

Graph attention-based fusion of pathology images and gene expression for prediction of cancer survival

Yi Zheng^{1,2}, Regan D. Conrad², Emily J. Green², Eric J. Burks³, Margrit Betke¹, Jennifer E. Beane², and Vijaya B. Kolachalam^{2,4}

¹Department of Computer Science, Boston University

²Department of Medicine, Boston University School of Medicine

³Department of Pathology & Laboratory Medicine, Boston University School of Medicine

⁴Department of Computer Science and Faculty of Computing & Data Sciences, Boston University

Abstract

Multimodal machine learning models are being developed to analyze pathology images and other modalities, such as gene expression, to gain clinical and biological insights. However, most frameworks for multimodal data fusion do not fully account for the interactions between different modalities. Here, we present an attention-based fusion architecture that integrates a graph representation of pathology images with gene expression data and concomitantly learns from the fused information to predict patient-specific survival. In our approach, pathology images are represented as undirected graphs, and their embeddings are combined with embeddings of gene expression signatures using an attention mechanism to stratify tumors by patient survival. We show that our framework improves the survival prediction of human non-small cell lung cancers, outperforming existing state-of-the-art approaches that leverage multimodal data. Our framework can facilitate spatial molecular profiling to identify tumor heterogeneity using pathology images and gene expression data, complementing results obtained from more expensive spatial transcriptomic and proteomic technologies.

1 Introduction

The field of spatial biology is rapidly expanding as technologies such as spatial proteomics and transcriptomics seek to unravel the complex spatial organization of cells and how it influences cellular phenotypes in health and disease. The three-dimensional organization of cells into

tissue microenvironments has a significant impact on disease development, progression, and outcome. Spatial omic technologies are also enabling connections between single cell omic profiles and pathology. Many spatial technologies produce spatial omic data on the same tissue specimen stained using hematoxylin and eosin (H&E) and digitized to produce a standard pathology whole slide image (WSI). Several methods combining spatial omic data and extracted pathology features have been published [8, 18, 24] to improve cell type identification, cell type deconvolution, spatial pattern recognition, and predict omic features on pathology images alone. While these technologies and methods are promising, the data are expensive and technically challenging to generate resulting in a small number of cases profiled that may only capture a portion of the entire WSI. We sought to develop a method to utilize digitized H&E WSIs and bulk-derived omic data, which are less expensive to collect and often present across large number of samples, to spatially localize predictive features and characterize disease-associated alterations in tissue microenvironments. The method allows utilization of large public resources of WSIs and bulk omic data, such as The Cancer Genome Atlas (TCGA) [19], to identify interesting spatially resolved disease-associated alterations. The method can be used to generate hypotheses and identify regions of interest within tissues based on large sample sets that can be further characterized using modern spatial technologies.

Digitized H&E WSIs have been used in advanced machine learning frameworks, computer vision, and multimodal learning to quantify the molecular underpinnings of disease, estimate markers of disease progression, and predict patient survival. Computer methods to analyze WSIs

for automated diagnosis and quantification of morphologic biomarkers have seen remarkable progress. Methods have been developed to analyze multimodal datasets that predict outcome metrics such as survival by combining clinical, imaging, and genomic data using fusion frameworks. Chen and colleagues recently developed a weakly-supervised, late-fusion framework to combine WSIs and corresponding bulk genomic data and predict survival on various cancers [4]. However, learning the spatial relevance of non-imaging data such as bulk gene expression is not straightforward using late fusion. To understand the spatial relationships governing disease-associated alterations in the tissue microenvironment, we sought an approach that integrates digitized WSIs and bulk omic data and learns early in the data fusion training cycle. While other researchers have previously explored the development of mid-level-fusion and mixer architectures [3, 21] as well as the use of graph-based representations of WSIs [27], our work is unique in mixing node and edge embeddings along with fusion of bulk gene expression embeddings to learn a multimodal topographic mapping to predict survival.

We proposed an algorithmic framework that can integrate digital pathology and bulk transcriptomic data to accurately predict patient survival. Our framework (Fig. 1), allows for representation of WSIs in the form of undirected graphs (Fig. 2), whose embeddings are fused with embeddings of bulk omic data to predict patient survival. In the graph, nodes represent local image patches and edges represent patch adjacency. Using the WSI-graph as input, we define a graph-mixer module that comprises of node-mixing and channel-mixing layers for learning relationships between neighboring nodes and representative features of each node on the WSI-graph, respectively. We pass the resulting embeddings into an attention module, which also receives embeddings of genomic signatures as input, and thus captures local interactions between image and genomic data. Our framework then passes the image-genomic embeddings to a global attention pooling layer and a subsequent fully-connected layer to predict survival risk. The spatially-resolved multimodal features that our framework computes in this fashion can be used to understand changes in the tissue microenvironment that are predictive of patient survival. Our experiments show that our framework is highly adaptable and can be used on a variety of bulk omic datasets and corresponding WSIs in various disease contexts.

1.1 Contributions

We summarize the key contributions of this work as follows:

- We developed a multimodal data fusion architecture that combines embeddings of WSIs, represented as

undirected graphs, with embeddings of gene expression signatures using an attention-based mechanism to predict patient survival. Our architecture is unique in its graph-based modeling of local and global features as well as interpretation of image-genomic interactions.

- Our experiments show that our framework achieves state-of-the-art performance in predicting survival on human non-small cell lung cancers (NSCLC): lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), which are the two most common histological types of NSCLCs.
- We introduce survival activation maps (SAM), which are saliency-based spatial signatures on WSIs that highlight tumor regions associated with the output of interest. SAM can incorporate gene expression-specific information on WSIs and generate multimodal spatial signatures that may provide insights into tissue features associated with patient survival.

2 Materials and methods

2.1 Study population

We obtained WSIs, bulk gene expression data, demographic, and clinical (including overall survival) data on subjects with LUAD or LUSC from The Cancer Genome Atlas (TCGA) [19], the Clinical Proteomic Tumor Analysis Consortium (CPTAC) [6], and the National Lung Screening Trial (NLST) [20] (Table 1). TCGA is a landmark cancer genomics program that characterized molecular alterations in thousands of primary cancer and matched normal samples spanning several cancer types. CPTAC is a national effort to accelerate the understanding of the molecular basis of cancer through the application of large-scale proteome and genome analysis. NLST was a randomized controlled trial to determine whether screening for lung cancer with low-dose helical computed tomography reduces mortality from lung cancer in high-risk individuals relative to screening with chest radiography.

Several studies have reported gene expression signatures associated with lung cancer survival. As a proof of concept, in this study we focus on gene signatures associated with B cell populations. B cell associated signatures have been shown to be elevated in both LUAD and LUSC; however, increased tumor-infiltrating B cells are associated with good prognosis only in LUAD. We included 5 gene expression signatures specific for B cell populations derived from single-cell RNA sequencing data profiling of normal adjacent lung tissue and lung cancer tissue: *Sinjab (Plasma)*, *Sinjab (B Cell)*, *Sinjab (B: 1)*, *Sinjab (B: 0)* [17], *Travaglini (B)* [22].

