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Abstract

Production of rapid movement sequences relies on preparation before (pre-planning) and during (online planning)
movement. Here, we asked how different cortical sensorimotor areas contribute to these processes. Human
participants performed three single-finger and three multi-finger sequences in a delayed movement paradigm.
During preparation, 7T functional MRI revealed that primary motor (M1) and somatosensory (S1) areas showed
pre-activation of the first movement, even though the overall activation level did not change from baseline. During
production, the activity in M1 and S1 could be explained by temporal summation of activity patterns
corresponding to constituent fingers. In contrast, dorsal premotor (PMd) and anterior superior parietal lobule
(aSPL) showed substantial activation during preparation of multi-finger as compared to single-finger sequences.
The same regions were also more activated during production of multi-finger sequences, suggesting that the same
areas are involved in both pre- and online planning. Nonetheless, we observed small but robust differences
between the two contrasts, suggesting preferential involvements of these areas in pre- and online planning.
Multivariate analysis revealed sequence-specific representations in both PMd and aSPL, which remained stable
across both preparation and production phases. This suggests that these areas maintain a sequence-specific

representation before and during sequence production, likely guiding the execution-related areas.

Introduction

From buttoning a shirt to texting with a smartphone, many everyday actions depend on the brain’s ability to
coordinate rapid sequences of finger movements. Behavioral studies have demonstrated that, when tasked to
produce a sequence of multiple finger presses, participants pre-plan the first two or three elements before sequence
production starts (Ariani & Diedrichsen, 2019; Ariani et al., 2021). Once the sequence starts, planning the
upcoming movements continues throughout sequence production, a process called online planning. Most
behavioral improvements during motor sequence learning can be explained by participants becoming faster at
pre- and online planning (Ariani & Diedrichsen, 2019). Which, and how, different cortical motor areas contribute
to these different aspects of motor sequence planning, however, is poorly understood.

Previous neuroimaging studies of motor sequences have used multivariate analysis of fMRI data to reveal
a hierarchy of sequence representations across cortical motor areas (Berlot et al., 2020; Yokoi et al., 2018; Y okoi
& Diedrichsen, 2019). The dorsal premotor cortex (PMd) and the superior parietal lobule (SPL) exhibit sequence-
specific representations, i.e., activity patterns that encode the specific sequence of actions, not just the individual
movements themselves. Sequence-specific representations in association cortex have also been shown using
electrophysiology in non-human primates (Russo et al., 2020; Shima et al., 2006; Tanji & Shima, 1994). In
contrast, activity patterns in the primary motor (M1) and somatosensory cortex (S1) could be explained by a
summation of the patterns related to the individual finger presses (Berlot et al., 2021; Yokoi et al., 2018). Due to
difficulties related to fMRI temporal resolution, however, this work did not distinguish between activity arising
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from sequence planning or execution. Although Gallivan et al. (2016) showed that sequences of two upper-limb
actions (e.g., reaching to grasp and place vs. hold a cup) could be distinguished from preparatory fMRI activity
patterns, but the nature of these representations remains unknown.

Here, we used high-field (7T) fMRI while human participants planned and executed both multi- and
single-finger sequences on a keyboard device (matched number of keypresses across sequences). A delayed-
movement paradigm with no-go trials (Ariani et al., 2018) allowed us to isolate brain activity related to planning
and execution and address the following three questions about the role of cortical areas in sequence planning.

First, we investigated brain responses in primary sensorimotor cortex (M1 and S1) during the preparation
of a sequence. For single-finger actions, we have previously shown that movement planning pre-activates the
relevant finger-specific activity pattern in both M1 and S1 (Ariani et al., 2022). But what is the preparatory state
in M1 for multi-finger movements?

Second, recent behavioral studies suggest that online planning of movement sequences shares important
behavioral features with sequence pre-planning—both exhibit a similar planning horizon and both contribute to
performance improvements with sequence learning (Ariani & Diedrichsen, 2019; Ariani et al., 2021). We
therefore tested to what degree pre- and online planning engage the same cortical areas by contrasting multi- and
single-finger movements during preparation and production phases.

Finally, employed multi-variate analysis to study two of the identified brain regions, PMd and SPL, in
more depth. Previous results (Berlot et al., 2021; Yokoi & Diedrichsen, 2019) have revealed sequence-specific
representations in both. Our paradigm now allowed us to ask whether these representations are present only during
preparation or whether they persist during movement production. Furthermore, we investigated to what degree
the sequence-specific representations underlying pre- and online planning are the same, or whether they

dynamically change from preparation to production.

