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Abbreviations

CFMS: co-fractionation mass spectrometry
CORUM: the comprehensive resource of mammalian protein complexes database
SEC: size exclusion chromatography

Mapp: protein apparent mass

Mumono: protein monomeric mass

Mecaic: protein calculated mass

Rapp: multimerization state or determinator
WCC: weighted cross-correlation

Euclid: Euclidean distance

d: distance between two proteins

SOM: self-organizing map

AP: affinity propagation

Abstract

Co-Fractionation Mass Spectrometry (CFMS) enables the discovery of protein complexes
and the systems-level analyses of multimer dynamics that facilitate responses to environmental
and developmental conditions. A major challenge in the CFMS analyses, and other omics
approaches in general, is to conduct validation experiments at scale and develop precise methods
to evaluate the performance of the analyses. For protein complex composition predictions,
CORUM is commonly used as a source of known complexes; however, the subunit pools in cell

extracts are very rarely in the assumed fully assembled states. Therefore, a fundamental conflict


https://doi.org/10.1101/2023.10.25.564023
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.25.564023; this version posted October 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

exists between the assumed multimerization of the CORUM *“gold standards” and the CFMS
experimental datasets to be evaluated. In this paper, we develop a machine learning-based “small
world” data analysis method. This method uses size exclusion chromatography profiles of
predicted CORUM complex subunits to identify relatively rare instances of fully assembled
complexes, as well as bona fide stable CORUM subcomplexes. Our method involves a two-stage
machine learning approach that integrates information from CORUM and CFMS experiments to
generate reliable gold standards of protein complexes. The predictions are evaluated by both
statistical significance and size comparison between calculated and predicted complexes. These
validated gold standards are then used to assess the overall reliability of CFMS-based protein

complex composition predictions.

I ntroduction

Co-fractionation mass spectrometry (CFMS) is a high-throughput, mass spectrometry-
based protein quantification coupled with biochemical fractionation methods to analyze protein
complex compositions under non-denaturing conditions. This “guilt by association” method was
initially used to predict protein organelle localization based on co-elution with known marker
proteins (1) and was subsequently applied to predict protein interactors (2, 3). The technique has
evolved from the principle that proteins present in a stable complex co-migrate independent of
the separation method used. In plant systems, CFMS has been extensively employed for the
determination of apparent masses, localization, and compositions of protein complexes across a
wide variety of species and tissue types, including leaves, roots, and flowers (4-9), as well as in

organelles like chloroplasts (10) and mitochondria (11, 12). CFMS has broad use as a valuable
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tool to analyze protein complex dynamics, including circadian changes (13), protein-ligand
interactions (14, 15), and multimerization variants across plant species (16). A remaining
challenge is to determine the appropriate data types and profile analysis methods to generate the
most accurate protein complex composition predictions (17, 18). A major impediment to
progress in this area is the lack of a large set of reliable gold standards to evaluate prediction
accuracies.

Protein complex prediction methods vary wildly among different studies. Many are
achieved by using multiple metrics from external data sources that could inform multimerization
behaviors. Examples include using mRNA co-expression or co-citation information via machine
learning classifiers (3, 9, 18-20) or integration of existing protein interaction predictions from
orthogonal approaches (4-6, 16, 21-24). There is no clear-cut agreement on the effectiveness of
those strategies for protein complex predictions (18). All approaches rely on known protein
complexes as gold standards from a reference database, like the CORUM mammalian protein
complex database (25). Gold standard protein complex datasets are critical because they define
accuracy measures, e.g., the precision and recall, of protein complex predictions. Inaccurate gold
standards result in a wrong validation dataset, misleading the prediction model to unreliable
predictions.

The CORUM protein complexes are widely used as assumed gold standards to evaluate
protein complex predictions. During the prediction evaluation, pairs of subunits in the reference
CORUM complexes comprise a positive set of protein-protein interactions. Negative interactions
are created from proteins not present in the positive interaction set. These positive and negative
sets have been used for training and testing computation methods of protein complex predictions

(9, 18, 20, 26). This approach assumes that CORUM complexes are fully assembled in the cell
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extracts that are used as the input for CFMS experiments. However, in our previous CFMS
experiments (6, 16, 22, 23), many CORUM complex subunits have an apparent mass similar to
their theoretical monomeric mass. Furthermore, in several recent publications, weak correlations
were reported among subunits of CORUM complexes in the CFMS datasets (6, 16). Pang et al.
(18) displayed probability density plots of the Pearson correlations between fractionation profiles
of shared subunits of CORUM human complexes (Figure 2 in (18)), in which the density plots
have a mode around 0O correlation values. A similarly low correlation among subunits of
CORUM complexes was reported in Extended Data Figure 2 of Wan et al. (20). These plots and
our experimental data indicate that the most abundant cellular pools of CORUM complex
subunits, which are what are primarily detected in LC/MS, are not necessarily in the fully
assembled state. In other words, subunits of orthologous proteins from a CORUM complex do
not always co-elute, suggesting that CORUM complexes are unlikely to be reliable gold
standards for protein complex predictions.