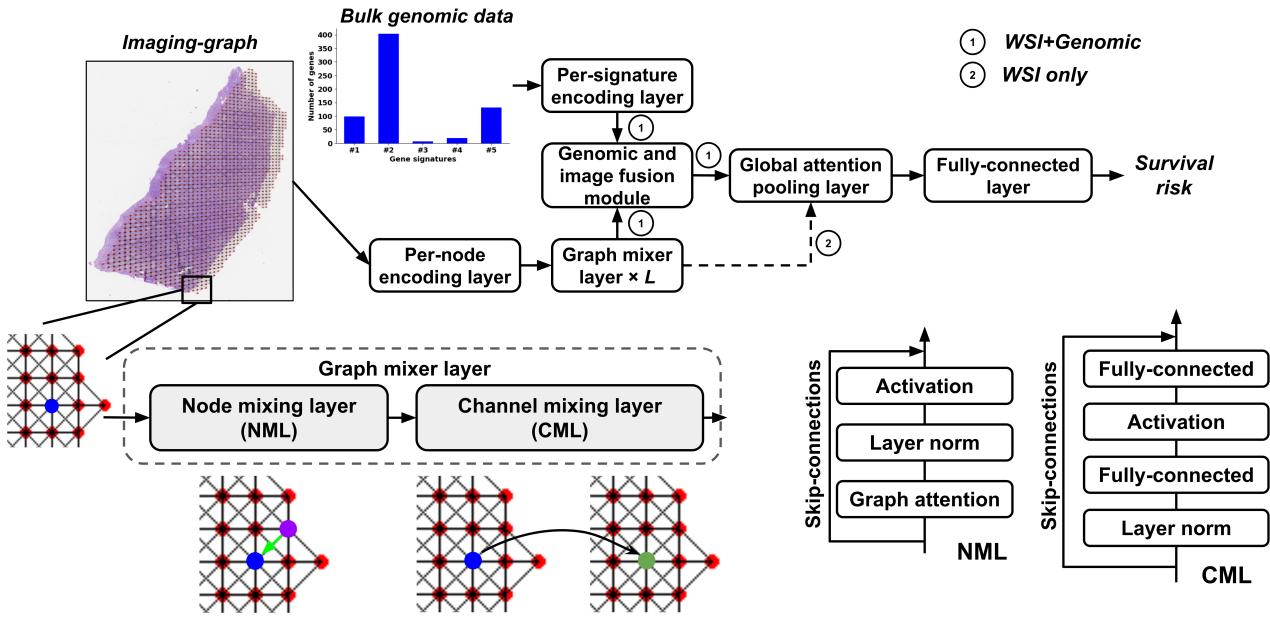


Figure 1: **Graph attention-based fusion framework.** The mixer framework (left) uses the graph node embeddings and gene expression signature embeddings and jointly learns a spatial fingerprint of the WSI-transcriptomic relationship via an attention framework to predict survival. The graph mixer (right) comprises of consecutive node-mixing and channel-mixing layers for learning relationships between adjacent (blue and purple) nodes and more representative node features (blue to green) on the graph.

2.2 Modeling framework

Our framework jointly learns to interpret WSIs and corresponding genomic data to predict tumor survival, and generates spatial image-genomic signatures that point to tumor regions that are highly associated with patient survival. We developed two survival models: (a) WSI-only model denoted as imaging survival model (ISM), and (b) model that integrates WSIs and genomic data, denoted as fusion survival model (FSM).

2.2.1 Whole slide image processing and graph construction

Let $G = (V, E)$ be an undirected graph where V is the set of nodes representing the image patches of the WSI and E is the set of edges between the nodes in V that represent whether two image patches are adjacent to each other (Fig. 2). We denote the adjacency matrix of G as $\mathcal{A} = [\mathcal{A}_{ij}]$ where $\mathcal{A}_{ij} = 1$ if there exists an edge $(v_i, v_j) \in E$ and $\mathcal{A}_{ij} = 0$ otherwise. An image patch must be connected to other patches and can be surrounded by at most 8 adjacent patches, so the sum of each row or column of \mathcal{A} is at least one and at most 8. A graph can be associated with a node feature matrix H , $H \in \mathbb{R}^{N \times C}$, where each row contains the C -dimensional feature vector computed

for an image patch, i.e., node, and $N = |V|$. The C -dimensional feature vector is obtained by passing an image patch through a convolutional neural network (CNN) that has been trained using contrastive learning [5] (Fig. 3). We refer to the graph representation of the WSI as the imaging-graph, $IG = (H, A)$.

2.2.2 Node and channel mixing

Our framework is built using the imaging graph IG mixed with corresponding bulk gene expression data. It consists of a per-node embedding layer, a stack of L identical Graph-Mixer layers, M per-signature encoding layers, a genomic and image fusion module, a global attention-pooling layer, and a fully-connected layer as the final prediction layer. Our framework without per-signature encoding layers and the genomic and image fusion module can work on WSIs as the only input, and we refer to this model as imaging survival model (ISM). The core Graph-Mixer layer has two parts: a node mixing layer (NML) and a channel mixing layer (CML).

The input graph node embeddings were mapped to latent space via the per-node embedding module, where $H \in \mathbb{R}^{N \times C} \rightarrow H \in \mathbb{R}^{N \times D}$ and D is the hidden size. The well-known MLP-Mixer [21] works only on a fixed number of tokens and becomes less effective in handling graph-

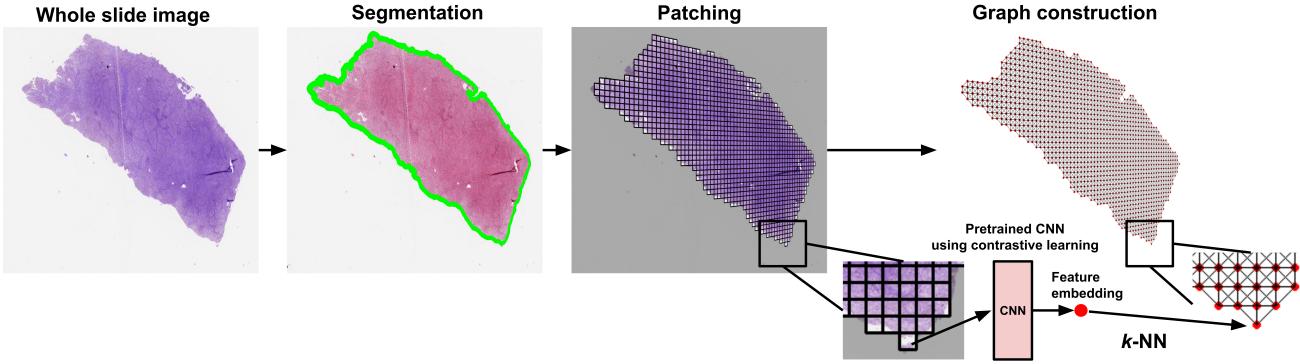


Figure 2: Whole slide image (WSI) processing and graph construction. WSIs were processed using a pipeline involving foreground-background separation, tessellation into image patches followed by construction of an undirected graph. Patch embeddings were generated using a contrastive learning framework (Fig. 3) and used as node features in the graph.

