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Abstract 32 
 33 
Initiating soon after PGC specification, female germ cells undergo reactivation of the silenced 34 

X chromosome during genome wide reprogramming. However, the kinetics and dynamics of 35 

XCR in vivo have remained poorly understood. To address this here we perform a global 36 

appraisal of XCR using high-dimensional techniques. Using F1 B6 v CAST mouse embryos, 37 

we perform a detailed assessment, applying single-cell RNA-seq and chromatin profiling on 38 

germ cells purified from E10.5 to E16.5. While scRNA-seq profile showed that male and 39 

female germ cells are transcriptionally indistinct at E11.5, they are sexually dimorphic by 40 

E12.5, diverging further through development to E16.5. With allelic resolution, we show that 41 

the reactivating X chromosome is only partly active at E10.5, then reactivates gradually and 42 

reaches near parity in output to the constitutively active X chromosome at ~E16.5 when 43 

developing oogonia are meiosis prophase I. Crucially, we show that sexually dimorphic 44 

dosage compensation patterns observed in germ cells, occur in tandem with an increase in 45 

the allelic proportion from the reactivating X chromosome. While Xist is extinguished from 46 

E10.5, the epigenetic memory of earlier XCI in female cells persists much longer, likely from 47 

self-sustained PRC2 complex (Ezh2 / Eed / Suz12) function. The reactivating X chromosome 48 

is enriched in the epigenetic silencing mark H3K27me3 at E13.5, which is removed by E16.5 49 

permitting gene expression. Our findings link XCR, along with functional regulation of PRC2 50 

in promoting female meiosis. 51 

  52 
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Introduction 53 

 54 

The accurate transmission of genomic information over generations involves the complex 55 

regulation of chromatin in germ cells. This process, germ cell genome wide reprogramming 56 

(GWR), initiates soon after primordial germ cell (PGC) specification very early in mammalian 57 

embryonic development. In the mouse, PGCs arise from the proximal epiblast at ~E6.25 - 58 

6.75. By around E7.25, around 30-40 PGCs are present in the developing embryo, and 59 

continue to divide mitotically increasing in numbers. From E8.5 – 9.5 early PGCs migrate 60 

along the hindgut endoderm and reach the developing gonadal primordia by ~E10.5. At 61 

approximately E11.5 gonadal sex determination occurs, where expression of the Y-62 

chromosome encoded Sry transcription factor in the gonadal pre-Sertoli cells initiates male 63 

gonadal fate and formation of a testis (Koopman et al., 1990). Conversely in females, the 64 

absence of the Y chromosome instigates the formation of an ovary. Thereafter gonadal PGCs 65 

assume sex-specific developmental fates. 66 

 67 

GWR initiates soon after PGC specification at E6.75 and is sustained cell autonomously. It 68 

involves re-expression of the pluripotency network of genes (including Pou5f1 (aka. Oct4), 69 

Sox2, Nanog, Prdm14), and repression of the somatic differentiation program, global DNA 70 

demethylation and removal of parental imprints (Tang et al., 2016). PGC further undergo 71 

extensive chromatin changes and remodelling of histone marks. Specifically female PGCs 72 

start to reverse X chromosome inactivation (XCI) established earlier at E5.5, i.e. X-73 

chromosome reactivation (XCR).  74 

 75 

The timing and dynamics of germ cell XCR are not fully understood. Early studies surmised 76 

that reactivation of X-linked genes in PGCs mostly occurred after they reached the genital 77 

ridge (~E11.5) (de Napoles et al., 2007; Johnston, 1981; Kratzer and Chapman, 1981; Monk 78 

and McLaren, 1981; Tam et al., 1994). Landmark experiments performed in single germ cells 79 

obtained from embryos, using reverse transcription followed by polymerase chain reactivation 80 

(RT-PCR), Xist RNA-FISH and immunofluorescence microscopy, had indicated that gene 81 

expression from the reactivating X-chromosome initiates in nascent PGCs (Sugimoto and Abe, 82 

2007). While limited by a small number of X-linked genes and cells being assayed, they 83 

showed that the process of XCR in PGCs commences earlier, during the pre-gonadal phase 84 

of development, progresses gradually and was incomplete at E14.5. Similar results were 85 

reported in recently in PGC-like cells (PGLCS) derived in-vitro from mouse embryonic stem 86 

(ES) cells, highlighting that incorrect rapid XCR kinetics had resulted in limited meiotic 87 

potential (Severino et al., 2022). 88 

 89 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.06.565813doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.06.565813
http://creativecommons.org/licenses/by-nc-nd/4.0/


XCI in the embryo is enacted by expression of the long non-coding RNA Xist (Kay et al., 1993; 90 

Penny et al., 1996). Xist directly represses transcription by evicting the RNA polymerase 91 

transcription machinery, while also initiating a cascade of epigenetic processes including the  92 

loss of H3K4me3, recruitment of histone deacetylases to remove activating histone marks 93 

(e.g. H3K27ac), and the Polycomb repressor complex PRC1 / 2 complexes which deposit 94 

silencing histone marks H2A119ubq and H3K27me3 respectively (reviewed in Loda et al. 95 

(2022)). Later in XCI, CpG-islands (CGI) of genes subject to XCI are methylated, and the 96 

inactivated X (Xi) is compacted forming heterochromatin. Expression of Xist RNA is 97 

downregulated in female PGCs from around E7.75 - E9.5, and is extinguished by ~E11.5 (de 98 

Napoles et al., 2007; Sangrithi et al., 2017; Sugimoto and Abe, 2007). While histone marks 99 

are globally reorganized during PGC development, the extent to which PRC 1 / 2 related 100 

repressive marks deposited as a specific consequence of XCI in the epiblast are remodelled 101 

remains poorly understood. For instance global changes to H3K27me3 levels are known to 102 

occur as part of PGC development, and these can be challenging to disentangle from more 103 

specific regulation of the mark relating to XCI (Lowe et al., 2022; Saitou et al., 2012).  104 

 105 

It has been shown previously that sexually dimorphic dosage compensation states arise 106 

during germ cell GWR, which is dependent on the number of X-chromosomes present 107 

(Sangrithi et al., 2017). During GWR, females (XX) show X chromosome to autosome (X:A) 108 

expression ratios greater than 1, while this was below 1 in males (XY). Strikingly the elevated 109 

X:A ratios in oogonia persists from E11.5 until entry into meiosis. Hence elevated X:A ratios in 110 

females may be inherently linked to the sexually dimorphic developmental fates of germ cells, 111 

including timely meiotic-entry or / and the re-establishment of transcription on the reactivating 112 

