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Abbreviations 

CFMS: co-fractionation mass spectrometry 

CORUM: the comprehensive resource of mammalian protein complexes database 

SEC: size exclusion chromatography 

Mapp: protein apparent mass 

Mmono: protein monomeric mass 

Mcalc: protein calculated mass 

Rapp: multimerization state or determinator 

WCC: weighted cross-correlation 

Euclid: Euclidean distance 

d: distance between two proteins 

SOM: self-organizing map 

AP: affinity propagation 

 

 

Abstract 

 Co-Fractionation Mass Spectrometry (CFMS) enables the discovery of protein complexes 

and the systems-level analyses of multimer dynamics that facilitate responses to environmental 

and developmental conditions. A major challenge in the CFMS analyses, and other omics 

approaches in general, is to conduct validation experiments at scale and develop precise methods 

to evaluate the performance of the analyses. For protein complex composition predictions, 

CORUM is commonly used as a source of known complexes; however, the subunit pools in cell 

extracts are very rarely in the assumed fully assembled states. Therefore, a fundamental conflict 
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exists between the assumed multimerization of the CORUM “gold standards” and the CFMS 

experimental datasets to be evaluated. In this paper, we develop a machine learning-based “small 

world” data analysis method. This method uses size exclusion chromatography profiles of 

predicted CORUM complex subunits to identify relatively rare instances of fully assembled 

complexes, as well as bona fide stable CORUM subcomplexes. Our method involves a two-stage 

machine learning approach that integrates information from CORUM and CFMS experiments to 

generate reliable gold standards of protein complexes. The predictions are evaluated by both 

statistical significance and size comparison between calculated and predicted complexes. These 

validated gold standards are then used to assess the overall reliability of CFMS-based protein 

complex composition predictions. 

 

 

Introduction 

 Co-fractionation mass spectrometry (CFMS) is a high-throughput, mass spectrometry-

based protein quantification coupled with biochemical fractionation methods to analyze protein 

complex compositions under non-denaturing conditions. This “guilt by association” method was 

initially used to predict protein organelle localization based on co-elution with known marker 

proteins (1) and was subsequently applied to predict protein interactors (2, 3). The technique has 

evolved from the principle that proteins present in a stable complex co-migrate independent of 

the separation method used. In plant systems, CFMS has been extensively employed for the 

determination of apparent masses, localization, and compositions of protein complexes across a 

wide variety of species and tissue types, including leaves, roots, and flowers (4-9), as well as in 

organelles like chloroplasts (10) and mitochondria (11, 12). CFMS has broad use as a valuable 
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tool to analyze protein complex dynamics, including circadian changes (13), protein-ligand 

interactions (14, 15), and multimerization variants across plant species (16). A remaining 

challenge is to determine the appropriate data types and profile analysis methods to generate the 

most accurate protein complex composition predictions (17, 18). A major impediment to 

progress in this area is the lack of a large set of reliable gold standards to evaluate prediction 

accuracies. 

 Protein complex prediction methods vary wildly among different studies. Many are 

achieved by using multiple metrics from external data sources that could inform multimerization 

behaviors. Examples include using mRNA co-expression or co-citation information via machine 

learning classifiers (3, 9, 18-20) or integration of existing protein interaction predictions from 

orthogonal approaches (4-6, 16, 21-24). There is no clear-cut agreement on the effectiveness of 

those strategies for protein complex predictions (18). All approaches rely on known protein 

complexes as gold standards from a reference database, like the CORUM mammalian protein 

complex database (25). Gold standard protein complex datasets are critical because they define 

accuracy measures, e.g., the precision and recall, of protein complex predictions. Inaccurate gold 

standards result in a wrong validation dataset, misleading the prediction model to unreliable 

predictions. 

The CORUM protein complexes are widely used as assumed gold standards to evaluate 

protein complex predictions. During the prediction evaluation, pairs of subunits in the reference 

CORUM complexes comprise a positive set of protein-protein interactions. Negative interactions 

are created from proteins not present in the positive interaction set. These positive and negative 

sets have been used for training and testing computation methods of protein complex predictions 

(9, 18, 20, 26). This approach assumes that CORUM complexes are fully assembled in the cell 
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extracts that are used as the input for CFMS experiments. However, in our previous CFMS 

experiments (6, 16, 22, 23), many CORUM complex subunits have an apparent mass similar to 

their theoretical monomeric mass. Furthermore, in several recent publications, weak correlations 

were reported among subunits of CORUM complexes in the CFMS datasets (6, 16). Pang et al. 

(18) displayed probability density plots of the Pearson correlations between fractionation profiles 

of shared subunits of CORUM human complexes (Figure 2 in (18)), in which the density plots 

have a mode around 0 correlation values. A similarly low correlation among subunits of 

CORUM complexes was reported in Extended Data Figure 2 of Wan et al. (20). These plots and 

our experimental data indicate that the most abundant cellular pools of CORUM complex 

subunits, which are what are primarily detected in LC/MS, are not necessarily in the fully 

assembled state. In other words, subunits of orthologous proteins from a CORUM complex do 

not always co-elute, suggesting that CORUM complexes are unlikely to be reliable gold 

standards for protein complex predictions. 

In this paper, we have developed a machine learning method to identify reliable CORUM 

complexes or subcomplexes, which can then be used as gold standards for CFMS analysis. More 

specifically, we collect plant proteins that are orthologous to subunits of a CORUM complex. 

