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Abstract 28 

Computational analysis of fluorescent timelapse microscopy images is a powerful approach to study 29 

biological processes in detail. Core to this approach is the generation of accurate single cell linages 30 

from cell segmentations for reliable quantitative analysis. Convolutional neural networks (CNNs) are 31 

increasingly being used to segment and classify cells in microscopy images, but current cell tracking 32 

solutions are sensitive to inaccurate cell segmentations from CNNs. We present SC-Track, a cell 33 

tracking algorithm that employs a hierarchical probabilistic cache-cascade model. Our results show that 34 

SC-Track generates accurate single cell linages without parameter tuning, from cell segmentations of 35 

varying qualities, morphological appearances, and imaging conditions. Furthermore, SC-Track is 36 

equipped with a cell class correction feature to improve the accuracy of multi-class cell classifications 37 

in a time series. These features make SC-Track a robust generalist cell tracking algorithm that works 38 

with diverse segmentation outputs from CNNs to generate accurate cell linages and classifications. 39 

 40 

Keywords:  timelapse microscopy imaging，single cell tracking，cell division，deep learning，41 

convolutional neural networks, cell cycle. 42 

 43 

Main text 44 

The analysis of time resolved fluorescent microscopy images to obtain cellular dynamics at the single 45 

cell level has enabled the detailed study of intracellular signalling events previously invisible to 46 

conventional cell biological approaches1,2. This method has led to the delineation of key signalling 47 

pathways that induce a variety of cell fate decisions3–7. Core to these approaches is the use of fluorescent 48 

markers to mark single cells, quantify signalling events and classify cellular states. The generation of 49 

single cell tracks from these fluorescent timelapse microscopy images is often a challenging process, 50 

requiring extensive optimisations of fluorescent markers and imaging conditions. This is to ensure that 51 

optimal cell segmentations are obtained as they are essential for accurate single linage tracing and 52 

reliable mother-daughter assignments2. To generate good quality fluorescent images, the prolonged 53 

exposure of live cells to high intensity ultraviolet light is a major limitation. This is because excessive 54 
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phototoxicity from exposure from ultraviolet light can result in cellular stress or death, making this 55 

approach impractical as an approach to study long term biological events1.  56 

To bridge this limitations, deep learning based convolutional neural networks (CNNs), have 57 

been employed in a variety of approaches to overcome the inherent limitations of conventional 58 

fluorescence-based microscopy approaches8. Among the most successful applications are the use of 59 

autoencoder CNNs, enabling computationally efficient image restoration of microscopy images for 60 

deconvolution, denoising and generating super-resolution image reconstructions9. Another area where 61 

CNNs have been successfully deployed is in the automated segmentation and classification of 62 

microscopy images10–13. CNNs have been demonstrated to perform very well in automatically detecting, 63 

segmenting and classifying heterogenous cellular features of microscopy images, a task that often 64 

requires time consuming manual human annotations13–16.  65 

However, the application of deep learning CNNs in the automated segmentation and 66 

classification of fluorescent microscopy images presents another challenge for reliable cell tracking. 67 

This is caused by the stochastic nature of the cell segmentations derived from these deep learning-based 68 

image analysis approaches17. Under ideal conditions, state-of-the-art deep learning approaches such as 69 

Mask RCNN, U-Net, Cellpose and StarDist often fail to accurately detect and classify all objects 70 

instances12,13,17,18. Thus, it is generally accepted that the segmented images from deep learning methods 71 

will be inherently noisy with instances where objects fail to be detected or are misclassified. These 72 

inaccuracies pose a major challenge for widely used cell tracking approaches to generate accurate single 73 

cell tracks, limiting the utility of these deep learning methods.  74 

To overcome this inherent limitation, we developed a novel cell tracking algorithm called 75 

Single Cell Track (SC-Track). It employs a hierarchical probabilistic cache-cascade model to overcome 76 

the noisy output of deep learning models (Fig. 1). We show that SC-Track can generate robust single 77 

cell tracks from noisy segmented cell outputs ranging from missing segmentations and false detections. 78 

In addition, SC-Track can take noisy cell instance classifications and provide smoothed classification 79 

tracks to aid the accurate quantification and classification of cellular events. Finally, SC-Track has a 80 

built-in biologically inspired cell division algorithm that can robustly assign mother-daughter 81 
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associations from segmented nuclear or cellular masks, enabling high fidelity single cell tracking of 82 

cellular events over multiple cell generations.  83 

 84 

Results 85 

Tracking algorithm overview 86 

SC-Track employs a tracking-by-detection approach, whereby detected cells are associated between 87 

frames. A TrackTree data structure was used (Fig. 1), to store the tracking relationships between each 88 

segmented cell temporally and spatially. Each branch of the TrackTree represents a single-cell linage of 89 

the tracked instance of a segmented cell, where branch divisions indicate cell division events, and the 90 

nodes on the branches represent the segmented instances of individual cells in a specific frame. 91 

Contained in each node of the TrackTree branch are the extracted features of the segmented cell.  92 

