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ABSTRACT

Cell-cell communication (CCC) is essential to how life forms, develops and functions. However,
accurate, high-throughput mapping of how expression of all genes in one cell affects expression
of all genes in another cell has been bottlenecked by under-developed experimental techniques
and inadequate analytical designs. Here, we introduce a Bayesian multi-instance learning
framework, spacia, to detect CCC from emerging spatially resolved transcriptomics (SRT) data
by uniquely exploiting their spatial modality. We highlight spacia’s power to overcome
fundamental limitations of popular single-cell RNA sequencing-based tools for inference of
CCC, which lose single-cell resolution of CCCs and suffer from high false positive rates. Spacia
unveiled how various types of cells in the tumor microenvironment differentially contribute to
Epithelial-Mesenchymal Transition and lineage plasticity in tumor cells in a prostate cancer
MERSCOPE dataset. We deployed spacia in a set of pan-cancer MERSCOPE datasets and
derived a signature for measuring the impact of PDL/ on receiving cells from PDL1-positive
sending cells. We demonstrated that this signature is associated with patient survival and
response to immune checkpoint inhibitor treatments in 3,354 patients. Overall, spacia represents
a notable step in advancing quantitative theories of cellular communications.

INTRODUCTION

Various types of cells form complex structures and communication networks in the tissue
micro-environment, and the signaling between these cells is central to normal organ development
and diseased physiological processes. Elucidating cell-cell communication (CCC) in the tissue
microenvironment in different biological systems is of vital importance. Many experimental and
informatics approaches have attempted to address this question (/—4), and one major school of
informatics approaches infer CCCs based on single-cell RNA-sequencing (scRNA-seq) data,
such as CellChat (5), NicheNet (6), CellphoneDB (7), NATMI (8), SingleCellSignalR (9), etc.
Despite their popularity, these methods suffer from a number of significant caveats, due to the
limited information provided by scRNA-seq and improper designs of the underpinning models.

To begin with, most of these tools only infer interactions between cell types rather than
interactions at the single-cell level, thus losing single cell resolution. Secondly, CCC is usually
context-specific, and the common approach of mapping the data to pre-defined interaction
pathway databases, regardless of the cellular context, inevitably results in low resolution and low
sensitivity in the detection of true CCCs in the specific tissue sample of interest. Lastly, most of
these tools rely on the co-expression of ligand-receptor gene pairs in signal-sending and
receiving cells to claim detection of CCC. However, the expression of the receptor gene itself is
not necessarily impacted by the expression of the ligand, which calls into question the
fundamental rationale of such approaches. Rather, SRTs can only capture the alterations of
downstream target genes’ RNA expression in the receiving cells that are influenced by ligand
signaling from the sending cells.
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We hypothesize that effectively addressing CCCs requires examining the interacting cells in both
their expression space and their physical space. Fortunately, emerging spatially resolved
transcriptomics (SRT) technologies provide the necessary data to explore this possibility. Such
SRT technologies include 10X Visium, Slide-Seq (10, 11), Seq-scope (12), XYZeq (13), CODEX
(Akoya Biosciences), CosMx (Nanostring), MERSCOPE (Vizgen), etc. First, these SRTs,
especially those that achieve single cell spatial resolution, allow researchers to pinpoint each
single cell with its spatial location and identify the other cells within its neighborhood. It is thus
feasible to detect interactions between each pair of single cells without having to aggregate to
cell types. In addition, since SRTs enable examining the expression profiles of all possible pairs
of single cells, yielding very rich data that reveal ongoing CCCs, we can apply a much more
data-driven approach to infer CCCs, overcoming the constraint of relying on previously known
pathways. Furthermore, the high-dimensional and multi-modal information contained in these
cell pair data also enables the modeling of downstream target genes in the receiving cells in
detail, such as how their expression varies as a function of signals from sending cells. Therefore,
SRTs overcome all major caveats encountered in mapping of CCCs from scRNA-seq data.

Although SRTs in principle provide the data necessary for accurate mapping of CCCs, these
methods generally capture thousands of cells at a minimum, with information on each cell’s
location and expression of at least a few hundred genes. Such highly complex data present a
grand challenge for analytics. To address this daunting task, we present spacia, a Bayesian
multi-instance learning framework, to detect the interaction between signal-sending and
receiving cells by reconciling the spatial and transcriptomics modalities. Importantly, cell-cell
communications happen in a variety of manners. As reviewed by Armingol et al (2), there are
four major types of cell-cell communications: autocrine, paracrine, juxtacrine, and endocrine.
The first three types of communication naturally require cells to be in close proximity. In
contrast, endocrine interactions occur over long distances through systemic circulation, and it is
not feasible to track such CCCs by SRT. Therefore, spacia considers the types of cell-cell
communications that require the interacting cells to be closely localized, by leveraging the spatial
modality of SRTs.

With spacia, we showed that data from modern SRTs already allow sophisticated analyses, more
than merely tracking different types of cells in their spatial context. Spacia incorporates the
unique spatial location information of SRT and enables precise and single-cell resolution
detection of CCC, a capability not provided by scRNA-seq-based counterparts. When applied to
a prostate MERSCOPE dataset, spacia revealed how stromal/immune cells contribute to EMT
and lineage plasticity in prostate cancer cells. When applied to a pan-cancer panel of
MERSCOPE datasets, spacia revealed a signature for measuring the impact of PDL/ signaling
on various types of immune cells, including CD8" T cells. We demonstrated that this
spacia-derived PDL1-CDS signature is predictive of patient survival and treatment response to
immune checkpoint inhibitor treatments in 3,354 patients.

RESULTS
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SRTs Reveal CCCs in the Tissue Microenvironment

While SRTs have prospered and some are even commercialized, there are still many technical
challenges associated with modern SRT technologies such as shallow coverage for each gene.
Cell typing within the spatial context by SRT is mostly feasible, but it remains unclear for the
whole field whether current SRT technologies allow enough precision for addressing more
complicated questions. Therefore, we examined several SRT datasets from different platforms to
confirm that SRT data contain meaningful information on CCC.

We first examined a MERSCOPE dataset from a patient with squamous cell carcinoma in the
lung. We performed cell typing for this dataset (Fig. 1a and Sup. Fig. 1) and visualized the
distribution of the single cells in their spatial context (Fig. 1b). We examined the interaction
between fibroblast cells and tumor cells in the EMT pathway. In this pathway, TGFB proteins
secreted by cells in the tumor microenvironment are known to induce EMT in tumor cells, with
FNI and SNAI2 being important markers of EMT (/4—16). Then, we enumerated all tumor
cell-fibroblast cell pairs (Fig. 1¢ and Sup. Fig. 2), and defined cell pairs as “adjacent” if the two
cells are within <30pm radius away from each other, and “distant” otherwise. We examined the
expression of FNI (Fig. 1d) and SNAI2 (Fig. 1e) in tumor cells as a function of the averaged
expression of TGFB1, TGFB2, and TGFB3 in the “adjacent” or “distant” fibroblasts. As
expected, Fig. 1d and Fig. 1e show that the expression of FN/ and SNAI2 are positively
correlated with the TGFB1-3 expression in neighboring fibroblasts, but much less so for distant
fibroblasts. This suggests that the MERSCOPE platform is capable of supporting the mapping of
CCC.

Next, we examined a breast cancer Visium dataset. Unfortunately, unlike the newer MERSCOPE
technology, Visium does not capture gene expression at the single-cell resolution. Therefore, we
performed clustering analyses and segregated all Visium sequencing spots into a tumor cluster
and a broad non-tumor cluster (stromal/immune cells). In Fig. 1f, we examined how the
expression of tumor cell CD274 varies as a function of the PDCD] pressure from nearby
(defined by red arrows) or distant stromal/immune cells. Tumor cells are expected to up-regulate
CD274, whose protein product PDL1 antagonizes cytotoxic T cells via binding to PD1. Fig. 1g
indeed shows that tumor cells up-regulate CD274 as a result of higher PDCD] expression in
neighboring stromal/immune regions, while the same does not hold for PDCD1 pressure from
distant stromal/immune cells.

Beyond evaluating SRTs, we also assessed the potential of spatial proteomics for CCC inference.
We examined a Cyclic Immunofluorescence (CyCIF) dataset of lymph nodes with metastasis
from a human lung adenocarcinoma (/7) (Fig. 1h). In the lymph node, T;, cells aid the
maturation of B cells through a direct-contact process called T-B reciprocity (/8—20). Therefore,
for each B cell, we counted the number of T, cells that are in the B cell’s vicinity vs T, cells that
are not (adjacency distance cutoff = 100um). Interestingly, we observed that when there is a
larger number of T}, cells in the B cells’ neighborhood, the B cells tend to have higher expression
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of MKI67, a classic proliferation marker, and CD20, a B cell maturity marker(2/). On the other
hand, the trend is less clear in cases where T, cells are distant from the B cells.