Next, we conduct a “small world” analysis, examining the CFMS elution profile patterns of 

every orthocomplex one by one. Subcomplex predictions are generated using a robust 

unsupervised machine learning method, namely self-organizing map (SOM). We use a limited 

set of well-known rice complexes to train the algorithm, taking advantage of its unsupervised 

nature. The developed method is proficient in identifying reliable complexes with similar CFMS 

elution profiles. Statistical significance is calculated for the predictions using Monte Carlo 

simulations. A gold standard is defined as a CORUM complex or subcomplex that is composed 
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of subunits with analogous CFMS elution profiles, is statistically significant, and has consistent 

apparent mass and calculated mass. We further applied our validated gold standards and the 

metrics of intactness and purity to demonstrate the method’s potential for evaluating protein 

complex composition predictions. 

 

Materials and Methods 

External SEC data acquisition and filtering 

In this study, we used a published rice CFMS dataset, which was previously used for 

protein complex predictions. The data were downloaded from the Supplemental Data Sets S2 and 

S3 (16). The dataset contains two replicates of size exclusion chromatography (SEC) fraction 

profiles and protein apparent mass (Mapp: measured mass from SEC experiments), monomeric 

mass (Mmono), and multimerization state (Rapp: multimerization determinator, which is defined as 

a ratio of Mapp to Mmono). We filtered the data as described below to identify reliable protein 

profiles for the gold standard complex discovery. Reproducible protein profiles were selected if 

their elution peak locations between the two replicates were within 2-SEC fractions. If the 

reproducible peak was located at the first (void) fraction, it was defined as an unresolvable peak 

and removed from the dataset. When a protein profile had more than one reproducible peak, we 

separated the distinct peaks and split the data into multiple segments one by one peak. For a peak 

separated from a multiple-peak protein, it was treated as an individual profile in the following 

data analysis if its mean Mapp from the two replicates was less than 850 kDa. They were 

annotated with a numerical suffix appended to the protein name to indicate peak numbers for 

each of the two replicates in the Supplemental Tables. 
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Interkingdom ortholog mapping for CORUM orthocomplex assignment 

To infer human-to-rice orthologs, human proteome search database (9606.fasta) was 

obtained from InParanoid 8 website (https://inparanoidb.sbc.su.se/), and rice proteome 

(Osativa_323_v7.0.protein_primaryTranscriptOnly.fa) was downloaded from Phytozome V12 

database (https://phytozome-next.jgi.doe.gov/). The InParanoid software Version 4.1 was used to 

infer orthologs between human and rice species (27). The inferred orthologs were reported in 

Supplemental Table S1. To identify rice orthologous complexes (orthocomplexes) corresponding 

to CORUM complexes, human protein complexes were downloaded from the CORUM database 

(http://mips.helmholtz-muenchen.de/corum/). According to the ortholog groups specified in 

Supplemental Table S1, the subunits in the human protein complexes were converted to their 

corresponding rice orthologs (Supplemental Table S2). A plant species has experienced 

polyploidization and gene duplication, creating different levels of genetic redundancies across 

species (28). This genome-wide complexity makes the ortholog assignment challenging. It is 

common that multiple rice orthologs/paralogs were mapped to a single human ortholog. In such 

cases, we treated all rice paralogs as members of a rice orthocomplex but considered them a 

single “ortho-paralog” group to calculate the rice proteome overlap with the human CORUM 

complexes. The subunit coverage of a rice orthocomplex is defined as the ratio of the number of 

subunits with inferred orthologs to the total number of subunits of a CORUM complex. Those 

complexes with a subunit coverage greater than 2/3 were chosen as high-coverage rice 

orthocomplexes for gold standard complex predictions. 

 

Integration of rice orthocomplexes into rice SEC data 

After assigning rice orthocomplexes through the mapping of human CORUM complexes, 
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we integrated this orthocomplex information with the experimental SEC profile data. We 

identified useful rice orthocomplexes that contained at least two subunits in the SEC profile data. 

Subsequently, we refined these orthocomplexes by eliminating redundant orthocomplexes 

consisting of identical rice subunits, smaller orthocomplexes that were subsets of larger ones, 

and orthocomplexes comprising solely rice subunits mapped to a single human ortholog. 

 

Experimental Design and Statistical Rationale 

Distance metric  

 In the small-world analysis, we utilized a distance metric that combines two similarity 

measurements of a pair of proteins in an orthocomplex, i.e., the correlation of the fractionation 

profiles between the pair and the distance of peak fraction locations between the pair. First, a 

weighted cross-correlation (WCC) between a pair of protein profiles was calculated by the 

following formula (29)  

�����, �� �
������

��������������
   (1). 

Here, xi and xj were two column vectors representing the SEC profiles of the two proteins in the 

orthocomplex. The weight matrix, denoted as W, was constructed with ones on the main 

diagonal, but elements on the sub-diagonal and the super-diagonal decreased proportionally as 

they moved away from the main diagonal. All elements outside of the sub- and super-diagonals 

were set to zero. We set the bandwidth of W to be 2 and used a weighting function of (1 − 

distance/3). That is, there were 2 sub-diagonals and 2 super-diagonals in the weight matrix W, 

and the weights on the first sub/super-diagonals were 2/3, while the weights on the second 

sub/super-diagonals were 1/3. This choice of parameters enables WCC to extract the similarity 

information across the peak profiles within a neighborhood of 2 fractions. A distance (WCCd) 
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based on the weighted cross-correlation for a pair of proteins was given by  

���	��, �� � 1 ������, ��   (2). 