During the tracking process, SC-Track initializes the TrackTree list with all cells from the initial 93 

frame, representing the initial single-cell tracks for the entire time-lapse sequence. To reduce 94 

computational costs, SC-Track will attempt to connect each segmented instance with its corresponding 95 

cell from the previous frame using a hierarchical tracking approach. SC-Track will initially examine the 96 

intersection over union (IoU) of the area between segmented cells between the current frame and 97 

preceding frame (Fig. 2). Segmented cells with only one overlapping segmentation are assumed to a 98 

high confidence linked cell and is automatically assigned to the corresponding TrackTree. In situations 99 

where there are multiple segmented cells with overlapping IoUs, SC-Track will assign segmented cells 100 

by maximising the similarity index between candidate segmented cells between frames. If there are no 101 

segmented cell in the current frame overlapping with a segmented cell from the previous frame, SC-102 

Track will expand the search area (default = 1), to identify possible tracking candidates.  103 

 Using this method of recursive searching of candidate segmented cells from the previous frame, 104 

virtually all segmented cells can be accurately assigned to the correct TrackTree. In the event where 105 

there are more segmented cells than the number of cached TrackTrees, three possible scenarios will be 106 

considered: (1) The orphan segmented cell is a false detection; (2) The segmented cell is a true detection 107 

that recently entered into the field of view due to cell migration; (3) A cell division event has occurred 108 
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leading to the generation of 2 or more (in the case of multi-polar mitosis) daughter cells. The approach 109 

used to resolve these possible scenarios will be discussed in the subsequent two sections. 110 

 111 

Detecting and assigning cell division events 112 

When there are more segmented cells than the number of cached TrackTrees, SC-Track will determine 113 

if a cell division event has occurred (Fig. 3). A cell division event is deemed to have occurred when SC-114 

Track is able to match a mother cell from the previous frame to the daughter cells in the subsequent 115 

frame. To achieve this, SC-Track will first determine if there are putative mother cells in the mitotic 116 

state in the previous frame. If the segmented cell contains cell cycle classifications, SC-Track will allow 117 

cell division events to occur at the TrackTree nodes where the mother cell is classified to be in mitosis 118 

(M phase). However, if no cell cycle information is available, this process is not enabled, and SC-Track 119 

will attempt to determine if a cell division event has occurred by matching orphan segmented cells to a 120 

potential mother cell using a cell cycle independent approach.  121 

To enable robust detection of cell division events in the absence of cell cycle data, SC-Track 122 

applies a series of rules based on well-established principles observed from mammalian cells 123 

undergoing cell division19,20. When assigning a potential mother-daughter association from a potential 124 

cell division event, the following criteria must be met: (1) At least one candidate cell that cannot be 125 

accurately matched to other cells were found; (2) The segmented mother cell in the previous frame must 126 

be at least 1.3 × the size of the segmented daughter cells in the following frame. (3) The candidate 127 

mother cell that has not undergone a cell division event recently (20 frames by default). (4) A candidate 128 

mother cell is identified in the expanded search area of the unlinked segmented cell. If a suitable 129 

candidate mother cell is found in the previous frame for the orphan segmented cell, the TrackTree will 130 

be branched accordingly. However, if no suitable candidate mother cell was found, SC-Track will 131 

assume that this is a new detection event and assign a new TrackTree to the segmented orphan cell.  132 

 133 

Cache matching frames to address false and missing detection events 134 

Due to the stochastic nature of CNNs in detecting cells, there is a possibility that true cell instances fail 135 

to be detected or false detections may arise12,13,17,18. To overcome the stochastic loss of true instances in 136 
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the segmented cells, a cache matching system was developed. In an event where a TrackTree is unable 137 

to find a matching cell in the current frame, it is assumed by default that this was caused by a failed 138 

detection event. The TrackTree will be cached for five consecutive frames. If a matched segmentation 139 

was found within five frames, SC-Track will automatically assign the matched segmented cell to the 140 

corresponding TrackTree and the intervening gaps automatically filled with segmentations from the 141 

cache memory from the last detected instance. In the event where no matching segmented cells was 142 

found in the next five frames, the specific branch of TrackTree will be inactivated and can no longer be 143 

used to track cells in subsequent frames. Short TrackTree initialisations (user defined, default = 10 144 

nodes), will be removed at the end of the tracking process to remove false detection instances. 145 

 146 

Instance classification smoothing  147 

Instance segmentation of cells from deep learning models that classify more than one class are often 148 

challenged with noisy classifications21. To address this, we have implemented a class smoothing 149 

function to smooth out noisy classification of cells that transition from one cellular state to another. We 150 

developed the TrackTree Class Smoothing (TCS) algorithm (Fig. 3) to automatically correct the 151 

predicted results of cell type classifications. TCS assumes that a cell classification change is more likely 152 

to be accurate in a time series when the same cell is classified with the same classification over several 153 

frames. To evaluate the accuracy of the cell class change, TCS adopts a probabilistic cached search 154 

model. This search process is confined to the individual branch of the TrackTree and does not extend 155 

beyond the cell division branch.  156 

The TCS probabilistic cached search model functions with the following logic: During the 157 

initialisation of the TrackTree, TCS will automatically adopt the initial classification of the detected cell 158 

instance as the default class. When TCS detects an instance where the tracked cell undergoes a cell 159 

classification change to Type A, the algorithm will undertake a cached forward search on the TrackTree 160 

(default search window = 10 frames) to count the number of occasions the tracked cell is classified as 161 

