

1 Novel Cyclic Homogeneous 2 Oscillation Detection Method for 3 High Accuracy and Specific 4 Characterization of Neural Dynamics

5 **Hohyun Cho^{1,2*}, Markus Adamek^{1,2}, Jon T. Willie^{1,2}, Peter Brunner^{1,2*}**

*For correspondence:

hohyun@wustl.edu (HC);
pbrunner@wustl.edu (PB)

6 ¹Department of Neurosurgery, Washington University School of Medicine, St. Louis,
7 MO, USA; ²National Center for Adaptive Neurotechnologies, St. Louis, MO, USA

8

9 **Abstract** Detecting temporal and spectral features of neural oscillations is essential to
10 understanding dynamic brain function. Traditionally, the presence and frequency of neural
11 oscillations are determined by identifying peaks over 1/f noise within the power spectrum.
12 However, this approach solely operates within the frequency domain and thus cannot adequately
13 distinguish between the fundamental frequency of a non-sinusoidal oscillation and its harmonics.
14 Non-sinusoidal signals generate harmonics, significantly increasing the false-positive detection
15 rate — a confounding factor in the analysis of neural oscillations. To overcome these limitations,
16 we define the fundamental criteria that characterize a neural oscillation and introduce the Cyclic
17 Homogeneous Oscillation (CHO) detection method that implements these criteria based on an
18 auto-correlation approach that determines the oscillation's periodicity and fundamental
19 frequency. We evaluated CHO by verifying its performance on simulated sinusoidal and
20 non-sinusoidal oscillatory bursts convolved with 1/f noise. Our results demonstrate that CHO
21 outperforms conventional techniques in accurately detecting oscillations. Specifically, we
22 determined the sensitivity and specificity of CHO as a function of signal-to-noise ratio (SNR). We
23 further assessed CHO by testing it on electrocorticographic (ECoG, 8 subjects) and
24 electroencephalographic (EEG, 7 subjects) signals recorded during the pre-stimulus period of an
25 auditory reaction time task and on electrocorticographic signals (6 SEEG subjects and 6 ECoG
26 subjects) collected during resting state. In the reaction time task, the CHO method detected
27 auditory alpha and pre-motor beta oscillations in ECoG signals and occipital alpha and pre-motor
28 beta oscillations in EEG signals. Moreover, CHO determined the fundamental frequency of
29 hippocampal oscillations in the human hippocampus during the resting state (6 SEEG subjects).
30 In summary, CHO demonstrates high precision and specificity in detecting neural oscillations in
31 time and frequency domains. The method's specificity enables the detailed study of
32 non-sinusoidal characteristics of oscillations, such as the degree of asymmetry and waveform of
33 an oscillation. Furthermore, CHO can be applied to identify how neural oscillations govern
34 interactions throughout the brain and to determine oscillatory biomarkers that index abnormal
35 brain function.

36

37 **Introduction**

38 Neural oscillations in the mammalian brain are thought to play an important role in coordinating
39 neural activity across different brain regions, allowing for the integration of sensory information,

40 the control of motor movements, and the maintenance of cognitive functions (*Pfurtscheller and*
41 *Da Silva, 1999; Caplan et al., 2003; Buzsaki and Draguhn, 2004; Jensen and Mazaheri, 2010; Gi-*
42 *raud and Poeppel, 2012; Schalk, 2015; Fries, 2015*). Detecting neural oscillations is important in
43 neuroscience as it helps unravel the mysteries of brain function, understand brain disorders, in-
44 vestigate cognitive processes, track neurodevelopment, develop brain-computer interfaces, and
45 explore new therapeutic approaches. Thus, detecting and analyzing the “when”, the “where”, and
46 the “what” of neural oscillations is an essential step in understanding the processes that govern
47 neural oscillations.

48 For example, detecting the onset and offset of a neural oscillation (i.e., the “when”) is necessary
49 to understand the relationship between oscillatory power/phase and neural excitation, an essen-
50 tial step in explaining an oscillation’s excitatory or inhibitory function (*Pfurtscheller and Da Silva,*
51 *1999; Canolty et al., 2006; Jensen and Mazaheri, 2010; Haegens et al., 2011; de Pesters et al., 2016*).
52 Localizing the brain area or layer that generates the oscillation (i.e., the “where”) provides neu-
53 roanatomical relevance to cognitive and behavioral functions (*Buzsaki and Draguhn, 2004; Miller*
54 *et al., 2010*). Lastly, determining the oscillation’s fundamental frequency (i.e., the “what”) indicates
55 underlying brain states (*Penfield and Jasper, 1954; Buzsaki and Draguhn, 2004*). Together, the
56 “when”, the “where”, and the “what” can be seen as the fundamental pillars in investigating the
57 role of oscillations in interregional communication throughout the brain (*Fries, 2015*). These fun-
58 damental pillars can also provide insight into the functional purpose (i.e., the “why”), underlying
59 mechanisms (i.e., the “how”), and pathologies (i.e., the “whom”) of neural oscillations (*Buzsaki and*
60 *Draguhn, 2004; Buzsaki, 2006*).

61 The detection of neural oscillations has historically been extensively studied in the frequency-
62 (*Wen and Liu, 2016; Donoghue et al., 2020; Ostlund et al., 2022*), time- (*Hughes et al., 2012; Gips*
63 *et al., 2017*), and time-frequency domains (*Chen et al., 2011; Wilson et al., 2022; Neymotin et al.,*
64 *2022*). With the notable exception of *Gips et al. 2017*, these studies assume that neural oscillations
65 are predominantly sinusoidal and stationary in their frequency. However, there is an increasing re-
66 alization that neural oscillations are actually non-sinusoidal and exhibit spurious phase-amplitude
67 coupling (*Belluscio et al., 2012; Cole et al., 2017; Scheffer-Teixeira and Tort, 2016; Gips et al., 2017;*
68 *Donoghue et al., 2022*). A recent review paper on methodological issues in analyzing neural oscilla-
69 tions (*Donoghue et al., 2022*) identified determining the fundamental frequency of non-sinusoidal
70 neural oscillations as *the most challenging problem* in building an understanding of how neural os-
71 cillations govern interactions throughout the brain.

72 Fast Fourier Transform (FFT) is the most commonly used method to detect neural oscillations.
73 The FFT separates a neural signal into sinusoidal components within canonical bands of the fre-
74 quency spectrum (e.g., theta, alpha, beta). The components of these canonical bands are typically
75 considered to be functionally independent and involved in different brain functions. However,
76 when applied to non-sinusoidal neural signals, the FFT produces harmonic phase-locked compo-
77 nents at multiples of the fundamental frequency. While the asymmetric nature of the fundamental
78 oscillation can be of great physiological relevance (*Mazaheri and Jensen, 2008; Cole et al., 2017;*
79 *Donoghue et al., 2022*), its harmonics are considered to be an artifact produced by the FFT that
80 can confound the detection and physiological interpretation of neural oscillation (*Belluscio et al.,*
81 *2012; Donoghue et al., 2022*).

82 An example of an unfiltered electrocorticographic recording from auditory cortex (*Figure 1A*)
83 illustrates the non-sinusoidal nature of neural oscillations. The associated FFT-based power spec-
84 trum (*Figure 1B*) exhibits multiple peaks over 1/f noise even though only one oscillatory signal is
85 visibly present in the time domain signal. Whether the peaks over 1/f at 12 and 18 Hz, are har-
86 monics of 6 Hz oscillations or independent oscillations remains unknown. This ambiguity affects
87 the ability to accurately and efficiently identify neural oscillations and understand their role in cog-
88 nition and behavior. For this illustrative example of non-sinusoidal neural oscillation, we used a
89 phase-phase coupling analysis (*Belluscio et al., 2012*) to determine whether the exhibited 18 Hz
90 beta oscillation is a harmonic of the 6 Hz theta oscillation. This analysis confirmed that the beta os-

91 cillation was indeed a harmonic of the theta oscillation (**Figure 1E** and F). In marked contrast, for a
92 sinusoidal neural oscillation, a phase-phase coupling analysis could not fully ascertain whether the
93 oscillations are phase-locked and thus are harmonics of each other (**Figure 1G-L**). This ambiguity,
94 combined with the exorbitant computational complexity of the entailed permutation test and the
95 requirement to perform the analysis across all cross-frequency bands over all channels and trials
96 render phase-phase coupling impracticable for determining the fundamental frequency of neural
97 oscillations in real-time and, thus, the use in closed-loop neuromodulation applications.

98 In this study, we aim to define the principle criteria that characterize a neural oscillation and to
99 synthesize these criteria into a method that accurately determines the duration ("when"), location
100 ("where"), and fundamental frequency ("what") of non-sinusoidal neural oscillations. For this pur-
101 pose, we introduce the Cyclic Homogeneous Oscillation (CHO) detection method to identify neural
102 oscillations using an auto-correlation analysis to identify whether a neural oscillation is an inde-
103 pendent oscillation or a harmonic of another oscillation. Auto-correlation is a statistical measure
104 that assesses the degree of similarity between a time series and a delayed version of itself.

105 Thus, auto-correlation can explain the periodicity of a signal without assuming that the signal
106 is sinusoidal. Further, the peaks in the output of the auto-correlation function indicate the fun-
107 damental frequency of the neural oscillation. As shown in **Figure 2**, irrespective of the shape of
108 neural oscillation (**Figure 2A** and C), the fundamental frequency can be determined from the pos-
109 itive peak-to-peak intervals (see **Figure 2B** and D). Despite auto-correlation being a well-known
110 method to identify the fundamental frequency of a signal, its application to neural oscillations has
111 been impeded by the requirement to accurately determine the onset and offset of the oscillation.

112 To overcome this limitation, we combine the auto-correlation method with the Oscillation Event
113 (OEvent) method (**Neymotin et al., 2022**) to determine the onset/offset of oscillations. In this ap-
114 proach, OEvent determines bounding boxes in the time-frequency domain that mark the onset
115 and offset of suspected oscillations. Each bounding box is generated by identifying a period of
116 significantly increased power from averaged power spectrum. To further improve OEvent, we re-
117 placed the empirical threshold that identifies bounding boxes in the time-frequency domain with
118 a parametric threshold driven by an estimation of the underlying 1/f noise (**Donoghue et al., 2020**),
119 as shown in **Figure 3A**.

120 Furthermore, we improved OEvent to reject any short-cycled oscillations that could represent
121 evoked potentials (EP), event-related potentials (ERP), or spike activities, as shown in **Figure 3B**. In
122 general, EPs or ERPs in neural signals generate less than two cycles of fluctuations. Large-amplitude
123 EPs, ERPs, and spike activities can result in spurious oscillatory power in the frequency domain
124 (**de Cheveigné and Nelken, 2019; Donoghue et al., 2020, 2022**).

125 In the final step, we determine the oscillation's periodicity and fundamental frequency by iden-
126 tifying positive peaks in the auto-correlation of the signal. As shown for a representative oscillation
127 in **Figure 3C**, the center frequency of the highlighted bounding box is 24 Hz, but the periodicity of
128 the underlying raw signal does not match the calculated fundamental frequency of 7 Hz. Conse-
129 quently, this bounding box at 24 Hz will be rejected. Finally, we merge those remaining bounding
130 boxes that neighbor each other in the frequency domain and overlap more than 75% (**Neymotin**
131 **et al., 2022**) in time.

132 In summary, the presented CHO method identifies neural oscillations that fulfill the following
133 three criteria: 1) oscillations (peaks over 1/f noise) must be present in the time and frequency
134 domains; 2) oscillations must exhibit at least two full cycles; and 3) oscillations must have auto-
135 correlation. These criteria are supported by studies in the neuroscience literature (**Buzsaki and**
136 **Draguhn, 2004; Niedermeyer and da Silva, 2005; Buzsaki, 2006; Cohen, 2014; de Cheveigné and**
137 **Nelken, 2019; Donoghue et al., 2020, 2022**). The synthesis of these criteria into the presented
138 method allows us to detect and identify non-sinusoidal oscillations and their fundamental fre-
139 quency. This is because criteria #1 (i.e., the presence of an oscillation) and #2 (i.e., the length of
140 the oscillation) identify potential oscillations, which are then tested to be fundamental oscillations
141 using an auto-correlation analysis using criteria #3 (i.e., the periodicity of an oscillation).

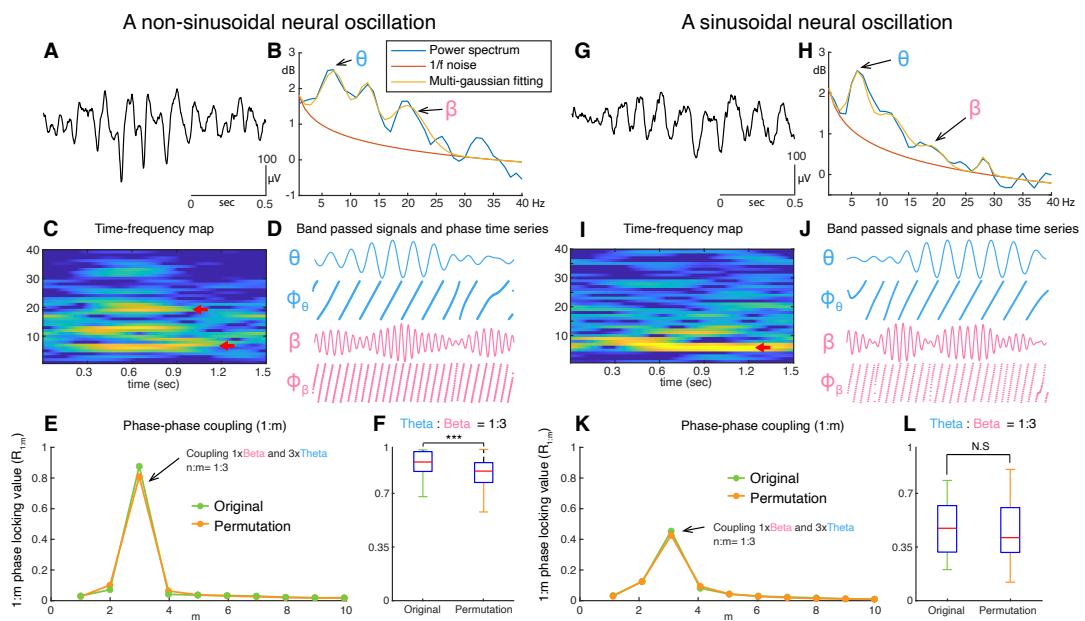


Figure 1. Examples of non-sinusoidal and sinusoidal neural oscillations recorded from the human auditory cortex. Detecting the presence, onset/offset, and fundamental frequency of non-sinusoidal oscillations is challenging. This is because the power spectrum of the non-sinusoidal theta-band oscillation (A) exhibits multiple harmonic peaks in the alpha and beta bands (B). The peaks of these harmonics are also exhibited in the time-frequency domain (C). To determine whether these peaks are independent oscillations or harmonics of the fundamental frequency, we tested whether fundamental theta oscillation and potential beta-band harmonic oscillations exhibit a 1:3 phase-locking (D-F), i.e., whether the beta-band oscillation is a true 3rd harmonic of the fundamental theta-band oscillation. In our test, we found that the theta-band oscillation was significantly phase-locked to the beta-band oscillation with a 1:3 ratio in their frequencies (F). This means that the tested theta- and beta-band oscillations are part of one single non-sinusoidal neural oscillation. We applied the same statistical test to a sinusoidal neural oscillation (G). Since this neural oscillation closely assembles a sinusoidal shape, it does not exhibit any prominent harmonic peaks in the alpha and beta bands within the power spectrum (H) and time-frequency domain (I). Consequently, our test found that the phase of the theta-band and beta-band oscillations were not phase-locked (J-L). This means that the tested oscillation is a sinusoidal neural theta-band oscillation.