Results

We instructed 22 participants to produce sequences of finger presses on a keyboard device while undergoing 7T
fMRI. Participants learned a mapping numbers finger presses on a response keyboard (Fig. 1A). Each trial began
with a preparation phase (Fig. 1C) in which a single-finger or multi-finger sequence (Fig. 1B) was instructed by
six numbers. After a variable delay (4-8 s), a color cue indicated whether to produce the planned six finger presses
(go trials, ~60%) or whether to withhold the response (no-go trials, ~40%). To cleanly separate the activity related
to planning from the activity related to the subsequent execution, we restricted all our analyses of the preparation
phase to no-go trials (see Methods). We focused our imaging analysis on the dorsolateral aspect of the

contralateral (left) hemisphere (purple area of Fig. 2A), including the motor regions of the medial wall.
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Figure 1. Sequence conditions and task timing. (A) Response keyboard with mapping between numbers and
fingers. Numbers were not visible on the keys. (B) Digits presented on the screen for single-finger (red) and multi-
finger sequences (blue). (C) Temporal structure of a trial. During the preparation phase, a sequence of 6 numbers
was displayed within a box at the top of the screen. With a probability of 0.6, the box frame then changed to a
blue color, instructing participants (N=22) to produce the memorized sequence as fast as possible (go trials).
Each correct press caused an asterisk to turn green. With 0.4 probability, the box frame turned orange, signaling

participants to withhold the response (no-go trials). ITI = inter-trial interval.
Pre-planning of multi-finger sequences activates the first finger in M1 and S1

First, we asked what processes occur during sequence preparation in the core sensorimotor areas S1 and M1. For
single-finger movements (Fig. 2B), BOLD activity in these regions was suppressed relative to rest (Fig. 2F; M1:
121=—6.939, p=7.4e—07; S1: t2;=—5.508, p=1.8e—05). For multi-finger movements (Fig. 2D), we also observed
some suppression deep in the central sulcus, however, averaged across the ROI, the activation was not different
from resting baseline (M1: t2;=—0.692, p=0.496; S1: t2;=—0.523, p=0.606).

We then used multi-voxel pattern analysis to examine whether the fine-grained pattern of activity in these
areas differed between the planned sequences. To this end, we calculated cross-validated Mahalanobis distances
(Diedrichsen et al., 2020; Walther et al., 2016) between the activity patterns associated with the 3 sequences.
Systematically positive values of this measure indicate reliable multivariate pattern differences. As previously
reported (Ariani et al., 2022), we found that during the preparation of single-finger movements (Fig. 3A), the core
hand areas of M1 and S1 exhibited finger-specific activity patterns (M1: ¢2;,=2.343, p=0.029; S1: t;=3.137,

p=0.005). Analysis of multi-finger sequences revealed a similar result: although M1 and S1 were not activated
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overall, there were significant differences between activity patterns for three sequences (Fig. 3E; M1: £2;=2.991,

p=0.007; S1: 1,,=2.829, p=0.010).
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Figure 2. Premotor and superior parietal lobule are activated during sequence preparation. (A) inflated cortical
surface of the contralateral (left) hemisphere, highlighting the displayed areas (B-E, purple). The strip
highlighted in white was used for the profiles (E, F) and region-of-interest definition. (B) Group-averaged percent
signal change during preparation and (C) production of single-finger sequences. (D, E) Same as (B, C) but for
multi-finger sequences. (F) Profile ROI analysis (see Materials and methods) of the mean percent signal change
(+ standard error of the mean [SEM]) during the preparation and (G) production of single-finger (red) and multi-
finger sequences (blue). The x-axis corresponds to Brodmann areas (BA) shown in (B). **p < 0.01, ***p<0.001
in a two-sided one-sample t-test vs. zero for selected ROIs. Vertical black lines mark the approximate boundaries
between the BAs (see Methods). Black triangles point to the approximate location of the main anatomical
landmarks: Pre-CS = precentral sulcus; CS = central sulcus, Post-CS = postcentral sulcus. PMd (BA 6) = dorsal
premotor cortex; M1 (BA 4) = primary motor cortex; SI (BA 3, 1, 2) = primary somatosensory cortex, aSPL (BA

5) = anterior superior parietal lobule.

What do these activity differences for multi-finger sequences reflect? One possibility is that during
sequence preparation, the first element of the sequences is pre-activated in M 1. Because each sequence started
with a different finger, this would cause large differences between the activity patterns without constituting a
sequence representation. This idea predicts that the activity pattern during preparation should correlate with the
activity pattern observed when only the first finger movement is pressed. To test this, we correlated the
preparation activity of 3 multi-finger sequences with the production activity of the corresponding single-finger
sequences (i.e., sequence 135351 with 111111, etc.) after subtracting the mean activity pattern. This analysis
revealed a significant correlation in both M1 (average r=0.044, t2;=3.057, p=0.006) and S1 (r=0.044, t2;=3.383,
p=0.003). While these correlations are very small, correlation estimated on noisy data consistently underestimate
the true correlation (Diedrichsen et al., 2023). To account for measurement noise in a principled way, we used
Pattern Component Modeling (PCM, see Methods) to build potential models of the correlation between activity
patterns for the preparation of multi-finger sequences and production of single-finger sequences and evaluate the
likelihood of the data given each model. We removed the average activity pattern common to all sequences from
the patterns (separately for multi- and single-finger sequences), and then correlated the patterns across the two
conditions. The group maximum-likelihood estimates of correlation indicated substantial correspondence with
r=0.75 for S1 and r=0.45 for M1. Thus, pre-planning of multi-finger sequences activates similar voxels as the
execution of the first finger in the sequence.