Type A. If the number of nodes classified as Type A exceeds a probability threshold (default = 6), TCS 162 

will conclude that a change in cell classification has occurred and will update the default classification 163 

as Type A. Otherwise, the node where Type A was first detected will be assumed to be wrong and 164 
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corrected to the previous default cell classification. Exiting the default Type A classification occurs 165 

when a Type A’ classification is detected, TCS performs a forward TrackTree cached search (default = 166 

10 nodes) for the frequency for the Type A’ classification. If the number of nodes of Type A’ 167 

classifications exceed the probability threshold (default = 6), it is considered that the Type A 168 

classification has ended and the new default Type A’ classification is adopted. This process can be 169 

repeated to multiple cell classifications.  170 

 171 

SC-Track cell tracking performance evaluation  172 

SC-Track overall cell tracking performance was measured using two metrics, the Multi-Object Tracking 173 

Accuracy (MOTA)22,23 and the harmonic mean of Identification Precision and Recall (IDF1)24. We also 174 

introduced a new metric called the Cell Division F1 score (CDF1), to measure the cell tracker’s ability 175 

to reliably detect cell division events and accurately assign mother-daughter cell relationships. For 176 

comparison, we benchmarked SC-Track against three other freely available cell tracking algorithms that 177 

provide similar functionalities: TrackMate25,26, Deepcell-tracking27, and pcnaDeep28. Initial tests 178 

focused on generating single cell tracks from nuclear masks obtained in ideal conditions, using 179 

manually corrected nuclear segmentation masks with accompanying cell cycle classifications with 5-180 

minute temporal resolutions (Fig. 4). The results show that with ideal segmentation results, SC-Track 181 

gave the best performance, and the top three trackers gave a score > 0.9 in both metrics. We then 182 

assessed the performance of SC-Track in tracking cell division events by comparing the CDF1 score. 183 

SC-Track gave the best performance giving a CDF1 score of > 0.9 in all five test datasets (Fig. 4).  184 

To further measure the reliability of SC-Track in generating accurate single cell linages, we 185 

resampled our original test dataset to mimic imaging time intervals of 10, 15 and 20 minutes. The 186 

increase in time intervals poses a more challenging cell tracking problem, as each cell in a field of view 187 

has more time to migrate spatially and the change in its cellular morphology between the preceding and 188 

subsequent frame will be larger. Our results show that SC-Track gives the best IDF1 scores in the 5-189 

minute interval, but its performance is reduced at longer time intervals (Fig. 4). For the MOTA score, 190 

pcnaDeep maintained the best overall scores. These mixed results displayed by IDF1 and MOTA is 191 

caused by the differences in how each metric calculates tracking accuracy. IDF1 is more sensitive to the 192 
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total duration of incorrect track assignments while MOTA is more sensitive to the total number of track 193 

switches24. More importantly, SC-Track CDF1 scores were considerably better than the next best tracker 194 

pcnaDeep across all time intervals (Fig. 4). These results indicate that SC-Track gave the best overall 195 

performance and works well across varying temporal resolutions. 196 

State-of-the-art deep learning-based CNN instance segmentations are generally known to 197 

display a low number of instance segmentation errors12,13,17,18. These range from missing segmentations 198 

to inaccurate segmentations, where cell instances are improperly segmented, or erroneous cell instances 199 

are reported despite no cells being present in the image. To assess SC-Track in generating reliable single 200 

cell linages from noisy CNN based cell segmentations, we repeated the tests with the uncorrected image 201 

segmentations which exhibited low levels of instance segmentation errors (Supplementary Table 3). 202 

Our results show a decrease in tracking accuracy for all the trackers tested (Fig. 5). Despite this, SC-203 

Track gave the best overall performance, maintaining an average MOTA and IDF1 scores of > 0.9 and 204 

a CDF1 score of > 0.8. To further examine SC-Track’s ability to overcome missing instances of cell 205 

segmentations, we generated a synthetic test dataset where cell instances were randomly removed at 206 

varying degrees (Supplementary Table 4). Our results show that SC-Track’s cache matching algorithm 207 

can compensate for the loss of instance detections well and maintain an average IDF1 and MOTA score 208 

of > 0.9 in a dataset where 20% of all cell instances were missing (Fig. 5). Furthermore, despite 209 

increasing levels of missing instance detections, SC-Track can maintain its high reliability in detecting 210 

cell division events (Fig. 5).   211 

 To demonstrate that SC-Track can perform well in a diverse set of cell types and imaging 212 

conditions, we expanded our tracking benchmarks to a collection of publicly available microscopy 213 

datasets (Supplementary Table 5). We used the silver reference segmentation results from the Cell 214 

Tracking Challenge (CTC) because the CTC dataset contains a wide collection of timelapse microscopy 215 

images taken with a variety of imaging settings on various cancer cells of diverse morphologies29. The 216 

segmentation results from the CTC dataset are equally diverse ranging from nuclear masks to whole 217 

cell segmentations. We used the silver reference segmentation dataset since the segmentation results 218 

were derived from the best performing CNN models in the CTC29. Furthermore, the silver reference 219 

segmentations were accompanied by ground truth tracking results, making these datasets an impartial 220 
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real-life test to measure the generalisability of SC-Track’s cell tracking algorithm. Our results show that 221 

