receiver operating characteristic (ROC) curve analysis to assess the area
277 under the curve (AUC), which summarizes the performance of the method in distinguishing
278 introgression from the “neutral state” *ix*. For the ROC analysis, we used the estimated mean
279 posteriors obtained from TreeSwirl, along with the computed values of F_{st} , Patterson’s D,
280 f_d , f_{dM} , and d_f for various window sizes. For each comparison, we then used the statistics
281 and window-size that resulted in the best AUC.

282 2.6. Data Processing

283 2.6.1. *Anopheles gambiae* species complex

284 We downloaded the mosquito dataset from <https://datadryad.org/stash/dataset/doi:10.5061/dryad.f4114>. The VCF file contains data for chromosome 3La, encompassing
285 eight populations and a total of 71 samples. When converting the data into allele counts,
286 we excluded the *Anopheles gambiae* and *Anopheles coluzzii* populations and only kept sites
287 at which all populations had data and with a minimum allele frequency (maf) of 0.05. The
288 resulting dataset consisted of 295,017 SNPs across six populations with a total of 37 samples.
289 The admixture graph was derived from Figure 1C in Fontaine et al. (2015).

291 2.7. Data Availability Statement

292 No new data were generated or analysed in support of this research.

293 3. Results

294 3.1. Comparison to related D- and F-statistic methods

295 We used fastsimcoal2 to extensively generate coalescent simulations from five demo-
296 graphic histories of population splits and mixtures. The simulation parameters were chosen
297 to be reasonable. We used an effective population size of $N_e = 10,000$, a sample size of
298 $N = 100$ and a shared common ancestor for all populations dating back approximately 2000
299 generations (Fig 2, first column). Each simulated chromosome involved seven genomic blocks
300 with variable lengths and migration rates. To evaluate our method, we applied TreeSwirl
301 to the simulated data derived from the five models with distinct histories (Fig 2, second
302 column), estimated F_{st} and computed summary statistics using D-suite Dinvestigate for
303 all applicable simulation scenarios.

304 Compared to the best-performing summary statistic and window size, **TreeSwirl** demon-
305 strated a higher power to estimate introgression across all simulations. Our method show-
306 cases higher sensitivity and specificity, allowing for the identification of a greater number of
307 true introgressed loci while maintaining an exceptionally low false-positive rate (Fig 2, third
308 and fourth column). The underperformance of related D- and F-statistic methods may be
309 attributed to the effect of recombination, as our simulations assume no recombination. It
310 has been reported that these methods are more accurate as recombination rate increases,
311 which can be explained by the growth in the number of independent sites within an ana-
312 lyzed region. In the case of **TreeSwirl**, exploiting information from linked sites to detect
313 introgression can substantially enhance power, particularly when linkage spans numerous
314 loci.

315 **TreeSwirl** also exhibits consistency in identifying introgressed loci across all demographic
316 models, even for models featuring two- and three-taxon topologies. This presents a significant
317 advantage over f_4 -stat methods, which are constrained to four-taxon configurations and
318 defining an outgroup. Intriguingly, **TreeSwirl** encounters difficulties in accurately inferring
319 mixture proportions for very short introgressed regions (approximately 100 loci) in graphs
320 with two sister lineages (Fig 2, first row). This pronounced pattern is not observed when
321 the length of the introgressed region increases, although the actual mixture proportions are
322 incorrectly estimated in some instances compared to F_{st} results. This suggests that, in a
323 two-taxon topology, our method may exhibit limitations in detecting regions under selection,
324 particularly when they encompass a minimal number of loci.

325 While the power of inference for all methods is comparable in cases of strong introgression,
326 **TreeSwirl** clearly demonstrates superior performance across simulations with low migration
327 rates and short lengths, even for regions of approximately 100 loci where related D- and F-
328 statistics yield the lowest AUC values. However, it is worth noting that, despite the ability of
329 our method to detect weak signals of introgression, **TreeSwirl** also struggles to accurately
330 infer mixture proportions when the introgression rate is very close to the attractor state
331 (here 0.05). For instance, our method has the most false positives when the migration rate
332 is between 0.1 and 0.15, regardless of the model and the length of the introgressed region,
333 suggesting that there may be insufficient power to differentiate regions under selection. In
334 such cases, it could be beneficial to increase the number of discretized migration rates when
335 running **TreeSwirl** (by default 21 states). By doing so, our method may gain increased
336 power to discern weak signals that are close to the attractor state.

337 3.2. Applications

338 3.2.1. *Anopheles gambiae* species complex

339 To showcase the performance of **TreeSwirl** with real data, we applied it to the *Anopheles*
340 *gambiae* species complex. This complex represents a medically significant group of Afrotrop-
341 ical mosquito sibling species, as they serve as primary vectors of human malaria. The pop-
342 ulation genetic history of this Afrotropical complex was recently explored, revealing that
343 traits enhancing vectorial capacity may be acquired through extensive introgression events
344 (Fontaine et al., 2015). Among the most remarkable introgressed regions was a continuous
345 segment aligned with the 3L arm chromosomal inversion. In this region, the original sequence
346 found in ancestral populations of *An. quadriannulatus* has been completely supplanted by
347 the corresponding sequence from *An. merus*.

348 We, thus, used the admixture graph from Figure 1C in Fontaine et al. (2015) to infer the
349 mixture proportions from *An. merus* into *An. quadriannulatus*, particularly concentrating
350 on the 3L arm. As depicted in Figure 3, our analysis uncovered multiple candidate regions for
351 strong introgression within the 3La inversion, along with a limited number of outliers outside
352 this region, even when using a highly conservative false discovery rate (FDR) of 0.0001.
353 Our findings not only support the robust introgression signal on the 3L arm chromosomal
354 inversion, as previously reported in (Fontaine et al., 2015; Pfeifer and Kapan, 2019), but also
355 provide a more fine-grained resolution, as smaller genome regions experiencing introgression
356 are detected. Hence, this may contribute to elucidate signals of adaptive introgression,
357 such as insecticide resistance and an increased ability to transmit malaria within human
358 populations.

359 *3.3. Runtime considerations*

360 The computational performance of **TreeSwirl** is influenced by multiple factors, such as
361 the number of discrete states J , the number of matrices Σ , and the total number of sites
362 and admixture events. Computation times scales linearly with the number of loci, making
363 it less practical for whole-genome applications in a single run. However, the computations
364 can be efficiently distributed across multiple computer nodes by dividing the genome into
365 independent segments, such as individual chromosomes or chromosome arms. This approach
366 is valid because linkage does not persist across chromosome boundaries and is typically weak
367 across the centromere. Moreover, it should be noted that the computation time grows
368 exponentially with an increasing number of migration edges i and states J .

