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ABSTRACT 24 

Environmental air irritants including nanosized carbon black (nCB) can drive systemic 25 

inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema 26 

development. The let-7 family of miRNAs is associated with IL-17-driven T cell inflammation, a 27 

canonical signature of lung inflammation. Recent evidence suggests the let-7 family is 28 
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downregulated in patients with COPD, however, how they cause emphysema remains unclear. 29 

Here we show that overall expression of the let-7 miRNA clusters, let-7b/let-7c2 and let-7a1/let-30 

7f1/let-7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice 31 

with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the let-7b/let-32 

7c2-cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. 33 

Furthermore, ablation of the let-7b/let-7c2-cluster enhanced CD8+IL17a+ T cells (Tc17) formation 34 

in emphysema development in mice.  Additionally, transgenic mice overexpressing let-7 in T cells 35 

were resistant to Tc17 and CD4+ T cells (Th17) development when exposed to nCB. 36 

Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related 37 

orphan receptor gamma t (RORγt), as a direct target of let-7 miRNA in T cells. Overall, our findings 38 

shed light on the let-7/RORγt axis as a braking and driving regulatory circuit in the generation of 39 

Tc17 cells and suggests a novel therapeutic approach for tempering the augmented IL-17-40 

mediated response in emphysema.  41 

 42 

INTRODUCTION 43 

Chronic obstructive pulmonary disease (COPD) ranks as the third leading cause of 44 

mortality and is projected to account for over a billion deaths by the end of the twenty-first century 45 

(GBD Chronic Respiratory Disease Collaborators, 2020; Findings from the Global Burden of 46 

Disease Study 2017, 2019; Laniado-Laborín, 2009). Currently, there are no treatment options to 47 

reverse emphysema, the most clinically significant variant of COPD, which often is progressive 48 

despite smoking cessation (Bhavani et al., 2015; Anthonisen et al., 2002).  49 

Inhalation of fine particulate matter smaller than 2.5 microns (PM2.5) found in outdoor and 50 

indoor air pollution as well as tobacco smoke are risk factors for COPD development (Adeloye et 51 

al., 2022; Eisner et al., 2010; Hu et al., 2010).  We have previously shown that nano-sized carbon 52 
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black (nCB), a noxious chemical constituent of PM2.5 found in the lungs of smokers, activates 53 

macrophages and dendritic cells orchestrating a pathogenic T cell-dependent inflammatory 54 

response and emphysema in mice (Lu et al., 2015; You et al., 2015; Shan et al., 2009; C.-Y. 55 

Chang et al., 2022). 56 

Research over the last decade has pointed to the importance of dysfunctional 57 

inflammatory T cells in human COPD lung tissue and animal models of emphysema (Grumelli et 58 

al., 2004; Xu et al., 2012; Williams et al., 2021). Aberrant T cells are implicated in impaired host 59 

defense, exaggerated inflammation, and loss of self-tolerance in COPD (Williams et al., 2021; 60 

Chen et al., 2023; Hogg et al., 2004; Maeno et al., 2007; Xu et al., 2012). In this regard, we and 61 

others have demonstrated the role and pathogenicity of activated IFN-γ and IL-17-secreting 62 

subsets of CD4+ and CD8+ T lymphocytes including Th1, Th17, and Tc1 cells in clinical isolates 63 

and in mice with COPD (Lu et al., 2015; You et al., 2015; Shan et al., 2009; S.-H. Lee et al., 2007; 64 

Kheradmand et al., 2023). The IL-17-secreting Th17 cells are particularly important as they 65 

promote the destruction of lung epithelium and recruitment of macrophages and neutrophils which 66 

then release proteolytic enzymes such as matrix metalloproteinases (MMPs) involved in the 67 

degradation of the lung structural matrix (Barnes, 2016; Hoenderdos & Condliffe, 2013). We 68 

previously demonstrated that intranasal inhalation of nCB in mice is sufficient to induce 69 

emphysema by stimulating T cell activation by dendritic cells and macrophages in mice. Moreover, 70 

we found that genetic ablation of IL-17a can attenuate nCB- or cigarette smoke-induced alveolar 71 

destruction and airway inflammation (Shan et al., 2012; You et al., 2015). More recently, IL-17A 72 

and IL-17F secreting CD8+ T cell (Tc17) subpopulation has been shown to play a critical role in 73 

the pathogenesis of several autoimmune and inflammatory disorders (Globig et al., 2022; Huber 74 

et al., 2013; Srenathan et al., 2016).  75 

Both Th17 and Tc17, require the fate-deterministic transcription factor RAR-related orphan 76 

receptor gamma t (RORγt, encoded by Rorc) for differentiation and production of IL-17a (Ivanov 77 
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et al., 2007). RORγt is the best-studied positive transcriptional regulator of IL-17a and IL-17f 78 

(Ivanov et al., 2006). In accordance with the importance of IL-17a transcription, RORγt expression 79 

has also been reported to be elevated in COPD patients and in mouse models of COPD (Chu et 80 

al., 2011; Li et al., 2015). However, the upstream pathophysiologic mechanisms that contribute to 81 

the induction of RORγt and differentiation of Tc17 cells in COPD have not been well elucidated.   82 

We previously reported that miR-22 inhibits HDAC4, promoting antigen-presenting cell 83 

activation (APC) in the lungs and inducing Th17-mediated emphysema in response to CS or nCB 84 

in mice (Lu et al., 2015). Additional miRNAs that control APC and/or T cell driven IL-17a+ 85 

inflammation have been identified by others including the let-7 miRNA family (Mai et al., 2012; 86 

Angelou et al., 2020).  MicroRNA expression-based studies have shown frequent downregulation 87 

of members of the let-7 miRNA family, including let-7a, let-7b, let-7c, let-7d, let-7e, and let-7f in 88 

human emphysematous lung tissue and in murine models of emphysema, but the mechanism(s) 89 

of action remain ill-defined (Christenson et al., 2013; Pottelberge et al., 2011; Conickx et al., 2017; 90 

