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Abstract Detecting temporal and spectral features of neural oscillations is essential to9

understanding dynamic brain function. Traditionally, the presence and frequency of neural10

oscillations are determined by identifying peaks over 1/f noise within the power spectrum.11

However, this approach solely operates within the frequency domain and thus cannot adequately12

distinguish between the fundamental frequency of a non-sinusoidal oscillation and its harmonics.13

Non-sinusoidal signals generate harmonics, significantly increasing the false-positive detection14

rate — a confounding factor in the analysis of neural oscillations. To overcome these limitations,15

we define the fundamental criteria that characterize a neural oscillation and introduce the Cyclic16

Homogeneous Oscillation (CHO) detection method that implements these criteria based on an17

auto-correlation approach that determines the oscillation’s periodicity and fundamental18

frequency. We evaluated CHO by verifying its performance on simulated sinusoidal and19

non-sinusoidal oscillatory bursts convolved with 1/f noise. Our results demonstrate that CHO20

outperforms conventional techniques in accurately detecting oscillations. Specifically, we21

determined the sensitivity and specificity of CHO as a function of signal-to-noise ratio (SNR). We22

further assessed CHO by testing it on electrocorticographic (ECoG, 8 subjects) and23

electroencephalographic (EEG, 7 subjects) signals recorded during the pre-stimulus period of an24

auditory reaction time task and on electrocorticographic signals (6 SEEG subjects and 6 ECoG25

subjects) collected during resting state. In the reaction time task, the CHO method detected26

auditory alpha and pre-motor beta oscillations in ECoG signals and occipital alpha and pre-motor27

beta oscillations in EEG signals. Moreover, CHO determined the fundamental frequency of28

hippocampal oscillations in the human hippocampus during the resting state (6 SEEG subjects).29

In summary, CHO demonstrates high precision and specificity in detecting neural oscillations in30

time and frequency domains. The method’s specificity enables the detailed study of31

non-sinusoidal characteristics of oscillations, such as the degree of asymmetry and waveform of32

an oscillation. Furthermore, CHO can be applied to identify how neural oscillations govern33

interactions throughout the brain and to determine oscillatory biomarkers that index abnormal34

brain function.35

36

Introduction37

Neural oscillations in the mammalian brain are thought to play an important role in coordinating38

neural activity across different brain regions, allowing for the integration of sensory information,39

1 of 23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560843doi: bioRxiv preprint 

hohyun@wustl.edu
pbrunner@wustl.edu
https://doi.org/10.1101/2023.10.04.560843
http://creativecommons.org/licenses/by/4.0/


the control of motor movements, and the maintenance of cognitive functions (Pfurtscheller and40

Da Silva, 1999; Caplan et al., 2003; Buzsaki and Draguhn, 2004; Jensen and Mazaheri, 2010; Gi-41

raud and Poeppel, 2012; Schalk, 2015; Fries, 2015). Detecting neural oscillations is important in42

neuroscience as it helps unravel the mysteries of brain function, understand brain disorders, in-43

vestigate cognitive processes, track neurodevelopment, develop brain-computer interfaces, and44

explore new therapeutic approaches. Thus, detecting and analyzing the “when”, the “where”, and45

the “what” of neural oscillations is an essential step in understanding the processes that govern46

neural oscillations.47

For example, detecting the onset and offset of a neural oscillation (i.e., the “when”) is necessary48

to understand the relationship between oscillatory power/phase and neural excitation, an essen-49

tial step in explaining an oscillation’s excitatory or inhibitory function (Pfurtscheller and Da Silva,50

1999; Canolty et al., 2006; Jensen andMazaheri, 2010; Haegens et al., 2011; de Pesters et al., 2016).51

Localizing the brain area or layer that generates the oscillation (i.e., the “where”) provides neu-52

roanatomical relevance to cognitive and behavioral functions (Buzsaki and Draguhn, 2004; Miller53

et al., 2010). Lastly, determining the oscillation’s fundamental frequency (i.e., the “what”) indicates54

underlying brain states (Penfield and Jasper, 1954; Buzsaki and Draguhn, 2004). Together, the55

“when”, the “where”, and the “what” can be seen as the fundamental pillars in investigating the56

role of oscillations in interregional communication throughout the brain (Fries, 2015). These fun-57

damental pillars can also provide insight into the functional purpose (i.e., the “why”), underlying58

mechanisms (i.e., the “how”), and pathologies (i.e., the “whom”) of neural oscillations (Buzsaki and59

Draguhn, 2004; Buzsaki, 2006).60

The detection of neural oscillations has historically been extensively studied in the frequency-61

(Wen and Liu, 2016; Donoghue et al., 2020; Ostlund et al., 2022), time- (Hughes et al., 2012; Gips62

et al., 2017), and time-frequency domains (Chen et al., 2011; Wilson et al., 2022; Neymotin et al.,63

2022). With the notable exception of Gips et al. 2017, these studies assume that neural oscillations64

are predominantly sinusoidal and stationary in their frequency. However, there is an increasing re-65

alization that neural oscillations are actually non-sinusoidal and exhibit spurious phase-amplitude66

coupling (Belluscio et al., 2012; Cole et al., 2017; Scheffer-Teixeira and Tort, 2016; Gips et al., 2017;67

Donoghue et al., 2022). A recent review paper on methodological issues in analyzing neural oscilla-68

tions (Donoghue et al., 2022) identified determining the fundamental frequency of non-sinusoidal69

neural oscillations as the most challenging problem in building an understanding of how neural os-70

cillations govern interactions throughout the brain.71

Fast Fourier Transform (FFT) is the most commonly used method to detect neural oscillations.72

The FFT separates a neural signal into sinusoidal components within canonical bands of the fre-73

quency spectrum (e.g., theta, alpha, beta). The components of these canonical bands are typically74

considered to be functionally independent and involved in different brain functions. However,75

when applied to non-sinusoidal neural signals, the FFT produces harmonic phase-locked compo-76

nents at multiples of the fundamental frequency. While the asymmetric nature of the fundamental77

oscillation can be of great physiological relevance (Mazaheri and Jensen, 2008; Cole et al., 2017;78

Donoghue et al., 2022), its harmonics are considered to be an artifact produced by the FFT that79

can confound the detection and physiological interpretation of neural oscillation (Belluscio et al.,80

2012; Donoghue et al., 2022).81

An example of an unfiltered electrocorticographic recording from auditory cortex (Figure 1A)82

illustrates the non-sinusoidal nature of neural oscillations. The associated FFT-based power spec-83

trum (Figure 1B) exhibits multiple peaks over 1/f noise even though only one oscillatory signal is84

visibly present in the time domain signal. Whether the peaks over 1/f at 12 and 18 Hz, are har-85

monics of 6 Hz oscillations or independent oscillations remains unknown. This ambiguity affects86

the ability to accurately and efficiently identify neural oscillations and understand their role in cog-87

nition and behavior. For this illustrative example of non-sinusoidal neural oscillation, we used a88

phase-phase coupling analysis (Belluscio et al., 2012) to determine whether the exhibited 18 Hz89

beta oscillation is a harmonic of the 6 Hz theta oscillation. This analysis confirmed that the beta os-90
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cillation was indeed a harmonic of the theta oscillation (Figure 1E and F). In marked contrast, for a91

sinusoidal neural oscillation, a phase-phase coupling analysis could not fully ascertain whether the92

oscillations are phase-locked and thus are harmonics of each other (Figure 1G-L). This ambiguity,93

combined with the exorbitant computational complexity of the entailed permutation test and the94

requirement to perform the analysis across all cross-frequency bands over all channels and trials95

render phase-phase coupling impracticable for determining the fundamental frequency of neural96

oscillations in real-time and, thus, the use in closed-loop neuromodulation applications.97

