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Abstract

Cross-species comparison and prediction of gene expression profiles are important to understand reg-
ulatory changes during evolution and to transfer knowledge learned from model organisms to humans.
Single-cell RNA-seq (scRNA-seq) profiles enable us to capture gene expression profiles with respect to
variations among individual cells; however, cross-species comparison of scRNA-seq profiles is challenging
because of data sparsity, batch effects, and the lack of one-to-one cell matching across species. Moreover,
single-cell profiles are challenging to obtain in certain biological contexts, limiting the scope of hypoth-
esis generation. Here we developed Icebear, a neural network framework that decomposes single-cell
measurements into factors representing cell identity, species, and batch factors. Icebear enables accurate
prediction of single-cell gene expression profiles across species, thereby providing high-resolution cell type
and disease profiles in under-characterized contexts. Icebear also facilitates direct cross-species compari-
son of single-cell expression profiles for conserved genes that are located on the X chromosome in eutherian
mammals but on autosomes in chicken. This comparison, for the first time, revealed evolutionary and
diverse adaptations of X-chromosome upregulation in mammals.

1 Introduction

The magnitude of a gene’s expression may vary across species, and this variation may contribute to or
be representative of morphological or trait evolution [1, 2]. Thus, comparing gene expression profiles across
species has the potential to offer valuable insights into a wide range of questions related to, for example, which
genes have adapted to new regulatory machineries and functions during evolution, and how gene expression
changes when a gene moves to a different chromosomal context or when a gene’s copy numbers varies across
organisms (e.g., genes located on two sets of autosomes in chicken and on the single X chromosome in male
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mouse). Furthermore, understanding transcriptional differences between model organisms and humans will
greatly enhance our ability to transfer insights gained from model organism studies into a human context.

Previous studies have compared transcriptional differences among organisms based on bulk and single-cell
gene expression measurements. However, comparison of bulk gene expression profiles across species [3–6]
may not fully capture cellular heterogeneity and may suffer from imbalanced cell type composition of tissues
across species [7]. Recently, single-cell profiles have been widely generated to capture cell-specific expression
profiles and mitigate the issue of uncaptured cell heterogeneity in bulk samples, but direct transcriptional
comparisons are difficult because of the challenge of matching cells across species. Moreover, single cell
measurements suffer from sparsity, noise, variable sequencing depth, and potential batch effects. As a result
of these limitations, current studies instead perform cross-species matching or comparison at the cell type
level [8–12]. Unfortunately, this approach requires accurate cell type calling and matching across species
and, similar to bulk comparisons, fails to take into consideration single-cell variability.

More importantly, although single cell data are widely available for certain model organisms, such as
mouse, single-cell expression atlases in human and non-model-organisms are still far from complete, due
to limitations of sample availability and accessibility (e.g., it is difficult to retrieve human brain samples,
as well as fetal or pediatric tissues, especially in disease conditions). Because of these limitations, studies
of transcriptional evolutionary patterns are restricted to tissues or cell types in species that have existing,
high-quality measurements.

To address these challenges, new computational methods are needed that can (1) predict gene expression
profiles for missing cell types and biological contexts and (2) directly compare expression profiles across
species at single-cell resolution, without relying on external cell type annotations. Although several deep
learning-based methods enable cross-species prediction of perturbation effects from high-throughput screens,
these methods rely on discrete cell type labels and are not designed to predict and compare cellular gene
expression in wildtype physiological conditions across species [7, 13, 14]. We hypothesize that a neural
network model that can decompose single cell profiles into species factors and cell factors invariant of species
will allow us to make single-cell, cross-species prediction and comparison by swapping the species factor
corresponding to each cell.

We are motivated in part by the study of sex chromosome evolution, which would benefit from methods
for single-cell comparison and prediction of gene expression across species. In mammals, males have a single
X chromosome and a gene-poor Y chromosome, whereas females have two X chromosomes. X chromosome
upregulation (XCU) has been proposed to evolve in response to gene loss due to Y-chromosome degeneration
during sex chromosome evolution [15–20]. XCU increases expression of many X-linked genes to balance
gene expression between the single X chromosome and two sets of autosomes in diploid male XY cells. In
female XX cells, X inactivation silences one of the two X chromosomes in females to avoid hyperactivation.
Evolutionary studies have shown that the X chromosome of eutherian mammals has arisen from ancestral
autosomes in two major steps: first, an autosome gave rise to the so-called X conserved region (XCR)
in the ancestor of both eutherian and metatherian mammals [18]. Today, the XCR is represented by the
whole X chromosome of marsupials (e.g., opossum) and corresponds to about two thirds of the eutherian X
chromosome. The latter acquired the so-called X added region (XAR) by translocation of autosomal pieces to
the XCR, which resulted in the larger conserved X chromosome of eutherian mammals (e.g. human, mouse,
rat). Chromosomes that demonstrate homology to the XCR and XAR can be identified in marsupials (X
chromosome and parts of autosomes 4 and 7) and in birds (parts of autosomes 1 and 4 in chicken) (Figure 1D).

While XCU has been clearly demonstrated in Drosophila and C. elegans, the mechanisms of XCU in
mammals are still debated [21–25]. Importantly, which X-linked genes are upregulated and at which levels
at each evolutionary step is still unclear. This is largely because most studies have relied on transcriptomic
approaches to compare expression between groups of X-linked and autosomal genes. However, direct ex-
pression comparisons of evolutionarily conserved genes before and after becoming X-linked are limited or
impeded by different data normalization methods, and by the lack of appropriate samples to directly compare
species across tissues and cell types [4, 5].