369 **4. Discussion**

370 One approach to infer historical relationships among populations is to model allele fre-
371 quency changes along a phylogenetic tree as a Gaussian process (Cavalli-Sforza and Edwards,
372 1967; Felsenstein, 1981). This rather old concept was recently revived by extending the model
373 to a graph with migration edges and by providing a user-friendly tool to infer parameters
374 under such a graph (Pickrell and Pritchard, 2012). However, this model assumes migration
375 rates to be constant along the genome, an assumption that may not hold in the face of
376 selection or strong genetic drift. Indeed, theory predicts variation in the rate of effective
377 gene flow along the genome (Harrison, 1993), in which local barriers to gene flow are an-
378 ticipated to emerge from the random accumulation of Dobzhansky-Muller incompatibilities,
379 both under models of secondary contact after isolation (Barton and Gale, 1993) as well as
380 under models of continuous gene flow during speciation (Wu, 2001). In the case of gene
381 flow between highly divergent gene pools, selection is likely to act as the primary driving
382 force for variation in effective gene flow along the genome, with rates of introgression being
383 particularly low in genomic regions involved in adaptation, so called islands of speciation,
384 but potentially much higher in regions free from the selection pressure (Dasmahapatra et al.,
385 2012).

386 In light of these considerations, we here present **TreeSwirl**, an extension of the model
387 described in Pickrell and Pritchard (2012) that allows for mixture proportions to vary along
388 the genome in an auto-correlated way that reflects the effect of linkage. We evaluated the per-
389 formance of our model to identify such variation in comparison to existing methods related
390 to D - and F -statistics, such as F_{st} , Patterson's D (Patterson et al., 2012), f_d (Martin et al.,

391 2015), f_{dM} (Malinsky et al., 2015), and d_f (Pfeifer and Kapan, 2019), which have been fre-
392 quently applied to identify signatures of introgression using arbitrary genomic window sizes.
393 As we show using extensive simulations, our method had superior accuracy and sensitivity
394 in detecting retrogressed loci under a wide range of demographic histories characterized by
395 single admixture pulses.

396 The approach presented here also addresses numerous constraints inherent to the use of
397 related D - and F -statistics. First, these summary statistics are limited to bi-bifurcating four-
398 population topologies. In cases involving graphs of five or more populations, the simplest
399 option is to subsample a section of the graph in the appropriate configuration, as done in
400 **Dsuite** (Malinsky et al., 2021) and replicated in our simulation tests involving six-population
401 topologies (and five?). In cases involving two- or three-population topologies, one would need
402 to resort to F_{ST} -based metrics. In contrast, the method presented here is not constraint by
403 topology, working well with any number of populations and also under topologies that include
404 polytomies.

405 Second, our HMM-based approach to model linkage eliminates the need to specify window
406 sizes. Instead, the parameters governing auto-correlation are directly inferred from the data
407 along with introgression rates. In our simulations, the choice of window sizes, as well as
408 the choice of the specific statistics to use, had a big impact on power. To ensure a fair
409 comparison between methods, we thus tested all available summary statistics for a wide
410 range of window sizes and only report the results of the combination of summary statistics
411 and window size that was optimal for each individual case. In applications to real data,
412 however, such explorations are not possible, likely leading to an even larger difference in
413 power between **TreeSwirl** and these summary statistics.

414 Third, and although not explored here, **TreeSwirl** supports graphs with multiple migra-
415 tion edges for which introgression rates are learned simultaneously. However, it is important
416 to note that the performance of **TreeSwirl** likely dependent on the quality of the tree
417 topology used as input and may not perform well if the tree topology is poorly resolved or
418 incorrect.

419 We also reexamined datasets from mosquito populations, which hold significant economic
420 and ecological importance and have been reported to experience introgression. Our analysis
421 indeed identified multiple introgressed loci within these populations, consistent with previ-
422 ous findings, which further validates our model. The broader implications of introgression
423 in species evolution, however, remain a subject of debate and are not yet thoroughly doc-
424 umented, primarily due to the challenges associated with accurately inferring introgressed
425 loci. In fact, the potential for adaptive introgression to serve as a source of adaptation in
426 response to ongoing global changes has often been underestimated (Suarez-Gonzalez et al.,
427 2018). With our tool, we anticipate facilitating a deeper understanding of complex genetic
428 histories within populations and shedding light on the processes that have shaped the genetic
429 diversity patterns observed today.

430 Data and code availability

431 The authors affirm that all data required to validate the conclusions of this article
432 are either included within the article itself or accessible through the indicated reposi-
433 tories. The source code for **TreeSwirl** can be found in the following Git repository: <https://bitbucket.org/wegmannlab/treeswirl2/>, which also contains a user manual. Addi-

435 tional scripts utilized for simulations are available upon request. This study did not generate
436 any new data.

437 **Acknowledgments**

438 This work was supported by Swiss National Science Foundation grants 31003A_173062
439 and 310030_200420 to DW.

440 **Author contributions**

441 DW conceived the idea; DW, CL and CSRB developed the model; CSRB implemented
442 the method in collaboration with MC and MG; CSRB conducted all simulations and data
443 analyses; CSRB and DW led the writing of the manuscript. All authors contributed critically
444 to the draft and gave final approval for publication.

445 **Declaration of interests**

446 The authors declare no competing interests

References

Abbott, R., Albach, D., Ansell, S., Arntzen, J.W., Baird, S.J., Bierne, N., Boughman, J., Brelsford, A., Buerkle, C.A., Buggs, R., Butlin, R.K., Dieckmann, U., Eroukhmanoff, F., Grill, A., Cahan, S.H., Hermansen, J.S., Hewitt, G., Hudson, A.G., Jiggins, C., Jones, J., Keller, B., Marczewski, T., Mallet, J., Martinez-Rodriguez, P., Möst, M., Mullen, S., Nichols, R., Nolte, A.W., Parisod, C., Pfennig, K., Rice, A.M., Ritchie, M.G., Seifert, B., Smadja, C.M., Stelkens, R., Szymura, J.M., Väinölä, R., Wolf, J.B., Zinner, D., 2013. Hybridization and speciation. *Journal of Evolutionary Biology* 26, 229–246. doi:10.1111/j.1420-9101.2012.02599.X.

Anderson, E., 1949. Introgressive hybridization. J. Wiley, New York. URL: <https://www.biodiversitylibrary.org/bibliography/4553>, doi:10.5962/bhl.title.4553.

Anderson, E., Hubricht, L., 1938. Hybridization in *Tradescantia*. III. The Evidence for Introgressive Hybridization. *American Journal of Botany* 25, 396. doi:10.2307/2436413.