X (Sangrithi and Turner, 2018). Indeed dosage differences in X-linked genes could promote 113 

germ cell sexual dimorphism and meiosis entry and / or progression itself in females, via the 114 

involvement of X-linked genes in these processes and possibly XCR itself.  115 

 116 

In this article we perform a global analysis of XCR dynamics of XCR using single-cell RNA 117 

sequencing on developing mouse germ cells in vivo during the course of GWR. We leverage 118 

on a genetically tractable murine model that enables clear delineation of the constitutively 119 

active and reactivating X chromosomes for females. Using this model we describe a precise 120 

allele-specific map of XCR, that charts the overall kinetics of this classic epigenetic process, 121 

but also the dynamics of individual X-linked genes. This study demonstrates that XCR in 122 

female germ cells initiates before E10.5 and accelerates while a sexually dimorphic 123 

transcriptome is established. We demonstrate that transcription from the reactivating X 124 

chromosome reaches close to parity with the constitutively active X chromosome only at 125 

~E16.5 when developing oogonia are in zygonema / early pachynema. Xist-dependent 126 
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silencing that is present in early PGCs, then gives way to persisting repression of X-linked 127 

genes due to histone 3 lysine-27 trimethylation (H3K27me3) later in gonadal germ cells where 128 

direct Xist activity has ceased. H3K27me3 marks remain at the transcription-start sites (TSSs) 129 

and gene-bodies of repressed X genes on the reactivating X chromosome at meiotic entry 130 

(pre-Leptonema) in E13.5 females germ cells, with germ line genes expressed thereafter 131 

showing a dynamic reduction in H3K27me3 at E16.5. We posit XCR as a mechanism of 132 

meiotic upregulation in females. 133 

 134 

Results 135 

Transcriptional divergence of mouse germ cells occurs after E12.5 136 

We developed a model to examine germline XCR, by combining a classical F1 genetics and 137 

single-cell RNA-sequencing (scRNA-seq). Leveraging on an interspecific cross of Mus 138 

castaneus (CAST) males with reference strain C57B6J (B6) female mice, we performed 139 

single-cell RNA-seq on F1 female (XCASTXB6) and male (XB6Y) embryonic germ cells from E10.5 140 

to E16.5 stages. The CAST strain is highly polymorphic in relation to the reference C57B6NJ 141 

strain, on average containing up to 1 single-nucleotide polymorphism (SNP) for every 150bp 142 

in the genome (Keane et al., 2011). We further introduced an Xist-null (Xist∆) allele into our 143 

experimental strategy to skew X-inactivation toward the CAST X chromosome (Marahrens et 144 

al., 1998). By crossing Xist+/∆
 C57B6J (B6) females (carrying Oct4-EGFP transgene) and 145 

CAST males, we derived F1 female (XCASTXB6-Xist∆) and male (XB6Y) embryos, from which 146 

embryonic gonads were obtained daily from E10.5 to E16.5 (Yeom et al., 1996; Yoshimizu et 147 

al., 1999). Single EGFP positive germ cells were sorted using fluorescence-activated cell 148 

sorting (FACS) and processed to generate high-quality scRNA-seq libraries using the SMART-149 

seq2 protocol (Picelli et al., 2014). To distinguish allele-specific expression in F1 embryos, 150 

reads were first aligned to a reference genome with SNPs N-masked to minimize bias arising 151 

during alignment (Degner et al., 2009). Reads were then further assigned specifically to each 152 

of the parental (B6 and CAST) genomes respectively to obtain allele-specific counts (Figure 153 

1A; please refer to Methods for details) (Krueger and Andrews, 2016). Where possible we 154 

sought to include at least 20 germ cells from at least two individual embryos at each time point 155 

and sex. Following stringent quality control checks, we retain 681 single-cell transcriptomes 156 

for further analysis (Supplementary Figure 1A). These include 333 male and 348 female 157 

cells (Supplementary Figure 1B).  158 

 159 

First, we performed dimensionality reduction on the dataset. The scRNA-seq profiles reveals 160 

that male and female germ cells appear transcriptionally indistinct prior to E12.5 (Figure 1B). 161 

Following gonadal sex determination at E11.5, sexually dimorphic transcriptomes are 162 

apparent by E12.5, which diverge further with continued development to E16.5. We sexed our 163 
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samples based on the expression of Y-chromosome encoded genes in the data which is 164 

typically only detected males, and concordant with PCR based genotyping that was performed 165 

at the time of sample collection (Supplementary Figure 1C). We utilized partition graph 166 

abstraction (PAGA) analysis to visualize connectivity and relatedness between cell groups in 167 

an unbiased manner. The PAGA graph emphasizes the divergence of the male and female 168 

germ line after E11.5, further lending weight that our data reliably captures the establishment 169 

of sexually dimorphic transcriptomes in germ cells (Figure 1C). 170 

 171 

We next performed rigorous differential expression (DE) testing to examine transcriptional 172 

changes arising during the establishment of germ cell transcriptional identity (Figure 1D). 173 

Expression of the Tet enzymes (Tet1 and Tet2), that regulate DNA demethylation was 174 

observed in both male and female PGCs at E11.5, consistent with germ cells reaching a 175 

methylation base state by E13.5 (Hackett et al., 2013; Popp et al., 2010; Seisenberger et al., 176 

2012). Male germ cells then begin to express the Lefty genes (Lefty1 and Lefty2), Pitx2 and 177 

the transcription factor Etv1 that is important in prospermatogonial development. In females, 178 

we observe Phlda2, along with transcription factors and Gata2. Consistent with the pre-179 

leptonema stage, female germ cells subsequently begin to upregulate meiotic genes at E13.5, 180 

including Rec8, Stra8, Prdm9, Spo11 and genes with roles in meiosis I prophase thereafter 181 

(Figure 1E and Supplementary Figure 1D). Together these culminate in the establishment 182 

of pro-spermatogonia and oogonia respectively by E16.5, confirmed with gene ontology (GO) 183 

enrichment scoring (Figure 1F). We next turned our focus toward understanding germ cell 184 

XCR in females. 185 

 186 

Global X chromosome reactivation dynamics  187 

In our experimental model, the Xist∆ allele skews XCI invariably toward the CAST X 188 

chromosome. The CAST X-chromosome thus is always inactivated in all cells in the epiblast, 189 

and hence will also be the X chromosome that undergoes XCR in germ cells. Hence 190 

expression specific to the CAST X-chromosome in our F1  germ cells can be used to accurately 191 

chart XCR. We computed allele-level counts and calculated an allelic deviation score (‘d 192 

score’), as the ratio of B6 reads to the total number of informative allelic reads (i.e. d = CAST 193 

