bioRxiv preprint doi: https://doi.org/10.1101/2023.10.03.560639; this version posted October 5, 2023. The copyright holder for this preprint

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

SC-Track: An accurate generalist single cell tracking algorithm

SC-Track: a robust cell tracking algorithm for generating accurate single cell linages from diverse

cell segmentations

Chengxin Li'?, Shuang Shuang Xie?, Jiaqi Wang!?, Septavera Sharvia*, Kuan Yoow Chan'*?

! Department of Cardiovascular Medicine, The Second Affiliated Hospital, Zhejiang University School
of Medicine, Hangzhou, 310058, P. R. China.

2 Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh Institute,
Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, P. R. China.

3 College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, EH4 2XR,
UK.

4 Department of Computer Science, University of Hull, Hull, HU6 7RX, UK.

Correspondence to:

kychan@intl.zju.edu.cn; kuanyoow.chan@outlook.com



https://doi.org/10.1101/2023.10.03.560639
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.03.560639; this version posted October 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

made available under aCC-BY-ND 4.0 International license.

SC-Track: An accurate generalist single cell tracking algorithm

Abstract

Computational analysis of fluorescent timelapse microscopy images is a powerful approach to study
biological processes in detail. Core to this approach is the generation of accurate single cell linages
from cell segmentations for reliable quantitative analysis. Convolutional neural networks (CNNs) are
increasingly being used to segment and classify cells in microscopy images, but current cell tracking
solutions are sensitive to inaccurate cell segmentations from CNNs. We present SC-Track, a cell
tracking algorithm that employs a hierarchical probabilistic cache-cascade model. Our results show that
SC-Track generates accurate single cell linages without parameter tuning, from cell segmentations of
varying qualities, morphological appearances, and imaging conditions. Furthermore, SC-Track is
equipped with a cell class correction feature to improve the accuracy of multi-class cell classifications
in a time series. These features make SC-Track a robust generalist cell tracking algorithm that works

with diverse segmentation outputs from CNNs to generate accurate cell linages and classifications.

Keywords: timelapse microscopy imaging, single cell tracking, cell division, deep learning,

convolutional neural networks, cell cycle.

Main text

The analysis of time resolved fluorescent microscopy images to obtain cellular dynamics at the single
cell level has enabled the detailed study of intracellular signalling events previously invisible to
conventional cell biological approaches'?. This method has led to the delineation of key signalling
pathways that induce a variety of cell fate decisions®’. Core to these approaches is the use of fluorescent
markers to mark single cells, quantify signalling events and classify cellular states. The generation of
single cell tracks from these fluorescent timelapse microscopy images is often a challenging process,
requiring extensive optimisations of fluorescent markers and imaging conditions. This is to ensure that
optimal cell segmentations are obtained as they are essential for accurate single linage tracing and
reliable mother-daughter assignments®. To generate good quality fluorescent images, the prolonged

exposure of live cells to high intensity ultraviolet light is a major limitation. This is because excessive


https://doi.org/10.1101/2023.10.03.560639
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.03.560639; this version posted October 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

made available under aCC-BY-ND 4.0 International license.

SC-Track: An accurate generalist single cell tracking algorithm

phototoxicity from exposure from ultraviolet light can result in cellular stress or death, making this
approach impractical as an approach to study long term biological events'.

To bridge this limitations, deep learning based convolutional neural networks (CNNs), have
been employed in a variety of approaches to overcome the inherent limitations of conventional
fluorescence-based microscopy approaches®. Among the most successful applications are the use of
autoencoder CNNs, enabling computationally efficient image restoration of microscopy images for
deconvolution, denoising and generating super-resolution image reconstructions’. Another area where
CNNs have been successfully deployed is in the automated segmentation and classification of

10—

microscopy images'® 3. CNNs have been demonstrated to perform very well in automatically detecting,

segmenting and classifying heterogenous cellular features of microscopy images, a task that often
requires time consuming manual human annotations'>°,

However, the application of deep learning CNNs in the automated segmentation and
classification of fluorescent microscopy images presents another challenge for reliable cell tracking.
This is caused by the stochastic nature of the cell segmentations derived from these deep learning-based
image analysis approaches!”. Under ideal conditions, state-of-the-art deep learning approaches such as
Mask RCNN, U-Net, Cellpose and StarDist often fail to accurately detect and classify all objects
instances'>!3171% Thus, it is generally accepted that the segmented images from deep learning methods
will be inherently noisy with instances where objects fail to be detected or are misclassified. These
inaccuracies pose a major challenge for widely used cell tracking approaches to generate accurate single
cell tracks, limiting the utility of these deep learning methods.

To overcome this inherent limitation, we developed a novel cell tracking algorithm called
Single Cell Track (SC-Track). It employs a hierarchical probabilistic cache-cascade model to overcome
the noisy output of deep learning models (Fig. 1). We show that SC-Track can generate robust single
cell tracks from noisy segmented cell outputs ranging from missing segmentations and false detections.
In addition, SC-Track can take noisy cell instance classifications and provide smoothed classification

tracks to aid the accurate quantification and classification of cellular events. Finally, SC-Track has a

built-in biologically inspired cell division algorithm that can robustly assign mother-daughter
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82  associations from segmented nuclear or cellular masks, enabling high fidelity single cell tracking of

83  cellular events over multiple cell generations.

