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Abstract
The ecology of forest ecosystems depends on the composition of trees. Capturing fine-grained
information on individual trees at broad scales allows an unprecedented view of forest
ecosystems, forest restoration and responses to disturbance. To create detailed maps of tree
species, airborne remote sensing can cover areas containing millions of trees at high spatial
resolution. Individual tree data at wide extents promises to increase the scale of forest analysis,
biogeographic research, and ecosystem monitoring without losing details on individual species
composition and abundance. Computer vision using deep neural networks can convert raw
sensor data into predictions of individual tree species using ground truthed data collected by
field researchers. Using over 40,000 individual tree stems as training data, we create
landscape-level species predictions for over 100 million individual trees for 24 sites in the
National Ecological Observatory Network. Using hierarchical multi-temporal models fine-tuned
for each geographic area, we produce open-source data available as 1km^2 shapefiles with
individual tree species prediction, as well as crown location, crown area and height of 81 canopy
tree species. Site-specific models had an average performance of 79% accuracy covering an
average of six species per site, ranging from 3 to 15 species. All predictions were uploaded to
Google Earth Engine to benefit the ecology community and overlay with other remote sensing
assets. These data can be used to study forest macro-ecology, functional ecology, and
responses to anthropogenic change.
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Introduction
Broadscale forest taxonomic data is essential for forest management, conservation planning,
estimating carbon for global climate models and carbon offsets, and the study of cross-scale
patterns of biodiversity. Historically, collection of these data has largely relied on two
approaches, 1) field censused individual tree plots ranging from several dozen individuals to
several thousand trees (Davies et al. 2021), which provide high quality and high resolution data,
but can only be conducted over small areas for each plot; and 2) satellite-based predictions of
community-level taxonomic diversity (Schäfer et al. 2016), which can be made continuously over
broad scales, but lack detailed information on individual trees that is key to many aspects of
forecast research and management. Individual tree predictions from high resolution image data
complement these two approaches by creating a bridge between extremely high quality, but
spatially and temporally restricted field data, and spatially continuous, but poor resolution data
from satellite or airborne sensors. The spatial coverage of high resolution airborne imagery from
planes and drones allows a more complete view of forest ecology over areas from dozens to
10,000s of hectares. Broad spatial scale individual tree predictions allow spatial patterns of
species occurrence and abundance to be compared to disturbance and management regimes
that naturally affect the landscape differently across spatial scales. Access to these data
provides a key data collection tool to supplement high quality stand data and global satellite
monitoring to facilitate the assessment of forest structure and dynamics and how they respond
to ecological processes, human management and global change.

As a result of these needs, measuring individual trees using airborne sensors is
becoming a key method for forest analysis and carbon calculations (Wallis et al. 2023, Tucker et
al. 2023). Recent open data collection efforts by the National Ecological Observatory Network
(NEON) provides an opportunity to advance our regional scale understanding of forests by
providing open-access, high resolution remote sensing data over 10,000s of hectares. NEON is
a set of terrestrial and aquatic sites covering the dominant ecosystems in the United States
(ranging from Puerto Rico to Alaska). Terrestrial data on tree locations, combined with annually
collected airborne remote sensing data, and broad interest in conducting research at NEON
sites, makes this an ideal opportunity for constructing regional scale open maps of tree species
for use in ecological research.

Here, we combine airborne RGB, hyperspectral, and LiDAR data, to predict 100 million
tree locations for 81 species within 24 NEON sites across the United States. Adapting the
workflows developed from our research on predicting individual tree species identity from
remote sensing (Marconi et al. 2022, Weinstein et al. 2023), we use a series of machine
learning models to generate crown position, species label, health status and height on individual
trees visible in the canopy. We make these data openly available as 1km tiles to foster research
in forest ecology, as well as regional scale ecological remote sensing applications. Our work
extends the dataset published in Weinstein et al. (2021) that contained crown locations, by
adding predictions of species identity and alive/dead classification. The addition of species
labels significantly expands the utility of this dataset to biodiversity research and natural
resource management. We use a hierarchical modeling approach that also provides higher
order taxonomic labels, such as ‘Broadleaf’ or ‘Conifer’ that will be useful for analyses that do
not require fine taxonomic detail. In addition to providing the remote sensing derived tree maps,
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we also include the training and testing data used for model development to encourage further
work improving the underlying computer vision models for ecological monitoring.

Each record in the dataset contains the predicted location, alive/dead classification and
species identity of an individual tree based on deep learning models trained on ground truth
data from human annotation of images and data collected by field researchers. While there has
been significant work on many facets of the type of workflow required to generate this data, the
work of creating reproducible end-to-end workflows at this scale remains underdeveloped. For
example, the vast majority of research articles on tree species classification focus on a single
site, usually with a single data acquisition event. Dozens of models have been proposed, but it
is unclear if they are successful when applied to a variety of ecosystems with differences in tree
density, abundance distributions, and spectral backgrounds. Our goal was to apply the
multi-temporal hierarchical model proposed in Weinstein et al. 2023 to sites across the United
States, with a diverse set of forests including conifer, mixed hardwoods, closed canopy
broadleaf and open woodlands. This model provides two key improvements over standard
deep learning approaches. First, it organizes the potential classes into subgroups, allowing each
model to learn better features related to distinguishing similar classes. The subgroups also allow
classes that are well sampled to be separated from poorly sampled classes, thereby reducing
the effect of class imbalance in favoring common species (Liu et al. 2019). Second, it combines
predictions for each year of available sensor data to reduce the potential overfitting and bias
due to georectification of ground-truth trees and image acquisition conditions. Using this
workflow, we customize a model to each site and predict all available areas within the NEON
airborne footprint that have overlapping RGB data for crown prediction and hyperspectral data
for species prediction (Figure 1). These models can then be improved using targeted data
collection at each site to expand species coverage and reduce misclassifications among similar
species. This effort is the first open source dataset of its size and detail and is an important step
in using high resolution remote sensing for cross-site, massive scale species prediction and
specifically shows maturation in use of NEON airborne data from raw data collection to more
refined ecological data products.
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Figure 1. Conceptual workflow for species prediction at each NEON site. The figure is modified
from Weinstein et al. 2023.

