

1 **FMNL2 regulates actin for ER and mitochondria distribution in**
2 **oocyte meiosis**

3

4 Meng-Hao Pan^{1,2}, Zhen-Nan Pan¹, Ming-Hong Sun¹, Xiao-Han Li¹, Jia-Qian Ju¹, Shi-
5 Ming Luo², Xiang-Hong Ou², Shao-Chen Sun^{1*}

6

7 ¹College of Animal Science and Technology, Nanjing Agricultural University, Nanjing
8 210095, China.

9 ²Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second
10 Provincial General Hospital, Guangzhou, China.

11

12 **Running Title:** FMNL2 in mouse oocytes

13

14 ***Correspondence to:** Shao-Chen Sun, College of Animal Science and Technology,
15 Nanjing Agricultural University, Nanjing 210095, China. E-mail: sunsc@njau.edu.cn

16

17 **Funding:** This work was supported by the National Natural Science Foundation of
18 China (32170857); the National Key Research and Development Program of China
19 (2021YFC2700100).

20

21 There is no conflict of interest to declare.

22

23 **Abbreviations:** FMNL2, Formin-like 2; FMNLs, Formin-likes; GV, germinal vesicle;
24 GVBD, germinal vesicle breakdown; ATI, anaphase-telophase I; MI, metaphase I; MII,
25 metaphase II; ER, Endoplasmic reticulum.

26

27

Abstract

28 During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis
29 are unique steps for the successful polar body extrusion. The asymmetry defects of
30 oocytes will lead to the failure of fertilization and embryo implantation. In present study
31 we reported that an actin nucleating factor formin-like 2 (FMNL2) played critical roles
32 in the regulation of spindle migration and organelle distribution. Our results showed
33 that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion
34 of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes.
35 Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which
36 caused polar body formation defects, and this might be due to the decreased
37 polymerization of cytoplasmic actin by FMNL2 depletion. Furthermore, mass
38 spectrometry analysis indicated that FMNL2 was associated with mitochondria and
39 endoplasmic reticulum-related proteins, and FMNL2 depletion disrupted the function
40 and distribution of mitochondria and endoplasmic reticulum, showing with decreased
41 mitochondrial membrane potential and the occurrence of endoplasmic reticulum stress.
42 Microinjecting *Fmnl2*-EGFP mRNA into FMNL2-depleted oocytes significantly
43 rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin
44 assembly, which further involves into meiotic spindle migration and ER/mitochondria
45 functions in mouse oocytes.

46

47 **Keywords:** FMNL2; oocyte; actin; Endoplasmic reticulum; Mitochondria

48

Introduction

49 Mammalian oocyte maturation is an asymmetric division process that generates a
50 large egg and a small polar body. This asymmetry is critical for the following
51 fertilization and early embryo development. After germinal vesicle breakdown (GVBD),
52 the meiotic spindle is organized at the center of the oocyte, and then it migrates to the
53 oocyte cortex at the late metaphase I (MI). The oocytes are arrested at metaphase II
54 (MII) after the extrusion of first polar body (1, 2). Actin filaments, as the most widely
55 distributed cytoskeleton in cells, regulate various dynamic events during oocyte meiotic
56 maturation (3), and two key events are the spindle migration and cortical reorganization
57 in mammalian oocytes (1, 4, 5). Small GTPases and actin nucleation factors are shown
58 to promote the assembly and function of actin. The actin nucleation factors are the
59 molecules that directly promote the actin assembly: Arp2/3 complex control the
60 assembly of branched actin, and formin family member Formin2 (FMN2) and Spire1/2
61 control the assembly of linear actin. These proteins are all proposed to play a role in
62 actin-related spindle migration and cytokinesis during mammalian oocyte maturation
63 (6-8). The cortex protein Arp2/3 complex nucleates the actin to produce a
64 hydrodynamic force to move the spindle toward the cortex, and regulates cytokinesis
65 during oocyte maturation (1, 8). FMN2 and Spire1/2 nucleates actin around the spindle
66 in the cytoplasm to give the meiotic spindle an initial power for migration (7, 9).

67 Besides Formin2, the DRFs (diaphanous-related formins) subfamily in the formin
68 family has been extensively studied. The DRFs family consists of mDia, Daam, FHOD
69 and FMNLs (10). The “Formin-like” proteins (FMNLs) subfamily includes FMNL1

70 (FRL1), FMNL2 (FRL3), and FMNL3 (FRL2). Like other Formin family proteins,
71 FMNLs play important roles in cell migration, cell division, and cell polarity (10, 11).
72 While FMNL2 is widely expressed in multiple human tissues, especially in the
73 gastrointestinal and mammary epithelia, lymphatic tissues, placenta, and reproductive
74 tract (12). As an important actin assembly factor, FMNL2 accelerates the elongation of
75 actin filaments branched by Arp2/3 complex (13). In invasive cells, FMNL2 is mainly
76 localized in the leading edge of the cell, lamellipodia and filopodia tips, to improve cell
77 migration ability by actin-based manner (13-15). FMNL2 is also involved in the
78 maintenance of epithelial-mesenchymal transition (EMT) in human colorectal
79 carcinoma cell (16). Besides its roles on the actin assembly, emerging evidences
80 indicate that FMNL2 may interact with organelle dynamics. It is shown that FMNL2 is
81 related with the Golgi apparatus, since the absence of FMNL2/3 can cause the Golgi
82 fragmentation (17). However, till now the roles of FMNLs especially FMNL2 on oocyte
83 meiosis are still largely unknown.

84 In the present study, we disturbed the FMNL2 expression and explored the roles of
85 FMNL2 during mouse oocyte meiosis. Our results showed that FMNL2 was essential
86 for the polar body size control and successful extrusion; and these abnormal phenotypes
87 might be due to aberrant actin-based meiotic spindle migration. Meanwhile, we also
88 found that FMNL2 was essential for the functions and distribution of mitochondria and
89 endoplasmic reticulum. Therefore, this study provided the evidence for the critical roles
90 of FMNL2-mediated actin on spindle movement and organelle dynamics in mammalian
91 oocytes.

Materials and Methods

Antibodies and chemicals

92 Rabbit monoclonal anti-FMNL2 antibody, rabbit monoclonal anti-Arp2 antibody,
93 mouse monoclonal anti-profilin1 antibody were from Santa Cruz (Santa Cruz, CA,
94 USA). Rabbit monoclonal anti-Fascin antibody was purchased form Abcam
95 (Cambridge, UK). Rabbit polyclonal anti-INF2 antibody was purchased from
96 Proteintech (Proteintech, CHI, USA). Rabbit monoclonal anti- α -tubulin (11H10)
97 antibody, rabbit monoclonal anti-Grp78 antibody, rabbit monoclonal anti-cofilin
98 antibody and rabbit monoclonal anti-Chop antibody were from Cell Signaling
99 Technology (Beverly, MA, USA). Mouse monoclonal anti- α -tubulin-FITC antibody
100 was from Sigma-Aldrich Corp. (St. Louis, MO, USA). FITC-conjugated goat anti-
101 rabbit IgG were from Zhongshan Golden Bridge Biotechnology (Beijing). ER-Tracker
102 Red and Mito-Tracker Green were from Beyotime Biotechnology (Shanghai). All other
103 chemicals and reagents were from Sigma-Aldrich Corp., unless otherwise stated.

Ethics statement and oocyte culture

104 We followed the guidelines of Animal Research Institute Committee of Nanjing
105 Agricultural University to conduct the operations. The animal facility had license
106 authorized by the experimental animal committee of Jiangsu Province (SYXK-Su-
107 20170007). These mice were housed in considerably ideal conditions which consisted
108 of controlled temperature, regular diet and appropriate light. Female mice (4 - 6 weeks)
109 were used to collect germinal vesicle oocytes. The oocytes were placed at 37°C with an
110 atmosphere of 5% CO₂, and cultured to different time points for immunostaining,

111 microinjection and western blot.

Plasmid construct and in vitro transcription

112 Template RNA was generated from mouse ovaries with RNA Isolation Kit
113 (Thermos fisher), then we reversed transcription of these RNA to create cDNA by a
114 PrimeScript 1st strand cDNA synthesis kit (Takara, Japan). Fmnl2-EGFP vector was
115 generated by Wuhan GeneCreate Biological Engineering Co, Ltd. mRNA was
116 synthesized from linearized plasmid using HiScribe T7 high yield RNA synthesis kit
117 (NEB), then capped with m7G(5')ppp(5')G (NEB) and tailed with a poly(A)
118 polymerase tailing kit (Epicentre) and purified with RNA clean & concentrator-25 kit
119 (Zymo Research).

Microinjection of Fmnl2 siRNA and mRNA

120 Fmnl2 siRNA microinjection was used to knock down endogenous Fmnl2 in
121 mouse oocytes. Fmnl2 siRNA 5'- GCU GAA UGC UAU GAA CCU ATT-3', 5'- GCC
122 AUU GAU CUU UCU UCA ATT-3', 5'- GGA AUU AAG AAG GCG ACA ATT-3',
123 (Genepharma, Shanghai, China) were diluted with DEPC water to give a 20μM stock
124 solution respectively, and the three siRNA were mixed in equal proportions before
125 microinjection. The control group was microinjected with negative control siRNA 5'-
126 UUC UCC GAA CGU GUC ACG UTT-3'. After injection, the oocytes were cultured
127 in M16 medium containing 5μM milrinone for 18-20 h, and then washed five times (2
128 min each) in fresh M2 medium. We transferred the oocytes to fresh M16 medium, and
129 cultured for following experiments. When microinjecting the α-tubulin-EGFP mRNA
130 and rescue experiments, GV oocytes need to be cultured in M16 medium with 5μM

131 milrinone for 2h. DNase/RNase-free water microinjected as the control.

Immunofluorescent staining and confocal microscopy

132 Oocytes were fixed in 4% paraformaldehyde (in PBS) for 30 min and
133 permeabilized with 0.5% Triton X-100 in PBS for 20min then blocked in blocking
134 buffer (1% BSA-supplemented PBS) at room for 1 h. For FMNL2 staining, the oocytes
135 after blocking were incubated with Rabbit monoclonal anti-FMLNL2 antibody (1:100)
136 at 4 °C overnight, then oocytes were washed by wash buffer (0.1% Tween 20 and 0.01%
137 Triton X-100 in PBS) for 3 times (5 min each time). Next the oocytes were labeled with
138 secondary antibody coupled to FITC-conjugated goat anti-rabbit IgG (1:100) at room
139 temperature for 1 h. For α -tubulin staining, oocytes were incubated with anti- α -tubulin-
140 FITC antibody (1:200). For actin staining, oocytes were incubated with Phalloidin-
141 TRITC at room temperature for 2 h. Then the oocytes were washed as the same way.
142 Finally, oocytes were incubated with Hoechst 33342 at room temperature for 10-20 min.
143 After staining, samples were mounted on glass slides and observed with a confocal
144 laser-scanning microscope (Zeiss LSM 800 META, Germany).