84

85  Results

86  Tracking algorithm overview

87  SC-Track employs a tracking-by-detection approach, whereby detected cells are associated between

88  frames. A TrackTree data structure was used (Fig. 1), to store the tracking relationships between each

89  segmented cell temporally and spatially. Each branch of the TrackTree represents a single-cell linage of

90 the tracked instance of a segmented cell, where branch divisions indicate cell division events, and the

91 nodes on the branches represent the segmented instances of individual cells in a specific frame.

92  Contained in each node of the TrackTree branch are the extracted features of the segmented cell.

93 During the tracking process, SC-Track initializes the TrackTree list with all cells from the initial

94  frame, representing the initial single-cell tracks for the entire time-lapse sequence. To reduce

95  computational costs, SC-Track will attempt to connect each segmented instance with its corresponding

96 cell from the previous frame using a hierarchical tracking approach. SC-Track will initially examine the

97  intersection over union (IoU) of the area between segmented cells between the current frame and

98 preceding frame (Fig. 2). Segmented cells with only one overlapping segmentation are assumed to a

99  high confidence linked cell and is automatically assigned to the corresponding TrackTree. In situations
100  where there are multiple segmented cells with overlapping loUs, SC-Track will assign segmented cells
101 by maximising the similarity index between candidate segmented cells between frames. If there are no
102  segmented cell in the current frame overlapping with a segmented cell from the previous frame, SC-
103 Track will expand the search area (default = 1), to identify possible tracking candidates.
104 Using this method of recursive searching of candidate segmented cells from the previous frame,
105  virtually all segmented cells can be accurately assigned to the correct TrackTree. In the event where
106  there are more segmented cells than the number of cached TrackTrees, three possible scenarios will be
107  considered: (1) The orphan segmented cell is a false detection; (2) The segmented cell is a true detection

108  that recently entered into the field of view due to cell migration; (3) A cell division event has occurred
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109  leading to the generation of 2 or more (in the case of multi-polar mitosis) daughter cells. The approach
110  used to resolve these possible scenarios will be discussed in the subsequent two sections.

111

112 Detecting and assigning cell division events

113 When there are more segmented cells than the number of cached TrackTrees, SC-Track will determine
114  ifacell division event has occurred (Fig. 3). A cell division event is deemed to have occurred when SC-
115  Track is able to match a mother cell from the previous frame to the daughter cells in the subsequent
116  frame. To achieve this, SC-Track will first determine if there are putative mother cells in the mitotic
117  state in the previous frame. If the segmented cell contains cell cycle classifications, SC-Track will allow
118  cell division events to occur at the TrackTree nodes where the mother cell is classified to be in mitosis
119 (M phase). However, if no cell cycle information is available, this process is not enabled, and SC-Track
120  will attempt to determine if a cell division event has occurred by matching orphan segmented cells to a
121  potential mother cell using a cell cycle independent approach.

122 To enable robust detection of cell division events in the absence of cell cycle data, SC-Track
123 applies a series of rules based on well-established principles observed from mammalian cells
124 undergoing cell division'>?°. When assigning a potential mother-daughter association from a potential
125  cell division event, the following criteria must be met: (1) At least one candidate cell that cannot be
126  accurately matched to other cells were found; (2) The segmented mother cell in the previous frame must
127  be at least 1.3 x the size of the segmented daughter cells in the following frame. (3) The candidate
128  mother cell that has not undergone a cell division event recently (20 frames by default). (4) A candidate
129  mother cell is identified in the expanded search area of the unlinked segmented cell. If a suitable
130  candidate mother cell is found in the previous frame for the orphan segmented cell, the TrackTree will
131  be branched accordingly. However, if no suitable candidate mother cell was found, SC-Track will
132 assume that this is a new detection event and assign a new TrackTree to the segmented orphan cell.
133

134  Cache matching frames to address false and missing detection events

135  Due to the stochastic nature of CNNs in detecting cells, there is a possibility that true cell instances fail

136  to be detected or false detections may arise!>!'*17-18, To overcome the stochastic loss of true instances in
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137  the segmented cells, a cache matching system was developed. In an event where a TrackTree is unable
138  to find a matching cell in the current frame, it is assumed by default that this was caused by a failed
139  detection event. The TrackTree will be cached for five consecutive frames. If a matched segmentation
140  was found within five frames, SC-Track will automatically assign the matched segmented cell to the
141  corresponding TrackTree and the intervening gaps automatically filled with segmentations from the
142 cache memory from the last detected instance. In the event where no matching segmented cells was
143 found in the next five frames, the specific branch of TrackTree will be inactivated and can no longer be
144  wused to track cells in subsequent frames. Short TrackTree initialisations (user defined, default = 10
145  nodes), will be removed at the end of the tracking process to remove false detection instances.

146

147  Instance classification smoothing

148  Instance segmentation of cells from deep learning models that classify more than one class are often
149  challenged with noisy classifications?!. To address this, we have implemented a class smoothing
150 function to smooth out noisy classification of cells that transition from one cellular state to another. We
151  developed the TrackTree Class Smoothing (TCS) algorithm (Fig. 3) to automatically correct the
152  predicted results of cell type classifications. TCS assumes that a cell classification change is more likely
153  to be accurate in a time series when the same cell is classified with the same classification over several
154  frames. To evaluate the accuracy of the cell class change, TCS adopts a probabilistic cached search
155  model. This search process is confined to the individual branch of the TrackTree and does not extend
156  beyond the cell division branch.

