

1 **Developmentally dynamic changes in DNA methylation in the human pancreas.**

2

3 Ailsa MacCalman¹, Elisa De Franco¹, Alice Franklin¹, Christine S. Flaxman¹, Sarah J.
4 Richardson¹, Kathryn Murrall¹, Joe Burrage¹, Barts Pancreas Tissue Bank (BPTB)²,
5 Emma M Walker¹, Noel G. Morgan¹, Andrew T. Hattersley¹, Emma L. Dempster¹,
6 Eilis J. Hannon¹, Aaron R. Jeffries³, Nick D. L. Owens¹, Jonathan Mill^{1*}.

7

8 ¹ Department of Clinical and Biomedical Sciences, University of Exeter Medical
9 School, Faculty of Health and Life Sciences, University of Exeter. UK.

10 ² Bart's Pancreas Tissue Bank (including Joanne Chin-Aleong, Hemant Kocher,
11 Amina Saad and Rhiannon Roberts), Barts Cancer Institute, Queen Mary University
12 of London. UK.

13 ³ Department of Biosciences, Faculty of Health and Life Sciences, University of
14 Exeter. UK.

15

16 *Correspondence to: Jonathan Mill - j.mill@exeter.ac.uk. Address: RILD Building,
17 Royal Devon & Exeter Hospital, Barrack Rd, Exeter, EX2 5DW. UK.

18

19

1 **ABSTRACT**

2 Development of the human pancreas requires the precise temporal control of gene
3 expression via epigenetic mechanisms and the binding of key transcription factors.
4 We quantified genome-wide patterns of DNA methylation in human fetal pancreatic
5 samples from donors aged 6 to 21 post-conception weeks. We found dramatic
6 changes in DNA methylation across pancreas development, with >21% of sites
7 characterized as developmental differentially methylated positions (dDMPs) including
8 many annotated to genes associated with monogenic diabetes. An analysis of DNA
9 methylation in postnatal pancreas tissue showed that the dramatic temporal changes
10 in DNA methylation occurring in the developing pancreas are largely limited to the
11 prenatal period. Significant differences in DNA methylation were observed between
12 males and females at a number of autosomal sites, with a small proportion of sites
13 showing sex-specific DNA methylation trajectories across pancreas
14 development. Pancreas dDMPs were not distributed equally across the genome, and
15 were depleted in regulatory domains characterized by open chromatin and the
16 binding of known pancreatic development transcription factors. Finally, we compared
17 our pancreas dDMPs to previous findings from the human brain, identifying evidence
18 for tissue-specific developmental changes in DNA methylation. To our knowledge,
19 this represents the most extensive exploration of DNA methylation patterns during
20 human fetal pancreas development, confirming the prenatal period as a time of
21 major epigenomic plasticity.

22

23 **KEYWORDS**

24 Pancreas, DNA methylation, development, sex differences, fetal, monogenic
25 diabetes, neonatal diabetes, brain

1 INTRODUCTION

2 Development of the human pancreas is a highly intricate process requiring the
3 precise temporal control of gene expression. The mature pancreas derives from two
4 buds (dorsal and ventral) originating from the distal foregut endoderm and has both
5 exocrine and endocrine functions reflecting distinct cellular lineages (1). The
6 exocrine pancreas, responsible for the secretion of digestive enzymes, is composed
7 principally of acinar and ductal cells. The endocrine pancreas, assembled into Islets
8 of Langerhans, contains α -cells, β -cells, δ -cells, ε -cells, and γ -cells (otherwise known
9 as PP-cells) which each release specific hormones (glucagon, insulin, somatostatin,
10 ghrelin and pancreatic polypeptide, respectively) that act to regulate blood glucose
11 levels (2). The diversity of the cells within the maturing pancreas indicates a complex
12 developmental pathway involving spatially- and temporally- coordinated changes in
13 gene regulation (3), although the precise molecular mechanisms driving this process
14 are not fully understood. Importantly, several diseases are known to result from
15 aberrant development of the pancreas including maturity onset diabetes of the young
16 (MODY) and neonatal diabetes - monogenic disorders caused by pathogenic
17 mutations in genes involved in coordinating pancreas development (4, 5).

18

19 Epigenetic modifications play a key role in the dynamic regulation of gene function
20 during tissue development and differentiation (6). The most extensively studied
21 epigenetic mechanism is DNA methylation, the covalent addition of a methyl group to
22 the fifth carbon position of cytosine (7). DNA methylation is traditionally considered to
23 repress local gene expression via disruption of transcription factor binding and the
24 recruitment of methyl-binding proteins that initiate chromatin compaction and gene
25 silencing (8). Evidence suggests there is a more nuanced relationship between DNA

1 methylation and transcription that is dependent on genomic and cellular context;
2 DNA methylation in the gene body, for example, is often associated with increased
3 expression (9) and has been implicated in other genomic functions including
4 alternative splicing and promoter usage (10).

5

6 The establishment and maintenance of tissue-specific DNA methylation patterns is a
7 crucial feature for mammalian development, and within the pancreas, DNA
8 methylation plays a critical role in the specification of the endocrine and exocrine
9 lineages (11, 12). To date, a systematic exploration of DNA methylation changes
10 during human pancreas development has not been performed due to, at least in part,
11 the paucity of tissue from fetal donors. Several studies have utilized human fetal
12 pancreatic samples to characterize transcription factor expression (1) and single cell
13 gene expression patterns (13, 14) in the developing human pancreas, although
14 these studies have focused on very early developmental stages and profiled only a
15 limited number of samples. Our understanding of the genomic changes taking place
16 during human pancreas development has therefore relied largely on extrapolations
17 from animal model studies (15) and pancreatic cell lines (16, 17).

18

19 In this study we quantified DNA methylation across the genome in pancreas samples
20 obtained from 99 fetal donors spanning 6 to 21 post-conception weeks (PCW) and
21 23 postnatal (adult) donors. We report dramatic changes in DNA methylation across
22 human pancreas development, which are specific to the fetal period and distinct to
23 age-associated changes in the postnatal pancreas. This is, to our knowledge, the
24 most extensive study of DNA methylation across human fetal pancreas development
25 and confirms the prenatal period as a time of considerable epigenomic plasticity.

1 **RESULTS**

2 *Generating a high-quality DNA methylation dataset across human fetal pancreas*
3 *development*
4 We obtained flash-frozen 99 human fetal pancreas samples (43 male and 56 female)
5 dissected from donors aged between 6 PCW (Carnegie stage (CS) 18) and 21 PCW
6 from the Human Developmental Biology Resource (HDBR) (<https://www.hnbr.org/>)
7 (**Figure 1A** and **Supplementary Table 1**). As expected, mean pancreas mass
8 increased with age (**Supplementary Figure 1**) and immunohistochemical analysis of
9 matched formalin-fixed paraffin embedded (FFPE) samples from a subset of donors
10 (n = 10, aged 9 to 19 PCW, see **Methods**) was used to confirm the pancreatic origin
11 of tissue from the HDBR prior to methylomic profiling (see **Figure 1B** and **Figure**
12 **1C**). We quantified DNA methylation across the genome in DNA isolated from each
13 tissue sample using the Illumina Infinium MethylationEPIC (v1) array followed by a
14 stringent quality control pre-processing pipeline (see **Methods**). After excluding
15 poorly performing probes (i.e. those characterized by non-specific binding and those
16 affected by genetic variation), in addition to those annotated to the Y chromosome,
17 our final dataset included measurements of DNA methylation at 805,481 sites
18 (787,690 (97.79%) autosomal, 17,791 (2.21%) on the X-chromosome)). We
19 calculated a ‘DNA methylation age’ estimate for each sample using an epigenetic
20 clock previously trained on fetal brain tissue and shown to be robustly associated
21 with gestational age (18), finding a strong positive correlation between estimated age
22 and actual developmental age (corr = 0.89, P = 8.31 x 10⁻³⁵, **Figure 1D**). Finally,
23 global levels of DNA methylation in the fetal pancreas, calculated by taking the mean
24 across all autosomal DNA methylation sites included in the final dataset, did not
25 differ significantly over the course of development (corr = 0.069, P = 0.497)

1 (Supplementary Figure 2) indicating no overall changes in DNA methylation
2 content across the genome during this period.
3
4 *Development of the human fetal pancreas is associated with dramatic changes in*
5 *DNA methylation at specific sites across the genome*
6 We used a linear regression model, controlling for sex, to identify sites at which DNA
7 methylation changed significantly across fetal pancreas development (see
8 **Methods**); we refer to these as developmental differentially methylated positions
9 (dDMPs). In total, we identified 177,130 dDMPs associated with developmental age
10 at an experiment-wide significance threshold ($P = 9 \times 10^{-8}$), of which 174,992
11 (98.79%) were autosomal and 2,138 (1.21%) were located on the X chromosome
12 (**Figure 2A** and **Supplementary Table 2**). Across all autosomal dDMPs there was a
13 modest excess of sites characterized by decreasing levels of DNA methylation
14 ('hypomethylated dDMPs') across fetal pancreas development (hypomethylated
15 dDMPs = 88,345 (50.5%), hypermethylated dDMPs = 86,647 (49.5%), $P = 9 \times 10^{-8}$)
16 (**Supplementary Figure 3**), consistent with patterns previously identified in our
17 analyses of the developing human fetal brain (19).
18
19 The top-ranked dDMP associated with fetal pancreas development was
20 cg08125539, located in intron two of the gene encoding insulin-like growth factor 2
21 mRNA binding protein 1 (*IGF2BP1*), which became progressively methylated over
22 time (mean change in proportion DNA methylation per PCW = 0.049, $P = 1.35 \times 10^{-61}$, **Figure 2B**). *IGFBP1* is the predominant insulin-like growth factor (IGF)-1 binding
24 protein during fetal development and is primarily secreted by the liver suggesting a
25 role in the regulation of fetal growth (20). Interestingly, in adulthood, low *IGFBP-1*

1 levels are associated with a higher risk for type 2 diabetes (21). The top-ranked
2 hypomethylated dDMP across pancreas development was cg20554008, located in
3 the first intron of the gene encoding mitogen-activated protein kinase 3 (*MAP2K3*)
4 (mean change in proportion DNA methylation per PCW = -0.036, $P = 1.48 \times 10^{-61}$,
5 **Figure 2C**). *MAP2K3* is involved in the MAP kinase signaling pathways which has a
6 critical role in cellular proliferation and differentiation in various contexts including
7 cancer (22).

8

9 We performed pathway analysis on genes annotated to dDMPs using the
10 *missMethyl* R package (23). Gene ontology (GO) analysis of genes annotated to the
11 top 10,000 hypermethylated dDMPs identified a highly significant enrichment for
12 multiple developmental pathways (**Supplementary Table 3**). KEGG analysis
13 revealed an enrichment of genes within the Wnt signaling pathway (FDR = 0.0011),
14 a crucial pathway for cell fate determination and organogenesis that plays an
15 important role in development of the pancreas (24-26), and insulin secretion (FDR =
16 0.088) (**Supplementary Table 4**). GO analysis of genes annotated to the top 10,000
17 hypomethylated dDMPs revealed an enrichment of genes involved in catalytic
18 activity (FDR = 6.87×10^{-8}) and other catabolic processes (FDR = 3.12×10^{-7})
19 (**Supplementary Table 5**). KEGG analysis of hypomethylated dDMPs highlighting
20 an enrichment of genes involved in endocytosis (FDR = 0.077) and protein
21 processing in the endoplasmic reticulum (FDR = 0.077), both of which are implicated
22 in the regulation of secretion from pancreatic β -cells (27) (**Supplementary Table 6**).
23
24 Many of the individual DMPs associated with pancreas development are in close
25 proximity to each other, clustering into developmentally regulated differentially

1 methylated regions (dDMRs). We used *dmrff* (28) to formally define these spatially-
2 correlated regions of variable DNA methylation (see **Methods**). In total we identified
3 7,934 dDMRs (corrected $P < 0.05$, number of probes ≥ 3) spanning an average of
4 389 bp (with a range of 3-37 sites) (**Supplementary Table 7**). Many of the top-
5 ranked dDMRs are proximal to genes with established roles in development and
6 function of the pancreas. For example, the top hypermethylated dDMR (chr20:
7 36148264-36149656, 30 sites, $P < 1.14 \times 10^{-304}$, **Figure 2D**) spans the transcription
8 start-site of the neuronatin gene (*NNAT*) that itself is located within the bladder
9 cancer associated protein gene (*BLCAP*). *NNAT* is an imprinted proteolipid-encoding
10 gene expressed specifically from the paternal allele that is highly expressed within
11 differentiating endocrine cells and immature aggregating islet cells in mice (29, 30).
12 Of note, a recent study showed that the mouse *Nnat* gene is differentially expressed
13 across development in a discrete population of beta cells, and that this
14 transcriptional plasticity is directly regulated by DNA methylation (31). The top
15 hypomethylated dDMR (chr19: 16830287-16830859, 9 sites, $P = < 1.14 \times 10^{-304}$,
16 **Figure 2E**) spans the transcription start site (TSS) of the gene encoding WD repeat
17 domain-containing protein 1 (*NWD1*), which plays an important role in the
18 developmental regulation of gene expression (32).
19

20 *The developing human pancreas has distinct modules of co-methylated loci*
21 We used weighted gene correlation network analysis (WGCNA) (33) to undertake a
22 systems-level characterization of the DNA methylation changes associated with
23 human pancreas development. To enable a focus on sites annotated to genes we
24 selected sites located in ‘promoter’ and ‘gene body’ regions characterized by
25 variable DNA methylation, identifying discrete modules of co-methylated positions