Table 1: **Study population.** Source: Online portals of the TCGA, CPTAC, and NLST cohorts.

Dataset [subjects]	Age mean (std)	Gender male (percent)	Uncensored (percent)	Survival time in days [min, max] (median)	¹ Race information	² Stage information
TCGA LUAD [n=444]	65 (10.0)	203 (45.72%)	156 (35.14%)	[4, 7143] (658)	(342, 51, 7, 1, 43)	(245, 109, 52, 23, 15)
TCGA LUSC [n=471]	67 (8.5)	352 (74.73%)	202 (42.89%)	[0, 4765] (641)	(324, 30, 9, 0, 108)	(230, 151, 62, 6, 22)
CPTAC LUAD [n=199]	63 (9.3)	129 (64.82%)	35 (17.59%)	[0, 1836] (456)	(53, 4, 1, 1, 140)	(104, 49, 42, 2, 2)
CPTAC LUSC [n=102]	66 (8.4)	83 (81.37%)	19 (18.62%)	[0, 1785] (742)	(30, 0, 0, 0, 72)	(37, 44, 19, 1, 1)
³ NLST LUAD [n=229]	64 (5.2)	122 (53.28%)	68 (29.69%)	[189, 2786] (2425)	(213, 8, 5, 1, 2)	(159, 24, 33, 13, 0)
³ NLST LUSC [n=115]	64 (4.9)	84 (73.04%)	38 (33.04%)	[328, 2751] (2379)	(102, 5, 6, 0, 2)	(84, 13, 14, 4, 0)

1 White; Black; Asian; American Indian or Alaska Native; Unknown.

2 Stage I; Stage II; Stage III; Stage IV; Unknown.

3 NLST is only used for fine-tuning feature generation in Fig. 3.

structured data. Given that the number of nodes in G across all WSIs is variable, we addressed this via our architecture, which resembles the GraphMLP framework [14], recently proposed for human pose estimation. This framework learns local and global information of the imaging-graph. In contrast to GraphMLP, we applied the graph attention layer just on the node mixing layer for token mixing [21]. The graph attention layer makes every node in G attend to its neighbors given its own representation as the query, so that the local relationships are better learned than the MLP-Mixer or the GraphMLP.

Specifically, our GraphMixer layer is composed of a node mixing layer (NML) and a channel mixing layer (CML) (Fig. 1). The NML contains a graph attention layer, which is built upon Graph Attention Network (GAT) [1]. Unlike the Graph Convolution Network (GCN) used in GraphMLP, which weighs all neighbors N_i for a given node i in G with equal importance, GAT computes a learned weighted average of the representations of N_i . It computes a score for every edge (j, i) , which indicates the importance of the features of the neighbor j to the node i :

$$e(h_i, h_j) = \text{LeakyReLU}(a^T \cdot [Wh_i || Wh_j]), \quad (1)$$

where $a \in \mathbb{R}^{2D}$, $W \in \mathbb{R}^{D \times D}$ are learned, and $||$ denotes vector concatenation. These attention scores are normalized across all neighbors $j \in N_i$ using softmax, and the attention function is defined as:

$$a_{ij} = \text{softmax}_j(e(h_i, h_j)) = \frac{\exp(e(h_i, h_j))}{\sum_{j' \in N_i} \exp(e(h_i, h_{j'}))}. \quad (2)$$

We then computed a weighted average of the transformed features of the neighbor nodes (followed by a nonlinearity σ) as the new representation of node i , using the normalized attention coefficients:

$$h'_i = \sigma(\sum_{j \in N_i} a_{ij} \cdot Wh_j). \quad (3)$$

We refer to the previous three equations as the $\text{GA}(\cdot)$. The CML has a similar architecture to MLP-Mixer with the channel MLP and has no matrix transposition. Based on the above description, the GraphMixer layer processes image-graph $IG = (H, A)$ as:

$$\begin{aligned} H'_l &= H_{l-1} + \text{NML}(\text{LN}(\text{GA}(H_{l-1}, A))) \\ H_l &= H'_l + \text{CML}(\text{LN}(H'_l)), \end{aligned} \quad (4)$$

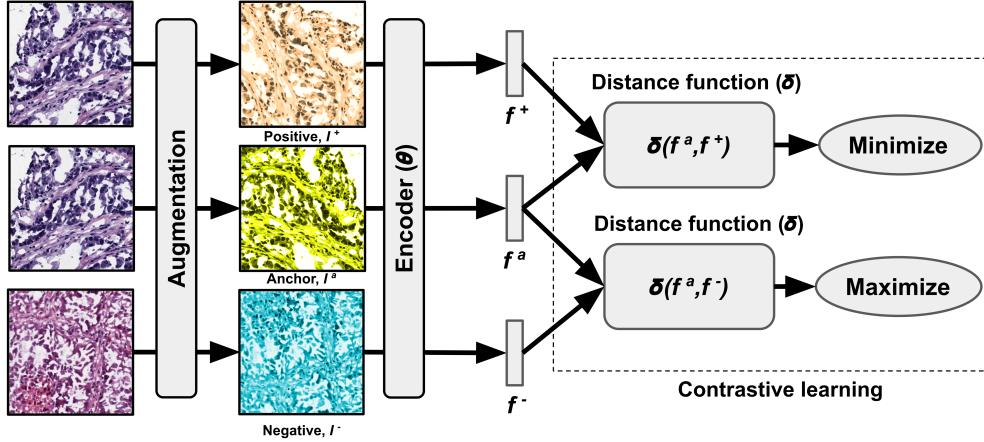


Figure 3: **Feature generation and contrastive learning.** We applied three distinct augmentation functions, including random color distortions, random Gaussian blur, and random cropping followed by resizing back to the original size. The encoder, θ , received an augmented image and generates an embedding vector as the output. These vectors are used for computing contrastive learning loss to train the encoder. After training, we used the embedding vectors for graph construction.

where $l \in [1, \dots, L]$ is the index of GraphMixer layers. Here H'_l and H_l are the output features of the NML and the CML for GraphMixer layer l , respectively.