Methods

Workflow summary
We follow the same workflow described in Weinstein et al. 2021 for generating the crown
location of overstory canopy trees using the DeepForest Python package to predict individual
crown locations in the RGB camera mosaic (Weinstein et al. 2020a). DeepForest has been
tested across multiple NEON sites (Weinstein et al. 2020b), with an average accuracy of over
70% between predicted and hand-annotated tree crowns. Tree crowns with less than 3m
maximum height in the LiDAR derived canopy height model are removed. At this stage in the
workflow each individual tree has a unique ID, predicted crown location, crown area and
confidence score from the DeepForest tree detection model.

Following individual tree detection, we classify each individual’s health status as Alive or
Dead based on its appearance in the RGB data. Since NEON captures airborne data during the
leaf-on season, any standing tree with no leaf cover was annotated as ‘dead’. This label should
be interpreted as provisional since trees can lose leaves due to a variety of causes such as
insect defoliation in one year, but ultimately recover over time. Presented in Weinstein et al
(2023), this Alive-Dead model is a two class resnet-50 deep learning neural network trained on
hand-annotated images from across all NEON sites. During prediction, the location of each
predicted crown is cropped and passed to the Alive-Dead model for labeling as Alive (0) or
Dead (1) with a confidence score for each class.
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To classify each tree crown to species, we use a multi-temporal hierarchical model
(Weinstein et al. 2023).The predicted species label confidence score, as well as labels from the
higher taxonomic levels, are included in the shapefile (Table 1).

Table 1. Data available for each predicted crown. Crowns are organized into 1 km shapefiles with UTM
projection and follow the naming scheme from NEON’s AOP data, with a geographic index at the top left
corner. For sites with fewer than 5 species, the broadleaf and conifer labels are not available, as they are
largely redundant with the species present and were all modeled jointly.

Column Name Definition

Geometry A four pointed bounding box location in utm coordinates.

indiv_id A unique crown identifier that combines the year, site and geoindex of the
NEON airborne tile (e.g. 732000_4707000). The utm coordinate is the

northwest corner of the tile.

sci_name The full latin name of predicted species aligned with NEON’s taxonomic
nomenclature.

ens_score The confidence score of the species prediction. This score is the output of
the multi-temporal model for the ensemble hierarchical model.

bleaf_taxa Highest predicted category for the broadleaf model

bleaf_score The confidence score for the broadleaf taxa submodel

oak_taxa Highest predicted category for the oak model

dead_label A two class alive/dead classification based on the RGB data.
0=Alive/1=Dead.

dead_score The confidence score of the Alive/Dead prediction.

site_id The four letter code for the NEON site. See
https://www.neonscience.org/field-sites/explore-field-sites for site locations.

conif_taxa Highest predicted category for the conifer model

conif_score The confidence score for the conifer taxa submodel

dom_taxa Highest predicted category for the dominant taxa mode submodel

dom_score The confidence score for the dominant taxa submodel

Airborne Sensor Data
The NEON airborne observation platform (AOP) collects remote sensing data on an annual
basis during leaf-on conditions for all sites. We used four NEON data products 1) orthorectified
Camera Mosaic (‘RGB’ NEON ID: DP3.30010.001), 2) ecosystem Structure (‘Canopy Height
Model’ NEON ID: DP3.30015.001), 3) hyperspectral surface reflectance (‘HSI’ NEON ID:
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DP1.30006.001), and 4) vegetation structure (NEON ID: DP1.10098.001) (National Ecological
Observatory Network (NEON) 2021). All data were downloaded in August 2022 and were the
RELEASE form (NEON 2023). The 10 cm RGB data were used to predict tree crown locations
necessary for associating field labels and sensor data during model development. RGB data
were also used to identify dead trees during our prediction workflow. The 1 m canopy-height
model was used to determine which field collected data were likely to be visible from the air, as
well as to define a 3 m minimum tree height threshold during the prediction workflow. The HSI
data is used to differentiate tree species based on spectral reflectance. The HSI data spanned
approximately 420-2500 nm with a spectral sampling interval of 5 nm producing a total of 426
bands. NEON provides orthorectified images with a pixel size of 1 m2 in 1 km2 tiles that are
georectified and aligned with the RGB and Canopy-Height-Model. For more information on
hyperspectral data processing and calibration see NEON technical document
NEON.DOC.001288.

Field-based species labels
The NEON Vegetation Structure dataset is a collection of tree stem points within fixed-area field
plots; plot locations are allocated across sites according to a stratified random, spatially
balanced design (Barnett et al. 2019). All trees in sampled areas with a stem diameter > 10 cm
are mapped and measured for diameter, height, health status, and species identity. Building on
this NEON dataset, we contacted researchers at each NEON site to find as many stems as
possible outside the NEON woody vegetation sampling plots. We collected 22,072 additional
canopy trees from a variety of sources, including several large ForestGEO plots co-located at
NEON sites (Davies et al. 2021) and public data (Veblen et al. 2021). We followed the
taxonomic hierarchy used by NEON with the exception of genus-only, subspecies and variety
labels. To connect the species information from the ground-based stem points with the airborne
sensor data, we adopted a heuristic approach for filtering data (Figure 2). We began with raw
stem data for 41,036 individuals. The first step is to remove stems that are dead or broken, do
not have a species label, or are less than 3m in field measured height. Whenever dbh is
available, stems less than 10cm were discarded. After this step there were 40,883 stem points
remaining. We then compare the field-measured height to the height of the LiDAR-derived
canopy model for the closest available year. If the difference between field height is more than
4m this was taken as an indication that the tree was not in the canopy and therefore not the
primary contributor to the remote sensing observations and the tree stem was discarded. After
this step there were 38,173 stem points remaining. We then overlaid these height-filtered points
to crown bounding box predictions made from the DeepForest RGB algorithm. If more than one
height-filtered point fell within the predicted canopy crown box, we selected the tallest point
using the canopy height model since this was most likely to be the dominant tree in the canopy.
The shorter tree stems that overlapped the bounding box were discarded. If a point did not
overlap with any bounding box, we created a 1m buffer around the point to serve as a crown
box. We refer to these crowns as ‘fixed boxes’ and these were allowed only to be included in
training data, but never in testing data due to lower confidence in associating species labels and
sensor pixels. After this step, there were 31,736 points remaining to be used for model training
and validation.
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To assess the proportion of species known to occur at each site captured by the filtered
data we compared the final species list with a reference data set of the original data. The
original data was filtered by a minimum field-reported height of 3m and a minimum of 2 sampled
points to ensure comparison only among canopy species. While this number captures the
proportion of biodiversity at the site captured by the model, it does not account for the strong
imbalance in species abundance, in which a small number of species account for a large
proportion of trees in an area. Therefore, we also calculated the proportion of tree samples for
each species in the final model. For example, if we had 100 samples in a geographic site in the
original data set, with 97 samples coming from species A and 3 samples from species B, and
the final model only contained species A, the proportion of species covered would be 0.5, but
the proportion of stems would be 0.97.