Overall, these pieces of evidence suggest that, at least for some of the modern spatial
transcriptomics/proteomics technologies, the data quality affords the inference of CCC.

Multi-Instance Learning for Mapping CCCs from SRT Data

Next, we present a Bayesian multiple-instance learning (MIL) model, spacia, to infer CCCs from
SRT data. The technical details of spacia are described in Sup. File 1. At a high level, spacia has
two tiers. The first tier identifies signal-sending cells (senders) that are impacting
signal-receiving cells (receivers) based on spatial closeness, indicated by a J variable (Fig. 2ab).
As different CCCs could have varying effective spatial ranges, depending on the cell types and
types of interactions (contact-based or secretion-based), the model estimates a variable, indicated
by b, to allow flexibility in determining J based on spatial distances. When b is negative, the
senders and receivers are determined to have stronger interactions when they are physically
closer. In the second tier, spacia discovers gene co-expression patterns between the senders and
the receivers (Fig. 2ab), but only for senders that are determined to be impacting each receiver
cell (0=1). We infer a variable f that indicates how the expression of the genes/pathways in the
senders impacts the genes/pathways in the receiver cells. This model is solved by Markov Chain
Monte Carlo (MCMC), which is an iterative process that generates a distribution for the value of
each variable of interest so that we can provide both point estimates and inferences of statistical
significance.

Importantly, the sending and receiving genes that can be considered by our model do not have to
be ligands and receptors, but rather, all genes captured by SRT can be considered for both the
sending and receiving portions. This allows us to avoid the questionable rationale of examining
the co-expression of ligands/receptors from pre-defined interaction databases for mapping CCC.
It also allows us to model the upstream and downstream regulatory signals that occur during
CCC. Furthermore, during CCCs, multiple senders in a neighborhood could confer signals to and
impact the same receiver. One unique feature of spacia is that it naturally and explicitly
integrates this multiple-to-one relationship through MIL. Under a MIL framework, the receiver
cells are modeled as “bags” with labels (expression of receiving genes/pathways), and each bag
is a collection of instances (senders) characterized by the instance-level features (expression of
genes/pathways and spatial closeness to receivers). Spacia infers, for each receiver cell, a set of
sender cell(s) that truly interact with this receiver. This unique model design enables us to infer
single cell-to-single cell interactions for each cell captured by SRT, unlike scRNA-seq-based
approaches that usually only infer interactions between two clusters of cells.

To validate its efficacy, we tested spacia on simulated data. As we demonstrated in Fig. 2¢, we
simulated two types of cells that are interacting. The blue cells are senders, while the red cells
are receivers, but the red cells’ expression was simulated to be regulated by only nearby blue
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cells. As expected, spacia only infers red and blue cells that are close to each other to be
interacting (Fig. 2¢). We showed, in Fig. 2d, the rate of correct identification of the truly
interacting cell pairs, measured by Area Under the ROC curve (AUROC). With more than
10,000 MCMC iterations, the AUROC achieves >0.95 (spacia’s default is 50,000 iterations),
meaning an almost perfect detection of interacting cell pairs. We then showed in Fig. 2e that the
b variables were estimated to be negative, consistent with the simulation assumption that only
nearby cells are interacting. We also evaluated spacia’s estimations of the f variables, in Fig. 2f
(distributions of fs across all MCMC iterations) and Fig. 2g (point estimates of fs). As is shown,
the sender genes that were simulated to be truly interacting with the receiver genes had fs that
were significantly different from 0, while the converse was true for non-interacting genes.
Finally, the posterior samples of the b and f variables demonstrate stable convergence and
minimum auto-correlations (Sup. Fig. 3). Additional analyses were provided in Sup. File 2.
Taken as a whole, these results indicate that spacia exhibits excellent statistical properties.

Spacia Validates in SRT Data and Overcomes Limitations of Existing Approaches

Next, we investigated a prostate cancer MERSCOPE dataset and used spacia to infer how the
non-tumor cells from the tumor microenvironment impact prostate cancer cells (Fig. 3a). We
visualized the interacting cell pairs in their spatial locations in Fig. 3b. Consistent with our
expectation, inferred CCCs are all local. In contrast, the CCCs inferred from CellPhoneDB (7)
and CellChat (5) without spatial context (Sup. Fig. 4) indicate numerous CCCs across the entire
span of the tissue, which is highly unlikely. More importantly, we noticed that CellPhoneDB and
CellChat inferred highly similar sets of interacting genes regardless of the types of cells. For
example, in Fig. 3¢, we showed CellPhoneDB’s inference results for three very dissimilar cell
types (as sending cells), CD8" T cells, mast cells, and endothelial cells. Among all unique
sending-receiving gene pairs that were inferred to be active in at least one of these sending cell
types, 54% exists in all three sending cell types, which suggests an alarming lack of specificity.
We investigated this systematically by examining how many predicted interacting genes were
shared between all sender cell types (Fig. 3d). Of all the CCCs inferred by spacia, 92.7% were
unique to one or two sender cell types, with no interactions found to be shared by more than four
different sender cell types. In striking contrast, 63.6% and 60.9% of the CCCs are shared among
three or more cell types according to CellphoneDB and CellChat, respectively.

Additionally, we attempted to benchmark two recently published methods, COMMOT (22) and
ncem (23), for cellular interaction detection from SRT data. Unfortunately, due to the large
number of cells in the MERSCOPE datasets, COMMOT could not be run using the original data
as it required more than 2 terabytes of memory, which was much more than what is usually
available in high performance computing clusters. After sub-sampling down to no more than
5,000 cells for each cell type, we ran COMMOT with default options using the CellphoneDB
database and filtered the interactions to the same cell type pairs as above. Although COMMOT
appeared to predict spatially localized CCCs (Sup. Fig. 4), it had a very high tendency to
produce non-specific interactions (Fig. 3d). All CCCs predicted by COMMOT were shared by
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three or more different cell types, and 78.3% of interactions were shared among all cell types
examined, which is impossible. As for ncem, as of this writing, the Github repository of ncem
has provided almost no documentation for practical applications of ncem on new datasets;
therefore, it was not tested for this study.

We utilized other forms of data to validate spacia. The NCI Patient-Derived Models Repository
(PDMR, pdmr.cancer.gov) provides RNA sequencing data of 70 prostate cancer patient-derived
xenografts (PDXs). In PDX models, human immune/stromal cells die out quickly and mouse
T/B/NK cells are generally non-existent due to the choice of NSG mouse models (24). We
separated the bulk PDX gene expression into the human tumor cell vs. mouse stromal/immune
cell components with Disambiguate (25). Next, we used CIBERSORTx (26) to further
demultiplex the mouse stroma/immune cell component into cell type-specific expression. We
then evaluated the correlation between human tumor cells’ expression and the expression of
mouse fibroblasts and myeloid cells (one example gene pair shown in Fig. 3e), which are the two
most abundant cell types in the murine components, according to CIBERSORTx. Then we
cross-referenced these against the pairs of signal-sending genes in senders (fibroblasts and
myeloid cells) and downstream target genes in receiver tumor cells that were detected by spacia.
Overall, positively correlated gene pairs from the PDX data are indeed more likely to have
positive Bs in the corresponding interactions inferred by spacia and vice versa (Fig. 3f). We also
leveraged CytoSig (27), which is a manually curated database documenting gene expression
changes in many different types of cells upon cytokine treatment. This database contains results
for several prostate cancer cell lines (details in the method section). We examined whether the
directions of expressional regulations in the interactions inferred by spacia are consistent with
the direction of gene expression changes in these prostate cancer cell lines upon cytokine
treatment. Due to the nature of the CytoSig database, we can only loop over all possible sender
cell types (Fig. 3a), with the sender genes being the cytokines from CytoSig in each cell type.
We observed top concordance for fibroblasts (overall 71%) and B cells (75%), consistent with
the known important roles of these two cell types in modulating the tumor microenvironment
through secretion of cytokines and other soluble factors (28, 29). In contrast, we observed the
lowest concordance for mast cells (34%). For fibroblasts (Fig. 3g), the concordance for TGFB1
(90%) is the highest among all cytokines, consistent with the fact that fibroblasts are one of the
major sources of TGFB1 from the tumor microenvironment (30, 317).

Finally, we categorized the interacting gene pairs into “contact-based” and ““secretion-based”
interactions according to whether the sending gene is known to participate in contact-based or
secretion-based interactions (5). As expected, the bs of cell-cell contact interactions are larger in
magnitude (more negative) compared with those of secretion-based interactions (Fig. 3h). And
cell-cell contact interactions demonstrate larger drop in interaction probability over distance
(Fig. 3i). Overall, our analyses above validate spacia from the perspective of real data.