Here we propose a deep learning model, Icebear, that induces a non-sparse version of single-cell expression
data and performs cross-species prediction and comparison at single-cell resolution. Using several publicly
available datasets, we demonstrate that Icebear is able to integrate single-cell expression profiles across
species, batch and tissue types, and predict single-cell profiles in missing cell types across species. In addition,
we show that, on the basis of mouse data, Icebear can accurately predict transcriptomic alterations in human
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Alzheimer’s disease (AD) versus control samples, thereby enabling the transfer of knowledge from single-
cell profiles in mouse disease models to human. After several cross-species validation experiments based
on public datasets, we applied Icebear to predict and compare gene expression changes across eutherian
mammals (mouse), metatherian mammals (opossum) and birds (chicken), using our in-house generated sci-
RNA-seq profiles with minimal cross-species batch effects. By doing so, Icebear reveals gene expression
pattern shifts across species that support the existence of mammalian XCU and suggest the extent and
molecular mechanisms of XCU vary among mammalian species and among X-linked genes with distinct
evolutionary origins.

2 Methods

2.1 Multi-species single cell profile generation

Mixed-species scRNA-seq data were generated by a three-level single-cell combinatorial indexing approach
(sci-RNA-seq3) [26]. Adult brain and heart from both male mouse and chicken were purchased from
BioChemed Services, and male opossum adult brain was provided by J. Turner (MRC, UK). The data
were collected by indexing cells from each species by reverse transcriptase barcoding and then processing
them jointly, in which case the species identity of each cell was known based on the sequence barcode.

2.2 Assigning species labels to cells and mapping reads

Mapping reads from sci-RNA-seq3 experiments to profile hundreds of thousands of single cells from multiple
species’ samples is complicated by the possibility of cells from different species entering the same doublet
during sample preparation and three-round combinatorial cell barcoding. Accordingly, our pipeline begins
by mapping each read to multiple species and retaining only reads that map uniquely to a single species.
This step allows us to detect and remove species-doublet cells with reads from more than one species.

The detailed protocol is as follows:

1. For a given sample, create a multi-species reference genome by concatenating the reference genomes of
all the species used in that sample.

2. Map all of the reads to the multi-species reference, retaining only reads that map uniquely. We used the
STAR aligner [27] with the following parameters: --outSAMtype BAM Unsorted --outSAMmultNmax

1 --outSAMstrandField intronMotif --outFilterMultimapNmax 1.

3. Remove PCR duplicates.

4. Eliminate any read that maps to an unassembled scaffold, mitochondrial DNA, or any locus that is
marked as a repeat element by RepeatMasker (http://www.repeatmasker.org¿). The repeat elements
by RepeatMasker were retrieved from UCSC genome browser [28], with the exception of opossum,
where we ran RepeatMasker to generate them. Repeat elements were removed using BEDtools [29].

5. For each cell, count the total number of remaining reads that map to each of the three species.

6. If the sum of the second- and third-largest counts is greater than 20% of all counts, then mark the cell
as a species-doublet and eliminate it.

7. Label the remaining cells according to their generating species.

Having identified the species origin for each cell, we then re-map the reads associated with each single-
species cell only to its corresponding species, retaining only the reads that map uniquely within that species.
The parameters used for this step were --outSAMtype BAM Unsorted --outSAMmultNmax 1 --outSAMstrandField

intronMotif.
The re-mapping is run using the pipeline developed by the Brotman Baty Institute (BBI) (https://github.com/bbi-

lab/bbi-sci/). The first two steps of mapping multi-species reference were modified from their pipeline.
The reference genomes and annotations were from the BBI, using assembly GRCm38 for Mus musculus,
ASM229v1 for Monodelphis domestica, and GRCg6a for Gallus gallus (Ensembl release 99) [30]. The genes
were also filtered to match the ones used by BBI.
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2.3 Reconciling orthology relationships

To simplify the model and focus on the most straight-forward cross-species transcriptional changes, we would
like to establish one-to-one orthology relationships among genes in the various species included in our study.
The Biomart resource [31, 32] at Ensembl reports orthology relationships between genes in a many-to-many
fashion, each with an associated percent identity score. To reduce this data resource to a one-to-one mapping,
our approach takes into account the following considerations.

• We use the percent identity score to resolve ambiguities. If, for example, two mouse genes are mapped
to two opossum genes with four edges, then we select the two edges that create a one-to-one mapping
with maximal score.

• In some cases, transitive relationships can be used to fill in missing edges. For example, if gene A in
human has an ortholog B in mouse, B has an ortholog C in chicken, but A has no ortholog in chicken,
then we can add an edge from A to C.