In this paper, we have developed a machine learning method to identify reliable CORUM
complexes or subcomplexes, which can then be used as gold standards for CFMS analysis. More
specifically, we collect plant proteins that are orthologous to subunits of a CORUM complex.
Next, we conduct a “small world” analysis, examining the CFMS elution profile patterns of
every orthocomplex one by one. Subcomplex predictions are generated using a robust
unsupervised machine learning method, namely self-organizing map (SOM). We use a limited
set of well-known rice complexes to train the algorithm, taking advantage of its unsupervised
nature. The developed method is proficient in identifying reliable complexes with similar CFMS
elution profiles. Statistical significance is calculated for the predictions using Monte Carlo

simulations. A gold standard is defined as a CORUM complex or subcomplex that is composed
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of subunits with analogous CFMS elution profiles, is statistically significant, and has consistent
apparent mass and calculated mass. We further applied our validated gold standards and the
metrics of intactness and purity to demonstrate the method’s potential for evaluating protein

complex composition predictions.

M aterials and M ethods

External SEC data acquisition and filtering

In this study, we used a published rice CFMS dataset, which was previously used for

protein complex predictions. The data were downloaded from the Supplemental Data Sets S2 and
S3 (16). The dataset contains two replicates of size exclusion chromatography (SEC) fraction
profiles and protein apparent mass (Magp: measured mass from SEC experiments), monomeric
mass (Mmono), and multimerization state (Ripp: multimerization determinator, which is defined as
a ratio of Mgy t0 Mmono). We filtered the data as described below to identify reliable protein
profiles for the gold standard complex discovery. Reproducible protein profiles were selected if
their elution peak locations between the two replicates were within 2-SEC fractions. If the
reproducible peak was located at the first (void) fraction, it was defined as an unresolvable peak
and removed from the dataset. When a protein profile had more than one reproducible peak, we
separated the distinct peaks and split the data into multiple segments one by one peak. For a peak
separated from a multiple-peak protein, it was treated as an individual profile in the following
data analysis if its mean Mgy, from the two replicates was less than 850 kDa. They were
annotated with a numerical suffix appended to the protein name to indicate peak numbers for

each of the two replicates in the Supplemental Tables.
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Interkingdom ortholog mapping for CORUM orthocomplex assignment

To infer human-to-rice orthologs, human proteome search database (9606.fasta) was
obtained from InParanoid 8 website (https://inparanoidb.sbc.su.se/), and rice proteome
(Osativa_323_v7.0.protein_primaryTranscriptOnly.fa) was downloaded from Phytozome V12
database (https://phytozome-next.jgi.doe.gov/). The InParanoid software Version 4.1 was used to
infer orthologs between human and rice species (27). The inferred orthologs were reported in
Supplemental Table S1. To identify rice orthologous complexes (orthocomplexes) corresponding
to CORUM complexes, human protein complexes were downloaded from the CORUM database
(http://mips.helmholtz-muenchen.de/corum/). According to the ortholog groups specified in
Supplemental Table S1, the subunits in the human protein complexes were converted to their
corresponding rice orthologs (Supplemental Table S2). A plant species has experienced
polyploidization and gene duplication, creating different levels of genetic redundancies across
species (28). This genome-wide complexity makes the ortholog assignment challenging. It is
common that multiple rice orthologs/paralogs were mapped to a single human ortholog. In such
cases, we treated all rice paralogs as members of a rice orthocomplex but considered them a
single “ortho-paralog” group to calculate the rice proteome overlap with the human CORUM
complexes. The subunit coverage of a rice orthocomplex is defined as the ratio of the number of
subunits with inferred orthologs to the total number of subunits of a CORUM complex. Those
complexes with a subunit coverage greater than 2/3 were chosen as high-coverage rice

orthocomplexes for gold standard complex predictions.

I ntegration of rice orthocomplexesinto rice SEC data

After assigning rice orthocomplexes through the mapping of human CORUM complexes,
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we integrated this orthocomplex information with the experimental SEC profile data. We
identified useful rice orthocomplexes that contained at least two subunits in the SEC profile data.
Subsequently, we refined these orthocomplexes by eliminating redundant orthocomplexes
consisting of identical rice subunits, smaller orthocomplexes that were subsets of larger ones,

and orthocomplexes comprising solely rice subunits mapped to a single human ortholog.

Experimental Design and Statistical Rationale

Distance metric

In the small-world analysis, we utilized a distance metric that combines two similarity
measurements of a pair of proteins in an orthocomplex, i.e., the correlation of the fractionation
profiles between the pair and the distance of peak fraction locations between the pair. First, a
weighted cross-correlation (WCC) between a pair of protein profiles was calculated by the

following formula (29)

xlTWxi x}Tij

Here, x; and x; were two column vectors representing the SEC profiles of the two proteins in the

Wcee (i, j) = D).

orthocomplex. The weight matrix, denoted as W, was constructed with ones on the main
diagonal, but elements on the sub-diagonal and the super-diagonal decreased proportionally as
they moved away from the main diagonal. All elements outside of the sub- and super-diagonals
were set to zero. We set the bandwidth of W to be 2 and used a weighting function of (1 -
distance/3). That is, there were 2 sub-diagonals and 2 super-diagonals in the weight matrix W,
and the weights on the first sub/super-diagonals were 2/3, while the weights on the second
sub/super-diagonals were 1/3. This choice of parameters enables WCC to extract the similarity

information across the peak profiles within a neighborhood of 2 fractions. A distance (WCCd)
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based on the weighted cross-correlation for a pair of proteins was given by

wceed(i,j) =1-wcec(, j) ().