2.2.3 Genomic signature embeddings

Gene counts derived from bulk RNA sequencing data from LUAD (229 CPTAC; 517 TCGA) and LUSC (109 CPTAC; 501 TCGA) tumor samples were obtained from the Genomic Data Commons [7]. For each dataset (CPTAC-LUAD, TCGA-LUAD, CPTAC-LUSC, TCGA-LUSC), duplicate samples and low-signal or invariant genes were filtered out. Specifically, gene filtering was conducted on normalized gene count data (the EdgeR Bioconductor package was used to compute log2 counts per million using library sizes estimated using the trimmed mean of M-values method) [15], by removing genes with a zero interquartile range or a cumulative sum across samples equal to or below one. Duplicate gene names were collapsed using WGCNA's 'collapseRows' function with the default 'maxMean' method [13]. The final set of genes ($n=12,306$ genes) was the union set of LUAD genes ($n=11,975$ intersecting genes between TCGA-LUAD and CPTAC-LUAD) and LUSC genes ($n=11,933$ intersecting genes between TCGA-LUSC and CPTAC-LUSC). Each dataset was re-normalized as described above using the final set of genes. Batch correction was performed separately for LUAD and LUSC samples using ComBat [11], with TCGA serving as the reference batch for both. Using the batch corrected and normalized gene matrices for LUAD and LUSC, we encoded each gene signature into embeddings using a fully-connected layer to get feature representations. Let $\{S_i\}_{i=1}^M$ be M unique gene signatures associated with distinct bio-

logical functions or clinical phenotypes (e.g., overall survival), where $S_i \in \mathbb{R}^{P \times 1}$ with P genes and P is variant for different signatures. We used the trainable per-signature encoding layer to encode S_i to a D -dimensional genomic signature embedding $B_i = \Phi_i(S_i)$, where $B_i \in \mathbb{R}^{D \times 1}$. Finally, we concatenated all M signature embeddings B_i together as B , where $B \in \mathbb{R}^{M \times D}$.

2.2.4 Genomic and image fusion module

To capture interpretable image-genomic interactions that exist in the tumor microenvironment, we added a Query-Key-Value (QKV) attention (Fig. 1), inspired by prior work [3, 23], that directly models pairwise interactions between each node in IG and each genomic signature. The QKV attention uses genomic signature embeddings to encode the imaging-graph features into imaging-genomic features, using the following mapping:

$$QKV(B, H) = \text{softmax}\left(\frac{W_q B H^T W_k^T}{\sqrt{D}}\right) W_v H, \quad (5)$$

where $W_q, W_k, W_v \in \mathbb{R}^{D \times D}$ are trainable weights, $B \in \mathbb{R}^{M \times D}$ are the genomic signatures embeddings, and $H \in \mathbb{R}^{N \times D}$ are the nodes embeddings after L GraphMixer layers.

2.2.5 Global attention pooling

Inspired by [9], we proposed a gating-based weighted average of nodes where weights are determined by a neural network. Additionally, the weights must sum to 1 to be invariant to the size of IG . Let $H = \{h_1, \dots, h_N\}$ be node

features after the L GraphMixer layers ($L = 3$ in our case), and we propose the following global attention pooling:

$$h_f = \sum_{k=1}^N a_k h_k, \quad \text{where} \quad (6)$$

$$a_k = \frac{\exp\{w^T(\tanh(Vh_k^T) \odot \text{sigm}(Uh_k^T))\}}{\sum_{j=1}^N \exp\{w^T(\tanh(Vh_j^T) \odot \text{sigm}(Uh_j^T))\}},$$

$w \in \mathbb{R}^{L \times 1}$ and $V, U \in \mathbb{R}^{L \times M}$ are learnable parameters, \odot is an element-wise multiplication and $\text{sigm}(\cdot)$ is the sigmoid non-linearity.

2.2.6 Survival loss function

The pooled WSI-level embedding after global attention pooling was subsequently supervised using the cross entropy-based Cox proportional loss function for survival analysis [4]. We first partitioned the continuous timescale of overall patient survival time in months, T into 4 non-overlapping bins: $[t_0, t_1], [t_1, t_2], [t_2, t_3], [t_3, t_4]$, where $t_0 = 0, t_4 = \infty$ and t_1, t_2, t_3 define the quartiles of event times for uncensored patients in the TCGA cohort. The discretized event time Y_i of patient i with continuous event time T_i is then defined as:

$$Y_i = d \quad \text{if} \quad T_i \in [t_d, t_{d+1}) \quad \text{for } d \in \{0, 1, 2, 3\}. \quad (7)$$

For a given patient i with the discrete event time Y_i and h_f after global attention pooling, we modeled the hazard function using the sigmoid activation defined as:

$$f_{\text{hazard}}(d) = P(Y_i = d | Y_i \geq d) = \text{sigmoid}(h_f)[Y_i], \quad (8)$$

where $[Y_i]$ means getting value of index Y_i , and the survival function is then defined as:

$$f_{\text{survival}}(d) = P(Y_i > d) = \prod_{k=1}^d (1 - f_{\text{hazard}}(k)). \quad (9)$$

The loss L during the training is defined using the log-likelihood function for a discrete survival model [26] as $N \rightarrow M \rightarrow 1$:

$$L_{\text{total}} = \alpha \cdot L_{\text{uncensored}} + \beta \cdot L_{\text{censored}}, \quad (10)$$

where $\alpha + \beta = 1$ and

$$L_{\text{uncensored}} = -(1 - c_j) \cdot \log(f_{\text{survival}}(Y_i - 1)) - (1 - c_j) \cdot \log(f_{\text{hazard}}(Y_i)) \quad (11)$$

$$L_{\text{censored}} = -c_j \cdot \log(f_{\text{survival}}(Y_i)) \quad (12)$$

2.3 Model interpretability

Interpretability methods, such as GradCAM [16], provide valuable visual perspectives on the inner workings of neural networks, especially in the context of image classification. Specifically tailored for convolutional neural networks (CNNs), GradCAM typically concentrates on the final convolutional layer, emphasizing the significant regions of an image that influence class predictions. Nevertheless, the dimensions of this layer mean the derived heatmap is inherently of a coarse resolution. Consequently, GradCAM does not directly align with our model's structure, which does not utilize convolutional layers.

We adapted the GradCAM framework to address the aforementioned challenges and identify spatial features that are highly associated with tumor survival. We denoted the interpretations as survival activation maps (SAM). First, we computed the gradients of logits of the h_f for the first survival time bin, with respect to feature maps A_j of the last GraphMixer layer. This approach would produce fine-grained localization maps compared to GradCAM. It is because GradCAM depends on the feature maps from layers that have been subjected to pooling, potentially losing detailed spatial information. Then these gradients flowing back are average-pooled over N nodes in the imaging-graph to obtain the importance weights α_j for each feature map A_j :

$$\alpha_j = \frac{1}{N} \sum_i^N \frac{\partial \text{logits}(h_f)}{\partial A_{i,j}} \quad (13)$$

We computed the weighted sum of the feature maps using the importance weights α_j to obtain the visualization of the areas that contributed most to tumor survival:

$$L_{\text{SAM}} = \sum_j^D \alpha_j A_j \quad (14)$$

GradCAM typically highlights areas in the image that positively contribute to a class. It might not clearly show regions that provide evidence against a class (absence of negative evidence). Thus, our interest lies in the magnitude of L_{SAM} , whose intensity should be increased to remain relevant to survival risk.

We also utilized SAM to evaluate the importance of gene expression signatures. On the FSM model, we computed gradients with respect to the feature map of the QKV layer in the genomic and image fusion modules. We then used Eq. 13 and Eq. 14 to compute the importance scores for all the gene expression signatures.