Another distance metric between the pair of proteins was calculated from their 

corresponding peak locations as follows:  

�
���	��, �� � |�� � ��|    (3)  

where yi and yj were the peak fraction locations of a pair of proteins, obtained using the Gaussian 

peak fitting algorithm (6). These peak locations had been standardized by dividing them by the 

largest peak location of a complex, ensuring they fall within the range of 0 to 1 for the Euclidean 

distance calculation in Formula (3). Both distance measurements were computed for the two 

replicates of the SEC data. An overall distance between two proteins was defined as  

�������� � � � ������ � �����	 � �0.5 
 �	 � �������� � �������	  (4)  

where WCCd1 and WCCd2 were the weighted cross-correlation distance, and Euclid1 and Euclid2 

were the Euclidean distance between the peak locations of the pair of proteins. There were two 

distances indicated by the subscripts 1 and 2 for the two SEC data replicates. The combination 

weight w was obtained by model training described in the following. 

 

Pre-clustering evaluation of orthocomplexes 

Before conducting an unsupervised clustering analysis as described next, we first 

assessed whether an orthocomplex formed a single cluster. This step also helped us evaluate 

which orthocomplexes were potentially fully assembled CORUM complexes, as a fully 

assembled orthocomplex must be a single cluster. More specifically, in cases where an 

orthocomplex consisted of only two subunits in the SEC profile data, these small orthocomplexes 

were excluded from the subsequent clustering analysis and were labeled as “only 2 proteins in 

the complex before clustering” in the result tables. However, as later defined, these instances 
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were subjected to a bootstrap p-value calculation to determine if the two subunits had the 

potential to form a complex. If the resulting p-value fell below the 5% threshold, the two 

subunits had a significantly small distance and hence were predicted to form a single cluster. 

For orthocomplexes with at least three subunits from the SEC data, we assessed whether 

all subunits exhibited similar profiles, which was indicated by significantly small pairwise 

distance metrics. Two distance metrics, defined in Formula (2) and Formula (3), were utilized for 

this evaluation. If the distances calculated for all subunit pairs within an orthocomplex fell below 

the 5th percentile threshold of an empirical distribution, we inferred that all subunits within that 

orthocomplex were part of the same complex. The empirical distribution was constructed by 

calculating pairwise distances among all proteins within the SEC data. We systematically 

examined both distance metrics, and any orthocomplexes that met the 5th percentile criterion for 

either distance metric were predicted to form a single cluster. In Supplemental Table S3, column 

T, those meeting the WCCd distance criterion were labeled as “all proteins defined in the 

complex by similarity before clustering”, while those meeting the Euclidean distance criterion 

were labeled as “all proteins defined in the complex by Gaussian peak distance before 

clustering”. 

Note that some of these orthocomplexes were potentially fully assembled CORUM 

orthologs, as our analysis indicated they formed a unified complex that could not be separated. 

To rigorously confirm the full assembly, we further examined whether these inseparable 

orthocomplexes consisted of all CORUM subunits as well as if the apparent mass observed in the 

SEC experiment agreed with the calculated mass summing over all subunits (more details in the 

size evaluation section below). Our confirmation of orthocomplexes as fully assembled was 

substantiated by satisfying these additional two criteria. 
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Two-stage clustering algorithm for subcomplex prediction 

Only a very small number of rice orthocomplexes were found to be fully assembled. For 

the majority of the orthocomplexes, we conducted a small-world clustering analysis on each one 

individually. The small-world analysis employed a two-stage clustering algorithm with the 

distance metric defined in Formula (4). Our two-stage procedure is composed of a clustering step 

by self-organizing map (SOM) algorithm (30) and a cluster merging step by the affinity 

propagation (AP) algorithm (31). SOM is a machine learning method for clustering analysis. It is 

a specific type of neural network model that is designed to represent SEC profiles using robust 

features. As a result, the method exhibits resistance to random noises and possesses the 

advantage of robustness against data measurement errors or missing values. Employing the SOM 

algorithm, the subunits of a rice orthocomplex were clustered, leading to the formation of distinct 

subgroups. Importantly, these distinct subgroups were predicted to represent subcomplexes 

within the larger orthocomplex. 

To yield the optimal final clusters, a relatively large number of clusters was initially 

selected and then followed by the merging of resulting clusters using the AP algorithm. For this 

two-step clustering analysis, we fine-tuned three parameters of the clustering algorithms, 

including the weight � on doverall in Formula (4), the number of clusters in SOM, and the 

merging threshold for the AP algorithm. To determine these parameters, we used four well-

known rice complexes: 19S proteasome, 20S proteasome, 14-3-3 hetero/homooligomers, and the 

exosome. We determined the three parameters of our algorithm so that subunits for each of these 

known complexes were clustered together. These known complexes are part of four CORUM 

orthocomplexes with the following IDs: PA700−20S−PA28 complex (CORUM ID: 193), 

RAF1−MAP2K1−YWHAE complex (CORUM ID: 5873), HSF1−YWHAE complex (CORUM 
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ID: 2145), and Exosome (CORUM ID: 789), as indicated in Supplemental Table S3. 

The trained two-stage clustering algorithm was implemented across the rice 

orthocomplexes one by one. For each rice orthocomplex, the two-stage clustering approach could 

yield clusters with multiple members or a single member. Clusters with multiple members were 

designated as subcomplexes, while single-member clusters were labelled as “singletons”. In 

cases where all members of a predicted subcomplex were mapped to a single human ortholog, it 

was called an “ortho-paralog subcomplex”. Altogether, the results were labeled as “subcomplex 

i”, “subcomplex (ortho-paralog) i”, and “singleton i”, where i is a subcomplex identification, in 

the Supplemental Tables and Figures. 

Furthermore, based on the external input data, proteins with small Rapp values, 

specifically Rapp ≤ 1.6, were considered as putative monomers. When our algorithm identified 

proteins with small Rapp values as singletons, we deemed these monomer predictions accurate. 

