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Abstract

In recent years, significant progress has been made in the field of plant genomics, demonstrated
by the increased use of high-throughput methodologies that allow for the characterization of mul-
tiple genome-wide molecular phenotypes. These results have provided valuable insights into plant
traits and their underlying genetic mechanisms, especially in well-researched model plant species.
Nonetheless, although acquiring and characterizing these molecular phenotypes can offer valuable
insights into plant traits, effectively leveraging them to make accurate predictions represents a
critical step in crop genomic improvement. We present AGrRoNT, a novel foundational large lan-
guage model trained on reference genomes from 48 plant species with a predominant focus on crop
species. We show that AGRONT can obtain state-of-the-art predictions for many genomic elements,
including polyadenylation sites, splice sites, open chromatin and enhancer regions. Furthermore,
AGroNT can be used to predict the strength of promoter sequences and tissue-specific gene ex-
pression levels or prioritize functional variants. Using the cassava genome as an example of an
understudied species, we perform a large-scale in silico saturation mutagenesis analysis to assess
the impact of >10 million mutations on gene expression levels and enhancer elements in the cas-
sava genome, and provide the results as a valuable resource for regulatory causal variant charac-
terization. Furthermore, owing to the lack of comprehensive benchmarks in the context of deep
learning-based methods in plant genomic research, we propose the use of the multiple datasets en-
compassing seven distinct genomic prediction tasks, which have been compiled here, as the Plants
Genomic Benchmark (PGB). The pre-trained AGrRoNT model is now publicly available on Hugging
Face at https://huggingface.co/InstaDeepAl/agro-nt for future research purposes.

Introduction regions, such as genes or regulatory elements.
Furthermore, many of the plant species whose
genomes have been sequenced still lack sufficient
experimental resources from these complemen-
tary analyses. These include the so called ‘or-
phan crops’, i.e. plants important for regional
food and economic security that are not traded
world-wide. Due to the lack of comprehensive
transcriptomic, regulatory, or proteomic exper-
iments we are limited in understanding their
growth, senescence, yield, and responses to bi-
otic and abiotic stresses [3, 4, 5, 6], hampering the
utilization of modern improvement tools, such
as high-throughput (molecular) phenotyping, ge-
nomic selection, and genome editing. In light of

The advent of high-throughput next-generation
sequencing has led to a vast increase in avail-
able genomic data in the field of plant sciences.
Since the completion of the genome sequence
of the model plant Arabidopsis thaliana over 20
years ago [1], more than 200 plant species’
genome sequences have been published to date
[2]. However, the generation of a species’ as-
sembly is merely the initial step in the process
of understanding the genome. Extensive addi-
tional experiments and computational process-
ing are necessary for the crucial task of structural
and functional annotation of important genomic
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this, novel approaches that can accurately pre-
dict gene annotations and regulatory genomic
features directly from DNA sequences have the
potential to provide valuable biological insights
and assist in genomic editing applications. This
is mainly because once an accurate predictive
model for a particular biological process of in-
terest has been developed, researchers can enjoy
complete freedom to assess the effect of any vari-
ant. For instance, in the work of Rodriguez-Leal
et al., the authors edited the tomato CLAVATA3
gene (SICLV3) promoter to increase fruit size and
optimize inflorescence branching [7]. Due to the
lack of functional annotations in the SICLV3 pro-
moter, they had to employ saturated promoter
mutagenesis using the CRISPR/Cas9 system, fol-
lowed by the selection of mutants with desirable
fruit and inflorescence traits. An accurate predic-
tive model could have potentially facilitated the
identification of key regulatory elements in the
SICLV3 promoter enabling the implementation
of a model-guided approach for promoter editing
based purely on in silico-based analysis. Indeed,
such approaches have demonstrated their feasi-
bility and power in human genetics, successfully
revealing variants, including rare alleles, under-
lying specific genetic diseases [8, 9].

The complexity associated with sequence deter-
minants of gene structure and regulatory fea-
tures makes end-to-end deep learning-based ap-
proaches highly suitable for direct learning from
DNA sequences to achieve accurate predictions
of specific outcomes. The majority of deep
learning approaches have heavily relied on su-
pervised learning to train neural networks in a
task specific manner [10, 11, 12, 13, 14]. While
successful across various applications, this ap-
proach depends on abundant labeled data, which
can lead to sub-optimal performance and lim-
ited usability, especially in scenarios with data
scarcity. Obtaining high-quality labeled data
is often a time-consuming and costly process.
Additionally, most of these models have used
convolutional neural networks (CNNs), recur-
rent neural networks (RNN’s), or combinations
of the two as their model architectures. Al-
though effective these architectures have been
outperformed by transformer architectures as ev-
idenced by their adoption in both the computer
vision and natural language processing fields
[15, 16, 17]. To address these limitations and
exploit the transformer architecture, large lan-
guage models (LLMs) have gained considerable
popularity in the field of biology [18, 19, 20,
21, 22, 23, 24, 25, 26, 27], offering the abil-
ity to be trained on unlabeled data and gener-

ate general-purpose representations capable of
solving specific tasks. Furthermore, LLMs over-
come a current limitation of other deep learning-
based models, as they are not reliant on single
reference genomes, which often provide an in-
complete and biased genomic diversity depiction
from a limited number of individuals. LLMs
can leverage multiple reference genomes, in-
cluding those from genetically distant species,
thereby increasing overall diversity, which has
been shown to significantly enhance prediction
performance [24]. This diversity is particularly
relevant in plant species due to the structural
complexities of their genomes, which hinder ac-
curate mapping of polymorphisms across whole-
genome alignments. Moreover, depending on the
plant species under study, there may be a lack
of large and representative collections of individ-
ual genomes, necessitating the use of genomic di-
versity from other species to improve prediction
performance. Finally, LLMs are well-suited for
zero-shot learning, a transfer learning approach
that enables the model to recognize and classify
samples from new classes not encountered dur-
ing training. This ability stems from their gen-
eralizability and comprehensive language under-
standing [28]. Zero-shot predictions represent an
alternative approach to the traditional method of
training supervised models on large amounts of
functional genomic data. Since LLMs are trained
solely on DNA sequences, zero-shot predictions
can be readily obtained, even for understudied
plant species like orphan crops, in the absence
of such functional genomic data. In the con-
text of plant genomic research, only two LLMs
have been developed so far. Nonetheless, one of
these was exclusively evaluated for its capability
to predict the functional impact of genetic vari-
ants in Arabidopsis thaliana [29], while the other
focused solely on predicting gene expression lev-
els in various tissues of maize (Zea mays) [30].

In this study, we introduce a novel DNA large
language model called the Agronomic Nucleotide
Transformer (AGroNT), which is based on the
transformer architecture. AGroNT was trained
using reference genomes from 48 plant species,
with a primary focus on edible plant species.
We assessed the performance of AGrRoNT across
several prediction tasks ranging from regulatory
features, RNA processing, and gene expression,
and show that AGroNT can obtain state-of-the-
art performance. We also illustrate the capabil-
ity of AGroNT to improve prioritization of func-
tional variants through zero-shot prediction. By
exploiting the scalability of AGroNT, we further
characterized the mutation space of promoter se-
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quences and enhancer regulatory regions in the
agriculturally significant ‘orphan crop’, Manihot
esculenta, commonly known as cassava. Through
in silico saturation mutagenesis we profiled over
10 million single point mutations. As a major
contribution of this study, we provide the pre-
dicted impact of these variants for future re-
search. Furthermore, we have made the pre-
trained AGrRONT model available for future re-
search. Given the lack of comprehensive bench-
marks in the context of deep learning-based
methods in plant genomic research, we propose
the use of the datasets covering several distinct
genomic prediction tasks compiled here as the
Plant Genomic Benchmark (PGB). Our aim is
to enhance and provide a comprehensive assess-
ment of the performance of deep learning meth-
ods in plant genomic studies. Overall, the results
of our study emphasize the significant capabil-
ities of AGroNT in the field of plant genomics
and highlight its particular relevance for under-
researched plant species.

Results

AGrONT: a novel large language model
that integrates genomes across plants
species

We developed a transformer-based DNA lan-
guage model named the Agronomic Nucleotide
Transformer (AGroNT), which learned general
nucleotide sequence representations from ge-
nomic DNA sequences of 48 different plant
species (Fig. la; Methods). Building upon our
previous work [24], our pre-training strategy in-
volves performing masked language modeling
(MLM) on a DNA sequence consisting of 6,000
base pairs (bp). Our tokenization algorithm splits
the DNA sequence into 6-mers, treating each
6-mer as a token, and masks 15% of the to-
kens for prediction (Fig. 1b; Methods). For our
fine-tuning strategy, we implemented parameter-
efficient fine-tuning using the IA3 technique [31].
In this approach, we replaced the language model
head with a prediction head, using either a clas-
sification or regression head based on the task.
We kept the weights of the transformer layers
and embedding layers frozen, or alternatively,
unfroze a small number of the final layers to re-
duce training time for specific downstream tasks
(Fig. 1c; Methods). We introduced new learnable
weights for the fine-tuning process. Through-
out the study, we evaluated the performance of
AGrONT across 7 genomic prediction tasks (Ta-
ble 1) using exclusively our fine-tuning method

and compared the obtained performance to other
state-of-the-art methods, where available.