/ (B6  + CAST) - 0.5) for each gene (Xu et al., 2017) (see Methods). A negative d-score 194 

corresponds to a bias toward expression from B6 alleles, while positive values corresponding 195 

to a bias toward CAST alleles, with d-scores ~0 being indicative of equal allelic expression. 196 

Instances where the d-scores are less than -0.4 or greater than 0.4 represent monoallelic 197 

expression bias. To test the assumptions of our experimental model, we first turned to 198 

inspecting allelic balance in E11.5 female gonadal somatic cells obtained as a control. 199 

Consistent with the CAST X chromosome being inactivated invariably in somatic cells, we  200 
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Figure 1. Transcriptome profiling of mouse germ cells by scRNA-seq 202 

A. Illustration of experimental design. 203 

B. tSNE analysis of a total of 681 germ cell scRNA-seq data. Cells are coloured according to 204 

sex and developmental stages. The number of cells at each stage and sex are summarised 205 

in the Supplementary Figure 1. 206 

C. Partition-based graph abstraction (PAGA) plot representing a graph of inferred connectivity 207 

among all cell clusters. Line thickness indicates the strength of cluster connections.  208 

D. Heatmap of top 10 DE genes at different embryonic stages in female and male germ cells. 209 

E. A tracks-based bar-plot depicting the expression levels of key genes involved in PGCs, 210 

DNA methylation regulation, prospermatogonial / oogonial development, and meiosis in 211 

females and males. 212 

F. Top GO:BP (Gene Ontology for Biological Process) terms with p-values for different 213 

embryonic stage germ cells. 214 
  215 
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substantiate a strong expression bias toward alleles on the B6 X chromosome (median dChrX 216 

= -0.42) in E11.5 female somatic cells. (Supplementary Figure 2A). This affirms that our 217 

approach is efficient in identifying allelic expression deviation expected in XCI. 218 

 219 

Next, we turned to studying allelic expression globally in female germ cells. We computed 220 

global d-scores for each chromosome in all cells in our dataset. In more detail, we see that 221 

male germ cells have d-scores of ~-0.5 throughout, consistent with these cells only having a 222 

B6 X chromosome. In females, we observe that E10.5 female PGCs had a d-score of -0.2 for 223 

expression from the X chromosome, with a minimum of ~-0.4 seen in some cells (Figure 2A). 224 

d-scores then rise in female germ cells thereafter, remaining below 0 until E15.5, and only 225 

reaching close to parity (i.e. ~0) at E16.5. Overall the allelic bias observed indicates that a 226 

number of genes on the CAST X chromosome are clearly silent at E10.5 in female PGCs, 227 

which is likely due to the effects of earlier XCI. No allelic expression bias is detected on any 228 

of the autosomes at all stages we examined (Supplementary Figure 2B). To corroborate 229 

these observations further, we chart the expression of Xist RNA in our dataset. In keeping with 230 

the predictions of XCI, Xist is strongly expressed in E11.5 female somatic cells (Figure 2B). 231 

In comparison Xist only expresses at very low levels in E10.5 female PGCs and is 232 

downregulated after this stage, consistent with previous studies using RNA FISH (de Napoles 233 

et al., 2007; Sangrithi et al., 2017; Sugimoto and Abe, 2007).  234 

 235 

Sexually dimorphic dosage compensation states emerge alongside the reactivation kinetics 236 

of the X chromosome 237 

We next turned to examining dosage compensation patterns in germ cells. In order to chart 238 

global transcriptional output from the X chromosome in relation to the autosomes, we 239 

computed X chromosome to autosome expression ratios (X:A) in each cell and plotted these 240 

(Figure 2C). We observed that male germ cells consistently have a X:A < 1 over the course 241 

of their development. In contrast, female germ cells show increasing X:A ratios, which range 242 

above 1 from E13.5 to E16.5. These observations are consistent with previous studies that 243 

male germ cells have low X:A ratios (X:A < 1), while females showed an excess of X-gene 244 

dosage (X:A > 1) as they enter meiosis (Sangrithi et al., 2017). While X:A ratios in males and 245 

females are similar at E10.5, an increase is evident in females thereafter, occurring 246 

contemporaneously with XCR as shown earlier (see Figure 2A). At E10.5, females have an 247 

X:A ratio of 0.82 and males 0.77. X:A ratios show maximal differences between females and 248 

males from E14.5 to E16.5 (median values of 1.05 versus 0.66 respectively at E16.5). 249 

 250 

Expression dynamics at individual X gene loci reveal XCR mainly occurs after E12.5 251 

Following stringent filtering we chart the d-score for 281 representative X-linked genes subject 252 
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 253 
 254 

 255 

 256 

 257 

 258 

 259 

Figure 2. Sexually dimorphic kinetics of X chromosome reactivation and X dosage 260 

compensation 261 

A. Boxplot of mean d-scores showing allelic balance of chromosome X and 9 during germ cell 262 

development in female and male. Each point represents a single cell.  263 

B. The dot plot representing Xist expression levels in female somatic cells (highted in dashed 264 

red square) and in female germ cells at different stages. 265 

C. Violin plot representing the ratio of mean read counts of genes on chromosome X (dark 266 

red) and 9 (blue) to the mean read counts of all genes across all autosomes for all germ cells 267 

at different embryonic stages between female and male. 268 
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to XCR, expressing biallelically during female germ cell development (see Methods). These 269 

are depicted as heatmaps, shown in relation to development age and in context of their 270 

genomic location (Figure 3Ai and ii). Similarly we also detail their overall expression 271 

alongside (Figure 3Bi and ii). Together these data depict both allelic balance and expression 272 

dynamics for these genes expressing in the female germline from embryonic ages E10.5 to 273 

E16.5. From these we surmise that around ~32% of assayed genes (91/281) express from 274 

both alleles (i.e. d > -0.4) at E10.5 (Figure 3C). This increases to ~90% of genes expressing 275 

biallelically at E16.5 (250/281). Crucially we discover that a significant portion of XCR (~40%) 276 

occurs from E12.5 to E16.5, which is much later than previously appreciated (Figure 3C). A 277 

number of genes only express later during this time course, with many notably peaking in 278 

expression at E16.5.  279 

 280 

Further analysis reveals gene expression occurring over the entire length of the X 281 

chromosome during germline XCR, even at E10.5. As we observe very low levels of Xist 282 

expression in E10.5 female PGCs, we examined if XCR could be linked to Xist entry sites, by 283 

surveying Xist RAP data (Supplementary Figure 3) (Engreitz et al., 2013). Further to this 284 

appraisal we find that neither proximity to Xist entry sites nor to the X-inactivation centre (XIC) 285 

itself appear to have a significant impact on allelic expression from the reactivating X 286 

chromosome in the female germline. This analysis indicates that XCR occurs in a locus-287 

specific manner.  288 

 289 

In summary, three important conclusions emerge in this regard. First, we show that the 290 

increase in X:A ratios seen during female germ cell development occurs contemporaneously 291 

with increasing d-scores (i.e. to 0), demonstrating that the increase in expression from the X 292 

chromosome is specifically due to biallelic gene expression. Second, allelic balance of the 293 

reactivating CAST X chromosome and the constitutively active B6 X reach close to parity at 294 