Table 2: Model performance. Comparison of our models (ISM & FSM) with other published methods. The concordance index (c-index), and time-dependent area under the curve (tAUC) are shown. Five-fold cross validation was performed and mean as well as standard deviation (in bracket) values are reported on the TCGA cohort. * indicates c-index of CPTAC as the external cohort for model testing.

(a) c-index					
Method	LUAD	LUSC	Method	LUAD	LUSC
SNN (Genomic only) [12]	0.539(0.069)	--	MCAT (WSI+Genomic) [3]	0.629(0.032)	--
Attention MIL (WSI only) [10]	0.559(0.060)	--	PORPOISE (WSI+Genomic) [4]	0.600(0.046)	0.538(0.033)
Attention MIL (WSI+Genomic) [10]	0.563(0.050)	--	Ours (WSI only (ISM))	0.687(0.029)	0.652(0.049)
DeepAttnMISL (WSI only) [25]	0.548(0.050)	--	Ours (WSI+Celltype (FSM))	0.703 (0.017)	0.664 (0.043)
DeepAttnMISL (WSI+Genomic) [25]	0.595(0.061)	--	Ours (WSI only (ISM)) *	0.540(0.025)	0.567(0.029)
Patch-GCN (WSI only) [2]	0.585(0.012)	--	Ours (WSI+Celltype (FSM)) *	0.579(0.006)	0.678(0.011)

(b) tAUC				
Method	tAUC			
	TCGA LUAD	TCGA LUSC	CPTAC LUAD	CPTAC LUSC
PORPOISE (WSI+Genomic)	0.613(0.061)	0.528(0.063)	--	--
Ours (WSI only (ISM))	0.645(0.083)	0.647(0.060)	0.587(0.026)	0.649(0.782)
Ours (WSI+Celltype (FSM))	0.679(0.060)	0.681(0.085)	0.613(0.010)	0.792(0.025)

3 Experiments

Using WSIs, bulk transcriptomics and survival data from three datasets (NLST, TCGA & CPTAC), we developed and validated an attention-based fusion framework by which to perform multimodal survival analysis. Our approach integrates bulk transcriptomics data with WSIs to predict patient survival, provides a means for topographic mapping of bulk gene expression on WSIs, generates WSI-level as well as an integrated multimodal spatial signature that points to tissue features associated with tumor survival on low- and high-risk cancer patients. We trained two models, one that used WSIs only (i.e., imaging survival model (ISM)), and the fusion survival model (FSM) that integrated WSIs and gene expression signatures. We used NLST for generating node-level features for graph construction [27], TCGA for training the models using 5-fold cross-validation, and CPTAC as an independent dataset for testing. We implemented the model using PyTorch (v1.12.1) and one NVIDIA 2080Ti graphics card with 11 GB memory on a GPU workstation. We set our model configurations as $L = 3$, $D = 64$ and $M = 5$, which is the number of different gene signatures we used in our paper. Considering that the imaging-graph has varying sizes, we used a batch size of 1. The training speed was about 5.1 iterations/s, and it took about 30 mins for each fold to reach convergence. The inference speed was 2.71 seconds per WSI with a batch size of 1.

3.1 Expert annotations

A subset of WSIs from the CPTAC cohort (10 cases) were uploaded to a secure, web-based software (PixelView; deepPath, Boston, MA). Using an Apple Pencil and an iPad,

tumor regions of LUAD were annotated by their histologic pattern (solid, micropapillary, cribriform, papillary, acinar, and lepidic). Histologic features of the tumor were also annotated including necrosis and vascular invasion. Non-tumor regions were annotated as normal or premalignant airway epithelium, normal or inflamed lung, stroma, cartilage, and submucosal glands. We then evaluated the extent of overlap between the model-derived saliency maps and the expert-driven annotations.

3.2 Performance metrics

We reported cross-validated concordance index (c-index), which was averaged over the 5-folds. We also computed time-dependent area under the curve (tAUC) across 5-folds, which is a measure that evaluates how the model stratifies patient risk across various time points.

3.3 Ablation studies

We performed various ablation studies to evaluate different feature extractors, type of node connectivity, as well as the significance of the graph mixer layer (GML) components, including the node mixing layer (NML) and the channel mixing layer (CML). We performed these studies on the ISM and FSM models, respectively. Additionally, we assessed the performance of GML without the genomic module.

3.4 Data and code availability

Data can be downloaded from the TCGA, CPTAC and NLST websites, respectively. Python scripts will be made

available on GitHub upon acceptance of our manuscript.

4 Results

Our attention-based framework demonstrated a robust ability to predict patient survival outcomes. The ISM model's performance exceeded that of other recent methodologies, including Attention MIL, DeepAttnMISL, and Patch-GCN, as illustrated in Table 2. We documented a significant improvement in the c-index metric, reflecting an increase exceeding 10% for LUAD survival. The FSM model, which integrates both WSI and genomic data, yielded superior tAUC and c-index results across LUAD and LUSC categories. Specifically, in comparison to the PORPOISE method, our technique achieved an augmentation in the c-index metric by over 8% for LUAD and more than 11.4% for LUSC, utilizing the identical cohort of TCGA cases as referenced in previously published studies [4]. Additionally, our model manifested an elevated tAUC when assessed on the external CPTAC dataset for both LUAD and LUSC classifications. Within the CPTAC samples, the FSM model-derived gene signature importance scores indicated that the Sinjab B Cell and Plasma cell signatures were paramount for LUAD and LUSC, respectively. Such findings provide a methodology for discerning gene signatures that synergistically influence the overarching prediction in conjunction with pathological characteristics, a crucial consideration for neoplasms such as LUSC, which are characterized by a scarcity of prognostic biomarkers.

Our framework is also capable of generating interpretable maps which compare favorably with expert-driven annotations. The generated SAMs pointed to WSI regions that were associated with prognostic histologic features and patterns (Fig. 4). Qualitatively, we observed a high degree of overlap between the pathologist annotations with the salient tissue regions identified by the SAMs. For example, in the LUAD low-risk case, the ISM model more strongly highlighted the acinar and lepidic histologic patterns compared to the more aggressive solid pattern. In the LUAD high-risk case, the ISM model highlighted all histologic patterns including the more aggressive cribiform pattern. In the case of LUSC, the model highlighted regions of tumor and stromal tissue indicating that areas of the tumor microenvironment may be important to the survival prediction. Interestingly, the SAMs for both the ISM and FSM models localized similar neighborhoods as highly associated with patient survival, with FSM model often highlighting additional regions. The model overlap with prognostic pathologic annotations suggests its clinical relevance and interpretability.

We observed a drop in c-index on CPTAC but the tAUC was relatively high in Table 2. The reason for this disparity could be due to different sensitivities to time: tAUC is

explicitly time-dependent and evaluates the model performance at various time points, whereas the c-index provides a general measure of concordance. If the model is highly sensitive to certain time intervals (performing well in those intervals and poorly elsewhere), this discrepancy could occur. The model was trained on TCGA whose range of survival time is [4, 7143] in days for LUAD, [0, 4765] in days for LUSC. The range of survival time in CPTAC is [0, 1836] days for LUAD, and [0, 1785] days for LUSC. So almost all CPTAC samples are high-risk cases with TCGA as the reference. The low c-index indicates that the ranking of all the high-risk cases is not favorable compared to TCGA. However, tAUC indicated that the model assesses the true positive and false positive rates well over various thresholds and time points.