In this study, we aim to define the principle criteria that characterize a neural oscillation and to98

synthesize these criteria into a method that accurately determines the duration (“when”), location99

(“where”), and fundamental frequency (“what”) of non-sinusoidal neural oscillations. For this pur-100

pose, we introduce the Cyclic Homogeneous Oscillation (CHO) detection method to identify neural101

oscillations using an auto-correlation analysis to identify whether a neural oscillation is an inde-102

pendent oscillation or a harmonic of another oscillation. Auto-correlation is a statistical measure103

that assesses the degree of similarity between a time series and a delayed version of itself.104

Thus, auto-correlation can explain the periodicity of a signal without assuming that the signal105

is sinusoidal. Further, the peaks in the output of the auto-correlation function indicate the fun-106

damental frequency of the neural oscillation. As shown in Figure 2, irrespective of the shape of107

neural oscillation (Figure 2A and C), the fundamental frequency can be determined from the pos-108

itive peak-to-peak intervals (see Figure 2B and D). Despite auto-correlation being a well-known109

method to identify the fundamental frequency of a signal, its application to neural oscillations has110

been impeded by the requirement to accurately determine the onset and offset of the oscillation.111

To overcome this limitation, we combine the auto-correlationmethodwith theOscillation Event112

(OEvent) method (Neymotin et al., 2022) to determine the onset/offset of oscillations. In this ap-113

proach, OEvent determines bounding boxes in the time-frequency domain that mark the onset114

and offset of suspected oscillations. Each bounding box is generated by identifying a period of115

significantly increased power from averaged power spectrum. To further improve OEvent, we re-116

placed the empirical threshold that identifies bounding boxes in the time-frequency domain with117

a parametric threshold driven by an estimation of the underlying 1/f noise (Donoghue et al., 2020),118

as shown in Figure 3A.119

Furthermore, we improved OEvent to reject any short-cycled oscillations that could represent120

evoked potentials (EP), event-related potentials (ERP), or spike activities, as shown in Figure 3B. In121

general, EPs or ERPs in neural signals generate less than two cycles of fluctuations. Large-amplitude122

EPs, ERPs, and spike activities can result in spurious oscillatory power in the frequency domain123

(de Cheveigné and Nelken, 2019; Donoghue et al., 2020, 2022).124

In the final step, we determine the oscillation’s periodicity and fundamental frequency by iden-125

tifying positive peaks in the auto-correlation of the signal. As shown for a representative oscillation126

in Figure 3C, the center frequency of the highlighted bounding box is 24 Hz, but the periodicity of127

the underlying raw signal does not match the calculated fundamental frequency of 7 Hz. Conse-128

quently, this bounding box at 24 Hz will be rejected. Finally, we merge those remaining bounding129

boxes that neighbor each other in the frequency domain and overlap more than 75% (Neymotin130

et al., 2022) in time.131

In summary, the presented CHO method identifies neural oscillations that fulfill the following132

three criteria: 1) oscillations (peaks over 1/f noise) must be present in the time and frequency133

domains; 2) oscillations must exhibit at least two full cycles; and 3) oscillations must have auto-134

correlation. These criteria are supported by studies in the neuroscience literature (Buzsaki and135

Draguhn, 2004; Niedermeyer and da Silva, 2005; Buzsaki, 2006; Cohen, 2014; de Cheveigné and136

Nelken, 2019; Donoghue et al., 2020, 2022). The synthesis of these criteria into the presented137

method allows us to detect and identify non-sinusoidal oscillations and their fundamental fre-138

quency. This is because criteria #1 (i.e., the presence of an oscillation) and #2 (i.e., the length of139

the oscillation) identify potential oscillations, which are then tested to be fundamental oscillations140

using an auto-correlation analysis using criteria #3 (i.e., the periodicity of an oscillation).141
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Figure 1. Examples of non-sinusoidal and sinusoidal neural oscillations recorded from the human
auditory cortex. Detecting the presence, onset/offset, and fundamental frequency of non-sinusoidal
oscillations is challenging. This is because the power spectrum of the non-sinusoidal theta-band oscillation
(A) exhibits multiple harmonic peaks in the alpha and beta bands (B). The peaks of these harmonics are also
exhibited in the time-frequency domain (C). To determine whether these peaks are independent oscillations
or harmonics of the fundamental frequency, we tested whether fundamental theta oscillation and potential
beta-band harmonic oscillations exhibit a 1:3 phase-locking (D-F), i.e., whether the beta-band oscillation is a
true 3rd harmonic of the fundamental theta-band oscillation. In our test, we found that the theta-band
oscillation was significantly phase-locked to the beta-band oscillation with a 1:3 ratio in their frequencies (F).
This means that the tested theta- and beta-band oscillations are part of one single non-sinusoidal neural
oscillation. We applied the same statistical test to a sinusoidal neural oscillation (G). Since this neural
oscillation closely assembles a sinusoidal shape, it does not exhibit any prominent harmonic peaks in the
alpha and beta bands within the power spectrum (H) and time-frequency domain (I). Consequently, our test
found that the phase of the theta-band and beta-band oscillations were not phase-locked (J-L). This means
that the tested oscillation is a sinusoidal neural theta-band oscillation.

To verify and validate CHO, we applied the above-presented principle criteria on simulated non-142

sinusoidal signals and human electrophysiological signals, including electrocorticographic (ECoG)143

signals recorded from the lateral brain surface, electroencephalographic signals (EEG) recorded144

from the scalp, and local field potentials recorded from the hippocampus using stereo EEG (SEEG).145

We further validated our approach by comparing CHO to other commonly used methods.146

To determine the spectral accuracy in detecting the peak frequency of non-sinusoidal oscil-147

lations, we compared CHO to established methods, including the fitting of oscillations using 1/f148

(FOOOF, also known as specparam, Donoghue et al. 2020), the OEvent method (Neymotin et al.,149

2022), and the Spectral Parameterization Resolved in Time (SPRiNT, Wilson et al. 2022) methods.150

Moreover, to determine the spectro-temporal accuracy in detecting both the peak frequency and151

the onset/offset of non-sinusoidal oscillations, we compared CHO with the OEvent method.152

The selection of FOOOF, SPRiNT, and OEvent is based on their fundamental approaches. To the153

best of our knowledge, FOOOF is themost representativemethod for detecting the peak frequency154

of neural oscillations. SPRiNT expands the FOOOF method into the time-frequency domain, and155

OEvent can determine the onset/offset of the detected oscillations.156
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Figure 2. Using auto-correlation to determine the fundamental frequency of non-sinusoidal and
sinusoidal neural oscillations recorded from the human auditory cortex. (A) Temporal dynamics of
non-sinusoidal (left) and sinusoidal (right) neural oscillation and (B) their auto-correlation. The periodicity of
peaks in the auto-correlation reveals the fundamental frequency of the underlying oscillation. Asymmetry in
peaks and troughs of the auto-correlation is indicative of a non-sinusoidal oscillation.

