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Abstract

Multimodal machine learning models are being devel-
oped to analyze pathology images and other modalities,
such as gene expression, to gain clinical and biological in-
sights. However, most frameworks for multimodal data fu-
sion do not fully account for the interactions between dif-
ferent modalities. Here, we present an attention-based fu-
sion architecture that integrates a graph representation of
pathology images with gene expression data and concomi-
tantly learns from the fused information to predict patient-
specific survival. In our approach, pathology images are
represented as undirected graphs, and their embeddings are
combined with embeddings of gene expression signatures
using an attention mechanism to stratify tumors by patient
survival. We show that our framework improves the sur-
vival prediction of human non-small cell lung cancers, out-
performing existing state-of-the-art approaches that lever-
age multimodal data. Our framework can facilitate spatial
molecular profiling to identify tumor heterogeneity using
pathology images and gene expression data, complement-
ing results obtained from more expensive spatial transcrip-
tomic and proteomic technologies.

1 Introduction

The field of spatial biology is rapidly expanding as tech-
nologies such as spatial proteomics and transcriptomics
seek to unravel the complex spatial organization of cells
and how it influences cellular phenotypes in health and
disease. The three-dimensional organization of cells into

tissue microenvironments has a significant impact on dis-
ease development, progression, and outcome. Spatial omic
technologies are also enabling connections between single
cell omic profiles and pathology. Many spatial technolo-
gies produce spatial omic data on the same tissue specimen
stained using hematoxylin and eosin (H&E) and digitized
to produce a standard pathology whole slide image (WSI).
Several methods combining spatial omic data and extracted
pathology features have been published [8, 18, 24] to im-
prove cell type identification, cell type deconvolution, spa-
tial pattern recognition, and predict omic features on pathol-
ogy images alone. While these technologies and methods
are promising, the data are expensive and technically chal-
lenging to generate resulting in a small number of cases
profiled that may only capture a portion of the entire WSIL.
We sought to develop a method to utilize digitized H&E
WSIs and bulk-derived omic data, which are less expen-
sive to collect and often present across large number of
samples, to spatially localize predictive features and char-
acterize disease-associated alterations in tissue microenvi-
ronments. The method allows utilization of large public re-
sources of WSIs and bulk omic data, such as The Cancer
Genome Atlas (TCGA) [19], to identify interesting spatially
resolved disease-associated alterations. The method can be
used to generate hypotheses and identify regions of interest
within tissues based on large sample sets that can be further
characterized using modern spatial technologies.

Digitized H&E WSIs have been used in advanced ma-
chine learning frameworks, computer vision, and multi-
modal learning to quantify the molecular underpinnings of
disease, estimate markers of disease progression, and pre-
dict patient survival. Computer methods to analyze WSIs
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for automated diagnosis and quantification of morphologic
biomarkers have seen remarkable progress. Methods have
been developed to analyze multimodal datasets that predict
outcome metrics such as survival by combining clinical,
imaging, and genomic data using fusion frameworks. Chen
and colleagues recently developed a weakly-supervised,
late-fusion framework to combine WSIs and correspond-
ing bulk genomic data and predict survival on various can-
cers [4]. However, learning the spatial relevance of non-
imaging data such as bulk gene expression is not straightfor-
ward using late fusion. To understand the spatial relation-
ships governing disease-associated alterations in the tissue
microenvironment, we sought an approach that integrates
digitized WSIs and bulk omic data and learns early in the
data fusion training cycle. While other researchers have pre-
viously explored the development of mid-level-fusion and
mixer architectures [3,21] as well as the use of graph-based
representations of WSIs [27], our work is unique in mixing
node and edge embeddings along with fusion of bulk gene
expression embeddings to learn a multimodal topographic
mapping to predict survival.

We proposed an algorithmic framework that can inte-
grate digital pathology and bulk transcriptomic data to ac-
curately predict patient survival. Our framework (Fig. 1),
allows for representation of WSIs in the form of undirected
graphs (Fig. 2), whose embeddings are fused with embed-
dings of bulk omic data to predict patient survival. In the
graph, nodes represent local image patches and edges rep-
resent patch adjacency. Using the WSI-graph as input,
we define a graph-mixer module that comprises of node-
mixing and channel-mixing layers for learning relationships
between neighboring nodes and representative features of
each node on the WSI-graph, respectively. We pass the re-
sulting embeddings into an attention module, which also
receives embeddings of genomic signatures as input, and
thus captures local interactions between image and genomic
data. Our framework then passes the image-genomic em-
beddings to a global attention pooling layer and a subse-
quent fully-connected layer to predict survival risk. The
spatially-resolved multimodal features that our framework
computes in this fashion can be used to understand changes
in the tissue microenvironment that are predictive of pa-
tient survival. Our experiments show that our framework
is highly adaptable and can be used on a variety of bulk
omic datasets and corresponding WSIs in various disease
contexts.