SC-Track consistently displayed the best cell tracking performance as measured by MOTA and IDF1 222 

scores for nearly all the CTC datasets (Fig. 5). Furthermore, utilising only the silver reference 223 

segmentation results, SC-Track can reliably detect cell division events in most of the CTC datasets (Fig. 224 

5). These results provide evidence that SC-Track is an excellent general cell tracking algorithm that 225 

performs equally well on a variety of cell segmentation types and can maintain its high cell tracking 226 

performance under challenging conditions, including situations where the cell segmentation dataset 227 

exhibits high levels of detection loss.  228 

 229 

Instance classification smoothing of single cell tracks and runtime evaluations. 230 

When performing multi-class instance segmentations, it is often observed that the classifications of 231 

objects occasionally switch especially when the features exhibited by objects being detected does not 232 

completely fit into a particular class or suboptimal imaging conditions lead to misclassifications of 233 

detected objects. The inherent noise in the cell classifications can pose a problem if accurate 234 

classifications of cellular states are important, such as in the quantification of cell cycle phases in an 235 

image time series28. To overcome this inherent problem, we developed a TrackTree Class Smoothing 236 

(TCS) algorithm that employs a probabilistic cached class smoothing approach to help accurately 237 

identify cell phase transition points. To evaluate the utility of SC-Track’s TCS algorithm, we measured 238 

the F1 scores of our custom trained StarDist model used to classify our test dataset on the various cell 239 

cycle phases predicted from the fluorescent PCNA signal (Fig. 6). The results indicate that TCS can 240 

improve the average F1 classification scores across all cell classes.  241 

Finally, we conducted runtime tests for SC-Track to determine how long SC-Track takes to 242 

generate single cell tracks from cell segmentations. We measured the time taken to analyse cell 243 

segmentations from microscopy timelapse series of varying lengths (50-500 frames) and compared it 244 

with TrackMate, Deepcell-tracking, and pcnaDeep. Our results show that when working with small 245 

imaging datasets, SC-Track had the best performance (Fig. 6). However, the processing speed 246 

significantly decreased with increasing number of frames (Fig. 6). This was primarily caused by the 247 
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increase in duration required to load the timelapse microscopy images prior to the generation of single 248 

cell linages by SC-Track.  249 

 250 

Discussion 251 

In this study, we introduced SC-Track, a novel cell tracking algorithm that employs a hierarchical cell 252 

tracking methodology based on biological observations of cell division and cell movement dynamics. 253 

We show that SC-Track can generate highly accurate single cell tracks from both nuclear and cell 254 

segmentations of diverse morphologies and imaging conditions. To better assess the ability of cell 255 

trackers to accurately detect cell division events, we introduced a new metric called the Cell Division 256 

F1 (CDF1) score. Using this measure, SC-Track showed the best performance in detecting cell division 257 

events under all conditions tested. This was achieved without the finetuning of tracking parameters 258 

making SC-Track a desirable general cell tracking solution. Furthermore, its hierarchical probabilistic 259 

cache-cascade model can tolerate false or missing cell segmentations caused by the stochastic nature of 260 

CNNs, reducing the need for extensive time consuming manual corrections of image segmentations. In 261 

addition, we implemented a cache smoothing algorithm to help reduce the stochastic noise in cell 262 

classifications from CNNs while increasing the accuracy of the cell classifications of segmented cells 263 

in a time series. All these functionalities were achieved in a computationally efficient manner, allowing 264 

SC-Track to be run reliably without requiring access to a high-performance computing cluster.  265 

In summary, SC-Track provides a solution to a longstanding problem involving the use of 266 

CNNs in the automated segmentation and classification of cells from timelapse microscopy images. To 267 

facilitate easy integration of SC-Track into image analysis pipelines that require its functionalities, SC-268 

Track can generate accurate single cell tracks by using features extracted from cell segmentation masks 269 

only.  270 

 271 

Materials and methods 272 

Calculating similarity index when connecting segmented cells between frames 273 

When there is more than one segmented cell overlapping with the previous frame, SC-Track will select 274 

the segmented cell with the highest similarity value with the segmented cell in the previous frame. SC-275 
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Track will employ the following formula to determine the similarity value of the possible candidate 276 

pairs between frames: 277 

𝑆௜ = {𝑃ଵ, 𝑃ଶ, . . . 𝑃௡}, where 𝑃௡ = (𝑥௡, 𝑦௡)

𝑠𝑚௜,௝ = 𝐼𝑜𝑈൫𝑆௜, 𝑆௝൯ + 𝐷𝑖𝑠൫𝑆௜, 𝑆௝൯ + 𝑆𝑝𝑠൫𝑆௜, 𝑆௝൯ + 𝑆𝑎𝑠൫𝑆௜, 𝑆௝൯ + 𝛥൫𝑆௜, 𝑆௝൯
 278 

𝑆௜ represents the set of contour points in a 2D space defied by 𝑥௡, 𝑦௡ for points 𝑃ଵ→௡ of a cell. 𝑠𝑚୧,୨  279 

represents the similarity index between the segmented cell 𝑖 in the previous frame and the segmented 280 

cell 𝑗 in the subsequent frame. 𝐷𝑖𝑠 is the calculated distance between the centroid of the segmented cell 281 

i in the previous frame and the centroid of the segmented cell j in the current frame. 𝐼𝑜𝑈 represents the 282 

intersection over union of the contours of cells 𝑖 and 𝑗. 𝑆𝑝𝑠 represents the shape similarity value 30, and 283 