Polyadenilation site, splice site, and
long non-coding RNA prediction

We first evaluated the predictive capability of
AGrONT in predicting alternative polyadenyla-
tion (APA), a process characterized by the se-
lection of different polyadenilation sites within
the same gene. APA has been recognized as a
key regulator of gene expression in various eu-
karyotes, including plants [32]. For this anal-
ysis, we leveraged PlantAPAdb, a manually cu-
rated resource that offers an extensive catalog of
APA sites in plants encompassing diverse biolog-
ical samples [33]. The compiled dataset included
more than 240,000 APA sites distributed across
different genomic features from reference anno-
tations in five plant species (Fig. 2a). As expected,
the majority of polyadenilation sites are located
at annotated 3’ UTR regions across plant species.
AGroNT demonstrated high accuracy in predict-
ing APA sites across various plant species. It
achieved area under the receiver operating char-
acteristic (ROC) curve (AUC) values ranging from
0.89 to 0.96 and area under the precision-recall
curve (AUPRC) values ranging from 0.82 to 0.93
(Fig. 2b). To the best of our knowledge, no pre-
vious study has used PlantAPAdb to develop a
method for predicting APA sites. Hence, for
a comparative analysis of AGrRoNT’s APA pre-
diction performance, we trained the model on
an APA dataset specifically composed of 3’'UTR
sequences from Arabidopsis thaliana, which was
used to train the CNN-based model DeepPolyA
[34]. Remarkably, AGroNT achieved an almost
perfect performance with an AUC of 0.99, sur-
passing DeepPolyA’s reported AUC of 0.97, as
well as outperforming other methods such as
DanQ and DeepSEA, which obtained AUC val-
ues below 0.97 on the same dataset [34]. We hy-
pothesize that the presence of exclusively introns,
CDS, and 5’ UTR sequences in the negative train-
ing dataset of DeepPolyA, without any nearby or
non-APA 3’ UTR signals, contributed to the re-
duced complexity of the classification task. This
could explain the close-to-perfect performance
obtained by AGroNT.

Next, we evaluated the performance of AGRoNT
in predicting splice sites, which are crucial con-
tributors to transcriptome diversification in both
animals and plants [35, 36]. For this assess-
ment, we used a dataset encompassing accep-
tor and donor sites, as well as non-acceptor and
non-donor sequences across the entire genome of


https://doi.org/10.1101/2023.10.24.563624
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.24.563624; this version posted October 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Input: c Input:
Reference genome DNA sequence (6,000 bp) DNA sequence and associated class
Fruits ACGTGATGATACGCATCGACTACGATCAGCTACGAC ACGTGATGATACGCATCGACTACGATCAGCTACGAC +

Vegetables ACGTGA TGATAC GCATCG ACTACG ATCAGC TACGAC
ATGATCGACTACGATCACGAGGAAAATGCTCT =
ACGTGA TGATAC [MASK] ACTACG ATCAGC TACGAC CGATGATCGACTACGATCACGAGE GCTCTGE
Tubers l 1
Oil ] Masked Language Modelling AGRONT
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CGCATCGACTACGA GTTTAA Head
TCAGCTACGATCTA
TATAGCTACGATCA 1
iggéig?gg\?gTAA Output: Output:
e ACGTGA TGATAC GCATCG ACTACG ATCAGC TACGAC +/ -

Figure 1: Overview of Agronomic Nucleotide Transformer. a) Data collection of plant species’ reference genomes used for pre-training.
The size of the circles is proportional to the number of species in each category. b) Pre-training strategy. The input is a 6,000 base pair
(bp) DNA sequence randomly selected from 48 plant species’ reference genomes. Each sequence is tokenized into a 6-mer (i.e., a string of
6 nucleotides), and 15% of these tokens are randomly masked. The objective of masked language modeling (MLM) is to obtain the model
parameters that best predict the masked tokens. c) Fine-tuning strategy. After pre-training, we fine-tuned AGRONT using a supervised
learning approach. We employed the parameter-efficient fine-tuning method, IA3, which introduces re-scaling weight vectors at the model’s
activations, enabling significant performance improvements while reducing computational resources compared to full model fine-tuning.

Arabidopsis thaliana (Fig. 2c). Notably, AGrRoNT
demonstrated high performance in predicting
both acceptor and donor sites, achieving AUC
values of 0.97 and 0.95, respectively. The AUPRC
for acceptor and donor site prediction was 0.97
and 0.98, respectively (Fig. 2d).

We also evaluated the classification performance
of AGroNT in distinguishing long non-coding
RNAs (IncRNAs) from messenger RNAs (mR-
NAs). LncRNAs in plant species have been recog-
nized for their significant roles in growth, devel-
opment, responses to biotic and abiotic stresses,
and the regulation of cell differentiation [37]. To
assess the classification capability of AGroNT,
we used a comprehensive repository of anno-
tated IncRNAs in plants and applied it to clas-
sify IncRNAs and annotated mRNAs across six
plant species. The length of the two sequence
types differed significantly, with IncRNAs having

a median length of 457 bp, while mRNAs had
a median sequence length of 2604 bp (Wilcoxon
rank sum test, P-value < 2.2 x 1071®) (Fig. 2e).
To mitigate the effect of the model relying solely
on sequence length and encourage it to learn
more meaningful features, we opted to retain
only mRNA sequences that matched the length
and GC content of IncRNAs, resulting in a more
challenging and matched dataset (see Methods).
AGrONT demonstrated high classification perfor-
mance across the six plant species tested, achiev-
ing AUC values ranging from 0.79 to 0.89 and
AUPRC values ranging from 0.80 to 0.87 (Fig. 2f).
We found only one study that used the GreeNC
database to develop a LSTM-based model for pre-
dicting plant IncRNAs, namely IncRNA-LSTM
[38]. Therefore, we trained AGroNT on the
dataset compiled in that study, which differed
from our dataset by including only mRNAs from

Task No. datasets No. classes/Regression Sequence length (bp) Source
Polyadenilation 6 2 400 This study
Splicing site 2 2 398 Baten et al.
LncRNA 6 2 101-6000 This study
Promoter strength 2 Regression 170 Jores et al.
Chromatin accessibility 7 9-19 1000 Zhao et al.
Gene expression 6 Regression 6000 This study
Enhancer region 1 2 1000 This study

Table 1: Summary of the Plants Genomic Benchmark (PGB). The table details the number of datasets, super-

vised learning task, sequence length, and source.
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Zea mays and not matching by length or sequence
content. AGRONT exhibited almost perfect per-
formance with an AUC of 0.991, which was com-
parable to the reported performance of IncRNA-
LSTM (0.9934). We hypothesize that the much
higher performance obtained in this classification
setting by AGroNT is primarily due to the less
challenging dataset, which was not matched by
length nor GC content.

Promoter activity and genome accessi-
bility prediction

We also assessed the predictive performance of
AGroNT in determining the regulatory activity
of core promoters, which play a crucial role in
governing transcription initiation [39]. We used
a recently developed dataset that extensively ex-
amined the core promoters of three plant species.
These promoters were analyzed through STARR-
seq assays, which were individually conducted in
transiently transformed tobacco leaves and maize
protoplasts [40]. Consistent with this study,
we observed higher activity in the tobacco sys-
tem compared to the maize protoplasts (Fig.3a).
AGrONT demonstrated the ability to predict the
strength of promoters in held-out sequences with
high performance, achieving an R? value ranging
from 0.62 to 0.71 in the maize system and an R?
value ranging from 0.62 to 0.75 in the tobacco
model (Fig.3b). Notably, AGroNT outperformed
a CNN-based model [40] trained on this dataset
across all plant species and systems, on average,
by 3 R? points, showcasing its capability to learn
this type of regulatory activity.

As an additional example of regulatory sequence
prediction, we also evaluated the performance of
AGroNT in predicting genome-wide chromatin
profiles. By analyzing chromatin profiles, it is
possible to identify key regulatory elements, such
as enhancers and promoters, where many puta-
tive causal variants in humans and plants are of-
ten found [41, 42, 43]. We leveraged a recent
collection of ATAC-seq data from multiple tis-
sues of six model and important crop species [11].
The dataset included an average of 81,000 open
chromatin profiles across all the tissues for the
six plant species, with the profiles distributed
among various tissues showcasing the sparsity of
these annotations across the genome. (Fig. 3c).
AGrONT demonstrated strong performance in
predicting chromatin profile peaks across dif-
ferent plant species and tissues, achieving AUC
values ranging from 0.94 to 0.98 (Fig. 3d) and
AUPRC values ranging from 0.51 to 0.67 (Sup-
plementary Fig. 3). We note that these perfor-

mance metrics highlight the predictive capabil-
ity of AGroNT in identifying these regulatory se-
quences, considering the low proportion of posi-
tive sequences in the datasets across plant species
(average 0.12). Further, AGroNT either outper-
formed or achieved comparable performance to a
CNN-based based model, plantDeepSEA [11], in
five out of the six tested plant species when com-
paring the performance across all tissues within
each plant. On average AGrONT exhibited a
marginally higher performance, i.e. less than 1
AUC or AUPRC point variation. It is worth not-
ing that these predictions were made using a lim-
ited sequence length of 1000 bp for predicting
chromatin profiles, ensuring a fairer comparison
against the CNN-based model. We anticipate that
by extending the sequence context length to 6000
bp length, the capability of AGroNT, the model’s
performance is likely to further improve [44, 45].