In previous studies, we have found that the activity patterns in M1 and S1 (averaged over preparation and
production phases) can be explained by a temporal summation of the patterns related to the individual finger
presses, with an especially high weight from the first finger in the sequence (Berlot et al., 2021; Yokoi et al.,

2018). If this weighting is due to the pre-activation of the first finger during movement preparation, we would
6
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predict that the pattern differences between sequences should disappear during the execution phase, as all three
involved the same three fingers (albeit in a different order). Indeed, the pattern differences were significantly
attenuated during the production phase (Fig. 3D, planning vs. execution in M1: #2;=2.123, p=0.0458, and S1:
t21=2.305, p=0.0345), with a small pattern difference remaining only in M1 (z2;=2.814, p=0.0104).

In sum, these results are consistent with the idea that the first finger in a sequence is pre-activated during
the preparation phase and that after production starts, the activity pattern in M1 and S1 are determined by a

temporal summation of the patterns related to the individual finger presses (Yokoi et al., 2018).
Pre- and online planning engage a highly overlapping set of cortical areas

If the activity patterns in the M1 and S1 are related to the individual finger presses, then continuous input from
higher-level regions that retain a representation of the entire sequence is required to move reliably from finger to
finger. We refer to this process as planning, whether it occurs before (pre-planning) or after movement onset
(online planning; Ariani & Diedrichsen, 2019; Ariani et al., 2021). Here investigate whether pre- and online
planning engage exactly the same, or different sets of cortical areas. Given that the number, speed, and force of
the finger presses were closely matched across single and multi-finger movements (see Methods), we assumed
that both conditions involve similar execution-related processes. Therefore, the difference between the production
of single-finger and multi-finger sequences should mostly reflect activity related to online planning. If pre-
planning and online planning involve the exact same cortical areas, then this difference should be similar to the
difference between single-finger and multi-finger movement during preparation (reflecting the need for increased
pre-planning).

In contrast to single-finger movements (Fig. 2B), preparation of multi-finger sequences (Fig. 2D) strongly
activated the dorsal premotor cortex (Fig. 2F; PMd, #2;=5.125, p=4.4e-05), the supplementary motor areas (SMA,
121=4.016, p=2.3e-04) and the anterior part of the superior parietal lobule (aSPL, ¢2;=7.482, p=2.3e-07). Thus,
the demands of planning multiple different finger movements evoked significant brain activation in premotor and
parietal areas.

During the production, we found widespread activity in both primary sensorimotor, parietal, and pre-
motor areas for both sequence types (Fig. 2C, E). The contrast between these two conditions revealed higher
activity for multi-finger over single-finger sequences in PMd (Fig. 2G, 4B; t;=6.022, p=5.6e-6) and aSPL
(221=8.264, p=4.8e-08). Importantly, the spatial distribution of multi vs. single contrast during production was
very similar to multi vs. single contrast during preparation (Fig. 4A, B). When we correlated the unsmoothed
voxel-wise activity maps within each participant, we found a highly significant correlation between the brain
activity patterns under these two conditions (r=0.12, #2;=10.796, p=4.9e-10). Thus, pre- and online planning

activated overlapping cortical areas.
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Figure 3. Sequence representations during preparation and production phases. (A) Group-averaged
multivariate searchlight map of the crossnobis distance between the preparation and (B) production of the three
single-finger. (C) Same as A but for mean crossnobis distance between the preparation and (D) production of
three multi-finger sequences. (E) Profile ROI analysis of the mean crossnobis distance (:SEM) during the
preparation of single-finger (light red line) and multi-finger (light blue) sequences. (F) Same as E but for the


https://doi.org/10.1101/2023.11.05.565682
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.05.565682; this version posted November 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

production of single-finger (dark blue) and multi-finger (dark red) sequences. *p < 0.05, **p<0.01, ***p<0.001

in a two-sided one-sample t-test vs. zero for selected ROIs.
Preferential activation for planning before and during movement

The strong overlap between the activity maps for pre- and online planning, however, does not tell us whether the
two maps were identical (in other words, pre- and online planning activated - within each participant - exactly the
same voxels) or whether there were true differences between the maps. This is because measurement noise will
lead to an observed correlation smaller than 1, even if two maps are identical (Diedrichsen et al., 2023). Again,
we applied PCM to model the correlation between multi-single contrast activity patterns in both preparation and
production, followed by an assessment of data likelihood for each model (see Fig. 4C). The group maximum-
likelihood estimate of correlation was r=0.65 with strong evidence that the patterns were not identical (against 1-
corr model: z = 3.815, p=0.0001).