E16.5 when developing oogonia are already in prophase I of meiosis, suggesting that XCR 295 

may have an impact in meiosis. Thirdly the protracted reactivation dynamics of the silenced 296 

CAST X chromosome, beyond Xist activity, specifically points toward epigenetic memory from 297 

XCI persisting on this chromosome. In all, these results show that germline XCR begins in 298 

early PGCs, then proceeds gradually, with most of germline XCR occurring after E11.5 and 299 

during female meiosis. While Xist RNA expression is notably downregulated after E10.5 in 300 

female PGCs, we hypothesise that silencing histone marks deposited as an effect of Xist 301 

related PRC2 / 1 activity until this developmental age, persists on PGC chromatin (e.g. 302 

H3K27me3 and / or H2A119Ubq deposited consequent to XCI in early PGCs).  303 

 304 

 305 
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Figure 3. The change in d-scores and expression levels of X chromosome linked genes 307 

during female germline development from E10.5 to E16.5. 308 

A. The heatmap plot of d-score showing the allelic balance of 281 X-linked genes; genes are 309 

ordered based on (i) reactivation timing according to gestational age and (ii) the genomic 310 

location. Five classical XCI ‘escape’ genes (Ddx3x, Eif2s3x, Kdm5c, Kdm6a and Zfx) are 311 

highlighted in a red square. 312 

B. The heatmap depicting the expression of 281 X-linked genes; genes are ordered based on 313 

(i) reactivation timing according to gestational age and (ii) the genomic location. 314 

C. The percentage of X-linked genes expressing biallelically (d > -0.4) at each stage. 315 

  316 
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H3K27me3 is enriched on the reactivating X chromosome 317 

To investigate this possibility in greater detail, we next turn to examine how PRC2 dependent 318 

H3K27me3 is allelically regulated during germline development. We first optimized low-input 319 

cleavage under target and release using nuclease (CUT&RUN) for H3K27me3 and after 320 

validating antibody specificity and reproducibility (Supplementary Figure 4A and B), perform 321 

low-input CUT&RUN for H3K27me3 on FACS purified germ cell fractions obtained from E13.5 322 

and E16.5 F1 mouse ovaries (Skene and Henikoff, 2017).  323 

 324 

H3K27me3 enrichment is seen broadly across the genome, and detected over promoters and 325 

gene bodies in female germ cells (Figure 4A, Supplementary Figure 4C). Specifically we 326 

see a strong enrichment signal over the Hoxa gene cluster, which is typically observed in germ 327 

cells associated with repression of somatic program (Zheng et al., 2016) (Supplementary 328 

Figure 4D). From this analysis, we notice a higher enrichment signal for H3K27me3 on the X 329 

chromosomes versus the autosomes, more specifically on the CAST X chromosome (which 330 

is subject to subject to XCI) compared to the B6 X, clearly more evident at E13.5 versus E16.5 331 

(Figure 4A). To confirm differences in H3K27me3 enrichment between the CAST and B6 332 

hemigenomes at each age, we compute a log2-ratio of CAST over B6 specific signals in E13.5 333 

and E16.5 germ cells (Supplementary Figure 4E). In this manner, we demonstrate a greater 334 

enrichment of this mark on the CAST X chromosome compared to the B6 X at E13.5, which 335 

we interpret as being due to epigenetic memory of earlier XCI. Crucially, we discover a 336 

reduction in the H3K27me3 overall signal in E16.5 oogonia compared to E13.5 oogonia 337 

(Figure 4A). 338 

 339 

Since the reduction in H3K27me3 levels occurs over the same time frame as the increase in 340 

X chromosome d-score and X:A ratios, we hypothesise that gene activation on the X occurs 341 

following removal of this silencing mark. We took two steps to test this directly: 1) we first 342 

performed DE analysis to identify genes activated between E13.5 to E16.5 in our RNA-seq 343 

dataset (TableS1; see Methods), and 2) we computed the H3K27me3 signal from CUT&RUN 344 

at these DE gene loci in oogonia at E13.5 versus E16.5. In this manner first we identify 76 DE 345 

genes on the X chromosome, that increase in expression from E13.5 to E16.5; and 70 DE 346 

genes on chromosome 9 were used as autosomal controls. Now returning to CUT&RUN, we 347 

examine H3K27me3 levels specifically at these DE genes. Importantly a reduction of 348 

H3K27me3 levels is evident at these genes, with the signal change being most pronounced 349 

at gene promoters, transcription start sites (TSS) and gene bodies (Figure 4B). A number of 350 

observations come to light. We detail this reduction at specific DE X-linked gene loci - including 351 

Nxf2, Ccnb3, Tktl1, Taf7l and Taf9b, which have recognized functions in the germ cells and 352 
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associated with fertility phenotypes (Chotiner et al., 2022; Gura et al., 2020; Pan et al., 2009; 353 

Rolland et al., 2011; Wang et al., 2001) (Figure 4C).  354 

 355 
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Figure 4. H3K27me3 enrichment remains on the reactivating X chromosome during 359 

oogonia development. 360 

A. H3K27me3 enrichment signals for all genes on chromosome X and 9 (total), and shown for 361 

alleles on the B6 and CAST hemigenomes at E13.5 and E16.5 plotted as heatmaps, with 362 

associated summary profiles plotted above. Regions 2kb upstream of transcription start sites 363 

(TSSs), gene body and transcription end sites (TESs) are shown. Chromosome X signal is 364 

shown coloured orange, and chromosome 9 in blue. 365 

B. Genome tracks for H3K27me3 enrichment at E13.5 and E16.5 oogonia for representative 366 

genes.  367 

C. H3K27me3 enrichment signal at DE genes between E13.5 and E16.5.  368 
  369 
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Overall, we evidence a greater reduction in signal between E13.5 and E16.5 occurring on the 370 

X chromosome versus chromosome 9 (Supplementary Figure 4F). Looking specifically at 371 

the B6 and CAST hemigenomes, we demonstrate a greater reduction in H3K27me3 levels on 372 

the reactivating CAST X chromosome versus the B6 X chromosome (or any autosome) at 373 

these gene loci (Figure 4B & Supplementary Figure 4E,F). These results confirm that 374 

expression of these DE genes is specifically associated with the loss of H3K27me3 at 375 

promoters, TSS and gene bodies. 376 

 377 

XCR is dependent on Ezh2 activity 378 

Previous studies have shown a vital role for H3K27me3 in regulating sexually dimorphic 379 

germline development, regulated by component factors of the PRC2 complex, Ezh2 and Eed 380 