Tissue-specific gene expression predic-
tion

To assess the performance of AGrRoNT in predict-
ing the levels of gene expression across tissues,
we collected and processed data from gene ex-
pression atlases of five plant species. Our com-
piled dataset included tissue-specific gene ex-
pression values that ranged from 7 tissues in
rice and up to 56 tissues in Arabidopsis thala-
iana (see Methods). To predict gene expres-
sion, we trained AGRONT on promoter-proximal
sequences based on transcription starting sites
(TSS) annotations and ensured that the sequence
overlapped slightly with the coding sequence, as
this has been shown to aid in gene expression
prediction accuracy across different species, in-
cluding plants [46]. AGrONT obtains moderate
prediction performance of gene expression lev-
els for genes across the five plants species and
across all tissues (R2 = 0.419 - 0.621, P-value <
2.2x10716) (Fig. 4a). The prediction performance
was relatively consistent across individual tissues
with the exception of pollen which had consis-
tently lower prediction performance across plant
species (Supplementary Tables 4-8, Supplemen-
tary Fig. 4-8). This might be related to the in-
accessible nature of pollen developing in the an-
ther and the resistant pollen wall that might af-
fect proper pollen isolation, as recently suggested
[38]. Considering the absence of models capable
of predicting quantitative gene expression levels,
and to conduct a comparative analysis for this
task, we also trained AGroNT to predict whether
genes are expressed or not. To accomplish this,
we employed a dataset derived from a collection
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Figure 2: AGRONT predicts polyadenilation, splicing, and long non-coding RNAs. a) Distribution of alternative polyadenilation (APA) sites
across different genomic features in 5 species as annoated in the PlantAPAdb. 3’UTRext refers to the 3'UTR extended annotation. See [33]
for further details on the annotation of APA sites. b) Receiver operating characteristic curve (left) and precision-recall curve (right) for APA
prediction. c) Distribution of splicing sites (acceptor or donors) and non-splicing sites across the genome in Arabidopsis thaliana. d) Same
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of Zea mays tissues, which was previously utilized
by a recent study to train a CNN-based model
[47]. Notably, AGroNT achieved superior perfor-
mance compared to the model trained on pro-
moter sequences (AUC 0.89 versus 0.81) as well
as terminator sequences (0.89 versus 0.82).

To further explore the capabilities of AGroNT for
gene expression prediction, we also evaluated the
performance of AGroNT in reproducing tissue-
specific expression patterns. To do this, we con-
ducted hierarchical clustering using the distances
between observed gene expression levels across
tissues. We then assessed how well the predicted
distances replicated these patterns (Fig. 4b,c).
See (Supplementary Fig. 4-8) for gene expres-

sion heat maps with tissue labels. Predictions
were made solely on promoter-proximal regions
as carried out in the fine-tuning. Encouragingly,
AGRrONT successfully reproduced the general pat-
terns of similarity across tissues. Nonetheless, we
observed that the predicted distances were sig-
nificantly shorter than the observed distances, in-
dicating that, on average, the predicted gene ex-
pression levels were more similar across tissues
than the observed. To further evaluate the tissue-
specific performance, we also computed log-fold
changes (LFC) for all pairs of tissues and as-
sessed the correlation between the observed and
predicted LFC values for each species separately
(Fig. 4d). The correlation between the observed
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Figure 3: AGRONT predicts promoter activity and genome accessibility across tissues. a) Promoter strength distribution based on
STARR-seq assays conducted in transiently transformed maize protoplasts and tobacco leaves. b) AGRONT prediction of promoter strength.
The coefficient of determination (RZ) from AGRONT and from a CNN model based on the DeepGMAP architecture are shown. c) Open chro-
matin profiles across tissues. The heatmap illustrates the genomic position of chromatin profiles from six plant species across tissues in a
1-megabase window of chromosome 1. Each cell in the heatmap represents a 1000-base pair (bp) region. The training strategy of AGRONT
involved detecting chromatin profiles in the center of a 1000 bp region. d) The performance of AGRONT in predicting chromatin profiles
across species and tissues is measured using the area under the curve (AUC) of the receiver operating characteristic curve. P-values
shown are based on a two-sided Wilcoxon signed test comparing the performance of AGRONT with a model based on the DeepSEA architec-
ture.

and predicted LFC values was relatively low, with
similar correlation values observed across species
(ranging from 0.18 to 0.24). Similarly, when ex-
amining the predicted LFC directions, which in-
dicate the accuracy of the model in predicting
whether genes are upregulated or downregulated
between tissues, we found that slightly over half
of these predictions were correct (with a median
ranging from 0.54 to 0.58).

It is likely that the model has primarily learned to
recognize essential features associated with basal
transcriptional activity. Indeed, when evaluat-
ing the importance of specific regions within the
prediction sequences, we found that sequences
positioned approximately 100 base pairs from

the annotated TSS had the most significant in-
fluence on the predictions (Fig. 4e). This ob-
servation is consistent with the understanding
that these sequences serve primarily as binding
sites for transcription factors that are crucial for
basal transcription levels, independent of tissue
or cell types. This result also illustrates the chal-
lenge of accurately predicting tissue specificity
based on promoter-proximal sequences only. The
model’s inability to capture tissue-specific regu-
latory regions, such as enhancers that can be lo-
cated far away from the promoter region and ex-
hibit more variable and cell type-specific activity,
contributes to this difficulty.
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ciated P-values between predicted and observed values are shown. b/c) Tissue expression profiles between observed (upper panels) and
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changes (LFC) for all pairwise tissue comparisons (upper plot) and LFC directions, i.e. accuracy of the model in predicting upregulated or
downregulated genes between tissues. e) Token importance analysis across promoter-proximal sequences. Token importance is computed
as the absolute difference between the original model prediction and the predicted gene expression level after inserting a random token
across the promoter-proximal sequence. Token importance is averaged across tissue for each species. Black line denotes the mean value
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across species. Vertical dotted line indicated the transcription starting site (TSS) position.

Zero-shot prediction of functional vari-

ants

AGRONT can also be leveraged for zero-shot

ables the model to recognize and classify samples
from new classes that were not encountered dur-
ing training. Hence, we evaluated the ability of
AGRrONT to assess the functional consequences of

learning, a transfer learning approach that en-
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different types of genetic variants through vari-
ous zero-shot scores. Specifically, we computed
zero-shot scores by considering different aspects
of vector distances in the embedding space, along
with a score derived from the loss function. To do
this, we calculated the log-likelihood ratio (LLR)
between the probabilities of alternate and ref-
erence alleles (see Methods). As a baseline for
comparison, we also included a LLR score called
the Genomic Pre-trained Network (GPN) score
[29]. Like our approach, this score is based on
a multi-species DNA language model pre-trained
on reference genomes of Arabidopsis thaliana and
seven related species within the Brassicales order.
Considering that the functional variants anal-
ysed here are determined exclusively from anno-
tations obtained from Arabidopsis thaliana, we re-
gard this comparison as challenging, given that
the GPN model was solely trained on species re-
lated to Brassicales, where its performance is an-
ticipated to be high. In addition to these, we also
included two conservation scores, phastCons [48]
and phyloP [49], in the comparison. These scores
assess the evolutionary constraint on specific ge-
nomic positions and provide valuable informa-
tion regarding potential functional implications.