Results157

The following sections describe the results of our study: The first section presents simulation re-158

sults by comparing the accuracy of CHO with that of existing methods in detecting non-sinusoidal159

oscillations. The second section reports physiological results by comparing the accuracy of CHO160

with that of established methods in detecting oscillations within in-vivo recordings.161

Synthetic results162

To determine the specificity and sensitivity of CHO in detecting neural oscillations, we applied CHO163

to synthetic non-sinusoidal oscillatory bursts convolved with 1/f noise, also known as pink noise,164

which has a power spectral density that is inversely proportional to the frequency of the signal.165

As shown in Figure 4, we generated 5s-long 1/f signals composed of pink noise and added non-166

sinusoidal oscillations of different lengths (one cycle, two-and-a-half cycles, 1s-duration, and 3s-167

duration). The rightmost panel of Figure 4A shows two examples of non-sinusoidal oscillations168

(two-and-a-half cycles and 2s-duration) along with their power spectra. As can be seen in Figure 4A,169

longer non-sinusoidal oscillations exhibit stronger harmonic peaks.170

Our results in Figure 4B-Ddemonstrate that CHOoutperforms conventional techniques in speci-171

ficity and accuracy for detecting the peak frequency of non-sinusoidal oscillations. High specificity172

depends on high true-negative and low false-positive rates. For conventional methods, we ex-173

pected harmonic oscillations to increase the false-positive rate and one-cycled oscillations to de-174

crease the true-negative rate. As expected, conventional methods detected harmonic and one-175

cycled oscillations as true oscillations. For example, the average specificity of SPRiNT was below176

0.3, which was significantly lower than the robust specificity of CHO across the entire range of SNR.177

We also observed that CHO requires a higher SNR to detect the presence of oscillations. Sensi-178

tivity depends on the true-positive and the false-negative rates. We found existing methods to be179

overly sensitive in detecting the presence of oscillations. At the same time, this severely limits their180

specificity and, thus, their ability to accurately detect the presence and frequency of an oscillation.181

Based on our physiological datasets, we found the average SNR of oscillations in EEG and ECoG182
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Figure 3. Procedural steps of CHO. (A) First, to identify periodic oscillations, CHO removes the underlying 1/f
aperiodic noise in the time-frequency space and generates initial bounding boxes of candidate oscillations.
(B) In the second step, CHO rejects bounding boxes that exhibit less than two oscillatory cycles. (C) In the final
step, CHO limits the analysis to only those bounding boxes that exhibit the same frequency in the
time-frequency map and auto-correlation. Each remaining bounding box is characterized by onset/offset,
frequency range, center frequency, and number of cycles.
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Figure 4. Performance of CHO in detecting synthetic non-sinusoidal oscillations. (A)We evaluated CHO
by verifying its specificity, sensitivity, and accuracy in detecting the fundamental frequency of non-sinusoidal
oscillatory bursts convolved with 1/f noise. (B-D) CHO outperformed existing methods in detecting the
fundamental frequency of non-sinusoidal oscillation (FOOOF: fitting oscillations one over f (Donoghue et al.,
2020), OEvent (Neymotin et al., 2022): Oscillation event detection method, and SPRiNT (Wilson et al., 2022):
Spectral Parameterization Resolved in Time) in specificity and accuracy, but not in sensitivity. CHO exhibited
fewer false-positive and more true-negative detections than existing methods. (C) However, at SNR-levels of
alpha oscillations found in EEG and ECoG recordings (i.e., -7 dB and -6 dB, respectively), the sensitivity of CHO
in detecting the peak frequency of non-sinusoidal oscillation is comparable to that of SPRiNT. (D) This means
that the overall accuracy of CHO was higher than that of existing methods. (E-G) CHO outperformed existing
methods in detecting the fundamental frequency and onset/offset of non-sinusoidal oscillation. (F) Similar to
the results shown in (C) CHO can effectively detect the fundamental frequency and onset/offset for more
than half of all oscillations at SNR-levels of alpha oscillations found in EEG and ECoG recordings.
Figure 4—figure supplement 1. SNR Histograms of EEG and ECoG.
Figure 4—figure supplement 2. Synthetic sinusoidal oscillations.
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Figure 5. Validation of CHO in detecting oscillations in ECoG signals. We applied CHO and FOOOF to
determine the fundamental frequency of oscillations from ECoG signals recorded during the pre-stimulus
period of an auditory reaction time task. FOOOF detected oscillations primarily in the alpha- and beta-band
over STG and pre-motor area. In contrast, CHO also detected alpha-band oscillations primarily within STG,
and more focal beta-band oscillations over the pre-motor area, but not STG.
Figure 5—figure supplement 1. ECoG results using FOOOF for all subjects.
Figure 5—figure supplement 2. ECoG results using CHO for all subjects.

to be -7 dB and -6 dB, respectively (figure Supplement 1). When tested at these physiologically-183

motivated SNR levels, and found that the sensitivity of CHO is comparable to that of SPRiNT. Over-184

all, when considering the accuracy combined with specificity and sensitivity, CHO outperformed all185

othermethods in detecting the peak frequency of non-sinusoidal oscillations at the physiologically-186

motivated SNR levels.187

In addition to determining the accuracy in detecting the presence of oscillations and determin-188

ing their peak frequency, we also determined the accuracy of all methods in detecting the onset189

and offset of oscillations. This comparison is limited to OEvent because FOOOF and SPRiNT meth-190

ods cannot determine the onset and offset of short oscillations. In this analysis, CHOoutperformed191

the OEvent method in specificity but not sensitivity, as shown in Figure 4E-G. Specifically, we found192

performance trends similar to those in our previous simulation result (Figure 4B-D). Thus, CHO193

outperforms conventional techniques in specificity for detecting both the peak frequency and on-194

set/offset of oscillations.195

Empirical results196

We further assessed CHO by testing it on electrophysiological signals recorded from human sub-197

jects. Specifically, we evaluated CHO on electrocorticographic (ECoG, x1–x8, 8 subjects) and elec-198

troencephalographic (EEG, y1–y7, 7 subjects) signals recorded during the pre-stimulus period of an199

auditory reaction time task. Furthermore, we also evaluated CHO on signals recorded during rest-200

ing state from cortical areas and hippocampus using ECoG (ze1–ze8, N=6) and stereo EEG (zs1–zs6,201

6 subjects).202

Electrocorticographic (ECoG) results203

In the auditory reaction time task, we expected to observe neural low-frequency oscillations during204

the pre-stimulus period within task-relevant areas, such as the auditory and motor cortex. As we205

expected, we found alpha and beta oscillations within these cortical areas. We compared the topo-206

graphic distribution of the oscillations detected by FOOOF with those detected by CHO. As shown207

in Figure 5 for one representative subject, FOOOF detected the presence of alpha, and beta oscil-208

lations within temporal and motor cortex. In contrast, while CHO also detected alpha oscillations209

in temporal andmotor cortex, it only detected beta oscillations in motor cortex. We found this pat-210

tern to be consistent across subjects, as shown in figure Supplement 2 and figure Supplement 1.211

Furthermore, CHO did not detect low gamma oscillations, while FOOOF found several low gamma212

oscillations.213
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Figure 6. Validation of CHO in detecting oscillations in EEG signals. We applied CHO and FOOOF to
determine the fundamental frequency of oscillations from EEG signals recorded during the pre-stimulus
period of an auditory reaction time task. FOOOF primarily detected alpha-band oscillations over frontal/visual
areas and beta-band oscillations across all areas (with a focus on central areas). In contrast, CHO detected
alpha-band oscillations primarily within visual areas and detected more focal beta-band oscillations over the
pre-motor area, similar to the ECoG results shown in Figure 5.
Figure 6—figure supplement 1. All EEG results using FOOOF.
Figure 6—figure supplement 2. All EEG results using CHO.