142 To verify and validate CHO, we applied the above-presented principle criteria on simulated non-
 143 sinusoidal signals and human electrophysiological signals, including electrocorticographic (ECoG)
 144 signals recorded from the lateral brain surface, electroencephalographic signals (EEG) recorded
 145 from the scalp, and local field potentials recorded from the hippocampus using stereo EEG (SEEG).
 146 We further validated our approach by comparing CHO to other commonly used methods.

147 To determine the spectral accuracy in detecting the peak frequency of non-sinusoidal oscillations, we compared CHO to established methods, including the fitting of oscillations using 1/f
 148 (FOOOF, also known as *specparam*, [Donoghue et al. 2020](#)), the OEvent method ([Neymotin et al., 2022](#)), and the Spectral Parameterization Resolved in Time (SPRiNT, [Wilson et al. 2022](#)) methods.
 149 Moreover, to determine the spectro-temporal accuracy in detecting both the peak frequency and
 150 the onset/offset of non-sinusoidal oscillations, we compared CHO with the OEvent method.

151 The selection of FOOOF, SPRiNT, and OEvent is based on their fundamental approaches. To the
 152 best of our knowledge, FOOOF is the most representative method for detecting the peak frequency
 153 of neural oscillations. SPRiNT expands the FOOOF method into the time-frequency domain, and
 154 OEvent can determine the onset/offset of the detected oscillations.

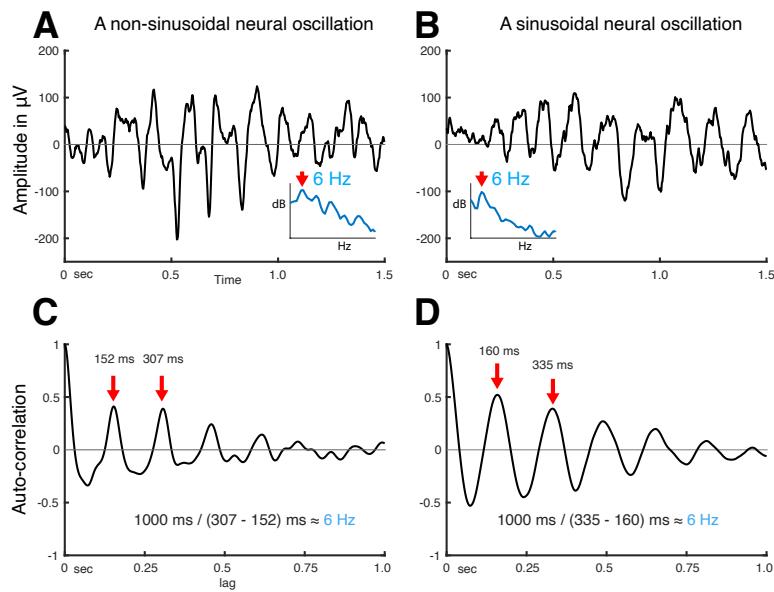


Figure 2. Using auto-correlation to determine the fundamental frequency of non-sinusoidal and sinusoidal neural oscillations recorded from the human auditory cortex. (A) Temporal dynamics of non-sinusoidal (left) and sinusoidal (right) neural oscillation and (B) their auto-correlation. The periodicity of peaks in the auto-correlation reveals the fundamental frequency of the underlying oscillation. Asymmetry in peaks and troughs of the auto-correlation is indicative of a non-sinusoidal oscillation.

157 Results

158 The following sections describe the results of our study: The first section presents simulation re-
159 sults by comparing the accuracy of CHO with that of existing methods in detecting non-sinusoidal
160 oscillations. The second section reports physiological results by comparing the accuracy of CHO
161 with that of established methods in detecting oscillations within in-vivo recordings.

162 Synthetic results

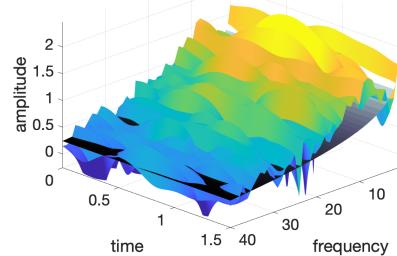
163 To determine the specificity and sensitivity of CHO in detecting neural oscillations, we applied CHO
164 to synthetic non-sinusoidal oscillatory bursts convolved with 1/f noise, also known as pink noise,
165 which has a power spectral density that is inversely proportional to the frequency of the signal.
166 As shown in *Figure 4*, we generated 5s-long 1/f signals composed of pink noise and added non-
167 sinusoidal oscillations of different lengths (one cycle, two-and-a-half cycles, 1s-duration, and 3s-
168 duration). The rightmost panel of *Figure 4A* shows two examples of non-sinusoidal oscillations
169 (two-and-a-half cycles and 2s-duration) along with their power spectra. As can be seen in *Figure 4A*,
170 longer non-sinusoidal oscillations exhibit stronger harmonic peaks.

171 Our results in *Figure 4B-D* demonstrate that CHO outperforms conventional techniques in speci-
172 ficity and accuracy for detecting the peak frequency of non-sinusoidal oscillations. High specificity
173 depends on high true-negative and low false-positive rates. For conventional methods, we ex-
174 pected harmonic oscillations to increase the false-positive rate and one-cycled oscillations to de-
175 crease the true-negative rate. As expected, conventional methods detected harmonic and one-
176 cycled oscillations as true oscillations. For example, the average specificity of SPRiNT was below
177 0.3, which was significantly lower than the robust specificity of CHO across the entire range of SNR.

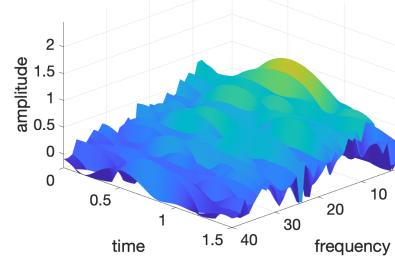
178 We also observed that CHO requires a higher SNR to detect the presence of oscillations. Sensi-
179 tivity depends on the true-positive and the false-negative rates. We found existing methods to be
180 overly sensitive in detecting the presence of oscillations. At the same time, this severely limits their
181 specificity and, thus, their ability to accurately detect the presence and frequency of an oscillation.
182 Based on our physiological datasets, we found the average SNR of oscillations in EEG and ECoG

A. Remove 1/f noise in time-frequency map

Time-frequency map

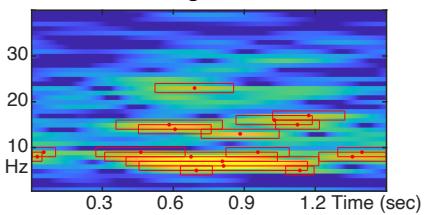


Flattened time-frequency map

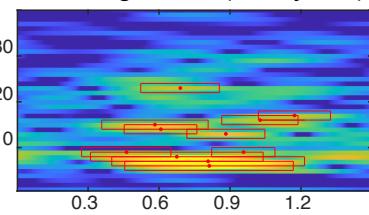


B. Reject short cycles (< 2 cycles)

Initial bounding boxes above 1/f

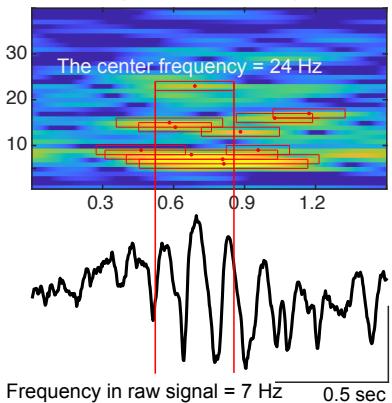


Bounding boxes (> 2 cycles)

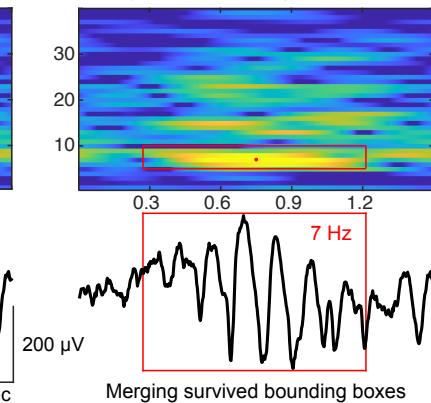


C. Reject boxes with different periodicity with its autocorrelation

Bounding boxes (> 2 cycles)



Merged bounding boxes



Checking the center frequency equals to frequency in raw signal (e.g. 24 Hz = 7 Hz ?)

Figure 3. Procedural steps of CHO. **(A)** First, to identify periodic oscillations, CHO removes the underlying 1/f aperiodic noise in the time-frequency space and generates initial bounding boxes of candidate oscillations. **(B)** In the second step, CHO rejects bounding boxes that exhibit less than two oscillatory cycles. **(C)** In the final step, CHO limits the analysis to only those bounding boxes that exhibit the same frequency in the time-frequency map and auto-correlation. Each remaining bounding box is characterized by onset/offset, frequency range, center frequency, and number of cycles.

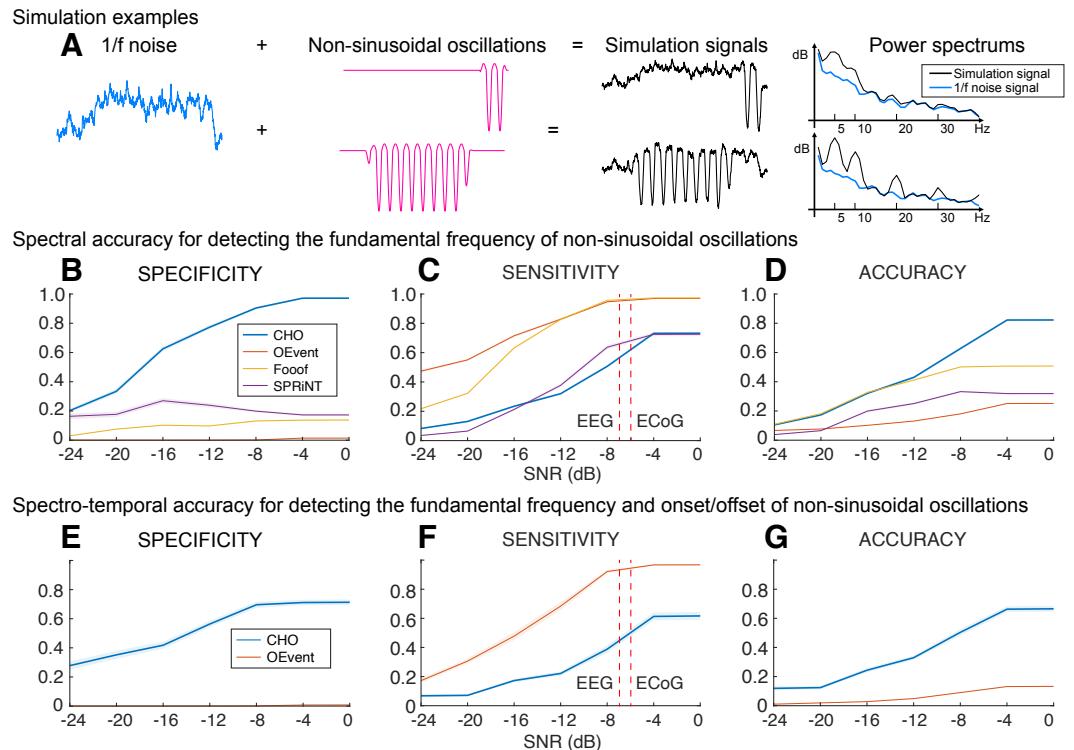


Figure 4. Performance of CHO in detecting synthetic non-sinusoidal oscillations. (A) We evaluated CHO by verifying its specificity, sensitivity, and accuracy in detecting the fundamental frequency of non-sinusoidal oscillatory bursts convolved with 1/f noise. (B-D) CHO outperformed existing methods in detecting the fundamental frequency of non-sinusoidal oscillation (FOOOF: fitting oscillations one over f (*Donoghue et al., 2020*), OEvent (*Neymotin et al., 2022*): Oscillation event detection method, and SPRiNT (*Wilson et al., 2022*): Spectral Parameterization Resolved in Time) in specificity and accuracy, but not in sensitivity. CHO exhibited fewer false-positive and more true-negative detections than existing methods. (C) However, at SNR-levels of alpha oscillations found in EEG and ECoG recordings (i.e., -7 dB and -6 dB, respectively), the sensitivity of CHO in detecting the peak frequency of non-sinusoidal oscillation is comparable to that of SPRiNT. (D) This means that the overall accuracy of CHO was higher than that of existing methods. (E-G) CHO outperformed existing methods in detecting the fundamental frequency and onset/offset of non-sinusoidal oscillation. (F) Similar to the results shown in (C) CHO can effectively detect the fundamental frequency and onset/offset for more than half of all oscillations at SNR-levels of alpha oscillations found in EEG and ECoG recordings.

Figure 4—figure supplement 1. SNR Histograms of EEG and ECoG.

Figure 4—figure supplement 2. Synthetic sinusoidal oscillations.

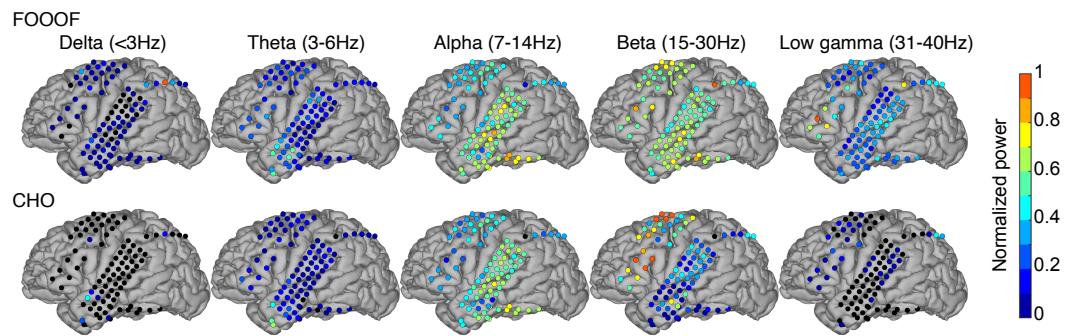


Figure 5. Validation of CHO in detecting oscillations in ECoG signals. We applied CHO and FOOOF to determine the fundamental frequency of oscillations from ECoG signals recorded during the pre-stimulus period of an auditory reaction time task. FOOOF detected oscillations primarily in the alpha- and beta-band over STG and pre-motor area. In contrast, CHO also detected alpha-band oscillations primarily within STG, and more focal beta-band oscillations over the pre-motor area, but not STG.