Figure 2. Example workflow for filtering stem data to associate with crown pixel area. Size of the
dots in panels b and d are proportional to the stem DBH.
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Multi-temporal Hierarchical Species Prediction
The species prediction model is a hierarchical collection of submodels, which divide classes into
smaller categories. The top model predicts ‘Broadleaf’, ‘Needleleaf’ and optionally the dominant
tree species class. A species was considered dominant if it consisted of more than 40% of the
training data. This approach allows rare classes to be aggregated and separated from the
dominant class. Without this or another approach to reduce class imbalance, common machine
learning approaches will predict most samples as the dominant class regardless of spectral
signal. After prediction in the first subgroup, samples that are predicted as ‘Broadleaf’ are then
passed to the Broadleaf submodule, and samples that are predicted as ‘Conifer’ are then
passed to the Conifer submodule. This structure was maintained for the majority of sites, but we
did allow some site specific customization. For example at the OSBS site, the many similar oak
species were split off into their own oak submodule within the broadleaf submodule. This
‘mixture-of-experts’ approach is common in computer vision, but comes at the cost of training
complexity and time.

Each submodule consists of a 2D spectral attention block (Figure 1) with 3 convolutional
layers and a max pooling spectral attention layer following Ren et al. (2021). Batch
normalization is used to normalize layer weights after each convolution. This spectral attention
block is then repeated for each year of airborne sensor data to create an ensemble model. For
example, if there are four years of available hyperspectral data for a geographic location, we
predict four classification outputs and then combine them to create the final prediction. This is
based on the assumption that the canopy trees at each geographic location are unlikely to
change species label among years at short time scales. This form of multiple view modeling has
been used elsewhere in airborne ecological modeling and in the wider computer vision
community. A weighted average among all years is used to create the sample prediction for
each crown. This relative weight among years is a learned parameter for each submodel. For
more details and validation, refer to Weinstein et al. 2023, which showed improved performance
for common and rare species accuracy compared to a flat single year model.

To train species classification models, we opted to build a different model for each NEON
site. While this limits the portability of these models to new locations, our aim was to build the
best prediction map for each geographic area. To help reduce overfitting on a small number of
samples per site, but to maximize site-specific features, we adopted a pretraining strategy to
use data from all sites, but only include the species at the focal site, followed by fine-tuning on
samples only at the target site. This was repeated for each site. The combination of global and
local data was shown to outperform local-only models in Marconi et al. 2022 for a portion of this
dataset. For each site we pretrained for 200 epochs decreasing the learning rate of each
submodel based on performance on the focal site test data. We then fine-tuned this model with
the available annotations at the target site for 200 epochs. The learning rates differed among
submodules, with the dominant class and conifer submodules having an initial learning rate of
10e-5, and the broadleaf model starting at 10e-4. We allowed batch size to vary between 12 and
24 depending on the site to account for differences in class imbalance and dataset size.

To determine the evaluation accuracy of species predictions, we developed a train-test
split with a minimum of 10 samples per class. To minimize the potential effect of spatial
autocorrelation in hyperspectral signature between training and test datasets, we adopted a
spatial block approach. All samples within a NEON plot, or within a 40m grid for the non-NEON
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contributed data were assigned to training or test. We performed this assignment iteratively until
the minimum number of samples per class were in the test dataset. The remaining samples
were used to train the model. If there were multiple ways to keep as many species as possible
while maintaining the spatial design, we selected the training-test split with more species in the
test dataset. For each site we evaluated the accuracy and precision of each species. To get the
site-level score, we used both micro-averaged accuracy and macro-averaged accuracy.
Micro-averaging weights all samples the same, and therefore is largely driven by the
performance of the common species. Macro-average weights all species the same, giving
greater importance to the rare species as compared to their frequency in the dataset. We also
computed the accuracy of the higher order taxonomic labels (e.g. ‘Broadleaf’ vs ‘Conifer’), which
may be useful to downstream applications in which coarser categories are sufficient.

Results
We developed individual tree species models for 81 species at 24 NEON sites (Table 2). After
filtering the data for canopy heights, and visible crown prediction, there was an average of 6.56
species per site, with a maximum of 15 species (HARV) and minimum of 3 (DEJU and SJER).
Compared to reference species lists filtered for canopy species, the crown data set covered
48.2% of the total species diversity known to occur at the sites (Figure 3). These species
account for an average of 85.4% of the stems in the NEON sites. The average model had a
micro-averaged accuracy of 78.8% and a macro-accuracy of 75.8% (Table 2). Sites with more
data generally performed well, with a general pattern of decreasing species-level accuracy with
fewer data (Figure 4). Consistent with previous work, the highest performing sites, including
TEAK, NIWO, and YELL, were dominated by conifers and had relatively low species diversity
(Marconi et al 2022). Models performed more poorly in southern broadleaf forests, such TALL
and SERC, with higher biodiversity, closed canopy structure, and/or low data coverage per
species (Marconi et al 2022). The most abundant species at a site typically had the highest
accuracy, with lower accuracy for rarer species (Figure 4).

Applying the best model for each site to all available airborne tiles, we predicted
100,021,471 trees with an average of 3.56 million trees per site. Of the 24 sites, 17 are heavily
forested with near continuous canopy cover. These sites tend to have high species diversity at
local scales with overlapping crown boundaries (Figure 5). The remaining sites cover savannah
and other open forest types with lower species diversity and more open canopy structure.
Patterns of biodiversity are highly scale dependent with grouping of similar species in local
areas, with complex patterns of species patches at broader scales within the same site (Figure
6). Ranking the predicted species abundance for each site, there is a pattern of the most
commonly predicted species containing approximately 60% of crowns (Figure 7). The dominant
species was slightly less abundant in the southern broadleaf sites with 30% to 40% of crowns
belonging to the most commonly predicted species. The predicted abundance curve drops
sharply with the 5th most common species at 10% of crowns at the majority of sites. Viewing the
predictions at the largest spatial extents, there is a broad range of species presence patterns,
with some sites showing highly mixed species to other sites with distinct autocorrelation and
species patterns at all spatial scales (Figure 8). In many cases there are noticeable patterns in
species occurrence along environmental and topographic gradients.
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Figure 3. The proportion of species and stems included in the model for each site compared to
all available stem points. For example, 49% of species known to occur at BART were included
in the model, but these species capture over 90% of the sampled trees at the site. The raw data
have been filtered for canopy species based on field measured height and at least 2 field points.
These filters avoid comparison with tree species that are not visible from above and potential
data entry errors or rare species misclassifications. The sites are ordered by the highest number
of raw samples in HARV (n=15,262), to the lowest number of raw samples in SJER (n=103). For
a complete list of each species in the model and the canopy-filtered data, see Table S1. The
dashed line is the mean number of species across sites for both species and stem proportions.
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Table 2. Evaluation scores and habitat type for each NEON site included in the dataset.