Barton, N., Gale, K., 1993. Genetic analysis of hybrid zones, in: Harrison, R.G. (Ed.), *Hybrid Zones and the Evolutionary Process*. Oxford University Press, pp. 13–45.

Barton, N.H., 2001. The role of hybridization in evolution. *Molecular Ecology* 10, 551–568. doi:10.1046/J.1365-294X.2001.01216.X.

Barton, N.H., Hewitt, G.M., 1985. Analysis of Hybrid Zones. *Annual Review of Ecology, Evolution, and Systematics* , 113–148doi:10.1146/ANNUREV.ES.16.110185.000553.

Baum, L.E., Petrie, T., Soules, G., Weiss, N., 1970. A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. *The Annals of Mathematical Statistics* 41, 164–171. doi:10.1214/AOMS/1177697196.

Beech, M., Shepherd, E., 2001. Archaeobotanical evidence for early date consumption on Dalma Island, United Arab Emirates. *Antiquity* 75, 83–89. URL: <https://www.cambridge.org/core/journals/antiquity/article/archaeobotanical-evidence-for-early-date-consumption-on-dalma-island-united-arab-emir/FA80E36C36D1BE2D10AAD0286F1BFAE5>, doi:10.1017/S0003598X00052765.

Browning, S.R., Browning, B.L., Zhou, Y., Tucci, S., Akey, J.M., 2018. Analysis of Human Sequence Data Reveals Two Pulses of Archaic Denisovan Admixture. *Cell* 173, 53–61.e9. doi:10.1016/J.CELL.2018.02.031.

Burgarella, C., Barnaud, A., Kane, N.A., Jankowski, F., Scarcelli, N., Billot, C., Vigouroux, Y., Berthouly-Salazar, C., 2019. Adaptive introgression: An untapped evolutionary mechanism for crop adaptation. *Frontiers in Plant Science* 10, 4. doi:10.3389/FPLS.2019.00004/BIBTEX.

Cavalli-Sforza, L.L., Edwards, A.W., 1967. Phylogenetic analysis. Models and estimation procedures. *American Journal of Human Genetics* 19, 233. URL: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1706274/>, doi:10.2307/2406616.

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., McVean, G., Durbin, R., 2011. The variant call format and VCFtools. *Bioinformatics* 27, 2156–2158. URL: <https://academic.oup.com/bioinformatics/article/27/15/2156/402296>, doi:10.1093/BIOINFORMATICS/BTR330.

Dasmahapatra, K.K., Walters, J.R., Briscoe, A.D., Davey, J.W., Whibley, A., Nadeau, N.J., Zimin, A.V., Salazar, C., Ferguson, L.C., Martin, S.H., Lewis, J.J., Adler, S., Ahn, S.J., Baker, D.A., Baxter, S.W., Chamberlain, N.L., Ritika, C., Counterman, B.A., Dalmay, T., Gilbert, L.E., Gordon, K., Heckel, D.G., Hines, H.M., Hoff, K.J., Holland, P.W., Jacquin-Joly, E., Jiggins, F.M., Jones, R.T., Kapan, D.D., Kersey, P., Lamas, G., Lawson, D., Mapleson, D., Maroja, L.S., Martin, A., Moxon, S., Palmer, W.J., Papa, R., Papanicolaou, A., Pauchet, Y., Ray, D.A., Rosser, N., Salzberg, S.L., Supple, M.A., Surridge, A., Tenger-Trolander, A., Vogel, H., Wilkinson, P.A., Wilson, D., Yorke, J.A., Yuan, F., Balmuth, A.L., Eland, C., Gharbi, K., Thomson, M., Gibbs, R.A., Han, Y., Jayaseelan, J.C., Kovar, C., Mathew, T., Muzny, D.M., Ongeri, F., Pu, L.L., Qu, J., Thornton, R.L., Worley, K.C., Wu, Y.Q., Linares, M., Blaxter, M.L., Ffrench-Constant, R.H., Joron, M., Kronforst, M.R., Mullen, S.P., Reed, R.D., Scherer, S.E., Richards, S., Mallet, J., McMillan, W.O., Jiggins, C.D., 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. *Nature* 487, 94–98. URL: <https://pubmed.ncbi.nlm.nih.gov/22722851/>, doi:10.1038/NATURE11041.

Durand, E.Y., Patterson, N., Reich, D., Slatkin, M., 2011. Testing for ancient admixture between closely related populations. *Molecular Biology and Evolution* 28, 2239–2252. URL: <https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21325092/?tool=EBIhttps://europepmc.org/article/PMC/PMC3144383>, doi:10.1093/MOLBEV/MSR048.

Durvasula, A., Sankararaman, S., 2019. A statistical model for reference-free inference of archaic local ancestry. *PLOS Genetics* 15, e1008175. URL: <https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008175>, doi:10.1371/JOURNAL.PGEN.1008175.

Durvasula, A., Sankararaman, S., 2020. Recovering signals of ghost archaic introgression in African populations. *Science Advances* 6. URL: <https://www.science.org/doi/10.1126/sciadv.aax5097>, doi:10.1126/SCIADV.AAX5097/SUPPL_FILE/AAX5097_SM.PDF.

Eaton, D.A., Ree, R.H., 2013. Inferring Phylogeny and Introgression using RADseq Data: An Example from Flowering Plants (*Pedicularis*: Orobanchaceae). *Systematic Biology* 62, 689–706. URL: <https://academic.oup.com/sysbio/article/62/5/689/1684460>, doi:10.1093/SYSBIO/SYT032.

Ellstrand, N.C., 2014. Is gene flow the most important evolutionary force in plants? *American Journal of Botany* 101, 737–753. URL: <https://onlinelibrary.wiley.com/doi/full/10.3732/ajb.1400024><https://onlinelibrary.wiley.com/doi/abs/10.3732/ajb.1400024><https://bsapubs.onlinelibrary.wiley.com/doi/10.3732/ajb.1400024>, doi:10.3732/AJB.1400024.

Ellstrand, N.C., Barrett, S.C., Linington, S., Stephenson, A.G., Comai, L., 2003. Current knowledge of gene flow in plants: implications for transgene flow. *Philosophical*

Transactions of the Royal Society of London. Series B: Biological Sciences 358, 1163–1170. URL: <https://royalsocietypublishing.org/doi/10.1098/rstb.2003.1299>, doi:10.1098/RSTB.2003.1299.

Excoffier, L., Marchi, N., Marques, D.A., Matthey-Doret, R., Gouy, A., Sousa, V.C., 2021. fastsimcoal2: demographic inference under complex evolutionary scenarios. Bioinformatics 37, 4882–4885. URL: <https://academic.oup.com/bioinformatics/article/37/24/4882/6308558>, doi:10.1093/BIOINFORMATICS/BTAB468.