1 and used the first principal component of each individual module (the “module
2 eigengene” (ME)) to assess their relationship with fetal pancreas development (see
3 **Methods**). Among promoter-annotated sites ($n = 92,989$ variable sites) we identified
4 17 co-methylation modules of which 12 were significantly associated with pancreas
5 development (Bonferroni-corrected $P < 0.003$) (**Supplementary Table 8**). The
6 Promoter3 module ($n = 5,091$ probes) was the most positively correlated with
7 developmental age (correlation of ME with age = 0.92, $P = 2 \times 10^{-42}$, **Figure 3A**) and
8 the Promoter2 module ($n = 5,955$ probes) was characterized by the strongest
9 negative correlation with developmental age (correlation of ME with age = -0.88, $P =$
10 2×10^{-32} , **Figure 3B**). Module membership for sites included in both modules was
11 found to be highly correlated with site significance with developmental age
12 (Promoter3: $r = 0.92$, $P < 1 \times 10^{-200}$; Promoter2: $r = 0.81$, $P < 1 \times 10^{-200}$)
13 (**Supplementary Figure 4**) indicating a clear relationship between DNA methylation
14 at sites within these modules and fetal pancreatic development. Among gene body
15 annotated sites ($n = 77,945$ variable sites), we identified 16 co-methylation modules,
16 of which 13 were significantly associated with pancreas development (Bonferroni-
17 corrected $P < 0.003$) (**Supplementary Table 9**). The GeneBody3 module ($n =$
18 10,312 probes) was most positively correlated with developmental age (correlation of
19 ME with age = 0.919, $P = 6.26 \times 10^{-41}$, **Figure 3C**) and the GeneBody4 module ($n =$
20 8,419 probes) was most negatively correlated with developmental age (correlation of
21 module eigengene (ME) = -0.741, $P = 1.76 \times 10^{-18}$, **Figure 3D**). Again, module
22 membership for both modules was found to be highly correlated with site significance
23 (GeneBody2 module: $r = 0.88$, $P < 1 \times 10^{-200}$; GeneBody3 module: $r = 0.61$, $P < 1 \times$
24 10^{-200} (**Supplementary Figure 5**) indicating a clear relationship between DNA
25 methylation at sites within these modules and fetal pancreatic development. To

1 investigate the biological significance of the genes annotated to the core DNA
2 methylation sites in each of the modules associated with pancreas development we
3 conducted GO and KEGG pathway analysis (see **Methods**) identifying many
4 relevant pathways including several related to the metabolism of macromolecules in
5 the Promoter1 module (FDR = 0.001), bile secretion in the Promoter4 module (FDR
6 = 0.008) and anatomical structure morphogenesis in the Promoter3 module (FDR =
7 0.02) (**Supplementary Table 10**).

8

9 *Autosomal sex-specific differences in DNA methylation in the developing pancreas*
10 DNA methylation at 12,952 sites (1.61% of tested sites) was significantly different (P
11 $< 9 \times 10^{-8}$) between males and females in the fetal pancreas. As expected, the vast
12 majority of these differences occurred at sites located on the X chromosome ($n =$
13 12,242 (94.5%), mean male-female difference = 0.18 (SD = 0.12), range of male-
14 female differences = 0.69 – 0.01), although a notable proportion were autosomal ($n =$
15 646 (4.99%), mean male-female difference = 0.048 (SD = 0.037), range of male-
16 female differences = 0.30 – 0.009) (**Supplementary Table 11**). This may indicate
17 sex-specific differences in gene regulation in the developing pancreas and is an
18 interesting observation given evidence for male-female differences in pancreatic size
19 and function (34, 35). The top-ranked autosomal DMP between males and females
20 was cg06513015 (difference in mean DNA methylation = 0.27, $P = 2.34 \times 10^{-78}$)
21 which is annotated to the promoter regions of the *ERV3-1* gene; of note this site has
22 previously been shown to have significantly higher DNA methylation in newborn
23 females compared to males (36, 37) (**Supplementary Figure 6**). Interestingly, we
24 also identified 115 sites (all on the X chromosome) characterized by significant sex-
25 specific changes in DNA methylation across development of the pancreas,

1 potentially reflecting temporal changes in X chromosome dosage compensation
2 mechanisms across development (**Supplementary Table 12** and **Supplementary**
3 **Figure 7**).

4

5 *The distribution of dDMPs differs across genic features and is depleted in key*
6 *transcription factor binding domains and regions of open chromatin*
7 Although the distribution of dDMPs was largely consistent across autosomes
8 (**Supplementary Figure 8**), certain genic features were highly enriched or depleted
9 for developmentally-dynamic sites. For example, we observed a striking depletion of
10 dDMPs in CpG islands (odds ratio = 0.241, $P < 2.23 \times 10^{-308}$), transcription start sites
11 (TSS200) (odds ratio = 0.377, $P < 2.23 \times 10^{-308}$) and 1st exons (odds ratio = 0.389, P
12 $< 2.23 \times 10^{-308}$) (**Figure 4A**). In contrast, there was a significant enrichment of
13 dDMPs in features including CpG island shores (odds ratio = 1.10, $P = 5.38 \times 10^{-52}$),
14 CpG island shelves (odds ratio = 1.14, $P = 2.97 \times 10^{-39}$), and gene bodies (odds ratio
15 = 1.18, $P = 3.63 \times 10^{-210}$) (**Supplementary Table 13**). The depletion of dDMPs in
16 CpG-rich promoter regions was driven primarily by a lack of sites becoming
17 hypomethylated across development (**Figure 4B**); in contrast to other genic features
18 we see a highly significant enrichment of hypermethylated dDMPs relative to
19 hypomethylated dDMPs in CpG islands (sites characterized by decreasing DNA
20 methylation = 4,294 (37.1%), sites characterized by increasing DNA methylation =
21 7,266 (62.9%), $P < 2.2 \times 10^{-16}$, **Supplementary Figure 3**). Reflecting this, mean
22 DNA methylation across all dDMPs located in CpG islands significantly increases
23 across development of the pancreas (mean change in DNA methylation per PCW =
24 0.0046, $P < 2.2 \times 10^{-16}$) (**Supplementary Figure 2**). These patterns reflect the fact
25 that CpG islands are generally characterized by low levels of DNA methylation early

1 in development with tissue-specific patterns of DNA methylation becoming
2 established during the prenatal period (38).
3
4 We next sought to investigate whether dDMPs were enriched within known
5 pancreatic regulatory domains identified from recent published analyses of key
6 transcription factor binding site occupancy and chromatin accessibility in pancreatic
7 islets from human donors. First, we used pancreatic islet ChIP-seq data generated
8 on pancreatic islet cells (39) to test for an enrichment of dDMPs in peaks highlighting
9 binding of the transcriptional regulator CCCTC binding factor (CTCF) and five
10 pancreatic transcription factors (FOXA2, MAFB, NKX2-2, NKX6-1, and PDX1) (40-
11 44). Mirroring the patterns observed in CpG islands, we found a highly significant
12 depletion of dDMPs in domains bound by each of these transcription factors (**Figure**
13 **4C** and **Supplementary Table 13**). In contrast to CpG islands, however,
14 transcription factor ChIP-seq peaks were dramatically depleted for hypermethylated
15 dDMPs compared to background rates across the genome (**Figure 4D**) (CTCF: odds
16 ratio = 0.423, $P < 2.2 \times 10^{-308}$; FOXA2: odds ratio = 0.459, $P < 2.2 \times 10^{-308}$; MAFB:
17 odds ratio = 0.635, $P = 1.78 \times 10^{-48}$; NKX2-2: odds ratio = 0.334, $P < 2.2 \times 10^{-308}$;
18 NKX6-1: odds ratio = 0.254, $P < 2.2 \times 10^{-308}$; PDX1: odds ratio = 0.399, $P = < 2.2 \times$
19 10^{-308}) (**Figure 4E** and **Supplementary Figure 9**), reflecting the observation that the
20 binding of many transcription factors is sensitive to methylated DNA (45, 46).
21 Transcription factor binding occurs mainly in regions of open chromatin. We
22 therefore used publicly available single nucleus ATAC-seq data to test the
23 enrichment of dDMPs in genomic regions of open chromatin in three endocrine cell
24 types (alpha-, beta- and delta-cells) (47). In all three cell types, regions of open
25 chromatin were again characterized by an overall depletion of dDMPs driven by a

1 highly significant depletion of hypermethylated dDMPs, mirroring the patterns seen in
2 occupied transcription-factor binding sites (**Figure 4F** and **Supplementary Figure**
3 **10**). This depletion was particularly strong in delta cells where there was also an
4 overall depletion of hypomethylated dDMPs (all dDMPs: odds ratio = 0.221, $P < 2.2 \times$
5 10^{-308} ; hypermethylated dDMPs: odds ratio = 0.106, $P < 2.2 \times 10^{-308}$; hypomethylated
6 dDMPs: odds ratio = 0.394, $P < 2.2 \times 10^{-308}$).

7

8 *A number of neonatal diabetes genes are enriched for dDMPs*
9 Maturity onset diabetes of the young (MODY) and neonatal diabetes are monogenic
10 disorders of the pancreas caused by pathogenic mutations in several genes,
11 including those encoding many of the key transcription factors involved in
12 coordinating pancreas development (48). We explored whether DNA methylation
13 sites annotated to both MODY ($N = 33$, **Supplementary Table 14**)
14 (<https://panelapp.genomicsengland.co.uk/panels/472/>) and neonatal diabetes ($N =$
15 32, **Supplementary Table 15**)
16 (<https://panelapp.genomicsengland.co.uk/panels/293/>) genes (**Supplementary**
17 **Figure 11**) were enriched for dDMPs associated with pancreas development. There
18 was evidence for dDMPs annotated to all the tested MODY genes (33 genes
19 (100%)) and virtually all tested neonatal diabetes genes (30 genes (93.7%)) genes
20 (**Supplementary Table 14&15**). Although there was no overall significant
21 enrichment of dDMPs to either MODY (odds ratio = 1.148, $P = 0.021$) or neonatal
22 diabetes (odds ratio = 1.084, $P = 0.133$) genes, there was a significant enrichment of
23 sites becoming hypermethylated across development annotated to neonatal diabetes
24 gene regions (odds ratio = 1.357, $P = 2.98 \times 10^{-4}$) (**Figure 5A** and **Supplementary**
25 **Figure 12**). A number of disease genes were characterized by very dramatic

1 changes in DNA methylation across development. The neonatal diabetes gene with
2 the highest proportion of significant dDMPs was *NKX2-2* encoding homeobox protein
3 *NKX2-2*, a crucial islet transcription factor (42, 49). DNA methylation at 16 of 22
4 (72.72%) *NKX2-2* sites changed significantly across development (**Figure 5B**), with
5 these sites clustered into a discrete dDMR spanning the gene characterized by
6 increasing DNA methylation ($\beta = 0.195$, $P = 1.14 \times 10^{-51}$) (**Figure 5C** and
7 **Supplementary Table 7**). Another neonatal diabetes gene containing a dDMR
8 characterized by dramatic hypermethylation across pancreas development encodes
9 the lipopolysaccharide responsive beige like anchoring protein (*LRBA*); DNA
10 methylation at 44 of 118 (37.29%) *LRBA* sites was associated with developmental
11 age (**Figure 5D**), with these sites clustered into a discrete dDMR encompassing an
12 intragenic CpG island ($\beta = 0.235$, $P = 1.14 \times 10^{-301}$) (**Figure 5E** and
13 **Supplementary Table 7**). Summary results for all neonatal diabetes genes are
14 presented in **Supplementary Table 16**, potentially aiding the identification of
15 regulatory domains with a critical role in pancreas development.

16

17 *The dramatic temporal changes in DNA methylation occurring in the developing*
18 *pancreas are limited to the prenatal period and are distinct to age-associated*
19 *changes in the postnatal pancreas*

20 Given the notable shifts in DNA methylation observed across pancreatic
21 development, we were interested in characterizing the extent to which these
22 changes continued in the postnatal pancreas. We quantified DNA methylation across
23 the genome in 23 adult pancreas samples obtained from the Barts Pancreas Tissue
24 Bank (BPTB) (<https://www.bartspancreastissuebank.org.uk/>) (mean age = 59 years,
25 age range 34 to 80 years, **Supplementary Table 1**) using the Illumina EPIC array.

1 As expected, the chronological age of postnatal donors was strongly correlated with
2 epigenetic age estimates derived from our DNA methylation data using the Horvath
3 multi-tissue epigenetic clock (50) ($\text{corr} = 0.88$, $P = 2.91 \times 10^{-8}$, **Supplementary**
4 **Figure 13**). We next tested the extent to which dDMPs were also characterized by
5 age-associated changes in DNA methylation in postnatal pancreas. Across the
6 176,624 significant fetal pancreas dDMPs also tested in the adult pancreas, there
7 was no positive correlation in effect sizes (**Figure 6A**), suggesting that most of the
8 dramatic temporal changes at fetal dDMPs is limited to the prenatal period and do
9 not reflect aging *per se*. Overall, DNA methylation at pancreas dDMPs was more
10 variable in fetal pancreas samples than postnatal pancreas samples (**Figure 6B**)
11 (average variance in DNA methylation across the top 10,000 dDMPs profiled in both
12 datasets = 0.0150 (fetal pancreas) vs 0.0013 (postnatal pancreas), $P = 9 \times 10^{-8}$).
13 DNA methylation at pancreas dDMPs was markedly different between early fetal (6 -
14 8 PCW) and adult pancreas samples ($\text{corr} = -0.206$, **Figure 6C**), mean levels of DNA
15 methylation in adult pancreas (average age = 59 years) were strongly correlated
16 ($\text{corr} = 0.697$) to those seen older fetal samples (19-21 PCW). These results further
17 highlight the relative stability of DNA methylation at these sites postnatally following
18 the dramatic shifts observed during pancreatic development (**Figure 6D**).
19
20

21 *There are tissue-specific developmental changes in DNA methylation specific to the*
22 *pancreas*
23 Using data from our previous study of DNA methylation changes during development
24 of the human brain (19) we explored the extent to which dDMPs identified in this
25 study were specific to development of the pancreas. 73,964 (41.75%) of the