Figure 5—figure supplement 1. ECoG results using FOOOF for all subjects.

Figure 5—figure supplement 2. ECoG results using CHO for all subjects.

183 to be -7 dB and -6 dB, respectively (*figure Supplement 1*). When tested at these physiologically-
184 motivated SNR levels, and found that the sensitivity of CHO is comparable to that of SPRiNT. Over-
185 all, when considering the accuracy combined with specificity and sensitivity, CHO outperformed all
186 other methods in detecting the peak frequency of non-sinusoidal oscillations at the physiologically-
187 motivated SNR levels.

188 In addition to determining the accuracy in detecting the presence of oscillations and determin-
189 ing their peak frequency, we also determined the accuracy of all methods in detecting the onset
190 and offset of oscillations. This comparison is limited to OEvent because FOOOF and SPRiNT meth-
191 ods cannot determine the onset and offset of short oscillations. In this analysis, CHO outperformed
192 the OEvent method in specificity but not sensitivity, as shown in *Figure 4E-G*. Specifically, we found
193 performance trends similar to those in our previous simulation result (*Figure 4B-D*). Thus, CHO
194 outperforms conventional techniques in specificity for detecting both the peak frequency and on-
195 set/offset of oscillations.

196 **Empirical results**

197 We further assessed CHO by testing it on electrophysiological signals recorded from human sub-
198 jects. Specifically, we evaluated CHO on electrocorticographic (ECoG, x1-x8, 8 subjects) and elec-
199 troencephalographic (EEG, y1-y7, 7 subjects) signals recorded during the pre-stimulus period of an
200 auditory reaction time task. Furthermore, we also evaluated CHO on signals recorded during rest-
201 ing state from cortical areas and hippocampus using ECoG (ze1-ze8, N=6) and stereo EEG (zs1-zs6,
202 6 subjects).

203 **Electrocorticographic (ECoG) results**

204 In the auditory reaction time task, we expected to observe neural low-frequency oscillations during
205 the pre-stimulus period within task-relevant areas, such as the auditory and motor cortex. As we
206 expected, we found alpha and beta oscillations within these cortical areas. We compared the topo-
207 graphic distribution of the oscillations detected by FOOOF with those detected by CHO. As shown
208 in *Figure 5* for one representative subject, FOOOF detected the presence of alpha, and beta oscil-
209 lations within temporal and motor cortex. In contrast, while CHO also detected alpha oscillations
210 in temporal and motor cortex, it only detected beta oscillations in motor cortex. We found this pat-
211 tern to be consistent across subjects, as shown in *figure Supplement 2* and *figure Supplement 1*.
212 Furthermore, CHO did not detect low gamma oscillations, while FOOOF found several low gamma
213 oscillations.

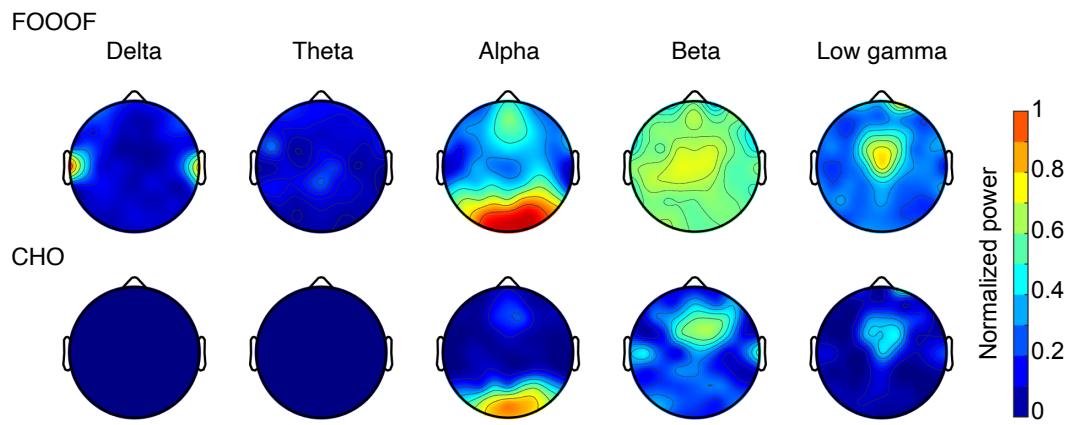


Figure 6. Validation of CHO in detecting oscillations in EEG signals. We applied CHO and FOOOF to determine the fundamental frequency of oscillations from EEG signals recorded during the pre-stimulus period of an auditory reaction time task. FOOOF primarily detected alpha-band oscillations over frontal/visual areas and beta-band oscillations across all areas (with a focus on central areas). In contrast, CHO detected alpha-band oscillations primarily within visual areas and detected more focal beta-band oscillations over the pre-motor area, similar to the ECoG results shown in *Figure 5*.

Figure 6—figure supplement 1. All EEG results using FOOOF.

Figure 6—figure supplement 2. All EEG results using CHO.

214 Electroencephalographic (EEG) results

215 We expected that the EEG would exhibit similar results as seen in the ECoG results. Indeed, the EEG
216 results mainly exhibit alpha and beta oscillations during the pre-stimulus periods of the auditory
217 reaction time task, as shown in *Figure 6*. Specifically, FOOOF found alpha oscillations in mid-frontal
218 and visual areas and beta oscillations throughout all areas of the scalp. In contrast, CHO found
219 more focal visual alpha and pre-motor beta. Furthermore, the low gamma oscillations detected by
220 CHO were also more focal than those detected by FOOOF. We found these results to be consistent
221 across subjects (see *figure Supplement 1* and *figure Supplement 2*).

222 Onset and offset of neural oscillations

223 So far, we have established that CHO can localize beta rhythms within pre-motor cortex in EEG and
224 ECoG. Here, we are interested in determining the accuracy of the onset/offset detection of neural
225 oscillations. For this purpose, we tested whether CHO, applied to signals recorded from auditory
226 cortex during an auditory reaction-time task, can accurately detect the transition between resting
227 and task periods. Specifically, we expected CHO to detect the offset times of neural oscillations
228 after the stimulus onset (i.e., a beep tone that remained until a button was pressed). Based on the
229 principle of event-related de-/synchronization (ERD/ERS, *Pfurtscheller and Da Silva 1999*), cortical
230 neurons may be de-synchronized to process an auditory stimulus. As shown in *Figure 7*, CHO
231 successfully detected offset times of 7 Hz neural oscillations. During the pre-stimulus period, the
232 distribution of the onset time remains uniform, reflecting the subject waiting for the stimulus. In
233 contrast, after the stimulus onset, the distribution of onset times becomes Gaussian, reflecting
234 the variable reaction time to the auditory stimulus. Of note, the detection of onset times peaks
235 950 ms post-stimulus, which occurs significantly later than the button press that happens 200 ms
236 post-stimulus (*Figure 7B*).

237 Similar to the distribution of onset times, the distribution of offset times remained uniform
238 throughout the pre-stimulus period. After stimulus onset, the distribution becomes Gaussian, with
239 a peak of offset detections at 300 ms post-stimulus, or 200 ms post-response (i.e., the button press)
240 (*Figure 7C*).

241 In summary, this means that, on average, the detected 7 Hz oscillations de-synchronized 250 ms
242 and synchronized 900 ms, post-stimulus, respectively.

243 Stereoelectroencephalographic (SEEG) results

244 We also investigated neural oscillations within the hippocampus. Specifically, we were interested in
245 the frequency and duration of hippocampal oscillations, which are known to be non-sinusoidal and
246 a hallmark of memory processing (Buzsaki, 2006; Lundqvist et al., 2016). Using the CHO method,
247 we plotted a representative example of detected hippocampal alpha bursts, as shown in *Figure 8*.
248 As expected, the non-sinusoidal alpha-band oscillations also resulted in harmonic oscillations in
249 the beta band, which, while not clearly visible in the power spectrum (*Figure 8B*), can be clearly
250 seen in the time-frequency analysis (*Figure 8D* and *Figure 8E*). In contrast to the ECoG and EEG
251 results, the frequency of beta-band oscillations in the hippocampus exhibited a frequency close
252 to the alpha-band (8–14 Hz). CHO found primarily alpha-band oscillations in the hippocampus
253 (see *figure Supplement 2*, *figure Supplement 1*). When comparing the consistency between CHO
254 and FOOOF across hippocampal locations, CHO exhibits more specific results with less overlap
255 between alpha and beta locations and almost no detection in the low-gamma band (30–40 Hz). For
256 example, subject zs4 in *figure Supplement 2* shows alpha and beta locations mutually supplement
257 each other when using CHO but not when using the FOOOF method.

258 Frequency and duration of neural oscillations

259 Here, we are interested in identifying the predominant frequency and duration of neural oscillations
260 for specific brain areas during the resting state. For this purpose, we first determined the
261 specific Brodmann area of each recording electrode using an intracranial electrode localization
262 tool, Versatile Electrode Localization Framework (VERA, Adamek et al. 2022). Next, we investigated
263 electrodes belonging to the primary auditory cortex (i.e., Brodmann areas 41 and 42), as shown in
264 *Figure 9A*. We found that 7 and 11 Hz oscillations were the predominant neural oscillations for elec-
265 trodes near the primary auditory cortex. The average duration of an 11 Hz oscillation was 450 ms.
266 Next, our results for primary motor cortex (i.e., Brodmann area 4) showed that 7 Hz was the pre-
267 dominant oscillation frequency in the motor cortex with 450 ms duration on average, as shown in
268 *Figure 9B*. We found that motor cortex exhibits more beta-band oscillations (around 500 ms dura-
269 tion) than the auditory cortex. Next, Broca's area exhibited characteristics similar to those of the
270 motor cortex, however, with a predominant beta-band frequency of 17 Hz, which is lower than the
271 22 or 24 Hz oscillations found in the motor cortex (*Figure 9C*). Lastly, using SEEG electrodes, we
272 investigated neural oscillations within the human hippocampus (*Figure 9D*). This analysis showed
273 that 8 Hz was the predominant oscillatory frequency in the hippocampus with a 450 ms duration
274 on average. During the resting state, neural alpha- and beta-band oscillations within the hippocam-
275 pus were shorter than in the motor cortex ($p < 0.05$, Wilcoxon rank sum test, $N=6$).

276 Discussion

277 Our novel CHO method demonstrates high precision and specificity in detecting neural oscillations
278 in time and frequency domains. The method's specificity enables the detailed study of spatio-
279 temporal dynamics of oscillations throughout the brain and the investigation of oscillatory biomark-
280 ers that index functional brain areas.

281 High specificity for detecting neural oscillations

282 In our simulation study, CHO demonstrated high specificity in detecting both the peak and on-
283 set/offset of neural oscillations in time and frequency domains. This high specificity directly results
284 from the three criteria we established in this study. The first criterion was that neural oscillations
285 (peaks over 1/f noise) must be present in the time and frequency domain. The 1/f trend estimation
286 served as a threshold to reject aperiodic oscillatory power in the neural signals (Donoghue et al.,
287 2020).

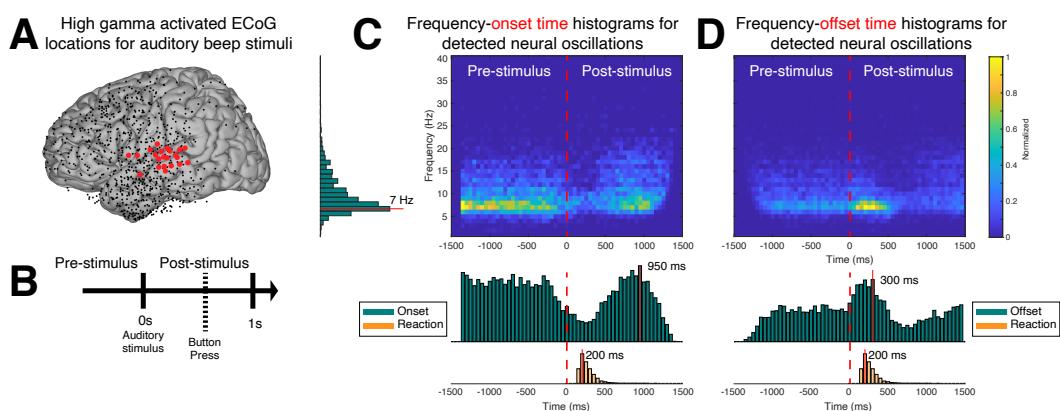


Figure 7. Application of CHO in determining the spatio-temporal characteristics of neural oscillations in ECoG signals during a reaction-time task. (A) We selected those cortical locations (red) from all locations (black) that exhibited a significant broadband gamma response to an auditory stimulus in a reaction-time task. (B) In this task, the subjects were asked to react as fast as possible with a button press to a salient auditory stimulus. (C-D) Onset and offset times of detected neural oscillations. Fundamental oscillations were centered around 7 Hz (left histogram). Onset and offset times during pre-stimulus period exhibited a uniform distribution, indicating that 7 Hz oscillations randomly started and stopped during this period. A trough in the onset and a peak in the offset of 7 Hz oscillations is visible from the histograms, indicating a general decrease of the presence of neural oscillations immediately following the auditory stimulus. The subjects responded with a button press within 200 ms of the auditory stimulus, on average. The prominent peak in the offset and onset of oscillations at 300 ms and 950 ms post-stimulus, respectively, indicates a suspension of oscillations in response to the auditory stimulus, and their reemergence after the execution of the button press behavior.

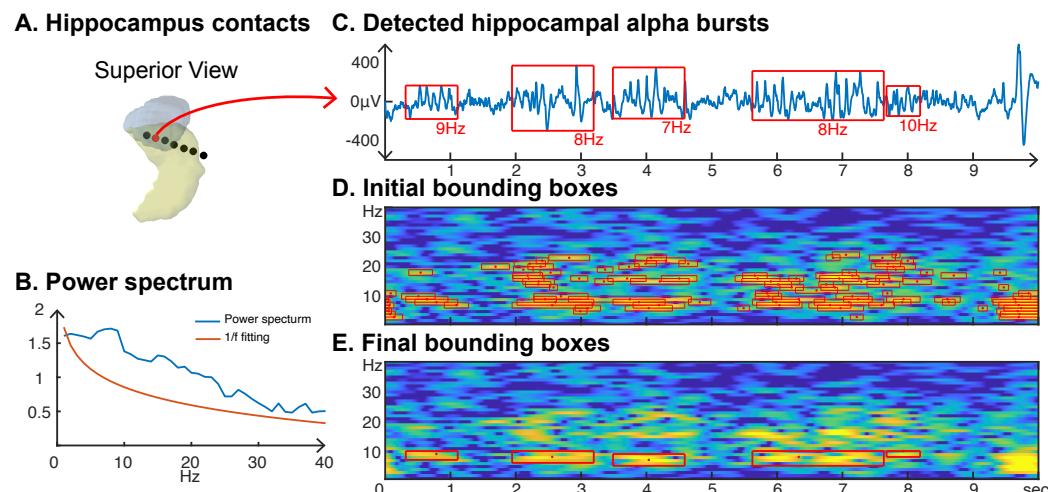


Figure 8. Application of CHO in determining the fundamental frequency and duration of hippocampal oscillations in SEEG signals during resting state. (A) We recorded hippocampal oscillations from one representative human subject implanted with SEEG electrodes within the left anterior hippocampus. (B) Power spectrum (blue) and 1/f trend (red) for one electrode within the anterior-medial left hippocampus (red dot in A). The power spectrum of a 10-second-long hippocampal signal indicates the presence of neural activity over a 1/f trend across a wide frequency band up to 30 Hz. (C) In marked contrast to the relatively unspecific results indicated by the power spectrum, CHO detected several distinct hippocampal alpha-band bursts. (D) This detection is based on first denoising the power spectrum using 1/f fitting (principle criterion #1 of CHO), which yields initial bounding boxes, that include short-cycled oscillations and harmonics. (E) The auto-correlation step then successfully removes all short-cycled oscillations and harmonics, with only those bounding boxes remaining that exhibit a fundamental frequency.