Felsenstein, J., 1981. Evolutionary trees from gene frequencies and quantitative characters: Finding maximum likelihood estimates. Evolution; international journal of organic evolution 35, 1229–1242. URL: <https://pubmed.ncbi.nlm.nih.gov/28563384/>, doi:10.1111/J.1558-5646.1981.TB04991.X.

Flowers, J.M., Hazzouri, K.M., Gros-Balthazard, M., Mo, Z., Koutroumpa, K., Perrakis, A., Ferrand, S., Khierallah, H.S., Fuller, D.Q., Aberlenc, F., Fournaraki, C., Purugganan, M.D., 2019. Cross-species hybridization and the origin of North African date palms. Proceedings of the National Academy of Sciences of the United States of America 116, 1651–1658. URL: <https://www.pnas.org/doi/abs/10.1073/pnas.1817453116>, doi:10.1073/PNAS.1817453116/SUPPL_FILE/PNAS.1817453116.SD01.PDF.

Fontaine, M.C., Pease, J.B., Steele, A., Waterhouse, R.M., Neafsey, D.E., Sharakhov, I.V., Jiang, X., Hall, A.B., Catteruccia, F., Kakani, E., Mitchell, S.N., Wu, Y.C., Smith, H.A., Rebecca Love, R., Lawniczak, M.K., Slotman, M.A., Emrich, S.J., Hahn, M.W., Besansky, N.J., 2015. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347, 1258524. URL: <https://www.science.org/doi/10.1126/science.1258524>, doi:10.1126/SCIENCE.1258524/SUPPL_FILE/1258524_FONTAINE_SM_REVISION1.PDF.

Galimberti, M., Leuenberger, C., Wolf, B., Szilágyi, S.M., Foll, M., Wegmann, D., 2020. Detecting Selection from Linked Sites Using an F-Model. Genetics 216, 1205–1215. URL: <https://pubmed.ncbi.nlm.nih.gov/33067324/>, doi:10.1534/GENETICS.120.303780.

Grant, P.R., Grant, B.R., 1992. Hybridization of Bird Species. Science 256, 193–197. URL: <https://www.science.org/doi/10.1126/science.256.5054.193>, doi:10.1126/SCIENCE.256.5054.193.

Grant, P.R., Grant, B.R., 1994. Phenotypic and genetic effects of hybridization in Darwin's finches. Evolution 48, 297–316. URL: <https://onlinelibrary.wiley.com/doi/10.1111/j.1558-5646.1994.tb01313.x>, doi:10.1111/J.1558-5646.1994.TB01313.X.

Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M.H.Y., Hansen, N.F., Durand, E.Y., Malaspinas, A.S., Jensen, J.D., Marques-Bonet, T., Alkan, C., Prüfer, K., Meyer, M., Burbano, H.A., Good, J.M., Schultz, R., Aximu-Petri, A., Butthof, A., Höber, B., Höffner, B., Siegemund, M., Weihmann, A., Nusbaum, C., Lander, E.S., Russ, C., Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic, D., Kucan, Ž., Gušic, I., Doronichev, V.B., Golovanova, L.V., Lalueza-Fox, C., De La Rasilla, M., Fortea, J., Rosas, A., Schmitz, R.W., Johnson, P.L., Eichler, E.E., Falush, D., Birney, E., Mullikin, J.C., Slatkin, M., Nielsen, R.,

Kelso, J., Lachmann, M., Reich, D., Pääbo, S., 2010. A draft sequence of the neandertal genome. *Science* 328, 710–722. URL: <https://www.science.org/doi/10.1126/science.1188021>, doi:10.1126/SCIENCE.1188021/SUPPL_FILE/GREEN_SOM.PDF.

Gros-Balthazard, M., Galimberti, M., Kousathanas, A., Newton, C., Ivorra, S., Paradis, L., Vigouroux, Y., Carter, R., Tengberg, M., Battesti, V., Santoni, S., Falquet, L., Pintaud, J.C., Terral, J.F., Wegmann, D., 2017. The Discovery of Wild Date Palms in Oman Reveals a Complex Domestication History Involving Centers in the Middle East and Africa. *Current Biology* 27, 2211–2218.e8. doi:10.1016/J.CUB.2017.06.045.

Harrison, R.G., 1993. Hybrid Zones and the Evolutionary Process. Oxford University Press.

Kozak, K.M., Joron, M., McMillan, W.O., Jiggins, C.D., 2021. Rampant Genome-Wide Admixture across the *Heliconius* Radiation. *Genome Biology and Evolution* 13. URL: <https://academic.oup.com/gbe/article/13/7/evab099/6263859>, doi:10.1093/GBE/EVAB099.

Kronforst, M.R., Hansen, M.E., Crawford, N.G., Gallant, J.R., Zhang, W., Kulathinal, R.J., Kapan, D.D., Mullen, S.P., 2013. Hybridization Reveals the Evolving Genomic Architecture of Speciation. *Cell reports* 5, 666. URL: [/pmc/articles/PMC4388300/](https://pmc/articles/PMC4388300/), doi:10.1016/J.CELREP.2013.09.042.

Kulathinal, R.J., Stevison, L.S., Noor, M.A., 2009. The Genomics of Speciation in *Drosophila*: Diversity, Divergence, and Introgression Estimated Using Low-Coverage Genome Sequencing. *PLOS Genetics* 5, e1000550. URL: <https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000550>, doi:10.1371/JOURNAL.PGEN.1000550.

Lange, K., 2010. Numerical Analysis for Statisticians. *Statistics and Computing*, Springer New York, New York, NY. URL: <https://link.springer.com/10.1007/978-1-4419-5945-4>, doi:10.1007/978-1-4419-5945-4.

Lawson, D.J., Hellenthal, G., Myers, S., Falush, D., 2012. Inference of Population Structure using Dense Haplotype Data. *PLOS Genetics* 8, e1002453. URL: <https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002453>, doi:10.1371/JOURNAL.PGEN.1002453.

Link, V., Kousathanas, A., Veeramah, K., Sell, C., Scheu, A., Wegmann, D., 2017. ATLAS: Analysis Tools for Low-depth and Ancient Samples. *bioRxiv* URL: <https://www.biorxiv.org/content/early/2017/03/24/105346>, doi:10.1101/105346.

Lipson, M., Loh, P.R., Levin, A., Reich, D., Patterson, N., Berger, B., 2013. Efficient Moment-Based Inference of Admixture Parameters and Sources of Gene Flow. *Molecular Biology and Evolution* 30, 1788–1802. URL: <https://academic.oup.com/mbe/article/30/8/1788/1017431>, doi:10.1093/MOLBEV/MST099, arXiv:1212.2555.

