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Abstract 

  P2X receptors are extracellular ATP-gated ion channels that form homo- or 

heterotrimers and consist of seven subtypes. They are expressed in various tissues, 

including neuronal and nonneuronal cells, and play critical roles in physiological 

processes such as neurotransmission, inflammation, pain, and cancer. As a result, P2X 

receptors have attracted considerable interest as drug targets, and various competitive 

inhibitors have been developed. However, although several P2X receptor structures from 

different subtypes have been reported, the limited structural information of P2X receptors 

in complex with competitive antagonists hampers the understanding of orthosteric 

inhibition, hindering the further design and optimization of those antagonists for drug 

discovery. 

  Here, we determined the cryo-EM structures of the mammalian P2X7 receptor in 

complex with two classical competitive antagonists of pyridoxal-5'-phosphate derivatives, 

PPNDS and PPADS, at 3.3 and 3.6 Å resolution, respectively, and performed structure-

based mutational analysis by patch-clamp recording as well as MD simulations. Our 

structures revealed the orthosteric site for PPADS/PPNDS, and structural comparison 

with the previously reported apo- and ATP-bound structures showed how PPADS/PPNDS 

binding inhibits the conformational changes associated with channel activation. In 

addition, structure-based mutational analysis identified key residues involved in the 

PPNDS sensitivity of P2X1 and P2X3, which are known to have higher affinity for 

PPADS/PPNDS than other P2X subtypes. Overall, our work provides structural insights 

into the orthosteric inhibition and subtype specificity of P2X receptors by the classical 

P2X antagonists, pyridoxal-5'-phosphate derivatives, thereby facilitating the rational 

design of novel competitive antagonists for P2X receptors. 
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Introduction 

ATP not only serves as a cellular energy currency but also plays a key role in signal 

transmission for cellular stimulation between cell surface receptors1. P2X receptors are 

the family of cation channels activated by extracellular ATP and are widely expressed in 

the mammalian nervous, respiratory, reproductive, and immune systems2 3 4 5. There are 

seven subtypes (P2X1-P2X7) in the family, each of which plays distinct roles in 

physiological and pathophysiological functions via homo- or heterotrimerization6, 7. In 

recent years, there has been growing interest in the development of drugs targeting the 

P2X family due to its involvement in various physiological and pathological conditions, 

and various antagonists have been developed8. Some have progressed to clinical trials9, 

and Gefapixant, a P2X3 receptor antagonist for chronic cough, was already on the market 

after the clinical study10. 

  ATP analogs are the most competitive inhibitors of P2X receptors but are typically 

unsuitable due to a lack of high specificity in vivo. Therefore, a non-ATP-analog P2X 

inhibitor would be a more promising target to develop and optimize, and pyridoxal 

phosphate-6-azophenyl-2′,5′-disulfonic acid (PPADS) and its analog pyridoxal-5'-

phosphate-6-(2'-naphthylazo-6'-nitro-4',8'-disulfonate) (PPNDS) are such classical non-

ATP-analog P2X inhibitors, namely, pyridoxal phosphate derivatives11, 12, 13, 14. PPNDS 

and PPADS belong to the class of competitive antagonists that selectively inhibit P2X 

receptors15, and P2X receptors are known to exhibit variable sensitivity to 

PPADS/PPNDS depending on the species and the specific subtype14, 16, 17, 18, 19, 20. It is 

noteworthy that P2X1 and P2X3 receptors show relatively high sensitivity to PPADS, but 

P2X2 and P2X7 receptors show only moderate sensitivity, and P2X4 receptors are 

insensitive to PPADS21. 
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Several attempts have been made to optimize pyridoxal phosphate derivatives as P2X 

antagonists22, 23, 24, 25. For example, the introduction of bulky aromatic groups at the 

carbon linker in PPADS was attempted to improve in the subtype specificity profiles, 

potentially opening up new avenues for targeted drug development and therapeutic 

intervention23. Despite the recent significant increase in structural information on P2X 

receptors26, 27, 28, 29, 30, 31, 32, 33, 34, the lack of structural information on P2X receptors in 

complex with pyridoxal phosphate derivative inhibitors has hampered the rational design 

and optimization of pyridoxal phosphate derivatives for drug discovery targeting P2X 

receptors. 

In this work, we determined the cryogenic electron microscopy (cryo-EM) structures 

of the panda P2X7 receptor in complex with PPADS and PPNDS. The structures revealed 

the orthosteric binding site for these pyridoxal phosphate derivatives, and structural 

comparison with the previously determined apo and ATP-bound P2X7 receptors31, 34 

showed PPADS/PPNDS-dependent structural rearrangement at the orthosteric binding 

site for channel inactivation. Further mutational analysis by electrophysiological 

recording identified key residues of human P2X1 and P2X3 that show high sensitivity to 

pyridoxal phosphate derivative inhibitors. 

 

Results 

Structural determination and functional characterization 

To gain insight into the mechanism of P2X receptor inhibition  by pyridoxal 

phosphate derivatives, we used giant panda (Ailuropoda melanoleuca) P2X7, whose 

structures in complex with allosteric modulators have been reported29. Notably, panda 
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P2X7 shares 85% identity with the human P2X7 receptor and exhibits high and stable 

expression profiles suitable for structural studies29. In whole-cell patch clamp recordings 

using HEK293 cells transfected with full-length panda P2X7 (pdP2X7), the application 

of 10 µM PPNDS and 100 µM PPADS blocked approximately 50% of the ATP-dependent 

currents from pdP2X7 (Fig. S1, A-B and E-F), which correlates well with the properties 

of P2X7 receptors moderately inhibited by PPADS/PPNDS17, 35. 