1.1 Contributions

We summarize the key contributions of this work as fol-
lows:

* We developed a multimodal data fusion architecture
that combines embeddings of WSIs, represented as

undirected graphs, with embeddings of gene expres-
sion signatures using an attention-based mechanism
to predict patient survival. Our architecture is unique
in its graph-based modeling of local and global fea-
tures as well as interpretation of image-genomic inter-
actions.

Our experiments show that our framework achieves
state-of-the-art performance in predicting survival on
human non-small cell lung cancers (NSCLC): lung
adenocarcinoma (LUAD) and lung squamous cell car-
cinoma (LUSC), which are the two most common his-
tological types of NSCLCs.

L]

We introduce survival activation maps (SAM), which
are saliency-based spatial signatures on WSIs that
highlight tumor regions associated with the output
of interest. SAM can incorporate gene expression-
specific information on WSIs and generate multimodal
spatial signatures that may provide insights into tissue
features associated with patient survival.

2 Materials and methods
2.1 Study population

We obtained WSIs, bulk gene expression data, demo-
graphic, and clinical (including overall survival) data on
subjects with LUAD or LUSC from The Cancer Genome
Atlas (TCGA) [19], the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) [6], and the National Lung Screening
Trial (NLST) [20] (Table 1). TCGA is a landmark cancer
genomics program that characterized molecular alterations
in thousands of primary cancer and matched normal sam-
ples spanning several cancer types. CPTAC is a national
effort to accelerate the understanding of the molecular basis
of cancer through the application of large-scale proteome
and genome analysis. NLST was a randomized controlled
trial to determine whether screening for lung cancer with
low-dose helical computed tomography reduces mortality
from lung cancer in high-risk individuals relative to screen-
ing with chest radiography.

Several studies have reported gene expression signatures
associated with lung cancer survival. As a proof of con-
cept, in this study we focus on gene signatures associated
with B cell populations. B cell associated signatures have
been shown to be elevated in both LUAD and LUSC; how-
ever, increased tumor-infiltrating B cells are associated with
good prognosis only in LUAD. We included 5 gene expres-
sion signatures specific for B cell populations derived from
single-cell RNA sequencing data profiling of normal adja-
cent lung tissue and lung cancer tissue: Sinjab (Plasma),
Sinjab (B Cell), Sinjab (B: 1), Sinjab (B: 0) [17], Travaglini
(B) [22].
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Figure 1: Graph attention-based fusion framework. The mixer framework (left) uses the graph node embeddings and
gene expression signature embeddings and jointly learns a spatial fingerprint of the WSI-transcriptomic relationship via an

attention framework to predict survival. The graph mixer (right)

comprises of consecutive node-mixing and channel-mixing

layers for learning relationships between adjacent (blue and purple) nodes and more representative node features (blue to

green) on the graph.

2.2 Modeling framework

Our framework jointly learns to interpret WSIs and cor-
responding genomic data to predict tumor survival, and gen-
erates spatial image-genomic signatures that point to tumor
regions that are highly associated with patient survival. We
developed two survival models: (a) WSI-only model de-
noted as imaging survival model (ISM), and (b) model that
integrates WSIs and genomic data, denoted as fusion sur-
vival model (FSM).

2.2.1 Whole slide image processing and graph con-

struction

Let G = (V,E) be an undirected graph where V' is the
set of nodes representing the image patches of the WSI and
FE is the set of edges between the nodes in V' that repre-
sent whether two image patches are adjacent to each other
(Fig. 2). We denote the adjacency matrix of G as A = [A;;]
where A;; = 1 if there exists an edge (v;,v;) € E and
A;; = 0 otherwise. An image patch must be connected
to other patches and can be surrounded by at most 8 ad-
jacent patches, so the sum of each row or column of A
is at least one and at most 8. A graph can be associated
with a node feature matrix H, H € RN XC, where each
row contains the C-dimensional feature vector computed

for an image patch, i.e., node, and N |[V|. The C-
dimensional feature vector is obtained by passing an image
patch through a convolutional neural network (CNN) that
has been trained using contrastive learning [5] (Fig. 3). We
refer to the graph representation of the WSI as the imaging-

graph, IG = (H, A).

2.2.2 Node and channel mixing

Our framework is built using the imaging graph /G mixed
with corresponding bulk gene expression data. It consists of
a per-node embedding layer, a stack of L identical Graph-
Mixer layers, M per-signature encoding layers, a genomic
and image fusion module, a global attention-pooling layer,
and a fully-connected layer as the final prediction layer. Our
framework without per-signature encoding layers and the
genomic and image fusion module can work on WSIs as
the only input, and we refer to this model as imaging sur-
vival model (ISM)). The core Graph-Mixer layer has two
parts: a node mixing layer (NML) and a channel mixing
layer (CML).

