Selective advantage of mutant stem cells in clonal hematopoiesis occurs by
attenuating the deleterious effects of inflammation and aging
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Abstract

Clonal hematopoiesis (CH) arises when hematopoietic stem cells (HSC) acquire mutations in
genes, including DNMT3A and TET2, conferring a competitive advantage through a
mechanism that remains unclear. To gain insight into how CH mutations enable gradual clonal
expansion, we used single-cell multi-omics with high-fidelity genotyping on CH bone marrow
samples. Most of the selective advantage of mutant cells occurs within HSCs. DNMT3A and
TET2-mutant clones expand further in early progenitors, while TET2 mutations accelerate
myeloid maturation in a dose-dependent manner. Unexpectedly, both mutant and non-mutant
HSCs from CH samples are enriched for inflammatory and aging transcriptomic signatures,
compared to HSC from non-CH samples, revealing a non-cell autonomous mechanism.
However, DNMT3A and TET2-mutant HSCs have an attenuated inflammatory response
relative to wild-type HSCs within the same sample. Our data support a model whereby CH
clones are gradually selected because they are more resistant to the deleterious impact of

inflammation and aging.
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Introduction

Aging tissues accumulate somatic mutations. If these occur in long-lived tissue stem cells,
they provide a substrate for clonal selection and subsequent clonal expansion, resulting in
somatic mosaicism."? Somatic mosaicism in phenotypically normal human tissues was first
described in blood and termed clonal hematopoiesis (CH).*® Subsequently, similar findings
were documented in multiple other tissues.''® CH becomes common with aging and is
associated with a 12-fold increased risk of myeloid malignancy, cardiovascular disease, and
other adverse outcomes.”®?° A key unresolved question in the field is, what are the
mechanisms that lead to selection of mutant clones? For a selected clone, increasing clone
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size has been shown to contribute the risk of myeloid malignancy, cardiovascular

2023 and diseases associated with human aging.?*%® Though it is likely that multiple

disease,
mechanisms contribute both positively and negatively to the rate of expansion of mutant

clones,?® mechanistic understanding of the biological principles of expansion remain unclear.

Interestingly, ~70% of CH cases are associated with mutations in just two genes, DNMT3A
and TET2.7821222T DNMT3A, a de novo DNA methyltransferase, catalyzes the conversion of
cytosine to 5-methylcytosine (5mC), usually in CpG dinucleotides.?® TET2 is a dioxygenase
that catalyzes the conversion of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and
other oxidized derivatives.?®*® This reaction is the first step in DNA demethylation, although
5hmC can also act as a stable epigenetic mark with a regulatory role.®'*? Both proteins have
also been associated with other roles, for example RNA splicing,® regulation of RNA

337 and recruitment of other epigenetic regulators.®”*° In CH, DNMT3A mutations are

stability,
predominantly heterozygous, scattered throughout the three functional domains and predicted
to cause loss of function (LoF). In contrast, ~60% of DNMT3A mutations in acute myeloid
leukemia (AML) affect the R882 hotspot residue in the methyltransferase domain. TET2
mutations are either missense or truncating variants distributed across the coding region and

are predicted to inhibit or abolish the enzyme’s catalytic activity.

In mice, genetic mutants of Dnmt3a and Tet2 confer clonal advantage to HSCs and alter their
differentiation. Adult Dnmt3a”~ HSCs outcompete wild-type (WT) HSCs in secondary, and
subsequent, competitive transplants.*' Similarly, Tet2”~ HSCs have a competitive advantage
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over WT HSCs in transplantation assays, although this advantage is most marked in early

serial transplants.*® Tet2”~ HSCs have a similar competitive advantage but with longer

~~ HSCs has been attributed to increased

latency.** The competitive advantage of Dnmt3a
RNA expression of selected multipotency and self-renewal genes, which correlates with
hypomethylation of their promoters and gene bodies.*' Re-expression of DNMT3A in Dnmt3a™
= HSCs partially restores methylation at specific genes and reduces HSC frequency.*’

Notably, clonal advantage of Dnmt3a”~HSCs is increased when mice are exposed to infection



and inflammation, and abrogated when receptors for interferon-y and TNFa are deleted.*”#®
Aging and inflammation also expands both immunophenotypic and functional Tet2”~ and
Tet2"~ HSCs.***" This is mimicked by IL-6 and IL-1 exposure and partially abrogated by
blocking their cognate receptors.***" HSC differentiation is also altered in mouse models of
CH mutations. Acute bi-allelic deletion of Dnmt3a modestly increases transcriptionally defined
megakaryocyte-erythroid cells, with a commensurate decrease in myelomonocytic cells.??

Altered differentiation of Dnmt3a™"

cells may be caused by decreased methylation of binding
motifs for erythroid versus myeloid transcription factors (TFs), due to differences in motif CpG
content.® Tet2”" cells have a myeloid bias with expansion of GMP and reduction of
megakaryocyte erythroid (MEP) and lymphoid progenitors.>® With age, some Tet2”~ mice

develop chronic myelomonocytic leukemia (CMML).**°

However, the murine studies may not capture all the complexities associated with human CH.
In humans, CH arises when a single cell acquires a mutation that confers a selective
advantage, leading to gradual clonal expansion over time. Indeed, recent studies using
population genetic modelling, single-cell phylogenetic analysis, and longitudinal sampling
have estimated that DNMT3A and TET2 mutant CH clones expand by about 5-20% per year
and are acquired decades before they reach a substantial clone size.***° In contrast, mice are
kept in controlled environments, have short lifespans and murine studies often assay
hemopoiesis after transplantation or introduction of a mutant allele in all blood cells, rather
than study HSC competition dynamics in native hematopoiesis with introduction of subclonal

mutations.

In humans, detailed single-cell analyses have been performed in one genetic CH subtype
(DNMT3A R882*") from patients treated for myeloma®® and in cord blood hematopoietic stem
and progenitor cells (HSPCs) where both TET2 alleles were experimentally deleted.®” In both
studies, differentiation defects were observed, with engineered TET27~ cells having a
competitive advantage in vivo in immunodeficient mice. However, it is unclear from these
studies how DNMT3A and TETZ2 mutations confer a gradual clonal advantage to mutant HSC
in age-associated CH. To address this question, we implemented an optimized single-cell
multi-omics platform, combining high-fidelity genotyping with high-quality transcriptional
profiling, to analyze mutant HSPCs separately from non-mutant HSPCs from the same
individuals, enabling us to dissect the cell-intrinsic and cell-extrinsic consequences of CH

mutations in human BM.



Results

Bone marrow sampling of HSPCs from individuals with age-related clonal

hematopoiesis without prior malignancy

As our goal was to study CH-mutant HSPCs and compare their properties to non-mutant
HSPCs from the same individual, we needed to obtain bone marrow samples from individuals
with CH, but without the confounding effects of co-existing malignancy or known inflammatory
conditions. We collected samples from 195 individuals at various ages with normal blood
counts undergoing elective total hip replacement surgery for osteoarthritis. To study steady-
state CH, we excluded subjects with prior or current hematological cancer, inflammatory
arthritis, or systemic steroid use (clinical characteristics, Table S1). We screened samples for
CH by targeted re-sequencing of bone marrow mononuclear cell (BM MNC) DNA using a 347
kb panel covering 97 genes to a mean depth of 822X (Figure 1A, Figure S1A, Table S2). 57
of 195 individuals (29.2%) had CH with somatic driver mutation(s) at a variant allele frequency
(VAF) 2 0.02, and an additional 28 individuals (14.3%) had CH with mutation(s) at a VAF of
0.01-0.02 (Figure 1B-C, Table S2). Consistent with prior studies, 69% of CH cases had
mutations in DNMT3A and TET2 predicted to cause loss-of-function (Figure S1B). The median
VAF of all mutations detected in the cohort was 0.022 (Figures 1D). The frequency of
secondary mutations increased with age and two or more mutations were observed in 45% of

CH cases over the age of 80 (Figure 1E).

CH prevalence correlated with increasing age at a VAF cutoff of 0.02 (Figure 1F) or 0.01
(Figure S1C). Comparison with previous studies showed heterogeneity in the frequency of CH

cases across studies,?°%%

and the prevalence in our cohort was similar to that observed in a
study of peripheral blood (PB) DNA from 3,359 individuals in the general population,®® and to
another cohort of individuals undergoing hip replacement surgery>® (Figure 1F and Figure
S1C).*° Most studies of CH to date have performed sequencing on peripheral blood (PB) DNA.
To determine whether there is any difference in sensitivity for CH detection in BM compared
to PB, we compared mutation detection in paired PB granulocytic and BM MNCs DNA on 72
samples with CH and 27 samples without CH. PB sequencing identified an additional 14
mutations not previously called in BM sequencing. Although VAFs differed considerably
between BM and PB for some mutations, there was no difference across all mutated genes
(Figure 1G; p = 0.11; Wilcoxon signed-rank test), or specifically for DNMT3A and TET2
mutations (Figure 1H). Of 78 mutations detected with a VAF = 0.02 in either BM or PB, 77%
were detected in BM with a VAF = 0.02, and 85% were detected in PB with a VAF = 0.02
(Figure 11). There was also no significant difference in the number of individuals detected with

CH between BM and PB (Figure 1J). Our analysis suggests somatic mutations are detected



with comparable sensitivity in PB and BM and that the frequency of CH is similar between

patients undergoing hip replacement surgery and the general population.
HSPC differentiation trajectory in DNMT3A and TET2-mutant clonal hematopoiesis

As mutant cells in human CH occur at low frequency, a high-fidelity method for distinguishing
mutant and WT cells within the same sample is needed to accurately study the consequences
of mutations in human BM. To address this, we further optimized TARGET-seq®°, which
combines high-fidelity single-cell genotyping with transcriptome sequencing on flow cytometry
index sorted cells. Our new method, TARGET-seq+, incorporates Smart-seq3 chemistry®' to
increase transcript detection sensitivity. To validate TARGET-seq+, we compared TARGET-
seq and TARGET-seq+ on JURKAT cells and primary human lineage™ (Lin") CD34" HSPCs
(Figure S1D). Sequencing metrics were comparable between the methods (Figure S1E), but
TARGET-seq+ yielded a higher proportion of cells passing quality filters (Figures S1F).
Furthermore, TARGET-seq+ increased the number of genes detected per cell by 13.5% in
JURKAT cells and by 19.0% in HSPCs (Figures S1G-H). Increased transcript detection
sensitivity was observed in both frequently and lowly expressed genes (Figure Sf1l).
Consistent with more efficient transcript capture, cell-to-cell correlations of transcript detection

improved significantly with TARGET-seq+ (Figure S1J).

We applied TARGET-seq+ to 9 CH samples and 4 age-matched controls without known driver
mutations (non-CH samples) (Figure 2A, Table S3). We focused on hematopoiesis in
DNMT3A and TET2-mutant BM samples by selecting 5 cases with heterozygous DNMT3A
LoF mutations, 3 with TET2 LoF mutations, and one case with mutations in both DNMT3A and
TET2. VAFs in BM ranged from 0.061 to 0.366 (Table S3). In two CH cases, there were
additional mutations at low VAF (<0.02) (Table S3). We sorted a mean of 1071 cells/sample
(range 348-1824), composed of purified Lin"CD34" HSPCs, further enriched for primitive Lin~
CD34"CD38™ HSCs and multipotent progenitors (MPPs), combined with CD34~ mature cells
(Figure S2A). Approximately 40-45% of cells across all samples were Lin"CD34°CD38"; a
similar percentage were Lin"CD34"CD38"; and ~10% were CD34~ (Figure S2B). 95.0% of
sorted cells (13,247/13,939) were included for further analysis after quality filtering (Figure
S2C). We detected ~10° RNA counts (Figure S2D) and a median of 6484 genes per cell

(Figure S2E). These metrics were consistent across samples.

To generate a hematopoietic landscape based on single-cell RNA profiles, we integrated gene
expression data across the 13 samples (Figure S2F). We annotated 23 cell clusters using

published gene signatures®?7°

and previously described marker genes for specific populations
and lineages (Figures 2B, 2C, S2G-H). Using the flow cytometry index data, we overlaid

immunophenotypic population identities on the transcriptional landscape (Figure 2D).



Immunophenotypically defined HSPC populations were often present in more than one
transcriptionally defined population (Figure S2I), consistent with transcriptional clusters

providing a more granular view of hematopoietic cell states, as previously suggested.®%¢’

Downstream of the HSC/MPP cluster, a continuum of transcriptional cell states was observed,
with initial separation into two distinct clusters, namely the lymphoid-primed multipotent
progenitor (LMPP) and the erythro/megakaryocytic-primed multipotent progenitor (EMPP)
(Figure 2B). A series of cell states with neutrophil/monocyte and lymphoid potential extended
downstream of LMPPs, whereas progressing from the EMPP were erythroid cells and
megakaryocytes, consistent with prior data.**’" By examining DNMT3A and TET2 gene
expression across hematopoiesis, we found that both genes were expressed in HSC/MPPs
and LMPP, with reduced expression in lymphoid and erythroid lineages (Figure 2E). Notably,

TET2 expression increased during myeloid maturation, in contrast to DNMT3A.

Even though CH is mainly composed of normal cells, prior data have shown the frequencies
of immunophenotypic HSPC change with age’ and in myeloid disease.”’® As a foundation
to examine hematopoiesis in CH, we used two approaches to document the size of the HSPC
compartments in CH. First, we measured the frequency of cells across the transcriptional
landscape and compared CH samples with non-CH samples (details in Methods). On average,
DNMT3A-mutant samples had a modest 0.89-fold reduction in transcriptional HSC/MPPs and
early lympho-myeloid progenitors, and a 1.2 to 1.4-fold increase in late progenitor cells (Figure
2F). By contrast, TET2-mutant samples showed a modest 1.2-fold expansion of transcriptional
HSC/MPPs (Figure 2G). We then performed conventional immunophenotyping on a larger
sample set, which showed Lin"CD34"CD38 CD45RACD90* HSCs and CD49f" long-term
HSCs (LT-HSC) were 2-fold and 2.2-fold expanded, respectively, in TET2-mutant samples
relative to non-CH samples (Figures 2H and S2J). Additionally, DNMT3A- and TET2-mutant
CH samples showed a 3.9-fold and 2.9-fold increase in the rare immunophenotypic Lin~
CD34"CD38 CD45RA™ LMPP population respectively (Figure 2H), which constitutes a minor
fraction of the transcriptionally-defined LMPP and multi-lymphoid progenitors (MLP) (Figure
S2l1). Overall, the sizes of the HSPC compartments are moderately perturbed in DNMT3A-
and TET2-mutant CH.