Therefore, we asked whether there were systematic differences across participants, which would indicate
that some areas have a preference toward either pre- or online planning. Because the contrast during pre-planning
was generally larger than during execution, we could not simply subtract the two difference maps. Instead, we
plotted the multi-single difference for each voxel during preparation (Fig. 4E, x-axis) against the difference during
production (y-axis). We then estimated the average relationship between the two contrasts using Principal
Component Analysis (PCA) within each participant. The first principal component (PC1) captured the tendency
of voxels to be similarly responsive for pre- or online planning. The loading on the second principal component
captured the deviation from this lawful relationship, with positive values indicating relatively more activity during
online planning and negative values more activity during pre-planning. By mapping the voxel preferences back
to the surface, we created an average preference map across participants within our window of interest (Fig. 4F).
This map revealed that clusters in PMd (p=35.9e-07, corrected for multiple comparisons, see Methods), M1/S1
(p=8.8e-00), and aSPL (p=5.9e-07) were more active during online planning, while clusters SMA (p=3.1e-006),
ventral premotor cortex (PMv, p=7.2e-07 and p=0.0096), and the inferior parietal lobule (IPL, p=0.0492) were
relatively more active during pre-planning (dashed outlines, Fig. 4F). This set of results indicates that pre-planning

and online planning of movement sequences preferentially activated slightly different sets of cortical areas.
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Figure 4. Activation maps for pre- and online planning are highly, but not perfectly, correlated. (A) The
difference in evoked activation between multi-finger and single-finger sequences during the preparation and (B)
production. (C) PCM evaluation of models assuming a correlation between the sequence-general activity patterns
shown in A and B of 0 to 1. The group average (black line) and individual curves (thin gray lines) express the
difference from the log-likelihood from the mean value (i.e., zero on the y-axis). Red dots indicate the best-fitting
correlation model for each participant and the red solid line cross-validated best-fitting model across all

participants. Yellow-shaded area indicates models that perform significantly worse than the best-fitting
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correlation model (p < 0.05). (D) Similar to (C), but for the correlation between sequence-specific activity
patterns evoked during preparation and production of multi-finger sequences in PMd and aSPL. For each
participant, we averaged the curve corresponding to each of the two areas. (E) Voxel-wise values of the
preparation multi-single contrast, plotted against the voxel-wise values of the production multi-single contrast.
Two principal components (PCs) of the data are shown. Voxels in the red area (positive PC2) show a preference
for online planning, whereas voxels in the blue area (negative PC2) show for pre-planning. An example of a
single participant is shown. (F) Group t-value for the second PC projected on the flat map. Areas with black solid

boundaries represent significant clusters.
PMd and SPL maintain sequence-specific representations both during preparation and production

If the increased activation for multi-finger sequences in PMd and SPL (Fig. 4A-B) was related to pre-planning
and online planning, then these areas should exhibit sequence-specific representations during both the preparation
and production phases.

Indeed, multivariate analysis (Fig. 3C) revealed that both areas showed sequence-specific representations
during the preparation phase of multi-finger sequences. We found significant pattern differences in PMd (Fig. 3E,
t21 = 2.266, p=0.034) and aSPL (22;=3.491, p=0.002). In contrast to the planning of single-finger movements
(Fig. 3A), the representations of multi-finger sequences appeared to be more widespread on the cortical sheet. To
quantify this observation, we calculated a spatial dispersion metric, which reflects the spatial variance of pattern
dissimilarities (see Methods). This analysis confirmed that the planning of multi-finger sequences was associated
with a more widespread representation across the sensory-motor network compared with single-finger sequences
(t21=3.542, p=0.002). Therefore, premotor and parietal areas were not only more active during the preparation of
multi- than single-finger sequences (Fig. 4A), but also represented the identity of the sequence.

Importantly, we also found that these representations were maintained during the execution phase (Fig.
3D, PMd: 1,;=3.221, p=0.004; aSPL: t2;=2.490, p=0.021). In contrast to M1 and S1, the pattern differences in
PMd and aSPL did not attenuate from the preparation to the execution phase (PMd: #2;,=0.271, p=0.7889, and
aSPL: 12;=1.895, p=0.0719). These results are consistent with the idea that premotor and parietal areas are
involved in the planning of movement sequences both before and during sequence production.

Finally, we asked whether the sequence-specific representations in these areas remained stable or whether
they changed dynamically from preparation to production. To address this question, we again used PCM. We
removed the average activity pattern common to all multi-finger sequences from the patterns (separately for
preparation and production phase), and then correlated these sequence-specific pattern differences between
sequences across the two phases. Figure 4D shows the likelihood curves for different correlation models averaged
across PMd and aSPL. The small signal-to-noise for relatively subtle differences between multi-finger sequences

resulted in small model evidence for almost all participants. The cross-validated group-winning model predicted
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that sequence-specific activity patterns were perfectly correlated with strong evidence that patterns were not
uncorrelated (against 0-corr model: PMd: z = 3.458, p=0.0005; aSPL: z = 3.062, p=0.0022). These results suggest

that sequence-specific representations remain stable across pre-planning and execution.

Discussion

We used 7T fMRI and multivariate analyses to investigate the role of human cortical areas in the preparation of
movement sequences, separating processes that occur before and during movement production. We found that
primary sensorimotor cortices (M1, S1) showed activity patterns resembling the first movement in the sequence
during preparation, and of a temporal summation of individual movements during production. In contrast,
secondary sensorimotor areas (PMd, SMA, SPL) were more activated during both pre- and online planning of
motor sequences. These regions also maintained a stable representation of the sequence across preparation and
production phases.