Electroencephalographic (EEG) results214

We expected that the EEGwould exhibit similar results as seen in the ECoG results. Indeed, the EEG215

results mainly exhibit alpha and beta oscillations during the pre-stimulus periods of the auditory216

reaction time task, as shown in Figure 6. Specifically, FOOOF found alpha oscillations inmid-frontal217

and visual areas and beta oscillations throughout all areas of the scalp. In contrast, CHO found218

more focal visual alpha and pre-motor beta. Furthermore, the low gamma oscillations detected by219

CHOwere also more focal than those detected by FOOOF. We found these results to be consistent220

across subjects (see figure Supplement 1 and figure Supplement 2).221

Onset and offset of neural oscillations222

So far, we have established that CHO can localize beta rhythms within pre-motor cortex in EEG and223

ECoG. Here, we are interested in determining the accuracy of the onset/offset detection of neural224

oscillations. For this purpose, we tested whether CHO, applied to signals recorded from auditory225

cortex during an auditory reaction-time task, can accurately detect the transition between resting226

and task periods. Specifically, we expected CHO to detect the offset times of neural oscillations227

after the stimulus onset (i.e., a beep tone that remained until a button was pressed). Based on the228

principle of event-related de-/synchronization (ERD/ERS, Pfurtscheller and Da Silva 1999), cortical229

neurons may be de-synchronized to process an auditory stimulus. As shown in Figure 7, CHO230

successfully detected offset times of 7 Hz neural oscillations. During the pre-stimulus period, the231

distribution of the onset time remains uniform, reflecting the subject waiting for the stimulus. In232

contrast, after the stimulus onset, the distribution of onset times becomes Gaussian, reflecting233

the variable reaction time to the auditory stimulus. Of note, the detection of onset times peaks234

950 ms post-stimulus, which occurs significantly later than the button press that happens 200 ms235

post-stimulus (Figure 7B).236

Similar to the distribution of onset times, the distribution of offset times remained uniform237

throughout the pre-stimulus period. After stimulus onset, the distribution becomes Gaussian, with238

a peak of offset detections at 300ms post-stimulus, or 200ms post-response (i.e., the button press)239

(Figure 7C).240
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In summary, thismeans that, on average, the detected 7Hz oscillations de-synchronized 250ms241

and synchronized 900 ms, post-stimulus, respectively.242

Stereoelectroencephalographic (SEEG) results243

Wealso investigated neural oscillationswithin the hippocampus. Specifically, wewere interested in244

the frequency and duration of hippocampal oscillations, which are known to be non-sinusoidal and245

a hallmark of memory processing (Buzsaki, 2006; Lundqvist et al., 2016). Using the CHO method,246

we plotted a representative example of detected hippocampal alpha bursts, as shown in Figure 8.247

As expected, the non-sinusoidal alpha-band oscillations also resulted in harmonic oscillations in248

the beta band, which, while not clearly visible in the power spectrum (Figure 8B), can be clearly249

seen in the time-frequency analysis (Figure 8D and Figure 8E). In contrast to the ECoG and EEG250

results, the frequency of beta-band oscillations in the hippocampus exhibited a frequency close251

to the alpha-band (8–14 Hz). CHO found primarily alpha-band oscillations in the hippocampus252

(see figure Supplement 2, figure Supplement 1). When comparing the consistency between CHO253

and FOOOF across hippocampal locations, CHO exhibits more specific results with less overlap254

between alpha and beta locations and almost no detection in the low-gamma band (30–40 Hz). For255

example, subject zs4 in figure Supplement 2 shows alpha and beta locations mutually supplement256

each other when using CHO but not when using the FOOOF method.257

Frequency and duration of neural oscillations258

Here, we are interested in identifying the predominant frequency and duration of neural oscilla-259

tions for specific brain areas during the resting state. For this purpose, we first determined the260

specific Brodmann area of each recording electrode using an intracranial electrode localization261

tool, Versatile Electrode Localization Framework (VERA, Adamek et al. 2022). Next, we investigated262

electrodes belonging to the primary auditory cortex (i.e., Brodmann areas 41 and 42), as shown in263

Figure 9A.We found that 7 and 11 Hz oscillations were the predominant neural oscillations for elec-264

trodes near the primary auditory cortex. The average duration of an 11 Hz oscillation was 450 ms.265

Next, our results for primary motor cortex (i.e., Brodmann area 4) showed that 7 Hz was the pre-266

dominant oscillation frequency in the motor cortex with 450 ms duration on average, as shown in267

Figure 9B. We found that motor cortex exhibits more beta-band oscillations (around 500 ms dura-268

tion) than the auditory cortex. Next, Broca’s area exhibited characteristics similar to those of the269

motor cortex, however, with a predominant beta-band frequency of 17 Hz, which is lower than the270

22 or 24 Hz oscillations found in the motor cortex (Figure 9C). Lastly, using SEEG electrodes, we271

investigated neural oscillations within the human hippocampus (Figure 9D). This analysis showed272

that 8 Hz was the predominant oscillatory frequency in the hippocampus with a 450 ms duration273

on average. During the resting state, neural alpha- and beta-band oscillations within the hippocam-274

pus were shorter than in the motor cortex (p<0.05, Wilcoxon rank sum test, N=6).275

Discussion276

Our novel CHOmethod demonstrates high precision and specificity in detecting neural oscillations277

in time and frequency domains. The method’s specificity enables the detailed study of spatio-278

temporal dynamics of oscillations throughout the brain and the investigation of oscillatory biomark-279

ers that index functional brain areas.280

High specificity for detecting neural oscillations281

In our simulation study, CHO demonstrated high specificity in detecting both the peak and on-282

set/offset of neural oscillations in time and frequency domains. This high specificity directly results283

from the three criteria we established in this study. The first criterion was that neural oscillations284

(peaks over 1/f noise) must be present in the time and frequency domain. The 1/f trend estimation285

served as a threshold to reject aperiodic oscillatory power in the neural signals (Donoghue et al.,286

2020).287
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Figure 7. Application of CHO in determining the spatio-temporal characteristics of neural oscillations
in ECoG signals during a reaction-time task. (A)We selected those cortical locations (red) from all locations
(black) that exhibited a significant broadband gamma response to an auditory stimulus in a reaction-time
task. (B) In this task, the subjects were asked to react as fast as possible with a button press to a salient
auditory stimulus. (C-D) Onset and offset times of detected neural oscillations. Fundamental oscillations were
centered around 7 Hz (left histogram). Onset and offset times during pre-stimulus period exhibited a uniform
distribution, indicating that 7 Hz oscillations randomly started and stopped during this period. A trough in the
onset and a peak in the offset of 7 Hz oscillations is visible from the histograms, indicating a general decrease
of the presence of neural oscillations immediately following the auditory stimulus. The subjects responded
with a button press within 200 ms of the auditory stimulus, on average. The prominent peak in the offset and
onset of oscillations at 300 ms and 950 ms post-stimulus, respectively, indicates a suspension of oscillations
in response to the auditory stimulus, and their reemergence after the execution of the button press behavior.
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Figure 8. Application of CHO in determining the fundamental frequency and duration of hippocampal
oscillations in SEEG signals during resting state. (A)We recorded hippocampal oscillations from one
representative human subject implanted with SEEG electrodes within the left anterior hippocampus. (B)
Power spectrum (blue) and 1/f trend (red) for one electrode within the anterior-medial left hippocampus (red
dot in A). The power spectrum of a 10-second-long hippocampal signal indicates the presence of neural
activity over a 1/f trend across a wide frequency band up to 30 Hz. (C) In marked contrast to the relatively
unspecific results indicated by the power spectrum, CHO detected several distinct hippocampal alpha-band
bursts. (D) This detection is based on first denoising the power spectrum using 1/f fitting (principle criterion
#1 of CHO), which yields initial bounding boxes, that include short-cycled oscillations and harmonics. (E) The
auto-correlation step then successfully removes all short-cycled oscillations and harmonics, with only those
bounding boxes remaining that exhibit a fundamental frequency.
Figure 8—figure supplement 1. All results from eight ECoG subjects using the FOOOF method.
Figure 8—figure supplement 2. All results from eight ECoG subjects using CHO.
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Figure 9. Application of CHO in determining the fundamental frequency and duration of neural
oscillations in auditory cortex, motor cortex, Broca’s area, and hippocampus during resting state. This
figure presents the distribution of detected oscillations in a 2-dimensional frequency/duration histogram and
projected onto frequency and duration axes. The red line indicates the rejection line (less than two cycles). (A)
In primary auditory cortex (Brodmann area 41/42), the most dominant frequency and duration in the auditory
cortex was 11 Hz with 450 ms duration. (B) The primary motor cortex’s most dominant frequency was 7 Hz
with 450 ms duration, but more beta rhythms were detected with >500 ms duration than in auditory cortex.
(C) Broca’s area exhibits similar characteristics to that of motor cortex, but dominant beta-band oscillations
were found to be less present than in motor cortex. (D) Hippocampus primarily exhibits 8 Hz oscillations with
450 ms duration.
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Next, the second condition was that oscillations must exhibit at least two complete cycles. This288