Formally, we represent our problem using an undirected graph G in which vertices V are genes and
edges E represent orthology relationships. Each vertex v ∈ V has an associated species label s(v) ∈ {human,
mouse, rat, opossum, chicken}. Our goal is to eliminate edges from this graph so as to ensure that every node
is connected to at most one node in each of the other species This is done by building a graph G′ = {V ′, E′}
such that V ′ ⊂ V , as follows. First, we reconcile mouse with each other species by creating a one-to-one
mapping between genes in the two species. We do this in a greedy fashion for two species A and B by ranking
all edges connecting A and B (i.e., all “high confidence” edges in Biomart) in decreasing order by percent
identity and then adding an edge to G′ if and only if neither of its corresponding vertices already has an
associated accepted edge. Second, we fill in transitive relationships. This is done by creating a one-to-one
mapping between genes, using the same greedy algorithm as before, but for each pair of non-mouse species.
We then search for “transitivity” triangles (A,B,C) that fulfill the following criteria:

• s(A) = human

• s(B) 6= human and s(C) 6= human

• s(B) 6= s(C)

• The edge from A to B is in G′.

• G′ does not contain any edge connected to C.

• The one-to-one mapping between s(B) and s(C) connects B to C.

In this case, we add to G′ the edge connecting A to C. This transitivity step is done iteratively over
the non-mouse species in order of evolutionary distance; i.e., the species B and C are considered in the
following order: (mouse, opossum), (mouse, chicken), (opossum, chicken). For each of the resulting triples
of species, transitivity triangles are selected in a greedy fashion by sorting the triangles in decreasing order
by the percent identity associated with the edge connecting B to C.

At the end of this process, in the graph G′ each mouse vertex has at most one connected neighbor in
each of the non-mouse species. Note that we make no attempt to ensure that the pattern of orthology
relationships respects the species tree. Thus, in principle a mouse gene might have an ortholog in chicken
but none in opossum. This is possible in the case of a gene deletion event along the opossum lineage. This
process yielded 10,030 genes with orthologs shared across the three species, 70 of which were added through
transitive relationships.

This process yielded 10,030 genes with orthologs shared across the three species, 70 of which were added
through transitive relationships.

2.4 Data preprocessing

2.4.1 In-house multi-species dataset

To perform cross-species prediction and comparison, we performed the following preprocessing steps:
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species tissue batch1 batch2 batch3
mouse brain 33569 — —
opossum brain 2664 235178 —
chicken brain 8927 167873 —
mouse heart — — 17403
chicken heart — 28003 67723

Table 1: Cell counts in the final dataset.

1. Retain genes that have orthologs shared across all species.

2. Remove all mitochondrial reads.

3. Remove cells with <200 UMIs.

4. Remove genes expressed in fewer than 50 cells across all the datasets.

This process resulted in a gene (n=9878) by cell (m=561340) matrix (Table 1), the median UMI is 450.

2.4.2 Public datasets

Gene expression profiles were downloaded from a multi-species primary motor cortex (M1) dataset [33],
human and mouse cell atlases [34, 35] and an Alzheimer’s disease study [36].

For the M1 dataset, we used the expert-curated cell type annotations in each dataset, which contains 10
major cell type annotations that are further subdivided into 45 high-resolution cell type annotations. We
only focused on cell types that are annotated as homologous between human and mouse based on expert
curation. After applying the above gene filtering, mapping and cell filtering steps, 233,296 cells and 13,924
genes are retained for the downstream analysis.

For the human and mouse atlases, we trained Icebear on cells collected in the adult stage, which contains
288,886 cells and 12,367 genes. For the purpose of evaluation, cell types were determined based on expert
annotations drawn from the original paper, and we only made predictions on cell types with ≥ 25 cells in
both human and mouse. To make sure our predictions are not confounded by batch or donor effects, we
only evaluated on the subset of cell types that exist in tissues that do not exhibit large donor effects in
humans. To do that, we calculated Euclidean distances based on normalized pseudobulk profiles across all
human adult tissue samples, and we retrieved tissues in which samples from different donors are closest to
each other.

For the Alzheimer’s disease dataset, we retrieved single cells from human and 7-month-old mice. For the
purpose of evaluation, we mapped cell type annotations from mouse to human based on the cell clusters
called in the original paper, and we only validated on cell types with one-to-one mappings across species. No
additional filtering was performed. This dataset was merged with the M1 dataset (with the same ortholog
mapping approach above) to increase the cell numbers for model training. 440,689 cells and 12,474 genes
are retained in the joint dataset.

Because the model takes raw counts as input, no further data normalization is needed.

2.5 Icebear cross-species prediction model

Our model reconstructs each scRNA-seq profile using three sets of factors representing, respectively, cell
identity, species and batch. These factors are concatenated and fed into a neural network that reconstructs
the original gene expression profile. The model is adapted from a conditional variational autoencoder frame-
work [10]. Species, tissue and batch factors are encoded using one-hot encoding, and cell factors are learned
as n-dimensional vectors, where n is a hyperparameter to be tuned.