In previous fMRI studies, we found that the activity patterns in M1 and S1 during sequence production
can be explained by the linear combination of the patterns associated with the individual movements (Berlot et
al., 2021; Yokoi & Diedrichsen, 2019). The pattern for the first finger in the sequence contributed substantially
more to the overall pattern (average over preparation and execution) than all the subsequent fingers (Yokoi et al.,
2018). Our results now provide evidence that this ‘first finger effect’ was caused by the pre-activation of the first
sequence element during preparation rather than by the transition from planning to execution state space
(Kaufman et al., 2016; Yokoi et al., 2018): the pre-planning of a multi-finger sequence activated a pattern similar
to that observed during the execution of the first movement in that sequence.

In a study using sequences of object-directed reach-to-grasp movements, Gallivan et al. (2016) found that
the activity patterns in M1 were also slightly different between two sequences that started with the same
movement but differed in the second movement. This suggests that, not only the first, but possibly also the second
movement may be reflected in M1 preparatory activity patterns. This observation would be consistent with the
“competitive queuing” hypothesis (Averbeck et al., 2002), the idea that the first movement in a sequence being
most, the second less, and subsequent movements even less activated (Kornysheva et al., 2019). However,
because the first reach-to-grasp movement was always the same across conditions, it was unclear whether these
findings would generalize to longer and more complex sequences where every sequence element is different and
needs to be planned anew from trial to trial.

After sequence production began, the pattern differences in M1 and S1 between the 3 multi-finger
sequences were strongly attenuated. This is likely due to the fact the pattern corresponding to the single-finger
movements were sequentially activated. Due to the low temporal resolution of fMRI, these patterns combined
additively, such that the three multi-finger sequences (which were matched in terms of the involved fingers)

elicited overall similar activity pattern when we isolated the activity during the production phase.
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These results also suggest that the production of the sequence cannot be maintained autonomously by
primary motor areas, but that it depends on input from secondary motor areas (Russo et al., 2020; Tanji & Shima,
1994; Yokoi & Diedrichsen, 2019). Consistent with this idea, we found that PMd, SMA, and SPL were more
activated during the preparation and production of multi-finger as compared to single-finger movements. We also
found sequence-specific activity patterns in these areas, which were correlated across preparation and production
phases. This suggests that premotor and parietal areas maintained a stable representation of the sequence
throughout, likely to drive the next movements in M1.

As shown in recent behavioral studies (Ariani & Diedrichsen, 2019; Ariani et al., 2021; Kashefi et al.,
2023), even relatively short 5-item sequences cannot be fully pre-planned. Instead, planning of remaining items
needs to continue throughout sequence production. To determine if the same areas are involved in the pre- and
online planning, we contrasted the univariate multi-finger to single-finger activity maps. As basic execution
processes were matched, we interpreted these contrasts as reflecting the increased need for planning. We found
that the contrast maps were highly correlated across preparation and production phases (Fig. 4C), indicating that
pre-planning and online planning activated similar regions. Within two of these regions, the PMd and aSPL, we
also found that the sequence-specific activity patterns were highly correlated across these preparation and
production (Fig. 4D), suggesting that the sequence-specific representations remained stable. Together these two
findings are evidence that the processes involved in online planning are similar to those involved in pre-planning.

Despite considerable overlap in brain activation between pre- and online planning (Fig. 3A,B), however,
further analysis revealed small but systematic differences in the involvement of different brain areas: PMd, S1,
and SPL tended to be more active during online planning, and SMA and ventral premotor cortex (PMv) more
during pre-planning. This indicates that the two processes are not exactly identical. One possible explanation
could be the differential engagement of brain areas in memory encoding and memory retrieval processes that, as
part of planning processes, happened during preparation and production, respectively. The exact nature of these
differences, however, remains to be tested in future studies.

Our results offer testable predictions for future neurophysiological recordings in sensorimotor areas of
non-human primates. They predict that M1 shows fast dynamics related to each individual movement, with linear
superposition of subsequent movements (Zimnik & Churchland, 2021). Additionally, they predict the presence
of sequence-specific representation in premotor and superior parietal areas both during preparation and
production. The observed consistency of these representations during preparation and production suggests that
these representations have slow dynamics and change very little from preparation to production. However, it is
also possible that these patterns are stable at a voxel level—i.e., pre- and online planning activate the same cortical
columns—but show faster dynamics at the single neuron level. Studying these representations at a neuronal level
at high temporal resolution will provide additional insight into how the motor system solves the fundamental

problem of serial order in behavior (Lashley, 1951).
13


https://doi.org/10.1101/2023.11.05.565682
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.05.565682; this version posted November 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Methods
Participants

Twenty-three right-handed neurologically healthy participants volunteered to take part in the experiment (13 F,
10 M; age 20-31 years, mean 23.43 years, SD 4.08 years). Criteria for inclusion were right-handedness and no
prior history of psychiatric or neurological disorders. Handedness was assessed with the Edinburgh Handedness
Inventory (mean 82.83, SD 9.75). All experimental procedures were approved by the Research Ethics Committee
at Western University. Participants provided written informed consent to procedures and data usage and received
monetary compensation for their participation. One participant withdrew before study completion and was
excluded from data analysis (final N = 22). A part of the data used in the current paper was previously published
(Ariani et al., 2022).