Site State

Micro

Accuracy

Macro

Accuracy Species Train Samples

Test

Samples

SJER CA 1.00 1.00 3 47 27

GRSM NC 0.90 0.89 3 200 29

TEAK CA 0.82 0.83 7 713 67

BONA AK 0.82 0.74 4 584 103

STEI MI 0.80 0.83 6 283 82

NIWO CO 0.80 0.77 4 852 46

YELL WY 0.80 0.83 3 390 10

SERC MA 0.80 0.68 11 816 287

DELA AL 0.79 0.79 7 166 72

DEJU AK 0.79 0.78 3 571 52

UNDE MI/WI 0.79 0.79 13 547 178

SOAP CA 0.78 0.78 4 223 37

MLBS VA 0.78 0.75 5 363 54

TREE WI 0.78 0.72 15 643 168

WREF WA 0.76 0.66 4 598 97

TALL AL 0.76 0.72 6 250 125

HARV MA 0.76 0.57 15 9782 1194

OSBS FL 0.73 0.63 14 3293 240

CLBJ TX 0.73 0.73 3 187 30

BLAN VA 0.72 0.73 8 271 79

LENO AL 0.71 0.71 3 74 28

RMNP CO 0.70 0.70 7 671 99

BART VT 0.68 0.66 7 514 125

UKFS KT 0.60 0.60 8 204 85
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Figure 4. Rank order abundance and evaluation accuracy for each species for each geographic
site. A binomial model was fit for each habitat to relate the rank order abundance of each
species and evaluation accuracy. Each point is one species within each NEON site model.
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Figure 5. Example tree detections and species labels for four NEON sites with closed canopy
deciduous forests.
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Figure 6. Overview from BART showing 5,110,326 tree predictions for 7 species at three spatial
scales. The location of NEON sampling plots and the boundaries of the Bartlett Experimental
Forest are shown in the largest scale.
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Figure 7. Rank order abundance for the predicted crown species labels for each site. Each point
represents a species predicted at a site. For species identity and totals per site see Table S1.
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Figure 8. Overview of multiple sites spanning a broad range of forest types in the dataset.
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Discussion
The goal of this work was to produce individual-level maps of tree species for sites across the
National Ecological Observatory Network (NEON) by applying a previously developed
hierarchical, multi-temporal model applied to high resolution hyperspectral data. The maps
provide the foundation for cross-scale research on forest macrosystems biology as well as
site-specific questions on biodiversity, tree health, forest demographics, and wildlife habitat. We
produced maps covering tens of millions of individuals with the available data for each site.
While there remains significant opportunities to improve each portion of this workflow, this
dataset is an important step towards fine-grained, tree-level ecological information at landscape
scales and continental extents. We hope that the publication of this dataset will spur both
research on the ecology of forest ecosystems as well as improvements in computer vision to
refine the many challenging obstacles in assembling wall-to-wall tree maps at massive scales.

By repeating a general model architecture across a broad array of sites, we identify
trends in model performance as a function of forest type. These patterns are: 1) decreased
accuracy with an increasing number of species, 2) higher accuracy at sites with more open
canopy structure, and 3) a general tendency of higher performance for conifer over broadleaf
species. While these patterns are well known from individual site studies (e.g. (Maschler et al.
2018, Hastings et al. 2020), we can begin to quantify their effects by comparing a general
modeling approach across the 24 sites. In general, the most common species can achieve
roughly 75 to 85% accuracy at well sampled diverse sites. There was strong geographic bias
even among sites with similar habitats. Northern broadleaf sites in general had better accuracy
than the more diverse southern broadleaf sites. This is likely, in part, due to the higher tree
diversity in the southern states. Models with more species often have lower accuracy because
optimizing complex spaces is harder with more tradeoffs among species. The model itself is
larger with more parameters and more prone to overfitting to the small amounts of data
available for less common species. Increased species diversity also increases the chance for
neighboring trees to be of different species and pollute crown edge pixels with spectra of a
different neighboring species and confuse the training and test labels.

The level of spatial heterogeneity in habitats and species turnover may also affect model
performance. High local turnover will make the training data less representative of the total
biodiversity, as well as the spectral background in which species occur. The ‘Northern Broadleaf’
forests appear to be more admixed than ‘Southern Broadleaf’ forests, or atleast the number of
unique habitats are more well sampled by NEON’s terrestrial plot design (Barnett et al. 2019).
Both ‘savannah’ and conifer sites appear to have relatively low species diversity as well as high
local mixture in species, making sampling more tractable. Explicit measures of spatial
autocorrelation in species presence will be valuable in understanding the ecology of these
ecosystems, as well designing surveys for collecting data for species classification.

Despite the growth in the number of articles focusing on individual tree segmentation,
individual tree health status, and individual tree species, the task of designing end to end
predictive workflows is underdeveloped. Focusing on the full workflow highlights challenges for
real-world applications that are typically missed when focusing primarily on model development.
For example, many published analyses use the location of known tree stems to anchor the
location of evaluation points. This makes sense, as it disentangles the lower accuracy
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introduced by incorrectly associating species labels with tree crowns from the performance of
the species model. However, from the point of view of downstream applications, separating the
classification error and detection error in this way will make it appear that the expected accuracy
of predictions is higher than it will be when making predictions for trees across the full
landscape. We addressed this by mirroring what would happen in an end-to-end predictive
workflow. We use our crown detection algorithm to detect crowns in the region of evaluation
points and then match a bounding box with each evaluation tree based on distance to centroid
and predicted CHM height. Our approach more closely mimics the prediction environment
during evaluation and should therefore provide more accurate characterization of our
confidence in predictions for different species. Judging future model developments from the
perspective of future users is key in moving beyond the concepts of accuracy and utility for
broad scale fine-grained species predictions.