This is because proteins with the small range of Rapp were anticipated to be monomers, and the 

clustering algorithm affirmed this anticipation. 

 

Statistical significance and size evaluation of identified subcomplexes 

The subcomplexes, as well as the potentially fully assembled complexes, identified 

through the small-world analysis, were evaluated using statistical p-values and a comparison of 

apparent mass (Mapp) and calculated mass (Mcalc) to identify the gold standards (Figure 1). First, a 

bootstrap p-value for a subcomplex/complex was calculated using Monte Carlo simulations. The 

mean distance for pairs of proteins in a subcomplex was calculated using the overall distance, 

doverall, in Formula (4). A random complex was generated by randomly sampling the same 

number of proteins in the identified subcomplex from all SEC profiles in the CORUM 
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orthocomplex profile dataset. Protein subunits in the random complex were not related, hence 

their distance doverall followed a pure random distribution. The mean distance for pairs of proteins 

present in the random subcomplex was calculated. The random sampling was repeated 134,350 

times, equal to 50 times the number of the rice SEC profiles. The p-value was calculated as the 

fraction of times the random mean distance was smaller than the observed mean distance of the 

identified subcomplex. 

For the Mapp and Mcalc comparison, the Mcalc of an identified subcomplex/complex was 

obtained by summing the monomeric mass values of all subunits in the given complex. For an 

orthocomplex that contained multiple rice paralogs mapping to a single human ortholog, their 

Mmono values were averaged in calculating the complex Mcalc. Notably, information regarding the 

stoichiometry of subunits within a complex is rarely available (25). Thus, we manually curated 

the most common stoichiometry information in the RCSB Protein Data Bank (RCSB PDB) for 

the selected rice orthocomplexes (Supplemental Table S3, columns X and Y) and incorporated 

this stoichiometry information when calculating Mcalc. 

For each subcomplex/complex with p-value < 0.05, its Mapp was compared with its 

calculated mass Mcalc (Supplemental Table S4). Identified subcomplexes/complexes with similar 

Mapp and Mcalc were deemed gold standards. More specifically, Mapp for a subcomplex/complex 

was given by  

��		 �
∑ ����

��
���

�
   (5)  

where n was the number of subunits in the subcomplex/complex, and Mapp
i was the apparent 

mass of a subunit. Let Mcalc denote the sum of the monomeric masses of subunits within the 

identified subcomplex/complex. We determined a subcomplex/complex with p-value < 0.05 as a 

gold standard if it satisfied the following criterion:  
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�

�
�
��
 � ��		 � 2�
��
  (6). 

This criterion signified that the relative difference between the SEC experiment mass (Mapp) and 

the mass calculated from the identified subcomplex/complex subunit composition (Mcalc) was 

constrained within a factor of 1. In other words, subcomplexes/complexes with p-value < 0.05 

that exhibited matching Mapp and Mcalc values, as defined by this criterion, were selected as gold 

standards. Notably, some of these gold standards originated from the pre-clustering complexes. 

When their Mapp and Mcalc values matched, they were confirmed as fully assembled CORUM 

orthocomplexes. 

 

Use of gold standards to evaluate de novo complex predictions 

 We used the selected gold standards to evaluate protein complex predictions. Typical 

evaluations in the literature were merely based on positive and negative sets of protein-protein 

interactions (PPI). The use of false positive and false negative, or equivalently precision and 

recall, to assess CFMS data is limited conceptually to the inference of PPIs. We consider this 

practice inadequate because the information of PPI is rooted in pairwise interactions, while the 

information of a protein complex should be from a group of subunits. In other words, the 

evaluation of complex prediction should be grounded in the composition of the complex, a group 

of multiple subunits, not pairwise links. 

To overcome the limitation with the use of precision and recall, we defined two complex-

centric metrics: intactness and purity. Intactness and purity were used to measure the similarity 

between two sets of protein complexes, one set of gold standards and the other set of de novo 

predictions. Let C denote a list of de novo protein complex predictions, 

� � ���, ��, … , ��� 
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where ci is a predicted complex with multiple subunits. Analogously, let G denote our list of gold 

standards, 

� � ���, ��, … , ���. 

Without loss of generality, we assume G is a subset of C, given that gold standards typically 

comprise a smaller set compared to the set of proteins to be predicted. In instances where the 

gold standard set is not entirely encompassed within the larger set of proteins for complex 

predictions, we will employ G ∩ C as the gold standard set. For each gold standard protein 

complex, gi ∈ G, we define the intactness and purity as  

intactness�� �
�����	
�
�����

|��|
 ,     purity�� �

�����	
�
�����

|
�|
  (7)  

where ck is the protein complex in C with the most overlaps with gi, and | | denotes the number of 

proteins of the corresponding set. Note that when the maximum overlap between a gold standard 

complex and the predicted complexes, max
���*�� + ��*, involves only one subunit, the 

calculation of intactness is not meaningful. In such cases, the corresponding gold standard is 

completely split into different predicted complexes; thus, the intactness values are denoted as 

“Not Defined” (as in Supplemental Table S5). 

 The intactness metric quantifies how well the predicted complex captures the entirety of 

the proteins that are present in the gold standard complex. A high intactness value for a specific 

gold standard complex indicates that the predicted complex adequately represents the entire 

protein composition of the gold standard. In contrast, a lower intactness value suggests that the 

predicted complex might only partially capture the proteins within the gold standard complex. 