condition distinguishes periodic oscillations from evoked/event-related potentials (EP/ERP) and289

spike artifacts. EP/ERP have spectral characteristics that are similar to those of theta or alpha290

frequency oscillations. To discriminate EP/ERPs from genuine oscillations, we reject them if they291

don’t exhibit peaks over 1/f or if they have fewer than two cycles.292

The third and final condition is that oscillations should share the same periodicity as their auto-293

correlation. This is because positive peaks in the auto-correlation can identify the oscillation’s fun-294

damental frequency even if it is non-sinusoidal. The bounding boxes help us to identify possible295

onsets/offsets of neural oscillations. Moreover, calculating the auto-correlation of the raw signals296

within a bounding box provides the true periodic frequency of the raw signal. We then reject any297

bounding boxes for which the periodicity of the raw signal is not in alignment with the true periodic298

frequency revealed by the auto-correlation. This third condition is important in rejecting harmonic299

peaks over 1/f noise in the frequency domain. Furthermore, it is also effective in rejecting spurious300

oscillations, which are broadly generated by spike activities in the frequency domain (de Cheveigné301

and Nelken, 2019).302

To calculate the auto-correlation, we first needed to determine the onset/offset of the potential303

oscillations. The first and second criteria serve as a triage in finding the onset/offset of genuine304

oscillations. Thus, these three principle criteria were essential to reject aperiodic harmonic oscil-305

lations and increase CHO’s specificity in detecting both the peak frequency and the onset/offset306

of non-sinusoidal oscillations. We also evaluated CHO on purely sinusoidal oscillations (see figure307

Supplement 2). The results of this analysis show that even in the absence of any asymmetry in the308

oscillations, CHO still outperforms existing methods in specificity. It further shows that the sen-309

sitivity increases with increasing SNR. Even though this analysis is based on synthetic sinusoidal310

oscillations, our results demonstrated that existing methods are susceptible to noise which results311

in the detection of spurious oscillations. However, as expected, both FOOOF and SPRiNT methods312

exhibited reasonable specificity when applied to sinusoidal signals.313

Focal localization of beta oscillations314

Beta oscillations occur within the 13–30 Hz band throughout various brain regions, including the315

motor cortex. In the motor cortex, beta oscillations are thought to be involved in motor planning316

and execution. Studies have shown that beta oscillations increase and decrease in power during317

movement preparation and movement execution, respectively (Pfurtscheller and Da Silva, 1999;318

Jenkinson and Brown, 2011; Doyle et al., 2005; Senkowski et al., 2006). In our empirical results319

based on the presented ECoG dataset, CHO found focal beta oscillations to occur within pre-motor320

and frontal cortex prior to the button response, as shown in Figure 5. These findings were consis-321

tent across subjects. Conventional methods found alpha and beta oscillations in the auditory cor-322

tex, while CHO found only select beta oscillations. This suggests that most of the beta oscillations323

detected by conventional methods are simply harmonics of the predominant asymmetric alpha324

oscillation. Along the same line, conventional methods found beta and low gamma oscillations in325

pre-motor and frontal areas, while CHO found predominantly beta oscillations. This suggests that326

low gamma oscillations detected by conventional methods are harmonics of beta oscillations.327

In the EEG results, CHO found focal visual alpha and motor beta oscillations, while the FOOOF328

found frontal and visual alpha and beta oscillations across broad scalp areas, as shown in Figure 6.329

In contrast to the ECoG results, neither CHOnor FOOOF auditory found alpha oscillationswithin the330

temporal areas. This is interesting as FOOOF exhibits a better sensitivity than CHO and suggests331

that auditory alpha rhythms may be difficult to observe in EEG. Similar to the ECoG results, our332

analysis confirmed that non-sinusoidal alpha and beta oscillations generate harmonic oscillations333

in both beta and low gamma in EEG. This shows that our CHOmethod, which has a high specificity,334

can detect focal motor beta oscillations.335
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Harmonic oscillations in human hippocampus336

Recent studies suggest that the frequency range of hippocampal oscillations is wider than previ-337

ously assumed (<40 Hz in Cole and Voytek 2019, or 3–12 Hz in Li et al. 2022) and that it does not338

match the conventional frequency range of theta/alpha rhythms (Buzsaki, 2006). This realization339

stems from the recognition that neural oscillations are non-sinusoidal, and thus require a wide340

frequency band to be fully captured (Cole and Voytek, 2019; Donoghue et al., 2022). Adopting a341

wider frequency band providesmore frequency options in fitting the non-sinusoidal shape of brain342

waves. The recognition of the need to expand the frequency band within oscillation analysis is not343

limited to the hippocampus. Our ECoG and EEG results show that harmonics can occur in any344

brain area and frequency band because neural oscillations are inherently non-sinusoidal. A recent345

study showed that the phase of wide-band oscillations could better predict neural firing (Davis346

et al., 2020).347

CHO can determine the fundamental frequency of non-sinusoidal oscillations when applied348

within a wide-band analysis, as shown in Figure 8E. Moreover, CHO provides onset/offset and the349

frequency range of an oscillation, allowing us to investigate non-sinusoidal features, such as the350

degree of asymmetry and amplitudes of trough/peak (Cole and Voytek, 2019).351

Identifying onset/offset of neural oscillations and its application352

Although the frequency of neural oscillation has been extensively investigated, the onset/offset353

and duration of neural oscillations have remained elusive. Using CHO, the onset/offset, and du-354

ration of neural oscillations can be revealed, as shown in Figure 7 and Figure 9. Knowing the355

onset/offset and duration of a neural oscillation is essential for realizing closed-loop neuromod-356

ulation. This is because neuromodulation may be most efficient when electrical stimulation is de-357

livered phase-locked to the underlying ongoing oscillation (Chen et al., 2011; Cagnan et al., 2017,358

2019; Zanos et al., 2018; Shirinpour et al., 2020). For example, deep-brain stimulation in phase359

with ongoing oscillation can reduce the stimulation necessary to achieve the desired therapeutic360

effect (Cagnan et al., 2017, 2019). This improved efficiency in delivering the stimulation therapy re-361

duces power consumption and thus enhances the battery life of the implanted system (Chen et al.,362

2011). Longer battery life means fewer battery changes (which require surgical procedures), or for363

rechargeable systems, fewer recharging sessions (which require the user’s attention). Realizing364

phase-locked neuromodulation requires detecting the duration of an ongoing oscillation with high365

specificity and delivering the electrical stimulation at a predicted oscillation phase. The detection366

and identification with high specificity thus enable neuromodulation applications that depend on367

phase-locked electrical stimulation.368

Moreover, the temporal precision of CHO in detecting neural oscillations can improve the effec-369

tiveness of neurofeedback-based systems. For example, a neurofeedback systemmay provide tar-370

geted feedback on themagnitude of the user’s alpha oscillation to improve attention and in turn im-371

prove task performance. For this purpose, the systemmust detect the frequency, onset/offset, and372

duration of the user’s alpha oscillation with high specificity. High specificity requires distinguishing373

other oscillations and artifacts from true physiological alpha-band oscillations. The identification374

of true neural oscillations with the high specificity of CHO thus enables targeted neurofeedback375

applications to enhance or restore task performance.376

Illuminating the when, where, what, why, how, and whom of neural oscillations377

In our study, we focused on the temporal dynamics (“when”), spatial distribution (“where”), and378

fundamental frequency (“what”) of neural oscillations. However, fully understanding the role of379

neural oscillations in cognition and behavior also requires investigating their underlying mecha-380

nisms (“how”), functional purpose (“why”), and pathologies (“whom”).381
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Temporal Dynamics – the “when”382