We first investigated the utility of zero-shot
scores in evaluating deleteriousness. The pres-
ence of aggregated genomes from multiple Ara-
bidopsis thaliana samples as part of the 1001 Ara-
bidopsis Genome Project provided an opportu-
nity to assess the impact of natural selection
on missense and synonymous mutations across
a range of allele frequencies. When comparing
the ratio of missense to synonymous variants, we
observed that very rare variants (frequency lower
than 0.1%) and rare variants (frequency between
0.1% and 1%) exhibited a significantly higher
missense/synonymous ratio of 1.8 (95% CI [1.78-
1.82]) and 1.64 (95% CI [1.63-1.66]), respectively,
compared to the expected ratio of 1 for non-
deleterious variants (Fig. 5a). As allele frequency
increased, the missense to synonymous ratio de-
creased consistently, suggesting that a consider-
able proportion of missense variants in Arabidop-
sis thaliana with frequencies lower than 1% may
have deleterious effects. Based on this observa-
tion, we examined the enrichment of missense
variants in these two frequency categories com-
pared to common variants (frequency >5%) us-
ing odds ratios (OR) across different quantiles of
the score distributions (Fig. 5b). Across quantiles,
GPN and the two conservation scores showed the
highest ORs for both frequency classes and across
quantiles. LLR and the dot product of embed-
dings (based on layers 11 and 40) from AGroNT

also exhibited significant ORs, particularly at the
lowest quantiles, although they were approxi-
mately two times lower than those observed for
GPN and conservation scores. Other zero-shot
scores based on the embedding space and other
layers did not exhibit superior performance ei-
ther (Supplementary Fig. 1). Considering that
GPN is based on pre-trained sequences from
Brassicales-related species, it is likely that the
model leverages this variation to better capture
the frequency of variants in Arabidopsis thaliana,
thereby aiding in the detection of these rare mis-
sense variants. Indeed, across all missense vari-
ants, GPN scores displayed a stronger correla-
tion with allele frequency (r = 0.1, P-value <
2.2 x107!6) compared to LLR from AGrONT (r =
0.05, P-value < 2.2 x 10_16), which was trained on
multiple plant species.

We next evaluated the performance of these
scores to detect genome-wide associated variants
(GWAS) based on the AraGWAS Catalog [50],
a manually curated database for standardised
GWAS results for Arabidopsis thaliana. As in our
previous analysis we examined the enrichment
of coding and non-coding GWAS variants rela-
tive to non-GWAS variants. Across quantiles,
GPN and LLR exhibited comparable performance
for both coding and non-coding GWAS variants
(Fig. 5b). The two conservation scores performed
similarly to GPN and LLR for coding variants, as
expected, given the higher selective pressure typ-
ically exerted within these regions, but showed
lower performance for non-coding variants. In-
terestingly, the dot product score demonstrated
the highest OR for both coding and non-coding
GWAS variants, and this score exhibited consis-
tent performance when calculated from different
layers (Supplementary Fig. 2). This observation
suggests that a measure of embedding similarity
might be more effective in capturing the effects
of GWAS variants, which are typically common
in the population. Unlike loss-based scores, the
dot product score is not primarily influenced by
the model’s training objective, which focuses on
the disparity between predicted and true labels.
Instead, we hypothesize that it can better cap-
ture the relevance of the variants themselves, po-
tentially taking into account other intrinsic char-
acteristics within the genomic context. Interest-
ingly, we also observed that the zero-shot scores
derived from AGroNT exhibited a very low cor-
relation with the conservation scores, indicating
that they capture genomic information beyond
just the degree of conservation (Fig. 5¢). This
observation suggests the possibility of integrat-
ing these scores to create a more robust annota-
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Figure 5: Zero-shot based prediction for variants of different functional classes in Arabidopsis thaliana. a) Ratio of missense (i.e.
non-synonymous) to synonymous variants in the 10001 Arabidopsis thalaiana Genome Project across frequency classes. Error bars de-
note 95% confidence intervals based on 100 chromosome-based samplings with replacement. b) Odd ratios (OR) across different score
thresholds used to assess enrichment of different functional variants. The ORs of the upper panel is based on assessing the enrichment of
two frequency classes of missense variants. The bottom panel is based on coding and non-coding GWAS variants. Error bars denote 95%
confidence intervals. Dashed black line indicates an OR of 1. c) Correlations between AGRONT zero-shot based scores and conservation
(phyloP and phastCons) and GPN scores. Facets indicate the layer used to compute the zero-shot scores. LLR refers to the log-likelihood
ratio between the alternate and reference allele probabilities from AGRONT.

tor capable of predicting the potential impact of
genetic variations in plant genomes.

Profiling the regulatory potential via in
silico mutagenesis

Lastly, we leveraged the capability of AGrRoNT
to obtain accurate predictions across a variety of
regulatory features by further training AGrRoNT
to predict intergenic enhancer elements and gene
expression levels across 11 tissue/organ types in
the Manihot esculenta (cassava) genome, and per-
formed in silico saturation mutagensisis analy-
ses (see Methods). AGroNT demonstrated strong
performance in detecting intergenic enhancer se-
quences, achieving an AUC value of 0.88 (Fig. 6a).

Through a large-scale in silico mutagenesis anal-
ysis, we systematically mutated each site to all
three possible distinct nucleotides across the cen-
tral 400 bp region of the top 1000 most confi-
dently predicted enhancer regions by AgroNT
(probabilities ranging 0.975 to 0.999). As a re-
sult, mutating the nucleotides within these re-
gions is more likely to produce an effect that
AGrONT can accurately identify. By estimating
the log-fold change (LFC) between the probabil-
ity of the mutated sequence and that of the orig-
inal sequence, we note, as expected, that the ma-
jority of mutations do not strongly influence the
predicted probability of an enhancer sequence
(median absolute LFC probability = ~1.10x1073)
(Fig. 6b), since the majority of the evaluated
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mutations are likely not impacting relevant en-
hancer functionality. To further assess the im-
pact of the evaluated mutations we identified
potentially strongly-affecting mutations as those
with a LFC probability less than —0.042 (0.01%
quantile), implying a disruption of enhancer el-
ements. This resulted in 120 mutations which
impacted 15 distinct enhancer sequences. No-
tably, the most potent mutation overlapped the
TCGAAT and DOF motifs (Fig. 6¢), while the sec-
ond most influential mutation targeted the DOF
motif (Fig. 6d). This observation suggests that the
AGroNT-trained model has likely acquired an
understanding of the significance of these motifs
in relation to enhacer regions. To assess the im-
pact of mutations on promoter-proximal regions,
we also trained AGroNT to predict gene expres-
sion levels across 11 tissue/organ types in cas-
sava, achieving moderate predictive performance
(R? = 0.51, P-value < 2.2 x 107! across all tis-
sues) (Fig.6e and Supplementary Fig.9). Simi-
lar to the enhancer-based mutagenesis analysis,
we then calculated the LFC between the pre-
dicted gene expression levels of the mutated se-
quence and the original sequence for the 1000
promoter sequences derived from genes with the
highest average gene expression levels across all
tissues (Fig. 6f). Focusing on mutations with the
most substantial impact, specifically those with
LFC less than —0.28 (0.01% quantile), we iden-
tified 136 mutations across 20 distinct promoter
sequences. The most significant mutation af-
fected the Trihelix motif (Fig. 6g), while the sec-
ond most significant mutation impacted the DOF
motif. These findings suggest that the AGRONT-
trained model has also developed an understand-
ing of the importance of these motifs in relation
to gene expression levels. We have provided the
predicted impact of all possible single-nucleotide
substitutions across all enhancer and promoter
sequences for future research purposes.

Discussion

In this paper, we showcase the capabilities of
AGroNT, a novel DNA-based LLM for accurately
making predictions on a wide range of genomic
tasks across various plant species. Due to its pre-
training on a large collection of plant genomes,
AGroNT inherently possesses transfer learning
capabilities, allowing it to aggregate knowledge
from all assembled plant genomes, and enhanc-
ing its predictive power. In the context of
regulatory-based prediction tasks, it is reason-
able to hypothesize that AGroNT has learned to
capture genomic regulatory features that likely

11

hold functional importance across plant species,
leading to improved performance. Recent stud-
ies have indicated that many key promoter ele-
ments identified in animals are also enriched in
plant promoters [51, 52, 53, 54], suggesting that
leveraging more phylogenetically-distinct species
could potentially offer further performance im-
provements. AGroNT differs from the majority of
previously developed models that rely on train-
ing with specific genomic sequences from indi-
vidual plant species and use distinct deep learn-
ing architectures for each prediction task. In
contrast, we exclusively employed a parameter-
efficient fine-tuning approach for all predictive
tasks. This flexible and effective strategy either
matched or outperformed current state-of-the-
art methods in the assessed tasks. It simplifies
model selection, ensuring reliable high perfor-
mance without the necessity for extensive archi-
tecture analysis for each prediction task.