Another distance metric between the pair of proteins was calculated from their

corresponding peak locations as follows:

Euclid(i, j) = |y: — yjl @)
where y; and y; were the peak fraction locations of a pair of proteins, obtained using the Gaussian
peak fitting algorithm (6). These peak locations had been standardized by dividing them by the
largest peak location of a complex, ensuring they fall within the range of 0 to 1 for the Euclidean
distance calculation in Formula (3). Both distance measurements were computed for the two
replicates of the SEC data. An overall distance between two proteins was defined as

Aoveray = W X (WCCd, + WCCd,) + (0.5 —w) X (Euclid, + Euclid,) 4)

where WCCd; and WCCd, were the weighted cross-correlation distance, and Euclid; and Euclid,
were the Euclidean distance between the peak locations of the pair of proteins. There were two
distances indicated by the subscripts 1 and 2 for the two SEC data replicates. The combination

weight w was obtained by model training described in the following.

Pre-clustering evaluation of orthocomplexes

Before conducting an unsupervised clustering analysis as described next, we first
assessed whether an orthocomplex formed a single cluster. This step also helped us evaluate
which orthocomplexes were potentially fully assembled CORUM complexes, as a fully
assembled orthocomplex must be a single cluster. More specifically, in cases where an
orthocomplex consisted of only two subunits in the SEC profile data, these small orthocomplexes
were excluded from the subsequent clustering analysis and were labeled as “only 2 proteins in

the complex before clustering” in the result tables. However, as later defined, these instances
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were subjected to a bootstrap p-value calculation to determine if the two subunits had the
potential to form a complex. If the resulting p-value fell below the 5% threshold, the two
subunits had a significantly small distance and hence were predicted to form a single cluster.

For orthocomplexes with at least three subunits from the SEC data, we assessed whether
all subunits exhibited similar profiles, which was indicated by significantly small pairwise
distance metrics. Two distance metrics, defined in Formula (2) and Formula (3), were utilized for
this evaluation. If the distances calculated for all subunit pairs within an orthocomplex fell below
the 5th percentile threshold of an empirical distribution, we inferred that all subunits within that
orthocomplex were part of the same complex. The empirical distribution was constructed by
calculating pairwise distances among all proteins within the SEC data. We systematically
examined both distance metrics, and any orthocomplexes that met the 5th percentile criterion for
either distance metric were predicted to form a single cluster. In Supplemental Table S3, column
T, those meeting the WCCd distance criterion were labeled as “all proteins defined in the
complex by similarity before clustering”, while those meeting the Euclidean distance criterion
were labeled as “all proteins defined in the complex by Gaussian peak distance before
clustering”.

Note that some of these orthocomplexes were potentially fully assembled CORUM
orthologs, as our analysis indicated they formed a unified complex that could not be separated.
To rigorously confirm the full assembly, we further examined whether these inseparable
orthocomplexes consisted of all CORUM subunits as well as if the apparent mass observed in the
SEC experiment agreed with the calculated mass summing over all subunits (more details in the
size evaluation section below). Our confirmation of orthocomplexes as fully assembled was

substantiated by satisfying these additional two criteria.

10
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Two-stage clustering algorithm for subcomplex prediction

Only a very small number of rice orthocomplexes were found to be fully assembled. For
the majority of the orthocomplexes, we conducted a small-world clustering analysis on each one
individually. The small-world analysis employed a two-stage clustering algorithm with the
distance metric defined in Formula (4). Our two-stage procedure is composed of a clustering step
by self-organizing map (SOM) algorithm (30) and a cluster merging step by the affinity
propagation (AP) algorithm (31). SOM is a machine learning method for clustering analysis. It is
a specific type of neural network model that is designed to represent SEC profiles using robust
features. As a result, the method exhibits resistance to random noises and possesses the
advantage of robustness against data measurement errors or missing values. Employing the SOM
algorithm, the subunits of a rice orthocomplex were clustered, leading to the formation of distinct
subgroups. Importantly, these distinct subgroups were predicted to represent subcomplexes
within the larger orthocomplex.

To yield the optimal final clusters, a relatively large number of clusters was initially
selected and then followed by the merging of resulting clusters using the AP algorithm. For this
two-step clustering analysis, we fine-tuned three parameters of the clustering algorithms,
including the weight w on doverann In Formula (4), the number of clusters in SOM, and the
merging threshold for the AP algorithm. To determine these parameters, we used four well-
known rice complexes: 19S proteasome, 20S proteasome, 14-3-3 hetero/homooligomers, and the
exosome. We determined the three parameters of our algorithm so that subunits for each of these
known complexes were clustered together. These known complexes are part of four CORUM
orthocomplexes with the following IDs: PA700-20S-PA28 complex (CORUM ID: 193),

RAF1-MAP2K1-YWHAE complex (CORUM ID: 5873), HSF1-YWHAE complex (CORUM

11


https://doi.org/10.1101/2023.10.25.564023
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.25.564023; this version posted October 30, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ID: 2145), and Exosome (CORUM ID: 789), as indicated in Supplemental Table S3.

The trained two-stage clustering algorithm was implemented across the rice
orthocomplexes one by one. For each rice orthocomplex, the two-stage clustering approach could
yield clusters with multiple members or a single member. Clusters with multiple members were
designated as subcomplexes, while single-member clusters were labelled as “singletons”. In
cases where all members of a predicted subcomplex were mapped to a single human ortholog, it
was called an “ortho-paralog subcomplex”. Altogether, the results were labeled as “subcomplex
i”, “subcomplex (ortho-paralog) i”, and “singleton i”, where i is a subcomplex identification, in
the Supplemental Tables and Figures.