Intuitively, each gene expression count (X) in a specific cell is estimated based on three learned variables:
the sequencing depth-corrected mean (µ′), dispersion of the negative binomial distribution (r), and logit
of the dropout event (p). The reconstruction loss consists of the log likelihood of the raw count x and
sequencing depth-corrected estimation using a zero-inflated negative binomial (ZINB) loss:

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2023. ; https://doi.org/10.1101/2023.10.19.563173doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.19.563173
http://creativecommons.org/licenses/by/4.0/


lossreconstr = −zinb.loglik(X,ZINB(d ∗ µ′, r,p|X, b, s, t)), (1)

where d is the sequencing depth. The model also regularizes the cell embeddings by applying a KL divergence
loss between the posterior distribution (Q) of cell embeddings (z) given batch (b), species (s) and tissue (t)
factors and the prior distribution (P , standard multivariate normal distribution):

lossKL = DKL[Q(z|X, b, s, t)||P (z, b, s, t)] (2)

Thus, in each epoch we minimize the the following loss:

losscVAE = lossreconstr + lossKL (3)

To further guide the alignment of cells across species, optionally, we adopted the idea of generative
adversarial networks (GANs) [37], where we used a discriminator to distinguish cells from different species,
and then we trained the model to fool the discriminator and learn cell embeddings invariant to species.
Specifically, we divided the model training into two major iterative steps. In the first step, we trained
a single-layer discriminator to predict species labels (s) based on cell embeddings, to distinguish species
of origin from learned cell embeddings. In this step, the model aims to minimize the discriminator loss
calculating the discrepancy between true species label (s) and predicted label (D(z)):

lossdis = CE(D(z|X, b, s, t), s) (4)

In the second step, we fixed the parameters in the discriminator and tried to optimize for reconstruction
and fooling the discriminator by minimizing losscVAE − lossdis. The above steps are iterated per training
epoch. This GAN option is provided as an option in the hyperparameter search.

In each prediction task, we held out all cells in a cell type or tissue in the target species as the test set,
to mimic the actual use case where we would like to predict cellular profiles in an unseen context. This set
of cells was not seen by the model during training and was used to evaluate prediction performance. For the
rest of the cells, because our model does not rely on cell type annotations, we randomly assigned 10% to the
validation set (with a cap of 20,000 cells), and the rest of cells were used as the training set. Each model
was trained until the validation losscVAE stopped decreasing for 45 consecutive epochs. We then selected
the model with minimum validation loss.

We selected model hyperparameters using a grid search strategy. We considered two hyperparameters:
a Boolean indicating whether to include the discriminator layer or not, and the dimension of the bottleneck
layer of 25, 50, 100. The number of hidden layers in the encoder and decoder are fixed to 2. Among these
possible hyperparameter settings, we selected the model that yielded the largest LISI score [38] across cell
embeddings learned from different species on the validation set.

To perform cross-species prediction on single cells, we first learned cell embeddings from cellular profiles in
the known species and then concatenated the cell embeddings with the species factors of the target species to
make cross-species predictions through the trained decoder architecture. This process produced sequencing
depth-normalized and denoised single cell gene expression in the target species for each corresponding cell
in the source species.

2.6 Cross-species prediction evaluation metric

To evaluate the prediction performance, we made use of expert-curated cell type labels and cell type matching
across species, and we asked whether the model can accurately predict pseudobulk gene expression profiles
of the missing cell types across species.

For each cell type, we held out its profile in the target species and made predictions using the correspond-
ing cell type’s profile in the source species. Pearson correlation between the true and predicted pseudobulk
profiles was used to assess the prediction performance (“prediction”). Pseudobulk profiles were calculated
as the average of sequencing-depth-normalized gene expression profiles across cells, to put the true and
predicted profile on the same scale.

We compared the prediction performance with three baselines.
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1. Donor baseline (“donor baseline”): a “cheating” baseline that calculates the mean similarity across
donors within the held-out test set.

2. Species baseline (“species baseline”): similarity between the true profile and the corresponding cell
type’s profile in mouse, with genes transferred to the target species through ortholog mapping.

3. Celltype baseline (“celltype baseline”): we first identify the cell type that has the most similar pseu-
dobulk gene expression profile to the held out cell type in the source species and then calculate the
similarity between its corresponding cell type in the target species and the true profile.

To make a fair comparison with the performance of the donor baseline, we also calculated the mean of
similarity measurements between our predictions with each donor in the test set (“indiv predictions”).

To measure the prediction error with regard to the original gene expression magnitude and variation,
for each held out cell type, we calculated the relative prediction error based on pseudobulk gene expression

values as
|humanpred−humanori|
|mouseori−humanori| .

2.7 Evaluation of Alzheimer’s disease profile prediction

To evaluate how well we can predict human AD profiles based on mouse models, we tried to place ourselves
in the actual use cases when studying human diseases, which is to find differentially expressed genes and
the direction and magnitude of expression alterations between AD and wild type (WT) in human samples.
Because the predicted expression values in Icebear are denoised continuous values, it is not straightforward to
statistically compare Icebear’s predictions with the sparse, count-based measurements in the original single-
cell profiles. Therefore, we evaluated Icebear’s performance based solely on the direction and magnitude of
gene expression changes in predicted AD vs WT profiles in human. These patterns are compared against the
observed gene expression alternation patterns between the original AD versus WT profiles in human, based
on Pearson correlation. Because studies of mouse disease models usually directly use the gene expression
alterations in mouse as a proxy to understand human disease (when human samples are unavailable), we
included gene alteration patterns in AD versus WT mouse as a baseline prediction, and calculated its
correlation with gene expression alterations in human.

To capture both the direction and magnitude of gene expression alterations in AD and WT, we used the
log2 fold change (log2FC) based on pseudobulk profiles (normalized to library size of 10,000) as the gene
expression alteration measurement. To further avoid large, noisy log2FCs from genes with low expression
values, we added 1 to all pseudobulk gene expression profiles before calculating log2FC.