Several paths to further improve model perfor-
mance appear promising, particularly in two ar-
eas with a direct impact on breeding engineer-
ing. The first of these relates to the prediction
of functional and deleterious genetic variants.
Several studies on domesticated plant species
have found that domestication is often associated
with an increase in harmful deleterious variants
[55, 56, 57, 58]. With low rates of sexual re-
production, these deleterious variants are main-
tained in the population and can hinder breed-
ing efforts [59]. As such, confidently identify-
ing these mutations could facilitate targeted deci-
sions to purge genetic load from crop species and
advance genetic gains [60]. Our analysis shows
that AGroNT could be used to prioritize func-
tional variants based solely on DNA sequences,
which may be particularly relevant for under-
studied plant species, such as orphan crops,
that currently lack functional genomic annota-
tions. Interestingly, our analysis comparing zero-
shot scores from AGrRONT and the GPN model
[29] in prioritizing deleterious missense vari-
ants in Arabidopsis thaliana suggests that lever-
aging the genetic variability from species of rel-
atively short phylogenetic distance during the
pre-training leads to better performance in de-
tecting these variants. As a direct application,
the recent study of Long et al. [61], which as-
sembled 52 Euphorbiaceae genomes to compute
evolutionary conservation scores and assess its
use in detecting deleterious variants in cassava,
could be compared against zero-shot scores de-
rived from AGroNT after additional pre-training
with these genomes. In that study, over half of all
base pairs across orthologous genes had an align-
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ment depth of >31 species, meaning that >50%
of bases could not be assessed for their deleteri-
ousness. In contrast, AGRONT can leverage mul-
tiple genomes without having to rely on whether
they have been aligned or not, and as such, can
compute, for example, a zero-shot score for any
variant. In addition to zero-shot scores, we envi-
sion using supervised models as another poten-
tial approach to enhance the detection of func-
tional and deleterious variants. Current stud-
ies predominantly relying on sequence conserva-
tion metrics to predict deleterious mutations in
plant species have shown varying performance
(AUC ~ 0.5 to AUC > 0.9) [62, 63]. Nonethe-
less, these methods still trail behind those devel-
oped for humans, suggesting an opportunity for
improvement. Given the low correlation that we
observe between the zero-shot based scores from
AGrONT and conservation metrics, it is feasible
to assume that their addition as features into the
currently developed models may lead to an im-
provement in performance. Lastly, another po-
tential avenue for improvement involves harness-
ing AGrRONT’s transfer learning capabilities when
dealing with a lack of putative deleterious vari-
ants in a specific plant species. For instance,
the recently introduced model PrimateAI-3D [64]
has demonstrated that systematically cataloging
common variants in non-human primates can ac-
curately infer the pathogenicity of missense vari-
ants in humans. Similarly, utilizing plant cata-
logs like the 1001 Arabidopsis Genome Project,
one could develop a classifier to predict rare
(or absent) variants, assuming their high enrich-
ment in deleterious variants. The second area
with direct impact on breeding engineering re-
lates to regulatory genomics. Cis-regulatory ele-
ments do not work in isolation. In plant systems,
it has been demonstrated that interactions be-
tween promoters and terminators affect gene ex-
pression, and the relative strength of a terminator
depends on which promoter it is paired with [65].
While our gene expression prediction focused on
promoter-proximal sequences, incorporating ter-
minators could improve results, as observed in
binary expression prediction in Zea mays [47]. An
additional approach could also leverage distinct
omics assays. Leveraging AGroNT, one could
combine candidate regulatory elements based on
chromatin accessibility assays with promoter se-
quences to enhance gene expression prediction.
As demonstrated in our evaluated gene expres-
sion models, accurately predicting tissue-specific
gene expression remains a challenge. Data based
on gene regulation at single-cell resolution have

the potential to unravel complex regulatory in-
teractions and identify targets for genetic ma-
nipulation. In this vein, single-cell-based assays
have recently been employed to study cell-type-
dependent gene regulation in plants [66, 67, 68,
69]. These studies identified cell-type-specific
changes in gene expression and chromatin acces-
sibility, illustrating the potential use of single-
cell assays in prediction models. Encouragingly,
at least based on single-cell assays from hu-
man cells, LLMs trained on single-cell data have
shown high performance across numerous down-
stream tasks [70, 71]. Nonetheless, given the
current data sparsity of single-cell experiments
and the difficulty in capturing sufficient cells of
rarer types, at least in plants, leveraging this type
of data in deep learning approaches will likely
depend on novel methods that can significantly
reduce the cost per cell. In addition to lever-
aging distinct assays, another avenue relates to
expanding the sequence context to capture ad-
ditional regulatory elements such as enhancers,
silencers, and insulators [72, 73]. Models like
Enformer [44] and the recent HyenaDNA [74],
which can handle larger regions and longer con-
text lengths, represents yet another promising
approach to better predict tissue-specific gene ex-
pression. Despite the potential approaches for
improvement, as of now, AGroNT stands as the
most accurate plant gene expression predictor.
Comparative studies achieved R? values of 0.27
[46] and 0.09-0.19 [30] using promoter-proximal
sequences to predict gene expression levels in
Arabidopsis thaliana and Zea mays, respectively.
In comparison to these two models and based on
our accuracy on both Arabidopsis thaliana and Zea
mays, AGRONT demonstrates up to a three-fold
improvement in performance.

To aid the field of plant genomics, we have made
the pre-trained AGroNT model available for fu-
ture research, as well as the datasets compiled
here, which we term the Plants Genomic Bench-
mark (PGB). Furthermore, we have released the
effect predictions for promoter sequences and en-
hancer regulatory regions in the still understud-
ied crop cassava (Manihot esculenta). Altogether,
continued progress in deep learning-based mod-
els in plant genomics will open exciting oppor-
tunities to explore the expanding catalogs of ge-
netic variants linked to critical plant traits, ul-
timately enabling the successful engineering of
high-yielding and stress-resistant crops, ensuring
food security and agricultural sustainability in
the face of changing climatic conditions.
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Figure 6: In silico mutagenesis in the Cassava genome. a) Receiver operating characteristic curve for the prediction of intergenic en-
hancer regions. b) The mutations with the strongest log-fold change (LFC) probabilities for each of the top 1000 enhancer regions are
shown in relation to their distance from the central 400 bp region. The size of the points is proportional to the LFC value. Circled points
represent the mutations with the strongest LFC values shown in c) and d). c) The in silico mutagenesis map for the enhancer region with co-
ordinates chr1:6334152-6335151. The bottom panel displays the LFC value for mutating each site to all three possible distinct nucleotides
across the central 400 bp region. The upper panel features the DNA sequence logo, with the nucleotide heights representing the maximum
absolute LFC value. Motif positions are indicated within a dotted rectangle, with the motif names displayed below. d) Same as in c), but for
the enhancer region with coordinates chr2:15863252-15864251. e) Gene expression prediction on holdout genes across all tissues. The
coefficient of determination (Rz) from a linear model and associated P-values between predicted and observed values are shown. f) Same
as in b), but for LFC gene expression predictions across promoter sequences. g) Same as in c), but for promoter sequence with coordinates
chr12:27521008-27527007. h) Same as in c), but for promoter sequence with coordinates chr15:862119-868118.
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A Methods
A.1 Model

In our work we employ Language Models (LMs) as the approach to learning the underlying represen-
tations of plant genomes. LMs have been proven to exhibit strong performance and generalization
in NLP, proteomics, and recently in our work in genomics [75, 76, 24]. Our previous work showed
the ability of our pre-trained LM’s to match or out perform task specific models on variety of human
genomics tasks. LM’s are statistical systems used to estimate the probability of a sequence of tokens
occurring given some vocabulary of tokens, where tokens could be words, amino acids, or nucleotide
k-mers. Two different methods for Language Modeling are Masked Language Modelling (MLM),
where a proportion of the input sequence is masked and/or randomly replaced with another word
[75], and Causal Language Modelling (CLM), where a sequence is used to predict the next word [77].
More specifically, we use a deep learning model called transformer whose primary component,the
self-attention mechanism, is capable of modelling global dependencies within sequences[17]. Our
training technique closely follows BERT, the Bidirectional Encoder Representation from Transformer,
which employs MLM, thus allowing it to benefit from the self-attention bidirectional property[75].

A.1.1 Architecture

Our model architecture can be described broadly as an encoder only transformer that contains one
billion trainable parameters. Our tokenizer consists of a vocabulary of all possible 6-mers using the
four nucleotides A, T, C and G, additional special tokens, and N to represent all unknown nucleotides
in a sequence. The tokenization algorithm works by first splitting genomic DNA sequences on N’s
and subsequently identifying 6-mers in the chunked sequences. Our tokenization strategy relies
exclusively on non-overlapping 6-mers. The model takes as input a sequence of 1024 tokens which
are passed into an embedding layer that projects each token into a 1500 dimensional space and are
subsequently added to a learned positional embedding. This combined embedding vector is then
fed through 40 attention blocks, with each attention block consisting of a layer normalization layer,
multi-headed attention layer, and multi-layer perceptron (MLP). The final layer,a Roberta LM head
[78], transforms the final attention layer output into a distribution over the tokenizer’s vocabulary at
each position of the input sequence.