Distinct patterns of clonal expansion of DNMT3A- and TET2-mutant clones

Global differences in HSPC compartments fail to reveal the differential size of co-existing CH
mutant clones as opposed to WT cells. To address this, we directly compared mutant and WT
cells within the same samples, by integrating single-cell genotyping data with gene expression
profiles. DNMT3A and TET2 loci were successfully amplified in 97.7% and 98.1% of cells

respectively, resulting in clonal assignment for 93.1% of CH cells (Figure S3A). Importantly,



allelic dropout (ADO) rates were low (7.2—13.4% across 4 loci in which ADO was estimated
by a heterozygous germline single nucleotide polymorphism in the genotyping amplicon),
allowing us to confidently identify most mutant and WT cells (Figure S3B). Genotyping rates
for DNMT3A and TET2 were high across all cell types (Figure S3C), and the frequency of
mutant cells detected by TARGET-seq+ correlated well with estimates from bulk BM DNA
sequencing (Figure S3D). In all the subjects with more than one clone, DNMT3A or TET2
mutations were present in the founder clone, allowing us to determine the effect of these

mutations in a WT background (Figures S3E-L).

To determine the expansion or contraction of mutant clones through hematopoietic
differentiation, we projected genotypes onto the transcriptomic differentiation landscape and
compared the density of mutant and wild type cells (Figure 3A). We included all successfully
genotyped cells from CH samples (including Lin"CD34", Lin"CD34*CD38" and CD34" sorting
strategies). By considering the ratio of cell density between mutant and WT cells (hereafter
referred to as the mutant clone likelihood) and normalizing this likelihood to that of the
HSC/MPP cluster within each sample, we could determine how clone size changes
downstream of the HSC/MPP (Figure 3A).

First, we analyzed the pattern of expansion of clones with a single DNMT3A mutation. Cells
with a single DNMT3A mutation were intermingled with DNMT3AYT cells, both within individual
samples (Figures S3E-I) and in the integrated dataset (Figure 3B), indicating that DNMT3AYYT
and DNMT3A"T cells shared a similar differentiation trajectory and that mutant cells did not
create novel cell states. In HSC/MPPs, the contribution of mutant cells was highly variable,
with the clone size ranging from 3.4% to 70.4% (Figures 3B and S3E-I). Across all samples,
changes in DNMT3AMYT clone size through differentiation were modest (Figures 3C and 3D).
Downstream of HSC/MPPs, the mean mutant clone likelihood was approximately 50% higher
in early EMPP and LMPP populations than in HSC/MPPs (Figures 3C and 3D). Clone sizes
were then largely maintained at later stages of differentiation, except for in T cells and to a
lesser extent B cells, where clone size was on average 50% smaller than in HSC/MPPs.
Depletion of DNMT3AYYT cells in lymphoid cells was variable between individuals, with mutant
cells being nearly absent from lymphoid cells in one sample (Figure S3E), consistent with
previous data from purified peripheral blood cell populations.”””® Overall, DNMT3AYYT clonal
expansion occurred primarily in HSCs and early multipotent progenitors. Furthermore, aside
from depletion in B and T cells, there was no evidence of lineage bias in DNMT3AMT cells, in
contrast to data from myeloma remission samples in which DNMT3AR®2-mutant CH cells were

biased towards the megakaryocytic-erythroid lineage.*®

TET2YVT cells also intermingled with TET2"T cells (Figure 3E). Clone size within HSC/MPPs
varied between 1.1%-32.6% (Figures 3E and S3J-L). In contrast to DNMT3AM"T clones, there



was more pronounced expansion of TET2YWT clones downstream of HSC/MPPs during
myelopoiesis (Figures 3F and 3G). Indeed, TET2YYT clones were on average 2.5-3 fold larger
in granulocyte-monocyte progenitors (GMP) compared to HSC/MPPs. In 2 out of 3 samples,
the mutant clone also expanded within erythroid progenitors (Figures S3K and S3L). By
contrast, TET2YT cells were almost absent from mature B and T cells in all samples,
suggesting inability to complete terminal lymphoid differentiation. Conversely, there was
heterogeneity in the contribution of TET2YVT cells to earlier lymphoid progenitors. In 2/3 cases
we observed a depletion of mutant cells from these populations (Figures S3J and S3L), but in

one individual the TET2YVT clone constituted 91% of B cell progenitors (Figure S3K).

Next, to understand the differentiation potential of heterozygous versus homozygous TET2YVT
clones, we studied one sample where two TET2 mutations were acquired sequentially in a
linear clonal structure, followed by acquisition of an ATM mutation in a small terminal subclone
(Figure 3H). The single- and double-TET2YVT clones each contributed to only 1.1% of
HSC/MPPs. While the single-TET2YYT clone expanded 3—4 fold in downstream erythroid and
myeloid progenitors, the double-TET2YYT clone dramatically outcompeted the single mutant
clone during myelopoiesis, contributing to more than half of all cells in GMP, plasmacytoid
dendritic cells (pDC) and monocytes (Figures 31 and 3J). Notably, immunophenotypic pDC
were expanded in this sample (Figure 3K). Interestingly, there was also a 2.6-fold expansion
of the immunophenotypic HSC and MPP populations in this sample relative to non-CH
samples (Figure 3K). Since 97.6% of transcriptional HSC/MPPs were TET2VT, this raises the
question of whether TET2YYT CH might increase WT HSC/MPP cell numbers in a non-cell
autonomous manner (Figure 3K). Overall, TET2 LoF leads to a competitive advantage within
HSCs and biased cell output towards myelopoiesis in a gene dose dependent manner,

consistent with TET2 gene expression across hematopoiesis (Figure 2E).

Finally, we had the informative opportunity to study clonal competition between DNMT3AYYT
and TET2YT cells in the same individual in a sample with co-existing, independently acquired
DNMT3AT and TET2YVT clones (Figure 3L). Interestingly, the DNMT3AMYT clone was 6 times
larger than the TET2YT clone within HSC/MPPs, but the TET2VT clone became 4 times larger
than the DNMT3AMT clone within the GMPs (Figure 3M and 3N). Notably, the TET2YVT clone
was also larger than the DNMT3AYYT clone in erythroid and early lymphoid progenitors, as
well as during early B cell lymphopoiesis (Figure 3M).

In summary, DNMT3AMYT and TET2YVT clones showed distinct patterns of clonal expansion

across differentiation. The selective advantage of DNMT3AMYT

clones occurs mainly in HSCs
and early multipotent progenitors, whereas TET2YVT clones expand not only in HSCs, but also

further through differentiation, especially in myelopoiesis.



Transcriptional basis for dysregulated myeloid differentiation of TET2-mutant clones

As TET2MYT clonal expansion was most pronounced in the myeloid lineage, we further
explored the transcriptional basis of this phenotype in individuals with TET2YYT CH. We first
compared the density distributions of TET2YYT and TET2"" cells along myeloid pseudotime
(the differentiation trajectory from HSCs to mature myeloid cells) (Figure 4A). TET2'T cells
accumulated particularly at the progenitor stage, within the cycling LMPP, early GMP, and late
GMP transcriptional clusters, and to a lesser extent at later stages of the trajectory, in mature

plasmacytoid dendritic cell (pDC) and monocyte clusters (Figure 4B).

At least two reasons may explain the increased ratio of TET2YVT versus TET2"" cells within
progenitor stages of myelopoiesis. TET2YYT myeloid progenitor expansion might arise either
from reduced retention of stem cell transcriptional programs and increased myeloid

differentiation from HSCs, and/or due to altered maturation of myeloid progenitors.

To begin to address this, we performed gene set enrichment analysis (GSEA) using published
HSPC signatures®2©7° to examine transcriptional differences between TET2YWT and TET2"T
cells within LMPP and GMP clusters. We first validated these signatures in our dataset (Figure
S4A). Compared to TET2"" cells, TET2YYT LMPPs, cycling LMPPs and GMPs were negatively
enriched for HSC signatures (Figure 4C). Conversely, TET2"YT GMPs were enriched for
neutrophil progenitor and mature neutrophil/monocyte signatures (Figure 4C). Concordantly,
CD38 and CD45RA surface protein expression was higher in TET2MYT compared to TET2VT
LMPPs (Figure S4B), consistent with our previous data that higher expression of these
markers enriches for myeloid potential in LMPPs.®” Finally, megakaryocytic-erythroid
signatures were also negatively enriched, particularly in TET2YYT cycling LMPP cells (Figure

S4C), consistent with their myeloid bias.

To further explore differentiation kinetics, we analyzed the same HSPC signatures across
myeloid pseudotime by computing the AUCell score®® for these signatures in TET2YVT and
TET2"T cells (Figure 4D). This showed that HSC genes (both genes with increased expression
in HSCs versus CD34" progenitors and those with increased expression in BM LT-HSC versus
short-term HSCs (ST-HSC)) showed a faster reduction in expression in TET2YYT compared to
TET2"" cells along the trajectory. Furthermore, gene sets associated with neutrophil
progenitors and monocytes showed earlier, or “premature”, expression in TET2YYT cells.
Concordantly, exemplar genes expressed in mature myeloid cells, including MPO, NKG?7,
KLF4, and RBM47, showed premature expression in TET2YYT progenitors along myeloid
pseudotime (Figure S4D). Taken together, this suggests that early TET2YVT lympho-myeloid
progenitors retain less HSC and non-myeloid programs, while later in differentiation, TET2YYT

progenitors commit more rapidly to myelopoiesis.



We next wanted to identify potential drivers of earlier expression of mature myeloid gene
programs in TET2YYT myeloid progenitors. We used pySCENIC to compare expression of TFs
and their putative downstream targets genes (i.e. regulons) between TET2YYT and TET2"T
cells within LMPP and early GMP clusters, where lymphoid and myeloid lineages diverge. The
canonical myeloid TFs CEBPD, CEBPA, IRF8 SPI1, and SPIB were all more active in TET2YVT
LMPPs and early GMPs (Figure 4E). Conversely, TFs associated with HSC self-renewal
(MEIS1, HOXA9, HOXB2, NFYB and PBX1), and with megakaryocytic-erythroid differentiation
(GATA1, TAL1, and KLF1) were less active in TET2YVT cells. Regulon activity (Figure 4F and
4G), as well as TF expression (Figure 4H) of CEBPA, SPI1, IRF8, and CEBPD, peaked earlier
in TET2YYT versus TET2"T cells along myeloid pseudotime. This quartet of myeloid TFs are
required both in early (CEBPA, SPI1 and IRF8) and later (SPI1, IRF8 and CEBPD) stages of
myelopoiesis. In contrast, expression of MEIS1 and its targets were downregulated earlier in
TET2MVT cells. Interestingly, binding motifs of CEBPA, CEBPD, SPI1, SPIB, and ELF1/2 were
also enriched within differentially methylated enhancers in peripheral blood granulocytes from
patients with TET2YYT cytopenia of undetermined significance (CCUS) (Figure 41).2" This
suggests a link between altered enhancer methylation and dysregulated myeloid TF activity
in TET2YYT myeloid cells.

Finally, we explored the transcriptional consequences of earlier and aberrant myeloid
differentiation in TET2MYT cells. When we compared TET2YYT and TET2"T LMPP and GMP,
and performed GSEA (Figure S4E), we identified enrichment of signatures associated with
cell cycle (cycling LMPP), oxidative phosphorylation, cytokine signaling, and innate immune
effector function (GMP) in TET2YYT cells. Overall, this suggests that TET2YYT myeloid
progenitors are biased towards maturation, with accelerated upregulation of mature gene

expression programs and dysregulated expression of inflammatory pathways.

Non-cell-autonomous activation of inflammatory transcriptional programs in HSC/MPP

in clonal hematopoiesis is attenuated in mutant HSCs

Humans have an estimated 50,000-200,000 HSCs.?? In an individual in which 1% of HSCs
harbor a CH mutation, this would represent a 500-2,000-fold expansion from a single initiating
mutant HSC. When compared to this, changes in clone size observed downstream of the HSC
compartment are modest, implying that the greatest clonal expansion for both DNMT3AYYT
and TET2YUT (CHMYT) clones occurred within long-lived HSC/MPPs. At least two hypotheses
could explain the relative clonal advantage of CH"WT HSCs over WT (CH"T) HSCs: either
CHMYT HSCs may have a cell-autonomous competitive advantage and/or CH"" HSCs may be

at a competitive disadvantage.



To begin to dissect which hypotheses were operative, we first compared gene expression
between HSC/MPPs from CH samples (both CH"YT and CH"") and HSC/MPPs from age-
matched samples without CH (non-CH samples) (Figure 5A). We first identified differentially
expressed genes between either DNMT3AMYT (Figure 5B top left) or TET2YYT (Figure 5B top
right) HSC/MPPs and non-CH HSC/MPPs. GSEA showed enrichment of TNFa signaling via
NF-kB, inflammatory response, and HSC quiescence signatures in both DNMT3AYYT and
TET2YT HSC/MPPs compared to non-CH HSC/MPPs. By contrast, gene sets for progenitors
(GMP and to a lesser extent LMPP) were negatively enriched in DNMT3AMYT and TET2YVT
HSC/MPPs, suggesting CH"UT HSC/MPPs are less primed towards differentiation. Strikingly,
a similar pattern of enrichment was observed when DNMT3AYT and TET2"" HSC/MPPs from
CH samples were compared to non-CH HSC/MPPs (Figure 5B, bottom panels). Taken
together, these transcriptional data suggest HSC/MPPs in CH individuals are impacted by an

inflammatory milieu, regardless of whether they have DNMT3A or TET2 mutations.

Prior data indicate that aging is associated with chronic inflammation, increased NF-kB
signaling, increased quiescence and functional decline in HSCs.%*®° To evaluate if aging-
related signatures were enriched in CH HSC/MPPs compared to age-matched non-CH
HSC/MPPs, we performed single-nucleus RNA-seq (snRNA-seq) on human bone marrow
HSPCs collected from young and older aged individuals and performed differential expression
between HSCs to define signatures of aged HSCs (Figure S5A-D). For further validation, we
defined additional signatures of aged HSCs through re-analysis of two additional human
HSPC scRNA-seq datasets (Figures S5E-H and Methods).%%®#” Notably, transcriptional
signatures specific to aged human HSCs were enriched in DNMT3AMYT and TET2YUT
HSC/MPPs from CH samples compared to non-CH WT HSC/MPPs, as well as in DNMT3AVT
and TET2"T HSC/MPPs from CH samples compared to non-CH WT HSC/MPPs (Figure 5C).