Focusing on optimal end-to-end predictive workflows also highlights the importance of
viewing these data as the first step in an ongoing iterative process for generating the best
possible characterization of canopy tree biodiversity across increasingly larger areas. The
largest obstacle to improving model accuracy is the availability of training data. As additional
data sources are available, the models can be updated to include new species and existing
species in different ecological contexts. We have found that targeted data sampling can yield 10
to 20% improvements in accuracy, and significantly broaden the species list, with only a few
days or weeks of field work (Box 1). The simplest form of data needed is a geospatial point of a
tree stem and its species label. Since the label refers to the entire crown, the geospatial point
needs to be accurate, but only needs to be precise enough to ensure that it falls within the
associated crown box predicted by the detection algorithm. Therefore, while standard GNSS
units with meter level accuracy are optimal, handheld GPS may be sufficient. This makes the
most pressing challenge for additional data collection deciding which trees to sample. Given
millions of trees in a forest, it is important to use field sampling efforts efficiently to improve
model scores. Collecting data on the common species will have limited impact on model
performance, as it will increase the class imbalance and only minimally improve common
species accuracy.

While new quantitative approaches are needed to simplify the process of collecting
targeted field data, we can describe three general strategies that can be used together 1) Use
expert knowledge of the site to identify areas containing species that are underrepresented in
the training set. This strategy is most helpful for sites with habitat heterogeneity (e.g.,
differences in bedrock geology, areas with different successional trajectories) and areas of
known underrepresented species are spatially restricted. 2) Using the model confusion matrix
and predictions from the initial model, target sampling of the species with unexpected confusion
patterns. Using the confusion matrix focuses directly on species where the model performs
poorly and using initial predictions to identify the location of less common species helps reduce
the time and cost of sampling less common trees. Unexpected patterns of confusion, in which
two underrepresented species, which are not visually similar are confused by the model, may be
an indicator that the crowns of these species in the training data set include parts of neighboring
crowns, thus they are mingled with spectra from neighboring trees. This can potentially be
quickly improved on with additional data on those species. 3) Use the confidence scores of the
species predictions to identify tree species that are either known and poorly captured by the
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model or that may be new species not currently included in the model. Machine learning models
typically lack the ability to skip making a prediction for some samples where the match to known
labels is low, and therefore must assign each crown to one of the training classes. While the
confidence scores are not calibrated, and therefore should not be seen as true probabilities,
they are generally helpful for estimating the likelihood of a sample being correctly assigned a
species label. For samples that are assigned to common classes, but have low confidence, this
may be an indication of less common species (Box 1 Figure 2). Finding these highly confused
samples may have strong leverage on model performance.

As improvements are made through new data collection and other improvements to
workflow, predictions from these large scale mapping efforts should be continually updated. This
requires the development of end-to-end remote sensing workflows that are reproducible and
scalable. Currently our workflow for generating predictions for a full NEON site, including
ingesting data, fitting the model, and generating predictions, can be rerun with a single
command in 8 hours on 1 GPUs, allowing us to quickly incorporate additional data to yield
improved maps. Our goal is to work with researchers near individual NEON sites to quickly
collect new field data that allows us to produce improved biodiversity maps for each site,
building on our work at OSBS (Weinstein et al. 2023) and our work with N. Swenson on UNDE
(Box 1). This will ideally result in an iterative process where improved biodiversity data and
maps are generated, local experts use those improved maps and model results to identify areas
for further improvement, new data is collected, and the cycle continues until data and maps are
sufficiently accurate for the biological questions of interest.
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Box 1. In-depth examination of collecting new data to improve models.
To increase the species coverage and accuracy of these models, we need additional data
collection at each NEON site collected outside of the NEON field sampling plots. We encourage
researchers at each site to submit data to improve models. In (Weinstein et al. 2023), we outline
multiple weeks of sampling for specific habitats at the OSBS field site. We were able to improve
species coverage and better differentiate similar oak species after collecting several hundred
targeted samples. Here, we outline one effort by N.G. Swenson and V.E. Rubio to improve the
model at UNDE through a series of short afternoons of targeted data collection (Box 1; Figure
1). The original model has an accuracy of 67.8 micro-accuracy, 61.6% macro-accuracy covering
12 species. Overlaying the predictions over a recently mapped forestry plot, three areas of need
were identified, 1) several key species were missing from current predictions, 2) there was
overprediction of Fraxinus nigra compared to the abundance expected by field researchers, 3)
there was high confusion between two closely related Populus species. Using these goals to
target trees, data were collected along easy to access roads and forest edges. It is unknown
whether the spectral signatures of these samples are representative of the same species in
dense forest. However, the speed of data collection in these areas may compensate for some
intraspecific variation introduced by either background or altered growth characteristics of trees
along roads and edges. A total of 157 stems of twelve species were collected, though several
consisted of only one sample per species.

After training the model on the additional stems, the micro-averaged accuracy increased
from 67.8 to 77.7% and the macro-averaged accuracy increased from 61.6% to 79.1% while
adding 1 additional species to the test dataset. The accuracies of the two closely related
Populus species increased from 66% and 54% to 72% and 82%, respectively. While follow up
surveys did show the presence of F. nigra in the area at higher than expected amounts, we
continue to see overprediction of F. nigra.
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Box 1 Figure 1. Original versus re-trained model predictions for UNDE. Sample trees were
collected in the field without guidance from the predictions. The outline color is the original
label, the filled shade is the revised label. The two Tsuga canadensis (center) and the
samples were correctly predicted in the original model. The Betula allenghensis samples
were split, the tree on the right was correctly predicted in both models. The tree on the left
was originally predicted as Acer rubrum, but was correctly predicted in the revised model.
Overall, most labels do not change among models, with only a small number of trees
changing labels. For example, several trees that were originally predicted as Acer rubrum
have been revised, and a single Picea glauca was revised to A. rubrum in the top left.
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Box 1 Figure 2. Confidence scores for field-collected samples of Pinus resinosa and Tsuga
canadensis. P. resinosa is a rare species at the site and we lacked sufficient samples to include
it in the model. T. canadiensis is common throughout the site. The scores for the P. resinosa are
lower than the score for T. canadensis, meaning that although we lack P. resinosa in the model,
the features for the species may already exist within the model. This suggests that collecting
additional data by targeting low confidence samples of common classes may be fruitful in
uncovering existing diversity at the site.