A.2 Dataset

Our pre-training dataset was built from (mostly) edible plants reference genomes contained in the
Ensembl Plants database [79]. The dataset consists of approximately 10.5 million genomic sequences
across 48 different species. See Supplementary Table 1 for the dataset details, including genome an-
notation version and source. For data preparation, we followed the strategy employed in our previous
work [24]. Once we obtained the reference genome FASTA for each species, we assembled them into
a single FASTA file. In this FASTA file, all nucleotides other than A, T, C, G were replaced by N.
We used a tokenizer to convert strings of letters into sequences of tokens. The tokenizer’s alphabet
consisted of the 4° = 4096 possible 6-mer combinations obtained by combining A, T, C, G, as well
as five additional tokens representing standalone A, T, C, G, and N. It also included three special to-
kens: the padding [PAD], masking [MASK], and the beginning of sequence (also called class; [CLS])
token. This resulted in a vocabulary of 4104 tokens. To tokenize an input sequence, the tokenizer
started with a class token and then converted the sequence from left to right, matching 6-mer tokens
when possible, or using the standalone tokens when necessary (for instance, when the letter N was
present or if the sequence length was not a multiple of 6). Similar to our previous work, the first step
of the pre-training involved splitting each reference genome into chunks of 6100 nucleotides, where
each chunk shared the first and last 50 nucleotides with the previous and last chunk, respectively. As
a data augmentation exercise, for each epoch and chunk, a starting nucleotide index was randomly
sampled between 0 and 100, and the sequence was then tokenized from this nucleotide until 1000
tokens were reached. At each step, a batch of sequences randomly sampled from the epoch set was
fed to the model.
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A.3 Pre-training

The MLM objective was used to pre-train our model in a self-supervised manner. In a self-supervised
learning setting annotations (supervision) for each sequence are not needed as we can mask some
proportion of the sequence and use the information contained in the unmasked portion of the se-
quence to predict the masked locations. This allows us to leverage the vast amount of unlabeled
genomic sequencing data available. Specifically, 15% of the tokens in the input sequence are selected
to be augmented with 80% being replaced with a mask token, 10% randomly replaced by another
token from the vocabulary, and the final 10% maintaining the same token. The tokenized sequence
is passed through the model and a cross entropy loss is computed for the masked tokens. Updates to
the model parameters are computed through gradient descent with Adam, the adaptive learning rate
optimizer. Pre-training was carried out with a sequence length of 1024 tokens and an effective batch
size of 1.5M tokens for 315k update steps, resulting in the model training on a total of 472.5B tokens.
The Adam optimizer was used with a modified square decay learning rate (Ir) schedule where a warm
up period with linear increase was used for 64K steps with initial Ir of 0.00005 and end Ir of 0.0001.
A square decay function was then applied to the Ir for all subsequent steps. The exponential decay
rates f; = 0.9 and 8, = 0.999 were used in the optimizer.

A.4 Fine-tuning

After pre-training our model with the MLM objective we further fine-tune the model in a super-
vised learning setting using several annotated, plant genomics datasets. We fine-tune our pre-trained
model with IA3 [31], a method which injects re-scaling weight vectors at the model’s activation’s,
allowing us to achieve high levels of performance while only computing gradient updates for ap-
proximately 1% of the model parameters. The tasks upon which we fine-tune include single output
regression, multi output regression, binary classification, multi-label classification.

A.5 Hardware

Model pre-training was carried out using Google TPU-V4 accelerators, specifically a TPU v4-1024
machine containing 512 devices. Since the model was able to fit on a single TPU device, pre-training
was carried out in a data parallel fashion where model parameters were replicated and the effective
batch sharded across the 512 devices with subsequent gradient accumulation. We trained for a total
of approx. four days.

A.6 Downstream tasks
A.6.1 Polyadenilation site prediction

We obtained data for alternative polyadenylation (APA) sites from PlantAPAdb, which currently rep-
resents the most comprehensive manually curated catalog of APA sites in several plants. The dataset
is available at http://www.bmibig.cn/plantAPAdb. For our APA site prediction, we focused on five
specific species: Oryza sativa L. (japonica and indica), Arabidopsis thaliana, Chlamydomonas rein-
hardtii, Medicago truncatula, and Trifolium pratense. We downloaded all possible sequences around
polyadenylation (poly[A]) sites for each of these species. These sequences encompassed different ge-
nomic regions such as 3° UTR, 5" UTR, CDS, intron, and exon. Each sequence had a length of 400
bp, with the upstream 300 bp and downstream 100 bp sequence relative to the respective poly(A)
site cluster (PAC). The poly(A) site itself was located at the 301st position. To obtain a negative set,
we randomly shifted the position of the poly(A) site by both negative and positive values between
1 and 50. We then extracted a 400 bp sequence based on these shuffled positions. The number of
negative sequences was twice that of the positive sequences. It is important to note that this strategy
of generating negative sequences is more challenging compared to approaches used in other studies.
This is because the negative sequences still contain similar gene-related sequences, including those
from 3’ UTR, 5’ UTR, CDS, intron, and exon regions. Furthermore, we emphasize that the model was
trained to predict whether a given sequence had a poly(A) site at the 301st position or not. To pre-
vent data leakage, we limited the test set, for each plant species, to sequences that were exclusively
derived from a single sampled chromosome. Due to the imbalance in our dataset resulting from the
strategy of recreating negative sequences, we evaluated the performance of the models using both
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the area under the receiver operating characteristic curve (AUROC) and the precision-recall curve
(AUPRC). Additionally, we recreated the dataset utilized in Gao et al. [34] for APA site prediction.
The positive sequences were sampled from the 16K dataset originally introduced in Loke et al. [80],
which consists of over 16,000 downstream sequences from the 3° UTR of Arabidopsis thaliana. Fol-
lowing the approach in Gao et al., we initially selected sequences longer than 162 base pairs and
then trimmed them to a sequence length of 162 base pairs. These trimmed sequences included 131
base pairs upstream and 31 base pairs downstream of the annotated poly(A) site. To create negative
samples, we randomly sampled 9,704 coding sequences, 3,222 intronic sequences, and 501 5’-UTR
sequences from the Arabidopsis Information Resources (TAIR) database. This sampling ensured a
balanced dataset, as described in Gao et al. Similarly to the positive sequences, we trimmed the neg-
ative sequences to a length of 162 base pairs. Since the Gao et al. study did not specify the training
and test splitting ratio, we used a standard 0.9/0.1 split ratio, maintaining the same proportion of
negative coding, intronic, and 5’-UTR sequences in both the training and test datasets.

A.6.2 Splicing site prediction

We used the dataset compiled in Baten et al. [81] for splice site prediction, which is available at
https://public.bmi.inf.ethz.ch/user/behr/splicing/. The dataset consists of sequences of
398 bp each, containing both acceptor and donor sites, as well as non-acceptor and non-donor se-
quences across the genome in Arabidopsis thaliana. To prevent data leakage, the test set was limited
to chromosome 5. Given the highly imbalanced nature of the dataset, with 76,871 acceptor sequences
and 2,157,898 non-acceptor sequences, as well as 76,659 donor sequences and 3,311,934 non-donor
sequences, we evaluated the performance of the models using both the AUROC and AUPRC.

A.6.3 Longnon-coding RNA prediction

We obtained data for long non-coding RNAs (IncRNA) from the Green Non-Coding (GreeNC) database
version 2.0, which is available at http://greenc.sequentiabiotech.com/. Our IncRNA prediction
focused on six specific species: Glycine max, Manihot esculenta, Solanum lycopersicum, Sorghum bi-
color, Triticum aestivum, and Zea mays. For each of these species, we selected IncRNA sequences
with a length smaller than 6,000 bp. Additionally, we only included IncRNA sequences that were
reported on scaffolds that were present in the version of the associated annotation file for the given
reference assembly mentioned in the GreeNC database. To construct the set of negative sequences,
we extracted all mRNA sequences from the reference genome, using the assembly mentioned in the
GreeNC database. We removed mRNA sequences longer than 6,000 bp to maintain consistency with
the IncRNA dataset. To prevent the model from relying solely on sequence length for classifica-
tion and to encourage the learning of more meaningful features, we performed a matching process
between IncRNA and mRNA sequences based on both sequence length and GC content. Specifi-
cally, during the matching process, mRNA sequences were selected if they had a length equal to or
less than 100 bp compared to the corresponding IncRNA sequence. Similarly, the GC content of
the mRNA sequences was within a range of 1% less or 1% more than the GC content of the corre-
sponding IncRNA sequence. To prevent data leakage, we created a test set for each plant species
that exclusively consisted of sequences derived from a single sampled chromosome. In the case of
Triticum aestivum, the test set was limited to chromosomes 1A, 1B, and 1D. We evaluated the per-
formance of the models using both the AUROC and AUPRC. In addition, we replicated the dataset
compiled in Meng et al. [38] to compare our IncRNA prediction performance with that of PIncRNA-
HDeep. This dataset was also based on the GreeNC database, but included sequences exclusively
from Zea mays. This dataset consisted of 18,110 IncRNA sequences from the GreeNC database that
were downsampled to generate a positive set of 18,000 samples. The negative set was based on
57,776 mRNA sequences obtained from the RefSeq database, and also downsampled to create a bal-
anced dataset. To ensure a fair comparison, we used the same training and test datasets available at
https://github.com/kangzhai/P1ncRNA-HDeep/. The only difference was that we trimmed down
sequences longer than 6,000 bp since our model does not handle longer sequences. This trimming
affected 43 sequences in the training dataset and 9 sequences in the test dataset, which are unlikely
to greatly affect the performance comparison between models.
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A.6.4 Chromatin profiles prediction

We used the dataset compiled in Zhao et al [11] for chromatin profiles prediction. The compiled
dataset is based on transposase-accessible chromatin with sequencing (ATAC-seq) data from multi-
ple tissues of six plant species including Arabidopsis thaliana, Oryza sativa, Zea mays, Setaria italica,
Sorghum bicolor, and Brachypodium distachyon. NCBI and SRA accession number of the resources and
publications used to compile the dataset can be found in the original publication. For data genera-
tion, we followed the same strategy as outlined in the publication. We generated the same number
of training sequences samples, each of size 1000 bp, retrieved from a reference genome. For each
ATAC-seq sample, we labeled each training sequence as 1 (i.e. positive sample) if the middle 200 bp
region overlaps with an open chromatin region (OCR) by more than 50% of the sequence length or
as 0 (i.e. negative sample) otherwise. To ensure a fair comparison with the Zhao et al predictions
we selected the same chromosomes used as validation and test sets for each plant species. As in the
Zhao et al study, we evaluated the performance of the models using the area under the AUROC and
AUPRC metrics.