Figure 8—figure supplement 1. All results from eight ECoG subjects using the FOOOF method.

Figure 8—figure supplement 2. All results from eight ECoG subjects using CHO.

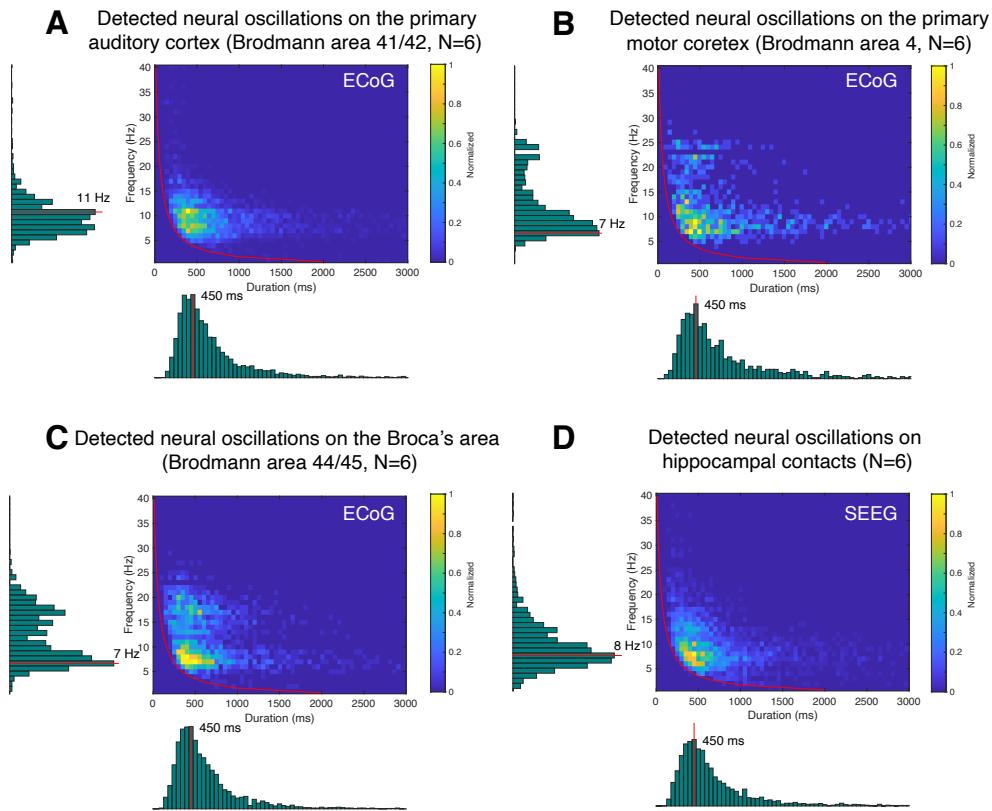


Figure 9. Application of CHO in determining the fundamental frequency and duration of neural oscillations in auditory cortex, motor cortex, Broca's area, and hippocampus during resting state. This figure presents the distribution of detected oscillations in a 2-dimensional frequency/duration histogram and projected onto frequency and duration axes. The red line indicates the rejection line (less than two cycles). **(A)** In primary auditory cortex (Brodmann area 41/42), the most dominant frequency and duration in the auditory cortex was 11 Hz with 450 ms duration. **(B)** The primary motor cortex's most dominant frequency was 7 Hz with 450 ms duration, but more beta rhythms were detected with >500 ms duration than in auditory cortex. **(C)** Broca's area exhibits similar characteristics to that of motor cortex, but dominant beta-band oscillations were found to be less present than in motor cortex. **(D)** Hippocampus primarily exhibits 8 Hz oscillations with 450 ms duration.

288 Next, the second condition was that oscillations must exhibit at least two complete cycles. This
289 condition distinguishes periodic oscillations from evoked/event-related potentials (EP/ERP) and
290 spike artifacts. EP/ERP have spectral characteristics that are similar to those of theta or alpha
291 frequency oscillations. To discriminate EP/ERPs from genuine oscillations, we reject them if they
292 don't exhibit peaks over 1/f or if they have fewer than two cycles.

293 The third and final condition is that oscillations should share the same periodicity as their auto-
294 correlation. This is because positive peaks in the auto-correlation can identify the oscillation's fun-
295 damental frequency even if it is non-sinusoidal. The bounding boxes help us to identify possible
296 onsets/offsets of neural oscillations. Moreover, calculating the auto-correlation of the raw signals
297 within a bounding box provides the true periodic frequency of the raw signal. We then reject any
298 bounding boxes for which the periodicity of the raw signal is not in alignment with the true periodic
299 frequency revealed by the auto-correlation. This third condition is important in rejecting harmonic
300 peaks over 1/f noise in the frequency domain. Furthermore, it is also effective in rejecting spurious
301 oscillations, which are broadly generated by spike activities in the frequency domain (*de Cheveigne and Nelken, 2019*).

302 To calculate the auto-correlation, we first needed to determine the onset/offset of the potential
303 oscillations. The first and second criteria serve as a triage in finding the onset/offset of genuine
304 oscillations. Thus, these three principle criteria were essential to reject aperiodic harmonic oscil-
305 lations and increase CHO's specificity in detecting both the peak frequency and the onset/offset
306 of non-sinusoidal oscillations. We also evaluated CHO on purely sinusoidal oscillations (see *figure*
307 *Supplement 2*). The results of this analysis show that even in the absence of any asymmetry in the
308 oscillations, CHO still outperforms existing methods in specificity. It further shows that the sen-
309 sitivity increases with increasing SNR. Even though this analysis is based on synthetic sinusoidal
310 oscillations, our results demonstrated that existing methods are susceptible to noise which results
311 in the detection of spurious oscillations. However, as expected, both FOOOF and SPRiNT methods
312 exhibited reasonable specificity when applied to sinusoidal signals.

314 **Focal localization of beta oscillations**

315 Beta oscillations occur within the 13–30 Hz band throughout various brain regions, including the
316 motor cortex. In the motor cortex, beta oscillations are thought to be involved in motor planning
317 and execution. Studies have shown that beta oscillations increase and decrease in power during
318 movement preparation and movement execution, respectively (*Pfurtscheller and Da Silva, 1999*;
319 *Jenkinson and Brown, 2011*; *Doyle et al., 2005*; *Senkowski et al., 2006*). In our empirical results
320 based on the presented ECoG dataset, CHO found focal beta oscillations to occur within pre-motor
321 and frontal cortex prior to the button response, as shown in *Figure 5*. These findings were consis-
322 tent across subjects. Conventional methods found alpha and beta oscillations in the auditory cor-
323 tex, while CHO found only select beta oscillations. This suggests that most of the beta oscillations
324 detected by conventional methods are simply harmonics of the predominant asymmetric alpha
325 oscillation. Along the same line, conventional methods found beta and low gamma oscillations in
326 pre-motor and frontal areas, while CHO found predominantly beta oscillations. This suggests that
327 low gamma oscillations detected by conventional methods are harmonics of beta oscillations.

328 In the EEG results, CHO found focal visual alpha and motor beta oscillations, while the FOOOF
329 found frontal and visual alpha and beta oscillations across broad scalp areas, as shown in *Figure 6*.
330 In contrast to the ECoG results, neither CHO nor FOOOF auditory found alpha oscillations within the
331 temporal areas. This is interesting as FOOOF exhibits a better sensitivity than CHO and suggests
332 that auditory alpha rhythms may be difficult to observe in EEG. Similar to the ECoG results, our
333 analysis confirmed that non-sinusoidal alpha and beta oscillations generate harmonic oscillations
334 in both beta and low gamma in EEG. This shows that our CHO method, which has a high specificity,
335 can detect focal motor beta oscillations.

336 Harmonic oscillations in human hippocampus

337 Recent studies suggest that the frequency range of hippocampal oscillations is wider than previ-
338 ously assumed (<40 Hz in *Cole and Voytek 2019*, or 3–12 Hz in *Li et al. 2022*) and that it does not
339 match the conventional frequency range of theta/alpha rhythms (*Buzsaki, 2006*). This realization
340 stems from the recognition that neural oscillations are non-sinusoidal, and thus require a wide
341 frequency band to be fully captured (*Cole and Voytek, 2019; Donoghue et al., 2022*). Adopting a
342 wider frequency band provides more frequency options in fitting the non-sinusoidal shape of brain
343 waves. The recognition of the need to expand the frequency band within oscillation analysis is not
344 limited to the hippocampus. Our ECoG and EEG results show that harmonics can occur in any
345 brain area and frequency band because neural oscillations are inherently non-sinusoidal. A recent
346 study showed that the phase of wide-band oscillations could better predict neural firing (*Davis
347 et al., 2020*).

348 CHO can determine the fundamental frequency of non-sinusoidal oscillations when applied
349 within a wide-band analysis, as shown in *Figure 8E*. Moreover, CHO provides onset/offset and the
350 frequency range of an oscillation, allowing us to investigate non-sinusoidal features, such as the
351 degree of asymmetry and amplitudes of trough/peak (*Cole and Voytek, 2019*).

352 Identifying onset/offset of neural oscillations and its application

353 Although the frequency of neural oscillation has been extensively investigated, the onset/offset
354 and duration of neural oscillations have remained elusive. Using CHO, the onset/offset, and du-
355 ration of neural oscillations can be revealed, as shown in *Figure 7* and *Figure 9*. Knowing the
356 onset/offset and duration of a neural oscillation is essential for realizing closed-loop neuromod-
357 ulation. This is because neuromodulation may be most efficient when electrical stimulation is de-
358 livered phase-locked to the underlying ongoing oscillation (*Chen et al., 2011; Cagnan et al., 2017,
359 2019; Zanos et al., 2018; Shirinpour et al., 2020*). For example, deep-brain stimulation in phase
360 with ongoing oscillation can reduce the stimulation necessary to achieve the desired therapeutic
361 effect (*Cagnan et al., 2017, 2019*). This improved efficiency in delivering the stimulation therapy re-
362 duces power consumption and thus enhances the battery life of the implanted system (*Chen et al.,
363 2011*). Longer battery life means fewer battery changes (which require surgical procedures), or for
364 rechargeable systems, fewer recharging sessions (which require the user's attention). Realizing
365 phase-locked neuromodulation requires detecting the duration of an ongoing oscillation with high
366 specificity and delivering the electrical stimulation at a predicted oscillation phase. The detection
367 and identification with high specificity thus enable neuromodulation applications that depend on
368 phase-locked electrical stimulation.

369 Moreover, the temporal precision of CHO in detecting neural oscillations can improve the effec-
370 tiveness of neurofeedback-based systems. For example, a neurofeedback system may provide tar-
371 geted feedback on the magnitude of the user's alpha oscillation to improve attention and in turn im-
372 prove task performance. For this purpose, the system must detect the frequency, onset/offset, and
373 duration of the user's alpha oscillation with high specificity. High specificity requires distinguishing
374 other oscillations and artifacts from true physiological alpha-band oscillations. The identification
375 of true neural oscillations with the high specificity of CHO thus enables targeted neurofeedback
376 applications to enhance or restore task performance.

377 Illuminating the when, where, what, why, how, and whom of neural oscillations

378 In our study, we focused on the temporal dynamics ("when"), spatial distribution ("where"), and
379 fundamental frequency ("what") of neural oscillations. However, fully understanding the role of
380 neural oscillations in cognition and behavior also requires investigating their underlying mecha-
381 nisms ("how"), functional purpose ("why"), and pathologies ("whom").

382 Temporal Dynamics – the “when”

383 CHO demonstrated high specificity in detecting the onset and offset of fundamental non-sinusoidal
384 oscillations (see **Figure 4E**). Using CHO, our study revealed the temporal dynamics of oscillations
385 within the temporal lobe in an auditory reaction-time task. We identified the onsets and offsets
386 of 7 Hz oscillations and, thus, the boundaries in oscillatory activity between resting and task en-
387 gagement. Our results show a rapid decrease in oscillatory activity for the duration of the auditory
388 stimulus, followed by a rapid reemergence of the oscillatory activity following the cessation of the
389 auditory stimulus (see **Figure 7C** and **D**). These results shed light on the temporal dynamics of neu-
390 ral oscillatory activity in cognitive processes and how the brain adapts to environmental stimuli.

391 Spatial Distribution – the “where”

392 CHO revealed the spatial distribution of neural oscillations in EEG, SEEG, and ECoG recordings. The
393 spatial distribution of fundamental neural oscillations, and their absence during task engagement,
394 can reveal underlying shared functional organization. CHO can be applied to a wide range of neu-
395 roimaging techniques such as EEG, MEG, ECoG, and SEEG to elucidate the involvement of different
396 brain regions in various cognitive functions. For example, using CHO, our study found focal specific
397 alpha oscillations over occipital (visual) cortex in EEG and focal beta oscillations over parietal (mo-
398 tor) cortex in ECoG. These results demonstrate the utility of CHO in precisely mapping the spatial
399 distribution of neural oscillations across the brain, and in revealing shared functional organization
400 of brain networks.

401 Fundamental Frequency – the “what”

402 CHO revealed the fundamental frequencies of asymmetric neural oscillations recorded from the
403 scalp, auditory cortex, motor cortex, Broca’s area, and hippocampus. Distinct brain states can be
404 identified based on the fundamental frequency of their underlying neural oscillation. CHO showed
405 high specificity in determining the fundamental frequency of synthetic non-sinusoidal oscillations
406 (see **Figure 4B**). When applied to ECoG and SEEG signals, CHO revealed distinct fundamental fre-
407 quencies of oscillations found within auditory cortex, motor cortex, Broca’s area, and hippocam-
408 pus (see **Figure 9**). CHO can be applied in real time to detect the fundamental frequency and the
409 onset/offset of neural oscillations. Characterizing neural oscillations in real time can make tran-
410 sitions in brain states observable to the investigator. For example, investigators can characterize
411 brain dynamics during wakefulness, sleep, or specific cognitive tasks by tracking changes in oscilla-
412 tory activity during different behavioral states. This information provides insights into the brain’s
413 adaptability and flexibility in response to internal and external cues and could inform closed-loop
414 neuromodulation.