How to make better models of tree species classification?
Through the process of generating species prediction for tens of millions of trees, we have
experimented with many permutations of the model architecture and data workflow. As
described above, the most pressing problem is data availability. Several days to weeks of
targeted fieldwork often lead to improvements in species classification that cannot be achieved
solely through changes to model or workflow. Secondly, the dominant source of uncertainty is in
associating the tree stem with crown pixels. In general, models are superior in areas of open
forests with low diversity. The spacing among trees improves crown delineation and reduces the
chance of any neighboring tree species polluting the spectral signature. This can be partially
overcome in the fieldwork stage using crown polygons drawn on a tablet in the field, rather than
solely using stem points taken by a GPS (Graves et al. 2022). The spectral pollution challenge
occurs in both training and validation data, making it difficult to adopt many ‘weak labeling’
approaches common in computer vision literature that assume access to a small amount of
confident examples and a larger set of less confidence samples. Development of unsupervised
approaches to identify putative incorrect labels may be fruitful in rejecting incorrect matching
between stem data and crown pixels. For this reason, many prior publications have focused
solely on well spaced emergent tree crowns (e.g. Fricker et al. 2019). This may be useful in
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assessing algorithm performance, but risks overconfident depictions of algorithm performance
that cannot be replicated when creating wall-to-wall landscape maps. Finally, we have found,
given our approach, that the majority of classification performance is derived from the spectral
signature of the crowns and not in the spatial structure of pixels in the crowns. Despite multiple
publications that highlight performance gains through multi-modal data fusion, we did not find
significant improvements when adding the 10cm RGB data.

Computer Vision uses of the dataset
Compared to the typical computer vision application, the data sample sizes of the classes used
in these models are extremely low. For example, Lucas et al. 2022 refer to data under 10
samples as ‘barely supervised’. The emerging area of research on ‘few shot learning’, in which
foundation models are asked to predict new classes with only 1 to 5 samples, may be an
avenue to conceive of tree species prediction rather than typical supervision used here (e.g.
Sohn et al. 2021). In the extreme, the task of zero-shot learning, or unknown class detection, in
which the model can identify classes not included in training, will have great utility in rapid
biological surveys of new areas using models trained on NEON tree data.

Combining this challenge with the geographic extent of the study, there are several
remaining computer vision challenges, including how to best create a single foundation model
that is portable across space and time. Our approach used data from other sites to pretrain
each site-specific model, but only included classes present at each target site. Marconi et al.
2022 used a portion of the training data to compare local versus global models for each site..
Because of the differences in data, and evaluation approaches, a precise comparison between
Marconi et al. 2022 and this article is not strictly possible. We stress that the focus of this article
is on the publication of the crowns dataset rather than a comparison of a bounding box
multi-temporal deep learning approach versus the pixel-based ensemble of machine learning
classifiers presented in Marconi et al. 2022.

There is considerable interest in developing species predictions for large areas using
high resolution satellite and low cost UAV sensors. Most current satellites have coarser spectral
resolution and the UAV sensors will have fewer, broader, spectral bands than the sensor used in
this study. Using NEON data as a source for training data to project into these coarser resolution
data has large benefits since the NEON data is both high spectral and spatial resolution. This
kind of generalization study is often referred to as ‘Domain adaptation’ and is an open challenge
in computer vision, with many proposed approaches to try to align either the input data or
learned features among disparate sensors or geographic areas (Koh et al. 2021). Most
approaches focus on a combination of supervised finetuning with unsupervised, or
self-supervised learning, on the target domain. The ample unlabeled airborne data at NEON
opens the possibility of a combination of supervised and unsupervised learning to increase
transferability among geographic sites, spectral resolutions and spatial scales. The upload of
the data to Google Earth Engine can facilitate very large scale data overlap among remote
sensing assets on the Earth Engine catalog.
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Table S1: Species included in each model for each NEON site. The number of samples (n) for
each species in the canopy filtered data. To be included in the model, a species needs to have
atleast 10 training samples and 10 test samples at a site in the final filtered data. The number of
predicted trees at each site, the proportion of total predictions at the site, and the rank
abundance of each species is shown.

sci_name count site proportion rank Habitat

Tsuga canadensis (L.) Carrire 1916656 BART 0.44 1 Northern Broadleaf

Fagus grandifolia Ehrh. 557790 BART 0.13 2 Northern Broadleaf

Acer saccharum Marshall 529581 BART 0.12 3 Northern Broadleaf

Betula alleghaniensis Britton 527648 BART 0.12 4 Northern Broadleaf

Acer rubrum L. 384249 BART 0.09 5 Northern Broadleaf

Fraxinus americana L. 317331 BART 0.07 6 Northern Broadleaf

Betula papyrifera Marshall 119675 BART 0.03 7 Northern Broadleaf

Juglans nigra L. 856379 BLAN 0.35 1 Southern Broadleaf

Cornus florida L. 435672 BLAN 0.18 2 Southern Broadleaf

Celtis occidentalis L. 348581 BLAN 0.14 3 Southern Broadleaf

Quercus rubra L. 260101 BLAN 0.11 4 Southern Broadleaf

Liriodendron tulipifera L. 217721 BLAN 0.09 5 Southern Broadleaf

Pinus strobus L. 202535 BLAN 0.08 6 Southern Broadleaf

Platanus occidentalis L. 92087 BLAN 0.04 7 Southern Broadleaf

Picea mariana (Mill.) Britton,

Sterns & Poggenb. 3858957 BONA 0.51 1 Conifer

Betula neoalaskana Sarg. 2365676 BONA 0.31 2 Conifer

Populus tremuloides Michx. 923889 BONA 0.12 3 Conifer

Picea glauca (Moench) Voss 424178 BONA 0.06 4 Conifer

Quercus stellata Wangenh. 1276070 CLBJ 0.60 1 Savannah

Juniperus virginiana L. 488138 CLBJ 0.23 2 Savannah

Quercus marilandica

M√ºnchh. 375595 CLBJ 0.18 3 Savannah
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Picea glauca (Moench) Voss 1282877 DEJU 0.37 1 Conifer