2.8 Cross-species X-linked gene expression changes during evolution

To assess the pattern of XCU during mammalian sex-chromosome evolution, we first trained the model on all
datasets and then compared gene expression changes between each pair of species by directly swapping the
species factors. To do that, we used the trained Icebear model to retrieve cell embeddings based on single-cell
profiles in mouse, and we predicted each cell’s corresponding gene expression profiles in the target species
by appending the cell embedding with the target species factors. This approach allowed us to produce a
denoised prediction of the gene expression profile of a given cell in the same or a different species. To make
sure that the expression values are comparable across species, we normalized each cell’s gene expression
profile based on 2,401 housekeeping genes in mouse [39]. Then we compared gene expression changes across
species and, for each gene, we calculated the log2 fold change (log2FC) between the two species for each cell,
and we took the median value across all cells as its overall log2 fold change. Genes were then grouped into
three categories based on their evolutionary origin:

1. Genes located in the X-added region (XAR) genes were added to the X chromosome in eutherian
mammals, i.e. these genes are X-linked in eutherian mammals (e.g., mouse) but are autosomal in
metatherian mammals (on chromosomes 4/7) (opossum) and appear on chromosome 1 in chicken.

2. Genes located in the X-conserved region (XCR) are X-linked in both eutherian and metatherian mam-
mals, but are autosomal (on chromosome 4) in chicken.

3. Genes located on autosomes in mammals and chicken.
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To test whether genes in the XAR or XCR tend to become upregulated when becoming X-linked (i.e.
lose one copy in males), we performed a one-sided, one-sample Wilcoxon signed-rank test with the null
hypothesis that the median log2FC within that gene group is smaller than or equal to -1. To test whether
XCU is stronger in mouse than opossum, we performed a one-sided, one-sample Wilcoxon signed-rank test
with the null hypothesis that the median log2FC (between mouse and opossum) within that gene group is
greater than or equal to 0. Similarly, to test whether the dosage of gene expression is fully compensated (i.e.
each X-linked gene is upregulated by two-fold to achieve the same expression level that it had when it was
autosomal), we performed a one-sided, one-sample Wilcoxon signed-rank test with the null hypothesis that
the median log2FC (between mouse and chicken) within that gene group is greater than or equal to 0.

3 Results

3.1 Icebear accurately predicts cell type profiles across species

Icebear is a deep learning model that is designed to integrate cross-species, single-cell profiles (Figure 1A,
Methods 2.5). Once trained, the model decomposes each observed cellular gene expression measurement into
several components, corresponding to cell, batch and species. Prior to applying the model in a prospective
fashion, we carried out several validation experiments to verify that the model works as intended.

First, we hypothesized that we could reduce or eliminate effects associated with species or batch factors
by manipulating the model appropriately. To test this hypothesis, we trained the model on a public dataset
derived from multiple species, and we assessed whether the model could eliminate the effect of species in the
learned cell factors. Specifically, we used as input a dataset with primary motor cortex (M1) cells from both
human and mouse [33], and we mapped genes across species via orthology [40]. The original dataset shows
clear separation by species in the context of 2D visualization via UMAP (Figure 2A). We then investigated
whether Icebear could be used to remove this species-specific effect. Accordingly, we plotted a UMAP
visualization of the learned cell embeddings (Figure 2B). This visualization shows minimal segregation of
cells by species, suggesting that Icebear can correct species-specific effects and align single cells across species.

The primary goal of Icebear is to jointly model gene expression data from human and mouse using
factors representing species, gene, and cell identity, thereby enabling cross-species prediction and comparison.
Ideally, the model could then be used to answer questions such as, “What would the expression profile of
this mouse cell look like if it were instead a human cell?” Unfortunately, validating the accuracy of such a
predictor is impossible. We therefore adopted an alternative validation approach.

To validate Icebear’s cross-species prediction performance, we made cross-species predictions at the level
of individual cells but evaluated the predictive accuracy at the level of cell types. For this analysis, we used
the cell type annotations produced in the original M1 study [33]. To mimic the real life scenario where we
have uncharacterized biological contexts, we trained Icebear using a dataset in which one cell type in human
was held out entirely, and we then used the trained model to predict gene expression profiles from the same
cell type in mouse. Aggregating these predicted single-cell expression profiles yields a predicted pseudobulk
profile that can then be compared, via Pearson correlation, to the pseudobulk profile of the held-out cells.