Furthermore, based on the external input data, proteins with small Ry, values,
specifically Rqpp < 1.6, were considered as putative monomers. When our algorithm identified
proteins with small Rap, Values as singletons, we deemed these monomer predictions accurate.

This is because proteins with the small range of R, Were anticipated to be monomers, and the

clustering algorithm affirmed this anticipation.

Statistical significance and size evaluation of identified subcomplexes

The subcomplexes, as well as the potentially fully assembled complexes, identified
through the small-world analysis, were evaluated using statistical p-values and a comparison of
apparent mass (Mapp) and calculated mass (Mcaic) to identify the gold standards (Figure 1). First, a
bootstrap p-value for a subcomplex/complex was calculated using Monte Carlo simulations. The
mean distance for pairs of proteins in a subcomplex was calculated using the overall distance,
doverall, IN Formula (4). A random complex was generated by randomly sampling the same

number of proteins in the identified subcomplex from all SEC profiles in the CORUM

12
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orthocomplex profile dataset. Protein subunits in the random complex were not related, hence
their distance doveran followed a pure random distribution. The mean distance for pairs of proteins
present in the random subcomplex was calculated. The random sampling was repeated 134,350
times, equal to 50 times the number of the rice SEC profiles. The p-value was calculated as the
fraction of times the random mean distance was smaller than the observed mean distance of the
identified subcomplex.

For the Map, and Mcac comparison, the Mcaic of an identified subcomplex/complex was
obtained by summing the monomeric mass values of all subunits in the given complex. For an
orthocomplex that contained multiple rice paralogs mapping to a single human ortholog, their
Mmono Values were averaged in calculating the complex Mcac. Notably, information regarding the
stoichiometry of subunits within a complex is rarely available (25). Thus, we manually curated
the most common stoichiometry information in the RCSB Protein Data Bank (RCSB PDB) for
the selected rice orthocomplexes (Supplemental Table S3, columns X and Y) and incorporated
this stoichiometry information when calculating Mcaic.

For each subcomplex/complex with p-value < 0.05, its Mgy, Was compared with its
calculated mass Mcaic (Supplemental Table S4). Identified subcomplexes/complexes with similar
Mapp and Mcaic Were deemed gold standards. More specifically, Mag, for a subcomplex/complex
was given by

n i
_ =1 Mapp

Mapp == ()
where n was the number of subunits in the subcomplex/complex, and Mappi was the apparent
mass of a subunit. Let My denote the sum of the monomeric masses of subunits within the
identified subcomplex/complex. We determined a subcomplex/complex with p-value < 0.05 as a

gold standard if it satisfied the following criterion:

13
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1

EMcalc <M < 2Mcalc (6)

app
This criterion signified that the relative difference between the SEC experiment mass (Mapp) and
the mass calculated from the identified subcomplex/complex subunit composition (Mcaic) was
constrained within a factor of 1. In other words, subcomplexes/complexes with p-value < 0.05
that exhibited matching Map, and Mcaic Values, as defined by this criterion, were selected as gold
standards. Notably, some of these gold standards originated from the pre-clustering complexes.
When their Mag, and Mcaic Values matched, they were confirmed as fully assembled CORUM

orthocomplexes.

Use of gold standar dsto evaluate de novo complex predictions

We used the selected gold standards to evaluate protein complex predictions. Typical
evaluations in the literature were merely based on positive and negative sets of protein-protein
interactions (PPI). The use of false positive and false negative, or equivalently precision and
recall, to assess CFMS data is limited conceptually to the inference of PPIs. We consider this
practice inadequate because the information of PPI is rooted in pairwise interactions, while the
information of a protein complex should be from a group of subunits. In other words, the
evaluation of complex prediction should be grounded in the composition of the complex, a group
of multiple subunits, not pairwise links.

To overcome the limitation with the use of precision and recall, we defined two complex-
centric metrics: intactness and purity. Intactness and purity were used to measure the similarity
between two sets of protein complexes, one set of gold standards and the other set of de novo

predictions. Let C denote a list of de novo protein complex predictions,

C ={cy,Cy) e Cn}

14
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where ¢; is a predicted complex with multiple subunits. Analogously, let G denote our list of gold
standards,

G ={91,92, -, Gm}-
Without loss of generality, we assume G is a subset of C, given that gold standards typically
comprise a smaller set compared to the set of proteins to be predicted. In instances where the
gold standard set is not entirely encompassed within the larger set of proteins for complex
predictions, we will employ G M C as the gold standard set. For each gold standard protein
complex, gi € G, we define the intactness and purity as

maXCjE(;leﬂgil

lgil

. maxcjec|cjngi|
1ntactnessgi = —_—

’ purithi = (7)

gl
where ¢y is the protein complex in C with the most overlaps with g;, and | | denotes the number of
proteins of the corresponding set. Note that when the maximum overlap between a gold standard

complex and the predicted complexes, maXc]-eC|Cj N gi|, involves only one subunit, the

calculation of intactness is not meaningful. In such cases, the corresponding gold standard is
completely split into different predicted complexes; thus, the intactness values are denoted as
“Not Defined” (as in Supplemental Table S5).