We then expressed and purified the previously reported crystallization construct of 

pdP2X7cryst 
29. The purified pdP2X7cryst was reconstituted into lipid nanodiscs, mixed with 

PPNDS and PPADS, separately, and subsequently subjected to single-particle cryo-EM 

(Fig. S2-S5). The structures of pdP2X7 in the presence of PPNDS and PPADS were 

determined at 3.3 Å and 3.6 Å, respectively (Table S1). 

The overall structures are similar and show the trimeric architecture of P2X receptors, 

consisting of the extracellular domain and two transmembrane (TM) helices, with each 

protomer resembling the dolphin shape, consistent with the previously reported P2X 

structures36 (Fig. 1 and Fig. S6, A-B). More importantly, we identified the residual EM 

densities at the agonist binding site that fit into the shape of PPNDS and PPADS (Fig. 1). 

It should be noted that while the pyridoxal phosphate groups in PPNDS and PPADS are 

shared, the naphthylazo group of PPNDS is significantly bulkier than the azophenyl group 

of PPADS, which aided our assignment of compound binding poses for each EM density 

(Fig. 1). Consistent with antagonist binding, the TM domain adapts to the closed 

conformation of the channel, as similarly observed in the previously reported closed state 

structures of P2X7 receptors29, 34. 
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Orthosteric binding site 

  In the PPNDS-bound and PPADS-bound structures, PPNDS and PPADS molecules 

bind to essentially the same orthosteric site, consistent with both PPNDS and PPADS 

being pyridoxal phosphate derivatives (Fig. 2 and 3 and Fig. S7). Furthermore, the 

residues involved in PPNDS and PPADS largely overlap with the residues at the ATP 

binding site in the previously reported ATP-bound P2X7 structure (Fig. 4)34, and many of 

the residues are highly conserved among P2X receptors and have been shown to be crucial 

for P2X activation27, 37, 38, 39, which is consistent with both of them being competitive 

inhibitors. 

In both structures, the pyridoxal phosphate group has extensive interactions with the 

receptor, whereas the other parts of the compounds, a naphthylazo group with two 

sulfonic acid groups and a nitro group (PPNDS) and an azophenyl group with two 

sulfonic acid groups (PPADS), have fewer interactions (Fig. 2 and 3). 

The phosphate group of PPNDS and PPADS interacts directly with the side chain of 

Arg294 and possibly also with Lys145, possibly via a water molecule (Fig. 2B and 3B 

and Fig. S7), although it is difficult to conclude the existence of the water molecule at 

this site due to the limited resolution of our structures. Furthermore, in the PPADS-bound 

structure, Lys64 mediates an additional interaction with the phosphate group of Lys64. 

These extensive interactions between the phosphate group and the receptor resemble 

those with the phosphate groups of ATP (Fig. 4A). Furthermore, the Asn292 and Lys311 

residues are similarly involved in the interaction with the hydroxyl group of the pyridoxal 

part of PPNDS and PPADS (Fig. 2B and 3B). 

It is interesting to note that while the naphthylazo group of PPNDS and the azophenyl 

group of PPADS have certain structural differences, the two sulfonic acid groups of both 
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PPNDS and PPADS form hydrogen bonds with the side chains of the same residues of 

the receptor, Lys66 and Gln143 (Fig. 2B and 3B). 

Finally, to verify the binding mode of the pyridoxal phosphate derivatives, we 

performed molecular dynamics (MD) simulations of the higher-resolution PPNDS-bound 

structure embedded in lipids (Fig. S8). The overall structures were stable during the 

simulations, and PPNDS remained stably bound to the receptor (Fig. S8). 

 

Structural comparison and inhibition mechanism 

To gain insights into the mechanisms of the orthosteric inhibition of P2X receptors by 

PPNDS and PPADS, we superimposed our structures and the previously determined ATP-

bound P2X7 structure onto the apo-state P2X7 structure (Fig. 5). As the PPNDS-bound 

structure and PPADS-bound structure are very similar, with 0.52 Å RMSD values for the 

Cα atoms of 960 residues, only the comparison with the higher-resolution PPNDS-bound 

structure is described in the following discussion. 

First, the activation of P2X receptors from the apo (closed) state to the ATP-bound 

(open) state is known to require motions of both the head and left flipper domains40, 41, 42 

(Fig. 5A), since these motions are coupled to the movement of the lower body domain, 

which is directly connected to the TM domain for channel opening (Fig. 5A). 

  In the PPNDS-bound structure, while we observed motion of the head domain similar 

to that in the ATP-bound structure, there was only a small structural change in the left 

flipper domain (Fig. 5A). Consequently, there was no structural change in the lower body 

domain or associated gating motion of the TM domain (Fig. 5A). In the ATP-bound 

structure, the three phosphate groups of ATP in the U-shaped conformation pushed down 
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the left flipper (Fig. 4A and 5A), whereas both PPNDS and PPADS possess only one 

phosphate group, so there was no corresponding downward movement in the left flipper 

domain (Fig. 2 and 5A). 