Apparatus

Sequences of right-hand finger presses were performed on a custom-made MRI-compatible keyboard device (Fig.
1A). Participants used their fingers to press the keys. The keys of the device did not move, but force transducers
underneath each key measured isometric force production at an update rate of 2 ms (Honeywell FS series;
dynamic range 0-25 N). A keypress/release was detected when the force crossed a threshold of 1 N. The forces
measured from the keyboard were low pass filtered to reduce noise induced by the MRI environment, amplified,

and sent to the PC for online task control and data recording.
Task

We used a task in which participants produced sequences of keypresses with their right-hand fingers in response
to numerical cues (white outline, Fig. 1C) presented on a computer screen that was visible to the participants lying
in the scanner through an angled mirror. On each trial, a string of 6 numbers (instructing cue) instructed which
sequence to plan (Fig. 1C).

The length of the preparation phase was randomly sampled to be 4 s (56% of trials), 6 s (30%), or 8 s
(14%). To control for involuntary overt movements during the preparation phase, we required participants to
maintain a steady force of around 0.25 N on all the keys during the delay, which was closely monitored online.
As a visual aid, we displayed a red area (between 0 and 0.5 N) and asked participants to remain in the middle of
that range with all the fingers (touching either boundary of the red area would count as unwanted movement, thus
incurring an error).

At the onset of the production phase, participants received a color cue (go/no-go cue) indicating whether
to perform the planned finger presses (blue outline = go, p = 0.6) or not (orange outline = no-go, p = 0.4). The
role of no-go trials was to dissociate the hemodynamic response to the successive preparation and production

events, which would otherwise always overlap in fast fMRI designs due to the sluggishness of the fMRI response.
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To encourage planning during the delay period, at the go cue, the digits were masked with asterisks at go-cue
onset, and participants had to perform the presses from memory. Participants had 2.5 s to complete the sequence
of 6 presses, and a vanishing white bar under the asterisks indicated how much time was left. Participants received
online feedback on the correctness of each press with asterisks turning either green, for a correct press or red, for
incorrect presses. As long as the participants remained within task constraints (i.e., 6 keypresses in less than 2.5
s), an exact movement speed was not enforced. In no-go trials, participants were instructed to remain as still as
possible, maintaining the finger pre-activation until the end of the production phase (i.e., releasing any of the keys
would incur an error).

During the reward phase (0.5 s), points were awarded based on performance and according to the
following scheme: -1 point in case of no-go error or go cue anticipation (timing errors); 0 points for pressing any
wrong key (press error); 1 point in case of a correct no-go trial; and 2 points in case of a correct go trial.
Inter-trial-intervals (ITI, gray background) were randomly drawn from {1, 2, 4, 8, 16 s} with the respective

proportion of trials {52%, 26%, 13%, 6%, 3%}.
Experimental design and structure

Our chosen distribution of preparation times, inter-trial intervals, and no-go trials were determined by minimizing
the variance inflation factor (VIF). VIF is the ratio of the mean estimation variance of all regression weights
(preparation- and production-related regressors for each sequence) to the mean estimation variance had these
regressors been estimated in isolation. Therefore, VIF quantifies the severity of multicollinearity between model
regressors by providing an index of how much the variance of an estimated regression coefficient is increased
because of collinearity. Large values for VIF mean that model regressors are not independent of each other,
whereas a VIF of 1 means no inflation of variance. After optimizing the design, VIF was on average 1.15,
indicating that we could separate planning and execution-related activity without a large loss of experimental
power.

Participants underwent one fMRI session consisting of 10 functional runs and 1 anatomical scan. In an
event-related design, we randomly interleaved 3 types of repeated single-finger presses involving the thumb (1),
the middle (3), and the little (5) fingers (e.g., 111111 for thumb presses, Fig. 1B) and 3 types of multi-finger
sequences (e.g., 135315). The day before the fMRI scan, participants familiarized themselves with the
experimental apparatus and the go/no-go paradigm in a short behavioral session of practice outside the scanner
(5 blocks, about 15-30 minutes in total). For the behavioral practice, inter-trial intervals were kept to a fixed 1 s
to speed up the task, and participants were presented with different sequences from what they would see while in
the scanner. These 6-item sequences were randomly selected from a pool of all possible permutations of the
numbers 1, 3, and 5, with the exclusion of sequences that contained consecutive repetitions of the same number.