The intactness metric quantifies how well the predicted complex captures the entirety of
the proteins that are present in the gold standard complex. A high intactness value for a specific
gold standard complex indicates that the predicted complex adequately represents the entire
protein composition of the gold standard. In contrast, a lower intactness value suggests that the
predicted complex might only partially capture the proteins within the gold standard complex.
The purity metric assesses the specificity of a predicted protein complex with respect to a
particular gold standard complex. It evaluates the proportion of proteins within the predicted

complex that are also part of the gold standard complex. A higher purity value for a specific gold
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standard complex indicates that the predicted complex primarily comprises proteins
characteristic of that gold standard. Conversely, a lower purity value implies that the predicted
complex contains proteins beyond the gold standard complex.

The size of the gold standard complexes affects both the intactness and purity metrics.
Larger gold standards require more accurate predictions to achieve high intactness values, while
smaller gold standards would attain high intactness values more easily. Conversely, larger gold
standards could lead to higher purity values due to the potential for greater protein overlaps.
These two metrics collectively offer an evaluation of the accuracy of protein complex

predictions.

Dimerization prediction by AlphaFold Multimer on COSM | C?

To run the AlphaFold Multimer software package v2.2.0 (32), the COSMIC? cloud
platform was used (33). Protein sequences for each dimeric subcomplex were obtained from the
rice proteome file Osativa_323 v7.0.protein.fa (34) in Phytozome V12 (35), and then searched
against the full database (full_dbs) as default. Ranking confidence scores, a weighted
combination of interface predicted Template Modeling score (ipTM) and predicted Template
Modeling score (pTM), were used as model confidence metrics. The averaged model confidence

score of the top 5 predicted models was used to evaluate predicted dimeric subcomplexes.

Statistical tests and data analysis

Statistical analysis was performed using R version 4.2.0 (36) on RStudio 2022.07.1 (37).
The Flexible Self-Organizing Maps in Kohonen 3.0 package for R (38) and the APCluster

package for R (39) were implemented for the SOM and AP algorithms, respectively. Gaussian
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fitting code (https://github.com/dlchenstat/Gaussian-fitting) was run on MATLAB (R2022a).

Microsoft Excel on Office 365 for Mac was used to organize and display the analyzed data.

Data and materialsavailability

The source code and sample input data for the small-world analysis are publicly available

on GitHub (https://github.com/yangpengchengstat/R-code-S4 Class-protein-clustering-based-

on-data-integration-of-corum-and-inparanoid.git). The package at the github link contains

comprehensive information on running the code, description of the input data, and steps of

performing hyperparameter tuning.

Results and Discussion

Figure 1 presents an overview of the workflow to identify true gold standards by
integrating the CORUM database with the SEC profile data from rice tissue extracts. The overall
scheme was to identify rice orthocomplex subunits based on subunit overlap in the plant and
animal kingdoms and sequence similarity between the individual complex subunits. The SEC
profile data from rice were mined for reproducible May, measurements for the orthocomplex
subunits, and statistical clustering methods were developed to group similar protein profiles from
the SEC data in order to identify fully- and partially-assembled complexes in the rice cell extract.
The predicted subcomplexes/complexes were further evaluated using statistical significance and
size comparison between calculated mass and measured apparent mass. The validated
subcomplexes/complexes were defined as gold standards. These gold standards serve as reliable

references for the evaluation and analysis of future protein complex predictions.

Generating rice orthocomplexes from CORUM
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To specifically analyze known complex and construct a reference library of putative gold
standards genes, we identified CORUM orthologs in rice using the InParanoid algorithm (27).
InParanoid search compared 20,834 human protein sequences with 42,160 proteins in rice. The
algorithm assigned 5,363 human proteins and 8,178 rice proteins into 3,131 distinct orthologous
groups (Supplemental Table S1). The higher number of orthologs from rice was due to an
elevated gene copy number compared to humans (28). We next created predicted rice
orthocomplexes from CORUM human complex compositions (25) using the ortholog dataset
generated above. As discussed in the ortholog mapping section of the Methods and Materials,
there were complicated scenarios when we assigned orthologs between human and rice.
Frequently, multiple rice orthologs/paralogs were mapped to a single human ortholog, and vice
versa. We constructed a CORUM orthocomplex by including all rice paralogs that were
orthologous to each human subunit in the corresponding CORUM complex. Among the 3,047
human complexes curated in CORUM, 1,964 had at least one subunit orthologous to one or more
rice proteins, and 436 of the 1,964 rice orthocomplexes appeared to be completely conserved
(Figure 2A; Supplemental Figure S1; Supplemental Table S2). About half of the 1,964 rice
orthocomplexes were highly conserved based on subunit coverages with more than 2 out of 3
orthologous subunits retained in the rice lineage.

To test for variability in the sizes of the rice and human orthologs, we compared
predicted protein complexes between human and rice orthocomplexes that shared 100% subunit
coverage. Using the summed monomeric masses of the plant and animal complex subunits, the
Mecaic distribution showed a high correlation (r = 0.986), indicating that most complex subunits
possess similar complex masses (Figure 2B). Among those 436 orthocomplexes, 258 had

detected subunit(s) in the SEC datasets. When Mcqc values of these highly conserved rice
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orthocomplexes were compared to their subunit My, values measured in the rice SEC
experiments, no correlation was found (Figure 2C). The low correlation shown in Figure 2C was
not due to differences in Mmono O Subunits in these 258 orthocomplexes, as we found a strong
positive correlation between Mmono Values for this subset of human and rice orthocomplex
subunits (Figure 2D). Furthermore, 25 proteins from the rice orthocomplexes with 100% subunit
coverage had Rspp < 1.6 and hence were considered as likely monomers. The existence of
monomeric subunit pools and partially assembled complexes can explain the large number of
data points falling well below the diagonal in Figure 2C. Data points above the diagonal may
reflect novel complexes in which CORUM orthocomplexes and/or subcomplexes interact with
unknown proteins. These results are consistent with previous observations (6, 18, 20, 22) and
indicate that CORUM subunits detected in CFMS experiments rarely agree with the predicted

mass of the fully assembled state.