The purity metric assesses the specificity of a predicted protein complex with respect to a 

particular gold standard complex. It evaluates the proportion of proteins within the predicted 

complex that are also part of the gold standard complex. A higher purity value for a specific gold 
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standard complex indicates that the predicted complex primarily comprises proteins 

characteristic of that gold standard. Conversely, a lower purity value implies that the predicted 

complex contains proteins beyond the gold standard complex.  

 The size of the gold standard complexes affects both the intactness and purity metrics. 

Larger gold standards require more accurate predictions to achieve high intactness values, while 

smaller gold standards would attain high intactness values more easily. Conversely, larger gold 

standards could lead to higher purity values due to the potential for greater protein overlaps. 

These two metrics collectively offer an evaluation of the accuracy of protein complex 

predictions. 

 

Dimerization prediction by AlphaFold Multimer on COSMIC2 

To run the AlphaFold Multimer software package v2.2.0 (32), the COSMIC2 cloud 

platform was used (33). Protein sequences for each dimeric subcomplex were obtained from the 

rice proteome file Osativa_323_v7.0.protein.fa (34) in Phytozome V12 (35), and then searched 

against the full database (full_dbs) as default. Ranking confidence scores, a weighted 

combination of interface predicted Template Modeling score (ipTM) and predicted Template 

Modeling score (pTM), were used as model confidence metrics. The averaged model confidence 

score of the top 5 predicted models was used to evaluate predicted dimeric subcomplexes. 

 

Statistical tests and data analysis 

Statistical analysis was performed using R version 4.2.0 (36) on RStudio 2022.07.1 (37). 

The Flexible Self-Organizing Maps in Kohonen 3.0 package for R (38) and the APCluster 

package for R (39) were implemented for the SOM and AP algorithms, respectively. Gaussian 
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fitting code (https://github.com/dlchenstat/Gaussian-fitting) was run on MATLAB (R2022a). 

Microsoft Excel on Office 365 for Mac was used to organize and display the analyzed data. 

 

Data and materials availability 

The source code and sample input data for the small-world analysis are publicly available 

on GitHub (https://github.com/yangpengchengstat/R-code-S4_Class-protein-clustering-based-

on-data-integration-of-corum-and-inparanoid.git). The package at the github link contains 

comprehensive information on running the code, description of the input data, and steps of 

performing hyperparameter tuning. 

 

Results and Discussion 

Figure 1 presents an overview of the workflow to identify true gold standards by 

integrating the CORUM database with the SEC profile data from rice tissue extracts. The overall 

scheme was to identify rice orthocomplex subunits based on subunit overlap in the plant and 

animal kingdoms and sequence similarity between the individual complex subunits. The SEC 

profile data from rice were mined for reproducible Mapp measurements for the orthocomplex 

subunits, and statistical clustering methods were developed to group similar protein profiles from 

the SEC data in order to identify fully- and partially-assembled complexes in the rice cell extract. 

The predicted subcomplexes/complexes were further evaluated using statistical significance and 

size comparison between calculated mass and measured apparent mass. The validated 

subcomplexes/complexes were defined as gold standards. These gold standards serve as reliable 

references for the evaluation and analysis of future protein complex predictions. 

Generating rice orthocomplexes from CORUM 
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To specifically analyze known complex and construct a reference library of putative gold 

standards genes, we identified CORUM orthologs in rice using the InParanoid algorithm (27). 

InParanoid search compared 20,834 human protein sequences with 42,160 proteins in rice. The 

algorithm assigned 5,363 human proteins and 8,178 rice proteins into 3,131 distinct orthologous 

groups (Supplemental Table S1). The higher number of orthologs from rice was due to an 

elevated gene copy number compared to humans (28). We next created predicted rice 

orthocomplexes from CORUM human complex compositions (25) using the ortholog dataset 

generated above. As discussed in the ortholog mapping section of the Methods and Materials, 

there were complicated scenarios when we assigned orthologs between human and rice. 

Frequently, multiple rice orthologs/paralogs were mapped to a single human ortholog, and vice 

versa. We constructed a CORUM orthocomplex by including all rice paralogs that were 

orthologous to each human subunit in the corresponding CORUM complex. Among the 3,047 

human complexes curated in CORUM, 1,964 had at least one subunit orthologous to one or more 

rice proteins, and 436 of the 1,964 rice orthocomplexes appeared to be completely conserved 

(Figure 2A; Supplemental Figure S1; Supplemental Table S2). About half of the 1,964 rice 

orthocomplexes were highly conserved based on subunit coverages with more than 2 out of 3 

orthologous subunits retained in the rice lineage. 

To test for variability in the sizes of the rice and human orthologs, we compared 

predicted protein complexes between human and rice orthocomplexes that shared 100% subunit 

coverage. Using the summed monomeric masses of the plant and animal complex subunits, the 

Mcalc distribution showed a high correlation (r = 0.986), indicating that most complex subunits 

possess similar complex masses (Figure 2B). Among those 436 orthocomplexes, 258 had 

detected subunit(s) in the SEC datasets. When Mcalc values of these highly conserved rice 
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orthocomplexes were compared to their subunit Mapp values measured in the rice SEC 

experiments, no correlation was found (Figure 2C). The low correlation shown in Figure 2C was 

not due to differences in Mmono of subunits in these 258 orthocomplexes, as we found a strong 

positive correlation between Mmono values for this subset of human and rice orthocomplex 

subunits (Figure 2D). Furthermore, 25 proteins from the rice orthocomplexes with 100% subunit 

coverage had Rapp ≤ 1.6 and hence were considered as likely monomers. The existence of 

monomeric subunit pools and partially assembled complexes can explain the large number of 

data points falling well below the diagonal in Figure 2C. Data points above the diagonal may 

reflect novel complexes in which CORUM orthocomplexes and/or subcomplexes interact with 

unknown proteins. These results are consistent with previous observations (6, 18, 20, 22) and 

indicate that CORUM subunits detected in CFMS experiments rarely agree with the predicted 

mass of the fully assembled state. 