The input graph node embeddings were mapped to la-
tent space via the per-node embedding module, where H €
RY*¢ — H e RY*P and D is the hidden size. The
well-known MLP-Mixer [21] works only on a fixed num-
ber of tokens and becomes less effective in handling graph-
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Figure 2: Whole slide image (WSI) processing and graph construction. WSIs were processed using a pipeline involving
foreground-background separation, tessellation into image patches followed by construction of an undirected graph. Patch
embeddings were generated using a contrastive learning framework (Fig. 3) and used as node features in the graph.

Table 1: Study population. Source: Online portals of the TCGA, CPTAC, and NLST cohorts.

Dataset Agemean Gender male  Uncensored  Survival time in days TRace ZStage

[subjects] (std) (percent) (percent) [min, max] (median) information information
TCGA LUAD [n=444] | 65(10.0) 203 (45.72%) 156 (35.14%) [4, 7143] (658) (342,51,7,1,43) (245,109, 52,23, 15)
TCGA LUSC [n=471] | 67 (8.5) 352 (74.73%) 202 (42.89%) [0, 4765] (641) (324, 30,9,0,108) (230, 151, 62, 6, 22)
CPTAC LUAD [n=199] | 63 (9.3) 129 (64.82%) 35(17.59%) [0, 1836] (456) (53,4, 1,1, 140) (104,49, 42,2,2)
CPTAC LUSC [n=102] | 66 (8.4) 83 (81.37%) 19 (18.62%) [0, 1785] (742) (30,0, 0,0, 72) (37,44,19, 1, 1)
SNLST LUAD [n=229] | 64 (5.2) 122 (53.28%) 68 (29.69%)  [189,2786] (2425) (213,8,5,1,2) (159, 24, 33, 13, 0)
SNLST LUSC [n=115] | 64 (4.9) 84 (73.04%)  38(33.04%)  [328,2751](2379) (102,5, 6,0, 2) (84,13, 14,4, 0)

1 White; Black; Asian; American Indian or Alaska Native; Unknown.
2 Stage I; Stage II; Stage III; Stage I'V; Unknown.
3 NLST is only used for fine-tuning feature generation in Fig. 3.

structured data. Given that the number of nodes in G across
all WSIs is variable, we addressed this via our architec-
ture, which resembles the GraphMLP framework [14], re-
cently proposed for human pose estimation. This frame-
work learns local and global information of the imaging-
graph. In contrast to GraphMLP, we applied the graph at-
tention layer just on the node mixing layer for token mix-
ing [21]. The graph attention layer makes every node in G
attend to its neighbors given its own representation as the
query, so that the local relationships are better learned than
the MLP-Mixer or the GraphMLP.

Specifically, our GraphMixer layer is composed of a
node mixing layer (NML) and a channel mixing layer
(CML) (Fig. 1). The NML contains a graph attention layer,
which is built upon Graph Attention Network (GAT) [1].
Unlike the Graph Convolution Network (GCN) used in
GraphMLP, which weighs all neighbors V; for a given node
¢ in G with equal importance, GAT computes a learned
weighted average of the representations of IV;. It computes
a score for every edge (j, i), which indicates the importance
of the features of the neighbor j to the node ::

e(hi, h;) = LeakyRelU(a” - [Wh;||Wh;]), (1)

where a € R2P, W € RP*P are learned, and || denotes
vector concatenation. These attention scores are normalized
across all neighbors j € N; using softmax, and the attention
function is defined as:

exp(e(hi, h;))
> en; exp(e(hi, b))
(@)
We then computed a weighted average of the transformed
features of the neighbor nodes (followed by a nonlinearity
o) as the new representation of node ¢, using the normalized
attention coefficients:

hy=0a(Y aij- Why). ®)

JEN;

a/ij = SOftman(e(hi7 h])) =

We refer to the previous three equations as the GA(-). The
CML has a similar architecture to MLP-Mixer with the
channel MLP and has no matrix transposition. Based on the
above description, the GraphMixer layer processes image-
graph IG = (H, A) as:

Hl/ = Hlfl +NML(LN(GA(H1717A)))

, . 4)
H; = H, + CML(LN(H,)),
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Figure 3: Feature generation and contrastive learning. We applied three distinct augmentation functions, including random
color distortions, random Gaussian blur, and random cropping followed by resizing back to the original size. The encoder,
6, received an augmented image and generates an embedding vector as the output. These vectors are used for computing
contrastive learning loss to train the encoder. After training, we used the embedding vectors for graph construction.

where [ € [1,..., L] is the index of GraphMixer layers. Here
H, and H; are the output features of the NML and the CML
for GraphMixer layer [, respectively.