To summarize, the structural comparison indicates that PPNDS and PPADS inhibit the 

ATP-dependent activation of P2X receptors by occupying the orthosteric site but 

preventing the downward movement of the left flipper domain, which is required for 

channel opening (Fig. 5B). 

 

 Structure-based mutational analysis 

To analyze the mechanism of P2X receptor binding to the pyridoxal-5'-phosphate 

derivatives, we performed structure-based mutational analysis by whole-cell patch-clamp 

recording of pdP2X7 (Fig. 6 and Fig. S1). Since most of the residues involved in PPNDS 

and PPADS binding overlap with the conserved residues involved in ATP binding (Fig. 

4B), we did not generate mutants targeting these residues (Lys64, Lys66, Asn292, Arg294, 

and Lys311), as such mutations are known to severely affect or abolish ATP-dependent 

gating of P2X receptors27, 37, 38, 39. Instead, we aimed to mutate the residues surrounding 

the ATP-binding site, which differ among P2X receptor subtypes, as such residues may 

be important for the subtype-specific differences in the affinity of the pyridoxal-5'-

phosphate derivative to P2X receptors. To design such mutants, we compared the residues 

surrounding the ATP-binding site in our structure (Gln143, Val173, Ile214, Gln248 and 

Tyr288) with those in human P2X1 (hP2X1) (Fig. 4B), which possesses high affinity for 

both PPNDS and PPADS21, 35, and performed structural comparison of our structures with 

the AlphaFold-based structural model of human P2X143 (Fig. 6A). Based on these 
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comparisons, we mutated these residues to the corresponding amino acid residues in 

hP2X1 (Q143K, V173D, I214K, Q248K, and Y288S) or to alanine (Q143A, Q248A, and 

Y288A) and performed whole-cell patch clamp recording to analyze the effect of PPNDS 

on these mutants (Fig. 6B). 

In the mutational analysis, among three mutations to the lysine residue, two (Q143K, 

I214K) showed significantly increased sensitivity to PPNDS (Fig. 6B). In addition, the 

Q248K mutant showed slightly higher sensitivity to PPNDS, but not as significant an 

increase as the other two mutants (Fig. 6B). Interestingly, the mutation of Tyr288 to 

alanine instead of serine, as observed in hP2X1, significantly increased the affinity for 

PPNDS (Fig. 6B). In addition, the mutation of Val173 to aspartate, as observed in pdP2X7, 

significantly decreased the sensitivity to PPNDS (Fig. 6B). The two mutants Q143A and 

Q248A showed little or no decrease in PPNDS sensitivity (Fig. 6B). 

Following the result of the mutation analysis of pdP2X7, we then designed alanine 

mutants of hP2X1 at Lys140 (Gln143 in pdP2X7), Asp170 (Val173 in pdP2X7), Lys215 

(Ile214 in pdP2X7), Lys249 (Gln248 in pdP2X7), and Ser286 (Tyr288 in pdP2X7) (Fig. 

4B and 6A) and performed whole-cell patch-clamp recording to evaluate the effect of 

PPNDS on these mutants (Fig. 6C). All three mutants at the lysine residues (K140A, 

K215A and K249A), especially the K140A and K215A mutants, showed a significant 

decrease in PPNDS sensitivity (Fig. 6C), which is largely consistent with the 

corresponding lysine-substituted mutants of pdP2X7 (Fig. 6B). Interestingly, the 

mutation of Asp170 and Ser286 to alanine increased the sensitivity to PPNDS (Fig. 6C). 

Consistently, in the mutational analysis of the corresponding residues in pdP2X7 (Val173 

and Tyr288), the mutation of Val173 to aspartate decreased PPNDS sensitivity, and the 

mutation of Tyr288 to alanine increased PPNDS sensitivity (Fig. 6B). 
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Finally, among the three Lys residues involved in PPNDS sensitivity in hP2X1 (Lys140, 

Lys215, Lys249), the residue corresponding to Lys215 in hP2X1 is also conserved in 

hP2X3 (Lys201), and accordingly, we performed mutational analysis of the hP2X3 

K201A mutant (Fig. 6D). As expected, the K201 mutant showed a decrease in PPNDS 

sensitivity (Fig. 6D). 

In summary, our mutational analysis based on structural comparison and sequence 

alignment identified several key residues involved in PPNDS sensitivity, particularly the 

residues involved in the subtype-specific difference in affinity for PPNDS. 

 

Discussion 

  In this work, we determined the cryo-EM structure of pdP2X7 in complex with two 

classical non-ATP analog inhibitors, PPNDS and PPADS, of pyridoxal phosphate 

derivatives (Fig. 1) and revealed their orthosteric binding site (Fig. 2 and 3), which has 

high overlap with the ATP binding site (Fig. 4). In the cryo-EM structures, the phosphate 

group of PPNDS and PPADS appears to occupy the position of the -phosphate group of 

ATP in the ATP-bound structure (Figs. 2-4). Structural comparison with the previously 

reported apo (closed) and ATP-bound (open) structures showed that, unlike ATP binding, 

the binding of PPNDS and PPADS does not induce the downward movement of the left 

flipper, an important movement for channel activation, providing mechanistic insights 

into channel inhibition by pyridoxal phosphate derivatives (Fig. 5). Finally, structure-

based mutational analyses revealed several key residues important for PPNDS sensitivity, 

particularly for the subtype-specific difference in sensitivity (Fig. 6).  