157 The TCS probabilistic cached search model functions with the following logic: During the
158 initialisation of the TrackTree, TCS will automatically adopt the initial classification of the detected cell
159  instance as the default class. When TCS detects an instance where the tracked cell undergoes a cell
160 classification change to Type A, the algorithm will undertake a cached forward search on the TrackTree
161  (default search window = 10 frames) to count the number of occasions the tracked cell is classified as
162  Type A. If the number of nodes classified as Type A exceeds a probability threshold (default = 6), TCS
163  will conclude that a change in cell classification has occurred and will update the default classification

164  as Type A. Otherwise, the node where Type A was first detected will be assumed to be wrong and
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165  corrected to the previous default cell classification. Exiting the default Type A classification occurs
166  when a Type A’ classification is detected, TCS performs a forward TrackTree cached search (default =
167 10 nodes) for the frequency for the Type A’ classification. If the number of nodes of Type A’
168  classifications exceed the probability threshold (default = 6), it is considered that the Type A
169  classification has ended and the new default Type A’ classification is adopted. This process can be
170  repeated to multiple cell classifications.

171

172 SC-Track cell tracking performance evaluation

173 SC-Track overall cell tracking performance was measured using two metrics, the Multi-Object Tracking
174  Accuracy (MOTA)*>?3 and the harmonic mean of Identification Precision and Recall (IDF1)*. We also
175  introduced a new metric called the Cell Division F1 score (CDF1), to measure the cell tracker’s ability
176  to reliably detect cell division events and accurately assign mother-daughter cell relationships. For
177  comparison, we benchmarked SC-Track against three other freely available cell tracking algorithms that
178  provide similar functionalities: TrackMate?>?%, Deepcell-tracking?’, and pcnaDeep?®. Initial tests
179  focused on generating single cell tracks from nuclear masks obtained in ideal conditions, using
180  manually corrected nuclear segmentation masks with accompanying cell cycle classifications with 5-
181  minute temporal resolutions (Fig. 4). The results show that with ideal segmentation results, SC-Track
182  gave the best performance, and the top three trackers gave a score > 0.9 in both metrics. We then
183  assessed the performance of SC-Track in tracking cell division events by comparing the CDF1 score.
184  SC-Track gave the best performance giving a CDF1 score of > 0.9 in all five test datasets (Fig. 4).

185 To further measure the reliability of SC-Track in generating accurate single cell linages, we
186  resampled our original test dataset to mimic imaging time intervals of 10, 15 and 20 minutes. The
187  increase in time intervals poses a more challenging cell tracking problem, as each cell in a field of view
188  has more time to migrate spatially and the change in its cellular morphology between the preceding and
189  subsequent frame will be larger. Our results show that SC-Track gives the best IDF1 scores in the 5-
190  minute interval, but its performance is reduced at longer time intervals (Fig. 4). For the MOTA score,
191  pcnaDeep maintained the best overall scores. These mixed results displayed by IDF1 and MOTA is

192  caused by the differences in how each metric calculates tracking accuracy. IDF1 is more sensitive to the
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193  total duration of incorrect track assignments while MOTA is more sensitive to the total number of track
194  switches?. More importantly, SC-Track CDF1 scores were considerably better than the next best tracker
195  pcnaDeep across all time intervals (Fig. 4). These results indicate that SC-Track gave the best overall
196  performance and works well across varying temporal resolutions.

197 State-of-the-art deep learning-based CNN instance segmentations are generally known to
198  display a low number of instance segmentation errors'>!*!"-!¥, These range from missing segmentations
199  toinaccurate segmentations, where cell instances are improperly segmented, or erroneous cell instances
200  arereported despite no cells being present in the image. To assess SC-Track in generating reliable single
201  cell linages from noisy CNN based cell segmentations, we repeated the tests with the uncorrected image
202  segmentations which exhibited low levels of instance segmentation errors (Supplementary Table 3).
203  Our results show a decrease in tracking accuracy for all the trackers tested (Fig. 5). Despite this, SC-
204  Track gave the best overall performance, maintaining an average MOTA and IDF1 scores of > 0.9 and
205 a CDF1 score of > 0.8. To further examine SC-Track’s ability to overcome missing instances of cell
206  segmentations, we generated a synthetic test dataset where cell instances were randomly removed at
207  varying degrees (Supplementary Table 4). Our results show that SC-Track’s cache matching algorithm
208  can compensate for the loss of instance detections well and maintain an average IDF1 and MOTA score
209  of > 0.9 in a dataset where 20% of all cell instances were missing (Fig. 5). Furthermore, despite
210  increasing levels of missing instance detections, SC-Track can maintain its high reliability in detecting
211 cell division events (Fig. 5).