CHOdemonstrated high specificity in detecting the onset and offset of fundamental non-sinusoidal383

oscillations (see Figure 4E). Using CHO, our study revealed the temporal dynamics of oscillations384

within the temporal lobe in an auditory reaction-time task. We identified the onsets and offsets385

of 7 Hz oscillations and, thus, the boundaries in oscillatory activity between resting and task en-386

gagement. Our results show a rapid decrease in oscillatory activity for the duration of the auditory387

stimulus, followed by a rapid reemergence of the oscillatory activity following the cessation of the388

auditory stimulus (see Figure 7C and D). These results shed light on the temporal dynamics of neu-389

ral oscillatory activity in cognitive processes and how the brain adapts to environmental stimuli.390

Spatial Distribution – the “where”391

CHO revealed the spatial distribution of neural oscillations in EEG, SEEG, and ECoG recordings. The392

spatial distribution of fundamental neural oscillations, and their absence during task engagement,393

can reveal underlying shared functional organization. CHO can be applied to a wide range of neu-394

roimaging techniques such as EEG, MEG, ECoG, and SEEG to elucidate the involvement of different395

brain regions in various cognitive functions. For example, using CHO, our study found focal specific396

alpha oscillations over occipital (visual) cortex in EEG and focal beta oscillations over parietal (mo-397

tor) cortex in ECoG. These results demonstrate the utility of CHO in precisely mapping the spatial398

distribution of neural oscillations across the brain, and in revealing shared functional organization399

of brain networks.400

Fundamental Frequency – the “what”401

CHO revealed the fundamental frequencies of asymmetric neural oscillations recorded from the402

scalp, auditory cortex, motor cortex, Broca’s area, and hippocampus. Distinct brain states can be403

identified based on the fundamental frequency of their underlying neural oscillation. CHO showed404

high specificity in determining the fundamental frequency of synthetic non-sinusoidal oscillations405

(see Figure 4B). When applied to ECoG and SEEG signals, CHO revealed distinct fundamental fre-406

quencies of oscillations found within auditory cortex, motor cortex, Broca’s area, and hippocam-407

pus (see Figure 9). CHO can be applied in real time to detect the fundamental frequency and the408

onset/offset of neural oscillations. Characterizing neural oscillations in real time can make tran-409

sitions in brain states observable to the investigator. For example, investigators can characterize410

brain dynamics during wakefulness, sleep, or specific cognitive tasks by tracking changes in oscilla-411

tory activity during different behavioral states. This information provides insights into the brain’s412

adaptability and flexibility in response to internal and external cues and could inform closed-loop413

neuromodulation.414

Underlying Mechanisms – the “how”415

Accurate detection of neural oscillations aids in deciphering the underlyingmechanisms governing416

their generation and synchronization. In our study, we focused on determining the temporal dy-417

namics, spatial distribution, and fundamental frequency of neural oscillations. The results of our418

study, and more specifically the CHO method itself, provide a methodological foundation to sys-419

tematically study oscillatory connectivity and traveling oscillations throughout cortical layers and420

brain regions to create insights into unraveling the generating mechanism of neural oscillations.421

The information gained from such studies could create a better understanding of neural circuitry422

at the network level and could inform computational models that help refine our knowledge of the423

complex mechanisms underlying brain function.424

Functional Purpose – the “why”425

Neural oscillation detection plays a crucial role in uncovering the functional significance of oscilla-426

tory activity. In our study, CHO detected focal alpha oscillations over occipital (visual) cortex in EEG427

and focal beta oscillations over parietal (motor) cortex in ECoG during the pre-stimulus period of428

an auditory reaction-time task (see Figure 5 and Figure 6). The presence of these oscillations dur-429
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ing the pre-stimulus period implicates visual-alpha and motor-beta oscillations in inhibition. We430

found the same inhibitory oscillatory phenomenon over the auditory cortex, however, with a fun-431

damental frequency of 7 Hz, indicating functional independence between inhibitory oscillations432

found in visual, motor, and auditory cortex (see Figure 7C and D). The approach presented in this433

study could be expanded to studying attention, memory, decision-making, andmore by correlating434

neural oscillations with specific cognitive processes. Further, applying cross-frequency and phase-435

amplitude coupling analysis to oscillations detected by CHO could illuminate the role of neural436

oscillations in facilitating information processing and communication between brain regions.437

Pathologies – the “whom”438

Detecting and characterizing neural oscillations has significant implications for the study of neu-439

rological and psychiatric disorders. For example, recent studies reported that patients affected440

by severe Parkinson’s disease exhibited more asymmetry between peak and trough amplitudes in441

beta oscillations (Cole et al., 2017; Jackson et al., 2019). The high specificity demonstrated by CHO442

in detecting asymmetric neural oscillations could benefit the investigation of neural pathologies.443

Specifically, CHO could improve the quality of asymmetrymeasurements by providing onset/offset444

detection of the beta oscillations with high specificity. Abnormalities in neural oscillations are of-445

ten associated with various pathologies. Detecting and characterizing aberrant oscillatory patterns446

could lead to identifying biomarkers for specific disorders and insights into their underlying mech-447

anisms. These advancements could aid the development of targeted therapies and treatments for448

these conditions.449

Illuminating neural oscillations450

Overall, developing a reliable neural oscillation detection method is crucial for advancing our un-451

derstanding of brain function and cognition. The presented CHO method opens up new avenues452

of research by contributing to the investigation of temporal dynamics, spatial distribution, brain453

states, underlying mechanisms, functional purpose, and pathologies of neural oscillations. Ulti-454

mately, a comprehensive understanding of neural oscillations will deepen our knowledge of the455

brain’s complexity and pave the way for innovative approaches to treating neurological and psy-456

chiatric disorders.457

Limitations458

The results of this study show that our CHO method favors specificity over sensitivity when SNR459

is low. More specifically, CHO exhibited a low sensitivity due to the high false-negative rate in a460

low-SNR environment. This means that even though there are oscillations present in the recorded461

signals, CHO cannot detect themwhen they are drowned in noise. To investigate whether this is an462

issue in real-world applications, wedetermined the averaged SNRof alpha oscillations in EEG (-7 dB)463

and ECoG (-6 dB). Based on our evaluation of synthetic data, we found that at these physiologically-464

motivated SNR levels, CHO can detect 50–60% of all true oscillations. This sensitivity could be465

further improved by averaging across spatially correlated locations, e.g., within the hippocampus.466

One potential approach to reducing the dependency of sensitivity on SNR is to apply a wavelet467

transform in the estimation of the time-frequency map of the signal. Wavelet transform can better468

capture short cycles of oscillations. Currently, CHO uses a Hilbert transform method rather than469