ER and Mito-tracker staining

145 To study ER and mitochondria distribution during mouse oocyte meiosis, MI stage
146 oocytes were incubated with ER-Tracker Red (1:3000) or 200 nM Mito-tracker green
147 (Red) in M16 medium for 30 min at 37°C and 5% CO₂. Then the oocytes were washed
148 three times with M2 medium, finally the samples were examined with confocal
149 microscopy.

Time lapse microscopy

150 To image the dynamic changes that occurred during oocyte maturation, oocytes
151 were cultured in M16 medium, then transferred to the Leica SD AF confocal imaging
152 system equipped with 37 °C incubator and 5% CO₂ supply (H301-K-FRAME). The
153 spindle in oocytes was labeled by α -tubulin-EGFP.

Immunoprecipitation

154 4-6 ovaries were put into RIPA Lysis Buffer contained phosphatase inhibitor
155 cocktail (100 \times) (Kangwei Biotechnology, China), and were completely cleaved on ice
156 block. We collected supernatant after centrifugation (13200 rps, 20 min) and then took
157 out 50 μ l as input sample at 4 °C. The rest of the supernatant was incubated with primary
158 antibody (FMNL2 or INF2 antibody) overnight at 4 °C. 30 μ l conjugated beads (washed
159 five times in PBS) were added to the supernatant/antibody mixture and incubated at
160 4 °C for 4-6 h, after three times wash by immune complexes, the samples were then
161 released from the beads by mixing in 2 \times SDS loading buffer for 10min at 30 °C.

Western blot analysis

162 Approximate 100-150 mouse oocytes were placed in Laemmli sample buffer and
163 heated at 85°C for 7-10 min. Proteins were separated by SDS-PAGE at 165V for 70-80
164 min and then electrophoretically transferred to polyvinylidene fluoride (PVDF)
165 membranes (Millipore, Billerica, MA, USA) at 20 V for 1 hour. After transfer, the
166 membranes were then blocked with TBST (TBS containing 0.1% Tween 20) containing
167 5% non-fat milk at room temperature for 90 min. After blocking, the membranes were
168 incubated with rabbit monoclonal anti-FMLN2 antibody (1:500), rabbit monoclonal
169 anti-Arp2 antibody (1:500), mouse monoclonal anti-profilin1 antibody (1:500), rabbit

170 monoclonal anti-Fascin antibody (1:5000), rabbit polyclonal anti-INF2 antibody
171 (1:500), rabbit monoclonal anti-Grp78 antibody (1:1000), rabbit monoclonal anti-
172 cofilin antibody (1:2000), rabbit monoclonal anti-CHOP antibody (1:1000), or rabbit
173 monoclonal anti-tubulin antibody (1:2000) at 4 °C overnight. After washing 5 times in
174 TBST (5 min each), membranes were incubated for 1h at room temperature with HRP-
175 conjugated Pierce Goat anti-Rabbit IgG (1:5000) or HRP-conjugated Pierce Goat anti-
176 mouse IgG (1:5000). After washing for 5 times, the membranes were visualized using
177 chemiluminescence reagent (Millipore, Billerica, MA). Every experiment repeated at
178 least 3 times with different samples.

Intensity analysis

179 To analyze the fluorescence intensity of actin filaments, the control group and
180 treated group were mounted on the same glass slide and tested with same parameters.
181 Image J was used to determine the average fluorescence intensity per unit area within
182 the region of interest (ROI). The independent measures were taken for the cell cortex
183 and cytoplasm. For quantification of the western blot results, the band intensity was
184 measured by Image J.

Statistical analysis

185 At least three biological replicates were performed for each analysis. The results
186 were endowed as means \pm SEM. All analyses were performed using GraphPad
187 Prism7.00 software (GraphPad, CA, USA). Results of $P < 0.05$ were considered
188 statistically significant (differences $P < 0.05$ denoted by *, $P < 0.01$ denoted by **,
189 $P < 0.001$ denoted by *** and $P < 0.0001$ denoted by ****).

Results

Expression and subcellular localization of FMNL2 during mouse oocyte maturation

190 We first examined FMNL2 expression in mouse oocytes at different stages. The
191 results indicated that FMNL2 all expressed in GV, MI and MII stages during mouse
192 oocyte maturation (GV, 1; MI, 0.82 ± 0.07 ; MII, 0.61 ± 0.10 , Figure 1A). Next, we
193 performed Fmn12-EGFP mRNA microinjection to examine the localization of FMNL2.
194 As shown in Figure 1B, FMNL2 accumulated at the oocyte cortex during the GV,
195 GVBD and MI stages. Besides, FMNL2 also localized at the spindle periphery during
196 GVBD and MI stages. At anaphase-telophase I stage (ATI), FMNL2 was mainly at the
197 midbody. The FMNL2 antibody staining results also confirmed this localization pattern.
198 We also co-stained FMNL2 antibody with actin, and the result showed that the signals
199 of FMNL2 and actin overlapped at the cortex in oocytes (Figure 1C). The FMNL2
200 localization pattern indicated that FMNL2 might interact with actin dynamics during
201 oocyte meiosis.

FMNL2 is essential for polar body extrusion and asymmetric division in mouse oocytes

202 To investigate the functional roles of FMNL2 in mouse oocytes, we employed
203 Fmn12 siRNA microinjection to knockdown FMNL2 protein expression. A significant
204 decrease of FMNL2 protein level was shown in FMNL2-KD oocytes compared to
205 control group by western blot (1 vs. 0.48 ± 0.08 , $P < 0.01$, Figure 2A). We then
206 examined first polar body extrusion, and the results showed that deleting FMNL2

207 disturbed first polar body extrusion, while a large proportion of oocytes showed big
208 polar bodies among the oocytes which extruded polar bodies (Figure 2B). The
209 quantitative results also confirmed this phenotype (rate of polar body extrusion: 74.26
210 $\pm 1.44\%$, n = 439 vs. $59.5 \pm 2.82\%$, n = 398, P < 0.001, Figure 2C; rate of large polar
211 bodies: $19.05 \pm 1.97\%$, n = 311 vs. $37.16 \pm 1.87\%$, n = 257, P < 0.0001, Figure 2D). In
212 addition, live-cell imaging was used to determine the dynamic changes that occurred
213 during oocyte maturation, and the results showed that the oocytes either failed to
214 undergo cytokinesis or divided from the central axis of the oocytes and formed big polar
215 bodies (Figure 2E). To further confirm the phenotype, we performed FMNL2 rescue
216 experiments by expressing exogenous Fmn12 mRNA in FMNL2-depleted oocytes
217 (Figure 2F), we found that exogenous Fmn12 mRNA expression rescued first polar body
218 extrusion and large polar body defects (Figure 2G). The quantitative results also
219 confirmed this phenotype (rate of polar body extrusion: $48.34 \pm 4.2\%$, n = 355 vs. 62.62
220 $\pm 3.6\%$, n = 377, P < 0.01, Figure 2H; rate of large polar bodies: $30.93 \pm 2\%$, n = 193
221 vs. $9.58 \pm 2.4\%$, n = 203, P < 0.01, Figure 2I). To testify whether the functions of
222 FMNL2 were associated with other FMNLs, we also compared the polar body extrusion
223 with the knock down of both FMNL2 and FMNL3, and the results showed that double
224 knock down of FMNL2 and FMNL3 did not cause a severe polar body extrusion defects
225 compared with the single knock down of FMNL2 (polar body extrusion, Control: 70.97
226 $\pm 1.23\%$, n=261 vs FMNL2+3-KD: $60.42 \pm 2.99\%$, n=198, P < 0.05, Figure 2J. Large
227 polar body, Control: $10.85 \pm 0.97\%$, n=172 vs FMNL2+3-KD: $32.90 \pm 1.88\%$, n=118,
228 P < 0.001, Figure 2K). These results suggested that FMNL2 played critical roles for the

229 polar body extrusion and asymmetric division during mouse oocyte maturation.

FMNL2 regulates spindle migration during mouse oocyte maturation

230 To investigate the causes for polar body extrusion defects, we examined the
231 spindle migration by time-lapse microscopy during oocyte meiosis. As shown in Figure
232 4A, in the control oocyte, the meiotic spindle formed in the center of the oocyte after
233 culture 8 h and moved to the oocyte cortex at 9.5h; and the polar body was extruded at
234 11-12h, with a spindle formed near the cortex at MII stage. However, in FMNL2-KD
235 oocytes, two phenotypes were observed: 1) the meiotic spindle remained in the center
236 of the oocyte until 10 h, and then the oocytes initiated the cytokinesis at 10.5 h but
237 failed to extrude the polar body; 2) some oocytes with arrested spindles initiated the
238 cytokinesis but extruded a big polar body (Figure 3A). This indicated the failure of
239 spindle migration after FMNL2 depletion. We analyzed the rate of cortex-localized
240 spindle in oocytes by cultured for 9.5 h, and the result showed that the rate of migrated
241 spindles in control oocytes was significantly higher than that in FMNL2-KD oocytes
242 ($59.94 \pm 3.42\%$, $n = 78$ vs. $38.97 \pm 6.34\%$, $n = 64$, $P < 0.05$, Figure 3B). We also
243 performed FMNL2 rescue experiments. Supplementing with exogenous Fmn12 rescued
244 the spindle migration defects compared with the Fmn12-depletion group ($40.27 \pm 3.19\%$,
245 $n = 181$ vs. $57.01 \pm 2.72\%$, $n = 57$, $P < 0.01$, Figure 3C). These results suggested that
246 FMNL2 might be involved in spindle migration in mouse oocytes.