We then asked how DNMT3A and TET2 mutations alter gene expression to provide CHYUT

HSC/MPPs a fitness advantage. Specifically, we wanted to understand the cell-intrinsic effects
of the CH mutation. We compared gene expression between CH"U" and CH"" cells and used
GSEA to identify gene expression programs that were differentially enriched between
DNMT3AYT and DNMT3A"YT HSC/MPPs (Figure 5D, left) or between TET2YWT and TET2VT
HSC/MPPs (Figure 5D, right). TNFa signaling, NF-kB pathway, IL-1 signaling, and IFNa
response signatures were all negatively enriched in CH"WT HSC/MPPs compared to CH""
HSC/MPPs. Furthermore, aged HSC signatures and those that distinguish LT-HSC from ST-
HSC were also negatively enriched in CHMYT HSC/MPPs compared to CH"T HSC/MPPs,
particularly in individuals with DNMT3AMYT CH. Specific genes associated with interferon, NF-
kB, IL-1, TGF-B signaling and early response were more highly expressed in DNMT3A"T and
TET2"T HSC/MPPs from CH individuals compared to HSC/MPPs from non-CH individuals



(Figure 5E, left panel). Conversely, many of the same genes were expressed at lower levels
in DNMT3AMYT and TET2YYT HSC/MPPs compared to their CH"" counterparts (Figure 5E,
right panel), consistent with CH"YT HSC/MPPs having an attenuated response to the
infammatory environment.

In contrast, signatures of cycle primed HSC, LMPP, and GMP were enriched in CH"'T

HSC/MPPs compared to CH"T HSC/MPPs (Figure 5D). Consistent with reduced quiescence
(or a more ST-HSC-like phenotype), DNMT3AYT and TET2YT HSC/MPPs also showed
positive enrichment for pathways related to mitosis, cell migration, and signaling, particularly
in TET2T cells, compared to CH"T HSC/MPPs (Figure S5I). Furthermore, TET2MWT
HSC/MPPs had greater RNA content, were larger, more granular, and had lower CD49f
protein expression compared to TET2VT cells (Figures S5J-M). These results suggest an
inverse relationship between molecular programs underlying inflammation and aging in
contrast to programs underlying lympho-myeloid differentiation priming within the HSC/MPP
compartment. We assessed the expression of these signatures in HSC/MPPs at the single-
cell level using AUCell scores. Indeed, expression of TNFa via NF-kB signaling was strongly
correlated with the aged HSC signatures, while both sets of signatures were negatively
correlated with the LMPP signature (Figure S5N).

These results suggested that CHYYT HSC/MPPs have an altered transcriptional response to
the CH environment. To generate molecular signatures that capture those processes that
differ between CH and non-CH samples, we compared gene expression profiles of CHV'
HSC/MPPs to non-CH HSC/MPPs (Figures 5F and S50). There were 561 genes upregulated
in CH"T HSC/MPPs, whereas only 61 genes were upregulated in non-CH HSC/MPPs (Figure
S50). Genes upregulated in CH"T HSC/MPPs were enriched for TNFa via NF-kB and TGF-B
signaling, as well as signatures of HSC quiescence and aging (Figure S5P). We then asked
whether DNMT3AYWT and TET2YYT HSC/MPPs were impacted differently than CHWT
HSC/MPPs. Indeed, both DNMT3AMYT and TET2YYT HSC/MPPs were negatively enriched for
the CH"T HSC/MPP signature (Figure 5G top panels), but positively enriched for the non-CH

HSC/MPP signature (Figure 5G bottom panels), consistent with our findings above.

In summary, our data suggest that, compared to their CH"" counterparts, CH"YT HSC/MPPs
are shifted towards a state that is more similar to non-CH HSC/MPPs. Collectively, these data
suggests that the transcriptional response to aging and inflammation may be attenuated in
CHMYT HSC/MPPs.

HSC are transcriptionally heterogeneous where distinct HSC subsets show differing

responses to the CH environment



Transcriptional differences between HSC/MPPs in a CH and non-CH context point to a need
for a more granular exploration of HSC/MPP heterogeneity. Thus, we subclustered
HSC/MPPs and the earliest progenitors from CH and non-CH samples (Figure 6A and Figure
S6A), using self-assembling manifolds (SAM), an unsupervised approach to prioritize
biologically relevant features among comparatively homogenous cells which has previously
been applied to human HSC/MPPs.#° This identified three distinct HSC clusters (HSC 1-3),
separated from the MPP, LMPP, and EMPP clusters. HSC1 and HSC2 were composed of
similar numbers of cells (1701 and 2150 respectively); HSC3 had far fewer cells (484). The
HSC clusters were the most highly enriched for HSC signatures (including LT-HSC) and
depleted for ST-HSC, LMPP, GMP and MEP signatures (Figure 6B and Figure S6B). HSC1
and HSC2 clusters were more enriched for CD49f+ HSCs compared to HSC3 cluster, which

was immunophenotypically more similar to MPPs (Figure S6C).

Next, we asked whether the HSC clusters were transcriptionally distinct with respect to
expression signatures of inflammation and aging (Figure 6C). Interestingly, HSC2 cells
expressed significantly higher levels of TNFa/NF-kB signaling, aged HSC and quiescent HSC

signatures,’®%

and lower levels of the activated HSC signature. Concordant with the more
quiescent transcriptional profile, HSC2 cells expressed fewer genes than HSC1 (Figure S6D).
Cluster HSC3 exhibited a more heterogeneous AUC cell score distribution and appeared
transcriptionally intermediate to HSC1 and HSC2 in its transcriptional profile. This pattern of
gene expression was also mirrored by expression of exemplar genes associated with
inflammatory signaling, quiescence, and cell cycle across the clusters (Figures S6E-G). For
example, HSC2 expressed lower levels of CDK6, which promotes exit from quiescence in LT-
HSCs,*" and higher levels of GPRC5C, which marks dormant human BM HSCs (Figures S6F-
G).” Interestingly, though the HSC1 cluster showed higher expression of genes that promote
exit from quiescence (Figure S6G), it also showed higher expression of genes and TF regulons
implicated in HSC self-renewal (Figure S6H-1). Taken together, this suggests the HSC2 cluster
has a transcriptional phenotype reflecting greater NF-kB pathway activity, increased
quiescence, less proliferation, and decreased expression of transcription factors that support

HSC self-renewal.

Next, we asked if these HSC clusters differed between CH and non-CH samples. To begin to
address this, we first asked if the clusters differed with respect to their expression of the CHV'
HSC/MPP and non-CH HSC/MPP signatures (determined earlier, see Figure 5F). By AUCell
score, HSC2 cells expressed significantly higher levels of the CH"T HSC/MPP signature and
lower levels of the non-CH HSC/MPP signature (Figure 6D). Thus, there is concordance
between the elevated expression of inflammatory and aged HSC signatures in WT HSC/MPPs

from CH samples and in the HSC2 cluster.



To determine if the heightened inflammatory transcriptional response in HSC/MPPs in CH
versus non-CH samples correlated with differences in HSC cluster composition, we compared
the frequency of the different HSC and MPP clusters as a proportion of all cells in the Lin~
CD34" compartment (excluding Lin"CD34*CD38" enriched cells) of non-CH and CH samples
(Figure 6E-F). Interestingly, the HSC1 cluster was significantly smaller in CH samples. Though
the HSC2 cluster was larger in CH samples, this did not reach statistical significance. Taken
together, this suggests differences in HSC cluster composition between CH and non-CH

samples may provide a cellular basis for the heightened response to inflammation in CH.

The analysis above did not examine differences between CH'YT HSCs and WT HSCs within
CH samples. Specifically, it did not provide an explanation for why the inflammatory and aging
signatures were attenuated in CH"YT compared to CH"" HSCs. One possible hypothesis is
that there is an enrichment of CH"YT over CH"" HSCs within the HSC1 cluster, and an over-
representation of CH"T HSCs in the HSC2 cluster. To examine this, we determined the ratio
of CHMUT to CH"T HSCs in the HSC1 and HSC2 clusters (Figure 6G-H and S6J). This analysis
showed that this hypothesis was incorrect. The relative density of both DNMT3AMYT and
TET2MVT to CHVT HSCs was similar across all HSC clusters. This was corroborated by lack of
HMUT

statistically significant difference in C
HSC2 cluster (Figure 6l).

clone size in the HSC1 cluster compared to the

An alternative hypothesis is that the transcriptional profiles of the different HSC clusters could
be differently modified by the CH mutation. To test this hypothesis, we compared enrichment
of the inflammatory, aging, HSC, and progenitor signatures between DNMT3AMYT and
DNMT3AYT HSCs in DNMT3A-mutant CH samples, within the three HSC clusters (Figure 6J,
left panel). Specifically within the HSC2 cluster, DNMT3AYYT cells were negatively enriched
for TNFa signaling via NF-kB, aged HSC, cycle-primed HSC, and LT-HSC signatures, but
positively enriched for ST-HSC, LMPP, and GMP signatures. Similar results were seen when
TET2YT HSCs were compared to TET2"T HSCs in TET2-mutant CH samples (Figure 6J, right
panel). Some of these differences were shared in the HSC1 and HSC3 clusters in both
DNMT3AMYT and TET2YYT mutant CH samples but were far less marked. These data support
the hypothesis that DNMT3A and TETZ2 mutations, either directly or indirectly, attenuate
expression of transcriptional programs related to inflammatory signaling and aging, while
promoting expression of programs associated with lympho-myeloid differentiation, principally
in the HSC2 cluster.

Discussion

Our study has uncovered new insights into the mechanisms whereby the human CH"UT HSC

population gradually gains an advantage over the vastly more numerous non-mutant HSCs.



Over time, as the inflammatory milieu of aging suppresses HSC function, the CH mutation
either directly, or indirectly, attenuates the deleterious HSC response to inflammation,
enabling CH"YT HSCs to gain a selective advantage (Figure 6K). This insight was enabled by
the first detailed single-cell examination of CH from older individuals with unperturbed
hematopoiesis. These samples reflect the outcome of decades-long clonal competition, from
the time of acquisition of the CH mutation to sampling, in a human bone marrow environment.
Though laborious, the high-fidelity genotyping achieved with TARGET-seq+ ensures more
than 90% of all bone marrow cells are genotyped, compared to ~20% with gel bead-based
approaches.*® Therefore, we can more confidently assign transcriptomes to either wild-type

HMUT

cellsorC clones, that usually occur at low frequency. This enables better discrimination

of the transcriptional programs of CH"UT

and wild-type cells within the same individual. Finally,
TARGET-seq+ also provides high quality scRNA-seq data, both from highly and lowly

expressed genes, with better inter-cell concordance of transcript levels.

Our data show that neither DNMT3A nor TET2 heterozygous mutations alter the trajectory of
hematopoiesis, from HSPC to mature cells. Quantitatively, the vast majority of the steady state
fitness advantage of DNMT3AYYT and TET2YVT clones occurs at the HSC/MPP level (Figure
6K). CHMYT clones transit and differentiate normally with modest further expansion in the early
progenitor compartment. In TET2YUT clones there is further 2-4-fold expansion within
LMPP/GMP stages through to more mature myelomonocytic and dendritic precursor cells.
Based on transcriptional kinetics across myeloid differentiation, early TET2YYT lympho-
myeloid progenitors retain less HSC and non-myeloid gene expression programs and show
premature upregulation of mature programs. Our data hypothesize that this is due to
increased, and premature, activity of the myeloid transcription factors CEBPA, SPI, IRF8,
CEBPD, and SPIB. The ability of TET2 mutations to promote abnormal myeloid differentiation
is further highlighted by the 10-fold increased contribution of a TET27~ homozygous mutant
clone to mature myeloid cells compared to a TET2"~ heterozygous clone within the same
individual. Finally, data from an instructive individual with both DNMT3AMYT and TET2YWT
clones suggest that DNMT3AMYT clones may outcompete TET2YVT clones in the HSC/MPP
compartment but that this advantage is reversed during myeloid maturation. An important
caveat with this interpretation is the larger DNMT3AYT clone in the HSC/MPP compartment

may simply reflect a clone that arose earlier in life.

Prior murine studies show that Tet27~,%4%% Dnmt3a™", and Dnmt3aR¢®"* HSPCs*"*8 exhibit
clonal advantage in inflammatory environments. Various studies have implicated exposure to
different cytokines in the clonal advantage of mutant HSPCs: IL-1 through the IL-1 receptor,®
IL-6 through Shp/Stat3 signaling,”® TNFa through the TNFR1,*® and IFN-y.*’ Intestinal

bacterial translocation® and chronic mycobacterial infection*” can act as triggers for this



inflammatory state. Tet2 has been shown to directly repress the pro-inflammatory cytokine IL-
6 through recruitment of the histone demethylase Hdac2 and loss of Tet2 leads to elevated
IL-6 levels.® However, the above studies have not fully studied the differential impact of
inflammation on co-existing WT and CH"YT HSCs in native hematopoiesis. Specifically, these
studies did not address if CHYUT HSCs clonally outcompete WT HSCs despite both cell
populations being adversely affected by a heightened inflammatory state, or if CHYYT HSCs
were more competitive because they were less impacted by the inflammatory environment.
Furthermore, animal model studies may not adequately replicate human CH where clones are
exposed to changing environments over decades, and where environments are

heterogeneous rather than controlled.