A.6.5 Promoter strength prediction

We used the publicly available self-transcribing active regulatory region sequencing (STARR-seq) as-

says for Arabidopsis thaliana, Zea mays and Sorghum bicolor[40]. The STARR-seq assays included all
known promoter regions for the species, which were defined as -165 to +5 bp relative to annotated
transcription start sites (TSSs), and their strength was measured in two systems: tobacco leaves and
maize protoplasts. To enable direct comparison with the CNN model trained in the original publi-
cation, we downloaded their training and test datasets available at https://github.com/tobjores/
Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/,
which included the 170 bp promoter sequences and their measured STARR-seq strength in the to-
bacco leaf and maize protoplast systems.

A.6.6 Tissue-specific quantitative gene expression level

To test our performance on predicting tissue-specific gene expression levels, we collected data from
large-scale studies of expression in five plants (Supplementary Table 2). All the data were down-
loaded as raw sequencing files and reprocessed with a uniform pipeline. We downloaded all pub-
licly available RNA-seq experiments from the Arabidopsis thaliana tissue atlas [82] stored in Array-
Express [83] (https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-7978), which
included 56 experiments across 27 tissues. For Zea mays, we downloaded the RNA-seq data pub-
lished by Walley et al. [84] stored in the GEO Database [85] (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE50191). The Zea mays dataset consisted of 68 RNA-seq experiments across
23 tissues. For Oryza sativa, we collected samples from two NCBI BioProjects (https://www.ncbi.
nlm.nih.gov/bioproject/?term=PRJEB47919 and https://www.ncbi.nlm.nih.gov/bioproject/
?term=PRJEB32629), totalling 20 experiments across seven tissues. For Solanum lycopersicum, we
downloaded the RNA-seq experiments associated to the whole-genome sequencing project [86] and
stored in the Gene Expression Atlas [87] (https://www.ebi.ac.uk/gxa/experiments/E-MTAB-4812)
which included ten tissues with one replicate each. Finally, we also retrieved the Glycine max tis-
sue atlas [88] from the European Nucleotide Archive (https://www.ebi.ac.uk/ena/browser/view/
SRA012188) which included 14 samples across nine tissues. The genome and annotation version
used for gene expression analyses were downloaded from Ensembl Plants version 56 [79] and are
listed in Supplementary Table 3. RNA-seq read mapping was performed with the STAR aligner
[89] version 2.7.10b. The genome indices for each species were prepared using STAR’s —runMode
genomeGenerate mode and the options —sjdbOverhang 99 —genomeSAindexNbases 12 using the genome
files and gtf genome annotation files listed in Supplementary Table 3. The raw RNA-seq reads were
mapped using STAR’s —quantMode GeneCounts mode, and with the options —outFilterType BySJout —
outFilterMultimapNmax 40 —alignSJoverhangMin 8 —alignS]DBoverhangMin 1 —outFilterMismatchNmax
999 —outFilterMismatchNoverReadLmax 0.04 —alignIntronMin 20 —alignIntronMax 1000000. Within
each species, the read counts across all tissues and replicates were imported into R and normalized
with DESeq2 [90] version 1.38.3. Size factors were first estimated using the estimateSizeFactors()
method and then used to normalize the reads using the counts() method with the normalized=TRUE
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option. For species that had multiple replicates per tissue, we averaged the resulting counts in each
tissue to get one value per tissue. Finally, a pseudocount of one was added to each count and they
were log?2 transformed. For training the model, we followed a similar strategy as outlined in Wash-
burn et al. [47]. We used promoter-proximal sequences based on the TSS annotations and ensured
that the sequence overlapped with the coding sequence by extracting 5000 bp upstream and 1000
bp downstream of the TSS, resulting in a sequence of 6000 bp. To prevent potential data leakage,
we divided the promoter sequences into gene families using the Washburn et al. pipeline available
at https://bitbucket.org/bucklerlab/p_strength_prediction/. Specifically, we conducted an
all-by-all BLAST on a given plant’s proteome sequence to evaluate pairwise similarity between pro-
teins. As a given gene can encode multiple protein isoforms, the results of the BLAST search were
collapsed to gene-level similarity. Then, a graph was constructed with nodes representing genes and
edges connecting paralogous genes. The graph was further divided into clusters (i.e., gene families)
using a clustering algorithm, and genes not assigned to a family were considered as a family of their
own. Using this set of partly independent gene sequences based on their family assignments, we
allocated promoter sequences into training and test datasets, thus ensuring that similar promoter se-
quences were not leaked. Since the number of promoter sequences allocated to families might differ
across species, we randomly chose a number of families that would result in an 80%/20% split for
each plant species separately. Lastly, we used the coefficient of determination (R?) to evaluate the
performance of gene expression prediction.

To further evaluate the performance of AGroNT in predicting gene expression and compare it to
a previously developed method, we trained a model specifically for predicting expressed and non-
expressed genes. We used the dataset compiled by Washburn et al. [47], which is based on 422
individual samples from seven studies, providing a comprehensive collection of Zea mays tissues at
various developmental stages. The NCBI and SRA accession numbers can be found in the original
publication. The dataset included 39,470 sequences with gene expression labels mentioned in the
paper, but sequences were available for only 35,402 of those sequences. As we did not retrieve the
missing sequences for training, the comparison to their reported performance becomes somewhat
more challenging, as the training dataset was reduced. Following the methodology described by
Washburn et al., we trained two separate models, each trained on either promoter or terminator
sequences with a fixed size of 1500 bp. We classified each sequence as associated with an expressed
gene or a non-expressed gene. As done in the Washburn et al. study, we evaluated the performance
of the models using the area under the receiver operating characteristic curve (AUC).

A.6.7 Token importance for gene expression level prediction

We also evaluated the significance of a genomic region within the 6000 bp promoter-proximal se-
quence by performing an importance analysis similar to the one described in [30]. To do this, we
randomly replaced each of the 1000 possible tokens within the promoter-proximal sequence with a
random token, ensuring that the newly generated token was not the same as the original one. Then,
we compared the predicted expression levels of the sequence with the randomly altered token to the
predicted expression levels based on the original sequence. In other words, for a given sequence,
we generated 1000 new sequences where only a single token differed from the original sequence.
We carried out this importance analysis using 100 randomly selected promoter-proximal sequences,
drawn only from the test sets, for each of the four plant species that were employed to train the gene
expression prediction models. Given that the four plant species gene expression models included var-
ious tissues, we averaged the differences across tissues and sequences to derive our final importance
scores.

A.6.8 Zero-shot scores for variant consequence prediction

To calculate zero-shot scores for a specific site of interest, we followed these steps: First, for each
single nucleotide polymorphism (SNP), we retrieved a 6,000 bp sequence centered on the SNP of
interest based on the reference genome of Arabidopsis thaliana. Next, we created two sequences:
one carrying the reference allele and the other carrying the alternative allele at the SNP position.
Then, we computed several zero-shot scores that capture different aspects of the vector distances in
the embedding space between these two sequences. These scores include the L1 distance (Manhat-
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tan), L2 distance (Euclidean), cosine similarity, and dot-product (not normalized cosine similarity).
Additionally, we computed a loss-based score, namely the log-likelihood ratio (LLR), which com-
pares the probabilities of alternate and reference alleles. For the evaluation of zero-shot scores on
potential deleterious variants, we utilized the genomes from multiple Arabidopsis thaliana samples
available through the 1001 Arabidopsis Genome Project (accessible at https://1001genomes.org/).
In this analysis, we only considered bi-allelic SNPs and removed any SNP with a genotyping rate
lower than 95% to ensure reliable allele frequencies. To annotate missense and non-synonymous
SNPs, we used the General Feature Format (GFF) files from the TAIR10 reference genome obtained
from Ensembl. For the assessment of zero-shot scores on phenotype-associated variants, we referred
to the AraGWAS catalog found at https://aragwas.1001genomes.org. Specifically, we considered
all variants annotated as ”“top association”. Similar to the previous analysis, we focused on bial-
lelic SNPs. To distinguish between coding and non-coding associated variants, we used the gene
coordinates from the GFF of the TAIR10 reference genome. Variants that overlapped with gene co-
ordinates were labeled as coding, while those that did not were labeled as non-coding. The LLR
score, referred to as the Genomic Pre-trained Network (GPN) score in [29], as well as the phast-
Cons and phyloP conservation scores, were downloaded from https://huggingface.co/datasets/
gonzalobenegas/processed-data-arabidopsis/. As the two conservation scores relied on multi-
ple alignments across species to compute a score, resulting in some SNPs lacking annotations, we
ensured fair comparison across methods by considering only variants with associated scores across
all methods.