1 identified pancreas dDMPs were also profiled in the human brain using an earlier
2 version of the Illumina array (Illumina 450K); across these sites there was a modest
3 positive correlation in effect size between pancreas and brain ($\text{corr} = 0.277$, $P = <$
4 2.2×10^{-16}) (**Figure 7A** and **Supplementary Table 17**). DNA methylation at 8,131
5 (10.99%) of the tested pancreas dDMPs was significantly associated with
6 development in the human brain at a Bonferroni-corrected significance threshold (P
7 $< 6.76 \times 10^{-7}$). Of these, DNA methylation at 6,645 (81.72%) sites was characterized
8 by a consistent direction of developmental change in pancreas and brain (e.g.,
9 **Figure 7B**) whilst 1,486 (18.28%) sites were characterized by an opposite direction
10 of effect across tissues (e.g., **Figure 7C**). A relatively large number of DMPs were
11 also found to be specific to the developing pancreas; in total we found 55,402
12 pancreas DMPs (74.90%) that did not appear to be dynamically regulated in the
13 developing brain (i.e., pancreas DMPs at which there was a non-significant mean
14 change in proportion DNA methylation per PCW <0.005 and >-0.005 in the fetal
15 brain) (**Supplementary Table 19**). Of note, the top-ranked example of a pancreas-
16 specific DMP was annotated to the neonatal diabetes gene *LBRA* (cg08219218:
17 absolute difference in mean change in DNA methylation per PCW between the fetal
18 pancreas and brain = 0.0527, **Figure 7D**). We also identified pancreas-specific
19 changes across sites annotated to *NNAT* within the top-ranked dDMR, suggesting
20 that developmental changes in DNA methylation across this domain are specific to
21 the pancreas (**Supplementary Figure 14**).
22
23 Similarly, of the 13,480 brain dDMPs identified by Spiers and colleagues at $P < 9 \times$
24 10^{-8} , 12,531 (92.96%) were included in our fetal pancreas dataset; there was an
25 overall positive correlation in effect sizes across the two tissues ($\text{corr} = 0.483$, $P = <$

1 2.2×10^{-16}) (**Figure 7E** and **Supplementary Table 18**). 6,831 (54.51%) of the tested
2 brain dDMPs were significantly associated with developmental age in the human
3 pancreas at a Bonferroni-corrected significance threshold ($P < 3.99 \times 10^{-6}$), with
4 5,513 (80.71%) sites characterized by a consistent direction of effect in the brain and
5 1,318 (19.29%) sites characterized by an opposite direction of effect in the brain. We
6 identified a number of brain-specific dDMPs with 1,545 sites (12.33%) not
7 characterized by developmental changes in the developing pancreas
8 (**Supplementary Table 20**). Of note, the top-ranked brain DMP at which DNA
9 methylation did not change during pancreas development was annotated to the
10 Methionine Sulfoxide Reductase A gene (*MSRA*) (cg02192555: absolute difference
11 between change in mean DNA methylation per PCW between the fetal brain and
12 pancreas = 0.0368) (51). Overall, these results indicate that whilst many dDMPs
13 show very similar developmental trajectories across tissues (**Figure 7C**), a relatively
14 large proportion of sites are characterized by tissue-specific developmental changes
15 in DNA methylation (**Figure 7D**).

16

17 **DISCUSSION**

18 In this study, we characterized changes in DNA methylation occurring through
19 development of the human pancreas. We profiled genome-wide patterns of DNA
20 methylation in pancreas samples from 99 fetal donors (43 male and 56 female)
21 spanning 6 to 21 post conception weeks, and 23 postnatal (adult) pancreas samples
22 (ages 34 to 80 years, 9 male and 14 female). Our data highlight that considerable
23 epigenomic changes taking place in the human pancreas during fetal development,
24 with significant changes in DNA methylation identified at over 21% of sites tested.
25 The distribution of pancreas dDMPs was found to differ across genic regions, with

1 notable depletion in CpG islands, regions of open chromatin and the binding sites of
2 pancreatic transcription factors involved in pancreas development. The dramatic
3 temporal changes in DNA methylation occurring in the developing pancreas were
4 found to be limited to the prenatal period and be distinct to age-associated changes
5 observed in the postnatal pancreas. Finally, we compared our data with those from a
6 similar study on the developing human brain, finding both common developmental
7 changes across tissues and tissue-specific trajectories of DNA methylation. This is,
8 to our knowledge, the most extensive study of DNA methylation across human fetal
9 pancreas development to date, confirming the prenatal period as a time of
10 considerable epigenomic plasticity.

11

12 Distinct developmental patterns of DNA methylation were observed in several
13 genomic regions. DNA methylation in CpG-rich areas were found to exhibit less
14 variability during fetal pancreas development compared to other genomic regions.
15 Moreover, although CpG-rich regions tend to have more hypermethylated dDMPs
16 than hypomethylated dDMPs (**Supplementary Figure 3**), the majority of dDMPs in
17 the genome become hypomethylated as the pancreas develops. This observation is
18 unsurprising considering that CpG islands play a role in stabilizing the expression of
19 essential housekeeping genes (6) and reflects our previous observations in the
20 developing human brain (19). We also investigated changes in DNA methylation
21 within regulatory regions bound by specific islet transcription factors important for
22 pancreas development and function (i.e. FOXA2, NKX2-2, NKX6-1, PDX1, MAFB,
23 and CTCF). DNA methylation is known to disrupt the developmental binding of many
24 transcription factors (6), and therefore the progressive hypomethylation observed
25 across these domains may orchestrate the complex patterns of gene expression

1 crucial for pancreatic development and function. In particular, the binding of CTCF,
2 which plays a crucial role in the developing pancreas by contributing to the
3 establishment and regulation of chromatin architecture, gene expression and cell
4 fate determination (52), is known to be highly anticorrelated with DNA methylation
5 (53). These data support a critical role for developmental changes in DNA
6 methylation during the differentiation of different pancreatic cell types, including
7 those responsible for insulin production and glucose regulation.

8

9 We also investigated changes in DNA methylation across pancreas development in
10 relation to sites annotated to genes associated with diseases of the pancreas
11 including MODY and neonatal diabetes, finding that the vast majority of these genes
12 contained at least one significant dDMP. Although MODY genes showed no
13 enrichment for sites characterized exclusively by either increasing or decreasing
14 DNA methylation across pancreatic development, there was a strong enrichment for
15 sites to become hypermethylated in genomic regions annotated to neonatal diabetes
16 genes. This is interesting given the role of aberrant pancreas development in the
17 development of neonatal diabetes, a rare form of diabetes that presents in the first
18 six months of life, and the fact that many of the genetic mutations that cause
19 neonatal diabetes are known to disrupt normal pancreas development and function.

20

21 Our data may help elucidate novel mechanisms involved in diseases of the
22 pancreas. One of the most significant dDMRs in our dataset, for example, was
23 located within the *LRBA* gene (**Figure 5D**). Although *LRBA* mutations result in
24 neonatal diabetes and additional autoimmune features diagnosed as early as six
25 weeks of age (54). These mutations are thought to cause diabetes through de-

1 regulation of the immune system and there is little previous evidence to suggest a
2 role for *LRBA* in the development of the pancreas. Our data reveals that there are
3 dynamic changes in the epigenetic state of *LRBA* across pancreas development,
4 with progressive hypermethylation across a discrete region within the gene. Not all
5 cases of neonatal diabetes and MODY can be explained by identified coding
6 mutations in the coding region of known genes and understanding the epigenomic
7 changes occurring during fetal pancreas development could provide clues to the
8 location of novel (potentially non-coding) functional genetic variants contributing to
9 the etiology of these disorders.

10

11 There are several limitations to this study. First, legal restrictions on later-term
12 abortions precluded the assay of pancreas tissue from later stages of fetal
13 development. However, the observation that DNA methylation at dDMPs was
14 relatively stable between the oldest fetal samples studied and postnatal (adult)
15 pancreas (**Figure 6D**) implies that the magnitude of epigenetic changes occurring
16 later in pregnancy and during early postnatal life is much lower than was observed
17 across early fetal development. Another limitation is that the tissue used in the
18 present study was whole pancreas and our measurements of DNA methylation
19 represent a composite of different cell types. This precludes us from exploring
20 changes within specific cell-types in the developing pancreas, and future work
21 should focus on profiling changes in purified cell-types. Third, although the Illumina
22 EPIC array can accurately quantify DNA methylation at single-base resolution with
23 probes associated with the majority of genes and CpG islands across the genome,
24 the array targets only ~2% of the CpG sites in the human genome, and probes are
25 not equally distributed across all genomic features. As costs diminish, future studies

1 should employ sequencing-based genomic-profiling technologies to more thoroughly
2 interrogate the epigenome across development in large numbers of samples. Fourth,
3 no demographic or phenotypic information other than developmental age and sex
4 was available for the samples assayed. Fifth, we do not have gene expression data
5 from these samples and are therefore unable to make direct conclusions about the
6 transcriptional consequences of the developmental changes in DNA methylation we
7 observe. Finally, we are not able to distinguish between DNA methylation and its
8 oxidized derivative, DNA hydroxymethylation, as standard sodium bisulfite
9 approaches do not distinguish between these modifications. There is currently very
10 limited information about the prevalence of hydroxymethylated DNA in the pancreas
11 and future studies should aim to characterize this modification across fetal pancreas
12 development using techniques capable of discriminating DNA methylation and DNA
13 hydroxymethylation (55-57).

14

15 In conclusion we identify highly dynamic changes in DNA methylation occurring
16 throughout the genome across human fetal pancreatic development. The dramatic
17 temporal changes in DNA methylation occurring in the developing pancreas appear
18 to be limited to the prenatal period and be distinct to age-associated changes
19 observed in the postnatal pancreas. The majority of genes involved in neonatal
20 diabetes and MODY were located proximal to sites showing developmental changes
21 in DNA methylation, potentially providing novel insights into the developmental
22 mechanisms involved in these diseases.

23

24

25 **METHODS**

1 *Human pancreas tissue samples*

2 Human fetal tissues were obtained from the Human Developmental Biology
3 Resource (HDBR). These samples were collected with appropriate maternal written
4 consent and approval from the Newcastle and North Tyneside (Newcastle
5 University) and London - Fulham (UCL) Research NHS Health Authority Joint Ethics
6 Committees. HDBR is regulated by the UK Human Tissue Authority
7 (HTA; www.hta.gov.uk) and operates in accordance with the relevant HTA Codes of
8 Practice. The age of these samples ranged from 6 to 21 PCW, determined by
9 Carnegie staging in the case of embryonic samples (defined as ≤56 DPC (8 PCW)
10 and foot and knee to heel length measurements for fetal samples (defined as ≥57
11 DPC (8.14 PCW). Other than sex, no additional phenotypic or demographic
12 information on the fetal donors was available. Human adult pancreatic tissue (n = 23)
13 was acquired from the Barts Pancreas Tissue Bank at Queen Mary's University
14 London (www.bartspancreastissuebank.org.uk) with full approval from the Research
15 Ethics Committee (REC) (references 13/SC/0592, 18/SC/0630 and 23/SC/0324).
16 All samples used in this study were collected from the Barts Pancreas Tissue Bank,
17 with written informed consent from patients recruited at Barts Health NHS Trust
18 (BHNT). Pancreas samples were taken for surgical biopsy for pancreatic tumors, and
19 only samples with no malignancies or cellular abnormalities were selected for this
20 study.

21

22 *Immunohistochemistry (IHC) and multiparameter immunofluorescence imaging*
23 2µm formalin-fixed paraffin-embedded (FFPE) pancreatic tissue sections obtained
24 from HDBR were stained for the presence of chromogranin A (ChrgA) positive
25 endocrine cells and CK19-positive ductal cells. Sections were double-stained with

1 antibodies against ChrgA and CK19 using standard immunohistochemical
2 approaches. Counterstaining with haematoxylin allowed for identification of exocrine
3 and structural tissue. The source, characteristics, dilutions and validations of primary
4 antibodies, as well as source, description and details of accessory agents are
5 provided in **Supplementary Table 21**. For multiplex tissue immunofluorescence,
6 2µm FFPE pancreas tissue sections were baked at 60°C for 1 hour, dewaxed in
7 histoclear, rehydrated in degrading ethanols (100%, 95%, 70%) and fixed in 10%
8 neutral buffered formalin (NBF). Heat-induced epitope retrieval (HIER; 10mM citrate
9 pH6) was performed to unmask the epitopes by placing the sections in a pressure
10 cooker in a microwave oven on full power for 20 mins. The sections were then
11 blocked with 5% normal goat serum (NGS) and incubated with the primary antibody
12 before being probed with an appropriate OPAL™ secondary antibody conjugated to
13 a fluorophore (Akoya Biosciences, **Supplementary Table 21**). This was followed by
14 a further HIER to remove the primary antibody before staining with the next
15 primary/secondary combination. The same steps (from blocking to antigen retrieval)
16 are repeated four times (for each of the primary/secondary combinations). The
17 sections are counterstained with DAPI and mounted for multispectral fluorescent
18 microscopy performed using the Phenolmager HT automated quantitative pathology
19 imaging system (Akoya Biosciences).

20
21 *Genome-wide quantification of DNA methylation and data preprocessing*
22 Frozen pancreas tissue was homogenized using a motorized pestle prior to
23 conducting nucleic acid extraction using the Qiagen AllPrep Universal kit (Qiagen).
24 The processing of all samples was randomized to minimize batch effects attributed
25 to age or sex. Genomic DNA (~500ng) was treated with sodium bisulfite using the

1 Zymo EZ DNA Methylation-Lightning kit (Zymo Research). DNA methylation was
2 profiled across the genome using the Illumina Infinium MethylationEPIC BeadChip
3 (Illumina) and scanned on the HiScan System (Illumina) using the standard
4 manufacturers instructions. Data quality control and pre-processing were performed
5 using the *wateRmelon* package as described previously (58). Cross-reactive probes
6 and polymorphic DNA methylation sites, as detailed in the Illumina annotation file
7 and identified in publications (59) were removed leaving 805,481 probes for further
8 analysis (including n = 17,516 X chromosome and n = 77 Y chromosome probes) for
9 fetal samples and 857,808 probes for adult pancreatic samples. Data were
10 normalized with the *dasen* function of the *wateRmelon* package. Demographic
11 information for the final cohort of 99 fetal pancreas samples and 23 adult pancreas
12 samples remaining following quality control are provided in **Supplementary Table 1**.