2.2.3 Genomic signature embeddings

Gene counts derived from bulk RNA sequencing data from
LUAD (229 CPTAC; 517 TCGA) and LUSC (109 CP-
TAC; 501 TCGA) tumor samples were obtained from the
Genomic Data Commons [7]. For each dataset (CPTAC-
LUAD, TCGA-LUAD, CPTAC-LUSC, TCGA-LUSC), du-
plicate samples and low-signal or invariant genes were fil-
tered out. Specifically, gene filtering was conducted on nor-
malized gene count data (the EdgeR Bioconductor pack-
age was used to compute log2 counts per million using li-
brary sizes estimated using the trimmed mean of M-values
method) [15], by removing genes with a zero interquar-
tile range or a cumulative sum across samples equal to
or below one. Duplicate gene names were collapsed us-
ing WGCNA’s ‘collapseRows’ function with the default
‘maxMean’ method [13]. The final set of genes (n=12,306
genes) was the union set of LUAD genes (n=11,975 inter-
secting genes between TCGA-LUAD and CPTAC-LUAD)
and LUSC genes (n=11,933 intersecting genes between
TCGA-LUSC and CPTAC-LUSC). Each dataset was re-
normalized as described above using the final set of genes.
Batch correction was performed separately for LUAD and
LUSC samples using ComBat [1 1], with TCGA serving as
the reference batch for both. Using the batch corrected and
normalized gene matrices for LUAD and LUSC, we en-
coded each gene signature into embeddings using a fully-
connected layer to get feature representations. Let {S;};
be M unique gene signatures associated with distinct bio-

logical functions or clinical phenotypes (e.g., overall sur-
vival), where S; € IR”*! with P genes and P is variant
for different signatures. We used the trainable per-signature
encoding layer to encode S; to a D-dimensional genomic
signature embedding B; = ®;(S;), where B; € RP*
Finally, we concatenated all M signature embeddings B;
together as B, where B € RM*P.

2.2.4 Genomic and image fusion module

To capture interpretable image-genomic interactions that
exist in the tumor microenvironment, we added a Query-
Key-Value (QKV) attention (Fig. 1), inspired by prior
work [3, 23], that directly models pairwise interactions be-
tween each node in /G and each genomic signature. The
QKYV attention uses genomic signature embeddings to en-
code the imaging-graph features into imaging-genomic fea-
tures, using the following mapping:

W,BHT W[
vD

where W,, W, W,, € IRP*P are trainable weights, B €
RM*P are the genomic signatures embeddings, and H €
are the nodes embeddings after L GraphMixer lay-

QKV (B, H) = softmax( YWoH, (5)

RNXD

€r18.

2.2.5 Global attention pooling

Inspired by [9], we proposed a gating-based weighted av-
erage of nodes where weights are determined by a neural
network. Additionally, the weights must sum to 1 to be in-
variant to the size of IG. Let H = {hq,..., hy} be node
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features after the L GraphMixer layers (L = 3 in our case),
and we propose the following global attention pooling:

N
hf = Zakhk’ where

- (©6)
exp{w’ (tanh(Vhl) ® sigm(URL))}

S exp{w (tanh(VAT) © sigm(UAT))}

ap —

we RV and V,U € RP*M are learnable parameters, ®
is an element-wise multiplication and sigm(-) is the sigmoid
non-linearity.

2.2.6 Survival loss function

The pooled WSI-level embedding after global attention
pooling was subsequently supervised using the cross
entropy-based Cox proportional loss function for survival
analysis [4]. We first partitioned the continuous timescale
of overall patient survival time in months, 7" into 4 non-
overlapping bins: [to,t1), [t1,t2), [t2, t3), [t3, t4), Where
to = 0, t4 = oo and t1, 19, ts define the quartiles of event
times for uncensored patients in the TCGA cohort. The dis-
cretized event time Y; of patient ¢ with continuous event
time 7 is then defined as:

Yi=d if T, € [ta,tas1) ford € {0,1,2,3}.  (7)

For a given patient ¢ with the discrete event time Y; and
h¢ after global attention pooling, we modeled the hazard
function using the sigmoid activation defined as:

fhazard(d) = P(sz = d|Y; > d) = SIngId(hf)Dfl]v (®)
where [Y;] means getting value of index Y;, and the survival
function is then defined as:

fsurvival(d) Y > d = fhazard ) )

H:j&

The loss L during the training is defined using the log-
likelihood function for a discrete survival model [26] as
N—- M —1:

Llotal = Q- Luncensored + /8 : Lcensoreda (10)

where o + 8 = 1 and

Luncensored = — (1 - cj) . log(fsurvival(}/i - 1)) (11)
- (1 - cj) ’ log(fhazard(}/;))
Lecensorea = —Cj - log(fsurvival(}/i)) (12)

2.3 Model interpretability

Interpretability methods, such as GradCAM [16], pro-
vide valuable visual perspectives on the inner workings of
neural networks, especially in the context of image classi-
fication. Specifically tailored for convolutional neural net-
works (CNNs), GradCAM typically concentrates on the fi-
nal convolutional layer, emphasizing the significant regions
of an image that influence class predictions. Nevertheless,
the dimensions of this layer mean the derived heatmap is
inherently of a coarse resolution. Consequently, GradCAM
does not directly align with our model’s structure, which
does not utilize convolutional layers.