212 To demonstrate that SC-Track can perform well in a diverse set of cell types and imaging
213 conditions, we expanded our tracking benchmarks to a collection of publicly available microscopy
214  datasets (Supplementary Table 5). We used the silver reference segmentation results from the Cell
215  Tracking Challenge (CTC) because the CTC dataset contains a wide collection of timelapse microscopy
216  images taken with a variety of imaging settings on various cancer cells of diverse morphologies®’. The
217  segmentation results from the CTC dataset are equally diverse ranging from nuclear masks to whole
218  cell segmentations. We used the silver reference segmentation dataset since the segmentation results
219  were derived from the best performing CNN models in the CTC%. Furthermore, the silver reference

220  segmentations were accompanied by ground truth tracking results, making these datasets an impartial
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221  real-life test to measure the generalisability of SC-Track’s cell tracking algorithm. Our results show that
222 SC-Track consistently displayed the best cell tracking performance as measured by MOTA and IDF1
223 scores for nearly all the CTC datasets (Fig. 5). Furthermore, utilising only the silver reference
224  segmentation results, SC-Track can reliably detect cell division events in most of the CTC datasets (Fig.
225  5). These results provide evidence that SC-Track is an excellent general cell tracking algorithm that
226  performs equally well on a variety of cell segmentation types and can maintain its high cell tracking
227  performance under challenging conditions, including situations where the cell segmentation dataset
228  exhibits high levels of detection loss.

229

230 Instance classification smoothing of single cell tracks and runtime evaluations.

231  When performing multi-class instance segmentations, it is often observed that the classifications of
232 objects occasionally switch especially when the features exhibited by objects being detected does not
233 completely fit into a particular class or suboptimal imaging conditions lead to misclassifications of
234  detected objects. The inherent noise in the cell classifications can pose a problem if accurate
235  classifications of cellular states are important, such as in the quantification of cell cycle phases in an
236  image time series®®. To overcome this inherent problem, we developed a TrackTree Class Smoothing
237  (TCS) algorithm that employs a probabilistic cached class smoothing approach to help accurately
238  identify cell phase transition points. To evaluate the utility of SC-Track’s TCS algorithm, we measured
239  the F1 scores of our custom trained StarDist model used to classify our test dataset on the various cell
240  cycle phases predicted from the fluorescent PCNA signal (Fig. 6). The results indicate that TCS can
241  improve the average F1 classification scores across all cell classes.

242 Finally, we conducted runtime tests for SC-Track to determine how long SC-Track takes to
243  generate single cell tracks from cell segmentations. We measured the time taken to analyse cell
244  segmentations from microscopy timelapse series of varying lengths (50-500 frames) and compared it
245  with TrackMate, Deepcell-tracking, and pcnaDeep. Our results show that when working with small
246  imaging datasets, SC-Track had the best performance (Fig. 6). However, the processing speed

247  significantly decreased with increasing number of frames (Fig. 6). This was primarily caused by the
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248  increase in duration required to load the timelapse microscopy images prior to the generation of single
249  cell linages by SC-Track.

250

251  Discussion

252  In this study, we introduced SC-Track, a novel cell tracking algorithm that employs a hierarchical cell
253  tracking methodology based on biological observations of cell division and cell movement dynamics.
254  We show that SC-Track can generate highly accurate single cell tracks from both nuclear and cell
255  segmentations of diverse morphologies and imaging conditions. To better assess the ability of cell
256  trackers to accurately detect cell division events, we introduced a new metric called the Cell Division
257  F1 (CDF1) score. Using this measure, SC-Track showed the best performance in detecting cell division
258  events under all conditions tested. This was achieved without the finetuning of tracking parameters
259  making SC-Track a desirable general cell tracking solution. Furthermore, its hierarchical probabilistic
260  cache-cascade model can tolerate false or missing cell segmentations caused by the stochastic nature of
261  CNNs, reducing the need for extensive time consuming manual corrections of image segmentations. In
262  addition, we implemented a cache smoothing algorithm to help reduce the stochastic noise in cell
263  classifications from CNNs while increasing the accuracy of the cell classifications of segmented cells
264  ina time series. All these functionalities were achieved in a computationally efficient manner, allowing
265  SC-Track to be run reliably without requiring access to a high-performance computing cluster.

266 In summary, SC-Track provides a solution to a longstanding problem involving the use of
267  CNNs in the automated segmentation and classification of cells from timelapse microscopy images. To
268 facilitate easy integration of SC-Track into image analysis pipelines that require its functionalities, SC-
269  Track can generate accurate single cell tracks by using features extracted from cell segmentation masks
270  only.

271

272 Materials and methods

273 Calculating similarity index when connecting segmented cells between frames

274  When there is more than one segmented cell overlapping with the previous frame, SC-Track will select

275  the segmented cell with the highest similarity value with the segmented cell in the previous frame. SC-
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276  Track will employ the following formula to determine the similarity value of the possible candidate

277  pairs between frames:
S; = {Py,P,,...B,},where B, = (X, V»)

278

smyj = 10U(S;,S;) + Dis(S:,S;) + Sps(Si,S;) + Sas(S., ;) + 4(S.,S))
279 S represents the set of contour points in a 2D space defied by xy, y,, for points P;_,,, of a cell. smy;
280  represents the similarity index between the segmented cell i in the previous frame and the segmented
281  cellj in the subsequent frame. Dis is the calculated distance between the centroid of the segmented cell
282  iinthe previous frame and the centroid of the segmented cell j in the current frame. loU represents the
283  intersection over union of the contours of cells i and j. Sps represents the shape similarity value *°, and
284  Sas represents the area similarity of the two cells. A(Si, Sj) represents additional supplementary
285  features, such as the similarity in the variance or total intensity of fluorescent signals from segmented
286  cells. To calculate IoU(Si,Sj), Dis(Si,Sj), Sps(Sl-,Sj), Sas(Sl-,Sj), and A(Sl-,Sj), the following
287  formula was employed:

intersection(Si, Sj)
union(Si, Sj)