Spacia Reveals Induction of Prostate Cancer EMT by the Tumor Microenvironment
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TGFBs secreted by fibroblasts induce EMT in tumor cells (32, 33). Inspired by our observations
above, we further investigated whether the sender genes are enriched in signaling pathways that
are associated with the induction and regulation of EMT in tumor cells. We performed Gene
Ontology analysis using GOrilla (34, 35) on the sending genes, for each sender cell type and for
each of several receiving genes in the tumor cells that are classical markers or drivers of EMT
(36-44) (Fig. 4a). We found that fibroblasts, B cells, endothelial cells and T, cells possess the
highest numbers of enriched pathways (FDR<0.05) directly or closely related to the regulation of
EMT (the full GO results for JAK1 as an example receiver gene are shown in Sup. Table 1). In
other words, spacia correctly inferred the upstream signaling pathways in several cell types of
the tumor microenvironment that regulate the downstream induction of EMT in the tumor cells.

We focused on a number of secretory ligands that are known to induce EMT activation in tumor
cells within the sending cell types above; these ligands include WNT54, WNT3A, TGFBI,
TGFB2, FGF2, IL6, CXCL8, HGF, and FGFI (32, 33, 36, 37, 39—41, 43). Fig. 4b shows the
ranked fs of these ligands in each sender cell type, among all 500 genes captured by
MERSCOPE, where a smaller rank refers to stronger regulation of the EMT marker/driver genes.
Fibroblasts and endothelial cells demonstrate the strongest activation of tumor EMT via these
ligands, followed by B cells. While the roles of fibroblasts and endothelial cells in inducing EMT
are more well established, it is surprising to see that B cells are also inferred by spacia to induce
EMT, though to a lesser extent. Indeed, B cells have been reported to shape the mesenchymal
identity of ovarian cancers through the transfer of exosome-derived microRNAs (45) and certain
subsets of B cells are known to secrete cytokines such as TGFB1 (45). We also showed more
details of the inferred interactions between these ligands and the EMT genes in a network plot
(Fig. 4c¢). It is apparent that fibroblasts, endothelial cells and B cells each employ more than one
secretory factor to induce tumor cell EMT. We also uncovered EMT-inducing interactions that
have not been described before in prostate cancer. For example, while it has been reported that
endothelial cells secrete IL-6 and induce EMT in head and neck tumors (46) and esophageal
carcinoma (47), we showed that such a mechanism also exists in prostate cancers (Fig. 4¢). We
next visualized the spatial co-expression patterns of these ligands in sender cells (Fig. 4d) and
the EMT levels of the tumor cells (Fig. 4e, definition of EMT level in method section). In
particular, we aggregated over these secretary ligands to form an “EMT activation potential” in
each sender, weighted by the Bs inferred by spacia, and further aggregated all senders of each
receiver cell through a weighted average with weights being the probability of the senders being
“primary” (0=1). Fig. 4d confirms that the EMT activation patterns have higher correlation with
the EMT levels of the tumor for fibroblasts and endothelial cells (Spearman correlation: p=0.822,
0.838), but much lower for B cells (p=0.415) (Fig. 4e, Sup. Table 2). It is interesting, however,
that fibroblasts and endothelial cells have largely overlapping spatial patterns of EMT activation,
while B cells show a distinct pattern with its EMT activation. It appears that the sum of the EMT
activation patterns of fibroblasts/endothelial cells and B cells better corresponds to the EMT
level of the tumor cells (Fig. 4e).
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Our prior work showed that EMT is usually part of a lineage plasticity dys-regulation program in
prostate cancer cells (48). To determine if the observed increase in EMT activity was also
associated with gene expression programs involved in lineage plasticity, we studied the spatial
distribution of the stem-like, neuro-endocrine, and basal lineage plasticity levels in the tumor
cells. Fig. 4f shows that the stem-like and neuro-endocrine lineages are largely correlated with
the prostate cancer cell EMT levels (p=0.666, 0.854) and the EMT activation potential of
fibroblasts and endothelial cells (Sup. Table 2). In particular, the correlation between fibroblast
EMT activation potential and the tumor cell neuro-endocrine lineage is the highest, achieving a
Spearman correlation of 0.916.

To validate the interactions inferred by spacia at the patient level, we generated 21 scRNA-seq
datasets from a cohort of prostate cancer patients (Fig. 4g). We divided the patients into two
subsets of EMT high (N=10) and EMT low (N=11), according to the EMT expression in their
tumor cells. We first examined the expression of FGF2 in fibroblasts, endothelial cells, B cells,
and several other immune cell types as controls (Fig. 4h). Fig. 4c indicates that fibroblasts and
endothelial cells are the major cell types that secrete FGF2 and induce prostate cancer cell EMT.
Consistent with this observation from MERSCOPE, Fig. 4h shows that fibroblasts and
endothelial cells are the only two cell types that abundantly express FGF2, and more
importantly, the expression of F'GF?2 is higher in fibroblasts (Pval<0.001) and endothelial cells
(Pval<0.001) from patients with EMT-high tumors, compared with EMT-low tumors. We again
examined all the secretory factors together by calculating the EMT activation potential as in Fig.
4d. As shown in Fig. 4i, fibroblasts cells overall possess the strongest EMT activation potential.
As expected, fibroblasts and endothelial cells show stronger EMT activation potential in the
EMT-high patients, compared with the EMT-low patients (Pval<0.001 for both). B cells also
demonstrate the same trend, though not achieving statistical significance. Next, we assessed the
association between lineage plasticities of tumor cells and the EMT activation potentials of the
stromal/immune cells (Sup. Fig. 5), as is done for the MERSCOPE dataset. Consistent with Sup.
Table 2, the most pronounced observation is that fibroblast EMT activation potential was
significantly higher in the group associated with enhanced neuro-endocrine lineage (Pval<0.001).
The endothelial EMT activation potential was also higher in the stem-like positive group than in
the negative group (Pval<0.001), similarly for the basal lineage (Pval<0.001). Overall, the main
discoveries regarding the intra-tumor heterogeneity of EMT and lineage plasticity induction in
tumor cells identified by spacia can be extrapolated to inter-tumor differences.

Spacia Infers the Impact of PDL1 Signaling on the Tumor Microenvironment

The analyses above investigated signals sent from the tumor microenvironment. In another
application, we deployed spacia to characterize the impact of PDL1 signaling on the tumor
microenvironment. It is well known that PDLI and PD] interact through protein-to-protein
binding, but the transcriptional signaling pathways downstream of PD/ are not completely clear
(49-52). We studied a breast cancer MERSCOPE dataset and applied spacia to investigate how
the PDLI expression of tumor cells, endothelial cells, and macrophages leads to downstream


https://sciwheel.com/work/citation?ids=13564201&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4833300,15303768,15303784,15303794&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://doi.org/10.1101/2023.09.18.558298
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.18.558298; this version posted November 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

transcriptional regulation in CD8" T cells, T, cells, T, cells, B cells, and macrophages (Fig. 5a).
We visualized the pathways enriched in the downstream target genes that spacia inferred for
different cell type pairs in Sup. Fig. 6. We show that the PDL1-PDI1 axis is active in almost all
possible combinations of sender cell type-receiver cell type pairs, although the strength of
interactions is still the strongest for PDL1 signaling from tumor cells. It is also worth noting that,
despite the enrichment of genes in pathways typically related to immune responses, there is also
an enrichment related to apoptosis.

To validate these observations, we generated a set of GeoMx data from eight treatment-naive
breast cancer patients. Each patient was sampled for an average of five Regions of Interest
(ROIs), resulting in a total of 40 ROIs with a mixture of tumor and immune cells. We defined the
tumor and immune masks in each ROI (Fig. Sb, full images in Sup. File 2), and extracted
mask-specific gene expression for the tumor cell and immune cell components. We deployed
BayesianPrism (53) to dissect the immune cell gene expression into the gene expression of each
immune cell type for each ROI. As Fig. 5¢ shows, B cells (19%) and CD8" T cells (10%) are
most abundant in these ROIs, followed by T, cells (6%) and T, cells (6%), with macrophages
accounting for the least proportions (4.5%). Next, we investigated genes in these immune cell
types whose expression is positively or negatively correlated with the expression of PDLI in
tumor cells. We then calculated the overlap between these genes and the PDL1 downstream
target genes that spacia inferred, in terms of direction of expression regulation. Importantly, as
BayesPrism’s authors suggested, BayesPrism is more accurate for cell types that are abundant in
the tissue mixture (only B cells and CD8" T cells achieve optimal accuracy according to their
guidelines). Therefore, we focused this validation on the PDLI target genes in B cells and CD8"
T cells. As Fig. 5d shows, there are statistically significant overlaps between GeoMx and
spacia/MERSCOPE, for both B cells (Odds Ratio (OR)=9.3, Pval=0.01) and CD8" T cells
(OR=4.2, Pval=0.011). As expected, the overlap is less pronounced for T, cells (OR=1.87,
Pval=0.14) and T, cells (OR=1.18, Pval=0.92), and there is no enrichment for macrophages
(OR=0.21, Pval=0.37). Even though these two sets of PDL1-downstream genes were derived
from two different technologies in two different cohorts of patients, the existence of a significant
overlap speaks to the validity of spacia’s findings.