(Huang et al., 2021; Lowe et al., 2022). In order to further assess the role of H3K27me3 in this 381 

context, we sought to examine data from Ezh2-mutant germ cells (TableS2) (Huang et al., 382 

2021). From our analysis we notice that a sizeable proportion of genes that are de-repressed 383 

in E13.5 Ezh2-null oogonia reside on the X chromosome (Huang et al., 2021). Distinctly we 384 

see that ~12.5% of all Ezh2-dependent DE genes are X-linked (121 genes with log2folchange 385 

> 1; see Methods), indicating that Ezh2 activity significantly regulates gene expression on the 386 

X chromosome (Figure 5A, Supplementary Figure 5B and D). Again ~13.2% of DE genes 387 

derepressed in E13.5 Ezh2KO prospermatogonia were X-linked (48 genes; Supplementary 388 

Figure 5C and D). These data indicate that Ezh2 dependent H3K27me3 levels on germ cell 389 

chromatin regulates the repression of germline genes, orchestrated in a sexually dimorphic 390 

manner. We therefore hypothesise that at least some X chromosome genes subject to XCR 391 

later (i.e. genes seen to express after E13.5 in our RNA-seq dataset) are directly regulated by 392 

H3K27me3 levels. To verify, we first examined the expression of the 121 de-repressed X-393 

linked genes identified in Ezh2-null female oogonia, in our scRNA-seq dataset. This analysis 394 

indeed confirms these genes are mostly expressed physiologically after E13.5, i.e. from E14.5 395 

to E16.5 (Figure 5B). Thus, taken in the context of XCR, these data definitively show that 396 

Ezh2-dependent H3K27me3 deposition is a functional requirement for the repression of these 397 

X-linked genes in E13.5 oogonia, and this silencing mark is then likely reversed for their timely 398 

expression observed thereafter. To test this we next turned to directly examine H3K27me3 399 

levels at Ezh2 regulated genes in oogonia. In keeping with XCR, we observe a greater 400 

reduction in H3K27me3 signal at Ezh2-dependent genes on the CAST X chromosome 401 

identified in our earlier analysis (Figure 5C). In all, our data provide strong evidence that XCR 402 

involves the removal of H3K27me3 at specific X-linked gene promoters, TSS and gene bodies 403 

by meiosis prophase 1 at E16.5. 404 

 405 

 406 
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 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

Figure 5. Role of Ezh2 in X reactivation during oogonia development. 418 

(A) The box plot representing the percentages of Ezh2-dependent de-repressed genes on 419 

each chromosome in the E13.5 oogonia. Chromosome X is shown coloured orange, and gray 420 

dotted line indicates the number of expected genes per chromosome if distributed randomly  421 

(~6-8 genes; cf. ~5-6%). 422 

(B) Heatmap showing the expression levels of 121 Ezh2-related de-repressed X-linked 423 

genes in our scRNA-seq dataset. 424 

(C) H3K27me3 enrichment signal for Ezh2-dependent genes in our CUT&RUN data, 425 

comparing the signal in B6, CAST, and both alleles between E13.5 and E16.5.  426 
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Discussion 427 

 428 

In this article we present a highly resolved analysis of X chromosome reactivation kinetics and 429 

dynamics using single-cell SMART-Seq2 RNA seq and low-input CUT&RUN at matched time-430 

points. Here our data provides important new insights into gene expression regulation, X 431 

chromosome dosage compensation and chromatin dynamics during XCR. While conventional 432 

thinking has been that XCR begins early and was mostly complete by the early gonadal phase 433 

of germ cells, from our extended work we show that XCR is more protracted than previously 434 

appreciated, extends into meiosis, and evidence implicating PRC2 complex (Ezh2 / Eed / 435 

Suz12) function regulating gene repression on the reactivating X chromosome. 436 

 437 

The protracted kinetics of re-establishing transcription on the reactivating X chromosome is 438 

striking. We delineate how XCR progresses, and matches with non-canonical X:A dosage 439 

compensation patterns observed in the germline. During GWR in female germ cells, X:A ratios 440 

exceed 1 from gestational age E13.5. From allele-specific analysis we show that higher X:A 441 

ratios in female germ cells are coincident with biallelic gene expression, indicating that X 442 

chromosome output arises from the reactivating (CAST) X chromosome combined with 443 

expression from the constitutively active (B6) X chromosome. Our data further highlights a 444 

time-window at which near complete reactivation of the X occurs at E16.5 when female germ 445 

cells are known to be in late zygotene and early pachytene stage of meiosis.  446 

 447 

One of the important findings in this study is the identification of a functional role for H3K27me3 448 

levels in regulating gene expression from the reactivating X chromosome in female germ cells 449 

during this developmental time-window. H3K27me3 enrichment on the reactivating X 450 

chromosome and its extended presence beyond the expression of Xist RNA itself is interesting 451 

- notably while Xist is downregulated in female germ cells from E10.5, H3K27me3 deposited 452 

as a consequence of XCI earlier during PGC development persists, implicating epigenetic 453 

memory. This is most likely due to the “self-contained” activity of the PRC2 complex (Ezh2 / 454 

Eed / Suz12), extending beyond direct Xist activity (Yu et al., 2019). There is a precedence 455 

for the self-sustaining silencing activity of the PRC complexes on the inactive X (Xi), which 456 

has also been observed in trophoblast stem cells (Mak et al., 2002; Masui et al., 2023). Here 457 

we conclude that XCR does not complete with Xist downregulation, and gene silencing on the 458 

reactivating X chromosome persists in the absence of Xist, due the presence of this repressive 459 

histone mark. Self-contained PRC2 activity ensures stable maintenance of H3K27me3 460 

mediated gene silencing, mitigating against cell-cycle dependent dilution of this mark. Female 461 

germ cells cycle mitotically until ~E13.5 at which point they commit to meiosis. In the absence 462 

of cell-cycle dependent dilutional effects beyond this stage in the female germ line, the loss of 463 
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H3K27me3 signal observed thus points to the existence of active processes to reverse 464 

H3K27me3 silencing at these loci. In this regard, future studies could be aimed at identifying 465 

and evaluating such mechanisms involved in reversing H3K27me3 mediated gene silencing 466 

in the germline.  467 

 468 

The presence of H3K27me3 on the reactivating X chromosome crucially also accounts for the 469 

dynamic X:A dosage compensation pattern seen in XX germ cells. The relative overexpression 470 

of X-genes seen from E13.5 in females, observed by X:A ratios ranging above 1, could be 471 

attenuated by this silencing mark (cf. related observations made in the male by Lowe et al. 472 