FMNL2 promotes cytoplasmic actin assembly during mouse oocyte maturation

247 As FMNL2 is a key actin assembly factor, we further investigated actin assembly
248 after deleting FMNL2 in mouse oocytes. Surprisingly there was no significant

249 difference for the signals of cortex actin was observed between control oocytes and
250 FMNL2-KD oocytes, which was confirmed by the fluorescence intensity analysis
251 (30.88 ± 1.10 , $n = 28$ vs. 30.58 ± 1.12 , $n = 28$, $P > 0.05$, Figure 4A). However, we found
252 a significant decrease of cytoplasmic actin signals in the FMNL2-KD oocytes, and the
253 statistical analysis for the cytoplasmic actin fluorescent signals also confirmed our
254 findings (58.25 ± 2.05 , $n = 26$ vs. 37.92 ± 2.02 , $n = 24$, $P < 0.0001$, Figure 4B).
255 Moreover, the rescue experiments showed that exogenous Fmnl2 rescued the decrease
256 of cytoplasmic actin filaments compared with the Fmnl2-depletion group (37.98 ± 1.98 ,
257 $n = 16$ vs. 54.72 ± 2.88 , $n = 15$, $P < 0.0001$, Figure 3C). We next explored how FMNL2
258 regulates cytoplasmic actin assembly in oocytes. By mass spectrometry analysis we
259 found there were several actin-related potential candidates which might be related with
260 FMNL2 (Figure 4D). Co-immunoprecipitation results showed that FMNL2 precipitated
261 Arp2 and Formin2 but not Profilin and fascin (Figure 4E). To further verify the
262 correlation between FMNL2 and Arp2 and Formin2, we then examined Arp2 and
263 Formin2 protein expression after FMNL2 knockdown. The results showed Arp2 protein
264 expression increased significantly after FMNL2 knockdown (1 vs. 1.56 ± 0.07 , $P <$
265 0.001 , Figure 4F) but decreased after FMNL2 knockdown (1 vs. 0.62 ± 0.04 , $P < 0.001$,
266 Figure 4G). Exogenous Fmnl2 rescued these alterations compared with that in the
267 FMNL2-KD group (Arp2 protein expression: 1 vs. 0.65 ± 0.06 , $P < 0.01$, Figure 4F;
268 Formin2 protein expression: 1 vs. 1.24 ± 0.05 , $P < 0.01$, Figure 4G). These results
269 indicated that FMNL2 associated with Formin2 and Arp2 for actin assembly in mouse
270 oocytes.

FMNL2 regulates endoplasmic reticulum distribution during mouse oocyte maturation

271 The mass spectrometry analysis data indicated that several ER-related potential
272 candidates which might be related with FMNL2 (Figure 5A), while INF2, a typical
273 protein which mediates actin polymerization at ER showed high confidence level. We
274 then examined the relationship between FMNL2 and INF2, and the co-
275 immunoprecipitation results showed that FMNL2 precipitated INF2 and INF2 also
276 precipitated FMNL2 (Figure 5B), indicating that FMNL2 interacted with INF2 in
277 mouse oocytes. We then examined the ER distribution in FMNL2-KD oocytes. As
278 shown in Figure 5C, in control oocytes the ER evenly distributed in the cytoplasm and
279 accumulated at the spindle periphery in MI stage; however, ER agglomerated in
280 cytoplasm in FMNL2-KD oocytes (Figure 5C). The statistical analysis showed that the
281 abnormal distribution of ER increased significantly in the FMNL2-KD group ($28.91 \pm$
282 5.62 , $n = 27$ vs. 59.64 ± 6.95 , $n = 28$, $P < 0.05$, Figure 5D). The localization pattern of
283 ER indicated its functions might be disturbed. In FMNL2-KD oocytes, we found the
284 expressions of ER-stress related proteins Grp78 and Chop were significantly increased
285 (Grp78: 1 vs. 1.42 ± 0.12 , $P < 0.05$; Chop: 1 vs. 1.53 ± 0.16 , $P < 0.05$. Figure 5E),
286 indicating the occurrence of ER stress. We also performed FMNL2 rescue experiments.
287 Supplementing with exogenous Fmnl2 rescued the ER distribution defects caused by
288 FMNL2 knockdown (Figure 5F), which was supported by the statistical analysis
289 showing that the abnormal distribution rate of ER decreased significantly in the rescue
290 group (52.04 ± 5.29 , $n = 70$ vs. 34.91 ± 3.37 , $n = 78$, $P < 0.05$, Figure 5G). Moreover,

291 Grp78 protein expression decreased in the rescue group (1 vs. 0.78 ± 0.05 , $P < 0.01$).
292 Figure 5H). These results indicated that the depletion of FMNL2 affected ER
293 distribution and caused ER stress in mouse oocytes.

FMNL2 regulates mitochondrial distribution during mouse oocyte maturation

294 As INF2 is also related to the mitochondrial connection of ER, we further screened
295 up the mass spectrometry analysis data and we found many mitochondria-related
296 potential candidates which might be related with FMNL2 (Figure 6A). Therefore, we
297 further examined the distribution of mitochondria in FMNL2-KD oocytes. In control
298 oocytes, the mitochondria evenly distributed in the cytoplasm and accumulated at the
299 spindle periphery in MI stage; however, in FMNL2-KD oocytes, mitochondria
300 presented clumped aggregation distribution in cytoplasm (Figure 6B). We counted the
301 number of clumps and found that the uniform distribution of mitochondria decreased
302 significantly in the FMNL2-KD group (59.66 ± 8.48 , $n = 31$ vs. 20.83 ± 4.17 , $n = 32$, P
303 < 0.05 , Figure 6C). A large number of FMNL2-KD oocytes agglomerated into one to
304 three clumps (22.73 ± 4.27 , $n = 31$ vs. 42.50 ± 1.25 , $n = 32$, $P < 0.05$, Figure 6C).
305 Supplementing with exogenous Fmnl2 rescued the mitochondria distribution (Figure
306 6D), the statistical analysis showed that the uniform distribution of mitochondria
307 increased significantly in the rescue group (36.49 ± 3.97 , $n = 53$ vs. 53.90 ± 2.09 , $n =$
308 79, $P < 0.05$, Figure 6E). We also examined mitochondrial membrane potential, and the
309 results showed that FMNL2 depletion caused the alterations of mitochondrial
310 membrane potential (MMP) by JC-1 staining. The fluorescence intensity of JC-1 red
311 channel was decreased compared with the control group (Figure 6F). We also calculated

312 the ratio for red/green fluorescence intensity, and the results also confirmed this (control
313 group: 0.40 vs. FMNL2-KD: 0.21 ± 0.01 , $P < 0.01$) (Figure 6G). Cofilin is an important
314 factor of actin assembly and regulates mitochondrial function. We also examined cofilin
315 protein expression after FMNL2 knockdown. The results showed cofilin protein
316 expression decreased significantly after FMNL2 knockdown (1 vs. 0.81 ± 0.03 , $P <$
317 0.01 , Figure 6H). These results indicated that FMNL2 regulated mitochondria
318 distribution and function during mouse oocyte maturation.

319 **Discussion**

320 In this study, we explored the functions of FMNL2 during mouse oocyte meiosis.
321 Our results indicated that FMNL2 regulated actin-based spindle migration for
322 asymmetric cell division of oocytes, and more importantly FMNL2 was critical for
323 maintaining the distribution of the ER and mitochondria, which set up a link for actin-
324 related spindle migration and organelle dynamics in oocytes.

325 As a subfamily of Formin family, FMNLs play an important role in regulating actin
326 filaments (18), while FMNL2 is most widely expressed in variety of cell models among
327 the members of FMNLs. In this study, we showed that FMNL2 expressed in mouse
328 oocytes and it mainly accumulated at the oocyte cortex and spindle periphery, which
329 was similar with the actin distribution pattern in oocytes. This specific localization is
330 also similar to FMN2, a well-studied factor in the formin family for spindle migration
331 during oocyte meiosis (7, 19). In addition, another FMNLs family member, FMNL1 is
332 also localized at the cortex and is essential for actin polymerization and spindle
333 assembly during oocyte meiosis (20). Based on the localization pattern of FMNL2, we

334 speculated that the functions of FMNL2 might be also involved in actin-related process
335 during mouse oocyte meiosis.

336 To confirm our hypothesis, we depleted FMNL2 protein expression and we found
337 that absence of FMNL2 caused the aberrant first polar body extrusion. The oocytes
338 either failed to form the polar body or extruded large polar bodies. These phenotypes
339 caused by FMNL2 depletion are similar to the other actin-related proteins during oocyte
340 maturation such as Arp2/3 complex (8, 21) and FMN2 (22, 23). We next examined the
341 actin distribution in oocytes since it is reported that FMNL2 promotes actin filament
342 assembly in many models. FMNL2 is required for cell-cell adhesion formation by
343 regulating the actin assembly (24), and FMNL2 could directly drives actin elongation
344 (15). In CRC cells, cortactin bind to FMNL2 to active the actin polymerization, and
345 FMNL2 is important for invadopodia formation and functions (25). Our results showed
346 that the FMNL2 depletion caused significantly decrease in cytoplasmic actin, indicating
347 the conserved roles of FMNL2 on actin assembly in mammalian oocyte model. Other
348 Formin family proteins such as Daam1, FHOD1, and Formin-homology family protein
349 mDia1 are also reported to affect oocyte meiosis by regulating actin polymerization
350 (26-28).

351 We then tried to explore how FMNL2 involves into the actin assembly in oocytes.
352 Mass spectrometry analysis data indicated that FMNL2 associated with several actin-
353 related proteins, and we found that FMNL2 was associated with Arp2 and Formin2.
354 This could be confirmed by the altered expression of these two molecules after FMNL2
355 depletion. Therefore, we speculated FMNL2 could regulate cytoplasmic actin assembly

356 in oocytes through the association with Formin2 since it is reported to be an important
357 protein for cytoplasmic actin assembly in oocytes (22). Interestingly, our results showed
358 that unlike the reduction of cytoplasmic actin, cortex actin was not affected by the
359 absence of FMNL2. We speculated that Arp2/3 complex has a compensation effect on
360 the depleting of FMNL2 during oocyte meiosis, ensuring the cortex actin assembly in
361 oocytes since Arp2 protein expression significantly increased after FMNL2 depletion.
362 As an actin nucleator Arp2/3 complex localizes at the cortex and is essential for actin
363 polymerization during oocyte meiosis (8, 29). These results suggested that FMNL2
364 might be involved in cytokinesis and asymmetric division by regulating actin assembly
365 during mouse oocyte maturation.