Lipson, M., Loh, P.R., Patterson, N., Moorjani, P., Ko, Y.C., Stoneking, M., Berger, B., Reich, D., 2014. Reconstructing Austronesian population history in Island Southeast Asia. *Nature Communications* 5:1 5, 1–7. URL: <https://www.nature.com/articles/ncomms5689>, doi:10.1038/ncomms5689.

Malinsky, M., Challis, R.J., Tyers, A.M., Schiffels, S., Terai, Y., Ngatunga, B.P., Miska, E.A., Durbin, R., Genner, M.J., Turner, G.F., 2015. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. *Science* 350, 1493–1498. URL: <https://www.science.org/doi/10.1126/science.aac9927>, doi:10.1126/SCIENCE.AAC9927/SUPPL_FILE/AAC9927S2.MOV.

Malinsky, M., Matschiner, M., Svardal, H., 2021. Dsuite - Fast D-statistics and related admixture evidence from VCF files. *Molecular Ecology Resources* 21, 584–595. URL: <https://onlinelibrary.wiley.com/doi/full/10.1111/1755-0998.13265>, doi:10.1111/1755-0998.13265.

Mallet, J., 2005. Hybridization as an invasion of the genome. *Trends in Ecology & Evolution* 20, 229–237. doi:10.1016/J.TREE.2005.02.010.

Maples, B.K., Gravel, S., Kenny, E.E., Bustamante, C.D., 2013. RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference. *The American Journal of Human Genetics* 93, 278–288. doi:10.1016/J.AJHG.2013.06.020.

Martin, S.H., Dasmahapatra, K.K., Nadeau, N.J., Salazar, C., Walters, J.R., Simpson, F., Blaxter, M., Manica, A., Mallet, J., Jiggins, C.D., 2013. Genome-wide evidence for speciation with gene flow in *Heliconius* butterflies. *Genome research* 23, 1817–1828. URL: <https://pubmed.ncbi.nlm.nih.gov/24045163/>, doi:10.1101/GR.159426.113.

Martin, S.H., Davey, J.W., Jiggins, C.D., 2015. Evaluating the Use of ABBA–BABA Statistics to Locate Introgressed Loci. *Molecular Biology and Evolution* 32, 244–257. URL: <https://academic.oup.com/mbe/article/32/1/244/2925550>, doi:10.1093/MOLBEV/MSU269.

Murphy, K.P., 2012. Machine learning: a probabilistic perspective. URL: <https://research.google/pubs/pub38136/>.

Nelder, J.A., Mead, R., 1965. A simplex method for function minimization. *The Computer Journal* 7, 308–313. URL: <https://typeset.io/papers/a-simplex-method-for-function-minimization-2jcvs0pxrq>, doi:10.1093/COMJNL/7.4.308.

Nocedal, J., Wright, S., 2006. Numerical Optimization. Springer Science & Business Media. URL: <https://books.google.com/books/about/NumericalOptimization.html?hl=de&id=VbHYoSyelFcC>.

Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T., Reich, D., 2012. Ancient admixture in human history. *Genetics* 192, 1065–1093. URL: <https://academic.oup.com/genetics/article/192/3/1065/5935193>, doi:10.1534/GENETICS.112.145037/-/DC1.

Patterson, N., Richter, D.J., Gnerre, S., Lander, E.S., Reich, D., 2006. Genetic evidence for complex speciation of humans and chimpanzees. *Nature* 2006 441:7097 441, 1103–1108. URL: <https://www.nature.com/articles/nature04789>, doi:10.1038/nature04789.

Pease, J.B., Hahn, M.W., 2015. Detection and Polarization of Introgression in a Five-Taxon Phylogeny. *Systematic Biology* 64, 651–662. URL: <https://academic.oup.com/sysbio/article/64/4/651/1650669>, doi:10.1093/SYSBIO/SYV023.

Pfeifer, B., Kapan, D.D., 2019. Estimates of introgression as a function of pairwise distances. *BMC Bioinformatics* 20, 1–11. URL: <https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2747-z>, doi:10.1186/S12859-019-2747-Z.

Pickrell, J.K., Pritchard, J.K., 2012. Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data. *PLOS Genetics* 8, e1002967. URL: <https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002967>, doi:10.1371/JOURNAL.PGEN.1002967, arXiv:1206.2332.

Plagnol, V., Wall, J.D., 2006. Possible ancestral structure in human populations. *Plos Genetics* 2, e105–e105. URL: <https://europepmc.org/articles/PMC1523253> <https://europepmc.org/article/PMC/1523253>, doi:10.1371/JOURNAL.PGEN.0020105.

Price, A.L., Helgason, A., Palsson, S., Stefansson, H., St. Clair, D., Andreassen, O.A., Reich, D., Kong, A., Stefansson, K., 2009. The Impact of Divergence Time on the Nature of Population Structure: An Example from Iceland. *PLOS Genetics* 5, e1000505. URL: <https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000505>, doi:10.1371/JOURNAL.PGEN.1000505.

Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P.H., De Filippo, C., Li, H., Mallick, S., Dannemann, M., Fu, Q., Kircher, M., Kuhlwilm, M., Lachmann, M., Meyer, M., Ongyerth, M., Siebauer, M., Theunert, C., Tandon, A., Moorjani, P., Pickrell, J., Mullikin, J.C., Vohr, S.H., Green, R.E., Hellmann, I., Johnson, P.L., Blanche, H., Cann, H., Kitzman, J.O., Shendure, J., Eichler, E.E., Lein, E.S., Bakken, T.E., Golovanova, L.V., Doronichev, V.B., Shunkov, M.V., Derevianko, A.P., Viola, B., Slatkin, M., Reich, D., Kelso, J., Pääbo, S., 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. *Nature* 2013 505:7481 505, 43–49. URL: <https://www.nature.com/articles/nature12886>, doi:10.1038/nature12886.

Rabiner, L.R., Juang, B.H., 1986. An Introduction to Hidden Markov Models. *IEEE ASSP Magazine* 3, 4–16. doi:10.1109/MASSP.1986.1165342.

Racimo, F., Marnetto, D., Huerta-Sánchez, E., 2017. Signatures of Archaic Adaptive Introgression in Present-Day Human Populations. *Molecular Biology and Evolution* 34, 296–317. URL: <https://academic.oup.com/mbe/article/34/2/296/2633371>, doi:10.1093/MOLBEV/MSW216.