415 Underlying Mechanisms – the “how”

416 Accurate detection of neural oscillations aids in deciphering the underlying mechanisms governing
417 their generation and synchronization. In our study, we focused on determining the temporal dy-
418 namics, spatial distribution, and fundamental frequency of neural oscillations. The results of our
419 study, and more specifically the CHO method itself, provide a methodological foundation to sys-
420 tematically study oscillatory connectivity and traveling oscillations throughout cortical layers and
421 brain regions to create insights into unraveling the generating mechanism of neural oscillations.
422 The information gained from such studies could create a better understanding of neural circuitry
423 at the network level and could inform computational models that help refine our knowledge of the
424 complex mechanisms underlying brain function.

425 Functional Purpose – the “why”

426 Neural oscillation detection plays a crucial role in uncovering the functional significance of oscilla-
427 tory activity. In our study, CHO detected focal alpha oscillations over occipital (visual) cortex in EEG
428 and focal beta oscillations over parietal (motor) cortex in ECoG during the pre-stimulus period of
429 an auditory reaction-time task (see **Figure 5** and **Figure 6**). The presence of these oscillations dur-

430 ing the pre-stimulus period implicates visual-alpha and motor-beta oscillations in inhibition. We
431 found the same inhibitory oscillatory phenomenon over the auditory cortex, however, with a fun-
432 damental frequency of 7 Hz, indicating functional independence between inhibitory oscillations
433 found in visual, motor, and auditory cortex (see **Figure 7C** and D). The approach presented in this
434 study could be expanded to studying attention, memory, decision-making, and more by correlating
435 neural oscillations with specific cognitive processes. Further, applying cross-frequency and phase-
436 amplitude coupling analysis to oscillations detected by CHO could illuminate the role of neural
437 oscillations in facilitating information processing and communication between brain regions.

438 **Pathologies – the “whom”**

439 Detecting and characterizing neural oscillations has significant implications for the study of neu-
440 rological and psychiatric disorders. For example, recent studies reported that patients affected
441 by severe Parkinson’s disease exhibited more asymmetry between peak and trough amplitudes in
442 beta oscillations (**Cole et al., 2017; Jackson et al., 2019**). The high specificity demonstrated by CHO
443 in detecting asymmetric neural oscillations could benefit the investigation of neural pathologies.
444 Specifically, CHO could improve the quality of asymmetry measurements by providing onset/offset
445 detection of the beta oscillations with high specificity. Abnormalities in neural oscillations are of-
446 ten associated with various pathologies. Detecting and characterizing aberrant oscillatory patterns
447 could lead to identifying biomarkers for specific disorders and insights into their underlying mech-
448 anisms. These advancements could aid the development of targeted therapies and treatments for
449 these conditions.

450 **Illuminating neural oscillations**

451 Overall, developing a reliable neural oscillation detection method is crucial for advancing our un-
452 derstanding of brain function and cognition. The presented CHO method opens up new avenues
453 of research by contributing to the investigation of temporal dynamics, spatial distribution, brain
454 states, underlying mechanisms, functional purpose, and pathologies of neural oscillations. Ulti-
455 mately, a comprehensive understanding of neural oscillations will deepen our knowledge of the
456 brain’s complexity and pave the way for innovative approaches to treating neurological and psy-
457 chiatric disorders.

458 **Limitations**

459 The results of this study show that our CHO method favors specificity over sensitivity when SNR
460 is low. More specifically, CHO exhibited a low sensitivity due to the high false-negative rate in a
461 low-SNR environment. This means that even though there are oscillations present in the recorded
462 signals, CHO cannot detect them when they are drowned in noise. To investigate whether this is an
463 issue in real-world applications, we determined the averaged SNR of alpha oscillations in EEG (-7 dB)
464 and ECoG (-6 dB). Based on our evaluation of synthetic data, we found that at these physiologically-
465 motivated SNR levels, CHO can detect 50–60% of all true oscillations. This sensitivity could be
466 further improved by averaging across spatially correlated locations, e.g., within the hippocampus.

467 One potential approach to reducing the dependency of sensitivity on SNR is to apply a wavelet
468 transform in the estimation of the time-frequency map of the signal. Wavelet transform can better
469 capture short cycles of oscillations. Currently, CHO uses a Hilbert transform method rather than
470 Wavelet or short-time fast Fourier transform (STFFT) because it is easy to implement in MATLAB and
471 provides better control over the spectral shape (i.e., better accuracy in detecting peak frequency
472 of oscillations, **Cohen 2014**). Despite the theoretical advantages of wavelet over Hilbert transform,
473 in developing our CHO method, we found no significant differences when we used different ap-
474 proaches to estimate the time-frequency map. This finding is further supported by a comparative
475 study shown by **Bruns in 2004**.

476 Another avenue to improve the sensitivity of CHO is to modify the third criterion to better distin-
477 guish neural oscillations from background noise. When we performed each detection step within

478 CHO, as shown in **Figure 3**, we captured oscillations in a low-SNR situation. However, applying
479 the third criterion rejected many possible bounding boxes. Thus, developing a better conceptual
480 framework to reject harmonic peaks in the spectral domain may decrease the false-negative rate
481 and, in turn, increase the sensitivity in low-SNR situations.

482 **Conclusions**

483 Neural oscillations are thought to play an important role in coordinating neural activity across
484 different brain regions, allowing for the integration of sensory information, the control of motor
485 movements, and the maintenance of cognitive functions. Thus, better methods to detect and char-
486 acterize neural oscillations, especially those that are asymmetric, can greatly impact neuroscience.
487 In this study, we present Cyclic Homogeneous Oscillation (CHO) as a method to reveal the “when”,
488 the “where”, and the “what” of neural oscillations. With this method, we overcome the confounding
489 effect of detecting spurious oscillations that result from harmonics of the non-sinusoidal neural os-
490 cillations (*Donoghue et al., 2022*). In our study, we demonstrate that solving this problem yields sci-
491 entific insights into local beta oscillations in pre-motor areas, the onset/offset of oscillations in the
492 time domain, and the fundamental frequency of hippocampal oscillations. These results demon-
493 strate the potential for CHO to support closed-loop neuromodulation (brain-computer interfaces
494 and neurofeedback) and neural oscillation detection systems to implement various neurological
495 diagnostic and therapeutic systems and methods.

496 **Methods and Materials**

497 **Electrophysiological data**

498 Eight human subjects implanted with ECoG electrodes (x1–x8, 4 females, average age = 41 ± 14)
499 participated in an auditory reaction time task at the Albany Medical Center in Albany, New York.
500 The subjects were mentally and physically capable of participating in our study (average IQ = 96 ± 18 ,
501 range 75–120, *Wechsler 1997*). All subjects were patients with intractable epilepsy who underwent
502 temporary placement of subdural electrode arrays to localize seizure foci before surgical resection.

503 The implanted electrode grids were approved for human use (Ad-Tech Medical Corp., Racine,
504 WI; and PMT Corp., Chanhassen, MN). The platinum-iridium electrodes were 4 mm in diameter
505 (2.3 mm exposed), spaced 10 mm center-to-center, and embedded in silicone. The electrode grids
506 were implanted in the left hemisphere for seven subjects (x1, x3, x6, and x7) and the right hemi-
507 sphere for five subjects (x2, x4, x5, and x8). Following the placement of the subdural grids, each
508 subject had postoperative anterior-posterior and lateral radiographs and computer tomography
509 (CT) scans to verify grid location. These CT images, in conjunction with magnetic resonance imag-
510 ing (MRI), were used to construct three-dimensional subject-specific cortical models and derive the
511 electrode locations (*Coon et al., 2016*).

512 A further seven healthy human subjects (y1–y7, all males, average age = 27 ± 3.6) served as a
513 control group for which we recorded EEG while performing the same auditory reaction time task.
514 These subjects were fitted with an elastic cap (Electro-cap International, *Blom and Anneveldt 1982*)
515 with tin (*Polich and Lawson, 1985*) scalp electrodes in 64 positions according to the modified 10-20
516 system (*Acharya et al., 2016*).

517 In addition, six human subjects implanted with ECoG electrodes (ze1–ze6, 1 female, mean age
518 46, range between 31 and 69) participated in resting state recording at the Albany Medical Center in
519 Albany, New York. All six subjects had extensive electrode coverage over the lateral STG. Patients
520 provided informed consent to participate in the study, and additional verbal consent was given
521 prior to each testing session. The Institutional Review Board at Albany Medical Center approved
522 the experimental protocol. Electrodes were comprised of platinum-iridium and spaced 3–10 mm
523 (PMT Corp., Chanhassen, MN).

524 Lastly, six human subjects implanted with SEEG electrodes (zs1–zs6, three females, average
525 age = 46 ± 16.6) participated in resting state recordings at the Barnes Jewish Hospital in St. Louis,

526 Missouri. All subjects were patients with intractable epilepsy who underwent temporary placement
527 of subdural electrodes to localize seizure foci prior to surgical resection. All subjects provided
528 informed consent for participating in the study, which was approved by the Institutional Review
529 Board of Washington University School of Medicine in St. Louis.

530 The implanted SEEG electrodes were approved for human use (Ad-Tech Medical Corp., Racine,
531 WI; and PMT Corp., Chanhassen, MN). The platinum-iridium electrodes were 2 mm in length (0.8 mm
532 diameter) and spaced 3.5–5 mm center-to-center. Following the placement of the stereo EEG elec-
533 trodes, each subject had postoperative anterior-posterior and lateral radiographs and computer
534 tomography (CT) scans to verify electrode location. These postoperative CT images, in conjunction
535 with preoperative magnetic resonance imaging (MRI), were used to construct three-dimensional
536 subject-specific cortical models and derive the electrode locations (*Coon et al., 2016*).

537 **Data collection**

538 We recorded EEG, ECoG, and SEEG signals from the subjects at their bedside using the general
539 purpose Brain-Computer Interface (BCI2000) software (*Schalk et al., 2004*), interfaced with eight
540 16-channel g.USBamp biosignal acquisition devices (for EEG), one 256-channel g.Hlamp biosignal
541 acquisition device (g.tec., Graz, Austria, for ECoG), or one Nihon Kohden JE-120A long-term record-
542 ing system (Nihon Kohden, Tokyo, Japan, for SEEG) to amplify, digitize (sampling rate 1,200 Hz for
543 EEG and ECoG and 2,000 Hz for SEEG) and store the signals. To ensure safe clinical monitoring of
544 ECoG signals during the experimental tasks, a connector split the cables connected to the patients
545 into a subset connected to the clinical monitoring system and a subset connected to the amplifiers.

546 **Task**

547 The subjects performed an auditory reaction task, responding with a button press to a salient
548 1 kHz tone. For their response, the subjects used their thumb contralateral to their ECoG implant.
549 In total, the subjects performed between 134 and 580 trials. Throughout each trial, the subjects
550 were first required to fixate and gaze at the screen in front of them. Next, a visual cue indicated
551 the trial's start, followed by a random 1–3 s pre-stimulus interval and, subsequently, the auditory
552 stimulus. The stimulus was terminated by the subject's button press or after a 2-s time out, after
553 which the subject received feedback about his/her reaction time. This feedback motivated the
554 subjects to respond as quickly as possible to the stimulus. We penalized subjects with a warning
555 tone to prevent false starts if they responded too fast (i.e., less than 100 ms after stimulus onset).
556 We excluded false-start trials from our analysis. We were interested in this task's auditory and
557 motor responses in this study. This required defining the onset of these two responses. We time-
558 locked our analysis of the auditory response to the onset of the auditory stimulus (as measured by
559 the voltage between the sound port on the PC and the loudspeaker). For the motor response, we
560 time-locked our analysis to the time when the push button was pressed. To ensure the temporal
561 accuracy of these two onset markers, we sampled them simultaneously with the EEG/ECoG signals
562 using dedicated inputs in our biosignal acquisition systems. We defined baseline and task periods
563 for the auditory and motor response. Specifically, we used the 0.5-s period prior to the stimulus
564 onset as the baseline for the auditory response and the 1-s to 0.5-s period prior to the button press
565 as the baseline for the motor response. Similarly, we used the 1-s period after stimulus onset as
566 the task period for the auditory response and the period from 0.5-s before to 0.5-s after the button
567 press as the task period for the motor task.

568 **Data pre-processing**

569 As our amplifiers acquired raw, unfiltered EEG/ECoG/SEEG signals, we removed any offset from
570 our signals using a 2nd-order Butterworth highpass filter at 0.05 Hz. Next, we removed any com-
571 mon noise using a common median reference filter (*Liu et al., 2015*). To create the common-mode
572 reference, we excluded signals that exhibited an excessive 60 Hz line noise level (i.e., ten times

573 the median absolute deviation). To improve the signal-to-noise ratio of our recordings and to re-
574 duce the computational complexity of our subsequent analysis, we downsampled our signals from
575 1200 Hz or 2000 Hz to 400 Hz or 500 Hz, respectively, using MATLABs “resample” function, which
576 uses a polyphase antialiasing filter to resample the signal at the uniform sample rate.

577 **Phase-phase coupling**

578 To demonstrate phase-locking, as illustrated between theta and beta oscillations in *Figure 1E* and
579 *Figure 1K*, we utilized the n:m phase-phase coupling method described in *Belluscio et al. 2012*.
580 Specifically, we calculated the “mean radial distance”: $R_{n:m} = \left\| \frac{1}{N} \sum_{j=1}^N e^{i\Delta\phi_{nm}(t_j)} \right\|$, where j indexes the
581 samples in time, and N represents the number of samples (epoch length in seconds \times sampling
582 frequency in Hz). $R_{n:m}$ equals 1 when $\Delta\phi_{nm}(t_j)$ is constant for all time samples t_j , and 0 when $\Delta\phi_{nm}$ is
583 uniformly distributed. Of note, $\Delta\phi_{nm}(t_j)$ equals $n\phi_{f_1}(t_j) - m\phi_{f_2}(t_j)$, with f_1 and f_2 being two different
584 frequency bands.

585 **A novel oscillation detection method**

586 We propose a novel method based on principle criteria to identify neural oscillations’ when, where,
587 and what. The principle criteria are as follows: 1. Oscillations (peaks over 1/f noise) must be present
588 in the time and frequency domain. 2. Oscillations must exhibit at least two full cycles. 3. The
589 periodicity of an oscillation is the fundamental frequency of the oscillation. The procedural steps
590 of CHO adhere to these principle criteria, as shown in *Figure 3*. First, we apply a time-frequency
591 analysis to determine power changes for each frequency component over time. To measure the
592 significant spectral power increase over the time domain, we use the 1/f fitting technique as the
593 principal threshold. In other words, the proposed method only considers those oscillations that
594 emerge above the underlying 1/f noise. Thus, any oscillation with smaller power than 1/f noise is
595 not considered to be an oscillation. To accomplish this, we subtract the underlying 1/f noise within
596 the time-frequency domain. Specifically, we divide the time domain into four periods and estimate
597 the minimum 1/f aperiodic fit across these periods. After the subtraction of the underlying 1/f noise,
598 we calculate the averaged power difference between the signal and the 1/f noise (named sigma).
599 If the spectral power exceeds two times sigma, we consider the oscillation to exhibit significant
600 power above the 1/f noise. Next, we cluster time points with significant power over 1/f noise to
601 generate initial bounding boxes as shown in *Figure 3A*; this idea is adopted from a previous study
602 (*Neymotin et al., 2022*).