Gold standard predictions

To identify reliable rice orthocomplexes, we extracted reproducible protein elution
profiles from the reference rice SEC datasets (16). There were 3,426 proteins present in both of
the two SEC replicates, and 197 had multiple peaks that arose when the protein existed in
multiple multimerization states. We deconvolved the multiple peaks to generate 350 reproducible
peaks, and a total of 2,618 protein subunits with Ry, > 1 were used as the rice SEC reference
profiles. We further curated rice orthocomplexes with a subunit coverage greater than 2/3 in the
rice SEC profiles. One hundred and three rice orthocomplexes were selected by integration of
rice orthocomplexes into the rice SEC data for further analyses. The small-world analysis was

performed across the 103 CORUM orthocomplexes one by one to predict the composition of
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CORUM subcomplexes. The results of the small-world analysis, including essential details such
as cluster composition, singletons, statistical significance, and size evaluation, were reported in
Supplemental Table S3 and illustrated in Supplemental Figures S2 and S3. More specifically, in
Supplemental Figure S2, we plotted Mg Versus Mcaic of the identified subcomplexes after the
small-world analysis, demonstrating the existence of partially-assembled complexes in the rice
cell extract. Additionally, SEC profile plots illustrating co-elution patterns of the small-world
analysis results were generated in Supplemental Figure S3.

During the process of small-world analysis, subunits within each CORUM orthocomplex
were clustered based on their profiles and distances. The outcome of this analysis included 162
subcomplexes/complexes (Figure 3A; Supplemental Figures S2 and S3; Supplemental Table S3),
among which 112 had p-values less than 5%. After removing redundancies from the list of 112,
and discarding potential monomers (Ruypp < 1.6), we identified 79 unique
subcomplexes/complexes with small p-values (Supplemental Table S4). We proceeded to
compare their Mapp and Mcaic Values using the criterion defined in Formula (6) to this set of 79
subcomplexes/complexes (Figure 3B; Supplemental Table S4). In comparison to Figure 2C,
there were considerably fewer data points below the diagonal, indicating that our algorithm
identified more reliable subcomplex formations. Among the set of 79 subcomplexes/complexes,
40 demonstrated substantial agreements between Mapp and Mcaic, as shown in Figure 3B, meeting
the criterion of Formula (6). These 40 subcomplexes or complexes were stable
subcomplexes/complexes supported by both statistically significant p-values and consistent
apparent masses (Figure 3B and 3C). They serve as gold standards to evaluate CFMS
predictions. Additionally, within these 40 gold standards, our algorithm identified 8 fully

assembled CORUM orthocomplexes. These fully assembled complexes met the criteria of
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containing all CORUM subunits, being statistically significant, and having similar Map, and Mecaic
values according to Formula (6). A summary list of these 40 gold standards is provided in Table

1, with additional details in Supplemental Table S5.

Confirmation of monomer identification by the algorithm

Within the set of 103 CORUM orthocomplexes, there existed a list of 50 proteins with
small Rqpp Values (Rapp < 1.6), likely being monomers or multimers with a restricted type of
binding partner. This list, derived directly from the original input data, served as prior
information to evaluate and validate the accuracy of our algorithm in discerning monomeric
proteins within orthocomplexes. Our algorithm identified many of these putative monomers.
Specifically, our algorithm correctly predicted 14 putative monomers as singletons, with
significantly large distance from the rest of the proteins within their respective CORUM
orthocomplexes (Supplemental Table S6A). Furthermore, we examined the scenarios of ortho-
paralog subcomplexes, where all rice subunits were mapped to a single human ortholog. Our
algorithm accurately identified those ortho-paralog subcomplexes, resulting in the discovery of 9
additional putative monomers (Supplemental Table S6B). The remaining 27 putative monomers
were clustered into different subcomplexes by our algorithm, but these subcomplexes had large

p-values, indicating they were not expected to form discrete complexes.

Structural validation of RNA polymerase || subcomplexes

Many novel subcomplexes were identified through our two-stage clustering approach in
this study. The dynamic assembly of RNA polymerase Il complex (POL Il) with general

transcription factors into transcription preinitiation complexes is central to transcriptional control
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(40). The rice reference CFMS dataset included reproducible protein elution profiles for 12
subunits of the POL Il complex (Figure 4A). RPB3, RPB9, and RBP11a had two reproducible,
resolvable peaks. Our clustering assigned the POL 11 subunits into four different subcomplexes
based on their elution profiles and reproducible peaks (Figure 4B). While subunits assigned in
the subcomplexes 1, 3, and 4 showed similar profiles in both replicates (Supplemental Figure
S3), TFIIB and RPB9 in the subcomplex 2 had a peak at around fractions 18-19. Thus, each
subcomplex prediction was evaluated using a statistical bootstrap p-value calculation
(Supplemental Table S3). As shown in the profiles, all the subunits within the subcomplexes 1,
3, and 4 had predicted p-values less than 0.01. Our analysis predicts that the low and high mass
peaks of RBP3 and RBP11 correspond to a heterodimer and subcomplex 3, respectively. The
prediction for the subcomplex 2 was insignificant (p-value = 0.56), and both subunits were
predicted to be monomeric based on Rap, < 1.6.