 

Gold standard predictions 

To identify reliable rice orthocomplexes, we extracted reproducible protein elution 

profiles from the reference rice SEC datasets (16). There were 3,426 proteins present in both of 

the two SEC replicates, and 197 had multiple peaks that arose when the protein existed in 

multiple multimerization states. We deconvolved the multiple peaks to generate 350 reproducible 

peaks, and a total of 2,618 protein subunits with Rapp > 1 were used as the rice SEC reference 

profiles. We further curated rice orthocomplexes with a subunit coverage greater than 2/3 in the 

rice SEC profiles. One hundred and three rice orthocomplexes were selected by integration of 

rice orthocomplexes into the rice SEC data for further analyses. The small-world analysis was 

performed across the 103 CORUM orthocomplexes one by one to predict the composition of 
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CORUM subcomplexes. The results of the small-world analysis, including essential details such 

as cluster composition, singletons, statistical significance, and size evaluation, were reported in 

Supplemental Table S3 and illustrated in Supplemental Figures S2 and S3. More specifically, in 

Supplemental Figure S2, we plotted Mapp versus Mcalc of the identified subcomplexes after the 

small-world analysis, demonstrating the existence of partially-assembled complexes in the rice 

cell extract. Additionally, SEC profile plots illustrating co-elution patterns of the small-world 

analysis results were generated in Supplemental Figure S3. 

During the process of small-world analysis, subunits within each CORUM orthocomplex 

were clustered based on their profiles and distances. The outcome of this analysis included 162 

subcomplexes/complexes (Figure 3A; Supplemental Figures S2 and S3; Supplemental Table S3), 

among which 112 had p-values less than 5%. After removing redundancies from the list of 112, 

and discarding potential monomers (Rapp ≤ 1.6), we identified 79 unique 

subcomplexes/complexes with small p-values (Supplemental Table S4). We proceeded to 

compare their Mapp and Mcalc values using the criterion defined in Formula (6) to this set of 79 

subcomplexes/complexes (Figure 3B; Supplemental Table S4). In comparison to Figure 2C, 

there were considerably fewer data points below the diagonal, indicating that our algorithm 

identified more reliable subcomplex formations. Among the set of 79 subcomplexes/complexes, 

40 demonstrated substantial agreements between Mapp and Mcalc, as shown in Figure 3B, meeting 

the criterion of Formula (6). These 40 subcomplexes or complexes were stable 

subcomplexes/complexes supported by both statistically significant p-values and consistent 

apparent masses (Figure 3B and 3C). They serve as gold standards to evaluate CFMS 

predictions. Additionally, within these 40 gold standards, our algorithm identified 8 fully 

assembled CORUM orthocomplexes. These fully assembled complexes met the criteria of 
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containing all CORUM subunits, being statistically significant, and having similar Mapp and Mcalc 

values according to Formula (6). A summary list of these 40 gold standards is provided in Table 

1, with additional details in Supplemental Table S5. 

 

Confirmation of monomer identification by the algorithm 

Within the set of 103 CORUM orthocomplexes, there existed a list of 50 proteins with 

small Rapp values (Rapp ≤ 1.6), likely being monomers or multimers with a restricted type of 

binding partner. This list, derived directly from the original input data, served as prior 

information to evaluate and validate the accuracy of our algorithm in discerning monomeric 

proteins within orthocomplexes. Our algorithm identified many of these putative monomers. 

Specifically, our algorithm correctly predicted 14 putative monomers as singletons, with 

significantly large distance from the rest of the proteins within their respective CORUM 

orthocomplexes (Supplemental Table S6A). Furthermore, we examined the scenarios of ortho-

paralog subcomplexes, where all rice subunits were mapped to a single human ortholog. Our 

algorithm accurately identified those ortho-paralog subcomplexes, resulting in the discovery of 9 

additional putative monomers (Supplemental Table S6B). The remaining 27 putative monomers 

were clustered into different subcomplexes by our algorithm, but these subcomplexes had large 

p-values, indicating they were not expected to form discrete complexes. 

 

Structural validation of RNA polymerase II subcomplexes 

Many novel subcomplexes were identified through our two-stage clustering approach in 

this study. The dynamic assembly of RNA polymerase II complex (POL II) with general 

transcription factors into transcription preinitiation complexes is central to transcriptional control 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.25.564023doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.25.564023
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 22 

(40). The rice reference CFMS dataset included reproducible protein elution profiles for 12 

subunits of the POL II complex (Figure 4A). RPB3, RPB9, and RBP11a had two reproducible, 

resolvable peaks. Our clustering assigned the POL II subunits into four different subcomplexes 

based on their elution profiles and reproducible peaks (Figure 4B). While subunits assigned in 

the subcomplexes 1, 3, and 4 showed similar profiles in both replicates (Supplemental Figure 

S3), TFIIB and RPB9 in the subcomplex 2 had a peak at around fractions 18-19. Thus, each 

subcomplex prediction was evaluated using a statistical bootstrap p-value calculation 

(Supplemental Table S3). As shown in the profiles, all the subunits within the subcomplexes 1, 

3, and 4 had predicted p-values less than 0.01. Our analysis predicts that the low and high mass 

peaks of RBP3 and RBP11 correspond to a heterodimer and subcomplex 3, respectively. The 

prediction for the subcomplex 2 was insignificant (p-value = 0.56), and both subunits were 

predicted to be monomeric based on Rapp ≤ 1.6. 