13

14 *Statistical Analysis*

15 A multiple linear regression model with developmental age (in post conception
16 weeks, PCW) and sex was implemented to identify DNA methylation changes in the
17 developing human pancreas. DNA methylation at specific sites was considered to be
18 significantly associated with development (in PCW) and sex if they passed an
19 experiment-wide significance threshold of $P = 9 \times 10^{-8}$. Analysis of differentially
20 methylated probes at the regional level was performed using the DMR-finding tool
21 *dmrff* (<https://github.com/perishky/dmrff>). Gene annotations provided by Illumina
22 were used to map sites to specific genes. The *missMethyl* package (23) was used to
23 conduct pathway analysis using standard parameters and relevant backgrounds.

24

25 *Enrichment analysis*

1 We used publicly available ChIP-seq data generated on pancreatic islet cells
2 (Pasquali 2014) to test for an enrichment of dDMPs in regions characterized by the
3 binding of six transcription factors (CTCF, FOXA2, MAFB, NKX2-2, NKX6-1, and
4 PDX1). We used publicly available single nucleus ATAC-seq data to test the
5 enrichment of dDMPs in genomic regions of defined by open chromatin in three
6 endocrine cell types (alpha-, beta- and delta-cells) (Chiou, *et al.* 2021). Diabetes
7 gene lists were obtained from the PanelApp webpage of Neonatal diabetes genes
8 and Monogenic diabetes genes. For analyses of different genic regions, we used
9 feature annotations from the Illumina EPIC array manifest. For DNA methylation
10 sites in each region, we calculated Fisher exact test P-values and odds ratios for the
11 association between a site being present in a given set of genomic regions or genes
12 and the site being differentially methylated with a P-value less than a given threshold
13 (varying the threshold from $P = 10^{-1}$ to $P = 10^{-35}$).

14

15 *Weighted gene correlation network analysis (WGCNA)*
16 Weighted gene correlation network analysis (WGCNA) was performed to identify
17 modules of highly correlated DNA methylation sites associated with pancreas
18 development (33). WGCNA was performed separately for DNA methylation sites
19 annotated to promoter regions ($n = 92,989$ sites) and gene body regions ($n = 77,945$
20 sites). Modules were identified based on pairwise correlations using a signed
21 network at power 4. We excluded modules containing <100 DNA methylation sites. A
22 weighted average expression profile representing the first principal component of
23 each individual module, otherwise known as a module eigengene (ME), was
24 calculated for each module. Correlations between the MEs and the phenotypic traits
25 available (PCW, sex) were used to identify modules associated with these traits. The

1 relationship between each probe and each module was assessed through
2 calculation of module membership (MM), the absolute correlation between a probe's
3 DNA methylation status and the ME, allowing the identification of the subset of
4 probes with the strongest membership to each module. To assess the biological
5 meaning of modules associated with pancreas development, genes associated with
6 probes possessing an absolute MM value of >0.85 were extracted and assessed
7 using pathway and gene ontology analysis.

8

9 **RAW DATA AVAILABILITY**

10 Raw and normalized Illumina EPIC methylation data has been submitted to the NCBI
11 Gene Expression Omnibus (GEO; <http://www.ncbi.nlm.nih.gov/geo/>) under
12 accession number GSE244636.

13

1 **FIGURE LEGENDS**

2

3 **FIGURE 1: Characterization of fetal pancreas samples.** **A)** An overview of the age and
4 sex distribution of fetal pancreas samples profiled in this study. **B)** Chromogranin A (brown)
5 and Cytokeratin 19 (pink) staining of FFPE tissue from a 17 PCW donor showing both
6 endocrine and ductal tissue. **C)** Immunofluorescent staining analysis of FFPE tissue from a
7 17 PCW donor confirming the presence of endothelial cells (CD31+, red), alpha cells (GLU+,
8 green), beta cells (INS+, cyan), and delta cells (SST+, magenta). **D)** Age estimates derived
9 from an epigenetic clock calibrated on fetal tissue samples confirm a strong correlation
10 between actual and estimated gestational age across the 99 fetal pancreas samples
11 included in this study (corr = 0.89, P = 8.31 x 10⁻³⁵).

12

13 **FIGURE 2: Changes in DNA methylation associated with development of the human**
14 **pancreas.** **A)** Mean levels of DNA methylation in early fetal pancreas samples (6 - 8 PCW)
15 and later fetal pancreas samples (19 - 21 PCW) across all significant dDMPs. **B)**
16 cg08125539, annotated to the *IGF2BP1* gene on chromosome 17, was the most significant
17 hypermethylated dDMP across pancreas development (change in DNA mmethylation
18 proportion per gestational week = 0.049, P = 1.35 x 10⁻⁶¹). **C)** cg20554008, annotated to the
19 *MAP2K3* gene on chromosome 17, was the most significant hypomethylated dDMP across
20 pancreas development (change in DNA methylation proportion per gestational week = -
21 0.036, P = 1.48 x 10⁻⁶¹). Many dDMPs are colocalized into larger regions of differential DNA
22 methylation (dDMRs) associated with pancreas development. Shown are **D)** the top-ranked
23 hypermethylated dDMR located in the *BLCAP* and *NNAT* genes on chromosome 20
24 (regression coefficient = 0.253, P = < 1.14 x 10⁻³⁰⁴) and the top-ranked hypomethylated
25 dDMR located in the transcription start site of *NWD1* on chromosome 19 (regression
26 coefficient = -0.239, P = < 1.14 x 10⁻³⁰⁴).

27

1 **FIGURE 3: Gene comethylation modules associated with development of the human**
2 **pancreas.** Across DNA methylation sites located in promoter regions, the module eigengene
3 of the **A)** Promoter4 module was most positively correlated with developmental age and the
4 module eigengene of the **B)** Promoter3 module had the strongest negative correlation with
5 developmental age. Shown for each module is the module eigengene for each sample (left
6 panel) and a heatmap depicting the mean DNA methylation for core sites in each module
7 across development (right panel) with colour corresponding to DNA methylation level at sites
8 with a module membership >0.85 . Across DNA methylation sites located in gene body
9 regions, the module eigengene of the **C)** GeneBody3 module was most positively
10 correlated with developmental age and the module eigengene of the **D)** GeneBody4 module
11 had the strongest negative correlation with developmental age.

12
13 **FIGURE 4: The distribution and direction of fetal pancreas dDMPs differs markedly**
14 **across genomic features.** **A)** Compared to the genome average, dDMPs are significantly
15 underrepresented in CpG islands, transcription start-sites, 5' UTRs, and first exons, but
16 significantly enriched in CpG island shores, CpG island shelves, and the gene bodyRelative
17 enrichment of dDMPs in CpG island features. **B)** The depletion of dDMPs in CpG islands is
18 largely driven by a dramatic paucity of sites becoming hypomethylated across development.
19 Sites becoming hypomethylated across development are shown in blue and sites becoming
20 hypermethylated across development are shown in red. Shown is the relative enrichment of
21 sites in each category based on their P-value for association with developmental age (from 1
22 $\times 10^{-1}$, to 1×10^{-35}) determined using a Fisher's exact test. The genome-wide significance
23 threshold for dDMPs ($P < 9 \times 10^{-8}$) is denoted using a grey line. **C)** Compared to the genome
24 average, dDMPs are also depleted in regulatory domains defined by key transcription factor
25 binding site occupancy and chromatin accessibility in pancreatic islets from human donors.
26 In contrast to the pattern seen in CpG islands, these regulatory domains are characterized
27 by a dramatic depletion of hypermethylated dDMPs for both regions of **D)** transcription factor
28 binding occupancy and **E)** open chromatin in pancreatic islet cell-types. **F)** The depletion of

1 dDMPs in domains bound by CTCF, for example, is largely driven by a dramatic paucity of
2 sites becoming hypomethylated across development.

3

4 **FIGURE 5: Developmental changes in pancreatic DNA methylation annotated to**
5 **neonatal diabetes genes. A)** There is a significant enrichment of sites becoming
6 hypermethylated across pancreas development annotated to neonatal diabetes genes. Sites
7 becoming hypomethylated across development are shown in blue and sites becoming
8 hypermethylated across development are shown in red. Shown is the relative enrichment of
9 sites in each category based on their P-value for association with developmental age (from 1×10^{-1} , to 1×10^{-35}) determined using a Fisher's exact test. The genome-wide significance
10 threshold for dDMPs ($P < 9 \times 10^{-8}$) is denoted using a grey line. **B)** cg23425348 shows the
11 most significant developmental change in DNA methylation associated across sites
12 annotated to *NKX2-2* (change in DNA methylation proportion per gestational week = $2.83 \times$
13 10^{-2} , $P = 8.26 \times 10^{-29}$) which is the neonatal gene with the highest proportion of dDMPs and
14 **C)** contains a discrete region of significant hypermethylation (regression coefficient = 0.195,
15 $P = 1.14 \times 10^{-51}$). **D)** cg25995955 shows the most significant developmental change in DNA
16 methylation associated across sites annotated to *LRBA* (change in DNA methylation
17 proportion per gestational week = 3.33×10^{-2} , $P = 5.05 \times 10^{-50}$). **F)** The *LRBA* gene is
18 another neonatal diabetes gene with an enrichment of dDMPs clustered into a discrete
19 region characterized by increasing DNA methylation across development (regression
20 coefficient = 0.224, $P = 1.14 \times 10^{-304}$).

22

23 **FIGURE 6: The dramatic temporal changes in DNA methylation at fetal dDMPs is**
24 **limited to the prenatal period. A)** Correlation of DNA methylation changes during fetal
25 development (X-axis) and postnatal aging (Y-axis) at 176,624 dDMPs tested in both fetal
26 and adult pancreas. No pancreas dDMPs were significantly associated with age in the
27 postnatal pancreas. **B)** DNA methylation at pancreas dDMPs was dramatically more variable
28 in fetal pancreas samples than postnatal pancreas samples. Shown is the distribution of

1 variance in DNA methylation across the 10,000 most significantly dDMPs in fetal pancreas
2 samples (pink) (variance = 0.0150) compared to the variance in DNA methylation at the
3 same sites in adult pancreas samples (blue) (0.0013). **C**) DNA methylation at pancreas
4 dDMPs was dramatically different between early fetal (6 - 8 PCW) and adult pancreas
5 samples at the 10,000 most significant dDMPs. **D**) In contrast, DNA methylation at pancreas
6 dDMPs was highly correlated between early fetal (6 - 8 PCW) and adult pancreas samples
7 at the same dDMPs (corr = 0.70).

8

9 **Figure 7: Overlap between developmental changes in DNA methylation between**
10 **pancreas and brain. A)** Correlation of effect sizes at pancreas dDMPs with those at the
11 same sites in the developing brain. **B)** A site at which developmental changes in DNA
12 methylation is highly similar between pancreas and brain. Shown is cg08486065 which is
13 characterized by significant decrease in DNA methylation across development in both
14 pancreas (effect size = 0.0362, $P = 1.06 \times 10^{-54}$) and brain (effect size = 0.0341, $P = 1.38 \times 10^{-12}$). **C)** A site at which DNA methylation changes significantly across development in the
15 pancreas and brain but in the opposite direction. Shown is cg16094352 which is
16 characterized by significant hypermethylation across development in the pancreas (effect
17 size = 0.0151, $P = 3.13 \times 10^{-41}$) but significant hypomethylation across development in the
18 brain (effect size = -0.00484, $P = 1.68 \times 10^{-8}$). **D)** A site at which developmental changes in
19 DNA methylation are specific to the pancreas. Shown is cg08219218 annotated to *LBRA*
20 that is characterized by significant hypermethylation across development in the pancreas
21 (effect size = 0.0490, $P = 4.52 \times 10^{-41}$) but no change in the brain. **E)** Correlation of effect
22 sizes at brain dDMPs with those at the same sites in the developing pancreas. **F)** A site at
23 which developmental changes in DNA methylation are specific to the brain. Shown is
24 cg02192555 annotated to *MSRA* that is characterized by significant hypomethylation across
25 development in the brain (effect size = -0.0371, $P = 3.86 \times 10^{-12}$) but no change in the
26 pancreas.

28

1 **ACKNOWLEDGEMENTS**

2 A.M. was supported by the UKRI Expanding Excellence in England award via EXCEED.
3 Data analysis was undertaken using high-performance computing supported by a Medical
4 Research Council (MRC) Clinical Infrastructure award (M008924) to J.M. The human
5 embryonic and fetal material was provided by the MRC/Wellcome-Trust funded Human
6 Developmental Biology Resource (HBDR, <http://www.hdbr.org>) (MR/R006237/1,
7 MR/X008304/1, and 226202/Z/22/Z). Postnatal pancreas tissue was provided by the Bart's
8 Pancreas Tissue Bank (BPTB) and we acknowledge BPTP members Claude Chelala,
9 Ahmet Imrali, Christine Hughes, and Tissue Access Chair Richard Grose. This study was
10 also supported by the National Institute for Health and Care Research (NIHR) Exeter
11 Biomedical research Centre (BRC). The view expressed are those of the author(s) and not
12 necessarily those of the NIHR or the Department of Health and Social Care.