𝑆𝑎𝑠  represents the area similarity of the two cells. 𝛥൫𝑆௜, 𝑆௝൯  represents additional supplementary 284 

features, such as the similarity in the variance or total intensity of fluorescent signals from segmented 285 

cells. To calculate 𝐼𝑜𝑈൫𝑆௜, 𝑆௝൯ , 𝐷𝑖𝑠൫𝑆௜, 𝑆௝൯ , 𝑆𝑝𝑠൫𝑆௜, 𝑆௝൯ , 𝑆𝑎𝑠൫𝑆௜, 𝑆௝൯ , and 𝛥൫𝑆௜, 𝑆௝൯,  the following 286 

formula was employed: 287 

𝐼𝑜𝑈൫𝑆௜, 𝑆௝൯ =
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛൫𝑆௜, 𝑆௝൯

𝑢𝑛𝑖𝑜𝑛൫𝑆௜, 𝑆௝൯
 288 

𝐷𝑖𝑠൫𝑆௜, 𝑆௝൯ =
1

10ିହ + ට(𝑠௜௫ − 𝑠௝௫)ଶ + (𝑠௜௬ − 𝑠௝௬)ଶ

 289 

S𝑝𝑠൫𝑆௜, 𝑆௝൯ = ∑ ቤ
ଵ

௠೙
ೄ೔

−
ଵ

௠೙

ೄೕ
ቤ୬ୀଵ...଻ , where 𝑚௡

ௌ೔  represents the seven Hu Moments. 290 

𝑆𝑎𝑠൫𝑆௜, 𝑆௝൯ =
𝑚𝑖𝑛൫𝑆௜ಲೝ೐ೌ

, 𝑆௝ಲೝ೐ೌ
൯

𝑚𝑎𝑥൫𝑆௜ಲೝ೐ೌ
, 𝑆௝ಲೝ೐ೌ

൯
, where 𝑆௡ ಲೝ೐ೌ

=
1

2
อ෍(𝑥௜ ⋅ 𝑦௜ାଵ − 𝑦௜ ⋅ 𝑥௜ାଵ)

௡

௜ୀଵ

อ 291 

𝛥൫𝑆௜, 𝑆௝൯ = {
௠௘௔௡(௦೔)

௠௘௔௡(௦ೕ)
,

௩௔௥(௦೔)

௩௔௥(௦ೕ)
}, where 𝑚𝑒𝑎𝑛(𝑠௜) < 𝑚𝑒𝑎𝑛(𝑠௝) and 𝑣𝑎𝑟(𝑠௜) < 𝑣𝑎𝑟(𝑠௝) 292 

 293 

Bounding box expansion method for increasing candidate search area used to identify linked cells in 294 

adjacent frames for cell tracking 295 
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If there are no cells overlapping in the segmented area of a cell from the previous frame, SC-Track will 296 

expand its search area to search for potential candidates. The expansion of the search area utilises the 297 

bounding box of the segmented cell which is expended with the following formula: 298 

𝐵𝑐 = 𝑃𝑜𝑠(𝑥ଵ, 𝑥ଶ, 𝑦ଵ, 𝑦ଶ), 𝑤ℎ𝑒𝑟𝑒 𝑥ଵ <  𝑥ଶ 𝑎𝑛𝑑 𝑦ଵ <  𝑦ଶ

𝐸𝑐 = 𝛼 ∙ 𝐵𝑐

= 𝑃𝑜𝑠(𝑥ଵ − 𝛼 ∙ (𝑥ଶ −  𝑥ଵ), 𝑥ଶ + 𝛼 ∙ (𝑥ଶ − 𝑥ଵ), 𝑦ଵ − 𝛼 ∙ (𝑦ଶ − 𝑦ଵ), 𝑦ଶ + 𝛼 ∙ (𝑦ଶ − 𝑦ଵ))

  299 

𝐵𝑐  represents the bounding box a cell. Pos represents the position of the bounding box with the 300 

minimum value of the segmented cell in the x axis and y axis represented by 𝑥ଵ  and 𝑦ଵ  while the 301 

maximum value as 𝑥ଶ and 𝑦ଶ respectively. 𝐸𝑐  represents the expanded bounding box where potential 302 

cell candidates located in the current frame can be matched to the previous frame, 𝛼 represents the 303 

coefficient for the expansion of the bounding box. By default, 𝛼 is set to 1.  304 

 305 

Benchmarking criteria and performance evaluation of cell tracking and classification accuracy 306 

To evaluate the performance of SC-Track in accurately tracking segmented cells, we used performance 307 

measures established in the Multiple Object Tracking (MOT) framework which includes IDF1 24 and 308 

MOTA22,23. IDF1 measures how long a tracker accurately identifies the correct segmented cells over a 309 

time series. It represents the ratio of correctly identified detections over the average number of ground-310 

truth and computed detections24. IDF1 is computed from the following formula: 311 