Each sequence trial type (e.g., 111111) was repeated 5 times (2 no-go and 3 go trials), totaling 30 trials per
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functional run. Two periods of 10 seconds rest were added at the beginning and at the end of each functional run
to allow for signal relaxation and provide a better estimate of baseline activation. Each functional run took about
5.5 minutes, and the entire scanning session (including the anatomical scan and setup time) lasted for about 75

minutes.
Imaging data acquisition

High-field functional magnetic resonance imaging (fMRI) data were acquired on a 7T Siemens Magnetom
scanner with a 32-channel head coil at Western University (London, Ontario, Canada). The anatomical T1-
weighted scan of each participant was acquired halfway through the scanning session (after the first 5 functional
runs) using a Magnetization-Prepared Rapid Gradient Echo sequence (MPRAGE) with a voxel size of
0.75x0.75x0.75 mm isotropic (field of view =208 x 157 x 110 mm, encoding direction coronal). To measure the
blood-oxygen-level dependent (BOLD) responses in human participants, each functional scan (330 volumes) used
the following sequence parameters: GRAPPA 3, multi-band acceleration factor 2, repetition time [TR] = 1.0 s,
echo time [TE] = 20 ms, flip angle [FA] = 30 deg, slice number: 44, voxel size: 2x2x2 mm isotropic. To estimate
and correct for magnetic field inhomogeneities, we also acquired a gradient echo field map with the following
parameters: transversal orientation, a field of view: 210 x 210 x 160 mm, 64 slices, 2.5 mm thickness, TR =475

ms, TE =4.08 ms, FA = 35 deg.
Preprocessing and univariate analysis

Preprocessing of the functional data was performed using SPM12 (fil.ion.ucl.ac.uk/spm) and custom MATLAB
code. This included correction for geometric distortions using the gradient echo field map (Hutton et al., 2002),
and motion realignment to the first scan in the first run (3 translations: X, y, z; 3 rotations: pitch, roll yaw). Due
to the short TR, no slice timing corrections were applied. The functional data were co-registered to the anatomical
scan, but no normalization to a standard template or smoothing was applied during preprocessing. To allow
magnetization to reach equilibrium, the first four volumes of each functional run were discarded. The pre-
processed images were analyzed with a general linear model (GLM). We defined separate regressors for each
combination of the 6 finger-actions (single, multi) x 3 phases (preparation go, preparation no-go, production),
resulting in a total of 18 regressors (12 go + 6 no-go), plus the intercept, for each run. To control for the effect of
potential overlap between execution-related activity and the preceding planning-related activity, regressors for
the preparation of go trials were not used in further analysis. Each regressor consisted of boxcar functions of
length 2s convolved with a two-gamma canonical hemodynamic response function with a peak onset at 5 s and a
post-stimulus undershoot minimum at 10 s. Given the relatively low error rates (i.e., number of error trials over
total number of trials, timing errors: 7.58 £ 0. 62 %; press errors: 1.18 + 0.26 %; see Task above), all trials were

included to estimate the regression coefficients, regardless of whether the execution was correct or erroneous.
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Ultimately, the first-level analysis resulted in activation images (beta maps) for each of the 18 conditions per run,

for each of the participants.
Surface reconstruction

Individual participants’ cortical surfaces were reconstructed using Freesurfer (Dale et al., 1999). First, we
extracted the white-gray matter and pial surfaces from each participant's anatomical image. Next, we inflated each
surface into a sphere and aligned it using sulcal depth and curvature information to the Freesurfer average atlas
(Fischl et al., 1999). Subsequently, surfaces were resampled to a left-right symmetric template (fs_LR.164k.spec;

Van Essen et al., 2012) included in the connectome workbench distribution (Marcus et al., 2011).
Regions of interest (ROI)

For visualization of the functional profiles along the cortical surface (e.g., Fig. 2F) and ROI definition, we defined
a rectangular surface area in each hemisphere (white area in Fig. 2A) that ran approximately orthogonal to the
boundaries between different Brodmann areas (BA; Fischl et al., 2008). We subdivided this area into 50 strips
running from anterior to posterior. We defined the region of interest for the primary motor cortex (M1; BA4),
primary somatosensory cortex (S1; BA 1, 2, and 3), and dorsal premotor cortex (PMd; BA 6), and the anterior
parietal lobules (aSPL; BA 5) by selecting the strips that had the highest probability (averaged over all vertices
within the strip) as determined by a probabilistic cytoarchitectonic atlas (Fischl et al., 2008) of belonging to their
respective BA. The supplementary motor areas (SMA) lay outside of the defined rectangular surface area. We
therefore defined the SMA ROI by choosing the part of BA6 that was situated in the medial wall.

ROI-based analyses were conducted in the space of the individual data acquisition for each individual
participant by determining the voxel that would be projected onto the set of surface nodes associated with each
ROL. In this analysis (as well as for surface-based mapping), we excluded voxels with more than 25% of their
volume in the grey matter on the opposite side of a sulcus. This avoided cross-contamination of activity measured

in M1 and S1.
Analysis of activation

We calculated the percent signal change for each condition relative to the baseline activation for each voxel for
each functional run and averaged it across runs. For ROI analysis, these values were averaged across all voxels
in the native volume space of each participant selected for the respective ROI. For surface-based group maps,
individual data were projected onto the group map via the individual surfaces, using all voxels touching the line
that connected corresponding nodes on the pial and white-matter surfaces.

Statistical analyses to assess the cortical activity of each sequence type during each phase of preparation
or production included a two-sided one-sample t-test vs. zero. For statistical tests on the surface, we used an

uncorrected threshold of p=0.001 and controlled the family-wise error by calculating the size of the largest
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suprathreshold cluster across the entire cortical surface (estimated smoothness of FWHM 7.9 mm) that would be
expected by chance (p=0.05) using Gaussian field theory as implemented in the fmristat package (Worsley et al.,
1996).