Picea mariana (Mill.) Britton,

Sterns & Poggenb. 1223419 DEJU 0.36 2 Conifer

Populus tremuloides Michx. 920182 DEJU 0.27 3 Conifer

Pinus taeda L. 786987 DELA 0.22 1 Southern Broadleaf

Quercus nigra L. 756838 DELA 0.21 2 Southern Broadleaf

Acer rubrum L. 675465 DELA 0.19 3 Southern Broadleaf

Liquidambar styraciflua L. 478992 DELA 0.13 4 Southern Broadleaf

Fraxinus pennsylvanica

Marshall 370191 DELA 0.10 5 Southern Broadleaf

Celtis laevigata Willd. 289826 DELA 0.08 6 Southern Broadleaf

Carya tomentosa (Lam.) Nutt. 262398 DELA 0.07 7 Southern Broadleaf

Acer rubrum L. 1142770 GRSM 0.47 1 Southern Broadleaf

Quercus montana Willd. 851493 GRSM 0.35 2 Southern Broadleaf

Liriodendron tulipifera L. 453621 GRSM 0.19 3 Southern Broadleaf

Acer rubrum L. 2092750 HARV 0.23 1 Northern Broadleaf

Pinus strobus L. 1928207 HARV 0.21 2 Northern Broadleaf

Quercus rubra L. 1656996 HARV 0.18 3 Northern Broadleaf

Quercus alba L. 1192530 HARV 0.13 4 Northern Broadleaf

Betula lenta L. 743261 HARV 0.08 5 Northern Broadleaf

Fraxinus americana L. 561297 HARV 0.06 6 Northern Broadleaf

Tsuga canadensis (L.) Carri√®re 419849 HARV 0.05 7 Northern Broadleaf

Betula alleghaniensis Britton 257040 HARV 0.03 8 Northern Broadleaf

Pinus resinosa Aiton 91640 HARV 0.01 9 Northern Broadleaf

Fagus grandifolia Ehrh. 68370 HARV 0.01 10 Northern Broadleaf

Prunus serotina Ehrh. 55833 HARV 0.01 11 Northern Broadleaf

Picea abies (L.) Karst. 27501 HARV 0.00 12 Northern Broadleaf

Nyssa sylvatica Marshall 26159 HARV 0.00 13 Northern Broadleaf
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Quercus velutina Lam. 1259 HARV 0.00 14 Northern Broadleaf

Pinus palustris Mill. 2159896 JERC 0.58 1 Savannah

Quercus hemisphaerica W.

Bartram ex Willd. 1280439 JERC 0.35 2 Savannah

Quercus margaretta 257687 JERC 0.07 3 Savannah

Liquidambar styraciflua L. 2153931 LENO 0.63 1 Southern Broadleaf

Quercus pagoda Raf. 886055 LENO 0.26 2 Southern Broadleaf

Quercus nigra L. 396110 LENO 0.12 3 Southern Broadleaf

Quercus rubra L. 1610301 MLBS 0.43 1 Southern Broadleaf

Acer rubrum L. 873498 MLBS 0.23 2 Southern Broadleaf

Quercus alba L. 475352 MLBS 0.13 3 Southern Broadleaf

Liriodendron tulipifera L. 411167 MLBS 0.11 4 Southern Broadleaf

Quercus coccinea M√ºnchh. 359546 MLBS 0.10 5 Southern Broadleaf

Pinus contorta Douglas ex

Loudon 2005920 NIWO 0.43 1 Conifer

Picea engelmannii Parry ex

Engelm. 1268215 NIWO 0.27 2 Conifer

Abies lasiocarpa (Hook.) Nutt. 999052 NIWO 0.22 3 Conifer

Pinus flexilis James 354697 NIWO 0.08 4 Conifer

Quercus hemisphaerica W.

Bartram ex Willd. 464452 OSBS 0.13 1 Savannah

Pinus palustris Mill. 459380 OSBS 0.13 2 Savannah

Pinus taeda L. 441837 OSBS 0.13 3 Savannah

Pinus elliottii Engelm. 428306 OSBS 0.12 4 Savannah

Quercus laevis Walter 315498 OSBS 0.09 5 Savannah

Quercus geminata Small 274916 OSBS 0.08 6 Savannah

Quercus virginiana Mill. 228768 OSBS 0.07 7 Savannah

Pinus clausa (Chapm. ex 189431 OSBS 0.05 8 Savannah
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Engelm.) Vasey ex Sarg.

Liquidambar styraciflua L. 162751 OSBS 0.05 9 Savannah

Nyssa sylvatica Marshall 145971 OSBS 0.04 10 Savannah

Magnolia sp. 132960 OSBS 0.04 11 Savannah

Quercus nigra L. 84128 OSBS 0.02 12 Savannah

Acer rubrum L. 73579 OSBS 0.02 13 Savannah

Carya glabra (Mill.) Sweet 61204 OSBS 0.02 14 Savannah

Pinus contorta Douglas ex

Loudon 2656483 RMNP 0.35 1 Conifer

Pinus ponderosa Lawson & C.

Lawson 1491041 RMNP 0.20 2 Conifer

Pseudotsuga menziesii (Mirb.)

Franco 1185424 RMNP 0.16 3 Conifer

Pinus flexilis James 812500 RMNP 0.11 4 Conifer

Populus tremuloides Michx. 513952 RMNP 0.07 5 Conifer

Picea engelmannii Parry ex

Engelm. 419298 RMNP 0.06 6 Conifer

Abies lasiocarpa (Hook.) Nutt. 408857 RMNP 0.05 7 Conifer

Liriodendron tulipifera L. 614569 SERC 0.27 1 Southern Broadleaf

Liquidambar styraciflua L. 503363 SERC 0.22 2 Southern Broadleaf

Acer rubrum L. 256490 SERC 0.11 3 Southern Broadleaf

Quercus falcata Michx. 236338 SERC 0.10 4 Southern Broadleaf

Fraxinus pennsylvanica

Marshall 179711 SERC 0.08 5 Southern Broadleaf

Platanus occidentalis L. 130393 SERC 0.06 6 Southern Broadleaf

Quercus velutina Lam. 117590 SERC 0.05 7 Southern Broadleaf

Quercus alba L. 91438 SERC 0.04 8 Southern Broadleaf

Fagus grandifolia Ehrh. 87899 SERC 0.04 9 Southern Broadleaf

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2023. ; https://doi.org/10.1101/2023.10.25.563626doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.25.563626
http://creativecommons.org/licenses/by/4.0/


Carya tomentosa (Lam.) Nutt. 44351 SERC 0.02 10 Southern Broadleaf

Quercus wislizeni A. DC. 410332 SJER 0.48 1 Savannah

Quercus douglasii Hook. &

Arn. 325524 SJER 0.38 2 Savannah

Pinus sabiniana Douglas ex

Douglas 116312 SJER 0.14 3 Savannah

Calocedrus decurrens (Torr.)