𝐼𝐷𝐹1 =
ଶூ஽்

ଶூ஽்௉ାூ஽ி௉ାூ
 , where 𝐼𝐷𝑃 =  

ூ஽்௉

ூ஽்௉ାூ஽ி௉
 and 𝐼𝐷𝑅 =  

ூ஽்௉

ூ஽்௉ାூ஽ிே
 312 

IDP represents the identification precision of the tracker which is computed as the average ratio of 313 

accurately identified true positives divided by the sum of accurately identified true positives and 314 

inaccurately classified false positives. IDR represents the identification recall which is computed as the 315 

average ratio of accurately identified true positives divided by the sum of accurately identified true 316 

positives and failed detections of each single cell track. 317 

 The multiple objects tracking accuracy (MOTA) measures the overall accuracy of the tracker 318 

performance using by measuring how often a mismatch occurs between the tracking results and the 319 

ground-truth22,23. This is obtained by computing the total number errors for false positives (FP), missed 320 
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targets (FN) and identity switches (IDsw) normalised over the total number of ground-truth (GT) tracks. 321 

This measure is computed using the following formula: 322 

𝑀𝑂𝑇𝐴 = 1 −
∑ (𝐹𝑁௧ + 𝐹𝑃௧ + 𝐼𝐷𝑠𝑤௧)௧

∑ 𝐺𝑇௧௧
 323 

To evaluate the reliability of the class smoothing algorithm, we employed the cell classification F1 score. 324 

The F1 score is calculated with the following formula: 325 

𝐹1 = 2 ∙
௉௥௘௖௜௦௜௢௡ ∙ ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘
, where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

்௉

்௉ାி௉
 and 𝑅𝑒𝑐𝑎𝑙𝑙 =

்௉

்௉ାிே
 326 

To measure SC-Track’s ability to track cell division events, we have introduced a new indicator Cell 327 

Division F1 score (CDF1), which is calculated as: 328 

𝐶𝐷𝐹1 =
2𝐶𝐷𝑇𝑃

2𝐶𝐷𝑇𝑃 + 𝐶𝐷𝐹𝑃 + 𝐶𝐷𝐹𝑁
 329 

𝐶𝐷𝑇𝑃 indicates a true positive cell division event, where both daughter cells of a cell division event are 330 

accurately identified and assigned to the correct TrackTree. 𝐶𝐷𝐹𝑃 indicates false positive cell division 331 

event, where daughter cells are incorrectly assigned to a TrackTree and classified as a cell division event. 332 

𝐶𝐷𝐹𝑁 indicates a false negative cell division event, where a cell division event occurred but is not 333 

detected or the mother daughter cells were inaccurately assigned to the wrong TrackTree. The cell 334 

tracking outputs used to benchmark the tracking results can be obtained from Zenodo: 335 

https://zenodo.org/record/8284987. The python scripts used to analyse the cell tracking results can be 336 

found in GitHub: https://github.com/chan-labsite/SC-Track-evaluation.  337 

 338 

Generation of in-house development and testing datasets 339 

Two cell lines with distinct morphological appearances were used to generate the imaging data used in 340 

the development and testing of SC-Track. hTERT-RPE1 cells endogenously tagged with fluorescent 341 

mScarlet-PCNA were grown in DMEM/F-12 (Sigma, D6421) supplemented with 10% FBS (ExCell 342 

Bio, FSP500), 1× GlutaMAX (Gibco, 35050-061), 7.5% sodium bicarbonate (Sigma). MCF10A cells 343 

endogenously tagged with fluorescent mScarlet-PCNA were grown in DMEM/F-12 (Sigma,D6421) 344 

supplemented with 5% heat inactivated horse serum (Biological Industries, 04-124-1A), 1× GlutaMAX 345 

(Gibco, 35050-061), 10 µg/ml insulin (Biological Industries, 41-975-100), 10 ng/ml cholera toxin 346 
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(Sigma-Aldrich, #C-8052), 20 ng/ml EGF-β (Thermo Fisher, PHG0311), 0.5 mg/ml Hydrocortisone 347 

(MCE, HY-N0583).  These cells were seeded in 8-Well chambered glass bottom slides (Cellvis, C8-348 

1.5H-N) for two days before being imaged under a Nikon Ti2 inverted widefield fluorescence 349 

microscope equipped with a Lumencor Sola SE 365 as a light source. The cells were placed in an Okolab 350 

stage incubator (OKO) at 37°C with 5% CO2, and 80% humidity. The cells were observed under a 20× 351 

plan apo objective (NA 0.75) and images were captured using a Photometrics Prime BSI camera with a 352 

pixel resolution of 2048×2048. The following filter sets were used (mCherry: 560/40 nm EX, 585 nm 353 

BS, 630/75 nm EM). A single widefield image was taken in the mCherry channel (1% power, 200ms) 354 

at each stage at 5-minute intervals for up to 48h. A DIC image was captured at each time point (5% 355 

power, 100ms). 356 

The timelapse microscopy images used as the development dataset for SC-Track was generated 357 

from as cells cultured under the conditions described above. The images were saved as individual multi-358 

frame TIFF files. Four timelapse movies with varying cell densities per frame was generated within our 359 

lab (Supplementary Table 1). These datasets were automatically segmented using a custom pre-trained 360 

model of StarDist12 and manually corrected using the VGG Image Annotator (VIA)31 to remove false 361 

and inaccurate classifications. The annotated files contained two sets of information: the cell contour 362 

information and the “cell cycle phase” class information. The contour information was converted into 363 

a mask with values ranging from 1 to 255. The uncorrected and corrected mask images, along with the 364 

original mCherry channel image, constitute the datasets used to finetune the tracking parameters of SC-365 