Before carrying out this experiment, we designed three “baseline” predictors to provide comparators for
our model (Methods, Section 2.6). The first baseline (“donor baseline”) provides a “cheating baseline” on
the predictive accuracy: we directly compute as our performance measure the mean Pearson correlation
between pseudobulk profiles for the test cell type across all donors in the held-out test set. This baseline is
cheating, in the sense that it has access to the data in the test set; however, the idea is that the empirical
variance of the performance of this baseline on data from different individuals within a species provides a
rough upper bound on how well any predictor could possibly perform on this task. The second baseline
(“species baseline”) predicts that gene expression values do not change at all between species; thus, for a
given cell type, the predicted human gene expression profile is equal to the corresponding mouse profile, with
genes transferred from mouse to human through ortholog mapping. The third baseline (“cell type baseline”)
is stronger than the species baseline, because it requires that we have access to cell type annotations in both
species. In that setting, the cell type baseline makes a prediction for the held-out cell type by (1) finding the
cell type in the source species whose pseudobulk profile most closely resembles that of the held-out cell type,
and (2) identifying the corresponding cell type in the target species. The prediction for the held-out cell
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Figure 1: Icebear’s cross-species prediction and comparison framework. (A) Icebear is trained on
single-cell RNA-seq profiles across species. Specifically, Icebear uses conditional variational autoencoders
that predict cellular profiles from a combination of species and batch factors, as well as species-invariant
cell factors. (B) Once the model is trained, we can swap the species factor to predict a (e.g., mouse) cell’s
corresponding profile in another species (e.g., human). (C) Icebear can be used to predict single-cell profiles
in species (e.g. human) where the corresponding cell type has not been profiled. (D) Icebear can also
perform cross-species comparison at the single-cell level, revealing X chromosome up-regulation patterns
during evolution.
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Figure 2: Alignment and prediction of single-cell profiles from mouse to human in primary motor
cortex. (A) UMAP of cells across species, colored by species. (B) UMAP of cell embeddings learned in
Icebear, where cell embeddings are independent of species factor. (C) Barplot showing Pearson correlation
coefficient (cor) between predicted and observed gene expression profiles in missing major cell types in
human motor cortex. For each cell type, the Pearson correlation coefficient is compared between Icebear’s
prediction (dark green bar) and two baselines (species and celltype). We also compared “indiv donorbaseline”
(correlation between individual donors) with Icebear’s correlation with individual donors (“indiv prediction”,
light green bar). (D) Similar to C, we evaluated Icebear’s performance on predicting high-resolution cell
type specific profiles. (E) Boxplots of genes absolute log2FC between predicted and true human profiles per
cell type (grouped by whether they are housekeeping genes or not). (F) Boxplots of genes relative prediction
error across cell types.
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type is then the pseudobulk profile drawn from its neighboring cell type. Note that this baseline is somewhat
unfair to Icebear, which is not given access to cell type labels in either species.

Validating on the cell types annotated in the M1 dataset, we find that Icebear outperforms both the
species and cell-type baselines. We first applied the validation protocol to the 10 general motor cortex
cell types, observing that in 9 out of 10 cases, Icebear outperforms both baselines (Figure 2C). The one
exception is Oligo-OPC in which our model only outperforms the cell-type but not species pipeline. To
further evaluate how well our model can predict single-cell profiles with fine cell type resolution, we trained
Icebear on the same dataset but held out and evaluated the prediction based on high-resolution cell type
annotations (Figure 2D). In this setting, Icebear outperforms the species baseline in all 45 cell types and
outperforms the cell-type baseline in 33 of the 45 cell types (p = 5.62 × 10−5, Wilcoxon one-sided signed
rank tests). Note that our model tends to perform better in neurons than non-neuronal cells, especially
endothelial cells, microglia-PVM (perivascular macrophage) and VLMC (vascular leptomeningeal cells). As
expected, our method performs worse than the “donor baseline.” This suggests that though the model can
perform general cross-species imputation, it may fail to capture some cell type-specific evolutionary effects.

Because Icebear performs non-linear projection of data across species, we hypothesize that a gene with
large functional divergence during evolution and across cell types may not only follow a general cross-species
translation algorithm, but may also participate in species- and cell-type-specific adaptation processes. Thus,
we expect that the expression values of functionally diverged genes may be poorly predicted across species.
To test this hypothesis, we investigated whether housekeeping genes, whose functions are more likely to be
conserved across species, can be more accurately predicted compared to non-housekeeping genes. To do
that, we calculated absolute log2FC between the predicted and observed gene expression values in human
(Figure 2E). Indeed, of all major cell types tested, Icebear achieved better predictive power for housekeeping
genes compared to non-housekeeping genes. To further control for potential bias caused by baseline expression
and expression differences across species, and to investigate how much Icebear’s prediction improves upon the
species baseline, we calculated the absolute value of the ratio between the prediction error (predicted human
vs. original human) and cross-species difference (original mouse vs. original human) (“relative prediction
error”, Methods 2.6, Figure 2F). Again, Icebear is able to correct for species-specific effects more accurately
for housekeeping genes than non-housekeeping genes. These results point to a potential limitation to any
cross-species model, since the cell-type specific evolutionary divergences, which are a product of evolutionary
selective pressure, may contribute to the gap between the predicted and observed profiles.

3.2 Icebear can generalize across tissues and datasets

To test whether Icebear can generalize across tissues in another dataset, we trained the model on single-cell
profiles from the human and mouse cell atlases [34, 35]. In this validation experiment, we focused on single-
cell profiles collected in the adult stage (Methods 2.4.2). We held out each major cell type from human and
trained Icebear to predict expression profiles based on the corresponding cell types in mouse. To ensure a
fair comparison that considers tissue-specific variations, we evaluated the cell-type-specific profile prediction
per tissue, even though such information is not used in our training.

The results of this experiment suggests that Icebear can outperform both the species-specific and cell-
type-specific baseline in 33 cases out of 41 total (Figure 3A). Interestingly, Icebear outperforms the donor
baseline in 19 out of 25 cases (when more than one donor exists for that tissue and cell type). These
results suggest that Icebear provides a robust estimation of single-cell profiles across species and thus can be
broadly applied to computationally impute single cell profiles in human based on measurements in mouse
across tissues and cell types.