  Besides PPADS and PPNDS in this study, TNP-ATP is well known as a classical 
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competitive inhibitor for P2X receptors21. In the previously reported TNP-ATP bound 

P2X7 structure, TNP-ATP binding induces the conformational changes of the left flipper 

region but not of the head domain31. In contrast, PPADS and PPNDS binding induces the 

conformational changes of the head domain but not of the left flipper region (Fig. 5). 

These contrasts would highlight the uniqueness of the competitive inhibition mechanism 

by pyridoxal phosphate derivatives as well as the diversity of competitive inhibition 

mechanisms of P2X receptors. 

  There are several previous reports characterizing the P2X receptor binding site for 

pyridoxal phosphate derivatives, especially PPADS15, 16, 18, 19. Among them, the mutation 

of Glu249 (Lys249 in hP2X1) to lysine in the rat P2X4 (rP2X4) receptor was first 

determined to confer PPADS sensitivity on the PPADS-insensitive P2X4 receptor18. In 

pdP2X7, the Glu249 residue in rP2X4 corresponds to Gln248 (Fig. 4B), which is 

proximal to the hydroxyl moieties of the pyridoxal phosphate group of PPADS and 

PPNDS (Fig. 6A). More recently, the combination of docking simulation and 

electrophysiology showed that Lys70, Asp170, Lys190 and Lys249 participate in PPADS 

binding in hP2X115. Among these four residues, Lys70 and Lys190 are directly involved 

in ATP binding27, and Lys249 corresponds to Glu249 in rP2X4, as shown in a previous 

study18. In addition, the mutation of Asp170 to cysteine increased sensitivity to PPADS15. 

Consistently, in our structure, the Val173 residue in pdP2X7, corresponding to Asp170 in 

hP2X1, is located proximal to the pyridoxal phosphate group of PPADS, and hP2X1 

D170A also showed an increased density relative to PPNDS, whose pyridoxal phosphate 

group is in common with that of PPADS. It should be noted that while a recent study by 

docking simulation and electrophysiology identified several residues involved in PPADS 

binding, as mentioned above, the orientation of PPADS in their docking model is very 
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different from that in our cryo-EM structure. In the docking model, compared to our cryo-

EM structure, PPADS shows an almost 180-degree rotation relative to the axis of rotation 

parallel to the membrane with the azide group of PPADS as the fulcrum15. This difference 

in the orientation of the compound may be why, in contrast to the results in our study, 

hP2X1 Lys140 and Lys215 are not predicted to be involved in PPADS binding in the 

previous docking model. 

In the past, several types of pyridoxal phosphate derivatives have been identified as 

P2X inhibitors13, 23, but most of them share a common weakness in subtype specificity, 

where they tend to show high affinity for both P2X1 and P2X3. For example, MRS 2257 

was identified as the most active PPADS analog from the screening but has IC50 values 

of 5 nM and 22 nM for P2X1 and P2X3, respectively22. In addition, another compound 

termed 36j, derived from PPADS, shows improved subtype specificity for P2X3 (IC50: 

60 nM for P2X3) but still shows a moderate inhibitory effect on P2X1 at 10 µM23. The 

probable reason it is difficult to obtain competitive inhibitors of P2X receptors, including 

pyridoxal phosphate derivatives, with subtype specificity is that the residues directly 

involved in ATP binding are strictly conserved among the subtypes (Fig. 4B). To 

overcome this situation, our work might facilitate the rational design of pyridoxal 

phosphate derivatives with strict subtype specificity for P2X receptors because we have 

not only defined the binding mode of pyridoxal phosphate derivatives to P2X receptors 

but also newly identified a subtype-specific residue for pyridoxal phosphate derivatives. 

For example, Lys215 and Lys249 in hP2X1 are important for PPNDS sensitivity (Fig. 6C) 

but are not conserved in other P2X subtypes, including P2X3 (Fig. 4B), providing a clue 

for the design of more subtype-specific pyridoxal phosphate derivatives. 

  In conclusion, our structural and functional analyses provided mechanistic insights into 
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the orthosteric inhibition mechanism of P2X receptors by the classical pyridoxal 

phosphate derivative P2X antagonist and identified key residues involved in compound 

sensitivity, especially the differential sensitivity between P2X subtypes, thereby 

potentially facilitating the development of subtype-specific compounds targeting P2X 

receptors, which have attracted widespread interest as therapeutic targets. 

 

Methods 

Expression and purification of P2X7 

The previously reported functional expression construct of giant panda (Ailuropoda 

melanoleuca) P2X7 for structural studies (pdP2X7, residues 22-359, 

N241S/N284S/V35A/R125A/E174K, XP_002913164.1)29 was synthesized (Genewiz, 

China), subcloned, and inserted into a modified version of the pFastBac vector 

(Invitrogen, USA) with an octahistidine tag, Twin-Strep-tag, mEGFP, and a human 

rhinovirus (HRV) 3C protease cleavage site at the N-terminus. Using the Bac-to-Bac 

system, the mEGFP-fusion pdP2X7 construct was expressed in Sf9 cells infected with 

baculovirus. The Sf9 cells were collected by centrifugation (5,400 × g, 10 min) and 

subsequently disrupted using an ultrasonic homogenizer in TBS buffer (20 mM Tris pH 