We showcase the top genes that are in these overlaps. In CD8" T cells, both the spacia and the
GeoMx analyses indicate that BCL?2 is inhibited by PDLI from tumor cells (Fig. Se). BCL2 is a
key anti-apoptosis molecule (54) and therefore our results suggest that PDL I promotes apoptosis
in CD8" T cells. We also found that PDL1 down-regulates GATA3 in CD8" T cells (Fig. 5e),
which supports the maintenance and proliferation of T cells downstream of TCR and cytokine
signaling (55). Both of these observations are in alignment with the well-known
immuno-suppressive functions of PDLI for CD8" T cells. For B cells, we found that PDLI of
tumor cells up-regulates /DO! in B cells, in both the spacia and GeoMx analyses (Fig. Se). The
role of IDO1 for B cells is less clear so far, but recent reports have linked /DO1 with
immuno-suppressive roles in B cells (56). We also found that PDL I up-regulates PDGFRA in B


https://sciwheel.com/work/citation?ids=12881377&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11920043&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1123630&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15260216&pre=&suf=&sa=0
https://doi.org/10.1101/2023.09.18.558298
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.18.558298; this version posted November 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cells (Fig. Se). To our knowledge, there has been no literature on how the expression of
PDGFRA in B cells is correlated with B cell functions. But we examined the breast cancer
scRNA-seq data from Bassez et al (57), where data on various immune cell types pre- and
post-anti-PD1 treatment were generated. These data show that PDGFRA expression in B cells
decreased after anti-PD1 treatment (Sup. Fig. 7, Pval=0.025), which also suggests an activating
role of PDLI for PDGFRA.

Next, we applied spacia to a set of pan-cancer MERSCOPE datasets, which include breast
cancer, colon cancer, melanoma, lung cancer, liver cancer, ovarian cancer, prostate cancer, and
uterine cancer (Fig. 1ab and Sup. File 2). Here, we still focused on tumor cell-to-CD8" T cell
interactions. Spacia yields a set of downstream target genes for tumor-to-CD8" T cell interactions
in each cancer type, which we term the CD8-PDLI1 signatures (Sup. Table 3). We first validated
these gene signatures, by leveraging the RNA-seq data from The Cancer Genome Atlas Program
(TCGA), for the same eight cancer types. We used BayesPrism (53) to dissect the TCGA
RNA-seq data into cell type-specific gene expression in each patient sample. We investigated the
differential gene expression in the CD8" T cell components in the TCGA patients, between
patients with high and low PDL1 expression in their tumor cell components. Gene Set
Enrichment Analysis (GSEA) (58) confirmed that the CD8-PDL1 gene signatures identified by
spacia are indeed enriched in the top differentially expressed genes. Fig. 5f showcases the GSEA
results for breast cancer (Pval=0.0007) and ovarian cancer (Pval=0.025). We also calculated a
composite score as the weighted average of the genes in each CD8-PDL1 signature, with weights
being the inferred fs by spacia, to reflect the overall impact of PDLI signaling on CD8" T cells.
For almost all cancer types, patients with higher PDLI expression in the tumor cells tend to have
higher expression of the CD8-PDL1 signatures (Fig. 5g, Pval(liver cancer)=0.012, Pval(lung
cancer)=0.69, and P values for all other cancer types <0.002). Overall, these results validate the
CDS8-PDL1 signatures inferred by spacia.

The PDL1 Signature in CD8" T Cells Is Prognostic and Predictive

We evaluated the prognostic and predictive powers of the CD8-PDLI1 signatures to determine
whether they possess any translational value. These signatures can potentially reflect the actual
impact of tumor cells’ PDLI signaling on T cells, which is a more direct measurement of PDL ]
signaling effectiveness and could reveal stronger biological signals compared with testing tumor
PDL]I expression alone.

First, we tested the association between bulk tumor PDL I expression and patient overall survival
for the eight cancer types of interest in the TCGA patients (Sup. Fig. 8). Somewhat
counterintuitively, we observed that higher PDLI expression tends to predict better survival in
these patients (Pval=0.016, all patients combined). One might expect higher PDLI expression
leads to worse survival as it is known to suppress anti-tumor immune functions. However,
inflammatory T-cell responses could incite tumor metastasis (59), thus PDL1 can alleviate the
risk for metastasis through the inhibition of inflammation. While the underlying biological
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mechanisms of this effect are not within the scope of this work, we assessed whether the
CDB8-PDLI signatures in CD8" T cells better capture this phenomenon.

We performed Kaplan-Meier analyses for the CD8-PDLI signatures in CD8" T cells in all cancer
types combined (Fig. 6a), and also for PDLI expression in the tumor samples as control (Fig.
6b). Here, we also subset the patients into patients with high and low CD8" T cell infiltrations,
based on the CD8" T cell proportions from BayesPrism. Inspired by our prior observations (60,
61), we posit that the correlation between CD8-PDL1/PDL1 and survival should be stronger
when the tumors have more infiltrating CD8" T cells (otherwise, PDLI signaling is irrelevant as
there are few T cells to inhibit). In other words, the patient subsets of high vs. low CD8" T cell
infiltration serve as another useful control. For all cancer types combined, we found that high
CD8-PDLI1 signature expression indeed predicts better survival in the CD8" T cell-high patients
(Pval=0.004, OR=0.714, 95% CI=0.564-0.902), whereas there is no significant difference for the
CD8" T cell-low patients (Pval=0.34, OR=0.911, 95% CI=0.750-1.11) (Fig. 6a). On the other
hand, the expression level of PDL1 in tumor cells is less prognostic in both patient subsets (CD8"
T cell-high: Pval=0.26, OR=0.862, 95% CI=0.667-1.11; CD8"T cell-low: Pval=0.16, OR=0.866,
95% CI1=0.710-1.05) (Fig. 6b). We next limited our analyses to breast cancer only, and again
confirmed that the CD8-PDL1 signature is a more robust biomarker than tumor PDL] expression
for depicting the effect of PDL1 signaling on patient survival (Fig. 6¢: CD8-PDLI1 signature,
CD8+ T cell-high: Pval=0.0002, OR=0.337, 95% CI=0.190-0.597, CD8+ T cell-low: Pval=0.08,
OR=0.627, 95% CI=0.371-1.06; Fig. 6d: tumor PDLI expression, CD8+ T cell-high: Pval=0.46,
OR=1.35, 95% CI=0.616-2.94, CD8+ T cell-low: Pval=0.06, OR=0.593, 95% CI=0.347-1.01).
We performed multivariate CoxPH analyses to adjust for the effect of confounding clinical
covariates. In the pan-cancer cohort, the CD8-PDL1 signature is still significantly predictive of
survival in the high CD8" T cell patients after adjusting for the covariate of different cancer types
(Fig. 6e, Pval = 0.041, Hazard Ratio=1.28, 95% CI=1.01-1.63). In breast cancer, the CD8-PDL1
signature is also still significantly prognostic in the high CD8" T cell patients after adjusting for
cancer stage (Fig. 6f, Pval <0.0001, Hazard Ratio=2.93, 95% CI=1.6-5.5). The predictiveness
(reflected by Hazard Ratios) of CD8-PDLI signatures diminished in the low CD8" T cell
patients, for either all patients combined (Pval=0.15, Hazard Ratio=1.15, 95% CI=0.95-1.41) or
in breast cancer only (Pval=0.06, Hazard Ratio=1.7, 95% CI=0.99-2.9).

Next, we also investigated patients who were treated with anti-PD1/PDLI1 therapies. We studied
two anti-PD1/PDL1-treated cohorts, Sade-Feldman et al (62), which consists of 32 scRNA-seq
datasets generated from peripheral blood of melanoma patients on anti-PD1 or anti-CTLA4+PD1
treatment, and Zhang et al/ (63), which consists of 11 scRNA-seq datasets generated from various
tissue biopsies of breast cancer patients on anti-PDL1 treatment. Both cohorts contained
responders and non-responders (as defined in the original works), and the biopsies were collected
before and after treatment for scRNA-seq. We performed cell typing for the scRNA-seq data. For
the CD8" T cells in particular, we further classified them into exhausted, effector, effector
memory, central memory, and naive T cells, according to marker genes from Sun et al (64) in
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order to conduct more fine-grained analyses. We observed that exhausted T cells, effector
memory T cells, and effector T cells have higher overall expression levels of the CD8-PDLI
signature, with exhausted T cells having the highest expression (Fig. 6g). This is expected as the
CDS8-PDL1 signature measures the immuno-supppressive effect of PDL1 signaling in T cells. In
responders, we observed that the CD8-PDL1 signature significantly decreased after treatment in
exhausted (Pval=0.005, testing both cohort together) and effector memory T cells (Pval=0.048),
while these changes were not observed in non-responders (Pval=0.23 and 0.61 respectively).
This contrast indicates that the CD8-PDL1 signature is a candidate biomarker for measuring the
effectiveness of immunotherapies that block the PD1/PDL1 axis. Moreover, the melanoma
scRNA-seq datasets were generated from patient peripheral blood, which suggests that this
biomarker could be measured non-invasively. On the other hand, in the central memory T cells,
effector T cells, and naive T cells, the decreases in the CD8-PDL1 signature after treatment are
more modest in responders (Fig. 6g). Therefore, our analyses indicate that anti-PD1/PDL1
therapies mainly impact exhausted T cells and effector memory T cells.