Izzotti et al., 2009). Let-7 microRNA genes are encoded across eight loci either as single genes 91 

or as polycistronic clusters which have confounded their analysis in vivo (Rodriguez et al., 2004). 92 

Previous studies used Lin28b transgenic overexpression in T cells to block the maturation and 93 

processing of the let-7 miRNA family. They showed an inhibitory role of let-7 family in Th17-driven 94 

response in murine model of experimental autoimmune encephalomyelitis (EAE) (Angelou et al., 95 

2020).  96 

Here we found that let-7 miRNA, notably the let-7a3/let-7b and let-7a1/let-7f1/let-7d 97 

clusters, are suppressed in the T cells isolated from lungs of emphysema patients. Consistently, 98 

the analogous murine let-7b/let-7c2- (let-7bc2) and let-7a1/f1/d1- (let-7afd) clusters were similarly 99 

downregulated in pre-clinical emphysema models. We engineered mouse models with the 100 

specific loss-of-function (LOF) mutations of the let-7bc2 or let-7afd clusters (let-7bc2LOFand let-101 

7afdLOF, respectively) in T cells as well as an inducible let-7g gain-of-function (GOF) (let-7GOF) 102 
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model to determine the T cell-intrinsic role of let-7 miRNA in emphysema pathogenesis. Deletion 103 

of let-7 miRNA in T cells worsened alveolar damage elicited by inhalation of CS or nCB, and 104 

increased infiltration of immune cells in the airways, including IL-17-producing CD8+ T (Tc17) cells. 105 

Mechanistically, we found that let-7 controls type 17 differentiation by directly targeting the 106 

lineage-determining transcription factor, RORγt. In support of this conclusion, let-7GOF mice were 107 

resistant to nCB-mediated induction of RORγt and Tc17 responses. Thus, we show a previously 108 

unappreciated role for let-7 miRNA as a repressor of RORγt and a molecular brake to the IL-17a-109 

mediated T cell inflammation in emphysema.   110 

 111 

RESULTS 112 

The let-7bc2- and let-7afd-clusters are downregulated in lungs and T cells in COPD. 113 

To explore the involvement of let-7 in emphysema, we scrutinized the genomic locations and 114 

transcriptional annotation of let-7 members frequently downregulated in lung T cells isolated from 115 

smoker’s lungs as well as mouse models of emphysema. This combined approach showed close 116 

linkage and high conservation of two Let-7 clusters encoded from long intergenic non-coding RNA 117 

(linc)-like precursors in humans and mice (Figure 1A). To shed light on whether these Let-7 118 

clusters are downregulated in patients with COPD, we analyzed a published (GSE57148) lung 119 

RNA-seq dataset obtained from COPD (N=98 and control (N=91) subjects (Kim et al., 2015). Our 120 

analysis identified significant downregulation of the Mirlet7ahg and Mirlet7bhg gene cluster 121 

transcripts in COPD compared to control subjects (Figure 1B). We carried out quantitative PCR 122 

(qPCR) detection of Let-7a, which is encoded by both clusters, in lung tissue samples of smokers 123 

with emphysema and non-emphysema controls, detecting significant downregulation of Let-7a in 124 

emphysema samples relative to controls (Figure 1C). Because Let-7 has been shown to 125 

participate in IL-17+ T cell responses (Angelou et al., 2020; Guan et al., 2013; Newcomb et al., 126 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2023. ; https://doi.org/10.1101/2023.10.12.562059doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.12.562059
http://creativecommons.org/licenses/by/4.0/


2015), we next sought to determine if the expression pattern of Mirlet7ahg and Mirlet7bhg-derived 127 

Let-7 members are impaired in purified CD4+ T cells from emphysematous lungs. In support of 128 

our original hypothesis, the CD4+ T cell expression of Let-7a, Let-7b, Let-7d, and Let-7f were all 129 

inversely correlated with more severe emphysema distribution in the lungs as determined by CT 130 

scan (Figure 1D).  131 

Next, we elucidated let-7a1/let-7f1/let-7d- and let-7b/let-7c2-clusters expression (herein 132 

referred to as let-7afd and let-7bc2 respectively) in murine models of CS- or nCB-induced 133 

emphysema respectively (Figure 1E). Paralleling our observations in human COPD and 134 

emphysema, mice with CS- or nCB-induced emphysema exhibited reduced expression levels of 135 

pri-let7afd and pri-let7bc2 transcripts in the lung and from isolated lung CD4+ and CD8+ T cells 136 

(Figure 1F,G,H). Collectively, our expression results indicate suppression of let-7afd and let-7bc2-137 

clusters in the lung and T cells in human and pre-clinical models of emphysema.  138 

 139 

Conditional deletion of the let7bc2-cluster in T cells enhances nCB- or CS-induced 140 

emphysema.   141 

To investigate the in vivo requirement of the let-7bc2-cluster within T cells, we generated 142 

conditional ready floxed mice (let-7bc2flox/flox). We then crossed let7-bc2flox/flox mice with CD4-Cre 143 

mice to generate let-7bc2flox/flox; CD4-Cre LOF mice (denoted as let-7bc2LOF mice hereafter) 144 

(Figure 2A). This approach allowed us to conditionally delete the let-7bc2 cluster in all T cells 145 

derived from the CD4+CD8+ double-positive (DP) stage (P. Lee et al., 2001; Shi & Petrie, 2012). 146 

We confirmed that let-7bc2LOF mice exhibit robust conditional deletion of the let-7bc2 cluster in 147 

DP thymocytes and peripheral CD8+ T and CD4+ T cells (Figure 2B and data not shown). Our let-148 

7bc2LOF adult mice were born at the expected Mendelian frequency and did not show any overt 149 

histopathologic or inflammatory changes in lungs histopathology up to 1 year of age in comparison 150 
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to let-7bc2f/f control mice (Figure 1-figure supplement 1A,B,C,D and data not shown). 151 