Our data showing enrichment for transcriptional signatures of NF-kB signaling, inflammatory
response and aging in both CH"" and CH"YT HSC/MPPs in individuals with CH compared to
HSC/MPPs from age-matched individuals without CH, support the notion of a more
inflammatory environment in CH. A caveat of our findings is that mean VAF of the CH clones
studied by TARGET-seq+ was 14% (mean clone size 28%), which is larger than most CH
clones. This may have resulted in a more inflammatory bone marrow environment than for
individuals with smaller CH clones. Regardless of this caveat, within any one individual with
CH that we studied, there was a reduced transcriptional impact of inflammation on CH"YT
HSCs compared to WT HSCs that co-exist in the same bone marrow microenvironment. Our
data support two hypotheses: first, that heighted inflammation suppresses HSC function, and
secondly that the CH mutation either directly, or indirectly, represses the response to
inflammation within HSCs. In support of the first hypothesis are several studies showing
various inflammatory stimuli, including chronic IL-1 exposure, impair HSC self-renewal and
that these changes mimic those seen in aged mice.?** Furthermore, an inflammatory bone
marrow niche in aged mice, including IL-1B produced by a damaged endosteum, leads to
increased myelopoiesis and impaired hematopoietic recovery.® In agreement with the second
hypothesis are data from zebrafish where subclonal CH mutations lead to expression of pro-
inflammatory genes in mature mutant myeloid cells but anti-inflammatory genes in mutant
HSPCs, providing them with a relative fitness advantage.®® In mice when TET2"YT subclones
are exposed to IL-1, they functionally outcompete WT HSCs.*° This is correlated with a smaller
decrease in expression of genes promoting HSC self-renewal in TET2YY" compared to WT
HSCs.

Further work is now needed to define the diverse drivers of inflammation in humans and the
mechanisms of how human CH"YT HSCs resist the detrimental effects of inflammation. The
inflammatory drivers are likely to be highly heterogenous and vary over time. Despite this,

there may be common final pathways of gene regulation downstream of multiple inflammatory



signals. A careful examination of the human bone marrow niche in non-CH and CH individuals,
with different CH clone sizes, would be helpful in this regard. This information, if combined
with molecular and functional data from HSPCs and inferred rates of clonal expansion from
the same individuals, may help identify the most potent putative inflammatory drivers of
selection of CHYVT clones over WT HSCs. These datasets, combined with functional analyses,
could ultimately lead to therapies that diminish either the most important inflammatory drivers
of CHMYT clonal selection, or the ability of CHYUT clones to resist the deleterious effect of

inflammation on HSC function.
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Figure 1. Identification of cases with age-related clonal hematopoiesis in individuals

undergoing hip replacement surgery.

(A) Experimental design for identifying individuals with clonal hematopoiesis. Bone marrow

samples were collected from 195 individuals undergoing hip replacement surgery. Targeted

re-sequencing (mean coverage ~800X) using a 347 kb panel (Table S2) was performed on

DNA extracted from BM MNCs to identify somatic driver mutations (Table S2). Cases with

clonal hematopoiesis were defined as those with a somatic driver mutation at a VAF of = 0.01.

(B) Fraction of samples in the cohort with one or more driver mutations at VAFs of 0.01-0.02

or 2 0.02.



(C) Landscape of somatic variants observed in the cohort. Each row represents a gene, and
each column corresponds to a participant in the study. Top bar plot indicates the number of
mutations per sample. Variants are color-coded and classified as pathogenic or variants of
unknown significance (VUS) according to criteria specified in Methods. Samples with >1
variant in any one gene are classified as Multiple. Samples with = 1 pathogenic driver mutation
were categorized as having clonal hematopoiesis (bottom bar; red).

(D) Distribution of VAFs in all mutations observed across the cohort.

(E) Frequency of mutations detected per individual by age group.

(F) Prevalence of CH with at least one driver mutation (VAF = 0.02) by age. BM DNA
sequencing data from participants in this study (n = 195) are compared with a cohort of 676

|22

individuals reported by Abelson et al.>*, a cohort of 3,359 individuals reported by van Zeventer

et al.%®

, and a cohort of 199 individuals undergoing total hip replacement (n = 109 BM samples
and n = 91 PB samples) reported by Hecker et al.*® Error bars represent 95% confidence
intervals.

(G) Comparison of VAFs for 128 mutations in paired BM and PB samples. Mutations detected
with VAF = 0.01 in either sample type were included. The dashed line shows the line of equality
where BM VAF is equal to PB VAF. R indicates the Pearson correlation coefficient.

(H) Pairwise comparison of VAFs for mutations detected in DNMT3A (n = 35) and TET2 (n =
19). Statistical analysis performed using Wilcoxon signed-rank test.

(I) Proportion of mutations detected with a VAF = 0.02 in BM or PB DNA (n = 78 mutations
detected with a VAF = 0.02 in either BM or PB in 83 individuals with paired BM and PB
sequencing data).

(J) Proportion of CH cases with at least one mutation detected with a VAF = 0.02 in BM or PB
(n = 83 cases with paired BM and PB sequencing data and a mutation with VAF = 0.02 in
either BM or PB).
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Figure 2. Hematopoietic differentiation trajectory in DNMT3A and TET2-mutant clonal

hematopoiesis.

(A) Experimental design for TARGET-seq+ analysis of BM samples from 9 donors with CH

and 4 age-matched samples without CH (non-CH). Samples were FACS enriched for Lin~
CD34" HSPCs, Lin"CD34*CD38" cells and CD34" cells and processed using TARGET-seq+

obtaining transcriptome, targeted genotyping, and flow cytometry index immunophenotyping

for each cell.

(B) UMAP projection of integrated single-cell transcriptome data (n =

donors). Cells are colored by their cluster annotation, see also Figure S2.

13,247 cells from 13

(C) UMAP superimposed with AUCell enrichment scores for the BM long-term HSC

signature.”

(D) UMAP superimposed with the cell immunophenotype determined from flow cytometry

indexing.

(E) Heatmap of mean logz(normalized counts) for DNMT3A and TETZ2 in control, DNMT3A-

and TET2-mutant samples across hematopoietic cell types.



(F and G) UMAPs colored by the mean density of Lin"CD34" cells in DNMT3A-mutant (F) and
TET2-mutant (G) CH samples relative to age-matched non-CH samples. Cells sorted from the
total Lin"CD34* FACS gate were selected (n = 6,629 cells) and MELD * was used to estimate
the density of cells from each sample across the transcriptomic landscape. The mean density
for each sample type was then calculated and normalized to the mean density in non-CH
samples. A relative density > 1 indicates that the probability of observing a given cell is greater
in CH samples than in non-CH samples, whereas a relative density < 1 indicates that the
probability is lower in CH samples than in non-CH samples.

(H) Flow cytometry analysis was performed on bone marrow samples from normal age-
matched non-CH samples (n = 18), and CH samples with either DNMT3A (n = 14) or TET2 (n
= 9) mutations present in the largest clone. Barplots show the frequency of stem/progenitor
cells as a percentage of BM MNCs. Data are represented as mean + SEM. P-values calculated
by Wilcoxon rank sum test with Holm-Bonferroni multiple testing correction. * p < 0.05, ** p <
0.01.

HSC, hematopoietic stem cells; MPP, multipotent progenitor; LMPP, lympho-myeloid primed
multipotent progenitor; GMP, granulocyte-monocyte progenitor; pDC, plasmacytoid dendritic
cell progenitor; EMPP, erythroid/megakaryocyte primed multipotent progenitor; MkP,
megakaryocytic progenitor; EryP, erythroid progenitor; EBMP, Eosinophil/basophil/mast cell
progenitor; MLP, multi-lymphoid progenitor; B-NK, B and NK cell progenitor.
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Figure 3. Distinct patterns of clonal expansion of DNMT3A- and TET2-mutant clones.

(A) Single-cell genotyping and gene expression data were integrated and, for each sample,

MELD was used to estimate the density of cells from each clone across the transcriptomic

landscape (see Methods). The relative likelihood of a cell being mutant vs. WT (relative clone

likelihood) was calculated and then normalized to the mean likelihood in the HSC/MPP cluster

within each sample. A mutant relative likelihood > 1 indicates that the probability of a given

cell being mutant is greater than in the HSC/MPP, whereas a relative likelihood < 1 indicates
that the probability is lower than in the HSC/MPP.



(B) UMAP of WT and single-mutant cells from DNMT3AMYT CH samples (n = 4301 cells from
5 samples) colored by genotype, either wild-type (WT, n = 2813) or DNMT3AYT (n = 1488).
(C) UMAP of WT and single-mutant cells from DNMT3AYYT CH samples colored by the mean
likelihood of cells being DNMT3AMYT relative to the average within HSC/MPP. The mean value
across 5 samples is shown.

(D) Scatterplot showing the distribution of mean DNMT3AYT clone likelihoods by cluster. Each
dot represents a cell. The y axis shows the mean DNMT3AYYT clone likelihood relative to the
HSC/MPP as in (C). Each dot is colored by the standard deviation of the values across 5
samples.

(E) UMAP of WT and single-mutant cells from TET2MYT CH samples (n = 3472 cells from 3
samples) colored by genotype, either wild-type (WT, n = 2655) or TET2YYT (n = 817).

(F) UMAP of WT and single-mutant cells from TET2YYT CH samples colored by the mean
likelihood of cells being TET2YVT relative to the average within HSC/MPP. The mean value
across 3 samples is shown.

(G) Scatterplot showing the distribution of mean TET2YVT clone likelihoods by cluster. Each
dot is colored by the standard deviation of the values across the 3 samples.

(H) Clonal structure for the NOC002 sample in which 2 separate TET2 mutations and an ATM
mutation were detected. Cell numbers assigned to each clone are indicated.

(I) Clonal composition within each cluster for sample NOC002. Each clone is colored as in (H).
The number of cells analyzed in each cluster is shown above.

(J) UMAP showing the likelihood of cells being in the double TET2YT clone (TET29726X R1261C)
relative to the average within HSC/MPP in the NOC002 sample.

(K) Immunophenotypic BM compartment sizes for the NOC002 sample. Left-hand bars show
compartments as a proportion of total BM MNCs, while right-hand bars show HSPC
compartments within Lin"CD34" cells. Data from the NOC002 sample are compared with the
median population sizes from 18 age-matched control samples.

(L) Clonal structure for the NOC115 sample in which DNMT3A and TETZ2 mutations were
detected. The two mutations were mutually exclusive in single-cell genotyping. Cell numbers
assigned to each clone are indicated.

(M) As in (1) but for sample NOC115. Each clone is colored as in the clonal structure in (L).
(N) UMAPs showing the likelihood of cells being in the DNMT3AMYT (left)and TET2YVT (right)
clones relative to the average within HSC/MPP in the NOC115 sample.
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Figure 4. TET2-mutant clones lead to dysregulated myeloid differentiation.

(A) UMAP showing the myeloid differentiation trajectory with cells colored by pseudotime
score.

(B) Top: Density plot showing the distribution of TET2"T and TET2YYT cells through
pseudotime in the myeloid lineage. Cells sorted as part of the total Lin"CD34" FACS gate were
downsampled to an equal number cells per sample (n = 176 cells from each of 4 samples).
Bottom: Histogram showing the density of cells in each cluster along pseudotime for cells
included in this analysis.

(C) GSEA against hematopoietic signatures comparing TET2YVT versus TET2"T cells within
each LMPP and GMP cluster. Differential expression analysis was performed accounting for
sample and batch effects. Cells from the 4 TET2YYT CH samples were included in the analysis.

Color intensity indicates the normalized enrichment score (NES); signatures with FDR > 0.05



are colored grey. Positive NES values indicate enrichment in mutant cells. BM, bone marrow;
LT-HSC, long-term HSC; ST-HSC, short-term HSC.

(D) Local regression of AUCell expression scores for HSC and myeloid gene signatures along
myeloid pseudotime, comparing TET2"" and TET2YVT cells.

(E) Volcano plot showing differentially expressed regulons between TET2MYT and TET2"" cells
within the LMPP cycling and early GMP clusters in TET2YYT CH samples. FDR-corrected P-
values calculated by linear mixed model test accounting for sample effects.

(F) UMAPs showing activity of the indicated regulons across the hematopoietic landscape
within non-CH samples.

(G) Local regression of regulon activity through myeloid pseudotime, comparing TET2YYT and
TET2"7 cells in TET2YYT CH samples.

(H) Fitted gene expression values along pseudotime for the transcription factors shown in (F)
and (G) in TET2YYT and TET2"" cells in the myeloid lineage.

(I) Enrichment of TF motifs within differentially methylated enhancer regions (DMRs) that are
hypermethylated in monocytes from TET2-mutant CCUS patients®' (y-axis), plotted against
the ranked change in regulon activity (—-log10(FDR) * sign of the fold change) between
TET2YT and TET2"T cells within the LMPP cycling and early GMP clusters from (E).
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Figure 5. Non-cell-autonomous activation of inflammatory transcriptional programs in
HSC/MPP in clonal hematopoiesis is attenuated in mutant HSCs.

(A) Schematic showing the strategy for differential gene expression analysis between
HSC/MPPs from CH samples and HSC/MPPs from age-matched non-CH samples (black
arrows; panels B, C, E), and between CH"YT and CH"T HSC/MPPs within CH samples (grey
arrows; panels D, E).

(B) GSEA against Hallmark inflammatory signatures and hematopoietic lineage signatures
comparing WT or mutant HSC/MPPs from CH samples with HSC/MPPs from age-matched

non-CH samples. Differential expression analysis was performed accounting for sample, age,



and batch effects. The left panels show comparisons between the 4 non-CH samples (n =
1280 cells) and the five DNMT3AMYT samples (n = 1145 WT cells, n = 405 DNMT3AYYT cells).
The right panels show comparisons between the 4 non-CH samples (n = 1280 cells) and the
three TET2YY" samples (n = 1243 WT cells, n = 221 TET2"VT cells). Note the double-mutant
NOC115 sample was excluded from this analysis. Signatures with FDR > 0.2 are colored grey.
Positive NES values indicate enrichment in cells from CH samples.

(C) As in (B) but showing GSEA against aged HSC signatures derived from the in-house
dataset, and two additional studies comparing aged and young human HSCs.%¢#

(D) GSEA against NF-kB, interferon, and hematopoietic signatures comparing DNMT3AMYT
versus DNMT3AVTHSC/MPPs (left) and TET2YV" versus TET2"" HSC/MPPs (right) within CH
samples. Color intensity indicates the normalized enrichment score (NES); signatures with
FDR > 0.2 are colored grey. Positive NES values indicate enrichment in mutant cells. BM,
bone marrow; CB, cord blood.

(E) Heatmap showing log> fold change in expression of genes related to inflammatory
pathways within HSC/MPP. The left panel shows results when comparing WT cells from CH
samples vs. cells from non-CH samples. The right panel shows results when comparing
mutant cells from CH samples vs WT cells from CH samples. Asterisks represent FDR-
corrected p-values from differential expression testing. * FDR < 0.1, ** FDR < 0.05, *** FDR <
0.01.