Racimo, F., Sankararaman, S., Nielsen, R., Huerta-Sánchez, E., 2015. Evidence for archaic adaptive introgression in humans. *Nature Reviews Genetics* 2015 16:6 16, 359–371. URL: <https://www.nature.com/articles/nrg3936> <https://www.nature.com/articles/nrg3936/>, doi:10.1038/nrg3936.

Reich, D., Patterson, N., Campbell, D., Tandon, A., Mazieres, S., Ray, N., Parra, M.V., Rojas, W., Duque, C., Mesa, N., García, L.F., Triana, O., Blair, S., Maestre, A., Dib, J.C., Bravi, C.M., Bailliet, G., Corach, D., Hünemeier, T., Bortolini, M.C., Salzano, F.M., Petzl-Erler, M.L., Acuña-Alonso, V., Aguilar-Salinas, C., Canizales-Quinteros, S., Tusié-Luna, T., Riba, L., Rodríguez-Cruz, M., Lopez-Alarcón, M., Coral-Vazquez, R., Canto-Cetina, T., Silva-Zolezzi, I., Fernandez-Lopez, J.C., Contreras, A.V., Jimenez-Sanchez, G., Gómez-Vázquez, M.J., Molina, J., Carracedo, Á., Salas, A., Gallo, C., Poletti, G., Witonsky, D.B., Alkorta-Aranburu, G., Sukernik, R.I., Osipova, L., Fedorova, S.A., Vasquez, R., Villena, M., Moreau, C., Barrantes, R., Pauls, D., Excoffier, L., Bedoya, G., Rothhammer, F., Dugoujon, J.M., Larrouy, G., Klitz, W., Labuda, D., Kidd, J., Kidd, K., Di Rienzo, A., Freimer, N.B., Price, A.L., Ruiz-Linares, A., 2012. Reconstructing Native American population history. *Nature* 488, 370–374. URL: <https://www.nature.com/articles/nature11258>, doi:10.1038/nature11258.

Reich, D., Thangaraj, K., Patterson, N., Price, A.L., Singh, L., 2009. Reconstructing Indian population history. *Nature* 461, 489–494. URL: <https://www.nature.com/articles/nature08365>, doi:10.1038/nature08365.

Rheindt, F.E., Fujita, M.K., Wilton, P.R., Edwards, S.V., 2014. Introgression and phenotypic assimilation in *Zimmerius* flycatchers (Tyrannidae): population genetic and phylogenetic inferences from genome-wide SNPs. *Systematic biology* 63, 134–152. URL: <https://pubmed.ncbi.nlm.nih.gov/24304652/>, doi:10.1093/SYSBIO/SYT070.

Rieseberg, L.H., Wendel, J.F., 1993. Introgression and Its Consequences in Plants, in: Harrison, R.G. (Ed.), *Hybrid zones and the evolutionary process*. Oxford University Press. chapter 4, pp. 70–109.

Sankararaman, S., 2020. Methods for detecting introgressed archaic sequences. *Current Opinion in Genetics & Development* 62, 85–90. doi:10.1016/J.GDE.2020.05.026.

Sankararaman, S., Mallick, S., Dannemann, M., Prüfer, K., Kelso, J., Pääbo, S., Patterson, N., Reich, D., 2014. The genomic landscape of Neanderthal ancestry in present-day humans. *Nature* 2014 507:7492 507, 354–357. URL: <https://www.nature.com/articles/nature12961>, doi:10.1038/nature12961.

Seguin-Orlando, A., Korneliussen, T.S., Sikora, M., Malaspina, A.S., Manica, A., Moltke, I., Albrechtsen, A., Ko, A., Margaryan, A., Moiseyev, V., Goebel, T., Westaway, M., Lambert, D., Khartanovich, V., Wall, J.D., Nigst, P.R., Foley, R.A., Lahr, M.M., Nielsen, R., Orlando, L., Willerslev, E., 2014. Genomic structure in Europeans dating back at least 36,200 years. *Science* 346, 1113–1118. URL: <https://www.science.org/doi/10.1126/science.aaa0114>, doi:10.1126/SCIENCE.AAA0114/SUPPLFILE/SEGUIN-ORLANDO.SM.PDF.

Skov, L., Hui, R., Shchur, V., Hobolth, A., Scally, A., Schierup, M.H., Durbin, R., 2018. Detecting archaic introgression using an unadmixed outgroup. *PLOS Genetics* 14, e1007641. URL: <https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007641>, doi:10.1371/JOURNAL.PGEN.1007641.

Slatkin, M., 1985a. Gene Flow in Natural Populations. Source: Annual Review of Ecology and Systematics 16, 393–430. URL: <https://www.jstor.org/stable/2097054>.

Slatkin, M., 1985b. Rare alleles indicators of gene flow. Evolution; international journal of organic evolution 39, 53–65. URL: <https://pubmed.ncbi.nlm.nih.gov/28563643/>, doi:10.1111/J.1558-5646.1985.TB04079.X.

Slatkin, M., 1987. Gene Flow and the Geographic Structure of Natural Populations. Science 236, 787–792. URL: <https://www.science.org/doi/10.1126/science.3576198>, doi:10.1126/SCIENCE.3576198.

Smith, J., Kronforst, M.R., 2013. Do *Heliconius* butterfly species exchange mimicry alleles? Biology letters 9. URL: <https://pubmed.ncbi.nlm.nih.gov/23864282/>, doi:10.1098/rsbl.2013.0503.

Sousa, V.C., Fritz, M., Beaumont, M.A., Chikhi, L., 2009. Approximate Bayesian Computation Without Summary Statistics: The Case of Admixture. Genetics 181, 1507–1519. URL: <https://academic.oup.com/genetics/article/181/4/1507/6081151>, doi:10.1534/GENETICS.108.098129.

Steinrücken, M., Spence, J.P., Kamm, J.A., Wieczorek, E., Song, Y.S., 2018. Model-based detection and analysis of introgressed Neanderthal ancestry in modern humans. Molecular Ecology 27, 3873–3888. URL: <https://onlinelibrary.wiley.com/doi/full/10.1111/mec.14565><https://onlinelibrary.wiley.com/doi/abs/10.1111/mec.14565>, doi:10.1111/MEC.14565.

Suarez-Gonzalez, A., Lexer, C., Cronk, Q.C., 2018. Adaptive introgression: a plant perspective. Biology Letters 14. URL: <https://royalsocietypublishing.org/doi/10.1098/rsbl.2017.0688>, doi:10.1098/RSBL.2017.0688.

Tang, H., Coram, M., Wang, P., Zhu, X., Risch, N., 2006. Reconstructing Genetic Ancestry Blocks in Admixed Individuals. The American Journal of Human Genetics 79, 1–12. doi:10.1086/504302.