13

14

15

16

17

1 REFERENCES

- 2 1. Jennings RE, Berry AA, Kirkwood-Wilson R, Roberts NA, Hearn T, Salisbury RJ, et
3 al. Development of the human pancreas from foregut to endocrine commitment. *Diabetes*.
4 2013;62(10):3514-22.
- 5 2. Roder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. *Exp
6 Mol Med*. 2016;48(3):e219.
- 7 3. Jennings RE, Berry AA, Strutt JP, Gerrard DT, Hanley NA. Human pancreas
8 development. *Development*. 2015;142(18):3126-37.
- 9 4. Burgos JI, Vallier L, Rodriguez-Segui SA. Monogenic Diabetes Modeling: In Vitro
10 Pancreatic Differentiation From Human Pluripotent Stem Cells Gains Momentum. *Front
11 Endocrinol (Lausanne)*. 2021;12:692596.
- 12 5. Ikle JM, Gloyn AL. 100 YEARS OF INSULIN: A brief history of diabetes genetics:
13 insights for pancreatic beta-cell development and function. *J Endocrinol*. 2021;250(3):R23-
14 R35.
- 15 6. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. *Nat Rev Genet*.
16 2016;17(8):487-500.
- 17 7. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. *Nat Rev
18 Genet*. 2013;14(3):204-20.
- 19 8. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and
20 beyond. *Nat Rev Genet*. 2012;13(7):484-92.
- 21 9. Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK. On the presence and role of
22 human gene-body DNA methylation. *Oncotarget*. 2012;3(4):462-74.
- 23 10. Maunakea AK, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates
24 alternative splicing by recruiting MeCP2 to promote exon recognition. *Cell Res*.
25 2013;23(11):1256-69.
- 26 11. Okae H, Chiba H, Hiura H, Hamada H, Sato A, Utsunomiya T, et al. Genome-wide
27 analysis of DNA methylation dynamics during early human development. *PLoS Genet*.
28 2014;10(12):e1004868.
- 29 12. Parveen N, Dhawan S. DNA Methylation Patterning and the Regulation of Beta Cell
30 Homeostasis. *Front Endocrinol (Lausanne)*. 2021;12:651258.
- 31 13. Goncalves CA, Larsen M, Jung S, Stratmann J, Nakamura A, Leuschner M, et al. A
32 3D system to model human pancreas development and its reference single-cell
33 transcriptome atlas identify signaling pathways required for progenitor expansion. *Nat
34 Commun*. 2021;12(1):3144.
- 35 14. Ma Z, Zhang X, Zhong W, Yi H, Chen X, Zhao Y, et al. Deciphering early human
36 pancreas development at the single-cell level. *Nat Commun*. 2023;14(1):5354.
- 37 15. Jorgensen MC, Ahnfelt-Ronne J, Hald J, Madsen OD, Serup P, Hecksher-Sorensen
38 J. An illustrated review of early pancreas development in the mouse. *Endocr Rev*.
39 2007;28(6):685-705.
- 40 16. Ravassard P, Hazhouz Y, Pechberty S, Bricout-Neveu E, Armanet M, Czernichow P,
41 et al. A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible
42 insulin secretion. *J Clin Invest*. 2011;121(9):3589-97.
- 43 17. Scharfmann R, Staels W, Albagli O. The supply chain of human pancreatic beta cell
44 lines. *J Clin Invest*. 2019;129(9):3511-20.
- 45 18. Steg LC, Shireby GL, Imm J, Davies JP, Franklin A, Flynn R, et al. Novel epigenetic
46 clock for fetal brain development predicts prenatal age for cellular stem cell models and
47 derived neurons. *Mol Brain*. 2021;14(1):98.
- 48 19. Spiers H, Hannon E, Schalkwyk LC, Smith R, Wong CC, O'Donovan MC, et al.
49 Methylomic trajectories across human fetal brain development. *Genome Res*.
50 2015;25(3):338-52.
- 51 20. Gupta MB. The role and regulation of IGFBP-1 phosphorylation in fetal growth
52 restriction. *J Cell Commun Signal*. 2015;9(2):111-23.

1 21. Zhang WB, Aleksic S, Gao T, Weiss EF, Demetriou E, Verghese J, et al. Insulin-like
2 Growth Factor-1 and IGF Binding Proteins Predict All-Cause Mortality and Morbidity in Older
3 Adults. *Cells*. 2020;9(6).

4 22. Zhang Y, Lu W, Chen Y, Lin Y, Yang X, Wang H, et al. The miR-19b-3p-MAP2K3-
5 STAT3 feedback loop regulates cell proliferation and invasion in esophageal squamous cell
6 carcinoma. *Mol Oncol*. 2021;15(5):1566-83.

7 23. Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data
8 from Illumina's HumanMethylation450 platform. *Bioinformatics*. 2016;32(2):286-8.

9 24. Murtaugh LC. The what, where, when and how of Wnt/beta-catenin signaling in
10 pancreas development. *Organogenesis*. 2008;4(2):81-6.

11 25. Napolitano T, Silvano S, Ayachi C, Plaisant M, Sousa-Da-Veiga A, Fofa H, et al. Wnt
12 Pathway in Pancreatic Development and Pathophysiology. *Cells*. 2023;12(4).

13 26. Sharon N, Vanderhooft J, Straubhaar J, Mueller J, Chawla R, Zhou Q, et al. Wnt
14 Signaling Separates the Progenitor and Endocrine Compartments during Pancreas
15 Development. *Cell Rep*. 2019;27(8):2281-91 e5.

16 27. Marchetti P, Bugliani M, Lupi R, Marselli L, Masini M, Boggi U, et al. The
17 endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. *Diabetologia*.
18 2007;50(12):2486-94.

19 28. Suderman M, Staley JR, French R, Arathimos R, Simpkin A, Tilling K. dmrrf:
20 identifying differentially methylated regions efficiently with power and control. *bioRxiv*.
21 2018:508556.

22 29. Chu K, Tsai MJ. Neuronatin, a downstream target of BETA2/NeuroD1 in the
23 pancreas, is involved in glucose-mediated insulin secretion. *Diabetes*. 2005;54(4):1064-73.

24 30. Millership SJ, Da Silva Xavier G, Choudhury AI, Bertazzo S, Chabosseau P, Pedroni
25 SM, et al. Neuronatin regulates pancreatic beta cell insulin content and secretion. *J Clin
Invest*. 2018;128(8):3369-81.

27 31. Yu V, Yong F, Chen K, Georgiadou E, Parveen N, Marta A, et al. Establishment of
28 beta cell heterogeneity via differential CpG methylation at Nnat. *bioRxiv*.
29 2023:2023.02.04.527050.

30 32. Yamada S, Sato A, Sakakibara SI. Nwd1 Regulates Neuronal Differentiation and
31 Migration through Purinosome Formation in the Developing Cerebral Cortex. *iScience*.
32 2020;23(5):101058.

33 33. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network
34 analysis. *BMC Bioinformatics*. 2008;9:559.

35 34. Wang M, Gorelick F, Bhargava A. Sex Differences in the Exocrine Pancreas and
36 Associated Diseases. *Cell Mol Gastroenterol Hepatol*. 2021;12(2):427-41.

37 35. Yong HJ, Toledo MP, Nowakowski RS, Wang YJ. Sex Differences in the Molecular
38 Programs of Pancreatic Cells Contribute to the Differential Risks of Type 2 Diabetes.
39 *Endocrinology*. 2022;163(11).

40 36. Hu J, Xu X, Li J, Jiang Y, Hong X, Rexrode KM, et al. Sex differences in the
41 intergenerational link between maternal and neonatal whole blood DNA methylation: a
42 genome-wide analysis in 2 birth cohorts. *Clin Epigenetics*. 2023;15(1):51.

43 37. Santos HP, Jr., Enggasser AE, Clark J, Roell K, Zhabotynsky V, Gower WA, et al.
44 Sexually dimorphic methylation patterns characterize the placenta and blood from extremely
45 preterm newborns. *BMC Biol*. 2023;21(1):173.

46 38. Slieker RC, Roost MS, van Iperen L, Suchiman HE, Tobi EW, Carlotti F, et al. DNA
47 Methylation Landscapes of Human Fetal Development. *PLoS Genet*. 2015;11(10):e1005583.

48 39. Pasquali L, Gaulton KJ, Rodriguez-Segui SA, Mularoni L, Miguel-Escalada I,
49 Akerman I, et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-
50 associated variants. *Nat Genet*. 2014;46(2):136-43.

51 40. Elsayed AK, Younis I, Ali G, Hussain K, Abdelalim EM. Aberrant development of
52 pancreatic beta cells derived from human iPSCs with FOXA2 deficiency. *Cell Death Dis*.
53 2021;12(1):103.

1 41. Xiafukaiti G, Maimaiti S, Ogata K, Kuno A, Kudo T, Shawki HH, et al. MafB Is
2 Important for Pancreatic beta-Cell Maintenance under a MafA-Deficient Condition. *Mol Cell*
3 *Biol.* 2019;39(17).

4 42. Churchill AJ, Gutierrez GD, Singer RA, Lorberbaum DS, Fischer KA, Sussel L.
5 Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine
6 lineage development. *Elife.* 2017;6.

7 43. Aigha, II, Abdelalim EM. NKX6.1 transcription factor: a crucial regulator of pancreatic
8 beta cell development, identity, and proliferation. *Stem Cell Res Ther.* 2020;11(1):459.

9 44. Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic
10 beta-cell functions and identity. *Front Mol Biosci.* 2022;9:1091757.

11 45. Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, et al. Impact
12 of cytosine methylation on DNA binding specificities of human transcription factors. *Science.*
13 2017;356(6337).

14 46. Grau J, Schmidt F, Schulz MH. Widespread effects of DNA methylation and intra-
15 motif dependencies revealed by novel transcription factor binding models. *Nucleic Acids*
16 *Res.* 2023.

17 47. Chiou J, Zeng C, Cheng Z, Han JY, Schlichting M, Miller M, et al. Single-cell
18 chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory
19 programs of diabetes risk. *Nat Genet.* 2021;53(4):455-66.

20 48. Zhang H, Colclough K, Glyn AL, Pollin TI. Monogenic diabetes: a gateway to
21 precision medicine in diabetes. *J Clin Invest.* 2021;131(3).

22 49. Abarinov V, Levine JA, Churchill AJ, Hopwood B, Deiter CS, Guney MA, et al. Major
23 beta cell-specific functions of NKX2.2 are mediated via the NK2-specific domain. *Genes*
24 *Dev.* 2023;37(11-12):490-504.

25 50. Horvath S. DNA methylation age of human tissues and cell types. *Genome Biol.*
26 2013;14(10):R115.

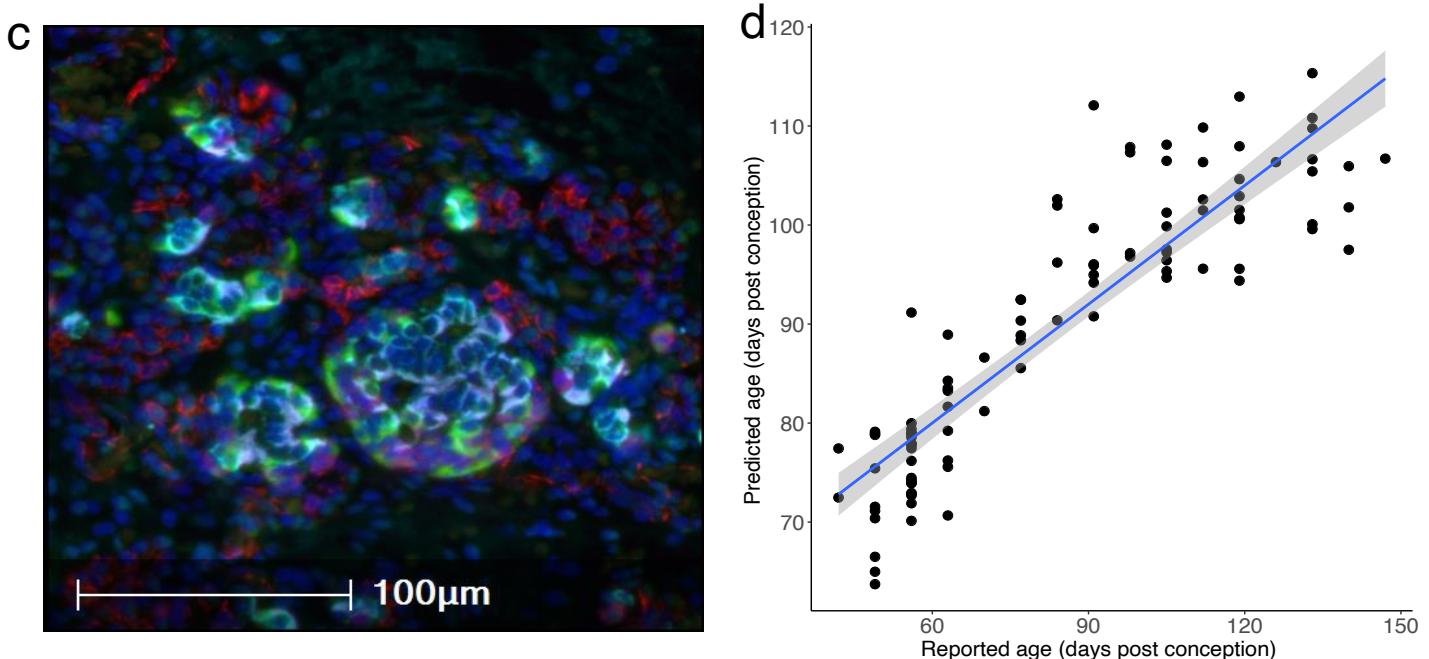
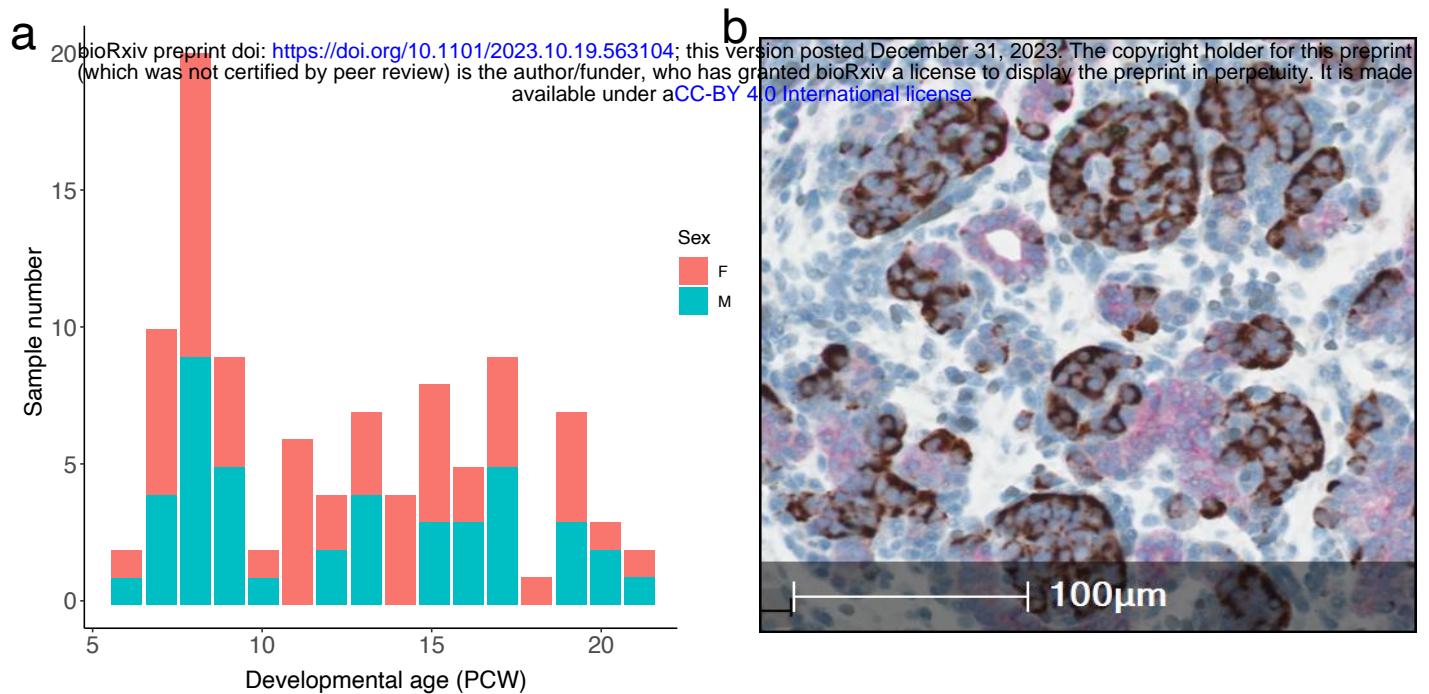
27 51. Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER.
28 Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in
29 mammals. *Proc Natl Acad Sci U S A.* 2001;98(23):12920-5.