Finally, we studied the breast cancer scRNA-seq data from Bassez et a/ (57). In this study, 29
breast cancer patients were treated with pembrolizumab ~9 days before surgical resection of
tumors. Paired pre- vs. on-treatment biopsies were subjected to sSCRNA-seq. In this cohort, we
were only able to reliably segregate CD8" T cells into exhausted T cells and other T cells. Again,
the exhausted CD8" T cells showed the highest expression of the CD8-PDLI1 signature (Sup.
Fig. 9). And we observed a decrease, though non-significant, in the CD8-PDL1 signature after
treatment. Taken together, the CD8-PDL1 signatures that we defined from SRT data using spacia
possess both prognostic and predictive values, which demonstrates the power of these new
technologies for yielding novel insights of translational value.

DISCUSSION

We developed spacia to fulfill the unmet gap in detection of cell-to-cell and gene-to-gene
interactions from SRT data. scRNA-seq-based mapping of CCC loses single-cell resolution and
suffers from high false positive rates, while SRTs provide rich information on gene expression
and cell locations to overcome the intrinsic limitations of scRNA-seq. Importantly, we showed
that the quality of modern SRT technologies already enables the detection of CCCs with
appropriate statistical models. With the increase in throughput and data quality of SRTs, our
concept of integrating the transcriptomics and spatial modalities will inspire more and more
sophisticated analyses to address exciting scientific questions using SRT data. Take the research
in pseudotime and cellular trajectory inference for example. As reviewed and benchmarked by
Saelens et al (65), current scCRNA-seq-based pseudotime inference tools have very unsatisfactory
performances. However, cells in solid tissues grow to form spatially continuous patterns over
time. Consideration of the adjacencies of two cells both in their physical and transcriptomic
space will likely result in a more informative construction of pseudotime/cellular trajectories.

Whereas most existing CCC inference tools work by examining data against a known database,
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spacia focuses on the more general concept of CCC through accurate in situ modeling. Spacia
achieves this through organically integrating the rich spatial and transcriptional information,
which allows it to minimize the number of assumptions and arbitrary parameters. While this
approach does not rely on existing knowledge, it offers an unbiased, independent interrogation
based on first principles. Furthermore, it enables discoveries that complete known CCC
pathways and uncover new pathways in a cellular context specific manner. It is important to note
that the target genes identified by spacia, through modeling of transcriptional regulation as a
function of sending gene expression, could be either direct targets that are within the core of the
interacting pathways or represent more downstream and secondary effects. This could be an
advantage or disadvantage depending on one’s vantage point. At this time, cross-referencing to
existing databases could be helpful for the interpretation of the identified CCCs and
distinguishing between “direct target” vs. “indirect target”, and allows for further interrogation of
the regulatory relationships between genes in existing pathways. Therefore, we propose a
paradigm of unbiased search of CCCs followed by filtering through prior knowledge in spacia, in
contrast to those of prior works, such as CellPhoneDB, whose performance is limited to prior
knowledge from the very beginning.

As of this writing, we noticed a few very recently published software for CCC detection from
SRT data, such as COMMOT (22) and ncem (23). However, as we pointed out, it is difficult to
execute these software due to technical reasons. Moreover, these software also suffer from other
conceptual challenges or deficiencies. For example, COMMOT is still limited to modeling
ligand-receptor relationships, which are protein-to-protein interactions. Again, SRT data capture
transcriptional changes and the receptor may not necessarily be expressionally regulated by the
ligand. COMMOT is also limited to relying its inference on prior databases such as
CellPhoneDB in the very beginning of the analyses. On the other hand, ncem cannot explicitly
model the strength of regulation from the sender cells/genes to the receiver cells/genes, which is
provided by spacia (Bs), and it appears that ncem still focuses on cell type-level interactions,
rather than inferring single cell-level interactions.

The core of spacia is a fully integrated Bayesian MIL model. Due to the complexity of learning
the multiple-to-one functions, MIL problems are much more difficult than typical machine
learning problems. Spacia’s MIL model allows solving this difficult mathematical problem in a
graceful manner. Whereas existing MIL methods mainly focus on predictive performance
(66—68), our two-tier MIL approach enables concurrent identification of primary instances (the
sender cells responsible for the reaction in the receiver cell) and elucidation of the relationships
between bags and instances (Bs). This technical innovation is important for both the fields of
MIL in general and the specific application of finding CCC in SRT data. Critically, in the era of
data explosion in biomedical research, MIL can offer elegant solutions to disentangle complex
interactions and large, diverse data from various fields. For example, in biochemistry, one might
be interested in how the many conformations of a chemical compound are related to its
bioactivity (69). In real world evidence data, one might want to study how patient risks of


https://sciwheel.com/work/citation?ids=14256723&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13853418&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14569786,14569790,11448310&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=1880470&pre=&suf=&sa=0
https://doi.org/10.1101/2023.09.18.558298
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.18.558298; this version posted November 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

hospitalization can be predicted by the various instances of the patients’ prior medical records.
We envision that our work will propel the wide adoption of MIL in biomedical research, by
providing a success case and also by providing a model that can be further improved upon.

Despite the exciting results presented in our study, mapping CCC is still challenging. Perhaps
one of the biggest challenges is associated with the low signal-to-noise ratios (SNRs) of the SRT
data. The inaccuracy in cell segmentation is a major contributor to this low SNR. Most, if not all,
high-resolution SRT technologies generate the raw expression counts at subcellular or even pixel
levels. To aggregate such data to single cell levels, cell boundaries are usually created from the
matching H&E staining or fluorescence images via segmentation techniques. However, improper
cell segmentation can lead to serious errors. For example, two cells that are close by (potentially
two cells that are interacting) can be segmented as the same cell. In this scenario, two genes that
are interacting with each other from two different cells can be mistaken as a pair of genes that are
transcriptionally linked within the same cell. However, the field has seen continuous
improvement in the cell segmentation procedure and other pre-processing procedures of SRT
data, either in academically generated tools (70—73) or commercially available software. We
expect such caveats to become less pronounced with future iterations of SRT technologies and
the corresponding bioinformatics analysis software.

In summary, we built a general and principled framework for the analysis of CCCs from SRT
data that can be applied to a vast number of biological systems. More broadly, when coupled
with remarkable experimental and analytical advances in single cell and spatial approaches
(74-83), spacia will enable us to understand how complex cell states arise from communications
in the local cellular community and to move towards holistic models and theories of entire
organisms.

METHODS
Simulation data creation

Simulated datasets were generated with the following steps. First, 8,000 cells were generated in a
two-dimensional space of 2,000 x 2,000 units. These cells were classified into three types, with
the receivers forming the core of several blobs, senders lining the perimeters, and non-interacting
cells filling the space between blobs. Senders were divided into two categories: primary senders
and non-primary senders based on their distances to a given receiver (distance cutoff = 50). Next,
we simulated expression data (50 genes) associated with sender and receiver cells. Expression of
each gene of the sender cells was generated with normal distribution (mean = 0, s.d. = 1). The
first 5 or 10 genes (in two simulation settings) were designated as truly interacting genes, in two
different settings, while the remaining genes were designated as non-interacting genes.
Expression for receivers was generated as a weighted sum of gene expression from their primary
senders, with weights (s) generated from uniform distributions. The uniform distribution ranges
from 10 to 20 for the truly interacting genes and 0 to 1 for the other genes. The signs of these
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weights were randomly assigned to be positive or negative to model upregulation and
downregulation of receiving genes by sending genes. Lastly, we added noise to the receiver
genes, with noises sampled from a normal distribution (mean = 0, s.d. = 0.5).

MERSCOPE data pre-processing and annotation

The pan-cancer MERSCOPE datasets consisting of 8 different cancer types were downloaded
from the publically available MERFISH FFPE Human Immuno-oncology Data Set. The R Seurat
package was used to load the “cell by gene.csv” file for each MERSCOPE experiment to create
a Seurat object for downstream processing and analysis. To ensure we only retain high-quality
cells, each experiment was subset so that cells with more than 100 total counts were kept. After
the initial clustering and annotation, we subset the T cell population and the epithelial population
and performed a second round of the standard workflow for each population to identify the
fine-grained clusters for the T cell subpopulations and to segregate epithelial cells into tumor
epithelial cells and normal epithelial cells. The final version of the annotated clusters in the
UMAP space and the average gene expression of cell type markers in each cluster can be found
in Fig. 1, Sup. Fig. 1, and Sup. File 2.