366 The spindle migration is a key step in ensuring the asymmetric division for oocytes
367 (30). In mitosis, spindle position is decided by cortical actin and astral microtubules; in
368 contrast, spindle migration is mainly mediated by actin filaments during oocyte meiosis
369 (30, 31). Due to the effects of FMNL2 on asymmetric division and cytoplasmic actin,
370 we analyzed the spindle positioning at late MI, we found that the spindle migration was
371 disturbed after FMNL2 depletion, no matter the cytokinesis occurred or not. Several
372 formin proteins are shown to regulate spindle migration during oocytes meiosis. For
373 example, FMN2 nucleates actin surrounding the spindle, pushing force generated by
374 actin to trigger the spindle migration (19, 22), and cyclin-dependent kinase 1 (Cdk1)
375 induces cytoplasmic Formin-mediated F-actin polymerization to propel the spindle into
376 the cortex (32). Our previous studies also showed that absence of the formin family
377 member FMNL1 or FHOD1 could lead to the decrease of cytoplasmic actin to prevent

378 the spindle migration (20, 27). We speculated that FMNL2 together with other Formin
379 proteins, conservatively regulate actin-mediated spindle migration during oocyte
380 meiosis.

381 Another important finding is that through the mass spectrometry analysis we found
382 many candidate proteins which were related with ER, and our results indicated that
383 FMNL2 was essential for the maintenance of ER distribution in the cytoplasm.
384 Moreover, the loss of FMNL2 induced ER stress, showing with altered expression of
385 GRP78 and CHOP. Proper distribution of ER is important for the oocyte quality. ER
386 displays a homogeneous distribution pattern throughout the entire ooplasm during
387 development of oocytes and embryos from diabetic mice(33). During the transition of
388 mouse oocytes from MI to MII phase, actin regulates cortical ER aggregation(34). In
389 addition, Formin2 is shown to colocalize with the ER during oocyte meiosis and the
390 ER-associated Formin2 at the spindle periphery is required for MI chromosome
391 migration(6). In our results we showed that FMNL2 associated with INF2 protein in
392 oocytes. INF2 is an ER-associated protein, and the expression of GFP-INF2 which
393 containing DAD/WH2 mutations causes the ER to collapse around the nucleus (35).
394 We concluded that FMNL2 might regulate INF2 for the distribution of ER in cytoplasm
395 of oocytes.

396 Besides its roles of ER distribution, it is shown that INF2 also affects
397 mitochondrial length and ER-mitochondrial interaction in an actin-dependent manner
398 (35, 36). It is shown that INF2 regulates Drp1 for mitochondrial fission, and INF2-
399 induced actin filaments may drive initial mitochondrial constriction, which allows

400 Drp1-driven secondary constriction(36, 37). In addition, we also found many candidate
401 proteins which were related with mitochondria from mass spectrometry analysis.
402 During oocyte meiosis, mitochondria gradually accumulated around the spindle after
403 GVBD, and the spindle-peripheral FMN2 and its actin nucleation activity are important
404 for the accumulation of mitochondria in this region (19). Our results found that FMNL2
405 depletion caused agglutination of mitochondria and altered MMP level in the cytoplasm,
406 indicating its roles on the mitochondria distribution and functions. Another formin
407 protein mDia1 is shown to be necessary to induce the anchoring of mitochondria along
408 the cytoskeletal in mammalian CV-1 cells and Drosophila BG2-C2 neuronal cells(38).
409 Moreover, the formin interaction protein Spire1C binds INF2 to promote actin assembly
410 on mitochondrial surfaces, and Spire1C disruption could reduce mitochondrial
411 constriction and division(39). In addition, our result indicated that cofilin expression
412 decreased in FMNL2 depletion oocytes. Cofilin is an actin-depolymerizing factor and
413 its localization at the mitochondrial fission site is crucial for inducing mitochondrial
414 fission and mitophagy (40). Depleting of cofilin resulted in abnormal interconnection
415 and elongation of mitochondria (41). Together with its roles on ER, these data indicated
416 that FMNL2 might associate with INF2 and cofilin for the actin-based organelle
417 distribution during oocyte meiosis.

418 Collectively, we provide a body of evidence showing that FMNL2 associates with
419 Formin2 and Arp2/3 complex for actin assembly, which further regulates spindle
420 migration and INF2/Cofilin-related organelle dynamics during mouse oocyte
421 maturation.

422 **Data Availability**

423 All data generated or analyzed during this study are included in this published
424 article

425 **Acknowledgement**

426 We are particularly grateful to Xiao-Yan Fan and Xing-Hua Wang from Fertility
427 Preservation Laboratory, Reproductive Medicine Center, Guangdong Second
428 Provincial General Hospital for their technical assistance of live cell imaging system.

429 **Contributions**

430 MHP and SCS designed the study. MHP performed the majority of the experiments.
431 SML, ZNP, MHS, XHL, JQJ, YZ contributed to the regents and materials. MHP, XHO
432 and SCS analyzed the data. MHP and SCS wrote the manuscript.

433 **Competing interests**

434 There is no conflict of interest to declare.

435 **Ethics approval and consent to participate**

436 Not applicable.

437 **Consent for publication**

438 Not applicable.

439

440 **References**

- 441 1. K. Yi, B. Rubinstein, R. Li, Symmetry breaking and polarity establishment during mouse
442 oocyte maturation. *Philosophical transactions of the Royal Society of London. Series B,
443 Biological sciences* **368**, 20130002 (2013).

444 2. B. Pan, J. Li, The art of oocyte meiotic arrest regulation. *Reproductive biology and*
445 *endocrinology : RB&E* **17**, 8 (2019).

446 3. Q. Y. Sun, H. Schatten, Regulation of dynamic events by microfilaments during oocyte
447 maturation and fertilization. *Reproduction* **131**, 193-205 (2006).

448 4. S. C. Sun, N. H. Kim, Molecular mechanisms of asymmetric division in oocytes.
449 *Microscopy and microanalysis : the official journal of Microscopy Society of America,*
450 *Microbeam Analysis Society, Microscopical Society of Canada* **19**, 883-897 (2013).

451 5. X. Duan, S. C. Sun, Actin cytoskeleton dynamics in mammalian oocyte meiosis. *Biol*
452 *Reprod* **100**, 15-24 (2019).

453 6. K. Yi, B. Rubinstein, J. R. Unruh, F. Guo, B. D. Slaughter, R. Li, Sequential actin-based
454 pushing forces drive meiosis I chromosome migration and symmetry breaking in
455 oocytes. *The Journal of cell biology* **200**, 567-576 (2013).

456 7. H. Li, F. Guo, B. Rubinstein, R. Li, Actin-driven chromosomal motility leads to symmetry
457 breaking in mammalian meiotic oocytes. *Nature cell biology* **10**, 1301-1308 (2008).

458 8. S. C. Sun, Z. B. Wang, Y. N. Xu, S. E. Lee, X. S. Cui, N. H. Kim, Arp2/3 complex regulates
459 asymmetric division and cytokinesis in mouse oocytes. *PLoS one* **6**, e18392 (2011).

460 9. S. Pfender, V. Kuznetsov, S. Pleiser, E. Kerkhoff, M. Schuh, Spire-type actin nucleators
461 cooperate with Formin-2 to drive asymmetric oocyte division. *Current biology : CB* **21**,
462 955-960 (2011).

463 10. S. Kuhn, M. Geyer, Formins as effector proteins of Rho GTPases. *Small GTPases* **5**,
464 e29513 (2014).

465 11. M. Katoh, M. Katoh, Identification and characterization of human FMNL1, FMNL2 and
466 FMNL3 genes in silico. *International journal of oncology* **22**, 1161-1168 (2003).

467 12. M. Gardberg, K. Talvinen, K. Kaipio, K. Iljin, C. Kampf, M. Uhlen, O. Carpen,
468 Characterization of Diaphanous-related formin FMNL2 in human tissues. *BMC cell*
469 *biology* **11**, 55 (2010).

470 13. F. Kage, M. Winterhoff, V. Dimchev, J. Mueller, T. Thalheim, A. Freise, S. Bruhmann, J.
471 Kollasser, J. Block, G. Dimchev, M. Geyer, H. J. Schnittler, C. Brakebusch, T. E. Stradal, M.
472 F. Carlier, M. Sixt, J. Kas, J. Faix, K. Rottner, FMNL formins boost lamellipodial force
473 generation. *Nature communications* **8**, 14832 (2017).

474 14. X. L. Zhu, Y. F. Zeng, J. Guan, Y. F. Li, Y. J. Deng, X. W. Bian, Y. Q. Ding, L. Liang, FMNL2 is
475 a positive regulator of cell motility and metastasis in colorectal carcinoma. *The Journal*
476 *of pathology* **224**, 377-388 (2011).

477 15. J. Block, D. Breitsprecher, S. Kuhn, M. Winterhoff, F. Kage, R. Geffers, P. Duwe, J. L. Rohn,
478 B. Baum, C. Brakebusch, M. Geyer, T. E. Stradal, J. Faix, K. Rottner, FMNL2 drives actin-
479 based protrusion and migration downstream of Cdc42. *Current biology : CB* **22**, 1005-
480 1012 (2012).

481 16. Y. Li, X. Zhu, Y. Zeng, J. Wang, X. Zhang, Y. Q. Ding, L. Liang, FMNL2 enhances invasion
482 of colorectal carcinoma by inducing epithelial-mesenchymal transition. *Molecular cancer*
483 *research : MCR* **8**, 1579-1590 (2010).

484 17. F. Kage, A. Steffen, A. Ellinger, C. Ranftler, C. Gehre, C. Brakebusch, M. Pavelka, T. Stradal,
485 K. Rottner, Author Correction: FMNL2 and -3 regulate Golgi architecture and
486 anterograde transport downstream of Cdc42. *Scientific reports* **9**, 18008 (2019).

487 18. D. Breitsprecher, B. L. Goode, Formins at a glance. *Journal of cell science* **126**, 1-7

488 (2013).

489 19. X. Duan, Y. Li, K. Yi, F. Guo, H. Wang, P. H. Wu, J. Yang, D. B. Mair, E. A. Morales, P. Kalab,
490 D. Wirtz, S. X. Sun, R. Li, Dynamic organelle distribution initiates actin-based spindle
491 migration in mouse oocytes. *Nature communications* **11**, 277 (2020).

492 20. F. Wang, L. Zhang, X. Duan, G. L. Zhang, Z. B. Wang, Q. Wang, B. Xiong, S. C. Sun,
493 RhoA-mediated FMNL1 regulates GM130 for actin assembly and phosphorylates MAPK
494 for spindle formation in mouse oocyte meiosis. *Cell cycle* **14**, 2835-2843 (2015).