8.0, 150 mM NaCl) containing 1 mM phenylmethylsulfonyl fluoride (PMSF), 5.2 μg/mL 

aprotinin, 1.4 μg/mL pepstatin, and 1.4 μg/mL leupeptin. The supernatant was harvested 

after centrifugation (7,600 × g, 20 min). The membrane fraction was then isolated by 

ultracentrifugation (200,000 × g, 1 h) and solubilized in buffer A (50 mM Tris pH 7.5, 

150 mM NaCl) containing 2% (w/v) n-dodecyl-beta-D-maltopyranoside (DDM) at 4 °C 

for 1 hour. The solubilized supernatant was collected by another round of 
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ultracentrifugation (200,000 × g, 1 h) and applied to a Strep-Tactin resin column (Qiagen, 

USA) equilibrated with buffer A containing 0.025% (w/v) DDM. The resin was incubated 

for 1 hour, and the column was eluted with buffer B (100 mM Tris pH 8.0, 150 mM NaCl, 

2.5 mM desthiobiotin, 0.025% (w/v) DDM). The eluted protein was concentrated to 1 

mg/ml before being prepared for nanodisc reconstitution. 

 

Nanodisc reconstitution 

Soybean polar lipid extract (Avanti Polar Lipids, USA) was dissolved in chloroform, 

dried under a nitrogen stream, and then resuspended in reconstitution buffer (20 mg/ml 

soybean polar lipid, 20 mM HEPES pH 7.0, and 150 mM NaCl). Following a 1-hour 

incubation at room temperature, the lipid suspension was subjected to sonication for 5 

minutes until the lipids reached a near-transparent state. Subsequently, DDM (Anatrace, 

USA) was added at a final concentration of 0.4% and incubated at room temperature 

overnight. The mEGFP-fusion pdP2X7, MSP2N2 protein, and soybean polar lipid were 

combined in a molar ratio of 1:3:180. This mixture was then incubated at 4 °C for 1 hour 

and further subjected to a 4-hour incubation with bio-beads (Bio-Rad, USA). After 

incubation, the bio-beads were removed via filtration, and the nanodisc fractions 

containing mEGFP-fusion pdP2X7 were bound to Ni-NTA (Qiagen, USA) resin 

preequilibrated with wash buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 30 mM 

imidazole) and subsequently eluted using elution buffer (20 mM HEPES pH 7.5, 150 mM 

NaCl, 300 mM imidazole). To cleave the N-terminal EGFP, the elution was mixed with 

HRV3C protease and incubated at room temperature for 1 hour, followed by overnight 

incubation at 4 °C. The nanodisc-reconstituted pdP2X7 protein was separated through 
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size-exclusion chromatography using a Superdex 200 Increase 10/300 column (Cytiva, 

USA) preequilibrated with SEC buffer (20 mM HEPES pH 7.5 and 150 mM NaCl) and 

subsequently concentrated to 0.9 mg/ml. P2X7 antagonists (PPNDS or PPADS) were 

added to the nanodisc-reconstituted pdP2X7 at a final concentration of 50 μM and 

incubated on ice for 1 hour before cryo-EM grid preparation. 

 

EM data acquisition 

For both the PPNDS-bound and PPADS-bound pdP2X7 samples, a total of 2.5 μl of 

the nanodisc-reconstituted pdP2X7 was applied to a glow-discharged holey carbon-film 

grid (Quantifoil, Au 1.2/1.3, 300 mesh, USA). The grid was then blotted using a Vitrobot 

(Thermo Fisher Scientific, USA) system with a 3.0-second blotting time at 100% 

humidity and 4 °C, followed by plunge-freezing in liquid ethane. Cryo-EM data collection 

was carried out using a 300 kV Titan Krios microscope (Thermo Fisher Scientific, USA) 

equipped with a K3 direct electron detector (Gatan Inc., USA). The specimen stage 

temperature was maintained at 80 K. Movies were recorded using beam-image shift data 

collection methods44 in superresolution mode, with a pixel size of 0.41 Å (physical pixel 

size of 0.83 Å), a magnification of 29,000, and defocus values ranging from -1.3 µm to -

2.0 µm. The dose rate was set to 20 e- s–1, and each movie consisted of 40 frames with an 

exposure of 50 e- Å–2, resulting in each movie being 1.724 s long. 

 

Image processing 

A total of 9,664 and 4,692 movies for the PPNDS-bound and PPADS-bound pdP2X7 

samples, respectively, were motion-corrected and binned with MotionCor245 with a patch 
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of 5 × 5, producing summed and dose-weighted micrographs with a pixel size of 0.83 Å. 

Contrast transfer function (CTF) parameters were estimated by CTFFIND 4.146. Particle 

picking and 2D classification were performed using RELION 3.1 In total, 1,537,753 

particles for the PPNDS-bound sample and 1,835,907 particles for the PPADS-bound 

sample were autopicked and extracted using a box size of 256 × 256 pixels. After 2D 

classification, nonuniform refinement was performed using cryoSPARCv4.2.147 on 

633,674 particles for the PPNDS-bound sample and 236,753 particles for the PPADS-

bound sample, applying C3 symmetry for the final 3D reconstruction. The resulting 

resolutions of the PPNDS-bound and PPADS-bound pdP2X7 structures were 3.3 Å and 

3.6 Å, respectively, as determined by the Fourier shell correlation (FSC) = 0.143 criterion 

on the corrected FSC curves. The local resolution was estimated using cryoSPARCv4.2.1. 