(2022)).  473 

 474 

It is unexpected that the reactivating X chromosome remains enriched for H3K27me3 over the 475 

constitutively active X in female germ cells in the context of meiosis. PRC2 is known to act as 476 

a factor to maintain repression of distinct gene types: e.g. developmentally regulated genes, 477 

protein-coding genes that are repressed (including germ line genes) and imprinted genes. 478 

Thus, the control of PRC2 activity may be developmentally regulated to promote meiosis via 479 

the timely expression of germline genes in a sex-specific manner. Three further points also 480 

come up in this regard. First the asymmetric distribution of H3K27me3 on the X chromosome 481 

at the point of meiotic entry at E13.5 merits further investigation (i.e. in chromosome pairing, 482 

synapsis and segregation). Second the regulation of heterochromatin more generally during 483 

female meiosis would also be of interest as it highlights possible roles for other silencing marks 484 

on the inactive X (e.g. H2A119Ubq and H3K9me3). And third it of importance to understand 485 

the mechanisms involved in the reversal of silencing on the X, to achieve expression. 486 

Furthermore, from an evolutionary perspective it would be of interest to compare XCR in other 487 

mammals such as humans to understand conservation and / or divergence in these 488 

fundamental epigenetic processes. 489 

 490 

Despite the well-known complex dynamics of XCR, notably important differences are apparent 491 

with our in vivo appraisal of XCR and previous studies using in vitro derived PGC models of 492 

XCR, where incomplete XCI had occurred in PGCLCs further limiting meiotic potential 493 

(Severino et al., 2022). This was confirmed in a recent manuscript using a random XCI model 494 

in early in vivo PGCs (Roidor et al. 2023), where PGCs had mostly maintained an inactive X 495 

chromosome at E9.5, with a limited number of genes undergoing XCR thereafter. From the 496 

experimental strategy employed in this study using F1 female (XCASTXB6-Xist∆) embryos, 497 

gestational ages covered, we are able to demonstrate many more genes subject to XCR. This 498 

supports the finding that a number of genes are orchestrated to undergo XCR with important 499 

functional roles therein in development of the female germ line. 500 
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In conclusion we present new evidence that challenge existing paradigms in X chromosome 501 

biology, showing that XCR extends much later than previously appreciated in female germ 502 

cells. Our work further connects PRC2 activity beyond a sex specific role in the germline, more 503 

directly in regulating X chromosome activity in promoting female meiosis (Huang et al., 2021; 504 

Lowe et al., 2022). 505 

 506 

 507 

  508 
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Supplementary Figure legend: 509 

 510 

Supplementary Figure 1. Quality control of scRNA-seq data 511 

(A) Dot plot of total counts, number of genes expressed, and the percentage of 512 

mitochondrial reads in the scRNA-seq data in this study. Each dot represents a single cell. 513 

(B) Summary of cells represented in scRNA-seq dataset. 514 

(C) The expression level of Y-chromosome encoded genes across different embryonic 515 

stages between male and female. 516 

(D) The expression level of key genes across cells, visualised on the t-SNE. 517 

 518 

Supplementary Figure 2. The allelic expression of chromosomes in female cells  519 

(relates to Figure 2) 520 

(A) The boxplot of d-scores of chromosome X and 9 in E11.5 female germ cells and 521 

somatic cell. 522 

(B) The boxplot of d-scores of all autosomes and chromosome X in oogonia from E10.5 523 

to E16.5. Each dot represents a single cell sample.  524 

 525 

Supplementary Figure 3  (relates to Figure 3) 526 

The heatmap plot of d-scores for of 281 X-linked genes; genes are depicted based on the 527 

genomic location. The Xist RAP-seq signal is represented in blue in the figure, and putative 528 

Xist entry sites as red dots. Xist / XIC location is marked as shown (high signal for Xist over 529 

the XIC is not shown). 530 

 531 

Supplementary Figure 4. CUT&RUN results (relates to Figure 4) 532 

(A) The H3K27me3 antibody verification: heatmap showing the H3K27me3 antibody 533 

specificity validated using SNAP-CUTANA K-MetStat Panel. Representative 534 

immunofluorescence image of a-H3K27me3 (magenta), a-Ddx4 (cyan) and  endogenous GFP 535 

in an E13.5 ovary. White arrows indicate Barr bodies in somatic cells. 536 

(B) The heatmap representing the spearman correlation of reads counts generated from 537 

CUT&RUN samples. 538 

(C) The genome tracks showing H3K27me3 enrichment signal over Hoxa gene cluster in 539 

E13.5 and E16.5 oogonia. 540 

(D) The distribution of H3K27me3 peaks across functional annotations, including 541 

promoter, exons, introns, downstream, and distal intergenic regions in E13.5 and E16.5 germ 542 

cells. 543 
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(E) The box plots showing the log2-ratio of H3K27me3 enrichment signal in CAST to B6 544 

alleles in all the chromosomes. Chromosome X is highlighted in orange colour and 9 in blue 545 

(relates to Figure 4A). 546 

(F) The log2-ratio of H3K27me3 enrichment depicting change in signal in E13.5 over 547 

E16.5 germ cells at DE genes. Plots show higher enrichment at E13.5, especially at CAST 548 

specific alleles (relates to Figure 4C). 549 

 550 

Supplementary Figure 5.  Analysis of Ezh2-null germ cells scRNA-seq (relates to Figure 551 

5) 552 

(A) Principal component analysis (PCA) of RNA-seq data from Ezh2-null (conditional 553 

knockout) and control male and female E13.5 gem cells. 554 

(B) Volcano plot showing the differentially expressed genes (adjusted p-value <0.05, 555 

log2FC>1 or log2FC<-1, orange dots) between Ezh2-null and control female germ cells. The 556 

X-linked DEGs were highlighted in dark blue (n=121). 557 

(C) Volcano plot showing the differentially expressed genes (adjusted P value <0.05, 558 

log2FC>1 or log2FC<-1, orange dots) between Ezh2-null and control male germ cells. The X-559 

linked DEGs were highlighted in dark blue (n=48). 560 

(D) Summary of DE genes between Ezh2-null and Control mice. 561 

 562 
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Data availability: 581 

Single-cell RNA-seq data and CUT&RUN data will be publicly available as of the date of 582 

publication in a peer-reviewed journal.  583 

 584 

METHOD DETAILS: 585 

Biological Samples and the Ethical Use of Animals 586 

Use of experimental mice was undertaken in strict accordance with the Animals (Scientific 587 