Furthermore, quantification of major immune populations and T cell subsets by flow cytometry in 152 

let-7bc2LOF were comparable to control mice under baseline conditions and with moderate aging 153 

(Figure 1-figure supplement 1A,B,C,D).  154 

We next exposed let-7bc2LOF and let-7bc2f/f control mice to nCB or CS and examined the 155 

lungs under the context of experimental emphysema. Histomorphometry measurements of mean 156 

linear intercept (MLI) from hematoxylin and eosin (H&E)-stained sections revealed that the 157 

enlargement of alveolar spaces sustained from either nCB- or CS-exposure was exaggerated in 158 

let-7bc2LOF mice relative to controls (Figure 2C-E). Chronic inflammation in emphysema is 159 

characterized by the recruitment of macrophages and neutrophils to the lung tissue and airways 160 

(Peleman et al., 1999; Senior & Anthonisen, 1998).  Internally consistent with MLI measurements, 161 

let-7bc2LOF mice treated with nCB showed significantly increased airway infiltration of 162 

macrophages and neutrophils in BAL fluid as compared to wild-type control animals (Figure 2F). 163 

Concomitant with these findings, expression levels of Mmp9 and Mmp12, which are secreted by 164 

macrophages and neutrophils to degrade elastin and mediate alveolar damage, were elevated in 165 

airways of let-7bc2LOF mice exposed to CS versus controls (Figure 2G). Collectively, our data 166 

suggests that the let-7bc2-cluster within T cells protects by dampening airway destruction and 167 

inflammation because the absence of this cluster worsens the severity of experimental 168 

emphysema in mice.  169 

 170 

The let-7bc2 miRNA cluster negatively regulates TC17 inflammation in emphysema.  171 

We sought to identify the T cell-intrinsic mechanisms that underlie the exaggerated 172 

inflammation observed in emphysematous let7bc2LOF mice. We focused on the IL-17-mediated T 173 

cell response because it promotes neutrophil and macrophage recruitment in the lungs (Beringer 174 
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et al., 2016; Veldhoen, 2017; Shan et al., 2012). Previously, we established the induction of 175 

CD4+IL17+ (Th17) cells along with CD4+IFNg+ (Th1) cells in mice with chronic nCB exposure (You 176 

et al., 2015), however whether nCB similarly induces CD8+IL17a+ T cells (Tc17) or cytotoxic T 177 

cells (Tc1) had not been studied. The flow cytometric profiling of lung T cells revealed enriched 178 

proportions and counts of Tc1 and Tc17 cells in mice with nCB-emphysema and we confirmed the 179 

induction of Th17 and Th1 cells (Figure 3A-B control PBS and control nCB). These findings 180 

suggests that nCB elicits both the type 17 and type 1 T cell responses, consistent with CS and 181 

elastase pre-clinical models of emphysema (Zhang et al., 2019).  182 

We next interrogated the regulatory role of the let-7bc2-cluster in the type 17 and type 1 183 

responses generated from exposure to nCB. Interestingly, let-7bc2LOF mice showed increased 184 

CD8+IL17a+ Tc17 cells relative to nCB control animals. In contrast, CD8+IFN+ and GZMA+ Tc1 185 

populations remained unperturbed with absence of the let-7bc2 cluster, suggestive of a more 186 

refined regulatory role on Tc17 differentiation (Figure 3A-B). There were no significant differences 187 

in either Th1 or Th17 cells when comparing nCB-treated let-7bc2LOF to wild-type controls, 188 

indicating the let-7bc2 cluster was dispensable for their generation (Figure 3C). Regulatory T cells 189 

form a dynamic axis with Tc17/Th17 cells and act as a counterbalance to lung inflammation in 190 

emphysema (Duan et al., 2016; Jin et al., 2014). Therefore, we examined whether Tc17 cell 191 

alterations were driven by the let-7bc2 cluster acting on regulatory T cells (Tregs). The let-7bc2LOF 192 

mice showed no significant difference in Tregs subset relative to controls in our model (Figure 193 

3D). Together, our data support the notion that deletion of the let-7bc2-cluster is insufficient to 194 

provoke Tc17 cell generation under homeostatic conditions. However, under the context of chronic 195 

inflammation in emphysema, the loss of let-7bc2-cluster is intrinsic for the potentiation of T cells 196 

towards Tc17 differentiation. 197 

The let-7 family directly inhibits RORγt expression governing Tc17 differentiation in 198 

emphysema.  199 
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We utilized the TargetScan predictive algorithm to identify putative let-7 microRNA targets 200 

that are known to control the IL-17-mediated T cell response (Agarwal et al., 2015). This analysis 201 

revealed that the 3’UTR region of Rorc, encoding RORγt, contains an evolutionarily conserved 202 

and complementary motif for the let-7 miRNA family (Figure 4A). Thus, we examined if let7bc2-203 

cluster loss in T cells would stimulate and enhance RORγt. Initially, we carried out flow cytometric 204 

quantification for RORγt in thymocyte, splenic, and lung T cells of naïve control and let7bc2LOF 205 

mice up to 6-months of age. Our interrogation of RORγt mean fluorescent intensity (MFI) by flow 206 

cytometry showed induction of RORγt in single-positive CD8+ and CD4+ thymocytes, as well as 207 

peripheral splenic CD8+ and CD4+ T cells (Figure 4B). However, RORγt levels appeared 208 

unchanged in purified lung CD8+ T cells and CD4+ T cells of naive let-7bc2LOF mice, alluding to a 209 

compensatory effect in homeostatic lung T cells (Figure 4B). Since we and others have shown 210 

that miRNAs are frequently associated with stress-dependent phenotypes, we posited that 211 

emphysematous let-7bc2LOF T cells are poised towards induction of RORγt and production of 212 

IL17+ subsets after challenge with nCB. Indeed, nCB-emphysematous let-7bcLOF mice exhibited 213 

enhanced RORγt protein levels in both CD8+ and CD4+ T cells relative to control mice with 214 

emphysema (Figure 4C). 215 

Because we had found that the let-7afd-cluster is downregulated in T cells isolated from 216 