We also compared the Mcaic values of predicted subcomplexes and Map, Values of
subunits of the subcomplexes to evaluate the predictions (Figure 4B). In addition to their
significant p-values, Map, values of predicted subcomplex subunits were plotted nearby,
supporting the presence of those three significant subcomplexes in the reference datasets. The
slight skewness toward elevated Map, might be due to undetected or unknown proteins in the
complex with non-spherical shapes. TFIIB in both replicates had similar peak locations
(subcomplex 2 Fractions 12-15) to RPB3 and RBP11 peaks in the subcomplex 1 (Figure 4A and
Supplemental Figure S3), indicating a potential association of TFIIB to the subcomplex 1.

To test for potential direct interactions, pairwise interactions among the subunits in
subcomplexes 1 and 2 were analyzed using AlphaFold Multimer (32). The mean of the

confidence scores from the top 5 predicted models were calculated for the 10 possible
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combinations (Figure 4C). The heteromerization between RPB3 and RBP11 possessed the
highest model confidence (ranking-confidence score: 0.87 = 0.01), supporting the predicted
subcomplex 1. All other heteromeric and homomeric models for TFIIB were also predicted with
very low ranking-confidence scores (0.16 £ 0.01 ~ 0.31 £+ 0.01), indicating TFIIB may not be
retained as a stable complex with other RNA pol Il subunits in the cell extracts. The predicted
three subcomplexes were also structurally validated (Figure 4D). The Cryo-EM solved structure
of PIC (40) was downloaded from the Protein Data Bank (PDB: 609L). All the subunits in the
predicted three subcomplexes are mapped onto the holoenzyme structure in a spatially plausible
configuration (Figure 4D(1)). Subunits of the subcomplex 4 were assigned to the TFIIH complex
(Figure 4D(2)), while those of the subcomplex 3 were assigned to the POL Il complex (Figure
4D(3)). Each of them was also supported by the solved structures (PDB: 6DRD & 7NVW). The
second peaks of RPB3 and RBP11 assembled into the subcomplex 1 with size consensus Mcajc
and My, RPB3 and RPB11 heteromerization has been shown in Arabidopsis (41), and the
subcomplex is at the core of POLII assembly (42). Our data are consistent with a model in which
the RPB3 and RPB11 heteromerization occurs prior to the association with RPB10 and RPB12 to
form the RPB3 subcomplex (43, 44). In summary, this example provides structural validation
supporting our subcomplex predictions, pointing to the existence of discrete RNA Pol Il
subcomplexes in the cell. It seems common that a full holocomplex assembly is a regulated
event, and CFMS data can provide clues about the path through which this occurs. Interestingly,
these abundant sub-complexes may not reside in the nucleus. The cytosolic fraction analyzed in
this study is not enriched in abundant nuclear proteins like histones (6, 22), and cytosolic
assembly of core RNA POL Il has been demonstrated in a human cell line (43-45). Therefore,

these subcomplexes could reflect entities with distinct functions in the cytosol and/or protein
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complexes that cycle between nuclear and non-nuclear localizations.
Importantly, it is worth noting that our methods and results are not specific to plants.
Partial assembly of CORUM complexes likely occurs in many organisms, and our methods can

be directly applied to detect it in other species.

Use of gold standardsto evaluate a global protein complex prediction

The gold standards were used to evaluate the global prediction results in the rice
reference protein complex datasets (16). In the published protein complex prediction, the
resulting dendrogram at a specific cluster number determines the compositions of predicted
complexes. The specific cluster number is selected based on the resolution of the data and
maximized to decrease false positives (23). Of our 40 gold standards, 34 were present in the
reference SEC and IEX data used for the protein complex predictions, and they consisted of
multiple subunits. Consequently, we employed them to assess the overall reliability of 1,000
predicted protein complexes derived from the rice dataset (16). The assessment was performed
using the intactness and purity metrics, as defined in Formula (7). These metrics play a vital role
in assessing the quality of complex predictions. In a reliable prediction, gold standard complexes
should exhibit high intactness and purity. On the other hand, these two metrics are affected by
the size of the protein complexes (see Materials and Methods). Figure 5 displays the intactness
and purity values, comparing our gold standard subcomplexes and their fully assembled
CORUM counterparts. In the assessment of specific global protein complex predictions, the
intactness values of our gold standards exceeded those of the CORUM full orthocomplexes
(Figure 5A), while the purity values were comparable between the two (Figure 5B). As our gold

standards tend to be smaller than the CORUM full complexes, and since the size of reference
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complexes impacts the intactness and purity values in opposite directions, it is essential to
consider these two metrics together. The higher intactness values and similar purity values
collectively indicate that the global predicted protein complexes align better with our gold
standards than with the CORUM full complexes.

Our gold standards, which are essentially predicted knowns and validated by statistical
significance and matched size masses from SEC experiments (M) and the calculation (Mcaic),
have shown robust performance in evaluating protein complex predictions. While higher
intactness or purity values are typically deemed optimal with the use of confirmed known
complexes as references, our gold standards affirm their utility when computationally validated.

These gold standards provide a reliable benchmark for assessing protein complex predictions.