Florin 1957264 SOAP 0.65 1 Conifer

Pinus ponderosa Lawson & C.

Lawson 626354 SOAP 0.21 2 Conifer

Quercus kelloggii Newberry 242541 SOAP 0.08 3 Conifer

Quercus chrysolepis Liebm. 198656 SOAP 0.07 4 Conifer

Abies balsamea (L.) Mill. 2390776 STEI 0.36 1 Northern Broadleaf

Populus tremuloides Michx. 1407230 STEI 0.21 2 Northern Broadleaf

Tilia americana L. 1017129 STEI 0.15 3 Northern Broadleaf

Acer rubrum L. 846965 STEI 0.13 4 Northern Broadleaf

Quercus rubra L. 721269 STEI 0.11 5 Northern Broadleaf

Acer saccharum Marshall 304397 STEI 0.05 6 Northern Broadleaf

Quercus alba L. 1128147 TALL 0.29 1 Southern Broadleaf

Pinus taeda L. 1007905 TALL 0.26 2 Southern Broadleaf

Pinus palustris Mill. 744862 TALL 0.19 3 Southern Broadleaf

Liquidambar styraciflua L. 554307 TALL 0.14 4 Southern Broadleaf

Pinus echinata Mill. 330868 TALL 0.09 5 Southern Broadleaf

Liriodendron tulipifera L. 122261 TALL 0.03 6 Southern Broadleaf

Pinus contorta Douglas ex

Loudon 1238741 TEAK 0.34 1 Conifer

Abies concolor (Gord. &

Glend.) Lindl. ex Hildebr. 766721 TEAK 0.21 2 Conifer

Pinus jeffreyi Balf. 520066 TEAK 0.14 3 Conifer
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Abies lowiana (Gordon &

Glend.) A. Murray bis 439012 TEAK 0.12 4 Conifer

Abies magnifica A. Murray bis 423231 TEAK 0.12 5 Conifer

Calocedrus decurrens (Torr.)

Florin 155247 TEAK 0.04 6 Conifer

Pinus lambertiana Douglas 117623 TEAK 0.03 7 Conifer

Quercus rubra L. 1117038 TREE 0.16 1 Northern Broadleaf

Abies balsamea (L.) Mill. 1009185 TREE 0.14 2 Northern Broadleaf

Populus tremuloides Michx. 982204 TREE 0.14 3 Northern Broadleaf

Betula papyrifera Marshall 713772 TREE 0.10 4 Northern Broadleaf

Picea mariana (Mill.) Britton,

Sterns & Poggenb. 572793 TREE 0.08 5 Northern Broadleaf

Acer saccharum Marshall 494667 TREE 0.07 6 Northern Broadleaf

Tilia americana L. 449669 TREE 0.06 7 Northern Broadleaf

Larix laricina (Du Roi) K. Koch 437108 TREE 0.06 8 Northern Broadleaf

Pinus resinosa Aiton 359730 TREE 0.05 9 Northern Broadleaf

Thuja occidentalis L. 288164 TREE 0.04 10 Northern Broadleaf

Picea glauca (Moench) Voss 206034 TREE 0.03 11 Northern Broadleaf

Acer rubrum L. 191871 TREE 0.03 12 Northern Broadleaf

Fraxinus pennsylvanica

Marshall 125480 TREE 0.02 13 Northern Broadleaf

Pinus strobus L. 122127 TREE 0.02 14 Northern Broadleaf

Tsuga canadensis (L.) Carri√®re 48679 TREE 0.01 15 Northern Broadleaf

Maclura pomifera (Raf.) C.K.

Schneid. 399538 UKFS 0.25 1 Southern Broadleaf

Juniperus virginiana L. 352218 UKFS 0.22 2 Southern Broadleaf

Celtis occidentalis L. 301882 UKFS 0.19 3 Southern Broadleaf

Ulmus americana L. 163371 UKFS 0.10 4 Southern Broadleaf
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Quercus muehlenbergii

Engelm. 143089 UKFS 0.09 5 Southern Broadleaf

Carya ovata (Mill.) K. Koch 91871 UKFS 0.06 6 Southern Broadleaf

Gleditsia triacanthos L. 82320 UKFS 0.05 7 Southern Broadleaf

Juglans nigra L. 68406 UKFS 0.04 8 Southern Broadleaf

Acer saccharum Marshall 727435 UNDE 0.15 1 Northern Broadleaf

Picea mariana (Mill.) Britton,

Sterns & Poggenb. 686836 UNDE 0.14 2 Northern Broadleaf

Picea glauca (Moench) Voss 528496 UNDE 0.11 3 Northern Broadleaf

Tsuga canadensis (L.) Carri√®re 476682 UNDE 0.10 4 Northern Broadleaf

Abies balsamea (L.) Mill. 432414 UNDE 0.09 5 Northern Broadleaf

Betula alleghaniensis Britton 432101 UNDE 0.09 6 Northern Broadleaf

Acer rubrum L. 399475 UNDE 0.08 7 Northern Broadleaf

Betula papyrifera Marshall 323397 UNDE 0.07 8 Northern Broadleaf

Larix laricina (Du Roi) K. Koch 270436 UNDE 0.06 9 Northern Broadleaf

Populus tremuloides Michx. 168410 UNDE 0.03 10 Northern Broadleaf

Populus grandidentata Michx. 155654 UNDE 0.03 11 Northern Broadleaf

Fraxinus nigra Marshall 130453 UNDE 0.03 12 Northern Broadleaf

Fraxinus americana L. 89307 UNDE 0.02 13 Northern Broadleaf

Pseudotsuga menziesii (Mirb.)

Franco 3987937 WREF 0.59 1 Conifer

Tsuga heterophylla (Raf.) Sarg. 1218052 WREF 0.18 2 Conifer

Abies amabilis (Douglas ex

Loudon) Douglas ex Forbes 903627 WREF 0.13 3 Conifer

Thuja plicata Donn ex D. Don 664059 WREF 0.10 4 Conifer

Pinus contorta Douglas ex

Loudon 3326783 YELL 0.74 1 Conifer

Pseudotsuga menziesii (Mirb.)

Franco 889082 YELL 0.20 2 Conifer
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Populus tremuloides Michx. 262641 YELL 0.06 3 Conifer
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