(F) Schematic showing the strategy for deriving CH"" HSC/MPP and non-CH HSC/MPP
signatures. Differential expression analysis was performed between HSC/MPPs from the 4
non-CH samples (n = 1280 cells) and WT cells from the 9 CH samples (n = 2632 cells),
accounting for sample, age, and batch effects. Genes with FDR < 0.1 and log2FC > 0.5 were
included in each signature.

(G) GSEA enrichment plots for the CH HSC/MPP signature (top panels) and non-CH
HSC/MPP signature (bottom panels), comparing WT and mutant cells within CH samples.

Positive enrichment scores indicate enrichment in mutant cells.
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Figure 6. HSC are transcriptionally heterogeneous where distinct HSC subsets show

differing responses to the CH environment.
(A) UMAP embedding of 8059 cells from the HSC/MPP, EMPP, LMPP and LMPP cycling

clusters after feature weight derivation with the Self-Assembling Manifolds (SAM) algorithm.

Cells are colored by cluster annotation.

(B) UMAP superimposed with AUCell enrichment scores for a signature of genes differentially

expressed between HSCs and progenitors®®.

(C) AUCell enrichment scores for the Hallmark TNFa via NF-kB, HSC aging, dormant BM

HSC™, and quiescent vs activated CB HSC signatures®, comparing the 3 HSC clusters. P-



values calculated by pairwise unpaired t test. The area of each violin is proportional to the cell
numbers.

(D) AUCell enrichment scores for the CH"™ and non-CH HSC/MPP signatures, comparing the
3 HSC clusters. P-values calculated by pairwise unpaired  test.

(E) UMAP embeddings showing cells from non-CH and CH samples. Cells are colored by
sample type.

(F) Quantification of the size of each HSC/MPP cluster as a proportion of Lin"CD34" cells,
comparing CH and non-CH samples. Only cells sorted from the total Lin"CD34" FACS gate
were included. Data are represented as mean + SEM. Each dot represents a sample. P-values
calculated by unpaired f test.

(G) UMAPs of cells from DNMT3AYT CH samples (left panel) and TET2YYT CH samples (right
panel) colored by the mean likelihood of cells being in the mutant clone relative the average
in the HSC/MPP. As for Figure 3C-D and 3F-G, MELD was used to estimate the density of
cells from each genotype within each sample using the SAM-weighted PCA as input. The
mutant clone likelihood was then divided by the mean likelihood in the HSC/MPP cluster to
obtain a relative likelihood, and the mean relative likelihood across all samples analyzed is
shown (n = 6 DNMT3AYT CH samples; n = 4 TET2YYT CH samples). A relative likelihood = 1
indicates that the probability of a given cell being mutant is greater than the average for the
HSC/MPP, whereas a relative likelihood < 1 indicates that the probability is lower.

(H) Scatterplot showing the distribution of mean mutant clone likelihoods from (G) in the HSC1
and HSC2 clusters. Each dot represents a cell, and the color scale shows the standard
deviation of likelihood values across the samples.

(1) Comparison of the mutant clone size between HSC1 and HSC2 clusters for DNMT3AMYT
clones (left) and TET2YVT clones (right). Each dot represents a sample. P-values calculated
by paired Wilcoxon signed-rank test.

(J) GSEA against NF-kB, interferon, aging, and hematopoietic signatures comparing
DNMT3AYT versus DNMT3AYT HSC/MPPs (left) and TET2YVT versus TET2"T HSC/MPPs
(right) within CH samples. Signatures with FDR > 0.2 are colored grey. Positive NES values
indicate enrichment in mutant cells. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

(K) Model of DNMT3AMYT and TET2YVT clonal expansion. Exposure to inflammation impairs
the function of CH"T HSCs but mutant HSCs are less affected, leading to clonal expansion
over time (circular arrows). Downstream of the HSC, both DNMT3AYYT and TET2YT clones
expand moderately in early progenitors (linear arrows). In later differentiation, DNMT3AYYT

clone size is largely maintained, but TET2YVT clones expand further and have a myeloid bias.



METHODS

Cell culture

JURKAT human cell line was cultured in RPMI-1640 medium (Cat# 21875034, Gibco)
supplemented with 10% FBS and 1% V/V Pen-Strep (Cat# 15140122, Gibco). Cells were
regularly screened for Mycoplasma contamination using the MycoAlert Mycoplasma Detection
Kit (Cat# LT07-218). Cells were passaged every 2-3 days and seeded at approximately
500,000 cells/mL. Cell lines were kept in a CO- incubator at 37°°.

Patient samples

Patient samples were collected from individuals undergoing elective total hip replacement
(THR) surgery at the Nuffield Orthopaedic Centre, Oxford, under the Mechanisms of Age-
Related Clonal Haematopoiesis (MARCH) Study. Written informed consent was obtained from
all participants in accordance with the Declaration of Helsinki. This study was approved by the
Yorkshire & The Humber - Bradford Leeds Research Ethics Committee (NHS REC Ref:
17/YH/0382). Exclusion criteria were: History of rheumatoid arthritis or other inflammatory
arthritis, history of septic arthritis in the limb undergoing surgery, history of hematological
cancer, bisphosphonate use, and oral steroid use. Patient characteristics are summarized in
Table S1.

For the multi-ome analysis in young versus aged human bone marrow, bone marrow cells
from young donors (26-year-old female, and 24-year-old male) were purchased from Lonza,
while bone marrow samples from aged donors (70 and 77-year-old females) undergoing hip
replacement surgery were collected at the Traumatology and Orthopedics Hospital Lomas
Verdes (IMSS), Mexico. These elderly donors were confirmed to have no dysplasia of any
hematopoietic lineages by histological and CBC analysis.?® Ethical approval was obtained
from the Institutional Review Board (R-2012-785-092). Patient consent was obtained verbally,

and as determined by the Institutional Ethical Board.

Sample collection and processing
Trabecular bone fragments and bone marrow aspirates were obtained from the femoral canal
and collected in 10 mL anticoagulated buffer containing acid-citrate-dextrose, heparin sodium

and DNase. Samples of peripheral blood were collected in EDTA vacutainers.

All samples were processed within 24 hours of collection. Peripheral blood and bone marrow
aspirate samples were diluted 1:1 in RPMI-1640 (Gibco) and filtered through a 70 uym cell
strainer. Trabecular bone samples were manually fragmented with scissors and washed
thoroughly in RPMI media with DNase to collect trabecular marrow, which was then filtered
through a 70 pym cell strainer to obtain a single cell suspension and combined with the bone

marrow aspirate. Mononuclear cells were then isolated by Ficoll density gradient separation



(Sigma-Aldrich). For some samples, bone marrow CD34" cells were purified using a CD34
MicroBead kit and MACS separation columns (Miltenyi Biotec), according to the
manufacturer’s instructions. Unseparated MNCs, CD34-enriched and CD34-deplete fractions
were frozen in 90% fetal bovine serum (FBS, Sigma-Aldrich) with 10% dimethyl sulfoxide

(DMSO) and stored in liquid nitrogen until further use.

Peripheral blood granulocytic cell pellets isolated by Ficoll density gradient centrifugation were

frozen for DNA sequencing analysis of mutations in peripheral blood.
Targeted DNA sequencing

Library preparation and sequencing

Targeted DNA sequencing was performed on bone marrow MNCs and peripheral blood
granulocytic DNA samples. Pre-capture DNA libraries were prepared using the KAPA
HyperPlus protocol (Roche). 100 ng of genomic DNA was fragmented by enzymatic
fragmentation. Following end repair and A-tailing, adapter ligation was performed using KAPA
dual-indexed adapters (Roche). Library cleanup and double-sided size selection was
performed using Agencourt AMPure XP beads (Beckman Coulter) to obtain fragments of ~320
bp. Libraries were amplified by ligation-mediated PCR for 6 cycles using a KAPA HiFi HotStart
high-fidelity DNA polymerase (Roche) and purified using AMPure XP beads.

Targeted capture was performed using a custom pool of biotinylated capture probes (SeqCap
EZ Prime Choice, Roche) targeting 97 genes recurrently mutated in myeloid malignancies and
clonal hematopoiesis spanning 347 kb (Table S2). Amplified DNA libraries were hybridized to
the capture probes in pools of 10-12 samples according to the manufacturer’s instructions.
The captured DNA libraries were amplified by 14 cycles of PCR using a KAPA HiFi HotStart
DNA polymerase and purified using AMPure XP Beads.

Post-capture amplified DNA libraries were quantified by Qubit (Life Technologies) and size
distribution and quality analyzed using a Bioanalyzer chip (Agilent Technologies). Libraries
were pooled in equimolar concentrations and were sequenced on an lllumina NextSeq 500

using paired-end reads.

Somatic variant calling

Sequencing data were analyzed with a custom Python pipeline based on the GATK Best
Practices (GATK v4.1.2.0 and Picard v2.21.3). Raw sequencing reads were converted to an
unmapped BAM file and adapter sequences soft-clipped using Picard MarkllluminaAdapters.
Following conversion back to a FASTQ file, reads were mapped to the hg38 human reference
genome assembly using the Burrows—Wheeler aligner v0.7.17% with alternate contig-aware
alignment. Mapped and unmapped BAM files were merged using MergeBamAlignment and

reads from different sequencing lanes were combined. Duplicate reads were marked using



Picard MarkDuplicates and base quality scores recalibrated with GATK BaseRecalibrator and
ApplyBQSR. Somatic variant calling was performed on the pre-processed BAM files using
VarDictJava v1.7.0'° and Mutect2'" in tumor-only mode. For VarDict, variants were called
with @ minimum variant allele frequency of 0.01, minimum base quality score of 25 and
minimum supporting reads of 2, with indel realignment and removal of adapter sequences.
For Mutect2, a minimum tumor LOD of 2 was used and variants were filtered for sequence
context-dependent artefacts using FilterMutectCalls and FilterByOrientationBias. Indels were
left-aligned and normalized using bcftools norm (v1.9). Variants were annotated using
Annovar'®. Target enrichment metrics and coverage was calculated using Picard

CollectHsMetrics and custom scripts.

VarDict and Mutect2 variant calls were analyzed separately to identify a consensus list of high-
confidence variants. The following post-processing filters were applied to VarDict calls to

exclude likely sequencing artefacts:

1. Minimum of 5 variant reads for SNVs (with at least 2 reads in forward and reverse
directions), or minimum of 10 variant reads for indels (with at least 4 reads in forward

and reverse directions).
2. Minimum base quality score 30.

3. Minimum mapping quality score 40, except for variants in U2AF1;U2AF1L5, where the
mapping quality was ignored. This is because in hg38, there is a duplication of the
U2AF1 gene on chromosome 21 called U2AF1L5, which results in reads being flagged

as multi-mapped.
4. Maximum strand bias Fisher p-value of 0.0001.
5. No position bias towards beginning or end of reads.
The following post-processing filters were applied to Mutect2 calls:
1. Passed all default Mutect2 filters or only failing the clustered_events filter.

2. Minimum of 5 variant reads for SNVs (with at least 2 reads in forward and reverse
directions), or minimum of 10 variant reads for indels (with at least 4 reads in forward

and reverse directions).
Variants were flagged as likely germline, or sequencing artefacts, if any of the following
applied:

1. Variant allele with a population allele frequency >1 in 1,000 according to any of three
large polymorphism databases (Gnomad, 1000 Genomes Project, ESP6500) that is

not a hotspot driver mutation with a COSMIC (v88) occurrence count of >100 cases or



2.

is present in a list of clonal hematopoiesis-associated mutations compiled from five

large studies.”#21:22.103

Variant allele frequency (VAF) between 0.4—0.6 or >0.9 unless recurrent in COSMIC

>5 times, or previously reported in clonal hematopoiesis.
Present in a panel of normal cord blood samples.

Recurrent in the cohort unless present at least 5 times in COSMIC or at least 2 times

in the clonal hematopoiesis studies.

After filtering, variants were manually inspected using the Integrative Genomics Viewer (IGV)

tool (http://software.broadinstitute.org/software/igv/).

Annotation of pathogenic driver variants

Samples were annotated as having CH based on the presence of at least one driver mutation

in bone marrow sequencing at VAF = 0.01. Variants were annotated as pathogenic driver

mutations using the following criteria:

1.

7.

8.

Truncating mutations (nonsense, splice site or frameshift indel) in the following genes:
DNMT3A, TET2, ASXL1, NF1, IKZF1, RAD21, WT1, KMT2D, SH2B3, TP53, CEBPA,
RUNX1, BCOR, KDM6A, STAG2, PHF6, KMT2C, KMT2E, PPM1D, ATRX, EZH2,
CREBBP, NOTCH1, CUX1 and ZRSR2.

Non-synonymous variants at the following hotspot residues: CBL E366, L380, C384,
C396, C404 and R420; DNMT3A R882; FLT3 D835; IDH1 R132; IDH2 R140 and
R172; JAK2 V617F; KIT W557, V559 and D816; KRAS G12, G13, Q61 and A146;
MPL W515; NRAS G12, G13 and Q61; SF3B1 K666 and K700; SRSF2 P95; U2AF1
S34, R156 and Q157.

Non-synonymous variants occurring within the following residues of DNMT3A: p.292-
350, p.482-614 and p.634-912; TET2: p.1104-1481 and p.1843-2002; or NOTCHT1:
p.1574-1620, p.1671-1721.

Truncating variants in CALR exon 9.

FLT3 internal tandem duplications.

Non-synonymous variants reported at least 10 times in COSMIC with VAF < 0.4.
Non-synonymous variants falling within an annotated InterPro domain with VAF < 0.4.

Non-synonymous variants reported in COSMIC > 100 times.

If a variant did not meet these criteria, it was annotated as a variant of unknown significance

(VUS).