603 Next, as the second principle criterion, we only consider those oscillations that exhibit at least
604 two full cycles. This restriction allows CHO to distinguish oscillations from confounding event-
605 related potentials (ERPs) or evoked potentials (EPs). In general, the frequency characteristics of
606 those potentials often overlap with neural oscillations (e.g., theta power of ERPs and theta power
607 of theta rhythm). However, ERPs or EPs never exhibit more than two cycles. Therefore, we reject
608 those bounding boxes that exhibit less than two cycles. An example is shown in *Figure 3B*.

609 Lastly, we calculate the periodicity of an oscillation using an autocorrelation analysis to deter-
610 mine the fundamental frequency of the oscillation. Non-sinusoidal signals are known to exhibit
611 harmonics in the frequency domain, significantly increasing the false-positive detection rate —the
612 confounding factor addressed by CHO’s third criterion. The power spectrum of the non-sinusoidal
613 oscillations has additional harmonic peaks over 1/f noise, even though the periodicity of the signal
614 does not match the harmonic peak frequency. Therefore, the positive peaks of the oscillation’s
615 autocorrelation represent the oscillation’s periodicity and fundamental frequency. As shown in
616 *Figure 3C*, the center frequency of the bounding box is 24 Hz, but the periodicity of the raw signal
617 within the bounding box does not match 7 Hz. Consequently, this bounding box will be rejected.
618 Finally, the method merges those remaining bounding boxes that neighbor each other in the fre-
619 quency domain and that overlap more than 75% in time (*Neymotin et al., 2022*).

620 The MATLAB code that implements CHO and sample data is available on GitHub (<https://github.com/neurotechcenter/CHO>).

622 Validation on synthetic non-sinusoidal oscillations

623 While empirical physiological signals are most-appropriate for validating our method, they gen-
624 erally lack the necessary ground truth to characterize neural oscillation with sinusoidal or non-
625 sinusoidal properties. To overcome this limitation, we first validated CHO on synthetic non-sinusoidal
626 oscillatory bursts convolved with 1/f noise to test the performance of the proposed method.

627 As shown in *Figure 4*, we generated five second-long periods comprised of 1/f noise (i.e., pink
628 noise). We added non-sinusoidal oscillations with different amplitudes and lengths. The ampli-
629 tudes of non-sinusoidal oscillations vary between 5 and 20 microvolts, while the pink noise remains
630 at 10 microvolts in amplitude. The signal-to-noise (SNR) was calculated by the `snr()` function in the
631 Signal Processing Toolbox of MATLAB, which determines the signal-to-noise ratio in decibels of the
632 non-sinusoidal burst by computing the ratio between summed squared magnitudes of the oscil-
633 lation and the pink noise, respectively. We simulated ten iterations for each amplitude. For each
634 iteration, we tested four different lengths of non-sinusoidal oscillations (one cycle, two-and-a-half
635 cycles, one second, and three seconds long).

636 We generated non-sinusoidal oscillations by introducing asymmetry between the trough and
637 peak periods of sinusoidal waves. To generate this asymmetric nature of an oscillation, we applied
638 a 9:1 ratio between trough and peak amplitudes, as shown in an example of *Figure 4A*. To smooth
639 the onset and offset of the non-sinusoidal oscillations, we used Tukey (tapered cosine) window
640 function with a 0.40 ratio for the taper section (*Bloomfield, 2004*). Of note, the smaller the Turkey
641 ratio within the taper section, the higher the occurrence of high-frequency artifacts.

642 To evaluate the performance of CHO, we calculated the specificity and sensitivity of CHO in
643 detecting non-sinusoidal oscillations. High specificity depends on high true-negative and low false-
644 positive detection rates. In contrast, high sensitivity depends on high true-positive and low false-
645 negative detection rates. In this simulation, we expected harmonic oscillations to increase the false-
646 positive detection rate, and one-cycled oscillations to decrease the true-negative detection rate
647 within conventional methods. Thus, harmonic oscillations and one-cycled oscillations decrease
648 the specificity, not sensitivity.

649 For evaluating the performance of each method in determining the fundamental frequency of
650 the oscillations, we defined an accurate detection as one that exhibited a difference between the
651 ground truth peak frequency and detected frequency of less than 1.5 Hz. Furthermore, to evaluate
652 the performance of each method in detecting the onset/offset of the oscillations, we calculated the
653 correlation between the envelope of the ground truth oscillation and the detected oscillation. We
654 defined those onset/offset detections as accurate if the correlation was positive and the p-value
655 was smaller than 0.05.

656 Acknowledgments

657 This work was supported by the National Institutes of Health (NIH) grants R01-MH120194, R01-
658 EB026439, U24-NS109103, U01-NS108916, U01-NS128612, P41-EB018783, the McDonnell Center
659 for Systems Neuroscience and Fondazione Neurone.

660 Authors' Contributions

661 Conceptualization: HC, PB. Methodology: HC, MA, JTW, PB. Data Curation: PB. Formal analysis: HC.
662 Visualization: HC, MA. Funding acquisition: JTW, PB. Writing – original draft: HC, PB. Writing – review
663 & editing: HC, MA, JTW, PB. All authors read and approved the final version of the manuscript.

664 Competing Interests

665 One U.S. patent (Provisional Application Serial No.63/326,257) related to systems and methods
666 for detection of neurophysiological signal oscillations described in this manuscript was filed on
667 March 31, 2022. The inventors/contributors of this patent involve some of the manuscript authors,
668 including HC, MA, JTW, PB.

669 Data Availability

670 Datasets may be provided to interested researchers upon reasonable request to the correspond-
671 ing author.

672 Code Availability

673 The Matlab code and sample data used for CHO are available at <https://github.com/neurotechcenter/>
674 CHO.

675 References

676 **Acharya JN**, Hani AJ, Cheek J, Thirumala P, Tsuchida TN. American clinical neurophysiology society guideline 2:
677 guidelines for standard electrode position nomenclature. *The Neurodiagnostic Journal*. 2016; 56(4):245–252.
678 doi: <https://doi.org/10.1080/21646821.2016.1245558>.

679 **Adamek M**, Swift JR, Brunner P. VERA - A Versatile Electrode Localization Framework. Zenodo. 2022; (Version
680 1.0.0) [Computer software]. doi: <https://doi.org/10.5281/zenodo.7486842>.

681 **Belluscio MA**, Mizuseki K, Schmidt R, Kempter R, Buzsáki G. Cross-frequency phase–phase coupling between
682 theta and gamma oscillations in the hippocampus. *Journal of Neuroscience*. 2012; 32(2):423–435. doi:
683 <https://doi.org/10.1523/JNEUROSCI.4122-11.2012>.

684 **Blom J**, Anneveldt M. An electrode cap tested. *Electroencephalography and Clinical Neurophysiology*. 1982;
685 54(5):591–594. doi: [https://doi.org/10.1016/0013-4694\(82\)90046-3](https://doi.org/10.1016/0013-4694(82)90046-3).

686 **Bloomfield P**. Fourier analysis of time series: an introduction. John Wiley & Sons; 2004.

687 **van Bree S**, Melcón M, Kolibius LD, Kerrén C, Wimber M, Hanslmayr S. The brain time toolbox, a software library
688 to retune electrophysiology data to brain dynamics. *Nature Human Behaviour*. 2022; 6(10):1430–1439. doi:
689 <https://doi.org/10.1038/s41562-022-01386-8>.

690 **Brunns A**. Fourier-, Hilbert-and wavelet-based signal analysis: are they really different approaches? *Journal of
691 Neuroscience Methods*. 2004; 137(2):321–332. doi: <https://doi.org/10.1016/j.jneumeth.2004.03.002>.

692 **Buzsaki G**. Rhythms of the Brain. Oxford University Press; 2006. doi:
693 <https://doi.org/10.1093/acprof:oso/9780195301069.001.0001>.

694 **Buzsaki G**, Draguhn A. Neuronal oscillations in cortical networks. *Science*. 2004; 304(5679):1926–1929. doi:
695 <https://doi.org/10.1126/science.1099745>.

696 **Cagnan H**, Denison T, McIntyre C, Brown P. Emerging technologies for improved deep brain stimulation. *Nature
697 Biotechnology*. 2019; 37(9):1024–1033. doi: <https://doi.org/10.1038/s41587-019-0244-6>.

698 **Cagnan H**, Pedrosa D, Little S, Pogosyan A, Cheeran B, Aziz T, Green A, Fitzgerald J, Foltyne T, Limousin P,
699 et al. Stimulating at the right time: phase-specific deep brain stimulation. *Brain*. 2017; 140(1):132–145. doi:
700 <https://doi.org/10.1093/brain/aww286>.

701 **Canolty RT**, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. High
702 gamma power is phase-locked to theta oscillations in human neocortex. *Science*. 2006; 313(5793):1626–1628.
703 doi: <https://doi.org/10.1126/science.1128115>.

704 **Caplan JB**, Madsen JR, Schulze-Bonhage A, Aschenbrenner-Scheibe R, Newman EL, Kahana MJ. Human θ oscil-
705 lations related to sensorimotor integration and spatial learning. *Journal of Neuroscience*. 2003; 23(11):4726–
706 4736. doi: <https://doi.org/10.1523/JNEUROSCI.23-11-04726.2003>.

707 **Chen LL**, Madhavan R, Rapoport BI, Anderson WS. Real-time brain oscillation detection and phase-locked
708 stimulation using autoregressive spectral estimation and time-series forward prediction. *IEEE Transactions
709 on Biomedical Engineering*. 2011; 60(3):753–762. doi: <https://doi.org/10.1109/TBME.2011.2109715>.

710 **de Cheveigné A**, Nelken I. Filters: when, why, and how (not) to use them. *Neuron*. 2019; 102(2):280–293. doi:
711 <https://doi.org/10.1016/j.neuron.2019.02.039>.

712 **Cohen MX**. Analyzing neural time series data: theory and practice. MIT press; 2014. doi:
713 <https://doi.org/10.7551/mitpress/9609.001.0001>.

714 Cole S, Voytek B. Cycle-by-cycle analysis of neural oscillations. *Journal of Neurophysiology*. 2019; 122(2):849–
715 861. doi: <https://doi.org/10.1152/jn.00273.2019>.

716 Cole SR, van der Meij R, Peterson Ej, de Hemptinne C, Starr PA, Voytek B. Nonsinusoidal beta oscillations
717 reflect cortical pathophysiology in Parkinson's disease. *Journal of Neuroscience*. 2017; 37(18):4830–4840.
718 doi: <https://doi.org/10.1523/JNEUROSCI.2208-16.2017>.

719 Coon WG, Gunduz A, Brunner P, Ritaccio AL, Pesaran B, Schalk G. Oscillatory phase modulates
720 the timing of neuronal activations and resulting behavior. *NeuroImage*. 2016; 133:294–301. doi:
721 <https://doi.org/10.1016/j.neuroimage.2016.02.080>.

722 Davis ZW, Muller L, Martinez-Trujillo J, Sejnowski T, Reynolds JH. Spontaneous travelling cortical waves gate
723 perception in behaving primates. *Nature*. 2020; 587(7834):432–436. doi: <https://doi.org/10.1038/s41586-020-2802-y>.

725 Donoghue T, Haller M, Peterson Ej, Varma P, Sebastian P, Gao R, Noto T, Lara AH, Wallis JD, Knight RT, et al.
726 Parameterizing neural power spectra into periodic and aperiodic components. *Nature Neuroscience*. 2020;
727 23(12):1655–1665. doi: <https://doi.org/10.1038/s41593-020-00744-x>.

728 Donoghue T, Schawronkow N, Voytek B. Methodological considerations for studying neural oscillations. *Eu-
729 ropean Journal of Neuroscience*. 2022; 55(11-12):3502–3527. doi: <https://doi.org/10.1111/ejn.15361>.

730 Doyle LM, Yarrow K, Brown P. Lateralization of event-related beta desynchronization in the EEG
731 during pre-cued reaction time tasks. *Clinical Neurophysiology*. 2005; 116(8):1879–1888. doi:
732 <https://doi.org/10.1016/j.clinph.2005.03.017>.

733 Fries P. Rhythms for cognition: communication through coherence. *Neuron*. 2015; 88(1):220–235. doi:
734 <https://doi.org/10.1016/j.neuron.2015.09.034>.

735 Gips B, Bahramisharif A, Lowet E, Roberts MJ, de Weerd P, Jensen O, van der Eerden J. Discovering recur-
736 ring patterns in electrophysiological recordings. *Journal of Neuroscience Methods*. 2017; 275:66–79. doi:
737 <https://doi.org/10.1016/j.jneumeth.2016.11.001>.

738 Giraud AL, Poeppel D. Cortical oscillations and speech processing: emerging computational principles and
739 operations. *Nature Neuroscience*. 2012; 15(4):511–517. doi: <https://doi.org/10.1016/j.tics.2012.05.003>.

740 Haegens S, Nácher V, Luna R, Romo R, Jensen O. α -Oscillations in the monkey sensorimotor network
741 influence discrimination performance by rhythmical inhibition of neuronal spiking. *Proceedings of
742 the National Academy of Sciences of the United States of America*. 2011; 108(48):19377–19382. doi:
743 <https://doi.org/10.1073/pnas.1117190108>.

744 Hughes AM, Whitten TA, Caplan JB, Dickson CT. BOSC: A better oscillation detection method, extracts both
745 sustained and transient rhythms from rat hippocampal recordings. *Hippocampus*. 2012; 22(6):1417–1428.
746 doi: <https://doi.org/10.1002/hipo.20979>.

747 Jackson N, Cole SR, Voytek B, Swann NC. Characteristics of waveform shape in Parkinson's disease detected
748 with scalp electroencephalography. *eNeuro*. 2019; 6(3). doi: <https://doi.org/10.1523/ENEURO.0151-19.2019>.

749 Jenkinson N, Brown P. New insights into the relationship between dopamine, beta oscillations and motor
750 function. *Trends in Neurosciences*. 2011; 34(12):611–618. doi: <https://doi.org/10.1016/j.tins.2011.09.003>.

751 Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. *Front-
752 tiers in Human Neuroscience*. 2010; 4:186. doi: <https://doi.org/10.3389/fnhum.2010.00186>.

753 Li J, Cao D, Dimakopoulos V, Shi W, Yu S, Fan L, Stieglitz L, Imbach L, Sarnthein J, Jiang T. Anterior–posterior
754 hippocampal dynamics support working memory processing. *Journal of Neuroscience*. 2022; 42(3):443–453.
755 doi: <https://doi.org/10.1523/JNEUROSCI.1287-21.2021>.

756 Liu Y, Coon WG, de Pesters A, Brunner P, Schalk G. The Effects of Spatial Filtering and Artifacts on Electrocor-
757 ticographic Signals. *Journal of Neural Engineering*. 2015; 12(5):056008. doi: [https://doi.org/10.1088/1741-2560/12/5/056008](https://doi.org/10.1088/1741-
758 2560/12/5/056008).