The workflows for image processing and for 3D reconstruction are shown in Figs. S2-S5. 

The figures were generated by UCSF Chimera48. 

 

Model building 

The initial models of pdP2X7 were manually built starting from the previously reported 

pdP2X7 structure (PDB ID: 5U1L). Manual model building was performed using Coot49. 

Real-space refinement was performed using PHENIX50. All structure figures were 

generated using PyMOL (https://pymol.org/). For the predicted structure of human P2X1, 

the previously generated model using AlphaFold and ColabFold was used43, 51, 52. The 

sequence alignment figure was generated using Clustal Omega53 and ESPript 3.054. 

 

Electrophysiology 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.15.558037doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.15.558037
http://creativecommons.org/licenses/by-nc/4.0/


 

— 17 — 

Human embryonic kidney 293 (HEK293) cells were purchased from Shanghai Institutes 

for Biological Sciences and cultured in Dulbecco’s modified Eagle’s medium 

supplemented with 10% fetal bovine serum (FBS), 1% penicillin‒streptomycin, and 1% 

GlutaMAX™ at 37 °C in a humidified atmosphere of 5% CO2 and 95% air55,56. Plasmids 

harboring hP2X1, hP2X3 or pdP2X7 were transfected into cells by calcium phosphate 

transfection57. Currents of hP2X1 and hP2X3 were recorded using nystatin (Sangon 

Biotech, China) perforated recordings to prevent rundown in current during multiple dose 

applications of ATP. Nystatin (0.15 mg/mL) was diluted with a high-potassium internal 

intracellular solution containing 75 mM K2SO4, 55 mM KCl2, 5 mM MgSO4, and 10 mM 

HEPES (pH 7.4). Currents of PdP2X7 receptors were recorded using a conventional 

whole-cell patch configuration. After 24–48 h of transfection, HEK293 cells were 

recorded at room temperature (25 ± 2 °C) using an Axopatch 200B amplifier (Molecular 

Devices, USA) with a holding potential of -60 mV. Current data were sampled at 10 kHz, 

filtered at 2 kHz, and analyzed using PCLAMP 10 (Molecular Devices, USA) for analysis. 

HEK293 cells were bathed in standard extracellular solution (SS) containing 2 mM CaCl2, 

1 mM MgCl2, 10 mM HEPES, 150 mM NaCl, 5 mM KCl, and 10 mM glucose with the 

pH adjusted to 7.4. For conventional whole-cell recordings, the pipette solutions consisted 

of 120 mM KCl, 30 mM NaCl, 0.5 mM CaCl2, 1 mM MgCl2, 10 mM HEPES, and 5 mM 

EGTA with pH adjusted to 7.4. ATP and other compounds were dissolved in SS for P2X1 

and P2X3 and applied to Y-tubes. For pdP2X7, ATP and other compounds were dissolved 

in 0Ca, 0Mg solution containing 150 mM NaCl, 10 mM glucose, 10 mM HEPES, 5 mM 

KCl, and 10 mM EGTA with the pH adjusted to 7.458. PPNDS was purchased from APE

×BIO, and PPADS was purchased from MCE. The standard solution and 0Ca, 0Mg 

solution were formulated with compounds from Aladdin, and internal solutions were 
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formulated with compounds from Sigma‒Aldrich59. All electrophysiological recordings 

were analyzed using Clampfit 10.6 (Molecular Devices, USA). Pooled data are expressed 

as the mean and standard error (s.e.m.). Statistical comparisons were made using 

Bonferroni's post hoc test (ANOVA). ∗∗ p < 0.01 and ∗∗∗∗ p < 0.0001 were considered 

significant. 

 

Molecular dynamics simulations 

The energy-minimized models of the PPNDS-bound pdP2X7 were used as the initial 

structures for MD simulations. A large 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC, 300 K) bilayer, available in System Builder of DESMOND57,60, 

was built to generate a suitable membrane system based on the OPM database61. The 

systems were dissolved in simple point charge (SPC) water molecules. The DESMOND 

default relaxation protocol was applied to each system prior to the simulation run. 1) 100 

ps simulations in the NVT (constant number (N), volume (V), and temperature (T)) 

ensemble with Brownian kinetics using a temperature of 10 K with solute heavy atoms 

constrained; 2) 12 ps simulations in the NVT ensemble using a Berendsen thermostat with 

a temperature of 10 K and small-time steps with solute heavy atoms constrained; 3) 12 ps 

simulations in the NPT (constant number (N), pressure (P), and temperature (T)) 

ensemble using a Berendsen thermostat and barostat for 12 ps simulations at 10 K and 1 

atm, with solute heavy atoms constrained; 4) 12 ps simulations in the NPT ensemble using 

a Berendsen thermostat and barostat at 300 K and 1 atm with solute heavy atoms 

constrained; and 5) 24 ps simulations in the NPT ensemble using a Berendsen thermostat 

and barostat at 300 K and 1 atm without constraint. After equilibration, the MD 
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simulations were performed for 0.3 µs. The long-range electrostatic interactions were 

calculated using the smooth particle grid Ewald method. The trajectory recording interval 

was set to 200 ps, and the other default parameters of DESMOND were used in the MD 

simulation runs. All simulations used the all-atom OPLS_2005 force field62-64, which is 

used for proteins, ions, lipids and SPC waters. The Simulation Interaction Diagram (SID) 

module in DESMOND was used for exploring the interaction analysis between PPNDS 

and pdP2X7. All simulations were performed on a DELL T7920 with NVIDIA TESLTA 

K40C or CAOWEI 4028GR with NVIDIA TESLTA K80. The simulation system was 

prepared, and the trajectory was analyzed and visualized on a CORE DELL T7500 

graphics workstation with 12 CPUs. 