Comparison of bone marrow and peripheral blood allele frequencies

Variants were called in peripheral blood DNA sequencing data as described above, using a
minimum VAF cutoff of 0.005. Unfiltered variant calls were intersected with the list of curated
bone marrow variants to compare the VAF between bone marrow and blood. For those
mutations known to be present in bone marrow which were not called in peripheral blood, raw
allele counts were performed directly from the BAM files using bcftools mpileup (with minimum
base quality of 30 and minimum mapping quality of 35), and the allele frequency was

calculated.
Flow cytometry and FACS sorting

Thawing media was prepared with IMDM medium (Gibco) supplemented with 20% FBS and
110 ug/mL DNase. Bone marrow samples were thawed at 37°C in a water bath, 1 mL warm
FBS was added, and the suspension then diluted by dropwise addition of 8 mL thawing media.
The suspension was centrifuged at 400 g for 10 mins, cells were resuspended in flow
cytometry staining medium (IMDM with 10% FBS and 10 pg/mL DNase), filtered through a 35

pgm cell strainer, and placed on ice.

Cells were stained with antibodies listed for 20-30 min on ice. Following antibody incubations,
cells were washed with 1 mL flow cytometry staining buffer, centrifuged at 350 g for 5 min and

resuspended in flow cytometry staining buffer containing the live/dead stain.

For flow cytometry analysis of BM samples, unseparated BM MNCs were used. Samples were
stained with the following antibodies: anti-CD38-BV421 (1:20, Biolegend, clone HIT2), anti-
CD10-BV605 (1:40, Biolegend, clone HI10a), anti-CD49f-BV650 (1:40, Biolegend, clone
GoH3), anti-CD117-BV785 (1:40, Biolegend, clone 104D2), anti-CD45RA-BB515 (1:40, BD,
clone HI100), anti-CD123-PE (1:40, Biolegend, clone 6HG6), anti-CD90-PE/Cy7 (1:20,
Biolegend, clone HI100), anti-CD34-APC (1:160, Biolegend, clone 581), anti-CD2-PE/Cy5
(1:160, Biolegend, clone RPA-2.10), anti-CD3-PE/Cy5 (1:320, Biolegend, clone HIT3a), anti-
CD4-PE/Cy5 (1:160, Biolegend, clone RPA-T4), anti-CD8a-PE/Cy5 (1:320, Biolegend, clone
RPA-T8), anti-CD11b-PE/Cy5 (1:160, Biolegend, clone ICRF44), anti-CD14-PE/Cy5 (1:160,
eBioscience, clone 61D3), anti-CD19-PE/Cy5 (1:160, Biolegend, clone HIB19), anti-CD20-
PE/Cy5 (1:160, Biolegend, clone 2H7), anti-CD56-PE/Cy5 (1:80, Biolegend, clone MEM188),
anti-CD235ab-PE/Cy5 (1:320, Biolegend, clone HIR2), and propidium iodide (final
concentration 3 uM; Biolegend) was used for dead cell exclusion. Analysis was done on a
LSR Fortessa X20 (BD Biosciences). Unstained, single-stained (CompBeads, BD
Biosciences), and fluorescence-minus-one (FMO) controls were used to determine
background staining and compensation in each channel. Gating was kept consistent across

all samples to enable quantification of population sizes.



For FACS sorting of BM samples for TARGET-seq+, either unseparated BM MNCs or CD34-
enriched BM MNCs were used. Samples were stained with the following antibodies: anti-
CD38-BVv421 (1:20, Biolegend, clone HIT2), anti-CD10-BV605 (1:40, Biolegend, clone HI10a),
anti-CD117-BV785 (1:40, Biolegend, clone 104D2), anti-CD45RA-BB515 (1:40, BD, clone
HI100), anti-CD123-PE (1:40, Biolegend, clone 6H6), anti-CD49f-PE/Dazzle594 (1:160,
Biolegend, clone GoH3), anti-CD90-PE/Cy7 (1:20, Biolegend, clone HI100), anti-CD34-APC
(1:160, Biolegend, clone 581), anti-CD2-PE/Cy5 (1:160, Biolegend, clone RPA-2.10), anti-
CD3-PE/Cy5 (1:320, Biolegend, clone HIT3a), anti-CD4-PE/Cy5 (1:160, Biolegend, clone
RPA-T4), anti-CD8a-PE/Cy5 (1:320, Biolegend, clone RPA-T8), anti-CD11b-PE/Cy5 (1:160,
Biolegend, clone ICRF44), anti-CD14-PE/Cy5 (1:160, eBioscience, clone 61D3), anti-CD19-
PE/Cy5 (1:160, Biolegend, clone HIB19), anti-CD20-PE/Cy5 (1:160, Biolegend, clone 2H7),
anti-CD56-PE/Cy5 (1:80, Biolegend, clone MEM188), anti-CD235ab-PE/Cy5 (1:320,
Biolegend, clone HIR2), and 7-AAD (Biolegend) was used for dead cell exclusion. For sample
NOC156, cells were stained with the same panel except anti-CD49f, and anti-CD117 was
substituted for anti-CD117- PE/Dazzle594 (1:80, Biolegend, clone 104D2). Single-cell index
sorting was performed on a Sony MA900 into 384-well plates containing 3 pL lysis buffer
(except for optimization experiments, which were done in 96-well plates). Unstained, single-
stained, and FMO controls were used to determine background staining and compensation in
each channel. Doublets and dead cells were excluded. The following populations were sorted:
Live/Lin"CD34", Live/Lin~ CD34"CD38", and CD34" cells (except for sample NOC156, where
only CD34" cells were analyzed). In addition to the sample of interest, cells from the NOC153
control sample were sorted onto every plate, making up approximately 10% of wells on each
plate, and two empty wells were used as no-template controls. After sorting, each plate was

centrifuged and snap frozen on dry ice prior to storage at —80°C.
Flow cytometry data analysis was performed using FlowJo v10.8.1 and R.
TARGET-seq+ library preparation

Primer design

Targeted genotyping primers used in the pre-amplification RT-PCR step were designed to
amplify regions 180-900 bp long. Where possible, gDNA primers were designed to anneal
within intronic regions flanking the mutation of interest, while mRNA primers were designed to
anneal to exonic regions outside of the gDNA amplicon, so that independent amplicons would
be generated from mRNA and gDNA. Furthermore, when a heterozygous SNP was observed
close to the mutation, primers were placed in order to cover the SNP within the amplicon,
enabling a direct measurement of allelic dropout. Primers were designed with Primer3Plus'®
and specificity was checked using Primer-BLAST.'® For each target, primer pairs were tested

for specificity and efficiency in bulk PCR reactions and in single cells.



Targeted primers for use in the genotyping PCR1 step were designed to be nested within each
of the amplicons generated in the pre- amplification RT-PCR. Nested amplicons were 290—
631 bp in length. As for pre-amplification primers, gDNA primers were designed to anneal
within intronic regions flanking the mutation, and cDNA primers were designed to anneal to
exonic regions outside of the gDNA amplicon, to generate independent mutational readouts
from cDNA and gDNA where possible. Primer pairs were tested for specificity and efficiency

in bulk PCR reactions and in single cells.

Lysis buffer preparation

Lysis buffer was prepared as described in Table S4, consisting of 0.1% Triton X-100 (Sigma-
Aldrich), 0.5 mM dNTPs (Life Technologies), 5% PEG 8000 (Sigma-Aldrich), 0.5 U/uL RNase
inhibitor (Takara), 2.7 x 10% AU/UL protease (Qiagen), and 1:8,000,000 diluted ERCC spike-
in mix (Ambion). 25 uL of lysis buffer was dispensed into each well of a 384-well stock plate
using a Formulatrix Mantis with a high-volume chip, and 1.79 L of 10 uM barcoded oligodT-
ISPCR primer was added to each well using an INTEGRA Viaflow. 3 yL of barcoded oligodT-
lysis buffer mix was then transferred into each well of a 384-well plate. Plates were sealed and

stored at —80°C and thawed prior to cell sorting.

Reverse transcription and pre-amplification

Plates containing sorted cells were removed from —80°C storage and incubated at 72°C for
15 min to perform cell lysis, RNA denaturation and protease heat inactivation. For reverse
transcription (RT), 1 yL of RT mix was added, bringing reaction concentrations to 25 mM Tris-
HCI (Thermo Scientific), 30 mM NaCl (Invitrogen), 2.5 mM MgCI2 (Invitrogen), 1 mM GTP
(Thermo Scientific), 8 mM Dithiothreitol (DTT, Thermo Scientific), 0.5 U/ul RNase inhibitor
(Takara), 2 uM of Smart-seq2 template switching oligo (TSO, IDT), 2 U/ul of Maxima H-minus
reverse transcriptase enzyme (Thermo Scientific), and target-specific mMRNA primers (70 uM
final concentration). RT was performed by incubation at 42°C for 90 min followed by 10 cycles
of 50°C for 2 min and 42°C for 2 min. The reaction was terminated by incubating at 85°C for

5 min.

Pre-amplification PCR mix containing target-specific genotyping primers was prepared as
described in Table S4, to achieve reaction concentrations of 1x KAPA HiFi HotStart Ready
Mix (Roche), 50 nM ISPCR primer, 28 nM target-specific cDNA primers, and 400 nM target-
specific gDNA primers. Pre-amplification PCR was performed directly after reverse
transcription by addition of 6 yL PCR mix and incubation on a thermocycler using the following
program: 98°C for 3 min for initial denaturation, 21 cycles of 98°C for 20 s, 67°C for 30 s and
72°C for 6 min. Final elongation was performed at 72°C for 5 min. Conditions used for all RT-

PCR steps are listed in Table S4. The sequences of the primers used in the RT-PCR steps



for whole transcriptome amplification and targeted genotyping amplification are listed in Table
S4.

Following cDNA amplification, successful libraries contain whole transcriptome cDNA and
amplicons spanning each targeted mutation. An aliquot of this cDNA-amplicon mix was used
for whole transcriptome library preparation and another aliquot for single-cell genotyping
library preparation. 1 uL of cDNA-amplicon mix was pooled per well to create cDNA pools from
192 uniquely barcoded single-cell libraries, using a Mosquito HTS liquid handling platform
(TTP Labtech). Each cDNA pool was purified twice using Ampure XP beads with 0.6:1 beads
to cDNA ratio. Pooled cDNA libraries were checked using a High Sensitivity DNA Kit on a
Bioanalyzer (Agilent) or a High Sensitivity NGS Fragment Analysis Kit (1 bp - 6,000 bp) on a
Fragment Analyzer (Agilent). Libraries were quantified by Qubit dsSDNA HS Assay (Life
Technologies). These pools were used to generate 3’ biased whole-transcriptome libraries.
The remainder of the cDNA-amplicon mix was diluted 1:2 with water and stored at —20°C for

use in single-cell genotyping.

Whole-transcriptome library preparation and sequencing

Bead-purified cDNA pools were used for tagmentation-based library preparation with a
Nextera XT DNA Library Preparation Kit (lllumina) using a custom PCR amplification strategy
to generate 3’ biased libraries containing oligodT cell barcodes as previously published,® with
some modifications. Pooled cDNA libraries were diluted to 800 pg/uL and a total of 4 ng (5 pL)
from each pool was used in the tagmentation reaction with 10 yL tagmentation buffer (TD)
and 5 yL ATM enzyme. The reaction was incubated at 55°C for 10 min, followed by the
addition of 5 uL 0.2% SDS to release Tn5 from the DNA. Library amplification was performed
using 5 pL Nextera XT i7 forward index primer (lllumina) and 5 pL custom i5 index primers (2
MM) (see Table S4 for sequences). The custom i5 index primer binds the barcoded oligodT-
ISPCR adapter, resulting in amplification of the 3’ fragments containing the cell barcode. PCR
was performed by adding NPM enzyme (Nextera XT DNA Library Preparation Kit, lllumina)
and incubation on a thermocycler using the following program: 95°C for 30 s, 14 cycles of
95°C for 10 s, 55°C for 30 s and 72°C for 30 s, and then a final elongation of 5 min at 72°C.
After tagmentation, each indexed pool was purified twice with Ampure XP beads using a 0.7:1
beads to cDNA ratio. Library quality was checked using a High Sensitivity DNA Kit on a
Bioanalyzer and quantified using Qubit dsSDNA HS Assay. Equimolar pools were made and
sequenced using custom sequencing primers for Read1 and Index2 (P5-SEQ, 15-SEQ, 300
nM in HT1 buffer, see Table S4). For benchmarking experiments, libraries were sequenced
on a NextSeq 500/550 High Output v2.5 (75 cycle) kit (lllumina) using the following sequencing
configuration: 15 bp R1; 8 bp index read; 69 bp R2. For the main experiments, up to 9,984

single-cell libraries (52 pools of 192 single-cell libraries) were sequenced on a NovaSeq S4



flow cell with a targeted sequencing depth of 1 million reads/cell using the following

sequencing configuration: 15 bp R1; 8 bp index read 1; 8 bp index read 2; 200 bp R2.

Targeted single-cell genotyping

To generate lllumina-compatible libraries for single-cell genotyping, two PCR steps were
performed as previously published in the TARGET-seq protocol.®® As the genotyping
amplicons generated by the pre-amplification RT-PCR are not barcoded, genotyping PCR

reactions were carried out separately for each single-cell library.

In the first PCR step (genotyping PCR1), nested target-specific primers containing universal
CS1 (forward primer) or CS2 (reverse primer) adapters are used to amplify the target regions
of interest. Incorporation of a barcode sequence specific to each plate into these primers
enables libraries from different plates to be pooled subsequently. Primer sequences used for
genotyping PCR1 for each sample are listed in Table S4. PCR1 reactions were performed
using 3.25 pL of KAPA 2G Robust HS Ready Mix (Sigma-Aldrich), 1.5 yL of diluted cDNA-

amplicon mix and 300 nM target-specific primers, in a 6.5 uL reaction.

In the second PCR step (genotyping PCR2), lllumina-compatible adapters containing a 10 bp
cell barcode are attached to the genotyping PCR1 product by binding to the CS1/CS2
adapters. PCR2 reactions were performed using FastStart High Fidelity polymerase (Sigma-
Aldrich) with 1.0 uL of PCR1 product and 1.2 pL of each barcode primer mix (Access Array

Barcode Library for lllumina Sequencers- 384, Single Direction, Fluidigm) in a 6.2 L reaction.