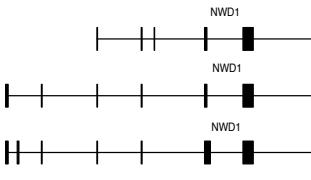
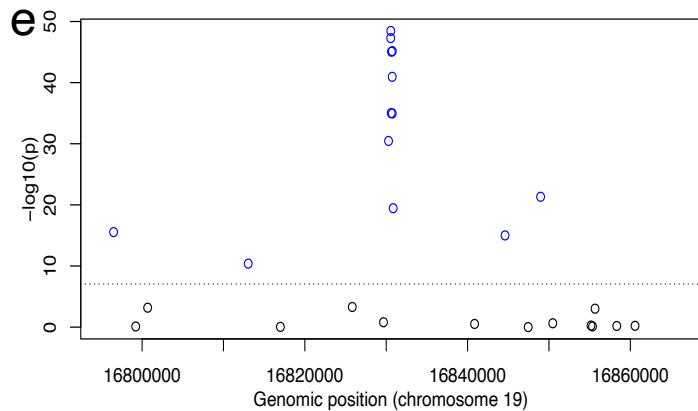
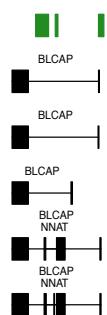
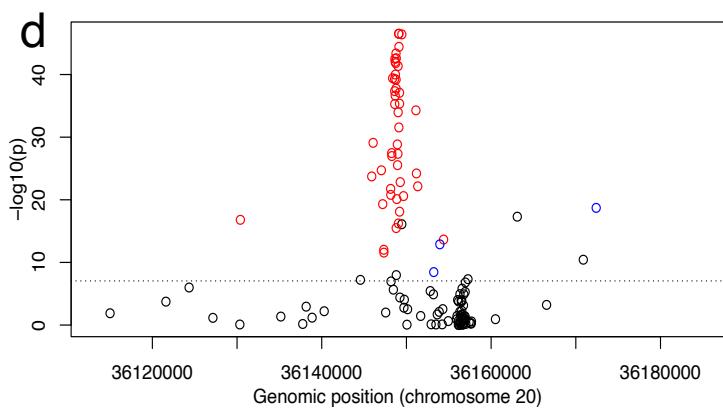
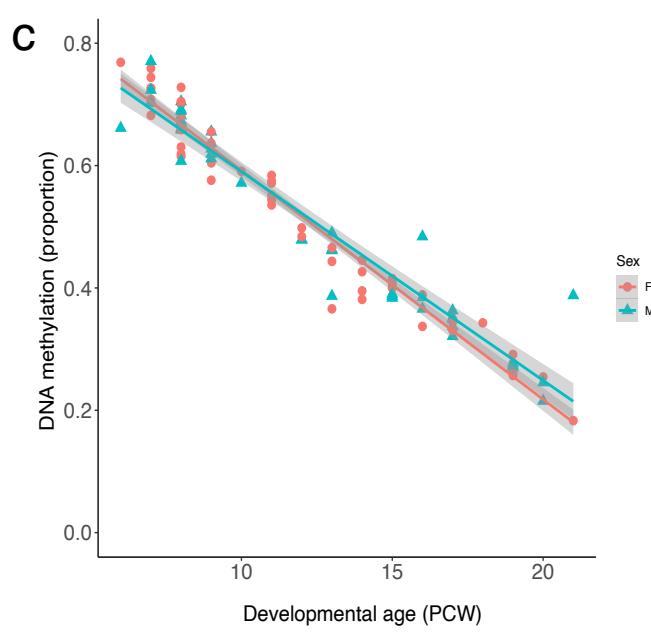
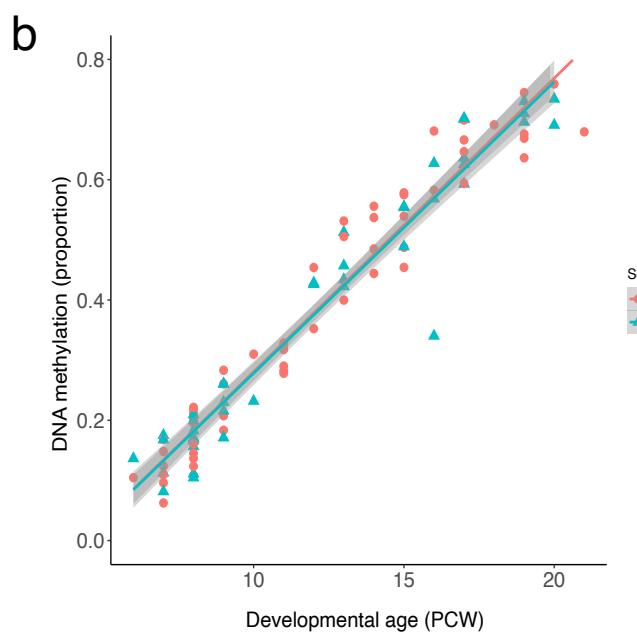
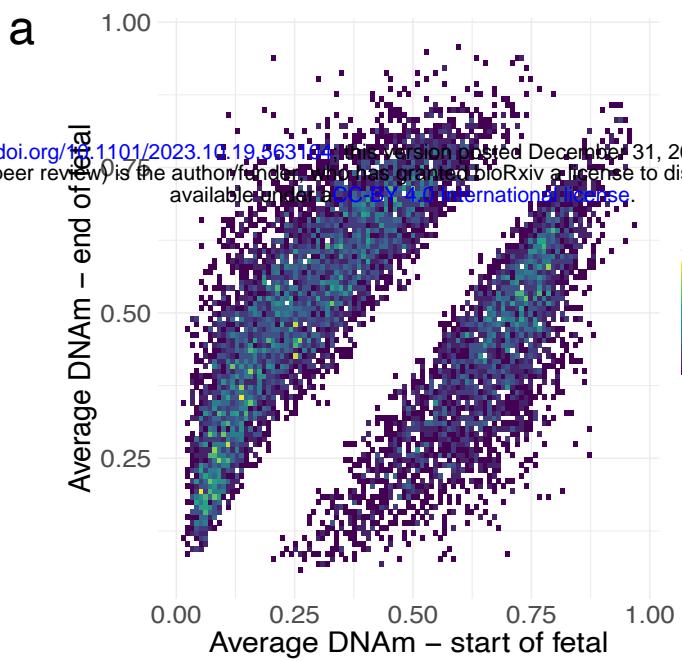
30 52. Wiegle L, Thorn GJ, Raddatz G, Clarkson CT, Rippe K, Lyko F, et al. DNA
31 (de)methylation in embryonic stem cells controls CTCF-dependent chromatin boundaries.
32 *Genome Res.* 2019;29(5):750-61.

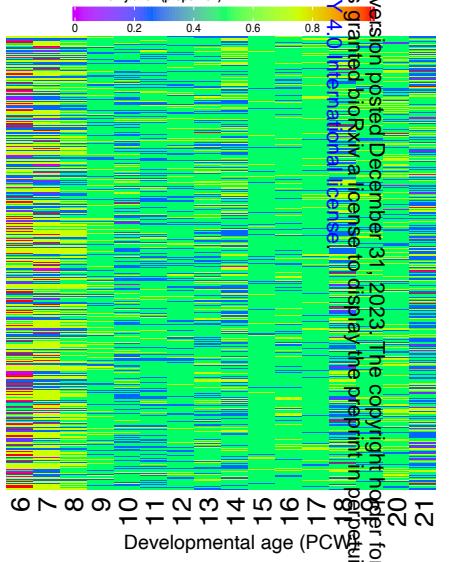
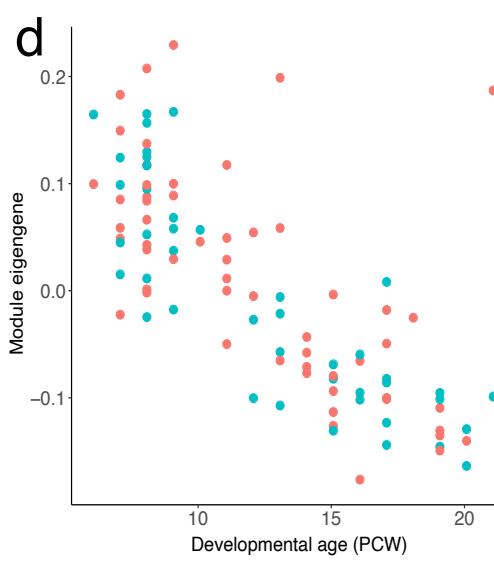
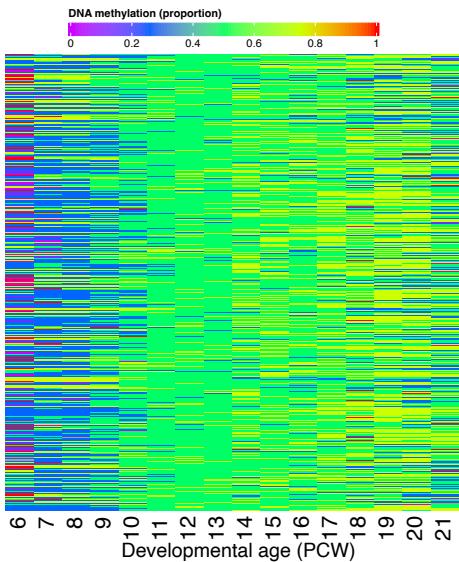
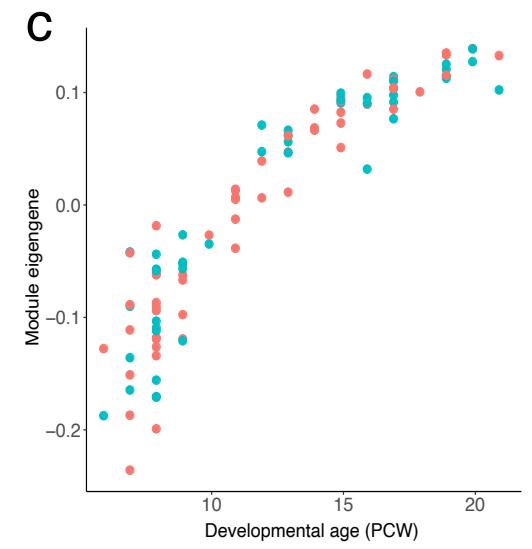
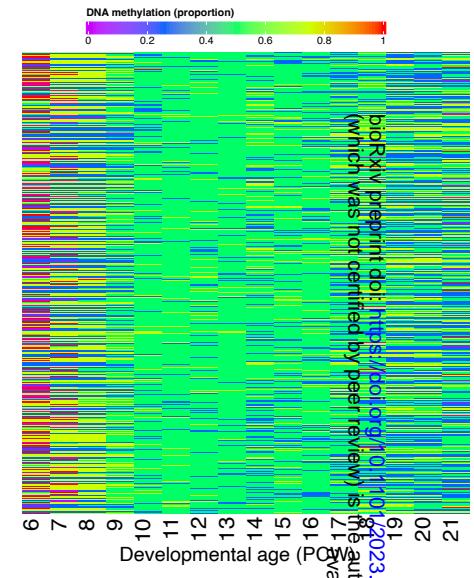
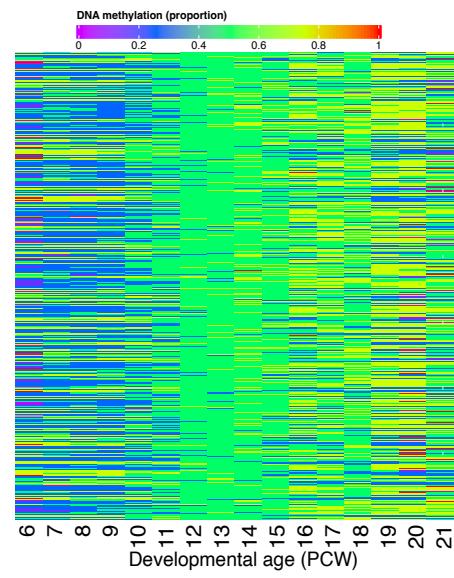
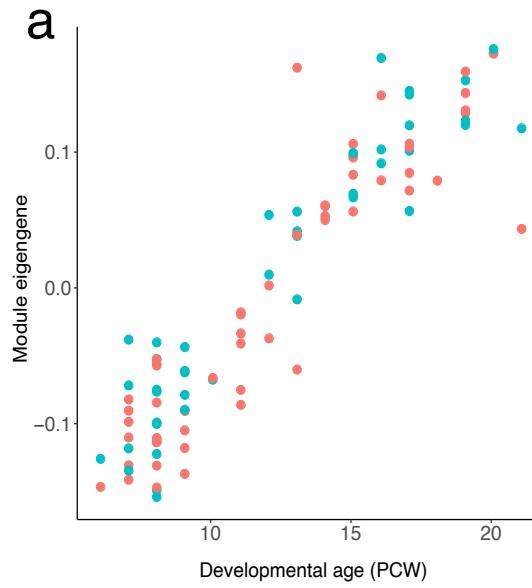
33 53. Maurano MT, Wang H, John S, Shafer A, Canfield T, Lee K, et al. Role of DNA
34 Methylation in Modulating Transcription Factor Occupancy. *Cell Rep.* 2015;12(7):1184-95.