3.3 Icebear can transfer findings from a mouse Alzheimer’s disease model to
human

As a final validation and demonstration of a key use case, we test the hypothesis that Icebear can predict
gene expression alterations in disease conditions versus healthy controls in human, based on healthy human
samples and disease models in mouse. To test this hypothesis, we trained Icebear on human and mouse
single-cell profiles in primary motor cortex (used in the above section), control samples in both human and
mouse from an AD study, as well as profiles in the AD mouse model (Figure 3B) [36]. Once the model was
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Figure 3: Prediction of human cell-type specific profiles across tissues and conditions. (A)
Barplot showing Pearson correlation coefficient (cor) between predicted and true gene expression profiles
in each held-out cell type per tissue. For each cell type, the Pearson correlation coefficient is compared
between Icebear’s prediction (dark green bar) and the species and cell type baselines. We also compared
“indiv donorbaseline” (correlation between individual donors) with Icebear’s correlation with individual
donors (“indiv prediction”, light green bar). (B) Illustration of Icebear’s framework for predicting held-out
human AD profiles from mouse AD models. (C) Comparison of predicted and true gene expression log2FC
patterns in AD vs. WT. Barplots show Pearson correlation coefficients between observed and predicted
log2FC in human (“prediction”, orange), and between original log2FC in human and mouse (“mouse”,
blue).
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trained, we applied it to predict the held-out profiles in human AD samples (green rectangle, Figure 3B) and
calculated the log2FC of predicted gene expression between AD and WT samples in human. To evaluate
how well the predicted gene alteration pattern agrees with the true pattern, we compared it against the
true log2FC pattern derived from the original human AD versus control samples, using Pearson correlation
(Figure 3C, orange, Methods 2.7). To make sure Icebear captures more informative disease signatures than
the mouse model itself, we compared the true log2FC pattern in human against the log2FC pattern in mouse
AD versus WT samples per cell type (Figure 3, blue). In all uniquely mapped cell types, Icebear’s prediction
outperforms the mouse baseline, suggesting that by projecting single-cell profiles from mouse to human,
Icebear is able to retrieve more accurate gene alteration patterns in human, compared to the original mouse
experiments.

3.4 Icebear reveals X chromosome upregulation patterns during evolution

Having established the ability of Icebear to capture species-specific effects, we next apply the model prospec-
tively, using it to investigate the pattern of expression change across species in specific classes of genes.
Essentially, our model allows us to ask, for any given cell, how its expression pattern would change if that
cell had been in a different species. We are particularly interested in asking whether gene expression increases
from halved gene dose when autosomal genes become X-linked and only have a single copy in XY males
during mammalian sex chromosome evolution (Figure 1D, Figure 4C). To do that, we collected single cell
RNA-seq profiles in male chicken, opossum and mouse brain samples, as well as male chicken and mouse
heart samples (Figure 4A, Methods 2.4.2, with opossum heart not measured). We then applied Icebear on
the dataset and predicted each cell’s gene expression changes when we swap its species factor across chicken,
opossum and mouse (Figure 4B, Methods 2.8). For each gene, we can do this analysis on a cell-by-cell basis,
asking how its expression changes when the cell changes from, say, chicken to opossum or opossum to mouse.

We find that when genes lying on the X conserved region (XCR) changed from the chicken autosome 4
(chr4) to the opossum X chromosome, the median gene expression log2FC between opossum and chicken do
not fall significantly above or below -1 (p = 1.7× 10−1 in brain and p = 1.3× 10−1 in heart, Wilcoxon one-
sample rank sum test, Figure 4D). Interestingly, these XCR genes show significant up-regulation on mouse
X chromosome as shown by the median gene expression log2FC between mouse and chicken (p = 3.0× 10−7

in brain and p = 4.8 × 10−4 in heart), suggesting that XCU of XCR genes is more prominent in eutherian
mammals than in marsupials.

In addition, for genes at X added region (XAR) that changed from the chicken autosome 1 (chr1) to
the X chromosome in eutherian mammals after the divergence from metatheria marsupials (e.g., opossum
in which these genes on chr4 or chr7), we observed their median log2FC between mouse and chicken, and
between mouse and opossum, are significantly more than -1, suggesting X upregulation also occurs for this
group of genes in mouse (Figure 4D). Furthermore, there are no significant changes observed of XAR genes
changing from chicken to opossum, when they are both on autosomes, which agrees with prior expectation
(p = 6.1 × 10−1 in brain and p = 8.0 × 10−2 in heart). Comparing mouse with opossum or chicken, our
finding also agrees with and further supports the general notion that X-upregulation does not usually fully
compensate for the half-dosage effect [17], since XAR and XCR genes tend to have logFC less than 1 (in
XCR regions when comparing mouse to opossum) or 0 (in other XCU comparisons) (adjusted p ≤ 0.5×10−2

for all cases). Notably, Icebear is able to predict XCU patterns in heart, where single-cell measurements in
opossum are unavailable.