 

Statistics   

Electrophysiological recordings were repeated 5-10 times. Error bars represent the 

standard error of the mean. Cryo-EM data collection and refinement statistics are 

summarized in Table S1. 

 

Data availability 

The atomic coordinates and structural factors for the pdP2X7 in complex with PPNDS 

(PDB: 8JV8 and EMD-36671) and PPADS (PDB: 8JV7 and EMD-36670) have been 

deposited in the Protein Data Bank. All other relevant data are included in the paper or its 

supplementary material files, including the supplementary data file (DataS1), or 

deposited in ScienceDB (doi:10.57760/sciencedb.11168). 
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Figure Legends 

Figure. 1. Cryo-EM structures of PPNDS-bound and PPADS-bound pdP2X7. 

The trimeric structures of PPNDS-bound (A) and PPADS-bound (B) pdP2X7, viewed 

parallel to the membrane. The PPNDS and PPADS molecules are shown as spheres. Each 

subunit of the trimers is colored blue, yellow, and red. The EM density maps contoured 
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at 4.5 σ and 3.5 σ for PPNDS and PPADS are shown as gray mesh. The structural formulas 

of PPNDS and PPADS are also shown. 

 

Figure. 2. Binding site for PPNDS 

(A, B) Overall structure (A) and close-up view of the PPNDS binding site (B) in the 

PPNDS-bound pdP2X7 structure. PPNDS molecules are shown by stick models. Water 

molecules are depicted as red spheres. Dotted black lines indicate hydrogen bonding. 

 

Figure. 3. Binding site for PPADS 

(A, B) Overall structure (C) and close-up view of the PPADS binding site (D) in the 

PPADS-bound pdP2X7 structure. PPADS molecules are shown by stick models. Water 

molecules are depicted as red spheres. Dotted black lines indicate hydrogen bonding. 

 

Figure. 4. ATP binding site and sequence comparison 

(A) Overall structure and close-up view of the ATP-bound rat P2X7 structure (PDB ID: 

6U9W). The cytoplasmic domain is not shown. Dotted black lines indicate hydrogen 

bonding. (B) Sequence alignment of Ailuropoda melanoleuca P2X7 (pdP2X7) 

(Accession number: XP_002913164.3), Rattus norvegicus (rP2X7) (Accession number: 

Q64663.1) and Homo sapiens P2X receptors (P2X1: P51575.1, P2X2: Q9UBL9.1, P2X3: 

P56373.2, P2X4: Q99571.2, P2X5: Q93086.4, P2X6: O15547.2, and P2X7: Q99572.4). 

Orange, green and red circles indicate the residues involved in ATP, PPADS and PPNDS 

recognition. 

 

Figure. 5. Structural comparison and inhibition mechanism 
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(A) Superposition of the ATP-bound rP2X7 structure (red, PDB ID: 6U9W) and the 

PPNDS-bound pdP2X7 structure (green, this study) onto the apo rP2X7 structure (gray, 

PDB ID: 6U9V). Close-up views of the head, left flipper, and lower body domains and 

the intracellular view of the TM domain are shown in each box. Arrows indicate the 

conformational changes from the apo to ATP-bound states (red) and from the apo to the 

PPNDS-bound states (green). (B) A cartoon model of the PPNDS/PPADS-dependent 

inhibition and ATP-dependent activation mechanisms. 

 

Figure. 6. Structure-based mutational analysis 

(A) Superimposition of the PPNDS-bound and PPADS-bound structures in this study onto 

the predicted human P2X1 structure (AlphaFold). Each subunit of the PPNDS-bound and 

PPADS-bound structures is shown in blue, yellow, and red, while the predicted human 

P2X1 structure is shown in gray. The PPNDS and PPADS molecules and the residues 

surrounding PPNDS and PPADS that are different between pdP2X7 and hP2X1 are 

shown as sticks. (B) Effects of PPNDS (10 µM) on ATP (1 mM)-evoked currents of 

pdP2X7 and its mutants (mean ± SD, n = 5). (C) Effects of PPNDS (1 µM) on ATP (1 

µM)-evoked currents of hP2X1 and its mutants (mean ± SD, n = 5-10). (D) Effects of 