Benchmarking with existing CCC software

CellPhoneDB: Normalized counts and cell type labels were converted into CellPhoneDB
compatible TXT files. A microenvironments file was generated to limit the predictions to
stromal-tumor interactions only. CellphoneDB 3.1.0 was run using method statistical analysis,
options --counts-data hgnc_symbol, --pvalue 1, and --threads 24 options. Since CellPhoneDB
does not designate sending and receiving cells, they were defined by which of the interacting
genes was labeled as receptor. For each interaction, the cell type with the gene labeled as
receptor was designated as the receiving cell. Interactions where both or neither genes were
labeled as receptor were discarded due to ambiguity of the direction of interaction. For
consistency with spacia results, results with smooth muscle and normal epithelial cells as sending
cells were removed, and only interactions with tumor cells as the receiving cell were kept.
Interactions with Pval > 0.05 were removed.

CellChat: CellChat 1.5.0 was used with the default CellChatDB.human ligand-receptor
interaction database. Functions identifyOverExpressedGenes and
identifyOverExpressediInteractions were run with default options; computeCommunProb was run
with type = "truncatedMean" and trim = 0.05; filterCommunication used min.cells = 10, and
computeCommunProbPathway, aggregateNet, and subsetCommunication were all run with
default options. For the outputs, “source” was considered equivalent to spacia’s sending cell,
“target” equal to receiving cell, “ligand” as sending gene, and “receptor” as receiving gene. For
consistency, results with smooth muscle and normal epithelial cells as sending cells were
removed, and only interactions with tumor cells as the receiving cell were kept. Interactions with
Pval > 0.05 were removed.
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Validation with PDMR data

Bulk prostate cancer PDX RNA-sequencing data were downloaded from The NCI
Patient-Derived Models Repository (PDMR), NCI-Frederick, Frederick National Laboratory for
Cancer Research, Frederick, MD (pdmr.cancer.gov). Disambiguate (25) was used to segregate
the PDX RNA-seq data into the human and mouse components. CIBERSORTx was used to
further deconvolute the mouse stromal/immune component into cell type specific expression
values. The CIBERSORTx web portal (cibersortx.stanford.edu) was used and the signature
matrix for CIBERSORTx was created on the web portal using the expression matrix and cell
typing results from the prostate cancer MERSCOPE data. To comply with the computational
limits of the web server, for cell types with large numbers of cells, 5,000 cells were randomly
sampled to create the reference sample file. CIBERSORTx was then run in high resolution mode
for the PDMR data using default options.

Validation with CytoSig

The CytoSig database was downloaded from cytosig.ccr.cancer.gov. The database was filtered to
only include those from prostate cancer cell lines (LNCaP, PC-3M, or MDA-PCa-2b) and
involving the following cytokines: FGF2, HGF, ILIB, IL6, and TGFBI. For cross-referencing
spacia results with CytoSig, we assumed the sending cells were each of the sender cell types we
tested for spacia (fibroblasts, B cells, etc) but the receiving cells are always the prostate cancer
cells. This is done due to the nature of the experiments conducted in CyotSig, where receiving
cells were treated with soluble cytokine, without sending cells present in the cell culture.

EMT process calculation in the prostate MERSCOPE dataset

We define the “EMT activation potential” scores as the sum of the strengths of EMT-induction
signals from nearby sender cells for each tumor cell. This is calculated with the following steps.
The B values from the sender-to-tumor cells spacia results are filtered to keep those with sending
genes included in a list of secreted factors that have been reported to impact EMT (HGF,
WNT3A4, WNT5A, FGF2, IL6, CXCLS, FGF1, TGFBI, and TGFB?2), and receiving genes being
EMT upstream regulators that have some prior evidence of being impacted by these factors
(JAKI, AKT2, SMO, CTNNBI1, SMAD2, and NFKB?2) (36—44). For each sender cell and each
sending gene, a set of scores are calculated by multiplying the B of each sending gene-receiving
gene pair with the corresponding expression of the sending gene. These scores, one for each
receiving gene, are averaged. The averaged scores for all sending genes are further averaged to
arrive at a composite score to be assigned as the EMT activation potential of this sender cell.
Finally, an EMT activation potential score for each tumor cell is computed by the weighted sum
of the EMT activation potentials of the sender cells in each tumor cell bag with the weights being
the primary instance probabilities of the senders.

The “EMT score” of a tumor cell is defined to be the mean expression of the EMT marker genes
from Gorgola et al (84): FNI, TWISTI, SNAIl, SNAI2, ZEBI, TGFBI, TGFB2, and CTNNBI,
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which represents the activity level of EMT in that tumor cell. We performed additional analyses
to validate that this EMT score is valid in our scRNA-seq datasets (Sup. File 2).

Lineage score calculation in the prostate cancer MERSCOPE dataset

We collected gene markers from Deng et al (48) to calculate the lineage plasticity scores for the
basal, neuro-endocrine and stem-like lineages. We were not able to investigate the luminal
lineage, as the most important canonical markers such as 4R and KLK3 were missing. For the
basal lineage, TP63, CAV1, and LAMB3 were used. For the neuro-endocrine lineage, EZH?2 and
NCAM1 were used. For the stem-like lineage, KIT, LGRS, and LGR6 were used.

Prostate patients for scRNA-seq

The study was performed following protocols approved by the Institutional Review Board of the
University of Texas Southwestern Medical Center. There are two studies from which we
obtained patient biopsies. STU 072010-098: Tissue Procurement and Outcome Collection for
Radiotherapy Treated Patients & Healthy Participants, and STU062014-027: Phase I Clinical
Trial of Stereotactic Ablative Radiotherapy (SABR) of Pelvis and Prostate Targets for Patients
with High Risk Prostate Cancer. We obtained a total of 21 androgen deprivation (ADT)-treated
patients, 4 untreated prostate cancer patients, and 4 healthy donors. The scRNA-seq experiments
were done in Dr. Douglas Strand’s lab following the protocol in Henry et al (85). Briefly, we
performed a 1 hour digestion with 5Smg/ml collagenase type I, 10mM ROCK inhibitor, and 1mg
DNase. 3° GEX barcoding was performed on a 10X controller and sequencing was performed on
an Illumina NextSeq 500 sequencer. These 29 scRNA-seq datasets were processed through QC,
integration, and cluster annotation prior to the analysis. We utilized the R DoubletFinder package
and followed the recommended workflow for filtering the doublets or multiplets in the data. For
the joint analysis of multiple patient sScRNA-seq datasets, we followed the Seurat integration
vignette. Each dataset was processed through the ScaleData and RunPCA functions. The anchors
for integration were found with the “rpca” mode of the FindIntegrationAnchors function.
Utilizing these anchors, we proceeded with the IntegrateData function for the integration of the
29 scRNA datasets. Initially, the clusters were automatically annotated with the R SingleR
package and the annotated dataset from Song et al (86).

(1) The patients were dichotomized into EMT+ and EMT- groups with the following steps. First,
the EMT level of each tumor cell is defined as above in the prostate cancer MERSCOPE dataset.
The global median EMT level is calculated from all the tumor cells. Then, for each patient, the
percentage of tumor cells with higher EMT levels than the global median cutoff is calculated.
The patients were divided into a EMT+ group and a EMT- group based on the median of these
percentages. (2) The calculation of the EMT activation potential in the sScRNA-seq data follows
the same method as in the MERSCOPE dataset, except for that we calculated the activation
potential for each sender cell, and did not aggregate to receiver cells through spatial averaging
(as these are not SRT data). (3) Finally, the lineage scores for basal, neuro-endocrine, and
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stem-like were calculated as in the MERSCOPE dataset, utilizing the complete marker set from
Deng et al (48).

Breast cancer patients for GeoMx

The study was performed following protocols approved by the Institutional Review Board of the
University of Texas Southwestern Medical Center. The IRB Protocol Number is STU2018-0015:
Pre-surgical trial of letrozole in post-menopausal patients with operable hormone-sensitive breast
cancer. Formalin-fixed, paraftin-embedded (FFPE) tumor tissues were obtained from diagnostic
core needle biopsies from postmenopausal patients with stage I to stage III operable ER+/HER2-
breast cancer enrolled in a clinical trial (UT Southwestern SCCC-11118).

To perform the GeoMx® assays, 5 um FFPE sections were mounted on charged slides, baked,
and prepared on the Leica Biosystem, following the manufacturer's automated slide preparation
user manual. After hybridization with RNA probes that are conjugated to barcoded
oligonucleotide tags with an ultraviolet (UV) photocleavable linker and staining with fluorescent
morphology markers consisting of pan-cytokeratin (epithelial and tumoral regions), CD45
(immune cells), SYTO13 (nuclear) and Ki67 (proliferation marker), the slides were loaded onto a
GeoMx® digital spatial profiler (DSP, NanoString Technologies) and scanned. After labeling,
the tissues were imaged, and we selected specific regions of interest (ROIs) sized 222 x 354.6
um after consultation with a pathologist. Each ROI was further segmented into Areas of
[llumination (AOI) based on morphological features. Subsequently, the selected areas were
exposed to UV light, and the barcoded oligos were released, aspirated, and dispensed into a
collection plate for library construction for next-generation sequencing (NGS).