We adapted the GradCAM framework to address the
aforementioned challenges and identify spatial features that
are highly associated with tumor survival. We denoted the
interpretations as survival activation maps (SAM). First,
we computed the gradients of logits of the hy for the first
survival time bin, with respect to feature maps A; of the
last GraphMixer layer. This approach would produce fine-
grained localization maps compared to GradCAM. It is be-
cause GradCAM depends on the feature maps from lay-
ers that have been subjected to pooling, potentially losing
detailed spatial information. Then these gradients flowing
back are average-pooled over /N nodes in the imaging-graph
to obtain the importance weights «; for each feature map
AjZ

N
1 Ologits(hy)
o = NZ oA, (13)

K2

We computed the weighted sum of the feature maps using
the importance weights o; to obtain the visualization of the
areas that contributed most to tumor survival:

D
Lsam = »_ A, (14)
J

GradCAM typically highlights areas in the image that posi-
tively contribute to a class. It might not clearly show regions
that provide evidence against a class (absence of negative
evidence), Thus, our interest lies in the magnitude of Lgaw,
whose intensity should be increased to remain relevant to
survival risk.

We also utilized SAM to evaluate the importance of gene
expression signatures. On the FSM model, we computed
gradients with respect to the feature map of the QKV layer
in the genomic and image fusion modules. We then used
Eq. 13 and Eq. 14 to compute the importance scores for all
the gene expression signatures.
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Table 2: Model performance. Comparison of our models (ISM & FSM) with other published methods. The concordance
index (c-index), and time-dependent area under the curve (tAUC) are shown. Five-fold cross validation was performed and
mean as well as standard deviation (in bracket) values are reported on the TCGA cohort. * indicates c-index of CPTAC as
the external cohort for model testing.

(a) c-index
Method LUAD LUSC | Method LUAD LUSC
SNN (Genomic only) [12] 0.539(0.069) | —— | MCAT (WSI+Genomic) [3] 0.629(0.032) —
Attention MIL (WSI only) [10] 0.559(0.060) —— PORPOISE (WSI+Genomic) [4] | 0.600(0.046)  0.538(0.033)
Attention MIL (WSI+Genomic) [10] 0.563(0.050) —— Ours (WSI only (ISM)) 0.687(0.029)  0.652(0.049)
DeepAttnMISL (WSI only) [25] 0.548(0.050) | —— | Ours (WSI+Celltype (FSM)) | 0.703(0.017)  0.664(0.043)
DeepAttnMISL (WSI+Genomic) [25] | 0.595(0.061) - Ours (WSI only (ISM)) * 0.540(0.025)  0.567(0.029)
Patch-GCN (WSI only) [2] 0.585(0.012) —— Ours (WSI+Celltype (FSM)) * 0.579(0.006)  0.678(0.011)
(b) tAUC
tAUC
Method TCGA LUAD | TCGA LUSC | CPTAC LUAD | CPTAC LUSC
PORPOISE (WSI+Genomic) 0.613(0.061) | 0.528(0.063) —— ——
Ours (WSI only (ISM)) 0.645(0.083) | 0.647(0.060) 0.587(0.026) 0.649(0.782)
Ours (WSI+Celltype (FSM)) | 0.679(0.060) | 0.681(0.085) 0.613(0.010) 0.792(0.025)

3 Experiments

Using WSIs, bulk transcriptomics and survival data from
three datasets (NLST, TCGA & CPTAC), we developed and
validated an attention-based fusion framework by which to
perform multimodal survival analysis. Our approach inte-
grates bulk transcriptomics data with WSIs to predict pa-
tient survival, provides a means for topographic mapping of
bulk gene expression on WSIs, generates WSI-level as well
as an integrated multimodal spatial signature that points to
tissue features associated with tumor survival on low- and
high-risk cancer patients. We trained two models, one that
used WSIs only (i.e., imaging survival model (ISM), and the
fusion survival model (FSM) that integrated WSIs and gene
expression signatures. We used NLST for generating node-
level features for graph construction [27], TCGA for train-
ing the models using 5-fold cross-validation, and CPTAC
as an independent dataset for testing. We implemented the
model using PyTorch (v1.12.1) and one NVIDIA 2080Ti
graphics card with 11 GB memory on a GPU workstation.
We set our model configurations as L = 3, D = 64 and
M = 5, which is the number of different gene signatures
we used in our paper. Considering that the imaging-graph
has varying sizes, we used a batch size of 1. The training
speed was about 5.1 iterations/s, and it took about 30 mins
for each fold to reach convergence. The inference speed
was 2.71 seconds per WSI with a batch size of 1.