COPD lungs in human and mice, and that the let-7 family operates with some functional 217 

redundancy, we generated mice with conditional deletion of the let7afd-cluster in T cells (let-7afdf/f; 218 

CD4-Cre). The let-7afdf/f; CD4-Cre (let7afdLOF) mice aged up to 6-months did not exhibit lung 219 

histopathology nor inflammatory changes (data not shown). Of particular interest, ablation of the 220 

let-7afd-cluster enhanced levels of RORγt in thymic and peripheral T cells of mice (Figure 4D). 221 

Overall, this indicates that independent let-7 clusters restrain RORγt expression levels from 222 

thymic development to peripheral T cells under homeostatic conditions. Next, we determined 223 

whether loss of let-7afd-cluster in T cells likewise sensitizes mice towards induction of RORγt in 224 
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nCB-emphysema. Intranasal administration of nCB provoked increased RORγt expression in lung 225 

T cells of let-7afdLOF mice as compared to let-7afdf/f control mice (Figure 4E), supporting 226 

overlapping functionality between the let-7bc2 and let-7afd-clusters in repression of RORγt within 227 

T cells.    228 

To confirm that the let-7 family negatively regulates Tc17 cell differentiation, at least in part, 229 

cell autonomously in CD8+ T cells, we purified naïve CD8+ T cells from let-7bc2LOF and control 230 

mice spleens and cultured these cells in vitro in the presence of Tc17 polarizing (TGFβ, IL-6, anti-231 

IFNγ, IL-23, and IL-1β) or Tc1 polarizing (IL-2) conditions (Flores-Santibáñez et al., 2018). Our 232 

flow cytometric analysis confirmed the enhanced commitment of let-7-cluster deficient CD8+ T 233 

cells towards Tc17 cells and IL-17a+ production relative to control CD8+ T cells (Figure 5A-B).  234 

Moreover, enhanced Tc17 cell differentiation mirrored the increased IL-17a detected in the 235 

supernatant from in vitro polarized cells as quantified by ELISA (Figure 5C). Parallel assessment 236 

of Tc1 differentiation did not detect a difference in CD8+IFNγ+ cells (Figure 5A and Figure 5D). 237 

Altogether, these data recapitulated our in vivo findings that the let-7bc2 cluster negatively 238 

regulates Tc17 response but is dispensable in Tc1 cells. Finally, to determine whether Tc17 239 

differentiation is likewise controlled by the let-7afd cluster, we cultured naive CD8+ splenocytes 240 

from let-7afdLOF and controls under Tc17 conditions. As we had observed with let-7bc2LOF, 241 

absence of the let-7afd cluster in T cells further enhanced differentiation towards Tc17 cells as 242 

quantified by flow cytometry and ELISA (Figure 5E-F). 243 

Next, we focused on Rorc as a potential direct target of let-7, which could mechanistically 244 

mediate enhanced Tc17 differentiation in let7bc2LOF mice. Towards this objective, tested whether 245 

let-7bc2LOF naïve CD8+ T cells show elevated RORγt expression under either Tc0 or Tc17 246 

differentiation conditions. In agreement with enhanced Tc17 differentiation, RORγt expression 247 

was differentially and significantly upregulated under both Tc0 and Tc17 differentiation conditions 248 

in let-7bc2LOF cells relative to controls (Figure 5G).  To determine whether let-7 directly represses 249 
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Rorc mRNA levels we cloned the 3’UTR of Rorc into luciferase constructs. These reporter assays 250 

with let-7b expressing cells independently confirmed that let-7b represses Rorc (Figure 5H, left). 251 

Furthermore, deletion of the putative let-7 binding sequence (Figure 4A) abrogated repression 252 

by let-7b (Figure 5H, right), thus confirming Rorc as a functional target of let-7 miRNA. Overall, 253 

these in vitro experiments readily recapitulated an upstream regulatory role for let-7 in Tc17 254 

differentiation, mediated in part, via direct suppression of RORγt.  255 

 256 

Enforced expression of let-7 tempers RORγt T cell expression levels in experimental 257 

emphysema. 258 

To explore a potential protective role of let-7 miRNA in experimentally induced 259 

emphysema, we generated mice which allowed for selective induction of let-7 activity in T cells 260 

using the published rtTA-iLet7 mice (Zhu et al., 2011; Belteki et al., 2005). We bred the rtTA-iLet7 261 

mice to CD4-Cre (here in referred to as let-7GOF) to allow Cre-loxP/doxycycline dependent let-7g 262 

overexpression in thymic DP-derived T cells (Figure 6A). Steady-state let-7GOF and control (rtTA-263 

iLet7) mice were examined for compromised RORγt protein levels within thymocytes and 264 

peripheral T cells.  Providing further evidence of let-7-dependent regulation of Rorc, protein levels 265 

of RORγt were suppressed in CD8+ and CD4+ T cells of let-7GOF mice relative to controls (Figure 266 

6B). To determine whether enforced expression of let-7 offered protection from experimental 267 

emphysema, let-7GOF and control mice were treated with nCB and then examined for changes in 268 

lung pathology and T cell type 17 responses. The let-7GOF mice did not exhibit any signs of lung 269 

inflammation or pathologic remodeling at baseline (Figure 6C-D and data not shown) 270 