Track.  366 

The timelapse microscopy images used in the testing dataset were generated under the 367 

conditions described above. In total, three RPE1 microscopy timelapse images and a two MCF10A 368 

microscopy timelapse images that were automatically segmented using our custom trained StarDist 369 

model and manually corrected to ensure accuracy of the instance segmentations, cell classifications and 370 

identity of single cell linages (Supplementary Table 2). The imaging conditions used were as described 371 

above with a sampling frequency of 5 minutes. To test the reliability of SC-Track to accurately track 372 

segmented cells with missing or false positive instances, we utilised the uncorrected segmentations of 373 

the testing dataset (Supplementary Table 3). In addition, to assess how SC-Track can cope with varying 374 
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levels of missing cell segmentations, we randomly deleted additional segmented cells from each frame 375 

to varying degrees to simulate higher levels of missed segmentations (Supplementary Table 4). The in-376 

house generated segmentation masks, custom trained StarDist model, and ground truth tracking results 377 

used in testing SC-Track can be obtained from Zenodo: https://zenodo.org/record/8284987. 378 

 379 

Cell Tracking Challenge dataset 380 

To test the universal functionality of SC-Track to accurately generate single cell linages from a variety 381 

of cell types and segmentation modes, we used the silver reference segmentation results from the Cell 382 

Tracking Challenge29. The silver reference datasets represent the uncorrected segmentation results 383 

obtained from CNNs applied on a diverse variety of mammalian cell lines of different morphological 384 

appearances and imaging conditions (Supplementary Table 5). SC-Track with default settings was used 385 

to analyse the silver reference segmentation masks to generate single cell track linages. The single cell 386 

tracks generated by SC-Track was then compared with the accompanying ground truth tracking data 387 

provided by Cell Tracking Challenge to benchmark the reliability of SC-Track. The silver reference 388 

masks and ground truth tracking results were obtained from the Cell Tracking Challenge website 389 

(http://celltrackingchallenge.net/2d-datasets/). 390 

 391 

Generation of single cell linages from segmentation masks 392 

The segmentation results from the various evaluation datasets were used to measure the cell 393 

tracking performance of SC-Track and three other trackers pcnaDeep28, Deepcell-tracking27, and 394 

TrackMate25,26. For cell tracking experiments involving in-house generated testing datasets, the 395 

segmentation results in the form of a VGG image annotator (VIA2) compatible JSON file containing 396 

cell cycle class information of each segmented cell was used31. The data in the JSON files were read 397 

directly by SC-Track and pcnaDeep to generate the cell linage tables. The cell segmentation data in the 398 

JSON files were converted into greyscale multi-TIFF image files prior to being read by TrackMate and 399 

Deepcell-tracking as both software packages lack the function to directly read JSON files. To generate 400 

single cell linages from the Cell Tracking Challenge dataset, the silver reference segmentation results 401 

in the form of a greyscale TIFF image series were used for SC-Track, TrackMate and Deepcell-tracking. 402 
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We could not perform the cell tracking experiments with the Cell Tracking Challenge dataset on 403 

pcnaDeep as it requires cell cycle class information to function28. 404 

Default tracking settings were applied to SC-Track, pcnaDeep and Deepcell-tracking. For 405 

TrackMate, the Lap tracker algorithm was used with default tracking settings. The scripts used to 406 

generate the cell tracking results can be obtained from GitHub: https://github.com/chan-labsite/SC-407 

Track-evaluation. 408 

 409 

Automated cell cycle class correction testing 410 

To evaluate the cell class correction function of SC-Track, the same testing dataset with the 411 

uncorrected cell classifications obtained from our custom pre-trained StarDist model was utilised 412 

(Supplementary Table 3). Ground truth cell cycle classifications were obtained by manual correction of 413 

the automated annotations were used to compute the F1 scores for individual cell cycle classifications 414 

in the timelapse image series.  The JSON file containing the raw uncorrected cell segmentations and 415 

the cell cycle classification data used to compute the F1 results can be obtained from Zenodo: 416 

https://zenodo.org/record/8284987. The scripts used to compute the F1 scores of individual cell cycle 417 

phases can be obtained from GitHub: https://github.com/chan-labsite/SC-Track-evaluation.  418 

 419 

Runtime and multi-platform compatibility testing 420 

We conducted compatibility tests on Windows, Linux, and macOS platforms. In addition, we performed 421 

runtime efficiency tests specifically on the Windows platform. All tests were performed using the same 422 

dataset and repeated three times. The Windows platform was configured with an AMD R7 3700X CPU, 423 

RTX 2080 GPU, and 16GB of RAM. The Linux platform was configured with an Intel i7 11800H CPU, 424 