288 IoU(S;,S;) =

1

1075 + J(Six - ij)z + (Siy - Sjy)z

289 Dis(S;,S;) =

1 1

——

S .
71 where m,;' represents the seven Hu Moments.
mn mn

290 Sps(Si,S;) = Tn=1.7

n
min(S;, ,S; 1
291 Sas(S;, ;) = (Siarea’ Sirea) ,where S, , == E(xi Yig1 = Vi Xiz1)
max(SiArea’ jArea) 2 i=1
292 A(S;,S;) = mean(s;) var(sy) , where mean(s;) < mean(s;) and var(s;) < var(s;
j j j

mean(s;) " var(sj)
293
294  Bounding box expansion method for increasing candidate search area used to identify linked cells in

295  adjacent frames for cell tracking
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296  If'there are no cells overlapping in the segmented area of a cell from the previous frame, SC-Track will
297  expand its search area to search for potential candidates. The expansion of the search area utilises the
298  bounding box of the segmented cell which is expended with the following formula:

Bc = Pos(xq,x3,¥1,V2),Where x; < x, and y; < y,
299 Ec =a-Bc

=Pos(x; —a-(xz — x), X%+ a (xa— x1),y1 —a* 2 —y1), Y2 + - (¥2 — ¥1))

300 Bc represents the bounding box a cell. Pos represents the position of the bounding box with the
301 minimum value of the segmented cell in the x axis and y axis represented by x; and y; while the
302 maximum value as x, and y, respectively. Ec represents the expanded bounding box where potential
303  cell candidates located in the current frame can be matched to the previous frame, a represents the
304  coefficient for the expansion of the bounding box. By default, « is set to 1.
305
306  Benchmarking criteria and performance evaluation of cell tracking and classification accuracy
307  To evaluate the performance of SC-Track in accurately tracking segmented cells, we used performance
308  measures established in the Multiple Object Tracking (MOT) framework which includes IDF1 ** and
309 MOTA*®. IDFI measures how long a tracker accurately identifies the correct segmented cells over a
310 time series. It represents the ratio of correctly identified detections over the average number of ground-

311  truth and computed detections®*. IDF1 is computed from the following formula:

2IDT

312 IDF1 = , where IDP =
2IDTP+IDFP+I

IDTP IDTP
—————and IDR = ——————
IDTP+IDFP IDTP+IDFN

313  IDP represents the identification precision of the tracker which is computed as the average ratio of
314  accurately identified true positives divided by the sum of accurately identified true positives and
315  inaccurately classified false positives. IDR represents the identification recall which is computed as the
316  average ratio of accurately identified true positives divided by the sum of accurately identified true
317  positives and failed detections of each single cell track.

318 The multiple objects tracking accuracy (MOTA) measures the overall accuracy of the tracker
319  performance using by measuring how often a mismatch occurs between the tracking results and the

320  ground-truth®**, This is obtained by computing the total number errors for false positives (FP), missed
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321  targets (FN) and identity switches (/Dsw) normalised over the total number of ground-truth (GT) tracks.

322  This measure is computed using the following formula:

Y.(FN, + FP, + IDsw,)
Y GTy

323 MOTA=1-—

324  To evaluate the reliability of the class smoothing algorithm, we employed the cell classification F1 score.

325  The F1 score is calculated with the following formula:

TP
TP+FN

Precision - Recall

326 F1=2 and Recall =

.. TP
— , where Precision =
Precision+Re TP+FP

327  To measure SC-Track’s ability to track cell division events, we have introduced a new indicator Cell

328  Division F1 score (CDF1), which is calculated as:

2CDTP

329 CDF1 = 5 hTP + CDFP + CDFN

330  CDTP indicates a true positive cell division event, where both daughter cells of a cell division event are
331  accurately identified and assigned to the correct TrackTree. CDFP indicates false positive cell division
332 event, where daughter cells are incorrectly assigned to a TrackTree and classified as a cell division event.
333  CDFN indicates a false negative cell division event, where a cell division event occurred but is not
334  detected or the mother daughter cells were inaccurately assigned to the wrong TrackTree. The cell
335 tracking outputs used to benchmark the tracking results can be obtained from Zenodo:

336  https://zenodo.org/record/8284987. The python scripts used to analyse the cell tracking results can be

337 found in GitHub: https://github.com/chan-labsite/SC-Track-evaluation.

338

339  Generation of in-house development and testing datasets

340  Two cell lines with distinct morphological appearances were used to generate the imaging data used in
341  the development and testing of SC-Track. hTERT-RPE1 cells endogenously tagged with fluorescent
342  mScarlet-PCNA were grown in DMEM/F-12 (Sigma, D6421) supplemented with 10% FBS (ExCell
343  Bio, FSP500), 1x GlutaMAX (Gibco, 35050-061), 7.5% sodium bicarbonate (Sigma). MCF10A cells
344  endogenously tagged with fluorescent mScarlet-PCNA were grown in DMEM/F-12 (Sigma,D6421)
345  supplemented with 5% heat inactivated horse serum (Biological Industries, 04-124-1A), 1x GlutaMAX