Tung, J., Barreiro, L.B., 2017. The contribution of admixture to primate evolution. Current Opinion in Genetics & Development 47, 61–68. doi:10.1016/J.GDE.2017.08.010.

Vernot, B., Akey, J.M., 2014. Resurrecting surviving Neandertal lineages from modern human genomes. Science 343, 1017–1021. URL: <https://www.science.org/doi/10.1126/science.1245938>, doi:10.1126/SCIENCE.1245938/SUPPL_FILE/VERN0T.SM.PDF.

Vernot, B., Tucci, S., Kelso, J., Schraiber, J.G., Wolf, A.B., Gittelman, R.M., Dannemann, M., Grote, S., McCoy, R.C., Norton, H., Scheinfeldt, L.B., Merriwether, D.A., Koki, G., Friedlaender, J.S., Wakefield, J., Pääbo, S., Akey, J.M., 2016. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science 352, 235–239. URL: <https://www.science.org/doi/10.1126/science.aad9416>, doi:10.1126/SCIENCE.AAD9416/SUPPL_FILE/VERN0T-SM.PDF.

Wall, J.D., Lohmueller, K.E., Plagnol, V., 2009. Detecting Ancient Admixture and Estimating Demographic Parameters in Multiple Human Populations. *Molecular Biology and Evolution* 26, 1823–1827. URL: <https://academic.oup.com/mbe/article/26/8/1823/980556>, doi:10.1093/MOLBEV/MSP096.

Wegmann, D., Kessner, D.E., Veeramah, K.R., Mathias, R.A., Nicolae, D.L., Yanek, L.R., Sun, Y.V., Torgerson, D.G., Rafaels, N., Mosley, T., Becker, L.C., Ruczinski, I., Beaty, T.H., Kardia, S.L., Meyers, D.A., Barnes, K.C., Becker, D.M., Freimer, N.B., Novembre, J., 2011. Recombination rates in admixed individuals identified by ancestry-based inference. *Nature Genetics* 2011 43:9 43, 847–853. URL: <https://www.nature.com/articles/ng.894>, doi:10.1038/ng.894.

Wu, C.I., 2001. The genic view of the process of speciation. *Journal of Evolutionary Biology* 14, 851–865. URL: <https://onlinelibrary.wiley.com/doi/full/10.1046/j.1420-9101.2001.00335.x> <https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1420-9101.2001.00335.x> <https://onlinelibrary.wiley.com/doi/10.1046/j.1420-9101.2001.00335.X>, doi:10.1046/J.1420-9101.2001.00335.X.

Yamamichi, M., Innan, H., 2012. Estimating the migration rate from genetic variation data. *Heredity* 108, 362–363. doi:10.1038/HDY.2011.83.

Yang, M.A., Malaspina, A.S., Durand, E.Y., Slatkin, M., 2012. Ancient structure in Africa unlikely to explain Neanderthal and non-African genetic similarity. *Molecular biology and evolution* 29, 2987–2995. URL: <https://pubmed.ncbi.nlm.nih.gov/22513287/>, doi:10.1093/MOLBEV/MSS117.

Zhang, X., Witt, K.E., Bañuelos, M.M., Ko, A., Yuan, K., Xu, S., Nielsen, R., Huerta-Sánchez, E., 2021. The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans. *Proceedings of the National Academy of Sciences of the United States of America* 118, e2020803118. URL: <https://www.pnas.org/doi/abs/10.1073/pnas.2020803118>, doi:10.1073/PNAS.2020803118/SUPPL_FILE/PNAS.2020803118.SAPP.PDF.

Figures

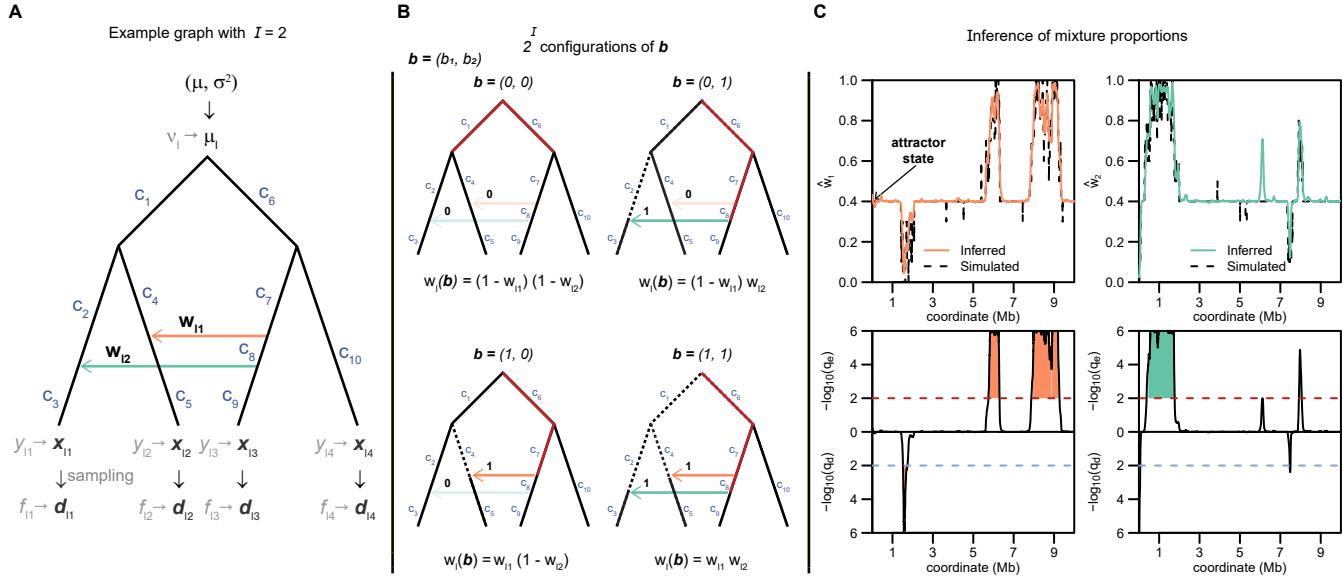


Figure 1: Inference example. A: admixture graph with two migration edges marked in different colors. Parameters of interest are shown on the graph (root prior and branch lengths) as well as the untransformed and transformed ancient, sampling and population allele frequency variables. B: All possible configurations of \mathbf{b} for two migration events when they are open or closed. C: Example of inference under our **TreeSwirl** model for each migration event. The top panel shows the posterior mean mixture proportions \hat{w}_l compared to simulated estimates and the bottom panel shows the identified candidate regions under possible selection, where the false discovery rates (FDR) for excess (q_e) and dearth (q_d) introgression was determined for each locus as explained in the "Inference" section.