Procedures) Act 1986 subject to local ethical review and carried out under UK Home Office 588 

license. Mice were maintained on a 12:12 hour light : dark cycle at 22 ± 2 °C, with food and 589 

water available ad libitum. Oct4-EGFP mice are maintained on a C57B6 background and used 590 

to mark / isolate fluorescently marked germ cells (Yeom et al., 1996; Yoshimizu et al., 1999). 591 

Xist∆ mice are also maintained on a C57B6 background (Marahrens et al., 1997) and 592 

maintained with the Oct4-EGFP line. Mus castaneus (CAST / EiJ; RRID:IMSR_JAX:000928) 593 

were purchased from The Jackson Laboratory (JAX).  594 

 595 

Experimental F1 embryos were generated by crossing Xist+/∆ (B6) dams also carrying Oct4-596 

EGFP transgene, and CAST sires, producing F1 female (XXXist∆) and males (XY) that were 597 

analyzed. Typically timed natural matings were set up at around 17:00 hrs, by placing female 598 

mice into with the male. Females were checked for the presence of a vaginal plug indicating 599 

a mating has occurred, with noon on the day the vaginal plug taken as E0.5 and was separated 600 

from the male. 601 

 602 

Genotyping 603 

PCR genotyping was performed on extracted DNA. The primer information is presented in 604 

TableS3. 605 

 606 

Sample collection and processing 607 

F1 embryos were harvested daily at E10.5 to E16.5 from the date of the vaginal plug, with 608 

further morphological verification at dissection. The embryonic urogenital complexes were 609 

carefully removed under the stereomicroscopy, and washed in cold DPBS twice. For 610 

transcriptomic and CUT&RUN, the embryonic gonads were separated from adjacent 611 

mesonephroi and placed into 1.5 mL Eppendorf tube with 300uL DPBS. 612 

 613 

FACS Isolation of germ cells 614 

To obtain a single-cell suspension for FACS, isolated gonads were digested in the HBSS buffer 615 

containing Collagenase Type 1 (200U/mL), Dispase II (2.4 U/mL), and CaCl2 (1mM ) at 37°C. 616 

Tubes were shaken every 2-3 mins until the tissue fully dispersed. Enzymatic digestion was 617 
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then neutralisation with DMEM, containing 10% foetal bovine serum, followed by 618 

centrifugation at 1000g, at 4°C for 4 minutes. The cell pellet was then resuspended in cold 619 

FACS buffer (1% BSA in HBSS, with 25 mM HEPES, 1mM EDTA, and PI buffer) and filtered 620 

through a 40µM strainer. EGFP fluorescence was used to isolate the fluorescently marked 621 

germ cells through FACS. Live cells germ cells (PI negative, GFP positive) and somatic cells 622 

(PI negative, GFP negative) were sorted by florescence-activated cell sorting (FACS) using 623 

ARIA III flow cytometer (BD Bioscience).   624 

 625 

For single cell RNA-seq, individual cells were sorted into 96-wells plates containing lysis buffer. 626 

Plates were sealed and centrifuged immediately (700g, 10 seconds) following the sort and 627 

stored at -80°C until needed. For CUT&RUN experiments, bulk sorting was performed to 628 

collect purified germ cell and / or somatic cell fractions separately into 300µL of collection 629 

buffer (5% BSA-HBSS) and used fresh. 630 

 631 

SMART-Seq2 library preparation and sequencing 632 

SMART-seq2 method was applied to generate the full-length cDNAs. Briefly, a single cell 633 

(~0.3µL) was sorted into the 96 -wells plates containing 4 µL of lysis buffer (a ribonuclease 634 

(RNase) inhibitor, dNTPs, and oligo-dT oligonucleotides). Cell lysis was performed by 635 

incubating samples at 72 °C for 3 mins and put back on ice immediately. Then, reverse 636 

transcription (RT) reaction was carried out by adding 0.5µL Maxima H-reverse transcriptase 637 

(200 U / µL), 0.25µL RNA inhibitor (40 U / µl), 2µL Maxima-H RT buffer (200U / µL), 2µL 638 

Betaine (5M), 0.06µL MgCl2 (1M), 0.1µL TSO (100 µM), and nuclease-free water to make a 639 

total of 10µl reaction. The reaction program of Maxima H reverse transcriptase was 90 mins 640 

at 50°C, followed by 5 mins enzyme activation at 85°C; the reaction was then hold at 4°C. The 641 

pre-amplification was then performed by adding 12.5µL KAPA HiFi HotStart, and 2.5µL 642 

nuclease-free water. 20 PCR cycles were used, and the PCR cycle was set as follow: 98°C 643 

for 3 mins, 20 cycles of 20s at 98°C, 15s at 67°C, and 6 mins at 72°C. The final elongation 644 

was performed at 5 mins at 72°C. After purification with AMPure XP beads (Beckman Coulter) 645 

(in a ratio of 0.7:1), the PCR product was quality checked (QC). Tagmentation of 0.3ng cDNA 646 

was carried out by using the Illumina Nextera XT DNA sample preparation kit in a reaction 647 

volume of 4 µL (2µL of tagmentation DNA buffer (TD, 2 x); 1µL of Amplicon tagmentation mix, 648 

and 1µl of diluted cDNA), followed by stripping Tn5 transposase off with 1µL of NT buffer 649 

added. Finally, amplification of adapter-ligated fragments was performed by adding 3µL 650 

Nextera PCR master mix, and 2µL of Index primer combination. After purification with AMPure 651 

XP beads (in the ratio of 0.6:1), the final cDNA library was quantified and QC-ed.   652 

 653 
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The concentration of PCR product was measured by using Qubit dsDNA assay kit (Invitrogen), 654 

and size distribution was checked using an Agilent high-sensitivity chip (D1000) on 4200 655 

TapeStation System. Overall, 741 scRNA-seq libraries were prepared and 2x150 bp paired-656 

end (PE) reads was performed on an Illumina Novaseq 6000 instrument. Where possible we 657 

aimed to obtain and sequence a minimum of 24 cells from each embryo.  658 

 659 

RNA-seq data analysis and processing 660 

All processing and analyses were performed on the high-performance computing (HPC) 661 

platform King's Computational Research, Engineering and Technology Environment 662 

(CREATE). Fastq files containing reads from single-cell RNA seq libraries were subject to 663 

quality control (fastqc), and trimmed for adapter content using Trimgalore. Using the SNPsplit 664 

tool, SNPs positions for C57B6NJ and CAST / EiJ in the GRCm38.p6 reference mouse 665 

genome (Ensembl), were first N-masked to eliminate mapping-bias between alleles (Krueger 666 

and Andrews, 2016). An N-masked genome index was then generated using STAR (Dobin et 667 

al., 2013; van de Geijn et al., 2015). Trimmed fastq files were subsequently aligned to the N-668 

masked reference using the STAR aligner.  669 

 670 

Total gene-level expression counts were then generated using featureCounts (Subread) and 671 

used in downstream analyses  (Liao et al., 2014). Similarly allele-specific counts for 672 

alignments specific to B6 and CAST were generated using split bam files generated by 673 