RTX 3050Ti GPU, and 16GB of RAM. The macOS platform was configured on a 2021 MacBook Pro 425 

equipped with a M1 processor, and 8GB of RAM. 426 

 427 
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 521 

Fig. 1: Schematic illustration providing an overview of SC-Track, the TrackTree data structure and 522 

analysis pipeline.  523 

a, A summary of the TrackTree data structure. Each linked segmented cell is tracked in a TrackTree. A 524 

node in a TrackTree branch represents an instance of the segmented cell in a particular frame with its 525 

accompanying cell segmentation information. A branching of a TrackTree represents a cell division 526 

event. b, A simplified overview of the analysis pipeline of SC-Track. Instance segmentation of cells 527 

from each frame is sequentially added to their respective TrackTrees. The assignment of each instance 528 

segmentation is determined by the hierarchical probabilistic cache-cascade model of SC-Track. If there 529 

are cell classification information contained in the TrackTrees, SC-Track will employ the TrackTree 530 

Class Smoothing (TCS) algorithm to correct the noisy cell classifications.  531 

 532 
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 533 

Fig. 2: Schematic illustration summarising the hierarchical tracking approach for single cell 534 

tracking. 535 

SC-Track employs a hierarchical cell tracking approach to minimise computational costs. The initial 536 

linking of segmented cells between frames is initially determined by the overlap between the segmented 537 

cells of the preceding and subsequent frame. If there is only one cell segmentation overlapping, the 538 

segmented cell in the subsequent frame is automatically linked to the respective TrackTree of the 539 

overlapped cells in the preceding frame. When there are multiple overlapping cells, the identification 540 
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of the linked cells will be determined by the similarity value of the overlapping cells of the subsequent 541 

frame with the segmented cell in the preceding frame. If no overlapping candidate segmented cell was 542 

identified with a preceding segmented cell, the bounding box of the preceding cell was identified, the 543 

bounding box of the segmented cell will be expended to identify possible candidates.  544 

 545 

  546 
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 547 

Fig. 3: Schematic illustration describing SC-Track algorithm in identifying cell division events and 548 

TrackTree Class Smoothing (TCS).  549 

a, When a new segmented cell instance that cannot be linked to available TrackTrees is identified, SC-550 

Track will attempt to determine if a cell division event has occurred. If a compatible candidate mother 551 

cell is identified in the preceding frame, the new segmented cell instance will be added to the 552 

corresponding TrackTree and a cell division event is recorded. If no compatible mother cell is identified, 553 

SC-Track will assume that this is a new segmented cell instance is due to a recent appearance of a cell 554 

into the microscope field of view and a new TrackTree is initialised. b, When a multi-class cell 555 

segmentation is performed, it is often observed that erroneous cell classifications would occur 556 

stochastically. The TCS algorithm employs a probabilistic cached search algorithm to determine if a 557 

class switch has occurred for the respective cell in a time series.  558 

 559 
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 561 

Fig. 4: Evaluation metrics of the cell tracking accuracy based on ground truth segmentations. 562 

a, Table showing the IDF1, MOTA and CDF1 scores of all four trackers. The best scores for each 563 

respective dataset and the best average score are highlighted in bold. b-d, Box plots of IDF1, MOTA 564 

and CDF1 scores for all four cell trackers in varying imaging time intervals. Each point displayed on 565 

the boxplots represent the respective scores of the five test datasets. The line in the boxplot represents 566 

the median. The results for Deepcell-tracking CDF1 scores were not included in (d) as the tracker failed 567 

to detect any cell division instances in all the datasets tested.  568 

 569 

 570 
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 571 

Fig. 5: Evaluation metrics of the cell tracking accuracy based on diverse cell segmentation qualities 572 

and modalities. 573 

a, Table showing the IDF1, MOTA and CDF1 scores of tracking results based on raw uncorrected cell 574 

segmentations obtained from a custom trained StarDist model. The best scores for each respective 575 
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dataset and the best average score are highlighted in bold. b-d, Boxplots of IDF1, MOTA and CDF1 576 

scores for all four cell trackers with varying levels of cell segmentation loss. Each point displayed on 577 

the boxplots represent the respective scores of the five test datasets. The line in the boxplot represents 578 

the median. The results for Deepcell-tracking CDF1 scores were not included in (d) as the tracker failed 579 

to detect any cell division instances in all the datasets tested. e, IDF1, MOTA and CDF1 test results for 580 

the Cell Tracking Challenge (CTC) silver reference dataset. We were unable evaluate pcnaDeep’s cell 581 

tracking performance on the CTC dataset because pcnaDeep requires cell cycle data encoded in the cell 582 

segmentations to generate single cell tracks. 583 

 584 
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 586 

Fig. 6: Performance evaluation of SC-Track’s TCS class correction algorithm and runtime 587 

evaluation comparisons.  588 

a, F1 cell cycle classification test results obtained from raw StarDist cell classification predictions 589 

compared with TCS corrected cell classifications. The best scores for each respective cell classification 590 

and dataset are highlighted in bold. b, The average number of frames each tracker can process in one 591 

second is displayed in they y-axis while the x-axis represents the varying number of image frames were 592 

processed respectively. The solid line represents the average performance with the shaded area 593 

representing the 95% confidence interval for each cell tracker on three different computer systems 594 

running either Windows, Linux or macOS operating systems respectively.  595 

 596 
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