35 54. Johnson MB, De Franco E, Lango Allen H, Al Senani A, Elbarbary N, Siklar Z, et al.
36 Recessively Inherited LRBA Mutations Cause Autoimmunity Presenting as Neonatal
37 Diabetes. *Diabetes.* 2017;66(8):2316-22.

38 55. Richa R, Sinha RP. Hydroxymethylation of DNA: an epigenetic marker. *EXCLI J.*
39 2014;13:592-610.

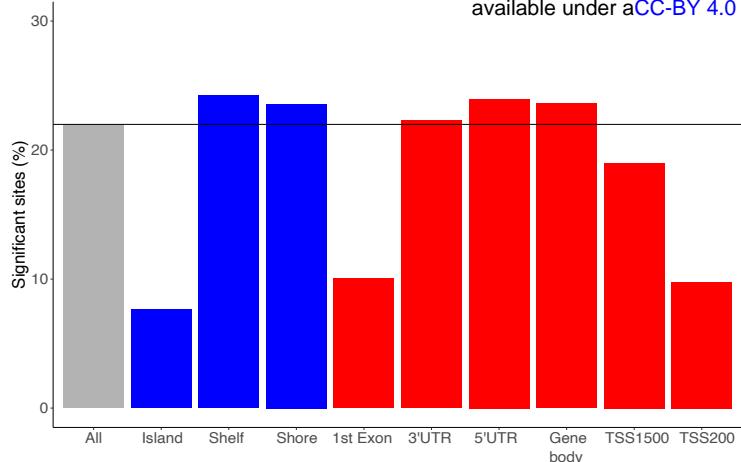
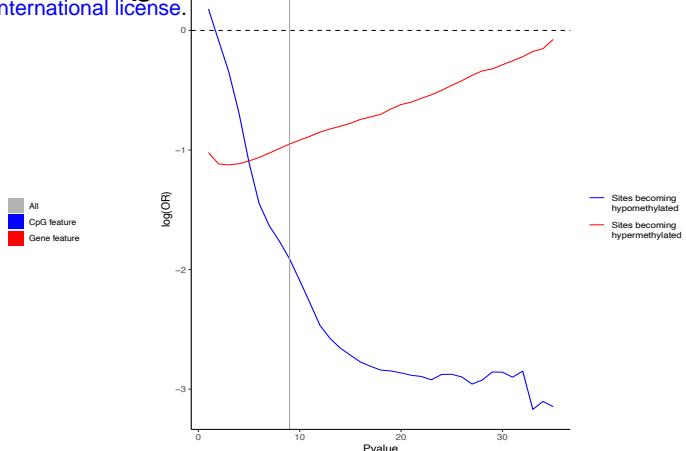
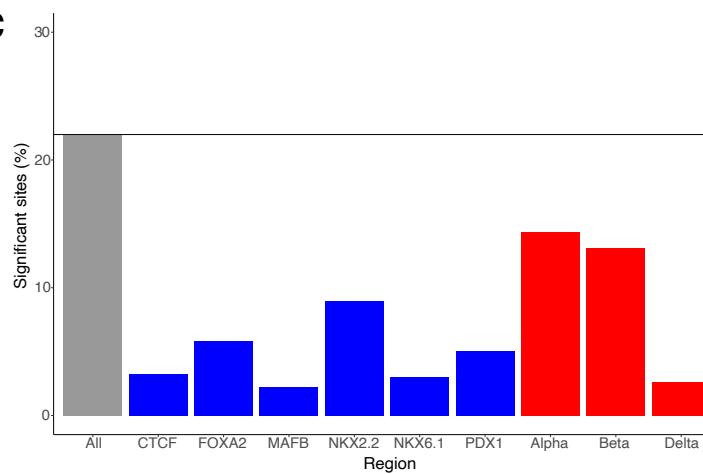
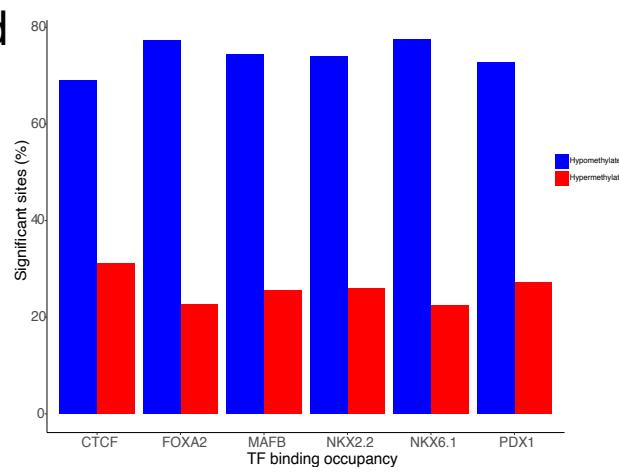
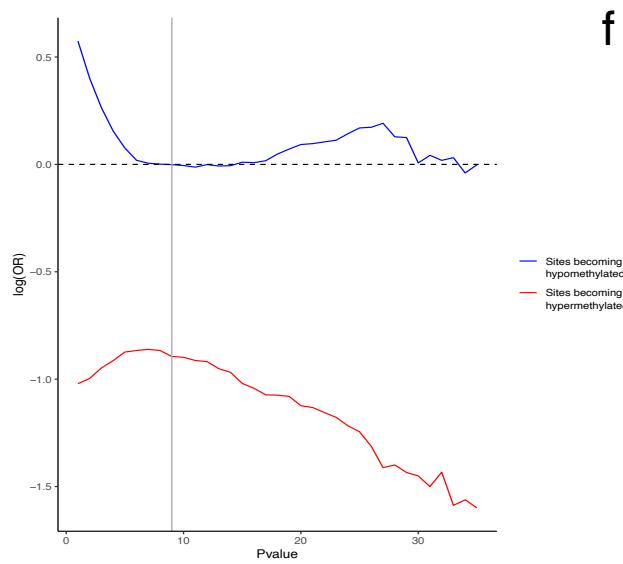
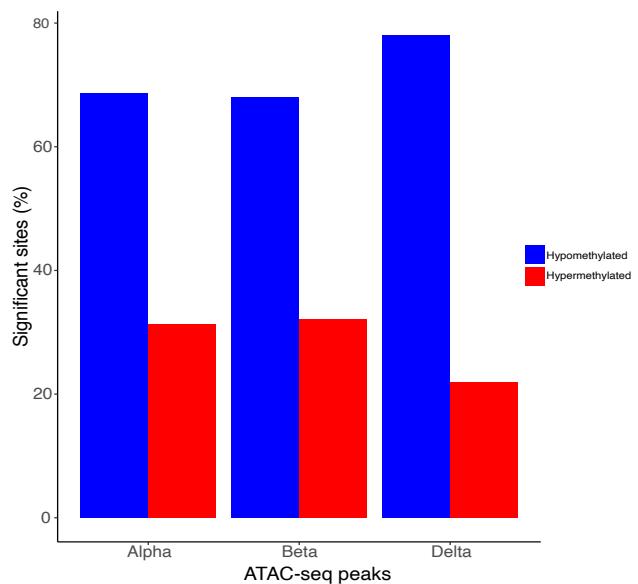


40 56. Yan R, Cheng X, Gu C, Xu Y, Long X, Zhai J, et al. Dynamics of DNA
41 hydroxymethylation and methylation during mouse embryonic and germline development.
42 *Nat Genet.* 2023;55(1):130-43.

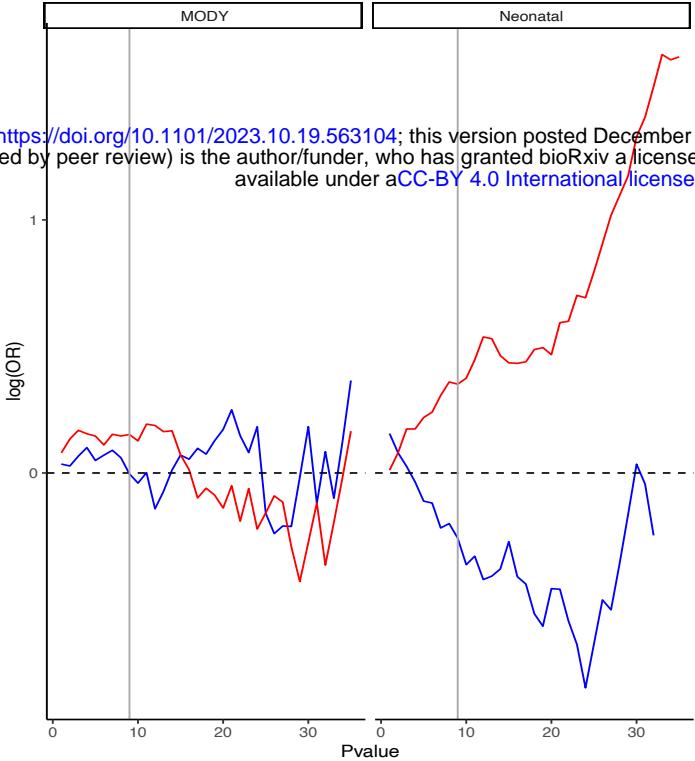
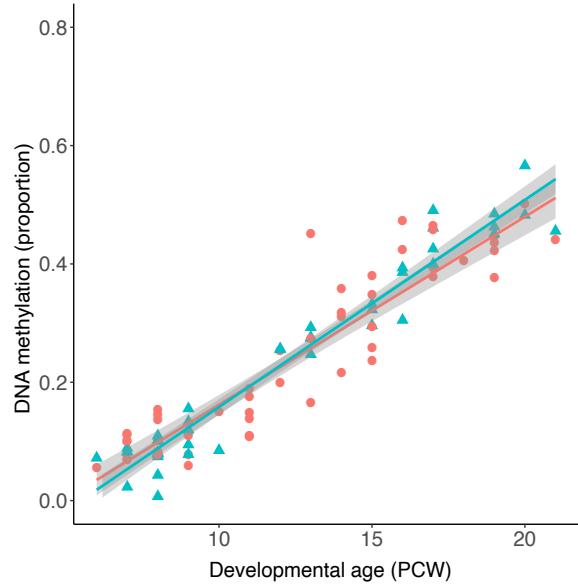
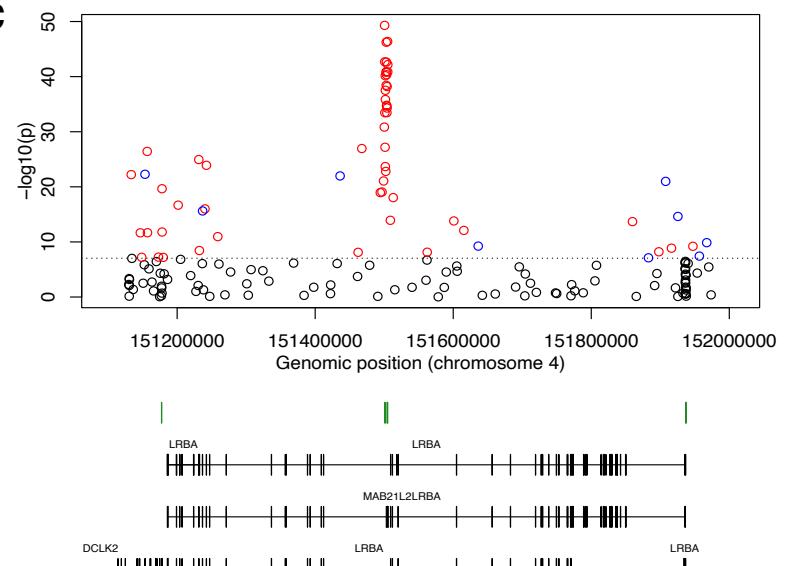
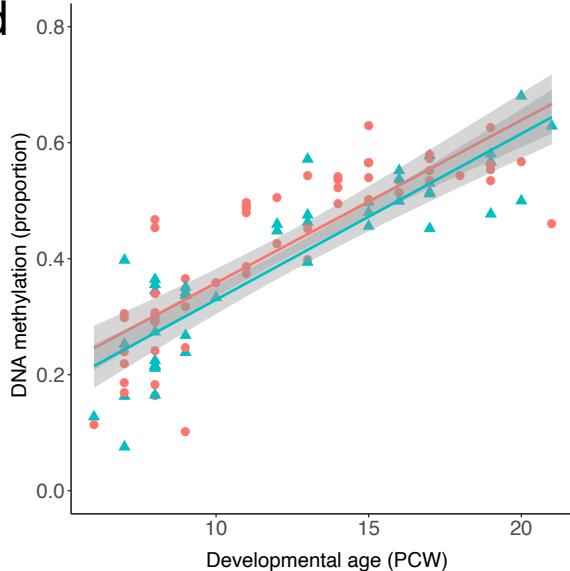
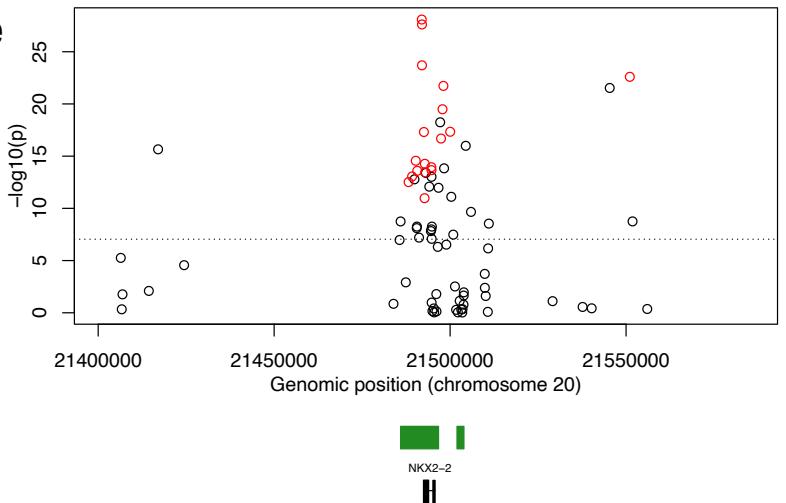







43 57. Smith AR, Smith RG, Pishva E, Hannon E, Roubroeks JAY, Burrage J, et al. Parallel
44 profiling of DNA methylation and hydroxymethylation highlights neuropathology-associated
45 epigenetic variation in Alzheimer's disease. *Clin Epigenetics.* 2019;11(1):52.