Histopathologic analysis revealed a comparable degree of lung alveolar distension via 271 

morphometric measurements of MLI in nCB-treated let-7GOF mice versus controls suggesting that 272 

enforced let-7 expression is insufficient to protect the lung from emphysema (Figure 6C-D). On 273 

the other hand, evaluation of IL17+ response and RORγt levels in emphysematous lung T cells 274 
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demonstrated that, in contrast to control nCB-treated mice, let-7GOF mice exhibited dampened 275 

lung Tc17 and Th17 cell populations and were resistant to the induction of RORγt after nCB-276 

exposure (Figure 6F-6E). Taken together, our let-7 LOF and GOF models demonstrate the 277 

necessity and sufficiency of let-7 miRNA to act as a molecular brake to the type 17 T cell response 278 

through the direct regulation of RORγt, further our data suggests that nCB- or CS-mediated 279 

suppression of this braking mechanism furthers inflammation and exacerbates emphysema 280 

severity (Figure 6G). 281 

 282 

DISCUSSION 283 

MiRNA expression-based studies of COPD patients and mice exposed to CS have 284 

reported downregulation of let-7 miRNA expression in lung tissues (Conickx et al., 2017; 285 

Christenson et al., 2013b; Schembri et al., 2009). We and others explored the consequence of 286 

loss of let-7 expression/activity with synthetic oligonucleotides, sponges, lentiviral antisense 287 

knockdown, or via ectopic delivery of Lin28b (Polikepahad et al., 2010; Viswanathan et al., 2008; 288 

Piskounova et al., 2011), but studies pinpointing the role of individual let-7 clusters as potential 289 

drivers of lung inflammation and COPD within T cells remained elusive. In the present study, we 290 

established that the let-7 miRNA family members encoded by the let-7bc2- and let-7afd-clusters 291 

are downregulated in T cells from lungs of emphysema patients and emphysematous mice that 292 

were exposed to CS or nCB. Correspondingly, we demonstrated that in vivo genetic ablation of 293 

let-7bc2-cluster further sensitized mice to lung tissue destruction and emphysema upon treatment 294 

with nCB or CS. Mechanistically, our studies suggests that let-7 miRNA prevents the emergence 295 

of CD8+ T cell differentiation into Tc17 cells during emphysema in part, by directly silencing of 296 

Rorc.  297 
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 Tc17 cells are vital for defense against viral, fungal, and bacterial infections and they have 298 

also been associated with inflammation in various human diseases such as multiple sclerosis, 299 

inflammatory bowel disease, and cancer (Huber et al., 2013; Globig et al., 2022; Corgnac et al., 300 

2020). In accordance with the potential pathogenic role of Tc17 cells as drivers of COPD, several 301 

studies detected increased cell numbers in airways and tissues of COPD patients as well as lungs 302 

of smoke-exposed animal models (Chang et al., 2011; Zhou et al., 2020; Duan et al., 2013). Other 303 

researchers also detected increased Tc17 subpopulations in tissues of COPD patients with 304 

infectious microbial exacerbations. In our earlier work to define the adaptive T cell immune 305 

responses in nCB induced COPD, we predominantly focused on the pathogenic role of Th17 cells, 306 

but did not examine Tc17 cells (You et al., 2015).  Here we expand upon our prior observations, 307 

revealing that chronic exposure to nCB and elicitation of emphysema mice orchestrates the 308 

emergence and accumulation of Tc17 cells which may act in parallel with Th17 cells to promote 309 

tissue damage. 310 

Although RORγt has been the subject of intense scrutiny and is subject to extensive 311 

transcriptional and post-transcriptional regulatory control, to our knowledge this is the first 312 

reported demonstration of miRNA-mediated gene silencing to RORγt. Our data also showed that 313 

in vivo conditional genetic ablation of individual let-7 clusters in T cells stimulates a rise in RORγt 314 

protein expression in single-positive thymocytes and peripheral CD8+ and CD4+ T cells while 315 

enforced let-7 activity leads to partial repression of RORγt in T cells. Despite these alterations in 316 

RORγt expression in our let-7 T cell LOF and GOF mice, the mice did not exhibit spontaneous 317 

gross phenotypes in thymus, spleens, or lungs at baseline. This may be due to the subtle and 318 

modest expression thresholding of RORγt detected in mice and/or residual let-7 expression in T 319 

cells. On the other hand, and in agreement with our Tc17 and experimental emphysema data, we 320 

observed enhanced RORγt expression and IL-17a+CD8+ T cells in lungs of let-7 LOF mice after 321 

treatment with nCB. We corroborated the importance of let-7 activity in Tc17 differentiation of ex 322 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2023. ; https://doi.org/10.1101/2023.10.12.562059doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.12.562059
http://creativecommons.org/licenses/by/4.0/


vivo cultured CD8+ T cells, as well as in the direct posttranscriptional control of RORγt, suggesting 323 

that this defect, is in part, direct and cell autonomous. Interestingly, even though RORγt was 324 

elevated in lung CD4+ T cells to a similar extent as CD8+ T cells, the enhanced IL17+ responses 325 

were limited to Tc17 subpopulation in the let-7bc2LOF mice. Although, the let-7afdLOF mice also 326 

showed baseline induction of RORγt relative to controls in lung T cells the mice did not exhibit 327 

changes in Tc17/Th17 subpopulations (data not shown). Nonetheless, it seems likely that under 328 

different cellular contexts, the functions of let-7-clusters do not fully overlap in association with 329 

differential thresholding of mRNA targets. Indeed, in B cells, the let-7afd-cluster is essential for an 330 

antigen-specific antibody response, whereas the let-7bc2-cluster appears dispensable (Jiang et 331 

al., 2018), iterating that differential physiological role of let-7 clusters in the immune system and 332 

validating an individual cluster approach in dissemination of mechanisms of let-7 in T cells. RORγt 333 

is a defining transcription factor of the IL-17-secreting subset of immune cells, which also includes 334 

γδ17 T cells, NKT17 and type 3 innate lymphoid cells, populations that contribute to COPD 335 

pathology (Yanagisawa et al., 2017). A limitation of our study is that we did not examine whether 336 

these populations were impacted by nCB-emphysema and/or in the context of let-7 LOF. 337 

Published studies revealed a protective role of let-7 family against Th17-driven pathogenic 338 

response in EAE attributed in part to direct regulation of IL-1 receptor 1 and IL-23 receptor 339 