Wavelet or short-time fast Fourier transform (STFFT) because it is easy to implement inMATLAB and470

provides better control over the spectral shape (i.e., better accuracy in detecting peak frequency471

of oscillations, Cohen 2014). Despite the theoretical advantages of wavelet over Hilbert transform,472

in developing our CHO method, we found no significant differences when we used different ap-473

proaches to estimate the time-frequency map. This finding is further supported by a comparative474

study shown by Bruns in 2004.475

Another avenue to improve the sensitivity of CHO is tomodify the third criterion to better distin-476

guish neural oscillations from background noise. When we performed each detection step within477
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CHO, as shown in Figure 3, we captured oscillations in a low-SNR situation. However, applying478

the third criterion rejected many possible bounding boxes. Thus, developing a better conceptual479

framework to reject harmonic peaks in the spectral domain may decrease the false-negative rate480

and, in turn, increase the sensitivity in low-SNR situations.481

Conclusions482

Neural oscillations are thought to play an important role in coordinating neural activity across483

different brain regions, allowing for the integration of sensory information, the control of motor484

movements, and themaintenance of cognitive functions. Thus, better methods to detect and char-485

acterize neural oscillations, especially those that are asymmetric, can greatly impact neuroscience.486

In this study, we present Cyclic Homogeneous Oscillation (CHO) as a method to reveal the “when”,487

the “where”, and the “what” of neural oscillations. With thismethod, we overcome the confounding488

effect of detecting spurious oscillations that result from harmonics of the non-sinusoidal neural os-489

cillations (Donoghue et al., 2022). In our study, we demonstrate that solving this problem yields sci-490

entific insights into local beta oscillations in pre-motor areas, the onset/offset of oscillations in the491

time domain, and the fundamental frequency of hippocampal oscillations. These results demon-492

strate the potential for CHO to support closed-loop neuromodulation (brain-computer interfaces493

and neurofeedback) and neural oscillation detection systems to implement various neurological494

diagnostic and therapeutic systems and methods.495

Methods and Materials496

Electrophysiological data497

Eight human subjects implanted with ECoG electrodes (x1–x8, 4 females, average age = 41±14)498

participated in an auditory reaction time task at the Albany Medical Center in Albany, New York.499

The subjects werementally and physically capable of participating in our study (average IQ = 96±18,500

range 75–120,Wechsler 1997). All subjects were patients with intractable epilepsy who underwent501

temporary placement of subdural electrode arrays to localize seizure foci before surgical resection.502

The implanted electrode grids were approved for human use (Ad-Tech Medical Corp., Racine,503

WI; and PMT Corp., Chanhassen, MN). The platinum-iridium electrodes were 4 mm in diameter504

(2.3 mm exposed), spaced 10 mm center-to-center, and embedded in silicone. The electrode grids505

were implanted in the left hemisphere for seven subjects (x1, x3, x6, and x7) and the right hemi-506

sphere for five subjects (x2, x4, x5, and x8). Following the placement of the subdural grids, each507

subject had postoperative anterior-posterior and lateral radiographs and computer tomography508

(CT) scans to verify grid location. These CT images, in conjunction with magnetic resonance imag-509

ing (MRI), were used to construct three-dimensional subject-specific cortical models and derive the510

electrode locations (Coon et al., 2016).511

A further seven healthy human subjects (y1–y7, all males, average age = 27±3.6) served as a512

control group for which we recorded EEG while performing the same auditory reaction time task.513

These subjects were fitted with an elastic cap (Electro-cap International, Blom and Anneveldt 1982)514

with tin (Polich and Lawson, 1985) scalp electrodes in 64 positions according to the modified 10-20515

system (Acharya et al., 2016).516

In addition, six human subjects implanted with ECoG electrodes (ze1–ze6, 1 female, mean age517

46, range between 31 and 69) participated in resting state recording at the AlbanyMedical Center in518

Albany, New York. All six subjects had extensive electrode coverage over the lateral STG. Patients519

provided informed consent to participate in the study, and additional verbal consent was given520

prior to each testing session. The Institutional Review Board at Albany Medical Center approved521

the experimental protocol. Electrodes were comprised of platinum-iridium and spaced 3-10mm522

(PMT Corp., Chanhassen, MN).523

Lastly, six human subjects implanted with SEEG electrodes (zs1–zs6, three females, average524

age = 46±16.6) participated in resting state recordings at the Barnes Jewish Hospital in St. Louis,525
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Missouri. All subjectswere patientswith intractable epilepsywhounderwent temporary placement526

of subdural electrodes to localize seizure foci prior to surgical resection. All subjects provided527

informed consent for participating in the study, which was approved by the Institutional Review528

Board of Washington University School of Medicine in St. Louis.529

The implanted SEEG electrodes were approved for human use (Ad-Tech Medical Corp., Racine,530

WI; andPMTCorp., Chanhassen,MN). Theplatinum-iridiumelectrodeswere 2mm in length (0.8mm531

diameter) and spaced 3.5–5 mm center-to-center. Following the placement of the stereo EEG elec-532

trodes, each subject had postoperative anterior-posterior and lateral radiographs and computer533

tomography (CT) scans to verify electrode location. These postoperative CT images, in conjunction534

with preoperative magnetic resonance imaging (MRI), were used to construct three-dimensional535

subject-specific cortical models and derive the electrode locations (Coon et al., 2016).536

Data collection537

We recorded EEG, ECoG, and SEEG signals from the subjects at their bedside using the general538

purpose Brain-Computer Interface (BCI2000) software (Schalk et al., 2004), interfaced with eight539

16-channel g.USBamp biosignal acquisition devices (for EEG), one 256-channel g.HIamp biosignal540

acquisition device (g.tec., Graz, Austria, for ECoG), or one Nihon Kohden JE-120A long-term record-541

ing system (Nihon Kohden, Tokyo, Japan, for SEEG) to amplify, digitize (sampling rate 1,200 Hz for542

EEG and ECoG and 2,000 Hz for SEEG) and store the signals. To ensure safe clinical monitoring of543

ECoG signals during the experimental tasks, a connector split the cables connected to the patients544

into a subset connected to the clinical monitoring system and a subset connected to the amplifiers.545

Task546

The subjects performed an auditory reaction task, responding with a button press to a salient547

1 kHz tone. For their response, the subjects used their thumb contralateral to their ECoG implant.548

In total, the subjects performed between 134 and 580 trials. Throughout each trial, the subjects549

were first required to fixate and gaze at the screen in front of them. Next, a visual cue indicated550

the trial’s start, followed by a random 1–3 s pre-stimulus interval and, subsequently, the auditory551

stimulus. The stimulus was terminated by the subject’s button press or after a 2-s time out, after552

which the subject received feedback about his/her reaction time. This feedback motivated the553

subjects to respond as quickly as possible to the stimulus. We penalized subjects with a warning554

tone to prevent false starts if they responded too fast (i.e., less than 100 ms after stimulus onset).555

We excluded false-start trials from our analysis. We were interested in this task’s auditory and556

motor responses in this study. This required defining the onset of these two responses. We time-557

locked our analysis of the auditory response to the onset of the auditory stimulus (as measured by558

the voltage between the sound port on the PC and the loudspeaker). For the motor response, we559

time-locked our analysis to the time when the push button was pressed. To ensure the temporal560

accuracy of these two onset markers, we sampled them simultaneously with the EEG/ECoG signals561

using dedicated inputs in our biosignal acquisition systems. We defined baseline and task periods562

for the auditory and motor response. Specifically, we used the 0.5-s period prior to the stimulus563

onset as the baseline for the auditory response and the 1-s to 0.5-s period prior to the button press564

as the baseline for the motor response. Similarly, we used the 1-s period after stimulus onset as565

the task period for the auditory response and the period from 0.5-s before to 0.5-s after the button566

press as the task period for the motor task.567

Data pre-processing568

As our amplifiers acquired raw, unfiltered EEG/ECoG/SEEG signals, we removed any offset from569

our signals using a 2nd-order Butterworth highpass filter at 0.05 Hz. Next, we removed any com-570

mon noise using a commonmedian reference filter (Liu et al., 2015). To create the common-mode571

reference, we excluded signals that exhibited an excessive 60 Hz line noise level (i.e., ten times572
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the median absolute deviation). To improve the signal-to-noise ratio of our recordings and to re-573

duce the computational complexity of our subsequent analysis, we downsampled our signals from574