759 Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK. Gamma and beta bursts underlie working
760 memory. *Neuron*. 2016; 90(1):152–164. doi: <https://doi.org/10.1016/j.neuron.2016.02.028>.

761 **Mazaheri A**, Jensen O. Asymmetric amplitude modulations of brain oscillations generate slow evoked re-
762 sponses. *Journal of Neuroscience*. 2008; 28(31):7781–7787. doi: <https://doi.org/10.1523/JNEUROSCI.1631-08.2008>.

764 **Miller KJ**, Schalk G, Fetz EE, Den Nijs M, Ojemann JG, Rao RP. Cortical activity during motor execution, motor
765 imagery, and imagery-based online feedback. *Proceedings of the National Academy of Sciences of the United
766 States of America*. 2010; 107(9):4430–4435. doi: <https://doi.org/10.1073/pnas.0913697107>.

767 **Neymotin SA**, Tal I, Barczak A, O'Connell MN, McGinnis T, Markowitz N, Espinal E, Griffith E, Anwar H, Dura-
768 Bernal S, Schroeder CE, Lytton WW, Jones SR, Bickel S, Lakatos P. Detecting Spontaneous Neural Oscillation
769 Events in Primate Auditory Cortex. *eNeuro*. 2022; 9(4). doi: <https://doi.org/10.1523/ENEURO.0281-21.2022>.

770 **Niedermeyer E**, da Silva FL. *Electroencephalography: basic principles, clinical applications, and related fields*.
771 Lippincott Williams & Wilkins; 2005. doi: <https://doi.org/10.1093/med/9780190228484.001.0001>.

772 **Ostlund B**, Donoghue T, Anaya B, Gunther KE, Karalunas SL, Voytek B, Pérez-Edgar KE. Spectral parameterization for studying neurodevelopment: How and why. *Developmental Cognitive Neuroscience*. 2022;
773 54:101073. doi: <https://doi.org/10.1016/j.dcn.2022.101073>.

775 **Penfield W**, Jasper H. *Epilepsy and the functional anatomy of the human brain*. Little, Brown & Co.; 1954. doi:
776 <https://doi.org/10.1126/science.119.3097.645.b>.

777 **de Pesters A**, Coon WG, Brunner P, Gunduz A, Ritaccio AL, Brunet N, De Weerd P, Roberts M, Oostenveld R, Fries P, et al. Alpha power indexes task-related networks on large and small scales: a multimodal ECoG study in humans and a non-human primate. *NeuroImage*. 2016; 134:122–131. doi:
778 <https://doi.org/10.1016/j.neuroimage.2016.03.074>.

781 **Pfurtscheller G**, Da Silva FL. Event-related EEG/MEG synchronization and desynchronization: basic principles.
782 *Clinical Neurophysiology*. 1999; 110(11):1842–1857. doi: [https://doi.org/10.1016/s1388-2457\(99\)00141-8](https://doi.org/10.1016/s1388-2457(99)00141-8).

783 **Polich J**, Lawson D. Event-related potential paradigms using tin electrodes. *The American Journal of EEG
784 Technology*. 1985; 25(3):187–192. doi: <https://doi.org/10.1080/00029238.1985.11080171>.

785 **Schalk G**, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: a general purpose brain-
786 computer interface (BCI) system. *IEEE Transactions on Biomedical Engineering*. 2004; 51(6):1034–1043. doi:
787 <https://doi.org/10.1109/TBME.2004.827072>.

788 **Schalk G**. A general framework for dynamic cortical function: the function-through-biased-oscillations (FBO)
789 hypothesis. *Frontiers in Human Neuroscience*. 2015; 9:352. doi: <https://doi.org/10.3389/fnhum.2015.00352>.

790 **Scheffer-Teixeira R**, Tort AB. On cross-frequency phase-phase coupling between theta and gamma oscillations
791 in the hippocampus. *eLife*. 2016; 5:e20515. doi: <https://doi.org/10.7554/eLife.20515>.

792 **Senkowski D**, Molholm S, Gomez-Ramirez M, Foxe JJ. Oscillatory beta activity predicts response speed during a
793 multisensory audiovisual reaction time task: a high-density electrical mapping study. *Cerebral Cortex*. 2006;
794 16(11):1556–1565. doi: <https://doi.org/10.1093/cercor/bhj091>.

795 **Shirinpour S**, Alekseichuk I, Mantell K, Opitz A. Experimental evaluation of methods for real-time EEG
796 phase-specific transcranial magnetic stimulation. *Journal of Neural Engineering*. 2020; 17(4):046002. doi:
797 <https://doi.org/10.1088/1741-2552/ab9dba>.

798 **Talairach J**, Szikla G. Application of stereotactic concepts to the surgery of epilepsy. In: *Advances in Stereotactic
799 and Functional Neurosurgery 4: Proceedings of the 4th Meeting of the European Society for Stereotactic and Func-
800 tional Neurosurgery, Paris 1979* Springer; 1980. p. 35–54. doi: https://doi.org/10.1007/978-3-7091-8592-6_5.

801 **Wechsler D**. *Wechsler Adult Intelligence Scale*. San Antonio, TX: Psychological Corporation; 1997. doi:
802 <https://doi.org/10.1037/t49755-000>.

803 **Wen H**, Liu Z. Separating fractal and oscillatory components in the power spectrum of neurophysiological
804 signal. *Brain Topography*. 2016; 29:13–26. doi: <https://doi.org/10.1007/s10548-015-0448-0>.

805 **Wilson LE**, da Silva Castanheira J, Baillet S. Time-resolved parameterization of aperiodic and periodic brain
806 activity. *eLife*. 2022; 11:e77348. doi: <https://doi.org/10.7554/eLife.77348>.

807 **Zanos S**, Rembado I, Chen D, Fetz EE. Phase-locked stimulation during cortical beta oscillations pro-
808 duces bidirectional synaptic plasticity in awake monkeys. *Current Biology*. 2018; 28(16):2515–2526. doi:
809 <https://doi.org/10.1016/j.cub.2018.07.009>.

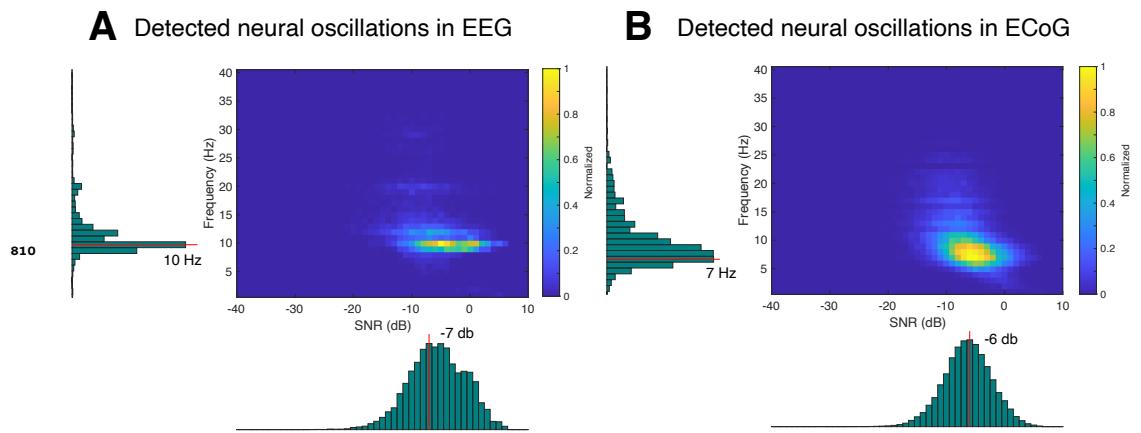


Figure 4—figure supplement 1. SNR Histograms of EEG (A) and ECoG (B).

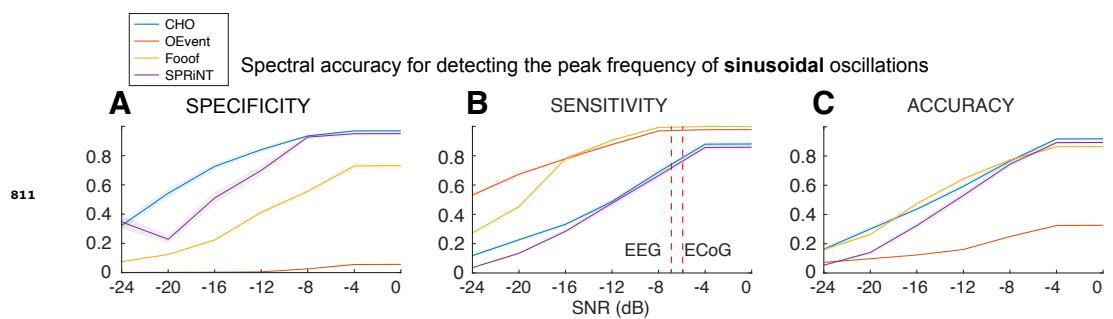


Figure 4—figure supplement 2. Synthetic sinusoidal oscillations.

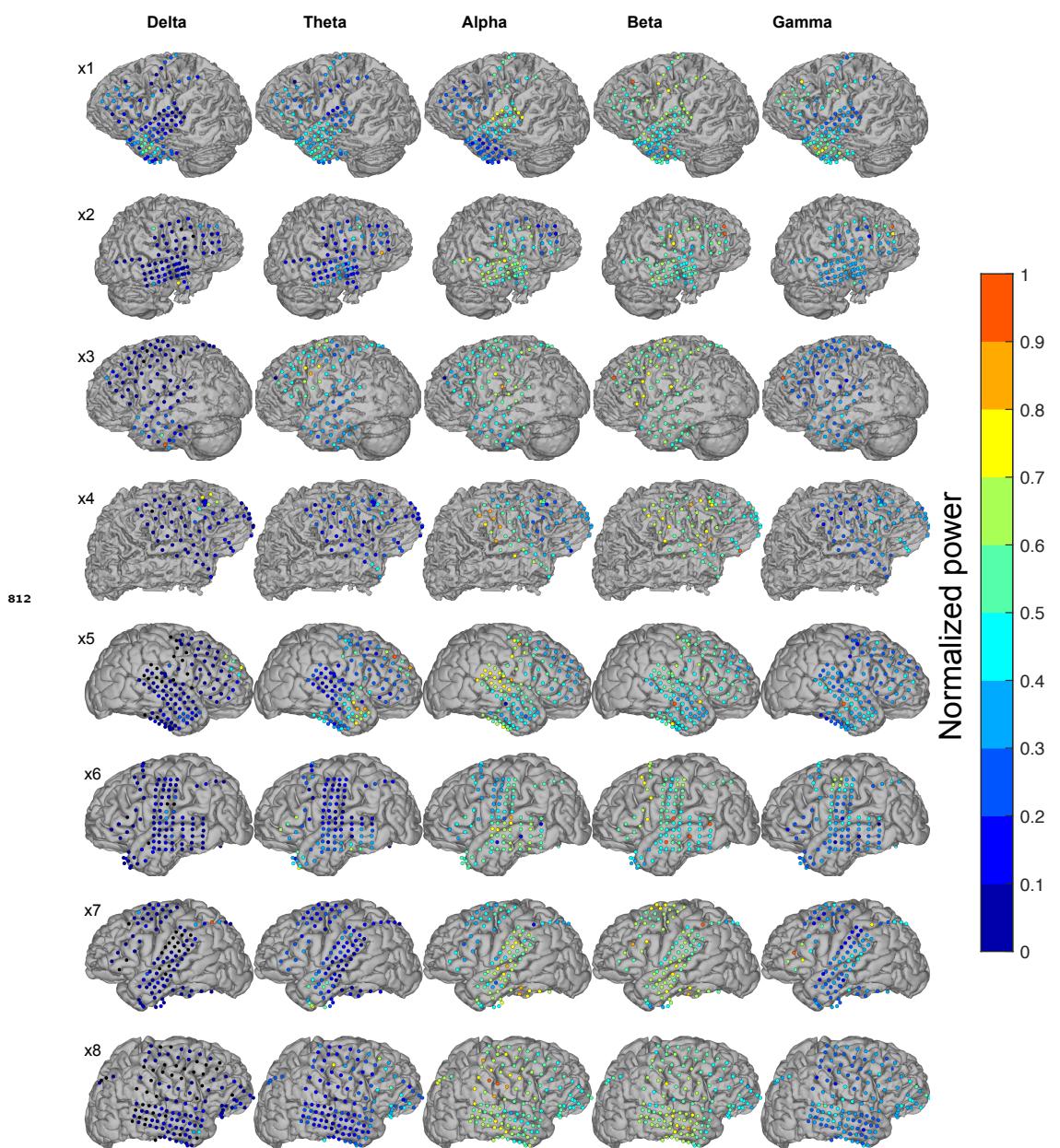


Figure 5—figure supplement 1. ECoG results using FOOOF for all subjects.

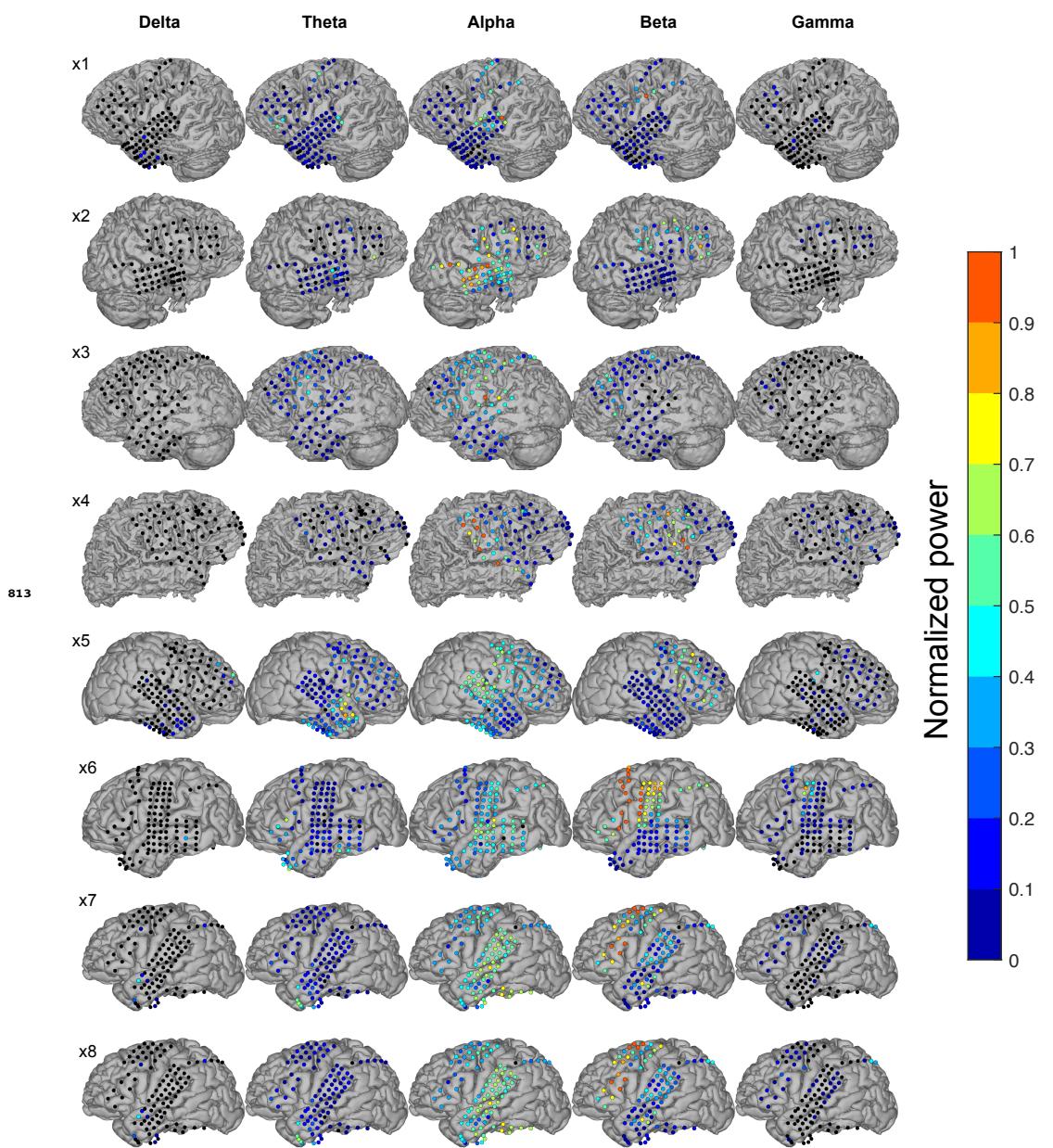


Figure 5—figure supplement 2. ECoG results using CHO for all subjects.