495 21. K. Yi, J. R. Unruh, M. Deng, B. D. Slaughter, B. Rubinstein, R. Li, Dynamic maintenance of
496 asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic
497 streaming in mouse oocytes. *Nature cell biology* **13**, 1252-1258 (2011).

498 22. J. Dumont, K. Million, K. Sunderland, P. Rassinier, H. Lim, B. Leader, M. H. Verlhac,
499 Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse
500 oocytes. *Developmental biology* **301**, 254-265 (2007).

501 23. B. Leader, H. Lim, M. J. Carabatsos, A. Harrington, J. Ecsedy, D. Pellman, R. Maas, P.
502 Leder, Formin-2, polyploidy, hypofertility and positioning of the meiotic spindle in
503 mouse oocytes. *Nature cell biology* **4**, 921-928 (2002).

504 24. K. Grikscheit, T. Frank, Y. Wang, R. Grosse, Junctional actin assembly is mediated by
505 Formin-like 2 downstream of Rac1. *The Journal of cell biology* **209**, 367-376 (2015).

506 25. X. L. Ren, Y. D. Qiao, J. Y. Li, X. M. Li, D. Zhang, X. J. Zhang, X. H. Zhu, W. J. Zhou, J. Shi,
507 W. Wang, W. T. Liao, Y. Q. Ding, L. Liang, Cortactin recruits FMNL2 to promote actin
508 polymerization and endosome motility in invadopodia formation. *Cancer letters* **419**,
509 245-256 (2018).

510 26. Y. Lu, Y. Zhang, M. H. Pan, N. H. Kim, S. C. Sun, X. S. Cui, Daam1 regulates fascin for
511 actin assembly in mouse oocyte meiosis. *Cell cycle* **16**, 1350-1356 (2017).

512 27. M. H. Pan, F. Wang, Y. Lu, F. Tang, X. Duan, Y. Zhang, B. Xiong, S. C. Sun, FHOD1
513 regulates cytoplasmic actin-based spindle migration for mouse oocyte asymmetric cell
514 division. *Journal of cellular physiology* **233**, 2270-2278 (2018).

515 28. Y. Zhang, F. Wang, Y. J. Niu, H. L. Liu, R. Rui, X. S. Cui, N. H. Kim, S. C. Sun, Formin
516 mDia1, a downstream molecule of FMNL1, regulates Profilin1 for actin assembly and
517 spindle organization during mouse oocyte meiosis. *Biochimica et biophysica acta* **1853**,
518 317-327 (2015).

519 29. E. D. Goley, M. D. Welch, The ARP2/3 complex: an actin nucleator comes of age. *Nature*
520 *reviews. Molecular cell biology* **7**, 713-726 (2006).

521 30. S. Brunet, B. Maro, Cytoskeleton and cell cycle control during meiotic maturation of the
522 mouse oocyte: integrating time and space. *Reproduction* **130**, 801-811 (2005).

523 31. S. Reinsch, P. Gonczy, Mechanisms of nuclear positioning. *Journal of cell science* **111**
524 (**Pt 16**), 2283-2295 (1998).

525 32. Z. Wei, J. Greaney, C. Zhou, A. H. H, Cdk1 inactivation induces post-anaphase-onset
526 spindle migration and membrane protrusion required for extreme asymmetry in mouse
527 oocytes. *Nature communications* **9**, 4029 (2018).

528 33. C. H. Zhang, W. P. Qian, S. T. Qi, Z. J. Ge, L. J. Min, X. L. Zhu, X. Huang, J. P. Liu, Y. C.
529 Ouyang, Y. Hou, H. Schatten, Q. Y. Sun, Maternal diabetes causes abnormal dynamic
530 changes of endoplasmic reticulum during mouse oocyte maturation and early embryo
531 development. *Reproductive biology and endocrinology : RB&E* **11**, 31 (2013).

532 34. G. FitzHarris, P. Marangos, J. Carroll, Changes in endoplasmic reticulum structure during
533 mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein.
534 *Dev Biol* **305**, 133-144 (2007).

535 35. E. S. Chhabra, V. Ramabhadran, S. A. Gerber, H. N. Higgs, INF2 is an endoplasmic
536 reticulum-associated formin protein. *Journal of cell science* **122**, 1430-1440 (2009).

537 36. F. Korobova, V. Ramabhadran, H. N. Higgs, An actin-dependent step in mitochondrial
538 fission mediated by the ER-associated formin INF2. *Science* **339**, 464-467 (2013).

539 37. W. K. Ji, R. Chakrabarti, X. Fan, L. Schoenfeld, S. Strack, H. N. Higgs, Receptor-mediated
540 Drp1 oligomerization on endoplasmic reticulum. *The Journal of cell biology* **216**, 4123-
541 4139 (2017).

542 38. A. A. Minin, A. V. Kulik, F. K. Gyoeva, Y. Li, G. Goshima, V. I. Gelfand, Regulation of
543 mitochondria distribution by RhoA and formins. *Journal of cell science* **119**, 659-670
544 (2006).

545 39. U. Manor, S. Bartholomew, G. Golani, E. Christenson, M. Kozlov, H. Higgs, J. Spudich, J.
546 Lippincott-Schwartz, A mitochondria-anchored isoform of the actin-nucleating spire
547 protein regulates mitochondrial division. *eLife* **4**, (2015).

548 40. G. B. Li, H. W. Zhang, R. Q. Fu, X. Y. Hu, L. Liu, Y. N. Li, Y. X. Liu, X. Liu, J. J. Hu, Q. Deng,
549 Q. S. Luo, R. Zhang, N. Gao, Mitochondrial fission and mitophagy depend on cofilin-
550 mediated actin depolymerization activity at the mitochondrial fission site. *Oncogene* **37**,
551 1485-1502 (2018).

552 41. S. Li, S. Xu, B. A. Roelofs, L. Boyman, W. J. Lederer, H. Sesaki, M. Karbowski, Transient
553 assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial
554 fission. *The Journal of cell biology* **208**, 109-123 (2015).

555

556 **Figure legends**

557 **Figure 1. Expression and subcellular localization of FMNL2 during mouse oocyte**
558 **meiosis. (A)** Western blotting results of FMNL2 protein expression at different stages.
559 FMNL2 expressed at the GV, MI, and MII stages. **(B)** Subcellular localization of
560 FMNL2-EGFP during mouse oocyte meiosis. FMNL2 was enriched at the cortex (GV,
561 GVBD and MI stage) and spindle periphery (MI stage). Green, FMNL2-EGFP; blue,
562 DNA. Negative control: Green, EGFP; blue, DNA. Bar =20 μ m. **(C)** Co-staining of
563 oocytes for FMNL2 and actin. FMNL2 and actin overlapped in cortex and spindle
564 surrounding. Green, FMNL2-antibody; red, actin; blue, DNA. Bar =20 μ m.

565 **Figure 2. Knockdown of FMNL2 affects first polar body extrusion and asymmetric**

566 **division. (A)** Western blot analysis for FMNL2 expression in the FMNL2-KD group
567 and control group. Relative intensity of FMNL2 and tubulin was assessed by
568 densitometry. **, significant difference ($P < 0.01$). **(B)** DIC images of control oocytes
569 and FMNL2-KD oocytes after 12 h culture. FMNL2-KD caused large polar bodies
570 (black arrows) and some oocytes failed to extrude the polar bodies (white arrows). **(C)**
571 Rate of polar body extrusion after 12 h culture of the control group and FMNL2-KD
572 group. ***, significant difference ($P < 0.001$). **(D)** Rate of large polar body extrusion
573 after 12 h culture in the control group and FMNL2-KD group. ****, significant
574 difference ($P < 0.0001$). **(E)** Time-lapse microscopy showed that polar body extrusion
575 failed after FMNL2-KD. Bar = 10 μ m. **(F)** Western blot analysis for FMNL2 expression
576 in the control group, FMNL2-KD group and rescue group. Relative intensity of FMNL2
577 and tubulin was assessed by densitometry. **(G)** DIC images of FMNL2-KD oocytes and
578 rescue oocytes after 12 h culture. **(H)** Rate of polar body extrusion after 12 h culture of
579 the FMNL2-KD group and rescue group. *, significant difference ($P < 0.05$). **(I)** Rate
580 of large polar body extrusion after 12 h culture in the FMNL2-KD group and rescue
581 group. ***, significant difference ($P < 0.001$). **(J)** Rate of polar body extrusion after 12
582 h culture of the control group and FMNL2+3-KD group. *, significant difference ($P <$
583 0.05). **(K)** Rate of large polar body extrusion after 12 h culture in the control group and
584 FMNL2+3-KD group. ***, significant difference ($P < 0.001$).

585 **Figure 3. Knockdown of FMNL2 disrupts spindle localization during mouse**
586 **oocyte meiosis. (A)** Time-lapse microscopy showed that spindle migration failed after
587 FMNL2-KD. Green, tubulin-EGFP. Bar = 10 μ m. **(B)** Representative images and the

588 proportion of spindle migration after 9.5 h of culture in the control group and FMNL2-
589 KD oocyte group. White, actin; green, tubulin; magenta, DNA. Bar = 10 μ m. *,
590 significant difference ($P < 0.05$). (C) Representative images and the proportion of
591 spindle migration after 9.5 h of culture in the FMNL2-KD group and rescue oocyte
592 group. magenta, DNA. Bar = 10 μ m. *, significant difference ($P < 0.01$).

593 **Figure 4. Knockdown of FMNL2 disrupts actin assembly during mouse oocyte**
594 **meiosis. (A)** Representative images of actin distribution at the oocyte cortex and the
595 fluorescent intensities in the control group and FMNL2-KD group ($P > 0.1$). White,
596 actin; green, tubulin; magenta, DNA. Bar = 10 μ m. **(B)** Representative images of actin
597 distribution in the oocyte cytoplasm and the fluorescent intensities in the control group
598 and FMNL2-KD group. White, actin; green, tubulin; magenta, DNA. Bar = 10 μ m.
599 ****, significant difference ($P < 0.0001$). **(C)** Representative images of actin
600 distribution in the oocyte cytoplasm and the fluorescent intensities in the FMNL2-KD
601 group and rescue group. White, actin; magenta, DNA. Bar = 10 μ m. ****, significant
602 difference ($P < 0.0001$) **(D)** Mass spectrometry results showed that FMNL2 was related
603 to many actin-related proteins. **(E)** Co-IP results showed that FMNL2 was correlated
604 with Arp and Formin2 but not with Profilin and Fascin. **(F)** Arp2 protein expression
605 significantly increased in the FMNL2-KD oocytes compared with the control oocytes.
606 Arp2 protein expression significantly decreased in the rescue oocytes compared with
607 the FMNL2-KD oocytes. **, significant difference ($P < 0.01$). **(G)** Formin2 protein
608 expression significantly decreased in the FMNL2-KD oocytes compared with the
609 control oocytes. Formin2 protein expression significantly increased in the rescue

610 oocytes compared with the FMNL2-KD oocytes. **, significant difference ($P < 0.01$).