SNPsplit.  674 

 675 

Total counts were imported into SCANPY for further specific analyses including normalization, 676 

dimensionality reduction and statistical approaches (Wolf et al., 2018). Cells kept fulfilled the 677 

following criteria - min_genes > 3500, max_genes < 10000, min_counts > 500000, 678 

mitochondrial counts < 5%. Genes kept for analysis fulfilled the following criteria - min_cells = 679 

5.  Following this, 681 (out of 738) high-quality single-cells transcriptomes were retained for 680 

further processing with each time point represented by a minimum of 20 cells derived from 681 

each embryo (please see Supplementary Table 1B). In toto 681 cells and 21174 expressed 682 

genes were analysed.  683 

 684 

Allele-specific analyses. 685 

Custom scripts in R were used to derive allelic-ratios and d-scores (d) from count matrices 686 

output from featureCounts. CAST allelic ratios were calculated as CAST / (B6 + CAST), and 687 

d score = CAST / (B6  + CAST) - 0.5)  was calculated for each gene and / or each cell. Reads 688 

to the CAST X chromosome in male cells likely arising from technical artifacts of singular mis-689 

annotated SNPs, were not considered. For XCR analysis, genes with counts detected in at 690 
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least 2 or more cells, and 5 fragment counts or more at each gene locus were kept for XCR 691 

analyses. 692 

 693 

Cleavage Under Targets and Release Using Nuclease (CUT&RUN) 694 

For each CUT&RUN reaction, typically ~5000 cells were used, pooled from different embryos 695 

of identical genotype in the same litter. Here we applied a CUT&RUN method modified from 696 

previous protocol (Derek Janssens, Steven Henikoff 2019. CUT&RUN: Targeted in situ 697 

genome-wide profiling with high efficiency for low cell numbers. protocols.io 698 

https://dx.doi.org/10.17504/protocols.io.zcpf2vn). Sorted cells were washed with Wash Buffer 699 

(20 mM HEPES, pH7.5, 150 mM NaCl, 0.5 mM spermidine and a Roche complete tablet per 700 

50 ml), and then bound to activated Concanavalin A (ConA) -coated magnetic beads. After 10 701 

mins of binding, cells were permeabilized and incubated in 50µL Antibody Buffer (Wash buffer 702 

containing 0.01% Digitonin and 0.5µL of specific primary antibody) at 4°C overnight on a 703 

nutator. For the negative control, anti-Rabbit IgG was added instead of primary antibody. Next 704 

day, after 2 washes with Digitonin buffer (Wash Buffer containing 0.01% Digitonin), beads 705 

were resuspended in pAG / MNase buffer (50µL Digitonin buffer with 2.5µL of pAG / MNase 706 

reagent (EpiCypher) and incubated at room temperature (10 mins) on a nutator for pAG-Mase 707 

binding. After washing away pAG / MNase with Digitonin buffer, the chromatin digestion was 708 

performed by adding 1µl of 100mM CaCl2 to each reaction and incubating at 4 °C for 2 hours 709 

on a nutator. Digestion was then stopped with the addition of 33µL Stop Buffer (340 mM NaCl, 710 

20mM EDTA, 4mM EGTA, 50µg / mL RNase A, and 50µg / mL glycogen) and the cleaved 711 

chromatin was released to supernatant by incubating at 37°C for 10 mins. DNA was then 712 

purified using a DNA clean-up column (Monarch® PCR & DNA) following the manufacturer’s 713 

instructions, and used for library preparation (NEBNext® Ultra™ II DNA Library Prep Kit for 714 

Illumina®). Specifically, the concentration of adaptor (reduced to 3µM) and the cycle number 715 

of PCR amplification (15 cycles) were optimised in our experiment considering of the low input 716 

of DNA. Finally, the clean-up of PCR product was carried out by using AMPure X beads 717 

(Beckman Coulter) (in a ratio of 0.9:1). After measuring the quantity of library and checking 718 

the size distribution, libraries were pooled and sequenced to produce 2 X 50bp PE sequencing 719 

on Illumina NextSeq 2000 instrument. 720 

 721 

We determined the specificity for the antibodies used, using the SNAP-CUTANA K-MetStat 722 

Panel (EpiCypher, US). 2µL of 1:20 diluted solution was applied to ConA-immobilized cells 723 

prior to the addition of antibody. As per the manufacturer’s instructions, reads were matched 724 

to the unique DNA barcodes in the panel and normalized to either on-target or total counts. 725 

Antibody enrichment of the expected spike-in nucleosome target confirmed the integrity of the 726 

H3K27me3 antibody used in our experiment, while the IgG control antibody showed no 727 
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preferential enrichment for any nucleosome as expected (supplementary Figure 4A). In 728 

addition, we validated this antibody by immunostaining of H3K27me3 on E13.5 embryo 729 

gonads (supplementary Figure 4A).  730 

 731 

CUT&RUN data processing 732 

In short, fastq files were pre-processed for quality and trimmed (min length >35). Reads were 733 

aligned to the N-masked reference genome using STAR with spliced-alignments turned off. 734 

Subsequent steps in the analyses were performed using the deepTools package (v3.5.0) 735 

(Ramirez et al., 2016). Pearson correlations were computed and plotted to visualize cross-736 

replicate validity (multiBamSummary), before proceeding to merge bam files at each time-737 

point. Reads across the genome were counted in 10kb-size bins for each library, and effective 738 

library sizes were calculated using csaw, with and the TMM method applied to compute 739 

normalization factors (Lun and Smyth, 2014; Robinson et al., 2010). Bigwig files were 740 

generated from the bam files using bamCoverage with settings “-binSize 100 --smoothLength 741 

1000”. Signals were further computed / visualized using deepTools’ functionality (e.g. 742 

computeMatrix, plotHeatmap), and to plot enrichment profiles relating to each timepoint. 743 

 744 

Quantification and statistical analysis 745 

Statistical analyses were performed in R statistical computing playform (https://www.r-746 

project.org/) or Python. Statistical tests and the cut-off values used for each analysis are 747 

described in each methods subsection. p<0.05 was considered significant for all tests. For the 748 

biological replicated, in the scRNA-seq experiment, at least 2 embryos and 24 scRNA-seq 749 

libraries / embryo were generated at each time-point. In the CUT&RUN experiment, 2 750 

biological repeats were carried out at each time-point.  751 
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