Conclusion

In the living cell, fully assembled CORUM complexes reflect an active state based on a
wide variety of genetic and biochemical data. However, this does not mean that the fully
assembled complex is the most abundant state of the subunits in cells, nor does it exclude the
possibility that subcomplexes have functions that are independent of the fully assembled
complex. In plant cell extracts, CORUM orthocomplexes are rarely fully assembled (6, 22)
(Figure 2C), and to our knowledge, this has not been addressed directly in non-plant systems.
The method described here provides novel statistical approaches to identify a refined set of gold
standards. Broad adoption of these methods will enable more accurate evaluation of protein
complex predictions and the more reliable use of machine learning methods to improve CFMS-

based predictions of protein complex composition.
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Table 1. Predicted subcomplexes that could be used as gold standards to evaluate CFMS based

protein complex predictions.

Figurelegends

Figure 1. Identification of bona-fide gold standar ds to evaluate prediction accuraciesin co-
fractionation mass spectr ometry-based protein complex discovery in plant species.
Subcomplex predictions in SEC datasets are evaluated via a statistical bootstrap p-value
calculation. Among experimentally detected subunits (green) in a CORUM orthocomplex,
subunits with similar SEC profiles are clustered in a subcomplex (dotted line). Profile similarity
scores are calculated between all possible pairs of subunits in the subcomplex and then are
averaged to get the mean dissimilarity of the subcomplex. At the same time, the same number of
proteins observed in the orthocomplex are sampled from randomly generated plant orthocomplex
(yellow). The random mean is calculated as mean dissimilarity for pairs of proteins in the
random subcomplex. The p-value for each subcomplex is calculated as the fraction of times the

observed mean is larger than the random mean.

Figure 2. Assumed CORUM gold standard complexes do not exist in a fully assembled state
in plant species. A, Genomic level subunit coverages of CORUM complexes to rice
orthocomplexes. The coverages are defined as the ratio of the number of subunits in a rice
orthocomplex to the number of subunits in its orthologous human CORUM complexes. The
genome coverages of 1964 rice orthocomplexes were calculated and plotted at different subunit
coverages. B, Conserved predicted masses of human complexes and rice orthocomplexes. Mcaic

of 436 rice orthocomplexes with 100% subunit coverage to CORUM complexes were plotted. C,
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CORUM complex subunits rarely exist in a fully assembled complex. A scatter plot presents
protein complex conservation in size between CORUM complexes and rice orthocomplexes.
Mapp Values of subunits of the 258 rice orthocomplexes were obtained from the reference rice
CFMS datasets. D, Conserved masses of human CORUM subunits and rice orthocomplex
subunits. A scatter plot shows conserved Moo Values between human and rice subunits that
assemble into the known complexes. The rice orthocomplexes with 100% subunit coverage to

CORUM complexes were plotted.

Figure 3. Useful gold standards near the diagonal. A, A process flow to identify gold
standards from the small world analysis result. B, Gold standard subcomplexes/complexes with
matched Mcaic and Mapp-avg are rendered in pink. Asterisk (*) indicates fully assembled CORUM
orthocomplexes. Numbers in parentheses point out predicted subcomplexes present in the
corresponding panel in Figure 3C. C, Mcac Values of predicted subcomplexes and Mag, values of
subunits of the subcomplexes. Gold standard subcomplexes (p-values = 0.0) were highlighted

using bold text font.

Figure 4 Validation of subcomplexes predicted in CORUM RNA polymerase || complex. A,
Protein elution profiles of subunits in each predicted subcomplex. Profiles in another replicate
can be found in the Supplemental Figure S3. B, Mcac values of predicted subcomplexes and Map,
values of subunits of the subcomplexes. Circles indicate multimers, while triangles mean
monomer (Rqpp < 1.6). C, Dimerization prediction between subcomplex subunits by AlphaFold
Multimer (32). AlphaFold Multimer was run on COSMIC? to predict top5 models (33). Each

value in the table is the mean of ranking confidence score (ipTM + pTM) O+ [standard
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deviation. D, Structural validation of predicted subcomplexes. Predicted subcomplexes are
searched in RCSB Protein Data Bank (https://www.rcsb.org/). The structure of the fully
assembled CORUM RNA polymerase 1l complex is available (PDB: 609L). (1) Undetected
subunits in the CFMS dataset are colored gray. (2) — (4) Subcomplexes were predicted in B. Mcac

and Mp, of predicted rice subcomplexes are summarized right next to the subcomplex structures.

Figure 5. The validated subcomplexes and CORUM complexes wer e used as standardsto
evaluate a global prediction of protein complex composition in rice. The global predictions of
rice complexes (16) were re-evaluated with respect to the intactness (A) and purity (B) of
assumed fully assembled CORUM orthocomplexes and the validated gold standards defined in

this study.

Supplemental Figures

Supplemental Figure S1. Subunit coverages of rice orthocomplexes.
Supplemental Figure S2. Subcomplex identification by small world analysis (Mapp VS Mcaic plots).

Supplemental Figure S3. Protein SEC profiles illustrating small-world analysis results.

Supplemental Tables

Supplemental Table S1. Human to rice ortholog mapping.

Supplemental Table S2. CORUM human complexes and rice orthocomplexes.

Supplemental Table S3. The list of 103 rice orthocomplexes and their subcomplex prediction
results.

Supplemental Table S4. Significant subcomplexes with small p-values.
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Supplemental Table S5. Predicted subcomplexes that could be used as gold standards to evaluate
CFMS based protein complex predictions.

Supplemental Table S6. Predicted monomers.
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