611 **Figure 5. FMNL2 regulates endoplasmic reticulum distribution during mouse**

612 **oocytes maturation.** **(A)** Co-IP results showed that FMNL2 was correlated with INF2.

613 **(B)** Mass spectrometry results showed that FMNL2 was associated with ER-related

614 proteins. **(C)** Representative images of ER distribution in the oocyte cytoplasm in the

615 control group and FMNL2-KD group. In FMNL2-KD oocytes, ER agglomerated in

616 cytoplasm (white arrow). Red, ER; Blue, DNA. Bar = 10 μ m. **(D)** Abnormal distribution

617 of ER significantly increased in the FMNL2-KD oocytes compared with the control

618 oocytes. *, significant difference ($P < 0.05$). **(E)** Grp78 and Chop protein expression

619 significantly increased in the FMNL2-KD oocytes compared with the control oocytes.

620 The band intensity analysis also confirmed this finding. *, significant difference ($P <$

621 0.05). **(F)** Representative images of ER distribution in the oocyte cytoplasm in the

622 FMNL2-KD group and rescue group. Red, ER; Blue, DNA. Bar = 10 μ m. **(G)** Abnormal

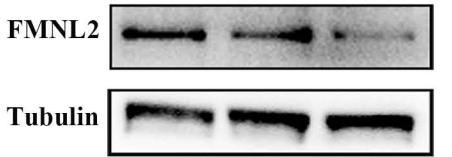
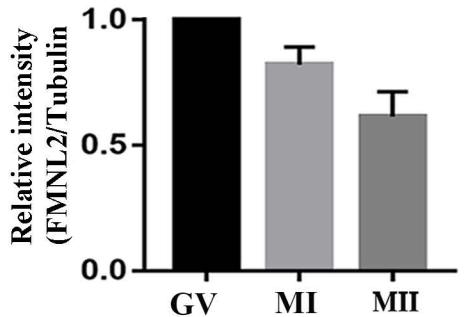
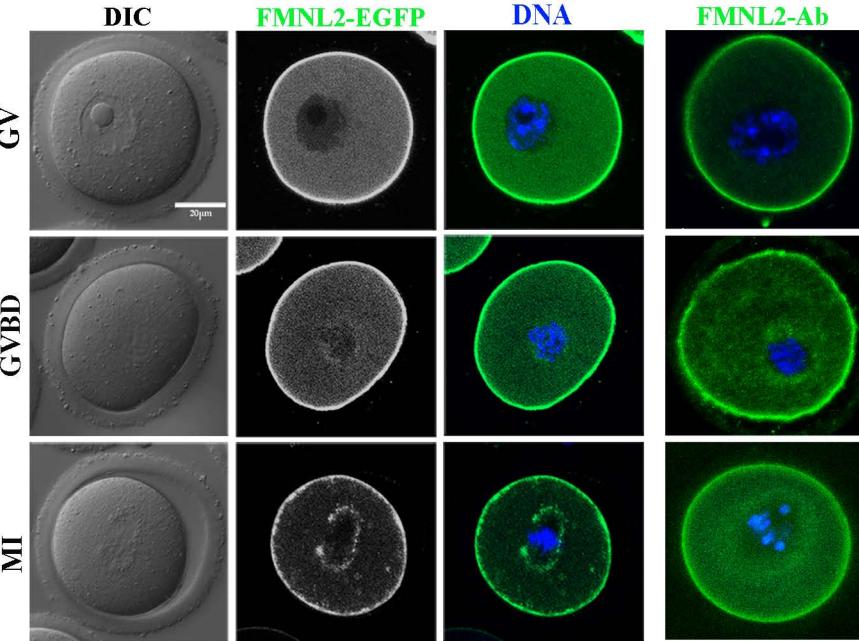
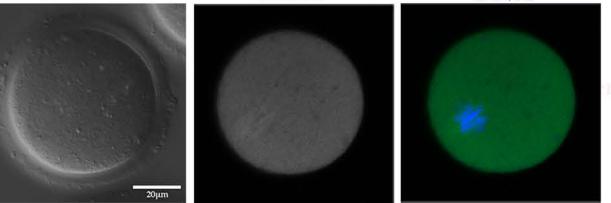
623 distribution of ER significantly decreased in the rescue oocytes compared with the

624 FMNL2-KD oocytes. *, significant difference ($P < 0.05$). **(H)** Grp78 protein expression

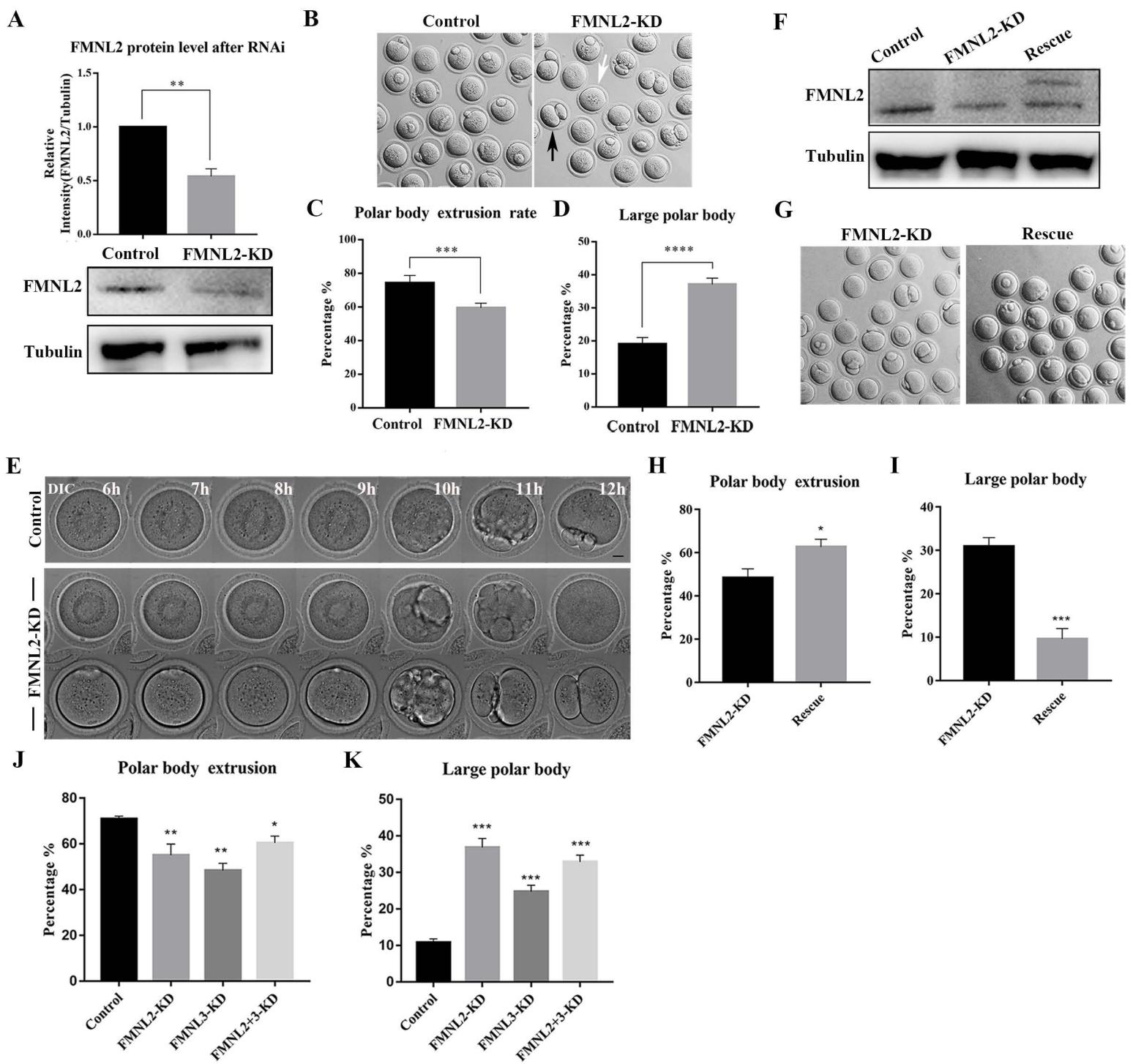
625 significantly decreased in the rescue oocytes compared with the FMNL2-KD oocytes.