(Angelou et al., 2020). Lending some support to these observations, we detected subtle transcript 340 

level induction of Il23r in let-7bc2LOF in vitro polarized Tc17 cells (data not shown). However, prior 341 

publications on the role of let-7 in T cells made use of in vivo Lin28b transgenic overexpression 342 

in immune cells to block maturation and activity of the entire let-7 miRNA family. Furthermore, 343 

Lin28b was recently reported to influence transcriptome-wide ribosome occupancy and global 344 

miRNA biogenesis (Tan et al., 2019) which could account for differences in scope of let-7 targets 345 

in those studies and ours. Nonetheless, further studies will be required to ascertain whether other 346 
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targets of let-7 beyond RORγt synergistically potentiate the in vivo Tc17-response and 347 

emphysema phenotype in let7-bc2LOF T cells.  348 

Tc17 cells play a major role in microbial infections, providing a potent anti-viral response 349 

(Hamada et al., 2009; Yeh et al., 2010), while viral infection has been an established factor in 350 

COPD exacerbations (Hewitt et al., 2016; Wedzicha, 2004). It will be interesting to determine 351 

whether loss of let-7bc2 or let-7afd-cluster activity in the T cell compartment contributes to COPD 352 

disease susceptibility in the context of viral exposure.  Our experiments with let-7 GOF were 353 

partially successful in limiting the emergence of Tc17 and Th17 in nCB-elicited emphysema but it 354 

did not protect the lung from alveolar remodeling.  Additional, studies will be required to ascertain 355 

whether interventions that enhance let-7 activity are successful in acute models of CS exposure 356 

and COPD or in other chronic inflammation diseases associated with dysregulation of RORγt and 357 

IL17+ injury. 358 

 359 

MATERIALS AND METHODS 360 

Mice 361 

Conditional knockout-ready floxed let-7bc2 and let-7afd mice were generated using CRISPR gene 362 

editing in an isogenic C57BL/6 genetic background and were sequence verified for rigor. Mice 363 

were PCR genotyped from ear samples with primers flanking loxP sites (Supplementary Table).  364 

The let-7bc2flox/flox; CD4-cre and let-7afdflox/flox; CD4-cre mice were PCR genotyped. The R26-365 

STOP-rtTA; Col1a1-tet0-let-7 (rtTA-iLet7) mice were obtained from JAX Jax Stocks 023912 and 366 

05670 and then bred to CD4-Cre were PCR genotyped with established JAX primers. Control 367 

rtTA-iLet7 and the let-7GOF mice were fed ad libitum with 200mg/kg of doxycycline-containing chow 368 

(Bio-Serv S3888) at weaning age. Syngeneic littermates served as controls for all mouse 369 

experiments. All mice were bred in the transgenic animal facility at Baylor College of Medicine. All 370 

experimental protocols used in this study were approved by the Institutional Animal Care and Use 371 
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Committee of Baylor College of Medicine animal protocol (AN-7389) and followed the National 372 

Research Council Guide for the Care and Use of Laboratory Animals.  373 

 374 

Human emphysema tissue samples and T cell isolation 375 

Lung tissues were obtained from a total of 28 non-atopic current or former smokers with significant 376 

(>20 pack-years, one pack-year equals to smoking one pack of cigarettes per day each year) 377 

history of smoking who were recruited into studies from the chest or surgical clinics at Michael E. 378 

DeBakey Houston Veterans Affairs Medical Center hospitals (Shan et al., 2009). Human lung 379 

single T cells were prepared from surgical resection and lungs in patients as previously described 380 

by selection with biotin-labeled antibodies by autoMACs (Miltenyi Biotec) (Yuan et al., 2020; 381 

Grumelli et al., 2004). Studies were approved by the Institutional Review Board at Baylor College 382 

of Medicine and informed consent was obtained from all patients. Emphysema and non-383 

emphysema control patients were diagnosed from CT scans according to the criteria 384 

recommended by the National Institutes of Health–World Health Organization workshop summary 385 

(Pauwels et al., 2001).  386 

 387 

Human lung transcriptome data  388 

A publicly available RNA-seq dataset from a Korean cohort GSE57148 was selected for the 389 

analysis (Kim et al., 2015). The raw FASTQ files of paired end reads representing the 390 

transcriptome of control and cases were retrieved from the GEO database at the National Centre 391 

for Biological Information (NCBI) through accession number GSE57148 and analyzed with R 392 

package for differential expression. 393 

 394 

Cigarette smoke exposure model of pulmonary emphysema 395 

To promote emphysema, mice were exposed to cigarette smoke using our custom designed 396 

whole-body inhalation system (Morales-Mantilla et al., 2020). In total, mice were exposed to four 397 
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cigarettes (Marlboro 100’s; Philip Morris USA) per day, five days a week, for four months as 398 

previously described (Morales-Mantilla et al., 2020, Shan et al., 2012).  399 

 400 

nCB exposure model of pulmonary emphysema 401 

Nano-sized particulate carbon black was prepared and administered as previously described (You 402 

et al., 2015; Lu et al., 2015). Dried nCB nanoparticles were resuspended in sterile PBS to a 403 

concentration of 10 mg/ml. Fifty µl of reconstituted nCB (0.5 mg) were intranasally delivered to 404 

deeply anesthetized mice on a schedule of three times a week for four weeks (total delivered 405 

dose of 6 mg). Lung histomorphometry and airway inflammation were assessed four weeks after 406 

the final nCB challenge. For histomorphometric analysis, mice lungs were fixed with 10% neutral-407 

buffered formalin solution via a tracheal cannula at 25-cm H2O pressure followed by paraffin 408 

embedding and tissue sectioning and stained with hematoxylin and eosin. Mean linear intercept 409 

(MLI) measurement of mouse lung morphometry were done as previously described (Shan et al., 410 