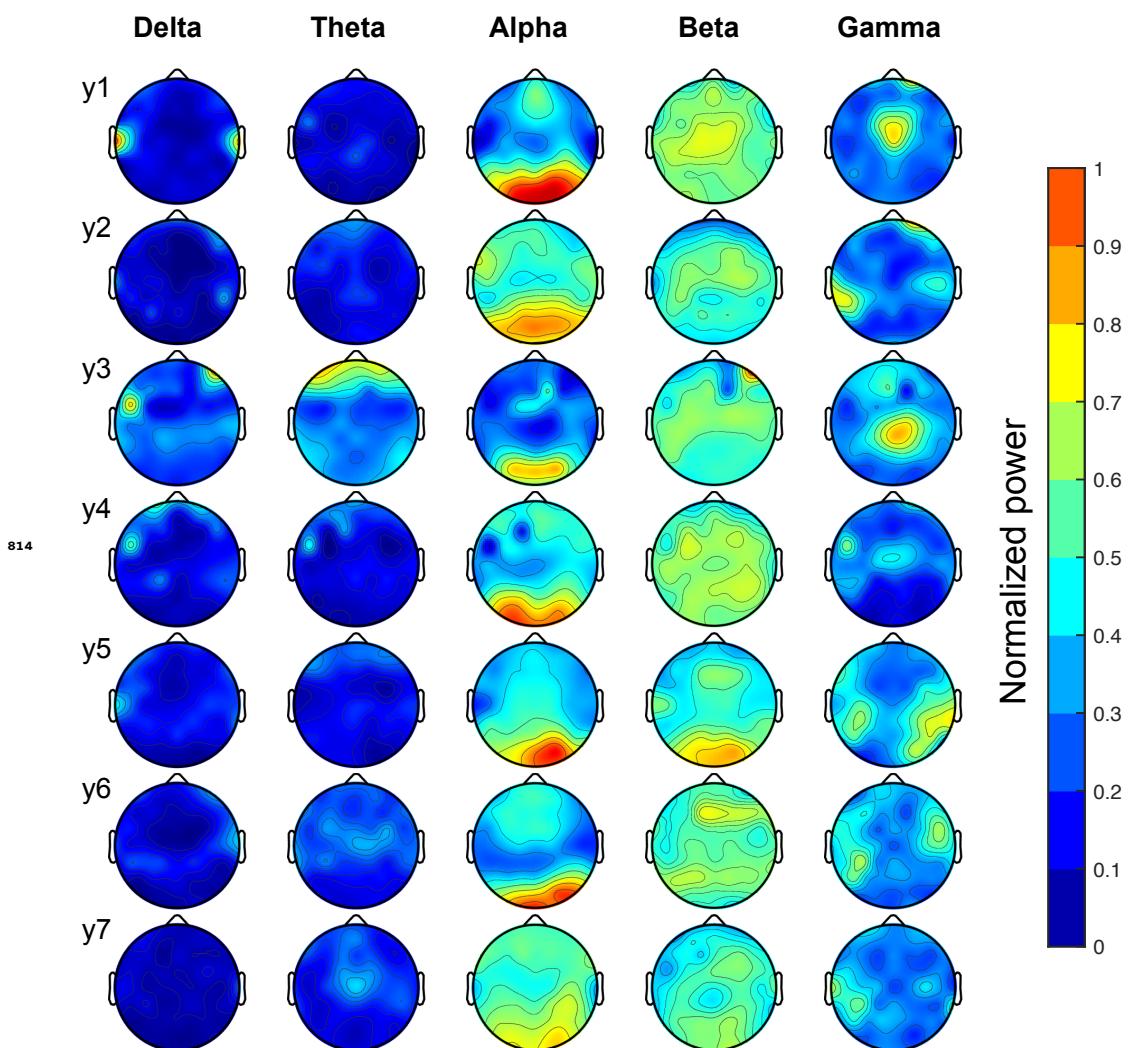


Figure 6—figure supplement 1. Results from seven EEG subjects using the FOOOF method.

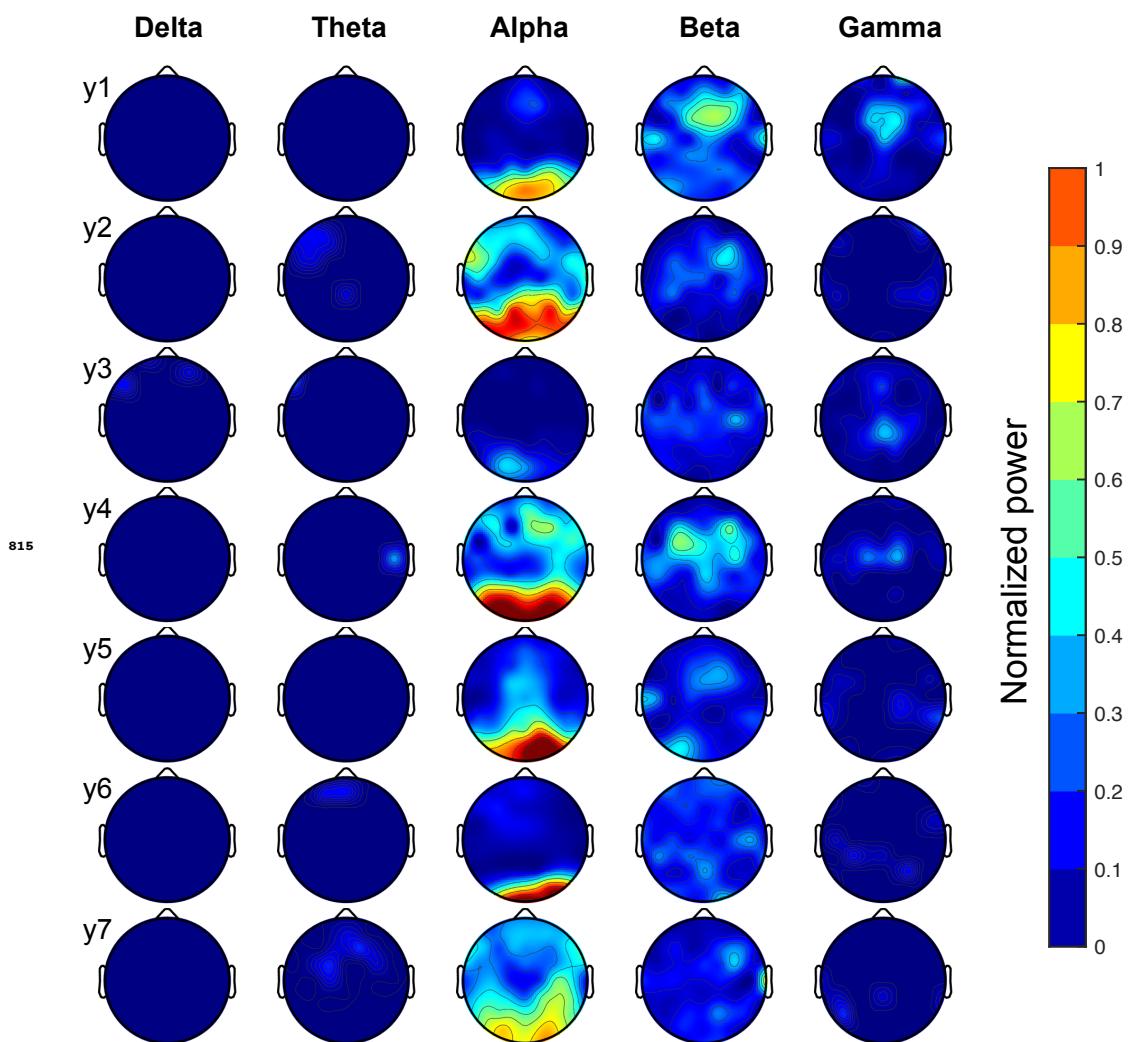


Figure 6—figure supplement 2. Results from seven EEG subjects using CHO.

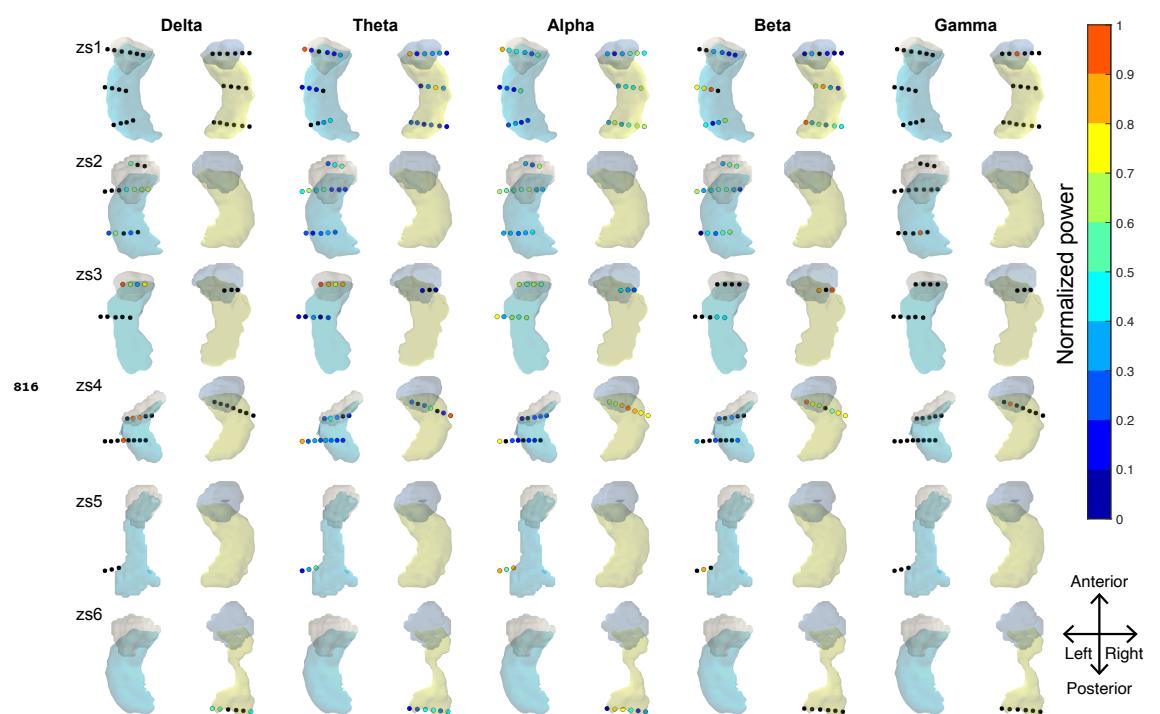


Figure 8—figure supplement 1. All results from six SEEG subjects using the FOOOF method.

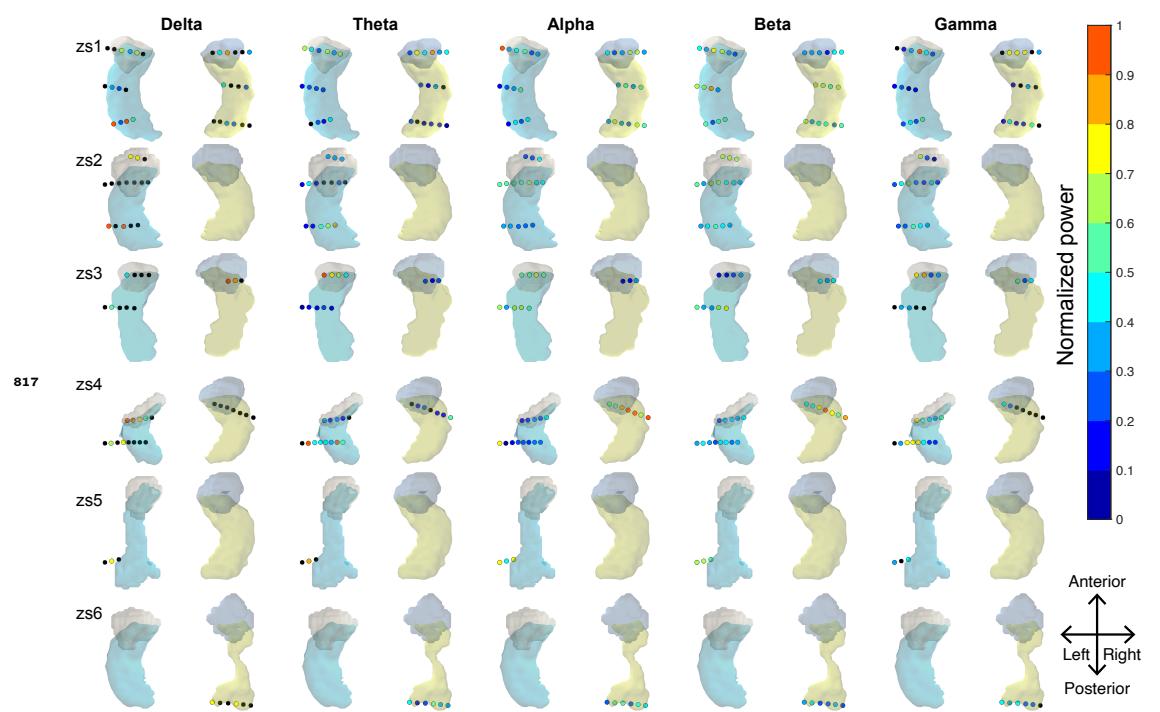


Figure 8—figure supplement 2. All results from six SEEG using CHO.