Indexed amplicons were pooled using a Mosquito HTS liquid handling platform and purified
with Ampure XP beads using a 0.8:1 beads to PCR product ratio. Purified pools were
quantified using Qubit dsDNA HS Assay and the quality checked using a Tapestation High
Sensitivity D1000 kit (Agilent) to ensure the size distribution of amplicons was as expected.
Each pool was diluted to a final concentration of 4 nM and further diluted to 10 pM in HT1
buffer prior sequencing. Libraries were sequenced on a NextSeq 500/550 Mid Output v2.5 kit
(300 cycle) (lllumina) using 150 bp paired-end reads, with 10 bp for the cell barcode index

read and custom sequencing primers (Table S4).
TARGET-seq+ validation experiments

Validation experiments comparing TARGET-seq+ with TARGET-seq were performed in 96-
well plates using JURKAT cells and primary human CD34" HSPCs. 3’ TARGET-seq libraries
were generated according to the published protocol®. Cells were sorted into 4.1 pL lysis
buffer, consisting of 0.18% Triton X-100 (Sigma- Aldrich), 1.0 mM dNTP (Life Technologies),
1.0 U/l RNase inhibitor (Takara), 2.7 x 10-5 AU/mL protease (Qiagen), 1.0 uM barcoded
oligodT-ISPCR primer. RT was performed using SMARTScribe enzyme, RNase inhibitor,
Smart-seq2 TSO (1 uM final concentration) and targeted mRNA primers (700 nM final



concentration). PCR pre-amplification was performed using SeqAmp DNA polymerase,
ISPCR primers (50 nM final concentration) and targeted gDNA and cDNA primers. TARGET-
seq+ RT-PCR was performed as described above using double volumes per well. For both
conditions, 20 cycles of amplification were used for JURKAT cells and 24 cycles of
amplification for HSPCs. 3’ transcriptome libraries were prepared as for TARGET-seq+
libraries detailed above and were sequenced on a NextSeq 500/550 High Output v2.5 (75
cycle) kit.

Targeted single-cell genotyping analysis

Pre-processing and mutation calling

Single-cell genotyping reads were pre-processed using the custom TARGET-seq pipeline
(https://github.com/albarmeira/TARGET-seq).%° Reads were first demultiplexed using the 384
well barcodes introduced via the genotyping PCR2 reaction, followed by demultiplexing based
on plate barcodes introduced during genotyping PCR1. This generated separate fastq files for
each single cell. Reads were aligned to hg38 using STAR version 2.7.3a with default settings
and cDNA/gDNA amplicons were separated into different bam files, extracting reads matching
the primer sequences used for targeted PCR barcoding. This allowed independent mutational
information to be obtained from cDNA and gDNA amplicons. Variant calling was performed
with mpileup (samtools version 1.1, options: --minBQ 30, --count-orphans, --ignore overlaps)

and results were summarized using the custom pipeline.

Mutational calling on single cells was then performed with custom R scripts, separately for
each mutation. Coverage for each cell was calculated as the sum of all reads across the
variant locus for that cell. Empty wells routinely displayed zero or very few reads (usually up
to 2), indicating no cross-well contamination. A filtering threshold was applied to remove cells
where the amplicon was not detected, or where coverage was too low for reliable genotyping.
The minimum coverage was 50 reads for gDNA amplicons and 30 reads for cDONA amplicons.

In cells with coverage below the threshold, the amplicon was called undetected.

The single-cell variant allele frequency (scVAF) for each cell was calculated with the following
formula:

scVAF = variant reads / coverage

PCR amplification and next-generation sequencing have an inherent error rate, which needs
to be accounted for when calling cell genotypes. WT control bone marrow cells from a healthy
individual sorted onto every plate enabled the error rate for each mutant allele to be

determined. The scVAF threshold for calling a cell WT was set using the following formula:

WT scVAF threshold = mean(scVAF in WT control) + 3 x SD of scVAF in WT control


https://github.com/albarmeira/TARGET-seq

Cells with scVAF below this threshold were called WT for that amplicon. The scVAF threshold

for calling a cell mutant was set using the following formula:
Mutant scVAF threshold = mean(scVAF in WT control) + 3 x SD of scVAF in WT control + 0.01

Cells with scVAF above this threshold were called mutant for that amplicon. Furthermore, we
required a minimum number of 10 mutant reads for a cell to be called mutant. Cells with a
borderline scVAF (between the WT and mutant scVAF thresholds), where the number of
mutant reads was <10, or where allelic dropout (see next section) was confirmed by analysis

of a germline SNP were called undetermined.

Genotyping information from gDNA and cDNA amplicons were then combined, and a

consensus genotype assigned. Consensus genotypes were assigned as follows:

1. If the mutation was identified in either the gDNA or cDNA amplicon, the cell was called
mutant.
If both amplicons were WT, the cell was called WT.
If the gDNA amplicon was WT but the cDNA amplicon was undetected or
undetermined, the cell was called WT.

4. If the cDNA amplicon was WT but the gDNA amplicon was undetected or
undetermined, the cell was called undetermined, due to the high allelic dropout rate of

cDNA amplicons.
Allelic drop-out (ADO) estimation using germline heterozygous SNPs

Allelic dropout (ADO) rates were estimated for heterozygous germline SNPs present in the
gDNA amplicon for four mutations. A scVAF threshold to detect the reference or alternate
alleles was set for each SNP based on the scVAF distribution in WT control cells. Cells were
called heterozygous (Het) if the VAF was within that boundary and a minimum of 10 reads
were detected for each allele. Otherwise, cells were called homozygous reference (Hom Ref)
or homozygous alternate (Hom Alt). SNP alleles were phased with each mutation based on
the positive or negative correlation in VAF. When neither a mutation or the in-phase SNP allele
were detected, a cell was assigned an undetermined genotype as we couldn’t discern whether

it was WT or mutant.

For each allele, we then calculated the fraction of cells in which ADO occurred:
ADO rate = Cells below scVAF threshold / Total number of cells

Inference of clonal hierarchies
In samples with multiple mutations, the pattern of mutational co-occurrence was used to
determine clonal structures and assign a clonal identity to each cell as previously

described.'®%” |In samples where mutations were mutually exclusive, such as in samples



NOC131, NOC117, and NOC115, it was clear that these belonged to independent clones. In
cases where mutations co-occur in the same cells, a linear or branching clonal structure may
be present. We used infSCITE'® to determine the phylogenetic tree which represented the
statistically most likely course of somatic events. As input, we used the matrix containing the
mutational status for each locus in each cell and ran infSCITE with default parameters and *-r
200 -L 10000 -fd 0.01 -ad 0.02 -e 0.2 -p 1000’. We confirmed each phylogenetic tree was
consistent with the frequency of cells of each genotype and the clonal size determined by bulk

BM sequencing VAF.

The occurrence of ADO means that in some cells, a mutation that is present will not be
detected. In some of these cases, we were still able to assign a cell to a clone. For example,
in sample NOCO002 there were 12 cells in which the TET2 p.R1261C mutation was detected,
but the ancestral TET2 p.Q726X mutation was not detected. In these cases, we inferred that
ADO of the ancestral mutation had occurred, and the cell was assigned to the appropriate
daughter clone. In all cases, this was a rare occurrence consistent with our estimates of the
ADO rate.

For all downstream analyses, including differential gene expression, the clone assignment

rather than the raw genotype was used to categorize WT and mutant cells.
Analysis of FACS index data

Flow cytometry index data were recorded for each single cell during FACS sorting for
TARGET-seq+. Fluorescence values were recorded for forward scatter (FSC), back-scatter
(BSC; equivalent to side scatter, SSC), Lineage/live/dead, CD34, CD38, CD117, CD45RA,
CD10, CD90, CD123 and CD49f (except for the NOC156 control sample). Index data were
matched with single-cell identifiers based on the well coordinate and combined with
genotyping calls and other metadata into a unified data set. Virtual FACS gating was
performed in R based on the strategy used for sorting. Gates were set based on populations
that were negative for each marker. Cells were labelled as positive or negative for each
surface marker, and Boolean logic used to assign an immunophenotypic population label. For
example, cells that were Lin"CD34'CD38 CD10 CD45RA"CD90* were labelled as
immunophenotypic HSC.

Single-cell transcriptome data pre-processing
Mapping and transcript counting

Transcriptome sequencing data were demultiplexed into FASTQ files for each plate with a
unique i7-i5 index combination using bcl2fastq. These files contained reads from up to 384

cells with shared plate indexes. A custom python pipeline was used to further demultiplex and



map the sequencing reads. First, reads from each plate were demultiplexed using the 14 bp
single-cell barcode sequence in Read1 using cutadapt (v3.4). Concurrently, cDNA reads
(Read2) were trimmed for polyA tails, Nextera adapters and low-quality reads. This generated
individual FASTQ files with single-ended cDNA reads corresponding to each single-cell
barcode. Reads were then mapped to the hg38 reference genome and ERCC92 transcripts
with STARsolo (v2.7.10a) using the GENCODE v38 reference gene annotation (filtered to
include protein coding genes and long non-coding RNAs), and counts for each gene were
obtained using default parameters except the following: ‘--soloType SmartSeq --soloFeatures
GeneFull_Ex50pAS’. Sequencing and mapping quality metrics were calculated with FastQC
(v0.11.9), Samtools flagstat (v1.12), MultiQC (v1.11) and the outputs of STAR.

Transcript detection and dropout frequency calculation

For the comparison of transcript detection sensitivity between TARGET-seq and TARGET-
seq+ (Figure S1G and S1H), data were first downsampled to 5 x 10° reads per cell to remove
differences due to unequal sequencing depth. The number of genes detected per cell was

calculated as the sum of genes with at least one assigned read.

For calculation of dropout rates (Figure S1I), data downsampled to 5 x 10° reads per cell were
used. A random sample of 16 cells per chemistry were compared for JURKAT and 20 cells
per chemistry for HSPC. The dropout frequency for a given gene was calculated as the
percentage of cells in which the gene was not detected (normalized counts < 1). Genes were
divided into three groups to compare the dropout rate in: a) all expressed genes, defined as
genes detected in at least 2 cells by any method; b) frequently expressed genes, defined as
genes detected in >50% of all cells; and c) lowly expressed genes, defined as genes with a

mean of 2—10 normalized counts per cell.

Cell-to-cell correlation analysis
Cell-to-cell correlations for JURKAT cells processed with each method (Figure xx) were
calculated using pairwise Pearson correlations in libraries downsampled to 5 x 10° reads per

cell.

Single-cell transcriptome analysis

Quality control, normalization, and variable gene identification

Single-cell transcriptome analysis was performed using the SingCellaR package (v1.2.1,
https://github.com/supatt-lab/SingCellaR).%®> Metadata including genotyping and FACS index
data were matched with single-cell identifiers based on the plate and well coordinates. Cells
meeting the following filtering criteria were included in the analysis: reads assigned to genes
> 25,000; genes detected > 2,000 and < 15,000; reads assigned to ERCC transcripts < 50%;

reads in mitochondrial genes < 15%. Genes expressed in fewer than 10 cells were removed.



Reads were normalized by library size using the pool normalization method with prior

clustering from the scran package.'®®
Dimensionality reduction, data integration and clustering

Variable genes were identified by fitting a generalized linear model to the relationship between
the mean expression and squared coefficient of variation (CV?) for the ERCC spike-ins, used
to estimate technical noise (using the BrenneckeGetVariableGenes function from the M3Drop
package)."'®""" Genes for which the CV? exceeded technical noise (FDR < 0.05) were
considered variable, excluding mitochondrial and ribosomal genes and ERCC transcripts. This

identified 17,324 variable genes which were used for principal components analysis (PCA).

Data integration was performed using Harmony''? to correct for sample effects, using the
sample identifier as the batch, and the top 100 principal components (PCs). The top 100
Harmony-adjusted PCs were then used for Uniform Manifold Approximation and Projection
(UMAP) analysis and Louvain graph-based clustering implemented in SingCellaR, with k-
nearest neighbors (KNN) equal to 15. Effectiveness of the integration was confirmed by: (a)
UMARP visualization pre- and post-integration, to confirm representation of all samples across
cell types (Figures S2F and S3E-L); (b) comparison of cluster identities across samples, to
confirm representation of all samples across clusters, while allowing for unequal distributions
between samples as is expected from biological variation; (c) concordance between the
cluster assignment of cells and their immunophenotype across samples. For example, we
confirmed that the majority of cells in the HSC/MPP cluster consisted of immunophenotypic
HSCs and MPPs in all samples, and conversely, the majority of immunophenotypic HSCs and
MPPs were assigned to the HSC/MPP cluster.

Clusters were manually annotated based on gene set enrichment of published signatures,
immunophenotypic surface marker expression, and expression of canonical marker genes.
The SingCellaR ‘identifyGSEAPrerankedGenes’ function was used to pre-rank genes
obtained from differential gene expression analysis comparing each individual cluster with all
other clusters, and gene set enrichment analysis (GSEA) was performed using the fgsea
package (v1.20.0) against gene sets obtained from 9 studies that have characterized human
hematopoiesis.®>"° Marker genes differentially expressed in each cluster were identified with
the SingCellaR ‘findMarkerGenes’ function, which uses a non-parametric Wilcoxon test on
log-transformed, normalized counts, to compare expression levels, and Fisher’s exact test to
compare the frequency of cells expressing each gene. Louvain clustering identified 28
clusters, which were collapsed into 23 main clusters based on similarity of GSEA results,

marker gene expression and immunophenotype.



The HSC/MPP, LMPP, LMPP cycling, and EMPP clusters were further subclustered using the
self-assembling manifolds (SAM) algorithm, using default settings with Harmony-adjusted PCs
as input and using the sample identifier as the batch.®® The resulting SAM-weighted PCA was
then used as input to generate the UMAP in Figure 6 and for Louvain clustering, which
identified 7 clusters. For consistency with earlier analyses, these SAM-derived cluster
assignments for LMPP, LMPP cycling, and EMPP were used throughout the paper, while cells
assigned to the HSC1-3 and MPP clusters were labelled HSC/MPP in Figures 2-5.

Differential abundance analysis
Differential abundance between sample types (CH vs non-CH) and between mutant and WT
cells within CH samples was analyzed using MELD,?” a single-cell compositional analysis

method that quantifies the likelihood of a cellular state appearing in each sample or condition.

For the comparison between sample types (Figures 2F-G), only cells sorted as part of the total
Lin"CD34" gate were included (excluding the Lin"CD34"CD38~ and CD34~ sorting strategies),
to avoid bias introduced by enrichment of CD38™ cells. Sample-associated densities were
calculated by running MELD using the Harmony-adjusted PCs as input, and with optimal knn
and beta values identified using the MELD parameter search. The mean relative density was

calculated using the following formula:
Mean relative density = mean(Density of CH samples) / mean(Density of non-CH samples)

Thus, a mean relative density = 1 indicates that the probability of observing a given cell is
greater in CH samples compared to non-CH samples, whereas a relative density < 1 indicates

that the probability is lower in CH samples compared to non-CH samples.