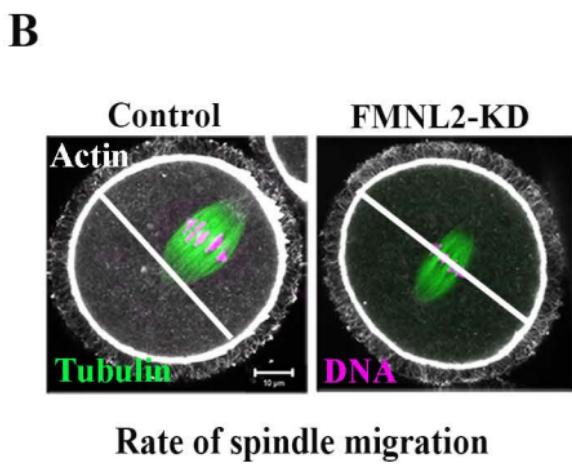
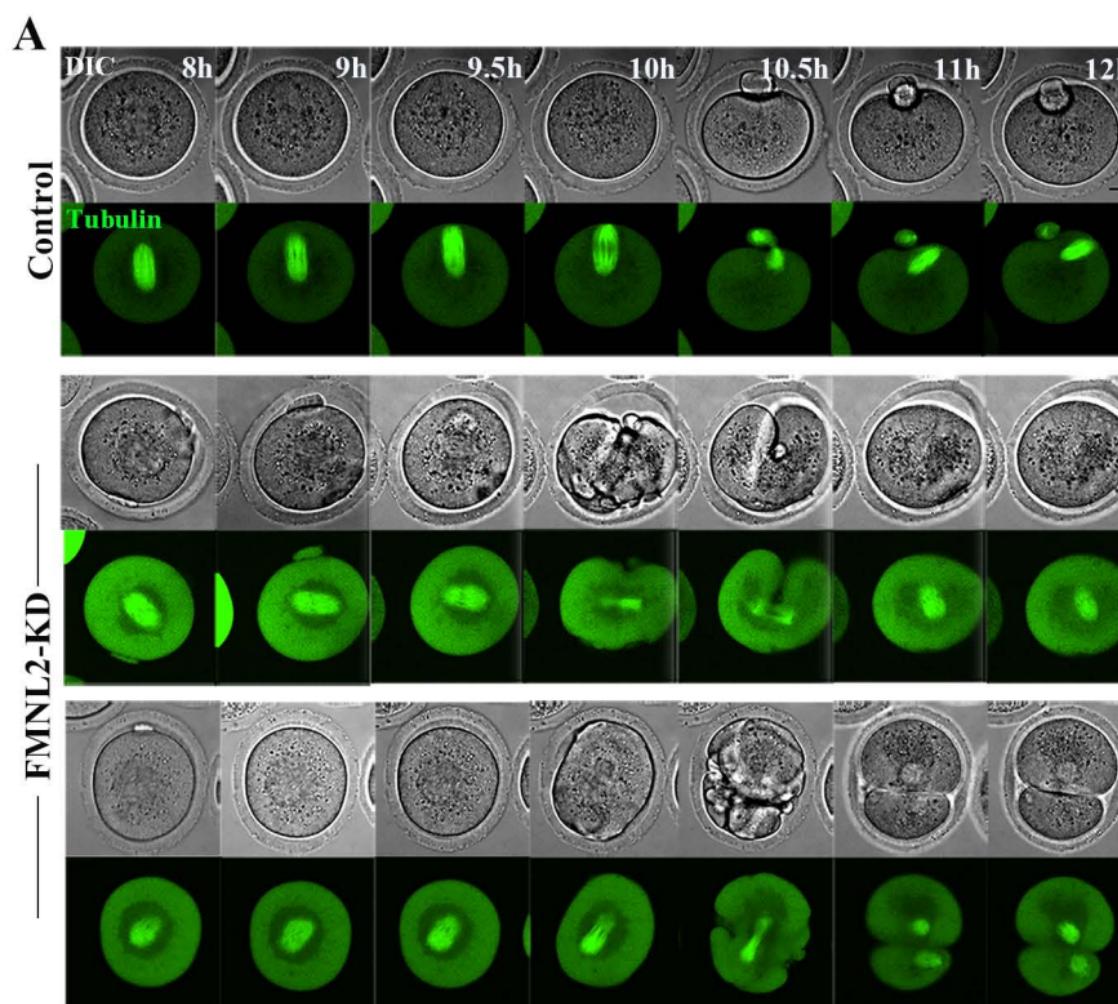
626 The band intensity analysis also confirmed this finding. **, significant difference ($P <$

627 0.01).

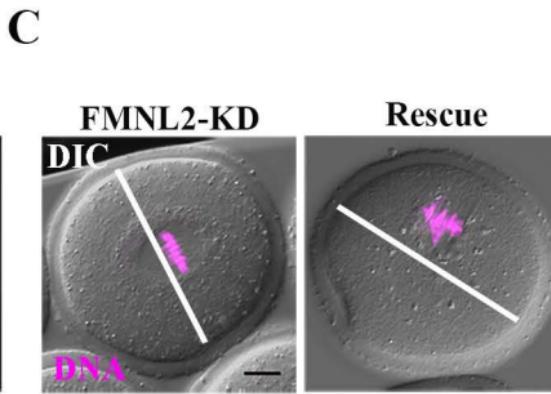
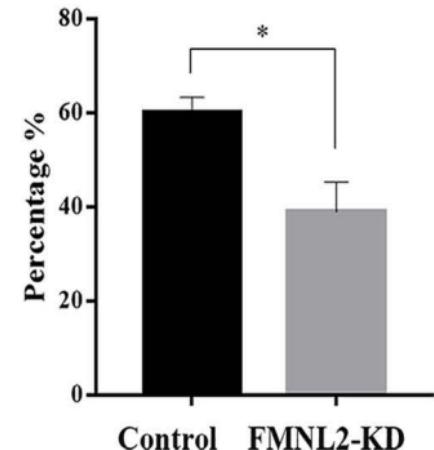




628 **Figure 6. FMNL2 regulates mitochondrial distribution during mouse oocytes**

629 **maturation.** **(A)** Mass spectrometry results showed that FMNL2 was related to many

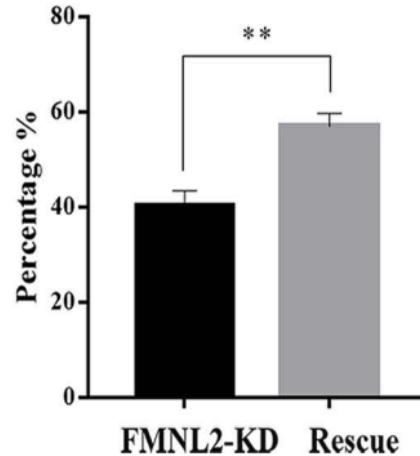

630 mitochondria-related proteins. **(B)** Representative images of mitochondrial distribution

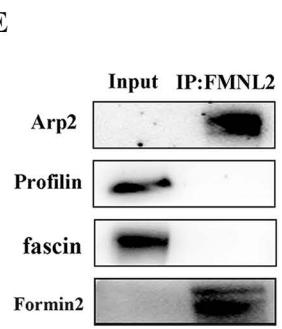
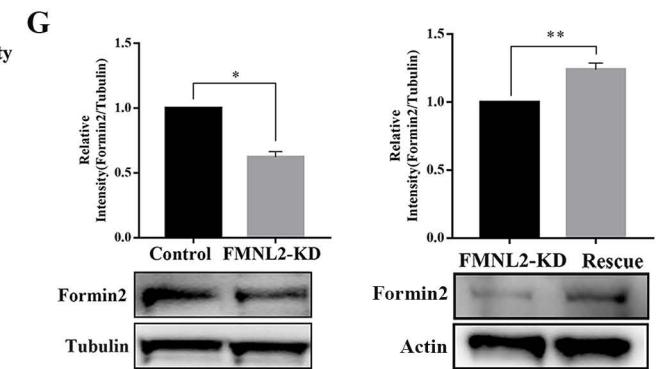
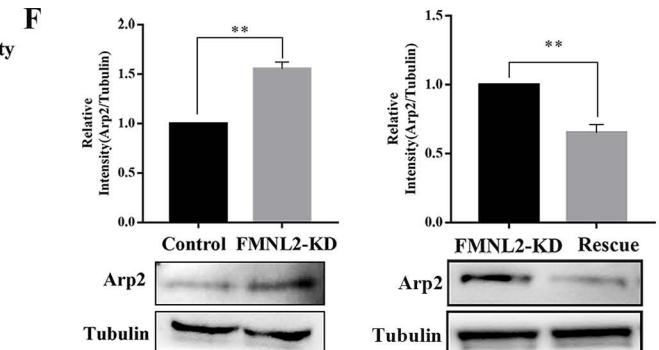
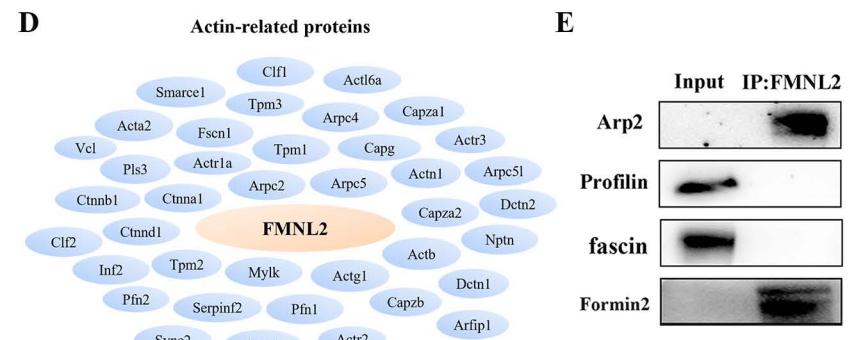
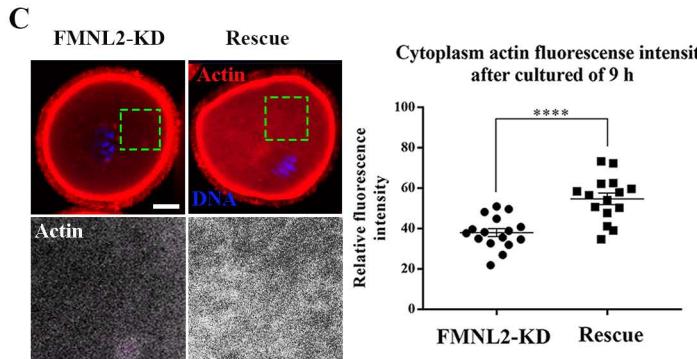
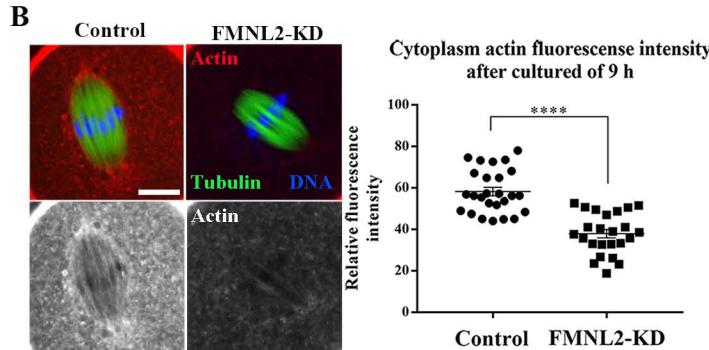
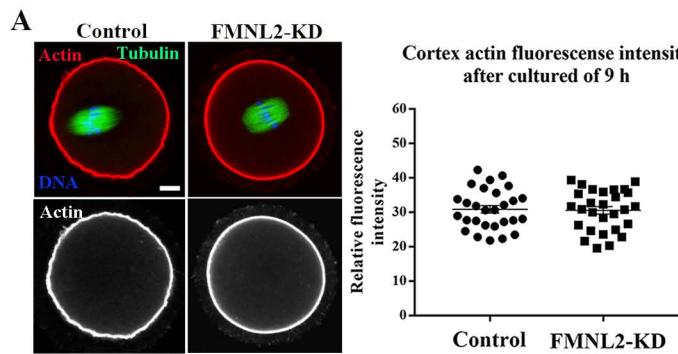