We provided a comparison of SAM and the traditional attention-based heatmap (TAH) based on multiple instance learning (MIL) in Fig. 5. The TAH visualizes the weights assigned to nodes, and they are considered as the ‘importance’ of nodes after MIL is trained. The softmax function in TAH is sensitive to large values in the node’s weights. Large values can lead to extremely small attention for the other nodes, which may not reflect the actual uncertainty or variability in the data. In comparison, our approach uses both the gradients and activations within the graph network, and this provides a balance between node details (from activations) and semantic information (from gradients).

From the ablation studies presented in Table 3, we observed: 1) The GML resulted in the best performance when NML and CML were included. NML is responsible for mixing information between different patches to learn local spatial relationships and fine-grained patterns within the WSI. CML is responsible for mixing information between channels to capture high-level interactions between features. Experiments shed light on the relative importance of NML versus CML, but both layers are essential to our approach. 2) Features based on semi-supervised learning (SSL) enhance model performance compared with ImageNet pretrained features. Experiments show that our model outperforms SOTA methods using ImageNet pretrained features to construct graphs. ResNet50 does not achieve better performance than ResNet18 because of the limited dataset (NLST) used for SSL. We observed that ResNet18 is sufficient and more efficient to achieve good performance. 3) NML using GAT performs better than NML using GCN. Experiments show that our model outperforms other SOTA methods using GCN as NML, highlighting the robustness of our approach. 4) We noticed that an 8-neighbor connectivity performs better than the 4-neighbor connectivity. An 8-neighbor connectivity considers diagonal as well as horizontal and vertical spatial connectivity between nodes. Important relationships between patches in the diagonal may be ignored when 4-neighbor connectivity

Table 3: Ablation studies on model structures, graph featurization and graph construction. The first two rows show the ISM and the FSM models. Conn: 4-node or 8-node connectivity in graph. Here GML: graph mixer layer, GNN: graph neural network, GAM: genomic attention module, GAP: global attention pooling, CL: fine-tuning Resnet using contrastive learning on NLST, ImageNet: Resnet pretrained on ImageNet, c-index: concordance index, tAUC: time-dependent area under the curve, $*$: best performance on ISM model in each column, and \dagger : best performance on FSM model in each column. Five-fold cross validation was performed on the TCGA cohort; mean and standard deviation values are reported.

Graph Construction		Model			C-index		tAUC	
Featurization	Conn	GML	GAM	GAP	LUAD	LUSC	LUAD	LUSC
CL Resnet18	8-node	NML+CML	x	✓	0.687(0.029)*	0.652(0.049)*	0.645(0.083)	0.647(0.060)*
CL Resnet18	8-node	NML+CML	✓	✓	0.703(0.017) \dagger	0.664(0.043) \dagger	0.679(0.060) \dagger	0.681(0.085) \dagger
CL Resnet18	8-node	x	x	✓	0.589(0.022)	0.518(0.014)	0.552(0.072)	0.554(0.043)
CL Resnet18	8-node	NML	x	✓	0.654(0.021)	0.607(0.030)	0.604(0.072)	0.646(0.071)
CL Resnet18	8-node	CML	x	✓	0.589(0.022)	0.532(0.025)	0.567(0.083)	0.565(0.033)
CL Resnet18	8-node	x	✓	✓	0.588(0.042)	0.540(0.025)	0.602(0.044)	0.555(0.036)
CL Resnet18	8-node	NML	✓	✓	0.667(0.028)	0.622(0.016)	0.628(0.050)	0.658(0.034)
CL Resnet18	8-node	CML	✓	✓	0.593(0.032)	0.541(0.024)	0.623(0.069)	0.642(0.029)
ImageNet Resnet18	8-node	x	x	✓	0.549(0.048)	0.529(0.018)	0.601(0.050)	0.561(0.027)
ImageNet Resnet18	8-node	NML+CML	x	✓	0.658(0.043)	0.619(0.033)	0.624(0.061)	0.632(0.021)
CL Resnet50	8-node	NML+CML	x	✓	0.679(0.040)	0.642(0.027)	0.675(0.053)*	0.644(0.041)
CL Resnet18	8-node	GCN+CML	x	✓	0.677(0.044)	0.598(0.040)	0.630(0.064)	0.623(0.043)
CL Resnet18	8-node	GCN+CML	✓	✓	0.685(0.043)	0.647(0.030)	0.663(0.057)	0.667(0.033)
Imagenet Resnet18	8-node	GCN+CML	x	✓	0.622(0.012)	0.602(0.037)	0.605(0.037)	0.634(0.039)
Imagenet Resnet18	8-node	GCN+CML	✓	✓	0.637(0.023)	0.623(0.045)	0.644(0.029)	0.667(0.025)
CL Resnet18	4-node	NML+CML	x	✓	0.667(0.023)	0.638(0.038)	0.644(0.066)	0.622(0.061)
CL Resnet18	4-node	NML+CML	✓	✓	0.691(0.037)	0.648(0.034)	0.649(0.065)	0.670(0.032)

is used. In the presence of noise or imperfections in an image, an 8-neighbor connectivity can provide better robustness as it incorporates more information from its neighbors.

5 Discussion

We developed an interpretable deep learning approach that performs attention-based fusion of WSIs and bulk transcriptomics data to predict patient survival. By the standards of various metrics, our approach displayed superior performance compared with the SOTA approaches, yielding consistent predictions in two different sample sets – TCGA and CPTAC. Beyond model performance, we can generate attention-based SAMs that highlight tumor regions on the WSIs that correspond to those identified via expert annotations on low- and high-risk cases. Additionally, the SAMs identified WSI regions that extended beyond the tumor regions to reveal image-genomic relationships that could be implicated in patient survival.

The attention mechanism serves to enhance model performance by focusing on the most relevant aspects of each data modality in a context-aware manner. Additionally, our framework aids in capturing complex interdependencies between images and gene expression at varying levels of granularity. Another significant technical advantage is the interpretability of the model’s decision-making process - the attention-based mechanism can highlight the important fea-

tures in each modality, providing valuable insights into the model’s rationale. The graph attention layer enabled every node in the imaging graph attend to its neighbors given its own representation as the query so that the local relationships are better learned than the previously published methods. Furthermore, by zeroing in on the most salient data sections in each modality, our framework boosts computational efficiency, reducing the processing load without compromising on the model performance.