346  (Gibco, 35050-061), 10 pg/ml insulin (Biological Industries, 41-975-100), 10 ng/ml cholera toxin
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347  (Sigma-Aldrich, #C-8052), 20 ng/ml EGF-B (Thermo Fisher, PHG0311), 0.5 mg/ml Hydrocortisone
348 (MCE, HY-NO0583). These cells were seeded in 8-Well chambered glass bottom slides (Cellvis, C8-
349  1.5H-N) for two days before being imaged under a Nikon Ti2 inverted widefield fluorescence
350  microscope equipped with a Lumencor Sola SE 365 as a light source. The cells were placed in an Okolab
351  stage incubator (OKO) at 37°C with 5% CO2, and 80% humidity. The cells were observed under a 20x
352  plan apo objective (NA 0.75) and images were captured using a Photometrics Prime BSI camera with a
353  pixel resolution of 2048%2048. The following filter sets were used (mCherry: 560/40 nm EX, 585 nm
354  BS, 630/75 nm EM). A single widefield image was taken in the mCherry channel (1% power, 200ms)
355  at each stage at 5-minute intervals for up to 48h. A DIC image was captured at each time point (5%
356  power, 100ms).

357 The timelapse microscopy images used as the development dataset for SC-Track was generated
358  from as cells cultured under the conditions described above. The images were saved as individual multi-
359  frame TIFF files. Four timelapse movies with varying cell densities per frame was generated within our
360 lab (Supplementary Table 1). These datasets were automatically segmented using a custom pre-trained
361  model of StarDist'? and manually corrected using the VGG Image Annotator (VIA)?! to remove false
362  and inaccurate classifications. The annotated files contained two sets of information: the cell contour
363  information and the “cell cycle phase” class information. The contour information was converted into
364  amask with values ranging from 1 to 255. The uncorrected and corrected mask images, along with the
365  original mCherry channel image, constitute the datasets used to finetune the tracking parameters of SC-
366  Track.

367 The timelapse microscopy images used in the testing dataset were generated under the
368  conditions described above. In total, three RPE1 microscopy timelapse images and a two MCF10A
369  microscopy timelapse images that were automatically segmented using our custom trained StarDist
370  model and manually corrected to ensure accuracy of the instance segmentations, cell classifications and
371  identity of single cell linages (Supplementary Table 2). The imaging conditions used were as described
372 above with a sampling frequency of 5 minutes. To test the reliability of SC-Track to accurately track
373  segmented cells with missing or false positive instances, we utilised the uncorrected segmentations of

374  the testing dataset (Supplementary Table 3). In addition, to assess how SC-Track can cope with varying
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375  levels of missing cell segmentations, we randomly deleted additional segmented cells from each frame
376  to varying degrees to simulate higher levels of missed segmentations (Supplementary Table 4). The in-
377  house generated segmentation masks, custom trained StarDist model, and ground truth tracking results

378  used in testing SC-Track can be obtained from Zenodo: https://zenodo.org/record/8284987.

379

380  Cell Tracking Challenge dataset

381  To test the universal functionality of SC-Track to accurately generate single cell linages from a variety
382  of cell types and segmentation modes, we used the silver reference segmentation results from the Cell
383  Tracking Challenge®. The silver reference datasets represent the uncorrected segmentation results
384  obtained from CNNs applied on a diverse variety of mammalian cell lines of different morphological
385  appearances and imaging conditions (Supplementary Table 5). SC-Track with default settings was used
386  to analyse the silver reference segmentation masks to generate single cell track linages. The single cell
387  tracks generated by SC-Track was then compared with the accompanying ground truth tracking data
388  provided by Cell Tracking Challenge to benchmark the reliability of SC-Track. The silver reference
389  masks and ground truth tracking results were obtained from the Cell Tracking Challenge website

390 (http://celltrackingchallenge.net/2d-datasets/).

391

392 Generation of single cell linages from segmentation masks

393 The segmentation results from the various evaluation datasets were used to measure the cell
394  tracking performance of SC-Track and three other trackers pcnaDeep?, Deepcell-tracking?’, and
395  TrackMate®?. For cell tracking experiments involving in-house generated testing datasets, the
396  segmentation results in the form of a VGG image annotator (VIA2) compatible JSON file containing
397  cell cycle class information of each segmented cell was used*!. The data in the JSON files were read
398  directly by SC-Track and pcnaDeep to generate the cell linage tables. The cell segmentation data in the
399  JSON files were converted into greyscale multi-TIFF image files prior to being read by TrackMate and
400  Deepcell-tracking as both software packages lack the function to directly read JSON files. To generate
401  single cell linages from the Cell Tracking Challenge dataset, the silver reference segmentation results

402  inthe form of a greyscale TIFF image series were used for SC-Track, TrackMate and Deepcell-tracking.
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403  We could not perform the cell tracking experiments with the Cell Tracking Challenge dataset on
404  pcnaDeep as it requires cell cycle class information to function?®,
405 Default tracking settings were applied to SC-Track, pcnaDeep and Deepcell-tracking. For

406  TrackMate, the Lap tracker algorithm was used with default tracking settings. The scripts used to

407  generate the cell tracking results can be obtained from GitHub: https://github.com/chan-labsite/SC-

408 Track-evaluation.

409

410  Automated cell cycle class correction testing

411 To evaluate the cell class correction function of SC-Track, the same testing dataset with the
412  uncorrected cell classifications obtained from our custom pre-trained StarDist model was utilised
413  (Supplementary Table 3). Ground truth cell cycle classifications were obtained by manual correction of
414  the automated annotations were used to compute the F1 scores for individual cell cycle classifications
415  in the timelapse image series. The JSON file containing the raw uncorrected cell segmentations and
416  the cell cycle classification data used to compute the F1 results can be obtained from Zenodo:

417  https://zenodo.org/record/8284987. The scripts used to compute the F1 scores of individual cell cycle

418 phases can be obtained from GitHub: https://github.com/chan-labsite/SC-Track-evaluation.