3.1 Expert annotations
A subset of WSIs from the CPTAC cohort (10 cases)

were uploaded to a secure, web-based software (Pixel View;
deepPath, Boston, MA). Using an Apple Pencil and an iPad,

tumor regions of LUAD were annotated by their histologic
pattern (solid, micropapillary, cribiform, papillary, acinar,
and lepidic). Histologic features of the tumor were also
annotated including necrosis and vascular invasion. Non-
tumor regions were annotated as normal or premalignant
airway epithelium, normal or inflammed lung, stroma, car-
tilage, and submucosal glands. We then evaluated the extent
of overlap between the model-derived saliency maps and the
expert-driven annotations.

3.2 Performance metrics

We reported cross-validated concordance index (c-
index), which was averaged over the 5-folds. We also com-
puted time-dependent area under the curve (tAUC) across
5-folds, which is a measure that evaluates how the model
stratifies patient risk across various time points.

3.3 Ablation studies

We performed various ablation studies to evaluate dif-
ferent feature extractors, type of node connectivity, as well
as the significance of the graph mixer layer (GML) com-
ponents, including the node mixing layer (NML) and the
channel mixing layer (CML). We performed these studies
on the ISM and FSM models, respectively. Additionally,
we assessed the performance of GML without the genomic
module.

3.4 Data and code availability

Data can be downloaded from the TCGA, CPTAC and
NLST websites, respectively. Python scripts will be made
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available on GitHub upon acceptance of our manuscript.

4 Results

Our attention-based framework demonstrated a robust
ability to predict patient survival outcomes. The ISM
model’s performance exceeded that of other recent method-
ologies, including Attention MIL, DeepAttnMISL, and
Patch-GCN, as illustrated in Table 2. We documented a sig-
nificant improvement in the c-index metric, reflecting an in-
crease exceeding 10% for LUAD survival. The FSM model,
which integrates both WSI and genomic data, yielded su-
perior tAUC and c-index results across LUAD and LUSC
categories. Specifically, in comparison to the PORPOISE
method, our technique achieved an augmentation in the c-
index metric by over 8% for LUAD and more than 11.4%
for LUSC, utilizing the identical cohort of TCGA cases
as referenced in previously published studies [4]. Addi-
tionally, our model manifested an elevated tAUC when as-
sessed on the external CPTAC dataset for both LUAD and
LUSC classifications. Within the CPTAC samples, the FSM
model-derived gene signature importance scores indicated
that the Sinjab B Cell and Plasma cell signatures were
paramount for LUAD and LUSC, respectively. Such find-
ings provide a methodology for discerning gene signatures
that synergistically influence the overarching prediction in
conjunction with pathological characteristics, a crucial con-
sideration for neoplasms such as LUSC, which are charac-
terized by a scarcity of prognostic biomarkers.

Our framework is also capable of generating inter-
pretable maps which compare favorably with expert-driven
annotations. The generated SAMs pointed to WSI regions
that were associated with prognostic histologic features and
patterns (Fig. 4). Qualitatively, we observed a high de-
gree of overlap between the pathologist annotations with
the salient tissue regions identified by the SAMs. For ex-
ample, in the LUAD low-risk case, the ISM model more
strongly highlighted the acinar and lepidic histologic pat-
terns compared to the more aggressive solid pattern. In the
LUAD high-risk case, the ISM model highlighted all histo-
logic patterns including the more aggressive cribiform pat-
tern. In the case of LUSC, the model highlighted regions of
tumor and stromal tissue indicating that areas of the tumor
microenvironment may be important to the survival predic-
tion. Interestingly, the SAMs for both the ISM and FSM
models localized similar neighborhoods as highly associ-
ated with patient survival, with FSM model often highlight-
ing additional regions. The model overlap with prognostic
pathologic annotations suggests its clinical relevance and
interpretability.

We observed a drop in c-index on CPTAC but the tAUC
was relatively high in Table 2. The reason for this dispar-
ity could be due to different sensitivities to time: tAUC is

explicitly time-dependent and evaluates the model perfor-
mance at various time points, whereas the c-index provides
a general measure of concordance. If the model is highly
sensitive to certain time intervals (performing well in those
intervals and poorly elsewhere), this discrepancy could oc-
cur. The model was trained on TCGA whose range of sur-
vival time is [4, 7143] in days for LUAD, [0, 4765] in days
for LUSC. The range of survival time in CPTAC is [0, 1836]
days for LUAD, and [0, 1785] days for LUSC. So almost all
CPTAC samples are high-risk cases with TCGA as the ref-
erence. The low c-index indicates that the ranking of all the
high-risk cases is not favorable compared to TCGA. How-
ever, tAUC indicated that the model assesses the true posi-
tive and false positive rates well over various thresholds and
time points.