631 in the oocyte cytoplasm in the control group and FMNL2-KD group. In FMNL2-KD

632 oocytes, mitochondrial agglomerated in cytoplasm (white arrow). Green, Mito. Bar =
633 20 μ m. **(C)** Abnormal distribution of mitochondrial significantly increased in the
634 FMNL2-KD oocytes compared with the control oocytes. *, significant difference ($P <$
635 0.05). **(D)** Representative images of mitochondrial distribution in the oocyte cytoplasm
636 in the FMNL2-KD group and rescue group. In FMNL2-KD oocytes, mitochondrial
637 agglomerated in cytoplasm (white arrow). Red, Mito; Blue, DNA. Bar = 20 μ m. **(E)**
638 Abnormal distribution of mitochondrial significantly decreased in the rescue oocytes
639 compared with the FMNL2-KD oocytes. **, significant difference ($P < 0.01$). **(F)** The
640 typical picture for JC1 green channel and red channel after FMNL2-KD. **(G)** The JC1
641 signal (red/green ratio) after FMNL2-KD compare with the control group, the JC-1
642 red/green fluorescence ratio was significantly reduced in FMNL2-KD groups. Bar = 20
643 μ m. **, $P < 0.01$. **(H)** cofilin protein expression significantly decreased in the FMNL2-
644 KD oocytes compared with the control oocytes. The band intensity analysis also
645 confirmed this finding. *, significant difference ($P < 0.05$).

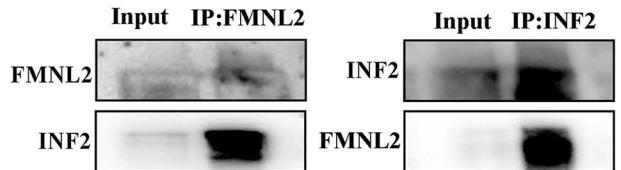


A**B****C****Negative control**

rge

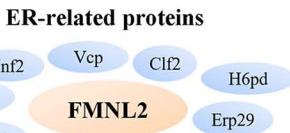


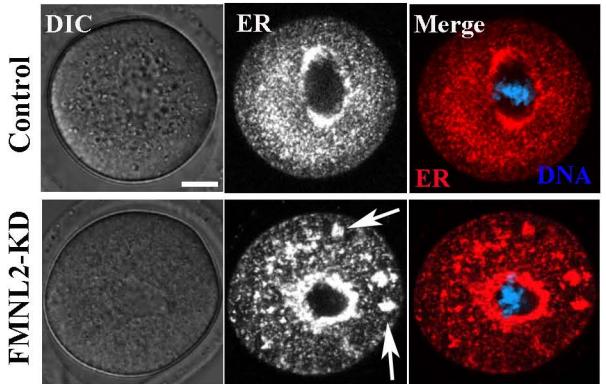








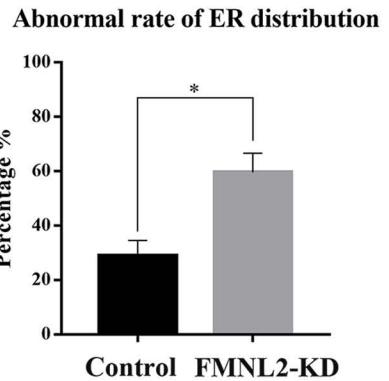
Rate of spindle migration

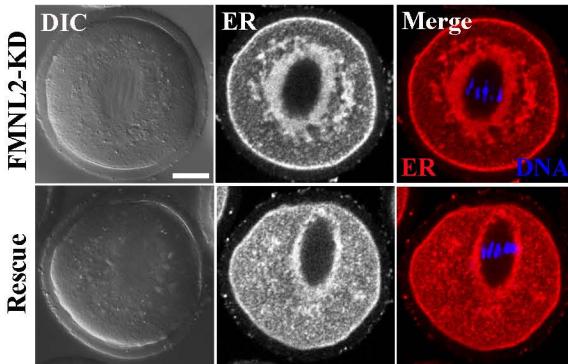


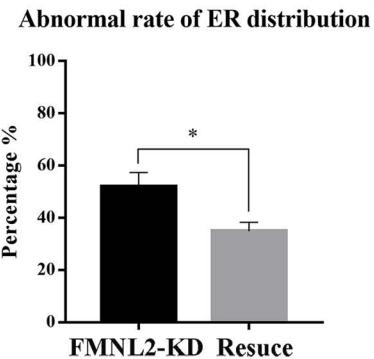
Rate of spindle migration

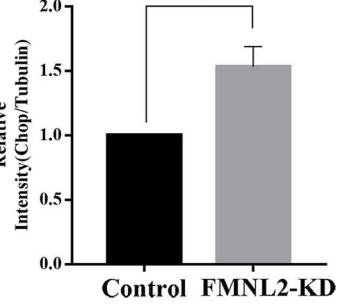
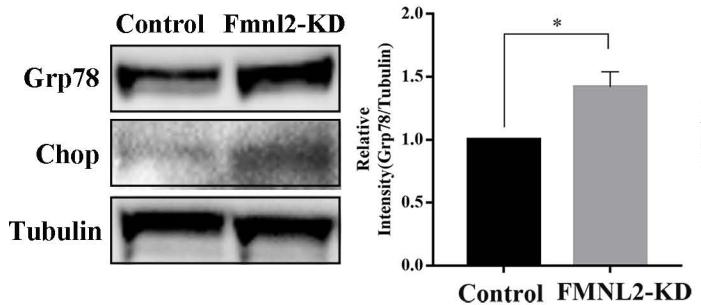


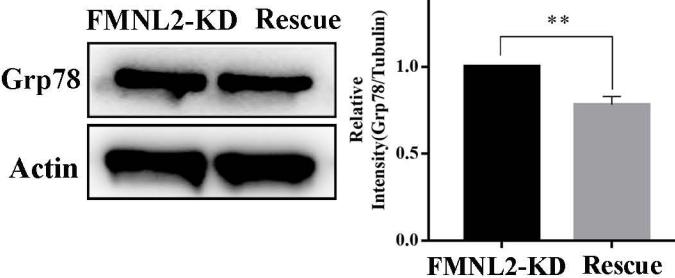

A

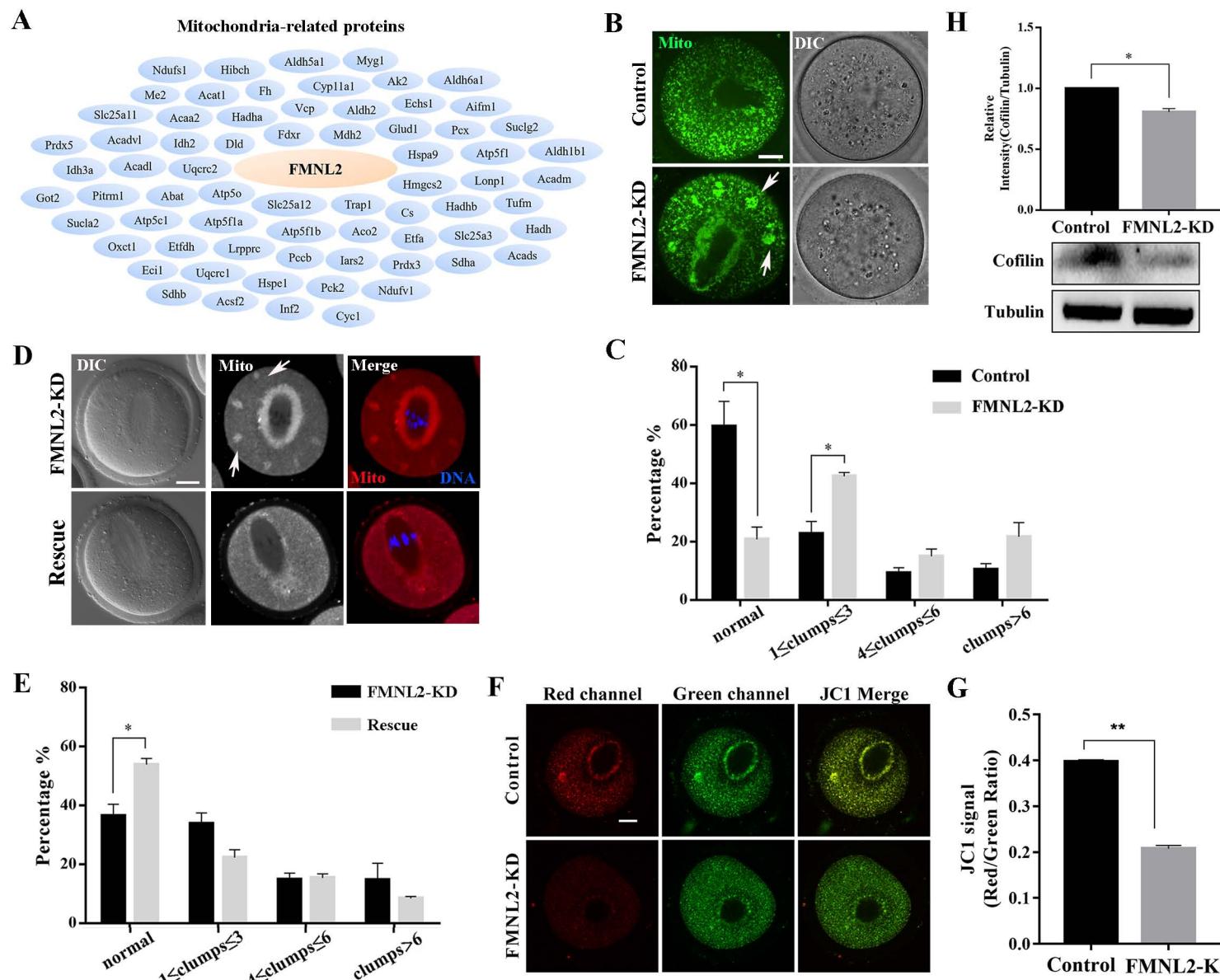

B


C


D



F


G



E

H