419

420  Runtime and multi-platform compatibility testing

421  We conducted compatibility tests on Windows, Linux, and macOS platforms. In addition, we performed
422  runtime efficiency tests specifically on the Windows platform. All tests were performed using the same
423  dataset and repeated three times. The Windows platform was configured with an AMD R7 3700X CPU,
424  RTX 2080 GPU, and 16GB of RAM. The Linux platform was configured with an Intel 17 11800H CPU,
425  RTX 3050Ti GPU, and 16GB of RAM. The macOS platform was configured on a 2021 MacBook Pro
426  equipped with a M1 processor, and 8GB of RAM.

427
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522 Fig. 1: Schematic illustration providing an overview of SC-Track, the TrackTree data structure and
523  analysis pipeline.

524  a, A summary of the TrackTree data structure. Each linked segmented cell is tracked in a TrackTree. A
525  node in a TrackTree branch represents an instance of the segmented cell in a particular frame with its
526  accompanying cell segmentation information. A branching of a TrackTree represents a cell division
527  event. b, A simplified overview of the analysis pipeline of SC-Track. Instance segmentation of cells
528  from each frame is sequentially added to their respective TrackTrees. The assignment of each instance
529  segmentation is determined by the hierarchical probabilistic cache-cascade model of SC-Track. If there
530 are cell classification information contained in the TrackTrees, SC-Track will employ the TrackTree
531  Class Smoothing (TCS) algorithm to correct the noisy cell classifications.

532
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534  Fig. 2: Schematic illustration summarising the hierarchical tracking approach for single cell
535  tracking.

536  SC-Track employs a hierarchical cell tracking approach to minimise computational costs. The initial
537  linking of segmented cells between frames is initially determined by the overlap between the segmented
538 cells of the preceding and subsequent frame. If there is only one cell segmentation overlapping, the
539  segmented cell in the subsequent frame is automatically linked to the respective TrackTree of the

540  overlapped cells in the preceding frame. When there are multiple overlapping cells, the identification
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541  of the linked cells will be determined by the similarity value of the overlapping cells of the subsequent
542  frame with the segmented cell in the preceding frame. If no overlapping candidate segmented cell was
543  identified with a preceding segmented cell, the bounding box of the preceding cell was identified, the
544  bounding box of the segmented cell will be expended to identify possible candidates.

545

546
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548  Fig. 3: Schematic illustration describing SC-Track algorithm in identifying cell division events and
549 TrackTree Class Smoothing (TCS).

550 a, When a new segmented cell instance that cannot be linked to available TrackTrees is identified, SC-
551  Track will attempt to determine if a cell division event has occurred. If a compatible candidate mother
552 cell is identified in the preceding frame, the new segmented cell instance will be added to the
553  corresponding TrackTree and a cell division event is recorded. If no compatible mother cell is identified,
554  SC-Track will assume that this is a new segmented cell instance is due to a recent appearance of a cell
555  into the microscope field of view and a new TrackTree is initialised. b, When a multi-class cell
556  segmentation is performed, it is often observed that erroneous cell classifications would occur
557  stochastically. The TCS algorithm employs a probabilistic cached search algorithm to determine if a
558  class switch has occurred for the respective cell in a time series.

559

560
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SC-Track pcnaDeep TrackMate Deepcell-tracking
IDF1 MOTA CDF1 IDF1 MOTA CDF1 IDF1 MOTA CDF1 IDF1 MOTA  CDF1
RPE1-01 0.9897 1.0000 0.9647 0.9498 0.9574 0.6378 0.7543 0.9538 0.3077 0.9156 0.9833 5
RPE1-02 | 0.9993 0.9999 0.9587 0.9565 0.9982 0.5333 0.6602 0.6651 0.2286 0.9351 0.9898 5
MCF10A-01| 0.9936 0.9957 0.9063 0.9727 0.9921 0.4957 0.8576 0.9471 0.0223 0.9616 0.9808 =
MCF10A-02| 0.9711 0.9977 0.9189 0.9822 0.9782 0.6567 0.8780 0.9570 0.0000 0.9516 0.9665 -
RPE1-03 | 0.9832 0.9952 0.9000 0.9748 0.9946 0.3077 0.4835 0.6111 0.0235 0.9314 0.9764 -
Average 0.9874 0.9977 0.9297 0.9672 0.9841 0.5263 0.7267 0.8268 0.1164 0.9391 0.9794 -
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562  Fig. 4: Evaluation metrics of the cell tracking accuracy based on ground truth segmentations.