We provided a comparison of SAM and the traditional
attention-based heatmap (TAH) based on multiple instance
learning (MIL) in Fig. 5. The TAH visualizes the weights
assigned to nodes, and they are considered as the ‘impor-
tance’ of nodes after MIL is trained. The softmax function
in TAH is sensitive to large values in the node’s weights.
Large values can lead to extremely small attention for the
other nodes, which may not reflect the actual uncertainty
or variability in the data. In comparison, our approach uses
both the gradients and activations within the graph network,
and this provides a balance between node details (from ac-
tivations) and semantic information (from gradients).

From the ablation studies presented in Table 3, we ob-
served: 1) The GML resulted in the best performance when
NML and CML were included. NML is responsible for
mixing information between different patches to learn lo-
cal spatial relationships and fine-grained patterns within
the WSI. CML is responsible for mixing information be-
tween channels to capture high-level interactions between
features. Experiments shed light on the relative impor-
tance of NML versus CML, but both layers are essential
to our approach. 2) Features based on semi-supervised
learning (SSL) enhance model performance compared with
ImageNet pretrained features. Experiments show that our
model outperforms SOTA methods using ImageNet pre-
trained features to construct graphs. ResNet50 does not
achieve better performance than ResNetl8 because of the
limited dataset (NLST) used for SSL. We observed that
ResNet18 is sufficient and more efficient to achieve good
performance. 3) NML using GAT performs better than
NML using GCN. Experiments show that our model outper-
forms other SOTA methods using GCN as NML, highlight-
ing the robustness of our approach. 4) We noticed that an
8-neighbor connectivity performs better than the 4-neighbor
connectivity. An 8-neighbor connectivity considers diago-
nal as well as horizontal and vertical spatial connectivity
between nodes. Important relationships between patches in
the diagonal may be ignored when 4-neighbor connectivity
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Table 3: Ablation studies on model structures, graph featurization and graph construction. The first two rows show the
ISM and the FSM models. Conn: 4-node or 8-node connectivity in graph. Here GML: graph mixer layer, GNN: graph neural
network, GAM: genomic attention module, GAP: global attention pooling, CL: fine-tuning Resnet using contrastive learning
on NLST, ImageNet: Resnet pretrained on ImageNet, c-index: concordance index, tAUC: time-dependent area under the
curve, *: best performance on ISM model in each column, and : best performance on FSM model in each column. Five-fold
cross validation was performed on the TCGA cohort; mean and standard deviation values are reported.

Graph Construction Model C-index tAUC
Featurization Conn GML GAM | GAP LUAD LUSC LUAD LUSC
CL Resnet18 8-node | NML+CML X v ] 0.687(0.029)*  0.652(0.049)* | 0.645(0.083) 0.647(0.060)*
CL Resnet18 8-node | NML+CML | v v | 0.7030.017)F  0.664(0.043)F | 0.679(0.060)"  0.681(0.085)
CL Resnet18 8-node X X v 0.589(0.022)  0.518(0.014) | 0.552(0.072)  0.554(0.043)
CL Resnet18 8-node NML X v 0.654(0.021)  0.607(0.030) | 0.604(0.072)  0.646(0.071)
CL Resnet18 8-node CML X v 0.589(0.022)  0.532(0.025) | 0.567(0.083)  0.565(0.033)
CL Resnet18 8-node X v v 0.588(0.042)  0.540(0.025) | 0.602(0.044)  0.555(0.036)
CL Resnet18 8-node NML v v 0.667(0.028)  0.622(0.016) | 0.628(0.050)  0.658(0.034)
CL Resnet18 8-node CML v v 0.593(0.032)  0.541(0.024) | 0.623(0.069)  0.642(0.029)

ImageNet Resnet18 | 8-node X X v 0.549(0.048)  0.529(0.018) | 0.601(0.050)  0.561(0.027)
ImageNet Resnet18 | 8-node | NML+CML X v 0.658(0.043)  0.619(0.033) | 0.624(0.061)  0.632(0.021)
CL Resnet50 8-node | NML+CML X v 0.679(0.040)  0.642(0.027) | 0.675(0.053)*  0.644(0.041)
CL Resnet13 8-node | GCN+CML X v 0.677(0.044)  0.598(0.040) | 0.630(0.064)  0.623(0.043)
CL Resnet18 8-node | GCN+CML | v v 0.685(0.043)  0.647(0.030) | 0.663(0.057)  0.667(0.033)
Imagenet Resnet18 | 8-node | GCN+CML X v 0.622(0.012)  0.602(0.037) | 0.605(0.037)  0.634(0.039)
Imagenet Resnet18 | 8-node | GCN+CML | v 0.637(0.023)  0.623(0.045) | 0.644(0.029)  0.667(0.025)
CL Resnet18 4-node | NML+CML X v 0.667(0.023)  0.638(0.038) | 0.644(0.066)  0.622(0.061)
CL Resnet18 4-node | NML+CML | Vv v 0.691(0.037)  0.648(0.034) | 0.649(0.065)  0.670(0.032)

is used. In the presence of noise or imperfections in an im-
age, an §8-neighbor connectivity can provide better robust-
ness as it incorporates more information from its neighbors.