PPNDS (10 µM) on ATP (1 µM)-evoked currents of hP2X3 and its mutants (mean ± SD, 

n = 5, one-way ANOVA post hoc test, **: p <0.01, ****: p <0.0001 vs. WT.) 
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Fig. S1. Effects of PPNDS and PPADS on P2X receptors by patch clamp recording
(A-D) Representative current traces from patch clamp recordings of P2X receptors. Effects of 10 
µM PPNDS (blue) on the 1 mM ATP-evoked (orange) current of pdP2X7 and its mutants (A). 
Effects of 100 µM PPADS (blue) on the 1 mM ATP-evoked (orange) current of pdP2X7 (B). 
Effects of 1 µM PPNDS (blue) on the 1 µM ATP-evoked (orange) current of hP2X1 (C). Effects 
of 10 µM PPNDS (blue) on the 1 µM ATP-evoked (orange) current of hP2X3 (D). (E-F) Effects 
of PPNDS (10 µM) (E) and PPADS (100 µM) (F) on ATP (1 mM)-evoked currents of pdP2X7 
(mean ± SD, n = 5). The graph for PPNDS was taken from Fig. 6B. The inhibition ratio is defined 
by normalizing the peak current amplitude from the coapplication of PPNDS/PPADS and ATP to 
the peak current amplitude from the ATP application prior to the coapplication of PPNDS/PPADS 
and ATP.
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Fig. S2. Cryo-EM analysis of PPNDS-bound pdP2X7 

(A) The gold -standard Fourier shell correlation curves for the PPNDS -bound data. (B) 

Angular particle distribution. The heat map of particle projections in each viewing angle. 

(C) The side view, a top-down view from the extracellular surface and a bottom-up view 

from the intracellular surface colored by local resolution. 
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Fig. S3. Cryo-EM data process for PPNDS-bound pdP2X7 

Before the C1 symmetry, all steps were performed in Relion 3.1. Further 3D classification 

using Cryosparc v4.2.1 by non -uniform refinement of this final set of particles resulted 

in a cryo-EM map at 3.34 Å resolution.  
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Fig. S4. Cryo-EM analysis of PPADS-bound pdP2X7 

(A) The gold -standard Fourier shell correlation curves for the PPADS -bound data. (B) 

Angular particle distribution. The heat map of particle projections in each viewing angle. 

(C) The side view, a top-down view from the extracellular surface and a bottom-up view 

from the intracellular surface colored by local resolution. 
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Fig. S5. Cryo-EM data process for PPADS-bound pdP2X7 

Before the C1 symmetry, all steps were performed in Relion 3.1. Further 3D classification 

using Cryosparc v4.2.1 by non -uniform refinement of this final set of particles resulted 

in a cryo-EM map at 3.60 Å resolution. 
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Fig. S6. Dolphin model 

(A) The P2X7 protomer in cartoon representation. Each structural feature is colored 

according to the dolphin model. (B , C) Superposition of the PPNDS -bound structure 

(green) onto the PPADS -bound structure (gray). Each protomer is shown in cartoon 

representations, and PPNDS  and PPADS are shown in stick representations (B). The 

intracellular view of the transmembrane domain and the residues at the constriction region 

are shown in stick representations (C). 
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Fig. S7. EM density maps for the PPNDS and PPADS binding sites 

(A, B) Close -up views of the PPNDS (A) and PPADS (B) binding sites. Dotted lines 

represent hydrogen bonds. The EM density maps for the residues involved in the PPNDS 

and PPADS interactions are shown and contoured at 5.0 σ and 4.0 σ, respectively. 
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Fig. S8. MD simulations of the PPNDS-bound pdP2X7 structure
(A, B) The plots of the root mean square deviations (RMSD) of Cα atoms (A) and 
the RMSD values of atoms in PPNDS (B).

Chain A Chain B

Chain C

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.15.558037doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.15.558037
http://creativecommons.org/licenses/by-nc/4.0/


Table S1. Cryo-EM data collection, refinement and validation statistics 
 

 PdP2X7 w. PPNDS 
(EMD-36671)  
(PDB: 8JV8) 

PdP2X7 w. PPADS 
(EMD-36670)  
(PDB: 8JV7) 

Data collection and processing   

Magnification 29,000x 29,000x 
Voltage (kV) 300 300 
Electron exposure (e–/Å2) 50 50 
Defocus range (μm) -1.3 to -2.0 -1.3 to -2.0 
Pixel size (Å) 0.83 0.83 
Symmetry imposed C3 C3 
Initial particle images (no.)      663,674 236,753 
Final particle images (no.) 121,008 161,188 

Map resolution (Å) 
FSC threshold 

3.34 
0.143 

3.60 
0.143 

Map resolution range (Å) 1.9-40.4 2.2-10.2 

Refinement   

Initial model used (PDB code) This study This study 
Model resolution (Å) 

FSC threshold 
3.34 
0.143 

3.60 
0.143 

Model resolution range (Å)      1.9-40.4 2.2-10.2 
Map sharpening B factor (Å2)                 -50 -150 
Model composition  

Non-hydrogen atoms 
Protein residues 
Ligands 

 
7245 
963 
NAG:6, PPNDS:3                              

   
7245 
960 
NAG:6, PPADS:3 

B factors (Å2) 
Protein 
Ligand 

 
148.30 
189.65 

 
117.36 
146.40 

R.m.s. deviations 
Bond lengths (Å) 
Bond angles (°) 

 
0.014 
1.257 

 
0.003 
0.561 

Validation 
MolProbity score 
Clashscore 
Poor rotamers (%) 

 
2.51 
13.86 
3.70 

 
1.70 
9.04 
1.22 

Ramachandran plot 
Favored (%) 
Allowed (%) 

   Disallowed (%) 

 
93.50 
6.39 
0.1 

 
97.17 
2.83 
0 
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