1200 Hz or 2000 Hz to 400 Hz or 500 Hz, respectively, using MATLABs “resample” function, which575

uses a polyphase antialiasing filter to resample the signal at the uniform sample rate.576

Phase-phase coupling577

To demonstrate phase-locking, as illustrated between theta and beta oscillations in Figure 1E and578

Figure 1K, we utilized the n:m phase-phase coupling method described in Belluscio et al. 2012.579

Specifically, we calculated the “mean radial distance”: 𝑅𝑛∶𝑚 = ‖

1
𝑁

∑𝑁
𝑗=1 𝑒

𝑖Δ𝜙𝑛𝑚(𝑡𝑗 )
‖, where 𝑗 indexes the580

samples in time, and 𝑁 represents the number of samples (epoch length in seconds × sampling581

frequency in Hz). 𝑅𝑛∶𝑚 equals 1 whenΔ𝜙𝑛𝑚(𝑡𝑗) is constant for all time samples 𝑡𝑗 , and 0 when Δ𝜙𝑛𝑚 is582

uniformly distributed. Of note, Δ𝜙𝑛𝑚(𝑡𝑗) equals 𝑛𝜙𝑓1 (𝑡𝑗) - 𝑚𝜙𝑓2 (𝑡𝑗), with 𝑓1 and 𝑓2 being two different583

frequency bands.584

A novel oscillation detection method585

We propose a novel method based on principle criteria to identify neural oscillations’ when, where,586

andwhat. The principle criteria are as follows: 1. Oscillations (peaks over 1/f noise)must be present587

in the time and frequency domain. 2. Oscillations must exhibit at least two full cycles. 3. The588

periodicity of an oscillation is the fundamental frequency of the oscillation. The procedural steps589

of CHO adhere to these principle criteria, as shown in Figure 3. First, we apply a time-frequency590

analysis to determine power changes for each frequency component over time. To measure the591

significant spectral power increase over the time domain, we use the 1/f fitting technique as the592

principal threshold. In other words, the proposed method only considers those oscillations that593

emerge above the underlying 1/f noise. Thus, any oscillation with smaller power than 1/f noise is594

not considered to be an oscillation. To accomplish this, we subtract the underlying 1/f noise within595

the time-frequency domain. Specifically, we divide the time domain into four periods and estimate596

theminimum1/f aperiodic fit across these periods. After the subtraction of the underlying 1/f noise,597

we calculate the averaged power difference between the signal and the 1/f noise (named sigma).598

If the spectral power exceeds two times sigma, we consider the oscillation to exhibit significant599

power above the 1/f noise. Next, we cluster time points with significant power over 1/f noise to600

generate initial bounding boxes as shown in Figure 3A; this idea is adopted from a previous study601

(Neymotin et al., 2022).602

Next, as the second principle criterion, we only consider those oscillations that exhibit at least603

two full cycles. This restriction allows CHO to distinguish oscillations from confounding event-604

related potentials (ERPs) or evoked potentials (EPs). In general, the frequency characteristics of605

those potentials often overlap with neural oscillations (e.g., theta power of ERPs and theta power606

of theta rhythm). However, ERPs or EPs never exhibit more than two cycles. Therefore, we reject607

those bounding boxes that exhibit less than two cycles. An example is shown in Figure 3B.608

Lastly, we calculate the periodicity of an oscillation using an autocorrelation analysis to deter-609

mine the fundamental frequency of the oscillation. Non-sinusoidal signals are known to exhibit610

harmonics in the frequency domain, significantly increasing the false-positive detection rate —the611

confounding factor addressed by CHO’s third criterion. The power spectrum of the non-sinusoidal612

oscillations has additional harmonic peaks over 1/f noise, even though the periodicity of the signal613

does not match the harmonic peak frequency. Therefore, the positive peaks of the oscillation’s614

autocorrelation represent the oscillation’s periodicity and fundamental frequency. As shown in615

Figure 3C, the center frequency of the bounding box is 24 Hz, but the periodicity of the raw signal616

within the bounding box does not match 7 Hz. Consequently, this bounding box will be rejected.617

Finally, the method merges those remaining bounding boxes that neighbor each other in the fre-618

quency domain and that overlap more than 75% in time (Neymotin et al., 2022).619

The MATLAB code that implements CHO and sample data is available on GitHub (https://github.620

com/neurotechcenter/CHO).621
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Validation on synthetic non-sinusoidal oscillations622

While empirical physiological signals are most-appropriate for validating our method, they gen-623

erally lack the necessary ground truth to characterize neural oscillation with sinusoidal or non-624

sinusoidal properties. To overcome this limitation, wefirst validatedCHOon synthetic non-sinusoidal625

oscillatory bursts convolved with 1/f noise to test the performance of the proposed method.626

As shown in Figure 4, we generated five second-long periods comprised of 1/f noise (i.e., pink627

noise). We added non-sinusoidal oscillations with different amplitudes and lengths. The ampli-628

tudes of non-sinusoidal oscillations vary between 5 and 20microvolts, while the pink noise remains629

at 10microvolts in amplitude. The signal-to-noise (SNR) was calculated by the snr() function in the630

Signal Processing Toolbox of MATLAB, which determines the signal-to-noise ratio in decibels of the631

non-sinusoidal burst by computing the ratio between summed squared magnitudes of the oscil-632

lation and the pink noise, respectively. We simulated ten iterations for each amplitude. For each633

iteration, we tested four different lengths of non-sinusoidal oscillations (one cycle, two-and-a-half634

cycles, one second, and three seconds long).635

We generated non-sinusoidal oscillations by introducing asymmetry between the trough and636

peak periods of sinusoidal waves. To generate this asymmetric nature of an oscillation, we applied637

a 9:1 ratio between trough and peak amplitudes, as shown in an example of Figure 4A. To smooth638

the onset and offset of the non-sinusoidal oscillations, we used Tukey (tapered cosine) window639

function with a 0.40 ratio for the taper section (Bloomfield, 2004). Of note, the smaller the Turkey640

ratio within the taper section, the higher the occurrence of high-frequency artifacts.641

To evaluate the performance of CHO, we calculated the specificity and sensitivity of CHO in642

detecting non-sinusoidal oscillations. High specificity depends on high true-negative and low false-643

positive detection rates. In contrast, high sensitivity depends on high true-positive and low false-644

negative detection rates. In this simulation, we expected harmonic oscillations to increase the false-645

positive detection rate, and one-cycled oscillations to decrease the true-negative detection rate646

within conventional methods. Thus, harmonic oscillations and one-cycled oscillations decrease647

the specificity, not sensitivity.648

For evaluating the performance of each method in determining the fundamental frequency of649

the oscillations, we defined an accurate detection as one that exhibited a difference between the650

ground truth peak frequency and detected frequency of less than 1.5 Hz. Furthermore, to evaluate651

the performance of eachmethod in detecting the onset/offset of the oscillations, we calculated the652

correlation between the envelope of the ground truth oscillation and the detected oscillation. We653

defined those onset/offset detections as accurate if the correlation was positive and the p-value654

was smaller than 0.05.655
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Figure 4—figure supplement 1. SNR Histograms of EEG (A) and ECoG (B).
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Figure 5—figure supplement 1. ECoG results using FOOOF for all subjects.
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Figure 6—figure supplement 1. Results from seven EEG subjects using the FOOOF method.
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Figure 6—figure supplement 2. Results from seven EEG subjects using CHO.
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Figure 8—figure supplement 1. All results from six SEEG subjects using the FOOOF method.
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Figure 8—figure supplement 2. All results from six SEEG using CHO.
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