GeoMx NGS libraries were prepared according to the manufacturer’s instructions. Briefly, after
the collection of the probes was completed, aspirates in the collection plate were dried at 65°C
for 1 hour in a thermal cycler with an open lid and resuspended in 10 pL of nuclease-free water.
4 uL of rehydrated aspirates were mixed with 2 uLL of 5xPCR Master Mix and 4 uL. of SeqCode
primers. PCR amplification was then performed with 18 cycles. The indexed libraries were
pooled equally and purified twice with 1.2x AMPure XP beads (Beckman Coulter). The final
libraries were evaluated and quantified using Agilent's High Sensitivity DNA Kit and
Invitrogen's Qubit dsSDNA HS assay, respectively. Total sequencing reads per DSP collection
plate were calculated using the NanoString DSP Worksheet. The libraries were sequenced using
38 bp paired-end sequencing (PE 38) on an Illumina NovaSeq 6000 system with a 100-cycle S1
kit (v1.5). FASTQ files were processed into digital count conversion digital files using
Nanostring’s GeoMx NGS Pipeline software. Quality control, data filtering and normalization
(Q3) were performed using the GeoMx DSP Data Analysis suite.

BayesPrism bulk expression data deconvolution

The BayesPrism R package was installed according to its authors’ instructions at
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github.com/Danko-Lab/BayesPrism. The histology-matching MERSCOPE dataset was used as
the single cell reference in order to maximize consistency with spacia’s results. BayesPrism was
run using the run.prism function with default options. The cell type assignments we produced for
the MERSCOPE datasets were used as the “cell.type.labels”. Cell type fractions were extracted
using the get.fraction function. Predicted cell type-specific expression was extracted by running
the get.exp function on each cell type.

The Cancer Genome Atlas Program (TCGA) RNA-seq data analysis

TCGA data of eight cancer types that are of the same histologies as the MERSCOPE data were
downloaded from Broad GDAC Firehose. These include: BRCA, COAD, LIHC, LUSC, OV,
PRAD, SKCM, and UCEC. We only considered primary tumor samples of the TCGA cohort
since all MERSCOPE datasets are from primary tumor samples. As we expected, inclusion of the
TCGA metastatic samples (data not shown) in all downstream analyses yields similar results but
with less statistical strength. BayesPrism was then run with default options, using the
corresponding MERSCOPE data as the reference.

To define the CD8-PDLI1 signature for each cancer type, we extracted, from spacia’s results, all
receiving genes with » <0, b Pval <0.01, and g Pval <0.1. The genes of each cancer type were
further filtered to keep those that have appeared in the gene list from breast cancer and at least
two other cancer types. This was done due to our promising analysis results in breast cancer in
Fig. Sa-e. The genes that passed all filters were designated as the CD8-PDL1 signature for each
cancer type. The R Fast Gene Set Enrichment Analysis (fgsea) package was used to perform
GSEA using the CD8-PDL1 signatures for the TCGA BayesPrism-dissected expression data.
GSEA was run using the fgsea function with options eps=0, minsize=10, and scoreType="“pos”.
The results were plotted using the plotEnrichmentData function from the fgsea package and the
R ggplot2 package.

TCGA patient survival analysis

The same TCGA datasets and CD8-PDL1 signature genes as above were used. For each patient
sample in the TCGA datasets, the CD8-PDL1 signature expression level was calculated as the
dot product of the normalized and log-transformed gene expression values of the
BayesPrism-dissected CD8" T cells and the f values of the genes in the corresponding
CD8-PDLI1 signature gene set. Survival analyses were performed using the survfit function from
the R survival package with the CD8-PDL1 signature or tumor PDLI as the covariate. The
Kaplan-Meier curves were plotted using the ggsurvplot function from the R survminer package.
For the forest plots, the coxph function from the R survival package was used to fit Cox
proportional hazards regression models with CD8-PDL1 signature and cancer type or stage as
covariates. The forest plots were then generated using the ggforest function from the survminer
package.

Anti-PD1/PDL1 scRNA-seq data analyses


https://doi.org/10.1101/2023.09.18.558298
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.18.558298; this version posted November 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The Zhang et al (63) study originally identified naive (CD8Tn), effector (CD8Teff), and effector
memory (CD8Tem) CD8" T cell subsets in the patient peripheral blood, while the Sade-Feldman
et al (62) study originally classified CD8Tem, central memory (CD8Tcm), exhausted (CD8Tex)
subtypes. To homogenize classification and nomenclature, we loaded each dataset as a Seurat
object to recluster and tried to identify all CD8" T subtypes in both studies. Apart from the 20
dimensions used in FindNeighbors and FindClusters, all default parameters were used. Utilizing
the gene marker sets from Sun ef al (64), we annotated 28 clusters in the melanoma dataset and
13 clusters in the breast cancer dataset, compared to 4 and 6 clusters originally. All CD8" T
subtypes were identified, except for CD8Tcm in the Zhang et al dataset. The CD8-PDL1
signature score was calculated as in the TCGA data analysis, except that we have the actual
CDB8" T cell gene expression in these sScRNA-seq data, as opposed to BayesPrism-dissected
expression for the TCGA samples.

Statistics & reproducibility

Computations were performed in the R (3.6.3 and 4.1.3) and Python (3.7 and 3.8) programming
languages. All statistical tests were two-sided unless otherwise described. Spacia was run in the
PCA mode (see our documentation) for all our analyses in this work. Unless otherwise stated, the
spacia results were filtered to keep those interactions satisfying b <0, b Pval<Ix10E-30, and S
Pval<0.01. For pre-processing of all SRT and scRNA-seq data, we loaded the original data into
Seurat objects and analyzed them through a standard workflow, using NormalizeData,
FindVariableFeatures, ScaleData, RunPCA, FindNeighbors, FindClusters, and RunUMAP
functions, before other custom operations. We executed the pipeline with default parameters
except for dims = 1:20 for FindNeighbors and RunUMAP in the prostate cancer sScRNA-seq
datasets to capture sufficient variability in the principal components. GOrilla (34, 35) pathway
enrichment analyses were performed by inputting the genes on the MERSCOPE gene panel into
GOrilla, where the genes were filtered to keep only those that satisfy b <0 and sorted by f values
for each sending cell type (tumor cells are the receiving cells). The Kernel Density Estimation
for the visualization of spatial EMT patterns was calculated from the gaussian kde function from
the SciPy package with bandwidth less than the silverman factor, to demonstrate robustness from
the spatial noise.

Data and code availability statement

The MERSCOPE datasets were downloaded from vizgen.com/data-release-program. The breast
cancer Visium dataset was downloaded from www.10xgenomics.com/resources/datasets. The
CyCIF dataset was downloaded from www.synapse.org/#!Synapse:syn19003074. The PDX
RNA-seq datasets were downloaded from pdmdb.cancer.gov/web/apex/f?p=101:41:0:. The
CytoSig data were downloaded from cytosig.ccr.cancer.gov. The TCGA data were downloaded
from gdac.broadinstitute.org. The scRNA-Seq datasets by Zhang et al (63) and Sade-Feldman et
al (62) were accessed via Gene Expression Omnibus with accession numbers GSE169246 and
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GSE120575, respectively. The scRNA-Seq datasets by Bassez et al/(57) were accessed from
biokey.lambrechtslab.org.

The prostate cancer sScCRNA-seq data that we generated were archived at
doi.org/10.5281/zenodo.8270765. The breast cancer GeoMx data that we generated were
archived at github.com/yunguan-wang/Spacia/data. The spacia software is available at the
Database for Actionable Immunology (18, 82, 87) (dbai.biohpc.swmed.edu, Tools page).
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FIGURE AND TABLE LEGENDS

Fig. 1 Rationale for spacia. (a) A heatmap depicting the cell typing results of the lung cancer
MERSCOPE dataset. Tumor subtype #1 accounts for most of the tumor cells. (b) The
distribution of the different types of cells within their spatial context. (¢c) A zoomed-in
view of one region of the lung cancer MERSCOPE dataset. Potentially interacting
tumor-fibroblast cell pairs, defined based on spatial distances, are connected by green
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lines. (d,e) The expression levels of FNI (d) and SNAI2 (e) in tumor cells as a function of
TGFB expression in adjacent or distant fibroblasts. Adjacent fibroblasts are the connected
fibroblasts in panel (c), and vice versa. (f) The breast cancer Visium dataset. Green color
denotes the stromal/immune cell spots and the orange color denotes the tumor cell spots.
Potentially interacting tumor-stromal/immune spots, defined based on spatial distances, are
connected by red arrows. (g) Tumor CD274 expression as a function of stromal PDCD1
expression in adjacent Visium sequencing spots or distant spots. Adjacent spots were
defined as in (f). (h) Visualization of the lymph node CyCIF dataset. (i) B cell Ki67 and
CD20 protein expression as a function of the number of adjacent or distant T, cells.