In our study, we compared model-derived saliency maps with expert-driven annotations on a small set of cases and thus our conclusions are limited. The small set of cases was selected because manual annotation is a tedious task, and the pathologist’s availability was limited. Moreover, the pathologist annotated histologic patterns and features, some of which are associated with survival, but a larger study that includes pathologic annotation of tumor tissues and spatial omics is needed to evaluate the regions highlighted by both the ISM and FSM models. In addition, the negative log-likelihood (NLL) loss function used in our model has some limitations that include the assumption that the proportional hazards is integral to the likelihood formulation. If this assumption is violated (i.e., the hazard ratios are not constant over time), the NLL optimization may produce biased estimates. Censored observations can also complicate the estimation process as they provide partial information about the survival time. Too much censoring can lead to impre-

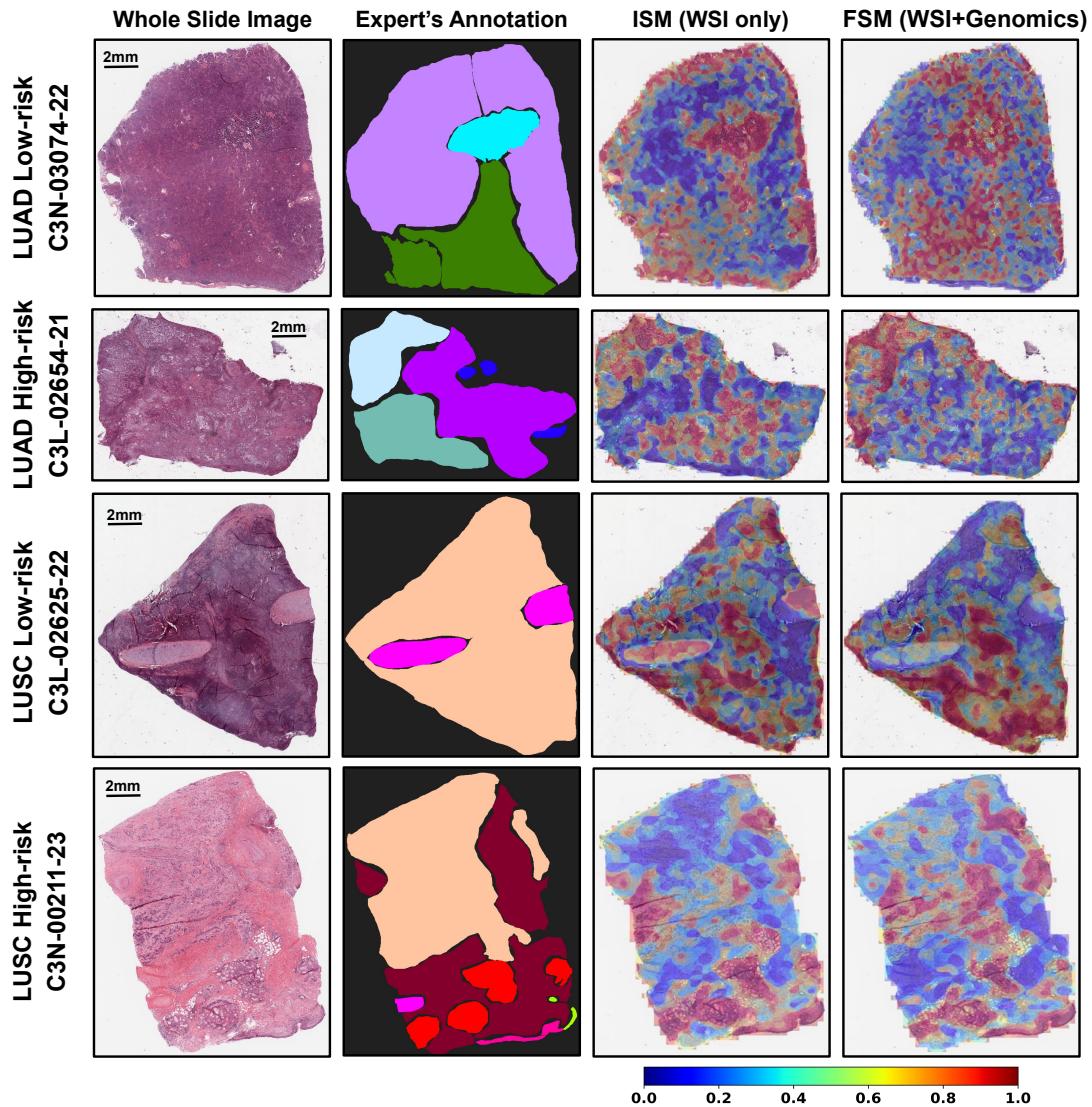


Figure 4: Survival activation map (SAM) on human NSCLC samples. The first column shows the H&E WSIs, the second column shows the pathologist annotations of the tissue, the third, and fourth columns indicate the SAMs based on the ISM and the fusion models, respectively. Top row, low-risk LUAD case where annotations are: micropapillary (cyan), lepidic (dark green), and solid (purple) histologic patterns. Second row, high-risk LUAD case where annotations are: papillary (gray), cribiform (dark purple), and acinar (aqua) histologic patterns and inflamed lung (navy blue). Third and fourth rows, low-risk and high-risk LUSC cases, respectively where annotations are: tumor tissue (peach), stroma (dark red), submucosal glands (red), cartilage (pink), and airway epithelium – normal (green) and reserve cell hyperplasia (magenta, adjacent to green). The colorbar is relevant to the heatmaps shown in the last two columns.

cise estimates, affecting the robustness of the optimization. The censoring bias in survival prediction presents a significant challenge to model training, especially as new datasets may exhibit widely varying censoring rates. To handle the censoring effect in survival analysis, future work could use the inverse probability of censoring weighting to create a pseudo-population that is representative of the population

without censoring. By re-weighting individuals based on their probability of being uncensored, one can potentially reduce bias due to censoring.

We demonstrated the applicability of our approach to NSCLC survival, however, future work will include testing our model using various cell type and prognostic gene expression signatures that are implicated in cancer survival.

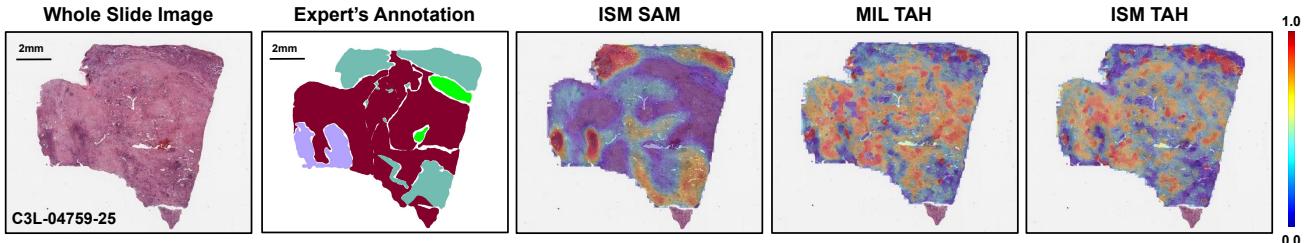


Figure 5: Model interpretability comparison. Survival activation map (SAM) along with traditional attention-based heatmap (TAH), which is commonly used in multiple instance learning (MIL), are shown. The figure denotes a high-risk LUAD case, where annotations are: stroma (dark red), vascular invasion (green), and solid (purple) and acinar (aqua) histologic patterns.