We also compared the Mcalc values of predicted subcomplexes and Mapp values of 

subunits of the subcomplexes to evaluate the predictions (Figure 4B). In addition to their 

significant p-values, Mapp values of predicted subcomplex subunits were plotted nearby, 

supporting the presence of those three significant subcomplexes in the reference datasets. The 

slight skewness toward elevated Mapp might be due to undetected or unknown proteins in the 

complex with non-spherical shapes. TFIIB in both replicates had similar peak locations 

(subcomplex 2 Fractions 12-15) to RPB3 and RBP11 peaks in the subcomplex 1 (Figure 4A and 

Supplemental Figure S3), indicating a potential association of TFIIB to the subcomplex 1. 

To test for potential direct interactions, pairwise interactions among the subunits in 

subcomplexes 1 and 2 were analyzed using AlphaFold Multimer (32). The mean of the 

confidence scores from the top 5 predicted models were calculated for the 10 possible 
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combinations (Figure 4C). The heteromerization between RPB3 and RBP11 possessed the 

highest model confidence (ranking-confidence score: 0.87 ± 0.01), supporting the predicted 

subcomplex 1. All other heteromeric and homomeric models for TFIIB were also predicted with 

very low ranking-confidence scores (0.16 ± 0.01 ~ 0.31 ± 0.01), indicating TFIIB may not be 

retained as a stable complex with other RNA pol II subunits in the cell extracts. The predicted 

three subcomplexes were also structurally validated (Figure 4D). The Cryo-EM solved structure 

of PIC (40) was downloaded from the Protein Data Bank (PDB: 6O9L). All the subunits in the 

predicted three subcomplexes are mapped onto the holoenzyme structure in a spatially plausible 

configuration (Figure 4D(1)). Subunits of the subcomplex 4 were assigned to the TFIIH complex 

(Figure 4D(2)), while those of the subcomplex 3 were assigned to the POL II complex (Figure 

4D(3)). Each of them was also supported by the solved structures (PDB: 6DRD & 7NVW). The 

second peaks of RPB3 and RBP11 assembled into the subcomplex 1 with size consensus Mcalc 

and Mapp. RPB3 and RPB11 heteromerization has been shown in Arabidopsis (41), and the 

subcomplex is at the core of POLII assembly (42). Our data are consistent with a model in which 

the RPB3 and RPB11 heteromerization occurs prior to the association with RPB10 and RPB12 to 

form the RPB3 subcomplex (43, 44). In summary, this example provides structural validation 

supporting our subcomplex predictions, pointing to the existence of discrete RNA Pol II 

subcomplexes in the cell. It seems common that a full holocomplex assembly is a regulated 

event, and CFMS data can provide clues about the path through which this occurs. Interestingly, 

these abundant sub-complexes may not reside in the nucleus. The cytosolic fraction analyzed in 

this study is not enriched in abundant nuclear proteins like histones (6, 22), and cytosolic 

assembly of core RNA POL II has been demonstrated in a human cell line (43-45). Therefore, 

these subcomplexes could reflect entities with distinct functions in the cytosol and/or protein 
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complexes that cycle between nuclear and non-nuclear localizations. 

Importantly, it is worth noting that our methods and results are not specific to plants. 

Partial assembly of CORUM complexes likely occurs in many organisms, and our methods can 

be directly applied to detect it in other species. 

 

Use of gold standards to evaluate a global protein complex prediction 

The gold standards were used to evaluate the global prediction results in the rice 

reference protein complex datasets (16). In the published protein complex prediction, the 

resulting dendrogram at a specific cluster number determines the compositions of predicted 

complexes. The specific cluster number is selected based on the resolution of the data and 

maximized to decrease false positives (23). Of our 40 gold standards, 34 were present in the 

reference SEC and IEX data used for the protein complex predictions, and they consisted of 

multiple subunits. Consequently, we employed them to assess the overall reliability of 1,000 

predicted protein complexes derived from the rice dataset (16). The assessment was performed 

using the intactness and purity metrics, as defined in Formula (7). These metrics play a vital role 

in assessing the quality of complex predictions. In a reliable prediction, gold standard complexes 

should exhibit high intactness and purity. On the other hand, these two metrics are affected by 

the size of the protein complexes (see Materials and Methods). Figure 5 displays the intactness 

and purity values, comparing our gold standard subcomplexes and their fully assembled 

CORUM counterparts. In the assessment of specific global protein complex predictions, the 

intactness values of our gold standards exceeded those of the CORUM full orthocomplexes 

(Figure 5A), while the purity values were comparable between the two (Figure 5B). As our gold 

standards tend to be smaller than the CORUM full complexes, and since the size of reference 
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complexes impacts the intactness and purity values in opposite directions, it is essential to 

consider these two metrics together. The higher intactness values and similar purity values 

collectively indicate that the global predicted protein complexes align better with our gold 

standards than with the CORUM full complexes. 

Our gold standards, which are essentially predicted knowns and validated by statistical 

significance and matched size masses from SEC experiments (Mapp) and the calculation (Mcalc), 

have shown robust performance in evaluating protein complex predictions. While higher 

intactness or purity values are typically deemed optimal with the use of confirmed known 

complexes as references, our gold standards affirm their utility when computationally validated. 

These gold standards provide a reliable benchmark for assessing protein complex predictions. 