5 Discussion

We developed an interpretable deep learning approach
that performs attention-based fusion of WSIs and bulk tran-
scriptomics data to predict patient survival. By the stan-
dards of various metrics, our approach displayed superior
performance compared with the SOTA approaches, yielding
consistent predictions in two different sample sets —- TCGA
and CPTAC. Beyond model performance, we can generate
attention-based SAMs that highlight tumor regions on the
WSIs that correspond to those identified via expert annota-
tions on low- and high-risk cases. Additionally, the SAMs
identified WSI regions that extended beyond the tumor re-
gions to reveal image-genomic relationships that could be
implicated in patient survival.

The attention mechanism serves to enhance model per-
formance by focusing on the most relevant aspects of each
data modality in a context-aware manner. Additionally, our
framework aids in capturing complex interdependencies be-
tween images and gene expression at varying levels of gran-
ularity. Another significant technical advantage is the in-
terpretability of the model’s decision-making process - the
attention-based mechanism can highlight the important fea-

tures in each modality, providing valuable insights into the
model’s rationale. The graph attention layer enabled ev-
ery node in the imaging graph attend to its neighbors given
its own representation as the query so that the local rela-
tionships are better learned than the previously published
methods. Furthermore, by zeroing in on the most salient
data sections in each modality, our framework boosts com-
putational efficiency, reducing the processing load without
compromising on the model performance.

In our study, we compared model-derived saliency maps
with expert-driven annotations on a small set of cases and
thus our conclusions are limited. The small set of cases
was selected because manual annotation is a tedious task,
and the pathologist’s availability was limited. Moreover, the
pathologist annotated histologic patterns and features, some
of which are associated with survival, but a larger study that
includes pathologic annotation of tumor tissues and spatial
omics is needed to evaluate the regions highlighted by both
the ISM and FSM models. In addition, the negative log-
likelihood (NLL) loss function used in our model has some
limitations that include the assumption that the proportional
hazards is integral to the likelihood formulation. If this as-
sumption is violated (i.e., the hazard ratios are not constant
over time), the NLL optimization may produce biased esti-
mates. Censored observations can also complicate the es-
timation process as they provide partial information about
the survival time. Too much censoring can lead to impre-
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Figure 4: Survival activation map (SAM) on human NSCLC samples. The first column shows the H&E WSIs, the second
column shows the pathologist annotations of the tissue, the third, and fourth columns indicate the SAMs based on the ISM
and the fusion models, respectively. Top row, low-risk LUAD case where annotations are: micropapillary (cyan), lepidic
(dark green), and solid (purple) histologic patterns. Second row, high-risk LUAD case where annotations are: papillary
(gray), cribiform (dark purple), and acinar (aqua) histologic patterns and inflammed lung (navy blue). Third and fourth rows,
low-risk and high-risk LUSC cases, respectively where annotations are: tumor tissue (peach), stroma (dark red), submucosal
glands (red), cartilage (pink), and airway epithelium — normal (green) and reserve cell hyperplasia (magenta, adjacent to
green). The colorbar is relevant to the heatmaps shown in the last two columns.

cise estimates, affecting the robustness of the optimization.
The censoring bias in survival prediction presents a signifi-
cant challenge to model training, especially as new datasets
may exhibit widely varying censoring rates. To handle the
censoring effect in survival analysis, future work could use
the inverse probability of censoring weighting to create a
pseudo-population that is representative of the population

without censoring. By re-weighting individuals based on
their probability of being uncensored, one can potentially
reduce bias due to censoring.

We demonstrated the applicability of our approach to
NSCLC survival, however, future work will include test-
ing our model using various cell type and prognostic gene
expression signatures that are implicated in cancer survival.
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Figure 5: Model interpretability comparison. Survival activation map (SAM) along with traditional attention-based
heatmap (TAH), which is commonly used in multiple instance learning (MIL), are shown. The figure denotes a high-risk
LUAD case, where annotations are: stroma (dark red), vascular invasion (green), and solid (purple) and acinar (aqua) histo-
logic patterns.

Additional studies to generate data on NSCLC specimens
using modern spatial technologies will help validate the bi-
ological insights obtained via SAMs. In the future, exten-
sion of this framework to other cancers and other types of
omic data is needed to fully appreciate its broad potential in
performing multimodal survival analysis.
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