Fig. 2 The spacia model. (a) Cartoons explaining the concept of “primary instances”, namely the
sending cells that are truly interacting with the receiver cells. The purple senders refer to
senders that interact with receivers through cell-to-cell contact. The green senders refer to
senders that interact with receivers through secreted ligands. (b) Diagram showing the key
elements of the model structure of spacia. (c) Inference results of spacia on a simulation
dataset. Blue color refers to sender cells, red color refers to receiver cells and green arrows
refer to CCC. (d) ROC curves measuring the accuracy of spacia finding the correct
primary instances in the simulation data, with increasing numbers of total MCMC chains.
(e) The distribution of the b variables across MCMC iterations after stabilization, in two
MCMC chains. (f) The distribution of the f variables across MCMC iterations after
stabilization, for genes in senders that are (top) or are not (bottom) truly interacting with
receiving genes. (g) Point estimates of the f variables. Left: 5 truly interacting genes in the
simulation data; right: 10 truly interacting genes.

Fig. 3 Validating spacia in real data. (a) Spacia inferred CCCs from select immune and stromal
cells to tumor cells in the prostate cancer MERSCOPE dataset. The spacia results were
filtered to only visualize those that satisfy b <0, b Pval<1x10E-30, § Pval<0.001, and top
1% of z-scored S across all results. (b) Spatial representation of the spacia results. Cells are
color labeled by cell types, and CCCs are indicated in black. (c) Overlap between the
predicted CCCs by CellphoneDB on the same MERSCOPE dataset for three example
sending cell types. The numbers indicate the proportions of total CCCs found in each
overlap. Some example CCCs that are inferred to exist in all three cell types are listed. (d)
Comparison of the degree of overlap in inferred CCCs between different sending cell
types, by spacia, CellChat, CellphoneDB, and COMMOT. The Y axis refers to the
proportions of interactions shared in # cell types vs. all predicted interactions. () An
example scatterplot showing the correlations between the expression of sending and
receiving genes in their respective cell types in the PDX RNA-seq data. The dotted lines
indicate 95% CI. (f) Spacia £ values are more likely to be positive for sending genes and
receiving genes that are positively correlated in the PDX data, and vice versa. 95% Cl is
indicated with the dotted lines. (g) Concordance between spacia’s inferred
fibroblast-to-cancer cell interactions (only considering sign of £) and the direction of
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expressional changes of prostate cancer cell lines after cytokine treatment, recorded by the
CytoSig database. (h) Difference in the spatial range of interactions (magnitude of b)
between spacia-inferred CCCs that are secretion-based or contact-based. (i) Probability of
interaction as a function of distance from the sending cells to the receiving cell, for
secretion-based CCCs (left) and contact-based CCCs (right).

Fig. 4 Applying spacia to reveal EMT and lineage plasticity induction signals from the prostate
cancer tumor microenvironment. (a) Sankey diagram describing GO term enrichment in
the sending genes, of each sender cell type, that are inferred by spacia to be impacting well
known EMT marker genes in the tumor receiver cells. The width of the flow is scaled with
the P values, and the parent term is connected with the child term if both terms were
identified between the same sender cell-receiving gene pair. (b) The rankings of fs for
known cytokine ligands that could induce EMT, among all the sending genes input into
spacia, for each cell type. A smaller rank refers to a stronger interaction strength (larger ).
(c) The top sending-receiving gene pairs inferred by spacia, for fibroblasts, endothelial
cells and B cells as sending cell types. (d) The kernel density estimation of the EMT
activation potentials in fibroblasts, endothelial cells and B cells. (e) The kernel density
estimation of the EMT levels in prostate cancer cells. (f) The kernel density estimations of
the stem-like, neuro-endocrine, and basal lineage plasticity scores in the prostate cancer
cells. (g) UMAP plot showing the cell types of single cells from our prostate cancer
patients. (h) The FGF expression of different sending cell types in the EMT+ and EMT-
patients. (i) The EMT activation potentials of different sending cell types in the EMT+ and
EMT- patients.

Fig. 5 Spacia reveals PDLI downstream target genes. (a) Sending and receiving cell type pairs
that were analyzed by spacia for the breast cancer MERSCOPE dataset. (b) Left: One
example ROI of the GeoMX data; right: the region of the H&E slide corresponding to the
same ROI. (c) Abundances of each type of immune cells in the GeoMx data, as predicted
by BayesPrism. Cell types are ordered by their average abundance across the 40 ROIs. (d)
Odds ratios showing the overlap between spacia-inferred PDLI downstream target genes
and genes that are differentially expressed in each type of immune cells in the GeoMx
data, comparing ROIs that are PDL1+ and PDL1- in the tumor cells. () Expression of
several representative receiving genes that are in the overlap of (d) for B cells and CD8" T
cells, as a function of tumor cell PDLI expression, in the GeoMx data. (f) Gene set
enrichment analysis (GSEA) in the TCGA breast and ovarian cancer datasets to evaluate if
the corresponding CD8-PDLI signature genes are indeed among the top genes that are
differentially expressed between PDL1+ and PDL1- patients. (g) Expression levels of the
CD8-PDLI signatures in CD8" T cells in the TCGA samples, dichotomized by tumor cell
PDL]I expression.

Fig. 6 The PDL1-CDS signature is prognostic and predictive. (a) Prognostic value of the
PDL1-CD8 signature for overall survival of TCGA patients of all eight cancer types. (b)
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Prognostic value of tumor PDL1 expression for overall survival of TCGA patients of all
eight cancer types. (c) Prognostic value of the PDL1-CDS signature for overall survival of
TCGA breast cancer patients. (d) Prognostic value of tumor PDL1 expression for overall
survival of TCGA breast cancer patients. (e) Forest plot of hazard ratios from a Cox
proportional hazard (CoxPH) model considering cancer types as confounding variables for
patients of all eight cancer types. (f) Forest plot of hazard ratios from a CoxPH model
considering cancer stages as confounding variables for breast cancer patients. (g) The
CD8-PDLI1 signature expression levels of CD8" T cells in responders/non-responders and
in pre-/post-treatment samples from the Zhang et al study and Sade—Feldman et al study.

Sup. Fig. 1 UMAP plot showing the distribution of the different types of cells in their gene
expression space.

Sup. Fig. 2 Zoomed-in views of four more regions of the lung cancer MERSCOPE dataset.
Potentially interacting tumor-fibroblast cell pairs, defined based on spatial distances, are
connected by green lines.

Sup. Fig. 3 Traceplots and autocorrelation plots prove convergence and stability of the MCMC
estimation process in spacia. Only MCMC iterations after the burn-in period are shown.

Sup. Fig. 4 Visualizing the CCCs predicted by spacia, CellPhoneDB, CellChat, and COMMOT
in their spatial context and at the single cell level. To reduce cluttering, for each
sender-receiver cell type pair, 10 connections were selected at random and visualized for

CellPhoneDB’s results, and 500 connections were selected at random and visualized for
CellChat’s results.

Sup. Fig. 5 EMT activation potentials of each sending cell type by patient groups, dichotomized
according to their lineage plasticity levels, for each lineage, in the prostate cancer cells.

Sup. Fig. 6 Overlap of PDL]I regulated genes with the MsigDB Hallmark pathways. Genes in
receiver cells that were significantly regulated by PDLI from sender cells were intersected
with the genes of each MsigDB Hallmark pathway. The ratio values represent the
proportions of all genes of each pathway that are intersecting.

Sup. Fig. 7 The expression of PDGFRA in B cells before and after anti-PD1 treatment, in the
Bassez cohort.

Sup. Fig. 8 Higher tumor PDL1 expression is associated with better overall survival in TCGA
patients of all eight cancer types, separately or combined. Patients were dichotomized by
bulk tumor PDLI expression

Sup. Fig. 9 Expression level of the CD8-PDLI1 signature in CD8" T cells of the Bassez cohort, in
pre-/post-treatment samples and exhausted/other T cell subsets.
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Sup. Table 1 GO ontology analyses to identify the top enriched pathways in the sending genes of
each sending cell type with the most significant interactions with JAK/ as receiver gene in the
tumor cells.

Sup. Table 2 Correlations between EMT activation potentials of fibroblasts, endothelial cells
and B cells and the EMT levels and lineage plasticity levels of the prostate cancer cells.

Sup. Table 3 CD8-PDL1 signature genes in all eight cancer types.

Sup. File 1 Mathematical and implementation details of spacia.

Sup. File 2 Additional bioinformatics analyses associated with this study.
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