2014; Morales-Mantilla et al., 2020). Briefly, this was done in a blinded fashion to mice genotypes 411 

from ten randomly selected fields of lung parenchyma sections. Paralleled lines were placed on 412 

serial lung sections and MLI was calculated by multiplying the length and the number of lines per 413 

field, divided by the number of intercepts (Morales-Mantilla et al., 2020). 414 

BALF was collected by instilling and withdrawing 0.8 ml of sterile PBS twice through the 415 

trachea. Total and differential cell counts in the BALF were determined with the standard 416 

hemocytometer and HEMA3 staining (Biochemical Sciences Inc, Swedesboro, NJ) using 200 μL 417 

of BALF for cytospin slide preparation (Morales-Mantilla et al., 2020; Lu et al., 2015).  418 

 419 

Cell isolation from murine lung tissue  420 

Mouse lung tissue were cut into 2-mm pieces and digested with collagenase type D (2 mg/ml; 421 

Worthington) and deoxyribonuclease (DNase) I (0.04 mg/ml; Roche) for 1 hour in a 37°C 422 

incubator. Single-cell suspensions from lung digest, spleen, and thymus were prepared by 423 
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mincing through 40-μm cell strainers then washing and resuspension in complete RPMI media. 424 

Mouse lung and spleen single-cell suspensions were additionally overlaid on Lympholyte M cell 425 

separation media (Cedarlane) as indicated in the manufacturer’s protocol to purify lymphocytes. 426 

For murine let-7 expression studies, lung single-cell suspensions were labeled with anti-CD4+ or 427 

anti-CD8+ magnetic beads and separated by autoMACS (Miltenyi Biotec), or CD4+CD8+ double 428 

positive cells purified from thymus single-cell suspensions by flow-cytometric sorting on FACS 429 

Aria (BD Biosciences). 430 

 431 

In vitro polarization of CD8+ T cells 432 

CD8+ naïve T cells were isolated from spleen using Mojosort Mouse CD8 Naïve T cell isolation 433 

Kit (Biolegend) and adjusted to a concentration of 1.0x106 cells/mL.  Purified cells were activated 434 

with plate-bound anti-CD3 (1.5µg/mL) and complete RPMI media containing anti-CD28 435 

(1.5µg/mL) and β-mercaptoethanol (50nM) for Tc0 polarization, or further supplemented with Tc1 436 

[IL-2 (10ng/mL)] or Tc17 [TGFβ (2ng/mL), IL-6 (20ng/mL), anti-IFNγ (10µg/mL), IL-23 (20ng/mL), 437 

and IL-1β (5ng/mL)] polarization conditions for 72 hours (Flores-Santibáñez et al., 2018). 438 

 439 

ELISA 440 

Supernatant was collected from in vitro polarized murine CD8+ T cells and centrifuged to remove 441 

cellular debris. Cytokine levels of IL-17a and IFNγ were quantified from collected supernatant 442 

using Mouse IL-17a Uncoated ELISA and Mouse IFN gamma Uncoated ELISA (Invitrogen) Kits, 443 

respectively, per the manufacturer’s instructions with colorimetric analysis by the Varioskan LUX 444 

microplate reader (ThermoFisher).  445 

 446 

Flow cytometric analysis 447 

Cells used for in vitro or in vivo cytokine analysis were stimulated with PMA (20ng/mL; Sigma 448 

Aldrich), Ionomycin (1µg/mL; Sigma Aldrich), and Brefeldin A (2µg/mL; Sigma Aldrich) for 4 hours 449 
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prior to flow staining (Lu et al., 2015). For intracellular staining, cells were fixed and permeabilized 450 

using the Mouse FOXP3 Buffer Set (BD) per the manufacturer’s protocol. The fluorophore-451 

conjugated antibodies used in this study were as follows: Live/Dead Fix Blue (Invitrogen), CD3 452 

PerCPCy5.5 (Biolegend), TCRb PE/Cy7 (Biolegend), CD4 PB (Biolegend), CD4 AF700 453 

(Biolegend), CD8 BV650 (Biolegend), CD25 BV421 (Biolegend), FOXP3 AF488 (Biolegend), 454 

ROR gamma T PE (Invitrogen), TCF1 AF647 (Cell Signaling Technologies), TCF1 PE (Biolegend), 455 

IFNγ AF647 (Biolegend), IL17a FITC (Biolegend), IL17a PE (ebioscience), PD1 BUV737 (BD), 456 

TIM3 AF647 (R&D). Samples were analyzed using BD LSR II flow cytometer (BD Biosciences) 457 

and FlowJo software (TreeStar), 458 

 459 

RNA Isolation and Quantitative RT-PCR 460 

RNA was isolated using miRNeasy (Qiagen) or RNeasy Mini Kit (Qiagen) in conjunction with the 461 

RNase-Free DNase (Qiagen) according to the manufacturer’s instructions. cDNA of miRNAs and 462 

mRNAs were synthesized using TaqMan Advanced miRNA cDNA Synthesis Kit (ThermoFisher) 463 

and High-Capacity cDNA Reverse Transcription Kit Real-Time PCR system (Applied Biosystems). 464 

18S and snoRNA-202 were used to normalize mRNA and miRNA expression respectively. 465 

Quantitative RT-PCR data were acquired on 7500 Real-Time PCR System or StepOne Real-Time 466 

PCR System (Applied Biosystems) with the following TaqMan probes: hsa-let-7a [000377], hsa-467 

let-7b [000378], hsa-let-7d [002283], hsa-let-7f [000382], pri-miR-let7a [Mm03306744_pri], pri-468 

miR-let7d [Mm03306666_pri], pri-miR-let7b [Mm03306756_pri], Mmp9 [Mm00442991], Mmp12 469 

[Mm00500554]. 470 

 471 

Luciferase reporter assays  472 

Genomic fragment containing the murine Rorc 3ʼUTR was cloned into psiCHECK2 luciferase 473 

reporter plasmid (Promega). This construct was also used to generate the let-7 ʻseedʼ deletion 474 

mutant derivative using the QuikChange Multi Site Mutagenesis Kit (catalog 200514-5, 475 
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Stratagene). 3T3 mouse embryonic fibroblasts (MEFs) were transfected using Oligofectamine 476 