Additional studies to generate data on NSCLC specimens using modern spatial technologies will help validate the biological insights obtained via SAMs. In the future, extension of this framework to other cancers and other types of omic data is needed to fully appreciate its broad potential in performing multimodal survival analysis.

References

- [1] S. Brody, U. Alon, and E. Yahav. How attentive are graph attention networks? In *International Conference on Learning Representations (ICLR)*, 2022.
- [2] R. J. Chen, M. Y. Lu, M. Shaban, C. Chen, T. Y. Chen, D. F. Williamson, and F. Mahmood. Whole slide images are 2d point clouds: Context-aware survival prediction using patch-based graph convolutional networks. In *Medical Image Computing and Computer Assisted Intervention – MICCAI 2021*, pages 339–349. Springer International Publishing, 2021.
- [3] R. J. Chen, M. Y. Lu, W.-H. Weng, T. Y. Chen, D. F. Williamson, T. Manz, M. Shady, and F. Mahmood. Multimodal co-attention transformer for survival prediction in gigapixel whole slide images. In *2021 IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 3995–4005, 2021.
- [4] R. J. Chen, M. Y. Lu, D. F. Williamson, T. Y. Chen, J. Lipkova, Z. Noor, M. Shaban, M. Shady, M. Williams, B. Joo, and F. Mahmood. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. *Cancer Cell*, 40(8):865–878.e6, 2022.
- [5] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual representations. In H. D. III and A. Singh, editors, *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 1597–1607. PMLR, 13–18 Jul 2020.
- [6] N. J. Edwards, M. Oberti, R. R. Thangudu, S. Cai, P. B. McGarvey, S. Jacob, S. Madhavan, and K. A. Ketchum. The CPTAC data portal: A resource for cancer proteomics research. *Journal of Proteome Research*, 14(6):2707–2713, 2015.
- [7] R. Grossman, A. Heath, V. Ferretti, H. Varmus, D. Lowy, W. Kibbe, and L. Staudt. Toward a shared vision for cancer genomic data. *New England Journal of Medicine*, 375:1109–1112, 09 2016.
- [8] B. He, L. Bergensträhle, L. Stenbeck, A. Abid, A. Andersson, A. Borg, J. Maaskola, J. Lundeberg, and J. Zou. Integrating spatial gene expression and breast tumour morphology via deep learning. *Nat Biomed Eng*, 4(8):827–834, 2020.
- [9] M. Ilse, J. Tomczak, and M. Welling. Attention-based deep multiple instance learning. In J. Dy and A. Krause, editors, *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pages 2127–2136. PMLR, 10–15 Jul 2018.
- [10] M. Ilse, J. Tomczak, and M. Welling. Attention-based deep multiple instance learning. In J. Dy and A. Krause, editors, *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pages 2127–2136. PMLR, 10–15 Jul 2018.
- [11] W. Johnson, C. Li, and A. Rabinovic. Adjusting batch effects in microarray expression data using empirical bayes methods. *Biostatistics (Oxford, England)*, 8:118–27, 01 2007.
- [12] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.

- [13] P. Langfelder and S. Horvath. Langfelder p, horvath s. wgcna: an r package for weighted correlation network analysis. *bmc bioinform* 9: 559. *BMC bioinformatics*, 9:559, 01 2009.
- [14] W. Li, H. Liu, T. Guo, H. Tang, and R. Ding. Graphmlp: A graph mlp-like architecture for 3d human pose estimation. *arXiv preprint arXiv:2206.06420*, 2022.
- [15] M. Robinson, D. McCarthy, and G. Smyth. Robinson md, mccarthy dj, smyth gk.. edger: a bioconductor package for differential expression analysis of digital gene expression data. *bioinformatics* 26: 139–140. *Bioinformatics (Oxford, England)*, 26:139–40, 11 2009.
- [16] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra. Grad-CAM: Why did you say that? visual explanations from deep networks via gradient-based localization. *CoRR*, abs/1610.02391, 2016.
- [17] A. Sinjab, G. Han, W. Treekitkarnmongkol, K. Hara, P. M. Brennan, M. Dang, D. Hao, R. Wang, E. Dai, H. Dejima, J. Zhang, E. Bogatenkova, B. Sanchez-Espiridion, K. Chang, D. R. Little, S. Bazzi, L. M. Tran, K. Krysan, C. Behrens, D. Y. Duose, E. R. Parra, M. G. Raso, L. M. Solis, J. Fukuoka, J. Zhang, B. Sepesi, T. Cascone, L. A. Byers, D. L. Gibbons, J. Chen, S. J. Moghaddam, E. J. Ostrin, D. Rosen, J. V. Heymach, P. Scheet, S. M. Dubinett, J. Fujimoto, I. I. Wistuba, C. S. Stevenson, A. Spira, L. Wang, and H. Kadara. Resolving the spatial and cellular architecture of lung adenocarcinoma by multiregion Single-Cell sequencing. *Cancer Discov*, 11(10):2506–2523, May 2021.
- [18] X. Tan, A. Su, M. Tran, and Q. Nguyen. SpaCell: integrating tissue morphology and spatial gene expression to predict disease cells. *Bioinformatics*, 36(7):2293–2294, 2020.
- [19] TCGA Research Network. The cancer genome atlas program, 2021.
- [20] The National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. *New England Journal of Medicine*, 365(5):395–409, 2011.
- [21] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, M. Lucic, and A. Dosovitskiy. MLP-mixer: An all-MLP architecture for vision. *CoRR*, abs/2105.01601, 2021.
- [22] K. J. Travaglini, A. N. Nabhan, L. Penland, R. Sinha, A. Gillich, R. V. Sit, S. Chang, S. D. Conley, Y. Mori, J. Seita, G. J. Berry, J. B. Shrager, R. J. Metzger, C. S. Kuo, N. Neff, I. L. Weissman, S. R. Quake, and M. A. Krasnow. A molecular cell atlas of the human lung from single-cell RNA sequencing. *Nature*, 587(7835):619–625, Nov. 2020.
- [23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. *CoRR*, abs/1706.03762, 2017.
- [24] B. Velten, J. M. Brauner, R. Argelaguet, D. Arnol, J. Wirbel, D. Bredikhin, G. Zeller, and O. Stegle. Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO. *Nat Methods*, 19(2):179–186, 2022.
- [25] J. Yao, X. Zhu, J. Jonnagaddala, N. Hawkins, and J. Huang. Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. *Medical Image Analysis*, 65:101789, 07 2020.
- [26] S. G. Zadeh and M. Schmid. Bias in cross-entropy-based training of deep survival networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(9):3126–3137, 2021.
- [27] Y. Zheng, R. H. Gindra, E. J. Green, E. J. Burks, M. Betke, J. E. Beane, and V. B. Kolachalama. A graph-transformer for whole slide image classification. *IEEE Transactions on Medical Imaging*, 41(11):3003–3015, 2022.