A recent study has indicated that transcripts from X-linked genes including XAR and XCR genes tend
to have lower levels of m6A (and thus less GGACH motifs) than those from autosomal genes, which results
in more stable X transcripts compared to autosomal transcripts and thus contribute to XCU [24]. With this
evidence, we hypothesize that the changes in m6A levels when genes move across species are related with
whether the gene is in the XAR/XCR or autosomal. To test this hypothesis, and provide an orthogonal
validation to XCU event, we retrieved the GGACH motif frequency in coding sequence (CDS) regions from
chicken, opossum, and mouse [24], and ask whether there is a decrease in motif frequency for XAR/XCR
orthologs when moved from chicken autosomes to mouse X chromosomes, compared to those from autosomal
orthologs (Figure 4E). Indeed, we found that XCR orthologs show a significant decrease in the motif frequency
between mouse and opossum or between mouse and chicken, when compared to autosomal orthologs. This
agrees with Icebear’s prediction where XCU in the XCR is most significant in mouse (Figure 4D). In support
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Figure 4: X chromosome gene upregulation pattern across species. (A) UMAP based on original
input profiles. (B) UMAP based on cell embeddings learned from Icebear. (C) Gene copy number changes
in males across species. (D) Boxplot of log2 fold change of genes across species, with genes grouped by their
X-linked pattern. Statistical significance of XCU events are calculated using Wilcoxon one-sample rank sum
test and subjected to multiple hypothesis correction. (E) Boxplot of GGACH motif frequency changes across
species, grouped by the same rule as C. Statistical significance calculated on the hypothesis that genes in
XAR and XCR are likely to have less m6A motif binding when moved from autosome to X chromosome,
compared to genes in autosomal regions.

of this, we only found marginal significance of motif frequency differences for XCR orthologs between opossum
and chicken, in comparison to autosomal orthologs (p = 4.1 × 10−2). More intriguingly, we didn’t see
significant changes in motif frequency for XAR orthologs compared to autosomal orthologs between mouse
and chicken or between mouse and opossum, suggesting that XCU in the XAR may not be adapted through
enhanced RNA stability via reduced m6A motifs in the CDS region.

4 Discussion

In this study, we proposed Icebear, a machine learning model for cross-species prediction and comparison
of single-cell gene expression data. We demonstrate Icebear’s utility in predicting missing cell type-specific
profiles between species, accurately transferring gene alterations identified in a mouse disease model to
the corresponding human disease context, and identifying gene expression alterations during evolution in
response to X chromosome dosage changes.

In our analysis, we observed that Icebear’s prediction accuracy varies by cell type. For example, the
accuracy in predicting expression values of human non-neuronal cells on the M1 dataset tends to be lower
than that of other cell types. There could be two reasons for this variability. First, previous studies have
found that glia cells are more evolutionarily diverged [41], so a general cross-species algorithm trained on
cell types other than astrocytes may not accurately capture astrocyte-specific variations. Cells with immune
functions such as microglia may be especially variable among species due to different exposure to pathogens.
The other possible reason is that neuronal cell types are more abundant and their profiles and functions are
more cohesive than those of glial cell types, which could lead to an easier machine learning task. In line
with this explanation, we observed that housekeeping genes to be more accurately predicted across species,
presumably because housekeeping genes tend to be functionally conserved across species and cell types and
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thus are more easily captured by Icebear’s projection framework. In future, a closer look at the genes whose
predicted expression profiles are very different from their observed profiles could potentially reveal genes
that adapt to the species-specific environment in a cell-type specific manner.

Icebear also shows improved accuracy at recapitulating transcriptomic perturbation patterns (based on
log fold changes) in human AD based on mouse disease models, compared to traditional disease studies that
directly map gene perturbation patterns across species by orthologs. This finding suggests a limitation of
disease knowledge transfer through ortholog mapping, and demonstrates the potential of applying Icebear
to more accurately transfer single-cell level perturbations such as disease signatures and drug responses from
model organisms to human. In the future, we plan to develop statistical methods to rigorously assess the
significance of predicted gene expression perturbations and compare them with the perturbation pattern
based on original gene expression profiles, by leveraging ideas proposed by Boyeau et al. [42].

Icebear reveals that there is an increase of expression levels of X-linked genes compared to their autosomal
orthologs in mouse, supporting the hypothesis that XCU occurs during sex-chromosome evolution (Ohno’s
hypothesis) [43]. The level of upregulation varies among individual X-linked genes, suggesting a gene-by-
gene adjustment. Multiple transcriptional and post-transcriptional types of regulation have been suggested
to explain XCU in mammals [21, 25, 44–47]. The most recently proposed regulatory mechanism is reduced
GGACH motifs at X-linked versus autosomal transcripts, which results in X-specific reduced m6A levels and
thus enhanced RNA stability [24]. Surprisingly, we found that XCR but not XAR genes show a significant
decrease in frequency of GGACH motifs compared to autosomal genes in mouse, suggesting differences in
XCU mechanisms dependent on the evolutionary origin of the XCR and XAR. Interestingly, X inactivation,
which has been proposed to counteract XCU in females (reviewed in Disteche et al. [16]), is also more
complete for genes in the XCR versus the XAR [48].

In the future, we envision Icebear to be a general tool to (1) augment the effort of measuring complete
profiles of human cells, (2) predict gene transcriptional changes in under-characterized human contexts by
leveraging mouse models, and (3) study the evolutionary changes of transcription regulation, as well as
divergence of cell types and genes. Icebear can also be extended in a straightforward fashion to perform
cross-species prediction and comparison of other data modalities (e.g. protein quantity, epigenetic marks),
when there are shared feature spaces across species.
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publicly available.
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