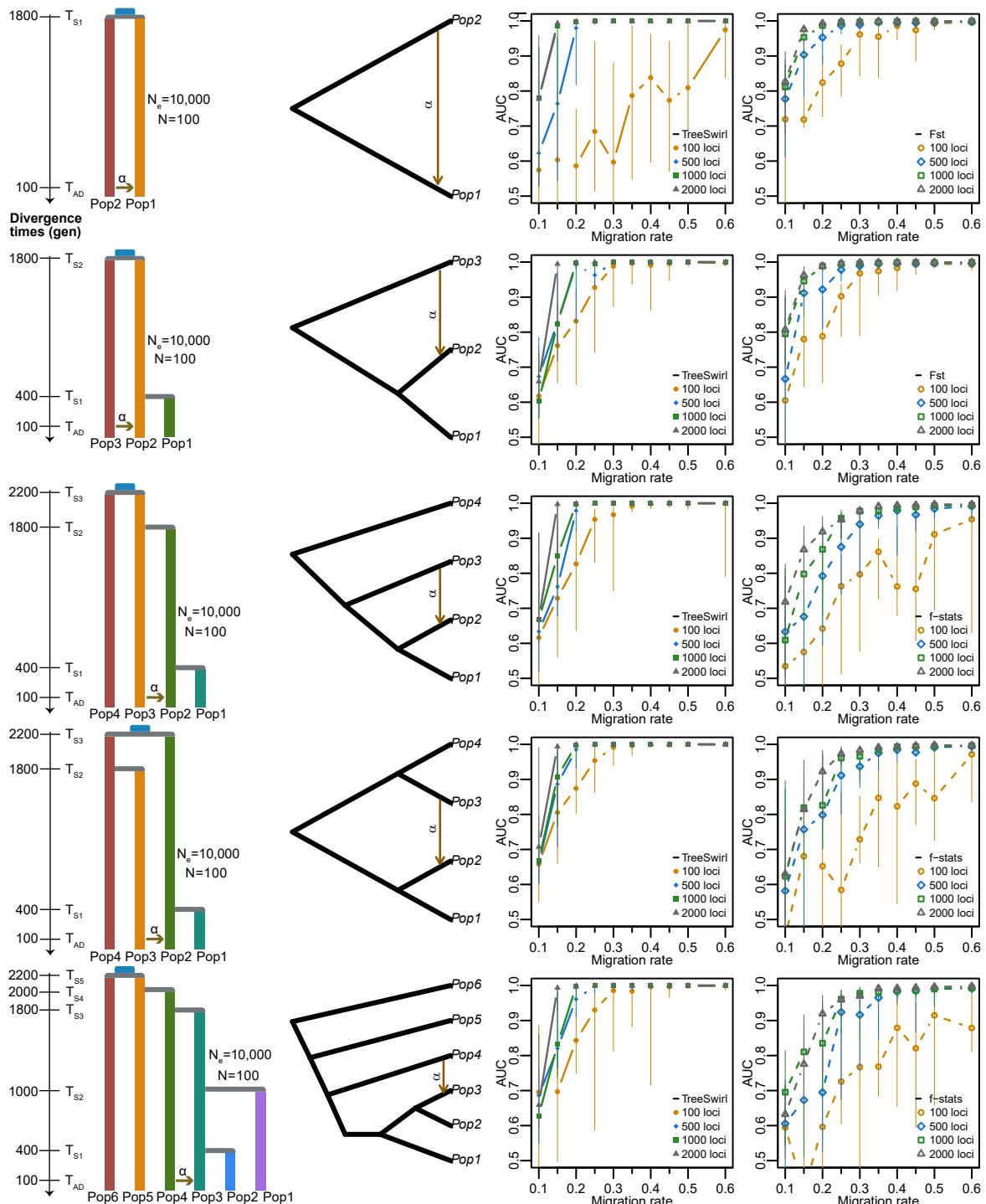


Figure 2: Performance of TreeSwirl and f_4 -stats methods to measure the amount of introgression under different demographic histories with an background migration rate $\alpha = 0.05$. Firs column: simulated demographic histories. Second column: schematic of the topology models. Third and fourth column: AUC measures for TreeSwirl and f_4 - and D -related stats (best summary statistic and window size were chosen). Different symbols are used for simulated blocks with lengths 100 to 2000 loci. Because of the minimum allele frequency filter, the sizes are relative.

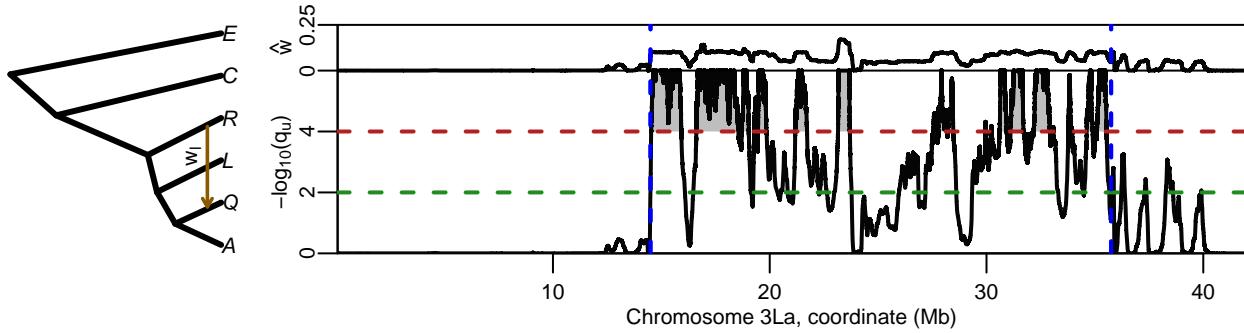


Figure 3: Inference of introgressed loci on the 3La inversion of *Anopheles gambiae*. First column: Topology of *Anopheles gambiae* rooted by *An. epiroticus* (E) and *An. christyi* (C), depicting one introgression event (orange arrow). The graph was taken from Figure 1C, Fontaine et al. (2015). Second column: confirmed signal of introgression on the 3L arm from *An. merus* (R) to *An. quadriannulatus* (Q). **TreeSwirl** was run with the depicted topology using 21 states and 10 Sigmas (Σ , sample size variance matrix). Estimated mean posteriors (\hat{w}) are shown on top. Candidate regions of introgression are shaded in gray at a false discovery rate (FDR) of 0.0001. The introgressed chromosomal inversion is delineated between the vertical dashed blue lines. Horizontal dashed lines indicate the 0.01 and 0.0001 FDR threshold.