Multivariate distance analysis

To evaluate which brain areas displayed sequence-specific representations, we used the representational similarity
analysis (Kriegeskorte & Diedrichsen, 2019). We calculated the cross-validated Mahalanobis distances (Walther
et al.,, 2016) between evoked regional patterns (beta estimates from first-level GLM) of different pairs of
conditions, 6 sequences (3 single, 3 multi) x 2 phases (preparation no-go, production). Prior to calculating the
distances, beta weights for each condition were spatially pre-whitened (i.e., weighted by the matrix square root
of the noise covariance matrix, as estimated from the residuals of the GLM). The noise covariance matrix was
slightly regularized towards a diagonal matrix (Ledoit & Wolf, 2003). Multivariate pre-whitening has been shown
to increase the reliability of dissimilarity estimates (Walther et al., 2016).

Cross-validation ensures the distance estimates are unbiased, such that if two patterns differ only by
measurement noise, the mean of the estimated value would be zero (Diedrichsen et al., 2020). This also means
that estimates can sometimes become negative. Therefore, dissimilarities significantly larger than zero indicate
that the two patterns are reliably distinct, akin to an above-chance performance in a cross-validated pattern
classification analysis.

Multivariate analysis was conducted for ROI and surface analysis. For surface-based maps, we also
conducted a searchlight analysis (e.g., Fig 3A). For each surface node, we selected a circular region of 100 voxels

(with a maximal radius of 12 mm) and assigned the result to the central node of the searchlight.
Dispersion metric

To determine whether there were significant differences in the dispersion of the representations for multi- and
single-finger sequences during preparation, we first set all negative dissimilarity values to 0. We then normalized
the dissimilarities for each sequence type such that all vertices’ dissimilarities in the white strip (Fig. 2A) summed
up to 1. This defined the weight w; of each surface vertex. The center-of-gravity (COG) per participant was then
the weighted average of the x and y coordinates of these vertices on the flat map. Then, we calculated the
dispersion (d) around this COG by calculating the squared distance between each vertex and COG and averaging
them weighted by w;.
d = z " [(x —C0G)* + (v - COGy)Z]

i Evertices

The difference in dispersion between multi- and single-finger sequences was assessed using a two-sided paired t-

test.
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Correlation analysis

To estimate the correlation, we employed two different approaches. First, we used simple Pearson's correlation.
When estimating the correlation between sequence-specific activity patterns, we first removed the mean pattern
for the preparation and production phase. We then stacked the three activity patterns into a single vector. The
average (across runs) activity patterns for preparation and production were correlated directly. When estimating
the correlation between multi vs. single contrasts across preparation and production, we first calculated the
difference between activity patterns of 3 multi-finger sequences and the corresponding single-finger movements
(i.e., sequence 135351 with 111111, etc.) and then averaged the three maps. The average (across runs) difference
maps for preparation and production were then correlated directly. Correlations were calculated separately within
each participant. To test for a positive correlation, we performed a two-sided paired t-test against zero.

To obtain an estimate of the correlation, corrected for the level of measurement noise, we used pattern
component modelling (PCM, Diedrichsen et al., 2018). The problem with Pearson’s correlations estimated on the
noisy data is that they are always smaller than 1, even if the underlying patterns are identical. PCM solves this
issue by modelling the noise and true pattern separately and estimating the likelihood of the data given any value
of correlation (Diedrichsen et al., 2023). We created 100 correlation models with correlations in the range [0—1]
in equal step sizes and assessed the likelihood of the observed data from each participant under each correlation
model (Fig. 4C). First, we used the winning model as an estimate of the noise-corrected correlation (maximum-
likelihood estimate). To test whether two sets of activity patterns are identical, we compared the likelihood of the
best-fitting model within each participant to the likelihood of a competing correlation model (r=1). The choice of
the best-fitting model was acquired using a cross-validated approach, estimating the group-winning model from
n-1 participants and determining the log-likelihood of this model for the left-out participant (for whom this model
may not be the best one). Using a two-sided paired Wilcoxon signed-rank test between the likelihood of the best-

fitting model and the r=1 correlation model.
Analysis of principal components

To test if the activity patterns for the difference between multi- and single-finger sequences across preparation
and production are systematically different in some brain regions, we employed principle competent analysis
(PCA). The simple contrast between the two difference maps could not answer this question because they have
different scales. We obtained the multi vs. single contrast during preparation and production averaged across
sequences for all voxels within the region of interest (Fig. 2A, purple area). For each individual, we then
conducted a singular value decomposition on the 2xP matrix, in which the two rows represented the preparation
and production contrasts. The first PC captured the common neural activity shared by processes happening during
preparation and production while accounting for the differing degrees of activation in specific voxels. The second

PC represented the tendency of each voxel to be relatively more engaged during one process than the other. We
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ensured that for each participant the positive value on the second PC represented relatively more engagement
during the production phase. Lastly, we projected the value for each voxel to the nearest vertex and created a

preference map. These maps were then submitted to a surface-based group analysis (see above).
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