 

Conclusion 

In the living cell, fully assembled CORUM complexes reflect an active state based on a 

wide variety of genetic and biochemical data. However, this does not mean that the fully 

assembled complex is the most abundant state of the subunits in cells, nor does it exclude the 

possibility that subcomplexes have functions that are independent of the fully assembled 

complex. In plant cell extracts, CORUM orthocomplexes are rarely fully assembled (6, 22) 

(Figure 2C), and to our knowledge, this has not been addressed directly in non-plant systems. 

The method described here provides novel statistical approaches to identify a refined set of gold 

standards. Broad adoption of these methods will enable more accurate evaluation of protein 

complex predictions and the more reliable use of machine learning methods to improve CFMS-

based predictions of protein complex composition. 
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Table 1. Predicted subcomplexes that could be used as gold standards to evaluate CFMS based 

protein complex predictions. 

 

 

Figure legends 

Figure 1. Identification of bona-fide gold standards to evaluate prediction accuracies in co-

fractionation mass spectrometry-based protein complex discovery in plant species. 

Subcomplex predictions in SEC datasets are evaluated via a statistical bootstrap p-value 

calculation. Among experimentally detected subunits (green) in a CORUM orthocomplex, 

subunits with similar SEC profiles are clustered in a subcomplex (dotted line). Profile similarity 

scores are calculated between all possible pairs of subunits in the subcomplex and then are 

averaged to get the mean dissimilarity of the subcomplex. At the same time, the same number of 

proteins observed in the orthocomplex are sampled from randomly generated plant orthocomplex 

(yellow). The random mean is calculated as mean dissimilarity for pairs of proteins in the 

random subcomplex. The p-value for each subcomplex is calculated as the fraction of times the 

observed mean is larger than the random mean. 

 

Figure 2. Assumed CORUM gold standard complexes do not exist in a fully assembled state 

in plant species. A, Genomic level subunit coverages of CORUM complexes to rice 

orthocomplexes. The coverages are defined as the ratio of the number of subunits in a rice 

orthocomplex to the number of subunits in its orthologous human CORUM complexes. The 

genome coverages of 1964 rice orthocomplexes were calculated and plotted at different subunit 

coverages. B, Conserved predicted masses of human complexes and rice orthocomplexes. Mcalc 

of 436 rice orthocomplexes with 100% subunit coverage to CORUM complexes were plotted. C, 
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CORUM complex subunits rarely exist in a fully assembled complex. A scatter plot presents 

protein complex conservation in size between CORUM complexes and rice orthocomplexes. 

Mapp values of subunits of the 258 rice orthocomplexes were obtained from the reference rice 

CFMS datasets. D, Conserved masses of human CORUM subunits and rice orthocomplex 

subunits. A scatter plot shows conserved Mmono values between human and rice subunits that 

assemble into the known complexes. The rice orthocomplexes with 100% subunit coverage to 

CORUM complexes were plotted. 

 

Figure 3. Useful gold standards near the diagonal. A, A process flow to identify gold 

standards from the small world analysis result. B, Gold standard subcomplexes/complexes with 

matched Mcalc and Mapp-avg are rendered in pink. Asterisk (*) indicates fully assembled CORUM 

orthocomplexes. Numbers in parentheses point out predicted subcomplexes present in the 

corresponding panel in Figure 3C. C, Mcalc values of predicted subcomplexes and Mapp values of 

subunits of the subcomplexes. Gold standard subcomplexes (p-values = 0.0) were highlighted 

using bold text font. 

 

Figure 4 Validation of subcomplexes predicted in CORUM RNA polymerase II complex. A, 

Protein elution profiles of subunits in each predicted subcomplex. Profiles in another replicate 

can be found in the Supplemental Figure S3. B, Mcalc values of predicted subcomplexes and Mapp 

values of subunits of the subcomplexes. Circles indicate multimers, while triangles mean 

monomer (Rapp < 1.6). C, Dimerization prediction between subcomplex subunits by AlphaFold 

Multimer (32). AlphaFold Multimer was run on COSMIC2 to predict top5 models (33). Each 

value in the table is the mean of ranking confidence score (ipTM + pTM)�±�standard 
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deviation. D, Structural validation of predicted subcomplexes. Predicted subcomplexes are 

searched in RCSB Protein Data Bank (https://www.rcsb.org/). The structure of the fully 

assembled CORUM RNA polymerase II complex is available (PDB: 6O9L). (1) Undetected 

subunits in the CFMS dataset are colored gray. (2) – (4) Subcomplexes were predicted in B. Mcalc 

and Mapp of predicted rice subcomplexes are summarized right next to the subcomplex structures. 

 

Figure 5. The validated subcomplexes and CORUM complexes were used as standards to 

evaluate a global prediction of protein complex composition in rice. The global predictions of 

rice complexes (16) were re-evaluated with respect to the intactness (A) and purity (B) of 

assumed fully assembled CORUM orthocomplexes and the validated gold standards defined in 

this study. 

 

Supplemental Figures 

Supplemental Figure S1. Subunit coverages of rice orthocomplexes. 

Supplemental Figure S2. Subcomplex identification by small world analysis (Mapp vs Mcalc plots). 

Supplemental Figure S3. Protein SEC profiles illustrating small-world analysis results. 

 

Supplemental Tables 

Supplemental Table S1. Human to rice ortholog mapping. 

Supplemental Table S2. CORUM human complexes and rice orthocomplexes. 

Supplemental Table S3. The list of 103 rice orthocomplexes and their subcomplex prediction 

results. 

Supplemental Table S4. Significant subcomplexes with small p-values. 
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Supplemental Table S5. Predicted subcomplexes that could be used as gold standards to evaluate 

CFMS based protein complex predictions. 

Supplemental Table S6. Predicted monomers. 
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