A.6.9 In silico mutagenesis in the cassava genome

To leverage the capability of AGroNT for obtaining accurate predictions across a variety of regula-
tory features, we further trained AGrRONT to predict enhancer elements and gene expression across
multiple tissues in the understudied crop, Manihot esculenta (cassava). For enhancer elements predic-
tion, we used the PRO-seq data generated in Manihot esculenta seedlings from the study conducted
by Lozano et al. [91]. Specifically, we used a set of 9665 intergenic regulatory elements (IRE) regions,
which the authors defined as those located at least 1000 bp away from any gene. To maintain consis-
tency and avoid reprocessing the PRO-seq data, we used the Manihot esculenta reference genome v6.1
from Phytozome, which corresponds to the reference genome employed in the study. The training
dataset was constructed as follows: For positive sequences, which represent positive enhancer sam-
ples, we extracted a 1000bp sequence centered in the middle of the PRO-seq peak. To create matched
negative sequences for each positive sequence, we randomly selected a 1000bp intergenic sequence
from the same chromosome, ensuring it neither overlapped with any PRO-seq peak nor differed sig-
nificantly in GC% from the corresponding positive sequence. Specifically, the GC% of the negative
sequence was within 5% points of the GC% of the positive sequence. This approach resulted in a bal-
anced and GC-matched dataset. We then split the training and test sets by chromosomes, ensuring
they were strictly non-overlapping. Chromosomes 17 was designated as the test set, and chromo-
some 9 as the validation set. The remaining chromosomes were used as the training set. The model’s
performance was evaluated using the AUROC metric.

For gene expression prediction, we used the gene expression atlas from the study conducted by Wil-
son et al. [92], which measured gene expression levels across 11 tissue/organ types. We employed
the reference genome and annotation from Ensembl Plants version 56 and followed the same pipeline
to process the RNA sequencing data described above. As for our previous gene expression models,
we used promoter-proximal sequences based on TSS annotations to obtain sequences of 6000 bp and
followed the same clustering approach to assign each promoter sequence to a gene family. We then
used this information to produce a training and test set, using an 80%/20% split. Based on these
trained models, we performed a comprehensive profiling of regulatory potential. Specifically, for a
given sequence obtained from the reference genome, we systematically mutated each site to all three
possible distinct nucleotides. In our initial analyses to detect motifs, we predicted the impact of all
possible single-nucleotide substitutions across 200 bp upstream and 200 bp downstream of the mid-
point of the top 1000 best predicted enhancer regions. Similarly, for the gene expression analyses,
we conducted all possible single-nucleotide substitutions across promoter sequences located within
200 bp upstream and 200 bp downstream of the TSS. We selected 1000 promoter sequences of genes
that had the highest average gene expression levels across all tissues. To measure the impact of a
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mutation, we computed the log-fold change as LFC = log,(P,/P,). Here, P, represents the probability
(or gene expression level) predicted for the original sequence, and P; represents the probability (or
gene expression level) predicted for the mutated sequence. Given the observation that AGroNT has
gained an understanding of the importance of disrupting critical motifs in enhancer and promoter-
proximal regions concerning gene expression values, we also assessed all possible single-nucleotide
substitutions within 50 bp upstream and 50 bp downstream of the midpoint for all enhancer re-
gions. Similarly, we performed all possible single-nucleotide substitutions within 50 bp upstream
and 50 bp downstream of the TSS for all promoter-proximal regions. This resulted in a total of ~2.9
and ~7.3 million mutations, respectively, which we have made available for future research purposes.

We visualized the mutation scores of a given sequence using the ggseqlogo function from the R pack-

age ggseqlogo. To identify transcription factor motifs corresponding to patterns predicted to be im-
portant for enhancer or promoter activity, we mapped the positions of 656 plant TF motifs from the
non-redundant Jaspar CORE 2022 collection (https://jaspar.genereg.net/download/data/2022/CORE)
in these sequences. We accomplished this using the matchMotifs function from the R package mo-
tifmatchr, with the following parameters: p.cutoff = 1e-04 and bg = “even”. The figure panel high-
lights TF motif types that match positions with high prediction mutation scores.

B Code availability

The pre-trained AGroNT model has been made publicly available via HuggingFace at https://
huggingface.co/InstaDeepAl/agro-nt

C Data availability

Pre-training reference sequences were acquired from publicly available resources and are listed in
Supplementary Table 1. Gene annotations were obtained from Ensembl Plants
(https://plants.ensembl.org)and Phytozome (https://phytozome-next. jgi.doe.gov/). A com-
prehensive description of the datasets, including links for all the datasets presented in the study, can
be found in the Methods section. The Plant Genomic Benchmark has been made publicly available via
HuggingFace at https://huggingface.co/datasets/InstaDeepAl/plant-genomic-benchmark.
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F Supplementary Tables

Supplementary tables 1-8 (separate file).

Supplementary table 1. Genome, annotation version, and source of reference genomes used for
pre-training.

Supplementary table 2. RNA sequencing datasets used for gene expression prediction.
Supplementary table 3. Genome, annotation version, and source of reference genomes used for gene
expression prediction.

Supplementary table 4. R? values between observed and predicted expression across tissues on
holdout genes for Arabidopsis thaliana.

Supplementary table 5. R’ values between observed and predicted expression across tissues on
holdout genes for Glycine max.

Supplementary table 6. R? values between observed and predicted expression across tissues on
holdout genes for Oryza sativa.

Supplementary table 7. R? values between observed and predicted expression across tissues on
holdout genes for Solanum lycopersicum.

Supplementary table 8. R? values between observed and predicted expression across tissues on
holdout genes for Zea mays.
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Supplementary Figure 1: Odd ratios (OR) across different score thresholds used to assess enrichment of two
frequency classes of missense variants. The performance of four zero-shot scores are shown. Error bars denote
95% confidence intervals. Dashed black line indicates an OR of 1.
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Supplementary Figure 2: Odd ratios (OR) across different score thresholds used to assess enrichment of coding
and non-coding GWAS variants. The performance of four zero-shot scores are shown. Error bars denote 95%
confidence intervals. Dashed black line indicates an OR of 1.
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Supplementary Figure 3: The performance of AgroNT in predicting chromatin profiles across species and tissues
is measured using the area under the curve of the precision-recall curve (AUPRC). P-values shown are based on
a two-sided Wilcoxon signed test comparing the performance of AgroNT with a model based on the DeepSEA
architecture.
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Supplementary Figure 4: Tissue expression profiles between observed and predicted gene expression levels
on holdout genes for Arabidopsis thaliana. The order of the cells in the heatmap is based on a hierarchical
clustering using the euclidean distance of the observed gene expression levels across tissues.
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Supplementary Figure 5: Tissue expression profiles between observed and predicted gene expression levels on
holdout genes for Glycine max. The order of the cells in the heatmap is based on a hierarchical clustering using
the euclidean distance of the observed gene expression levels across tissues.
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Supplementary Figure 6: Tissue expression profiles between observed and predicted gene expression levels on
holdout genes for Oryza sativa. The order of the cells in the heatmap is based on a hierarchical clustering using
the euclidean distance of the observed gene expression levels across tissues.
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Supplementary Figure 7: Tissue expression profiles between observed and predicted gene expression levels
on holdout genes for Solanum lycopersicum. The order of the cells in the heatmap is based on a hierarchical
clustering using the euclidean distance of the observed gene expression levels across tissues.
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Supplementary Figure 8: Tissue expression profiles between observed and predicted gene expression levels on
holdout genes for Zea mays. The order of the cells in the heatmap is based on a hierarchical clustering using
the euclidean distance of the observed gene expression levels across tissues.
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Supplementary Figure 9: Gene expression prediction on holdout genes across cassava tissues. The coefficient
of determination (R2) from a linear model and associated P-values between predicted and observed values are
shown.

33


https://doi.org/10.1101/2023.10.24.563624
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Methods
	Model
	Architecture

	Dataset
	Pre-training
	Fine-tuning
	Hardware
	Downstream tasks
	Polyadenilation site prediction
	Splicing site prediction
	Long non-coding RNA prediction
	Chromatin profiles prediction
	Promoter strength prediction
	Tissue-specific quantitative gene expression level
	Token importance for gene expression level prediction
	Zero-shot scores for variant consequence prediction
	In silico mutagenesis in the cassava genome


	Code availability
	Data availability
	Competing interests
	Acknowledgements
	Supplementary Tables
	Supplementary Figures