To compare mutant and WT cells within CH samples (Figures 3 and 6), sample and genotype-
associated densities were calculated for every genotype by running MELD using the Harmony-
adjusted PCs as input, with optimal knn and beta values identified using the MELD parameter
search. The relative density of single-mutant and WT cells was then calculated (using L1
normalization to enforce cell-wise sum to be 1), and normalized to the mean relative density
in the HSC/MPP cluster for each sample, in order to quantify the relative expansion or

contraction of the clone downstream of the HSC/MPP using the following formula:
Normalized likelihood = Relative likelihood of MUT:WT / mean(Relative likelihood of MUT:WT in HSC/MPP)

These values are visualized per sample in Figures 3J, 3N and S3E-L. Finally, the normalized

likelihood was averaged across samples for visualization in Figures 3C-D, 3F-G, and 6G-H.

Pseudotime analysis
Diffusion map embeddings''® were calculated in scanpy using the Harmony-adjusted PCs as

input to the neighborhood graph, excluding the T cell, plasma cell and endothelial cell clusters.



Diffusion pseudotime was then calculated using the HSC at the extreme of the second
diffusion component as the root cell. Pseudotime scores were extracted for cells in the
HSC/MPP, LMPP, GMP, pDC and Monocyte clusters and plotted on the UMAP embedding to
visualize the myeloid trajectory. For comparison of TET2YV" and TET2"" cell density along the
myeloid trajectory, cells were downsampled to an equal number per sample (n = 176 cells

from each of the 4 samples).

Differential gene expression analysis

Differential expression testing was performed with a linear mixed model to account for sample
covariance using the dream pipeline from the variancePartition package,'™ which is based on
limma-voom."® Testing was performed on log normalized counts, using the scran
normalization size factors. Genes were filtered to include only those expressed in at least 10%
of cells in either group, except for pDCs and monocytes, where a 20% filter was used. A linear
mixed model was fitted to each gene using ‘dream’ and differential expression testing was
performed using ‘variancePartition::eBayes’. For comparisons between sample types, the
sample type was used as the test variable, and the sample identifier, age, sex, and batch
effects included as covariates. For comparisons between genotypes within CH samples, the
clone was used as the test variable, and the sample identifier and batch effect included as
mixed effect covariates. Samples were excluded from the comparison if they had less than 5
cells in either genotype, except for pDCs and monocytes where a minimum of 2 cells was
used. P values were adjusted for multiple testing with Benjamani-Hochberg correction, and
differentially expressed genes were defined as those with FDR < 0.1. For defining the CH""
HSC/MPP and non-CH HSC/MPP signatures, thresholds of FDR < 0.1 and log-FC > 0.5 were

used.

Changes in gene expression along pseudotime
For plotting gene expression along pseudotime, log2 normalized expression data were fitted
to the pseudotime rank using a generalized additive model (GAM) separately for WT and

mutant cells.

Gene set enrichment analysis (GSEA)

Gene rankings for gene set enrichment analysis (GSEA) were generated by differential gene
expression testing using the dream mixed model as described above. Genes were ranked by
the z statistic from dream. To perform GSEA, the fgseaMultilevel function from the fgsea
package''® was used. Gene sets were obtained from MsigDB v7.5.1 and published studies.
Hematopoietic gene sets used in GSEA and AUCell analyses relating to Figure 4-6 are listed
in Table S5. Significantly enriched gene sets were filtered using the FDR as described in each

figure.



AUCell signature analysis

The AUCell package (v1.18.1)%° was used to quantify the gene set activity in single cells.
AUCell  gene-expression  rankings were created using the  SingCellaR
‘Build_AUCell_Rankings’ function. AUCell gene signature enrichment was then calculated
using the ‘Run_AUCell’ function with the gene matrix transposed (GMT) file of gene sets.
Hematopoietic gene sets were the same as those used for GSEA analysis described above.
Differences in mean AUCell scores between WT and mutant cells were tested by a linear
mixed model, using clone identity as the fixed effect and sample identity as mixed effects. P-
values were obtained by a likelihood ratio test of the full model with the clone effect against

the model without the clone effect.

SCENIC transcription factor regulon analysis

To infer transcription factor (TF) regulon activity, regulon analysis was performed using
pySCENIC.® pySCENIC was run as per the workflow guidelines from Van de Sande et al.'"’
to identify candidate TF-regulons, using the filtered, pre-processed raw counts as the input,
and a list of human TFs from Lambert et al.''®. Candidate regulons were pruned using the
annotations of TF motifs ‘motifs-v10nr_clust-nr.hgnc-m0.001-00.0.tbl’, and CisTarget was
applied using the ‘mc_v10_clust’ databases of known human TF motifs annotated at: a) 500
bp upstream and 100 bp downstream of the transcription start site (TSS); and b) 10 kilobases
centered around the TSS. No drop-out masking was applied. Enrichment of refined TF
regulons was quantified using AUCell, with default parameters. Tests for differential regulon

activity were performed using a linear mixed model, as described above.

FACS sorting and snRNA-seq for ‘in-house’ aging dataset

BM samples were thawed via slow dropwise addition of X-VIVO 10 media (LONZA) with 50%
FBS and 100pg/mL DNasel (Roche). Cells were centrifuged at 400g for 10 min, then dead
cell depleted using a commercial kit (EasySep Dead Cell Removal (Annexin V) Kit,
STEMCELL) per the manufacturer’s instructions. Cells were resuspended in PBS + 5% FBS
and stained for 15 min at RT for fluorescence-activated cell sorting with the following
antibodies: anti-CD45RA-FITC (1:50, BD, clone HI100), anti-CD90-PE (1:50, BD, clone 5E10),
anti-CD19-BV711 (1:50, BD, clone SJ25C1), anti-CD49f-PE-Cy5 (1:50, BD, clone GoH3),
anti-CD271-APC (1:100, Miltenyi, ME20.4-1.H4), anti-CD34-APC-Cy7 (1:200, BD, clone 581),
anti-CD38-PE-Cy7 (1:200, BD, clone HB7), anti-CD10-AlexaFluor700 (1:50, BD, clone
HI10a), anti-CD14-BV605 (1:200, BD, clone M5E2), anti-CD45-V500 (1:50, BD, clone HI30)
and anti-CD33-BV421 (1:100, BioLegend, clone WM53). Cells were washed following staining
and resuspended in PBS + 2% FBS containing propidium iodide and filtered through 40um
nylon mesh for cell sorting. Lin"CD34"CD38" and Lin"CD34"CD38" populations were sorted
into PBS + 0.04% BSA + EDTA on a BD FACSAria Fusion or BD FACSAria lll. Cells were



counted and Lin"CD34*CD38™ and Lin"CD34'CD38" cells mixed in the following manner
(1:0.33 for 24yM, 1:1 for 26yF, 1:1 for 70yF, and 1:0.5 for 77yF) for downstream 10x Genomics

multiome sample preparation by the Princess Margaret Genome Centre.

Single-nucleus RNA-seq processing - In-house aging dataset

Single-nucleus RNA-seq processing was performed using Seurat 4.3.0 in R and applied to
each sample before merging. The UMI count matrix (BM24M, BM26F, BM70F, and BM77F)
was loaded in the R environment using Read10X. Doublets were identified using scDblFinder
on the RNA with a pre-generated embedding after filtering genes expressed in more than 3
cells, cells with more than 200 features and more than 0.05 percent ribosomal genes. After
filtering out doublets, quality control was further performed by filtering out cells with unique
feature counts below 200 and greater than 3000, and percent mitochondrial genes above 10%.
The 10x count matrix for each sample was corrected for ambient RNA contamination using
SoupX and used for downstream analysis with the cells that passed quality control. The
samples were merged, and the counts were normalized using Scran. The 2000 highly variable
features were selected using the “vst” selection method with FindVariableFeatures in Seurat.
The cells were scaled, and the samples were integrated using Harmony correcting the sample
assignments as a covariate. The optimal number of Harmony-corrected PCA components for
downstream analysis was assessed using an elbow plot optimizing at 10. A k-nearest
neighbors graph was constructed using FindNeighbors with the Harmony corrected principal
components (PCA), and clusters were identified using the louvain algorithm (resolution = 0.8).
A cell-type mixed louvain cluster was sub-clustered to more effectively pull out distinct
populations. UMAP on all single cells was performed using RunUMAP at 30 neighbours and

10 Harmony corrected PCA components.

Single-cell RNA-seq processing - Ainciburu et al. dataset

The single-cell RNA-seq data was downloaded from GSE180298% and processed using
Seurat 4.3.0 in R and applied to each sample before merging. The UMI count matrix (young1,
young2, young3, young4, young5, elderly1, elderly2, elderly3d) was loaded in the R
environment using Read10X. Doublets were identified using scDbIFinder on the RNA after
filtering genes expressed in more than 3 cells, cells with more than 200 features and more
than 0.05 percent ribosomal genes. Doublets and cells with unique feature counts and percent
mitochondrial genes above a sample-specific threshold were filtered out (young1: 200 >
nFeature_RNA > 4000, percent.mt > 10; young2: 200 > nFeature_RNA > 2700, percent.mt >
10; young3: 200 > nFeature_RNA > 4000, percent.mt > 5; young4: 200 > nFeature_RNA >
4000, percent.mt > 5; young5: 200 > nFeature_RNA > 5000, percent.mt > 10; elderly1: 200 >
nFeature_RNA > 4000, percent.mt > 10; elderly2: 200 > nFeature_RNA > 4000, percent.mt >
10; elderlyt3: 200 > nFeature_RNA > 5000, percent.mt > 10). The samples were merged and



normalized using Scran. The 2000 highly variable features were selected using the “vst”
selection method with FindVariableFeatures in Seurat. The cells were scaled, and the samples
were integrated using Harmony correcting the sample assignments and technology (10x 3’ V2
chemistry vs 10x 3’ V3 chemistry) as covariates. The optimal number of Harmony-corrected
PCA components for downstream analysis was assessed using an elbow plot optimizing at
15. A k-nearest neighbors graph was constructed using FindNeighbors with the Harmony
reduction, and clusters were identified using the Louvain algorithm (resolution = 0.5). UMAP

was performed using RunUMAP at 30 neighbours and 15 PCA components.

Single-cell RNA-seq processing - Aksoz et al. dataset

This dataset consists of 10x 3’ V2 single-cell RNA-seq data from FACS-purified Lin~
CD34*CD38 CD90*CD45RA™ HSCs from 3 young and 3 aged donors (all male).®’ Briefly, the
raw fastq files were aligned against the GRCh38 (Ensembl 93) reference genome (10X Cell
Ranger reference GRCh38 v3.1.0) and quantified using the Cell Ranger pipeline (v3.1.0) with
default parameters and further processed using Seurat (v4.3.0). Quality control was performed
separately for each donor by first filtering out cells with < 200 genes detected, and then
retaining only cells with < 10% mitochondrial reads and gene counts that are less than double
the median gene count detected in the data for that donor. Genes detected in less than 3 cells
were removed. All cells that passed quality control were included in differential expression

analysis.

Aged vs Young HSC Differential Expression

Pseudobulk profiles of HSCs from each donor were created by taking the sum of all counts for
each gene across cells belonging to the HSC cluster within that donor. For the in-house aging
dataset, raw counts from young and aged HSC pseudobulks were modeled with DESeq and
differential expression was run between aged HSC and young HSC with donor sex as a
covariate. Young HSC and aged HSC-specific genes with log2FoldChange > 1 and FDR <
0.01 were retained as signatures for downstream analysis. For the Ainciburu dataset, DESeq
was run on raw counts from young and aged HSC pseudobulks only within samples profiled
by 10x 3’ scRNA-seq V2 chemistry to avoid technology-driven batch effects. This comparison
in the Ainciburu dataset was confounded by donor sex, wherein all aged samples were male
and all aged samples were female. To attenuate this, sex specific genes (X-inactivation genes
XIST and TSIX, as well as ChrY genes outside of the para-autologous region) were filtered
out from the DE results. Young HSC and aged HSC-specific genes with log2FoldChange > 1
and FDR < 0.01 were retained as signatures for downstream analysis. For the Aks6z dataset,
raw count pseudobulks were modeled with EdgeR as implemented in the Libra (v1.0.0)
package,'"® and differential expression was run using a likelihood ratio test between aged HSC

and young HSC. Gene identifiers were converted to GENCODE v38 and young HSC and aged



HSC-specific genes with log2FoldChange > 1 and FDR < 0.01 were retained as signatures for

downstream analysis, excluding genes not in the GENCODE reference annotation.

The quality of each resulting signature was evaluated by scoring across donors within our CH
cohort and evaluating their association with age. While we validated that aged HSC signatures
from each dataset were positively correlated with age, young HSC signatures were
uncorrelated with age rather than having the expected negative correlation. Thus, only aged

HSC signatures were used for downstream analysis (Table S5).

Quantification and Statistical Analysis

Data analysis and statistical tests were performed using R version 4.2.1. Plots were generated
using ggplot2 (v3.3.6) or FlowJo (v10.8.1). Detail on statistical tests used in the different

figures and definition of relevant summary statistics are included in each figure legend.

RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be

fulfilled by the lead contact, Paresh Vyas (paresh.vyas@imm.ox.ac.uk).

Materials Availability

The list of all oligo sequences designed in this study and used for single-cell genotyping can
be found in Table S4. These include both target-specific oligos used in the PCR after reverse
transcription, and nested barcoded target-specific oligos used in genotyping PCR1. Barcoded
oligodT-ISPCR primers were kindly provided by Prof. Adam Mead and Dr. Alba Rodriguez-

Meira, and the sequences are listed in Table S4.

Data and Code Availability

Raw targeted DNA sequencing data, TARGET-seq+ scRNA-seq, and TARGET-seq+ single-
cell genotyping data have been deposited at European Genome-Phenome Archive (EGA) in
order to comply with ethical approvals and will be available as of the date of publication.
Processed TARGET-seq+ scRNA-seq, single-cell genotyping and metadata will be made
available through Figshare. Single-nucleus RNA-seq data for the in-house aged and young

bone marrow dataset have been deposited in GEO.
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