(Invitrogen) with 100 ng of psiCheck-2 plasmid containing wild-type or mutant 3ʼUTR, along with 477 

the miRNA control or let-7b duplex (Dharmacon) at a final concentration of 6 nM (Gurha et al., 478 

2012). Reporter activity was detected with the Dual-Luciferase Reporter Assay System 479 

(Promega). 480 

 481 

Statistical analysis 482 

Statistical analyses were performed using GraphPad Prism 10.0.1 software. Statistical 483 

comparison between groups was performed using the unpaired Student’s t-test, two-way analysis 484 

of variance (ANOVA) with Tukey’s or Sidak’s correction, and Mann-Whitney Test when indicated. 485 

A P-value less than 0.05 was considered statistically significant; ns indicates not significant. 486 

Statistical significance values were set as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 487 

Data are presented as means ± SEM. P-value and sample sizes (n) are indicated in the figure 488 

legends. 489 
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Figure 1. Repression of Let-7 miRNA gene clusters in lung T cells from COPD patients and murine models of emphysema. (A) Schematic 
representation of the polycistronic transcripts for the Let-7a1/Let-7f1/Let-7d- and Let-7b/Let-7a3-clusters in humans and let-7a1/let-7f1/let-7/d- 
and let-7b/let-7c2-clusters in mice. (B) in silico analysis of Mirlet7a1hg and Mirlet7bhg from the publicly available lung transcriptome dataset from 
RNA-seq of COPD and control patients (GEO: GSE57148). (C) Quantitative RT-PCR (qPCR) of mature Hsa-Let-7a from resected lung tissue of 
COPD (n=15) and control subjects (n=11). (D) qPCR and regression analysis of Hsa-Let-7a, Hsa-Let-7b, Hsa-Let-7d, and Hsa-Let-7f expression 
to emphysema severity score based on CT: 0=no, 1=upper lobes only, 2=upper/middle lobes, 3=extensive pan lobular emphysema (n=19). (E) 
Schematic diagram of experimental emphysema in mice induced by either intranasal (i.n.) instillation of nCB or exposure to CS by whole-body 
inhalation (w.b.i.). (F-H) qPCR analysis for pri-let-7a1/f1/d and pri-let-7b/c2 from lung tissue or lung-derived CD8+ and CD4+ T cells of mice with 
emphysema elicited by (F) nCB- or (G-H) CS (n=3-6 per group). Data are representative of three independent experiments displayed as 
mean±SEM. Mann-Whitney (B,C) or Student’s t-test (F,G,H). *p < 0.05, **p < 0.01, ***p <0.001, ****p<0.0001.  
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Figure 2. Deletion of the let7bc2 cluster in T cells enhances nCB- or CS-triggered emphysema. (A) Schematic representation of CD4-Cre 
(let-7bc2LOF) or let-7bc2f/f (Control) mice. (B) qPCR analysis of pri-miRNA transcript for pri-let-7bc2 from flow-sorted live, TCRβ+, CD4+CD8+ 
double-positive (DP) thymocytes of control and let-7bc2LOF mice (n=3-5 per group). (C-G) Control and let-7bc2LOF mice were exposed to vehicle 
(PBS) or nCB for 4 weeks, or alternatively air or cigarette smoke by whole body inhalation of cigarette smoke (CS) for 16 weeks. (C) Representa-
tive H&E stained lung sections from PBS-, nCB-, or CS-exposed mice as indicated on each panel (x20 magnification; scale bars, 50µm). (D-E) 
Mean linear intercept (MLI) measurement of lung morphometry. (F) Total and differential cell counts from bronchoalveolar lavage (BAL) fluid from 
controls and nCB-emphysemic mice (n=4-7 per group). (G) Mmp9 and Mmp12 mRNA expression from BAL cells of air- and smoke-exposed 
control and let-7bc2LOF mice (n=4-6 per group). Data are representative of at least three independent experiments displayed as mean±SEM using 
Student’s t-test (B) or two-way ANOVA with post-hoc Tukey correction (D,E,F,G). *p < 0.05, **p < 0.01, ***p <0.001, ****p<0.0001.
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Figure 3. In vivo T cell ablation of the let-7bc2-cluster enhances Tc17 inflammatory response to nCB-emphysema. 
Representative flow plots with percentage and counts of live TCRβ+ (A) CD8+IL-17a+ and CD8+IFNγ+, (B) CD8+IFNγ+GzmA+, (C) CD4+IL-17a+ 
and CD4+IFNγ+, and (D) CD4+ Foxp3+CD25+ cells from the lungs of control PBS vehicle- (n=5-6), control nCB- (n=6), and let-7bc2LOF nCB-
exposed mice. Data are representa-tive of three independent experiments displayed as mean±SEM using ANOVA with post-hoc Sidak 
correction. *p < 0.05, **p < 0.01, ***p <0.001, ****p<0.0001.
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Figure 6. Enforced let-7 expression in T cells restrains induction of RORγt and Tc17/Th17 inflammation in lungs of nCB-exposed 
mice. (A) Schematic outlining our T cell-inducible let-7g mouse model (let-7GOF). (B) Flow analysis of RORγt expression in live, TCRβ+CD8+ or 
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on each panel (x20 magnification; scale bars, 50µm) (D) MLI measurements from indicated mice (n=5-6 per group). (E) Flow analysis of 
lungs gated on live TCRβ+ CD8+ or CD4+ cells for (E) IL-17a+ population frequency (n=3-4 per group) or (F) RORγt expression by representative 
flow plot and MFI quantification (n=4-5 per group). (G) Figure model for let-7/RORγt axis in emphysema pathogenesis. Data are 
representative of two or three independent experiments and displayed as mean±SEM using student’s t-test (B) or two-way ANOVA with 
Tukey’s multiple correction (C,D,E). *p < 0.05, **p < 0.01, ***p <0.001, ****p<0.0001.
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