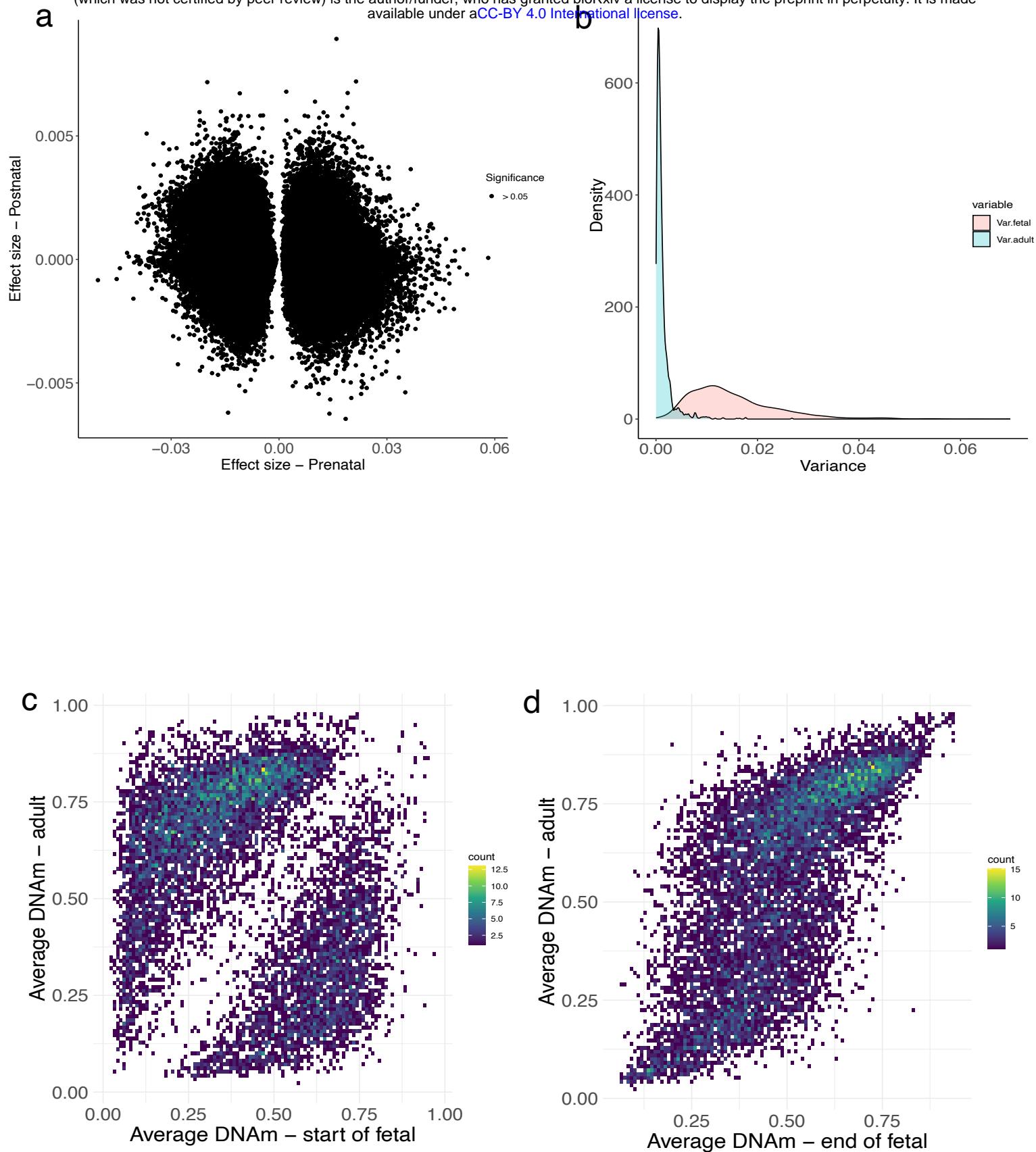







46 58. Pidsley R, CC YW, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach
47 to preprocessing Illumina 450K methylation array data. *BMC Genomics.* 2013;14:293.

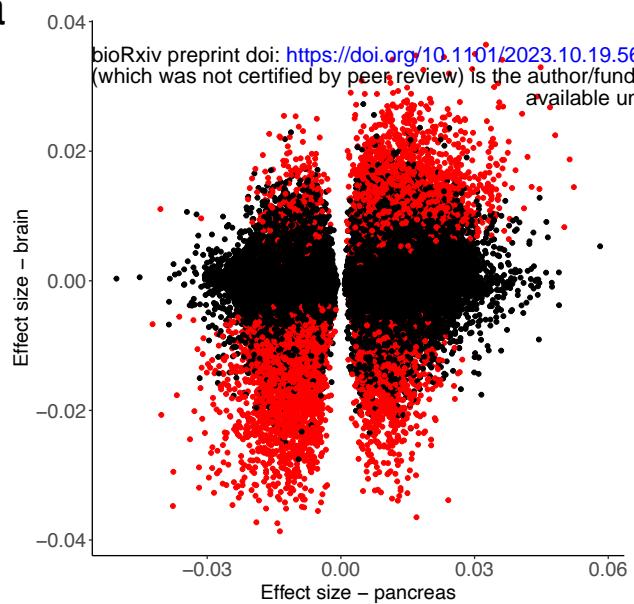
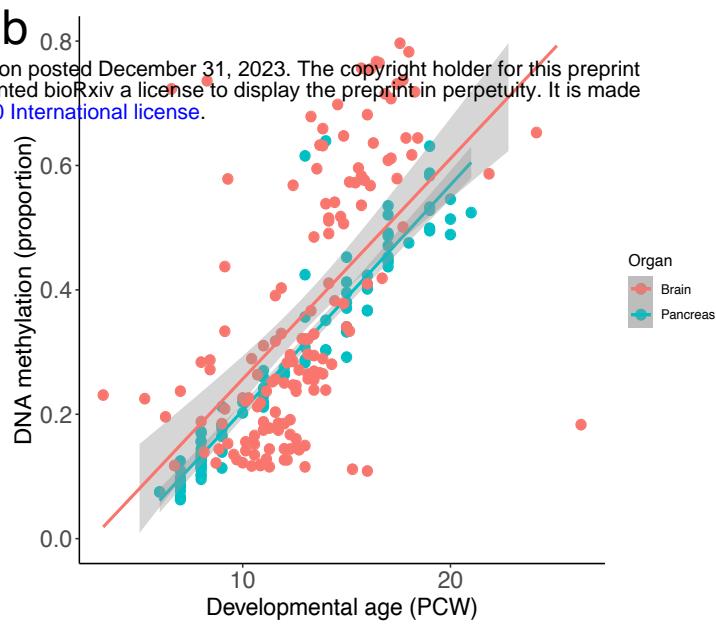
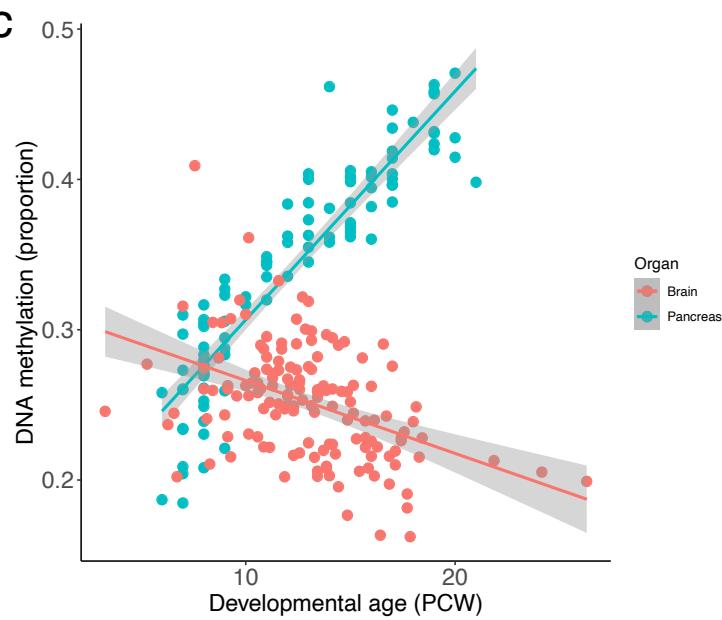
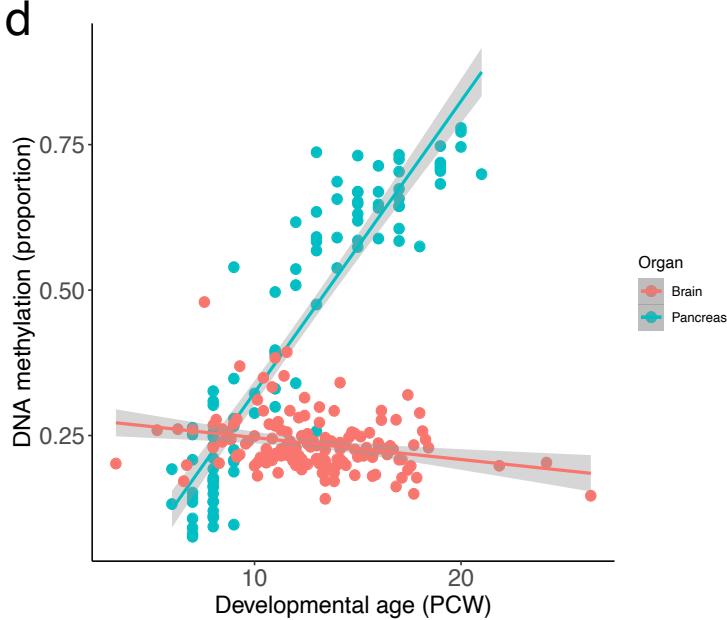
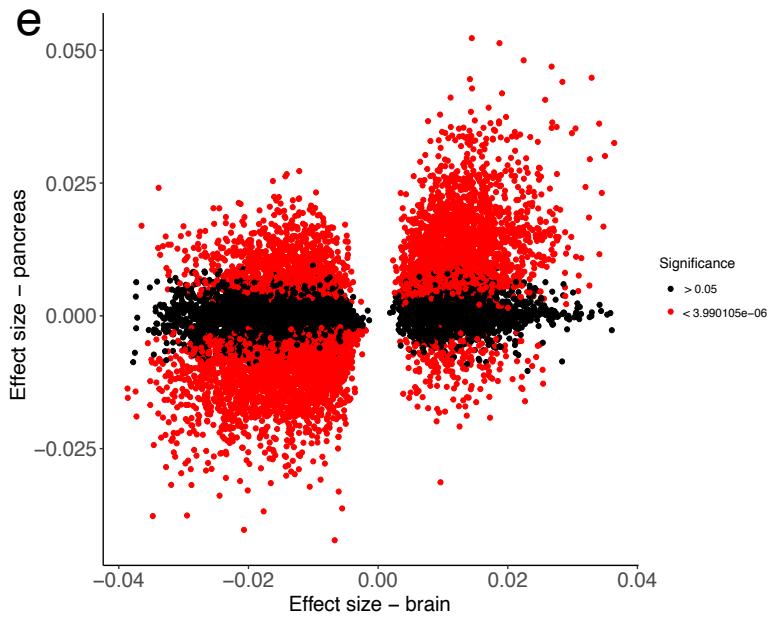
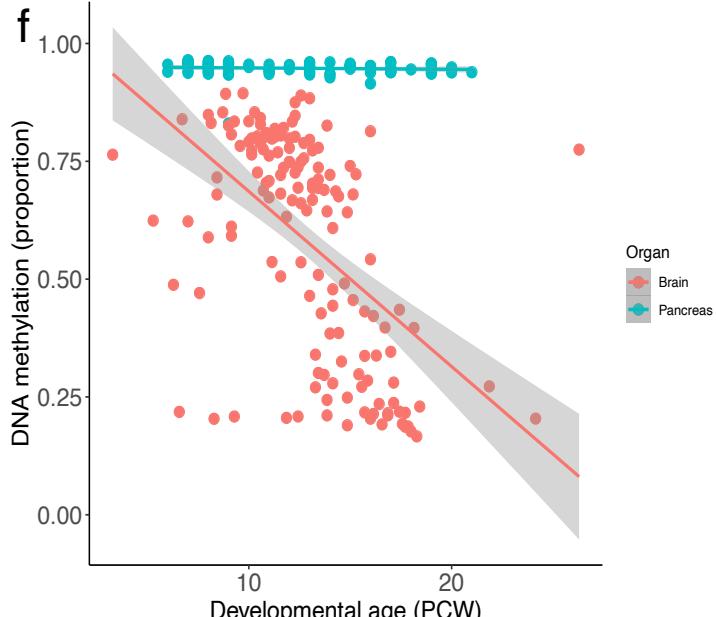
48 59. McCartney DL, Walker RM, Morris SW, McIntosh AM, Porteous DJ, Evans KL.
49 Identification of polymorphic and off-target probe binding sites on the Illumina Infinium
50 MethylationEPIC BeadChip. *Genom Data.* 2016;9:22-4.

51






a


bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.19.563104>; this version posted December 31, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.







b**c****d****e****f**

a

bioRxiv preprint doi: <https://doi.org/10.1101/2023.10.19.563104>; this version posted December 31, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

b**c****d****e**

a**b****c****d****e****f**