563  a, Table showing the IDF1, MOTA and CDF1 scores of all four trackers. The best scores for each
564  respective dataset and the best average score are highlighted in bold. b-d, Box plots of IDF1, MOTA
565  and CDF1 scores for all four cell trackers in varying imaging time intervals. Each point displayed on
566  the boxplots represent the respective scores of the five test datasets. The line in the boxplot represents
567  the median. The results for Deepcell-tracking CDF1 scores were not included in (d) as the tracker failed
568  to detect any cell division instances in all the datasets tested.
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a
Datgsst SC-Track pcnaDeep TrackMate Deepcell-tracking
atase
IDF1 MOTA CDF1 IDF1 MOTA CDF1 IDF1 MOTA CDF1 IDF1 MOTA  CDF1
RPE1-01 | 0.9483  0.9596  0.9072 | 0.9533  0.9816  0.3913 | 0.7542  0.8760  0.1929 | 0.9290  0.9736 -
RPE1-02 | 0.9504  0.9431 0.7636 | 09136  0.9796  0.4795 | 0.7461 0.9475  0.0881 0.9190  0.9708 -
MCF10A-01| 0.9324  0.9688  0.8406 | 0.9420 09570  0.3455 | 0.7548  0.8291 0.1081 0.9423  0.9552 =
MCF10A-02| 0.9528  0.9615  0.9714 | 0.9443 09534  0.2857 | 0.7870  0.8741 0.0909 | 09476  0.9501 -
RPE1-03 | 0.9533 0.9898  0.9565 | 0.9670  0.9945 03077 | 0.7708  0.9633  0.0808 | 0.8899  0.9580 -
Average | 0.9474 09646  0.8879 | 0.9440 09732 0.3619 | 0.7626  0.8980  0.1122 | 0.9256  0.9615 -
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Dataset p Image Mask
res (min) events IDF1  MOTA CDF1 IDF1  MOTA  CDF1 IDF1  MOTA CDF1
DIC-C2DH-HeLa 10 DIC Cell 2 0.9922 0.9922 0.8000 | 0.5682 0.6392 0.0000 | 0.2060 -0.0196 .
PhC-C2DH-U373 15 Phase Cell 0 1.0000 1.0000 - 0.7187 0.9542 - 0.7611 0.6039 .
Fluo-C2DL-MSC 20 Fluor Cell 1 0.9627 0.9907 0.6667 | 0.4447 0.6853 0.0000 | 0.5885 0.5991 .
Fluo-N2DH-GOWT1 5 Fluor | Nuclear 1 0.9908 0.9990 0.0000 | 0.9712 0.9476 0.0000 | 0.9024 0.8551  _
Fluo-N2DH-SIM+ 29 Fluor | Nuclear 16 0.9548 0.9856 0.9677 | 006895 0.6337 0.1509 | 0.7474 0.9248 _
PhC-C2DL-PSC 10 Phase Cell 44 0.9886 0.9997 0.9890 | 0.9032 0.9446 0.3007 | 0.8789 0.9911 .
Fluo-N2DL-HelLa 30 Fluor | Nuclear 56 0.8799 0.9717 0.9910 | 0.8813 0.8548 0.0606 | 0.8069 0.9888 -
BF-C2DL-MuSC 5 BF Cell 5 1.0000 1.0000 0.3333 | 0.1429 -0.3480 0.0800 | 0.5402 0.0958 .
Average | 0.9711 0.9924 0.6782 | 0.6650 0.6639 0.0846 | 0.6789 0.6299 -

Fig. 5: Evaluation metrics of the cell tracking accuracy based on diverse cell segmentation qualities

and modalities.

a, Table showing the IDF1, MOTA and CDF1 scores of tracking results based on raw uncorrected cell

segmentations obtained from a custom trained StarDist model. The best scores for each respective
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576  dataset and the best average score are highlighted in bold. b-d, Boxplots of IDF1, MOTA and CDF1
577  scores for all four cell trackers with varying levels of cell segmentation loss. Each point displayed on
578  the boxplots represent the respective scores of the five test datasets. The line in the boxplot represents
579  the median. The results for Deepcell-tracking CDF1 scores were not included in (d) as the tracker failed
580 to detect any cell division instances in all the datasets tested. e, IDF1, MOTA and CDF1 test results for
581  the Cell Tracking Challenge (CTC) silver reference dataset. We were unable evaluate pcnaDeep’s cell
582 tracking performance on the CTC dataset because pcnaDeep requires cell cycle data encoded in the cell
583  segmentations to generate single cell tracks.
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a Dataset Raw F1 values TCS corrected F1 values
G1/G2 S M G1/G2 S M

RPE1-01 0.9555 0.7749 0.6594 0.9923 0.9780 0.7906

RPE1-02 0.9492 0.8093 0.7483 0.9793 0.9216 0.6313

MCF10A-01 0.9305 0.6900 0.4688 0.9779 0.9232 0.4803

MCF10A-02 0.8814 0.6597 0.4793 0.9538 0.7493 0.6895

RPE1-03 0.9645 0.7950 0.2358 0.9949 0.9626 0.6667

Average 0.9362 0.7458 0.5183 0.9797 0.9069 0.6517
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587  Fig. 6: Performance evaluation of SC-Track’s TCS class correction algorithm and runtime
588  evaluation comparisons.

589 a, F1 cell cycle classification test results obtained from raw StarDist cell classification predictions
590 compared with TCS corrected cell classifications. The best scores for each respective cell classification
591  and dataset are highlighted in bold. b, The average number of frames each tracker can process in one
592  second is displayed in they y-axis while the x-axis represents the varying number of image frames were
593  processed respectively. The solid line represents the average performance with the shaded area
594  representing the 95% confidence interval for each cell tracker on three different computer systems
595  running either Windows, Linux or macOS operating systems respectively.
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