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Abstract 
Clonal hematopoiesis (CH) arises when hematopoietic stem cells (HSC) acquire mutations in 

genes, including DNMT3A and TET2, conferring a competitive advantage through a 

mechanism that remains unclear. To gain insight into how CH mutations enable gradual clonal 

expansion, we used single-cell multi-omics with high-fidelity genotyping on CH bone marrow 

samples. Most of the selective advantage of mutant cells occurs within HSCs. DNMT3A and 

TET2-mutant clones expand further in early progenitors, while TET2 mutations accelerate 

myeloid maturation in a dose-dependent manner. Unexpectedly, both mutant and non-mutant 

HSCs from CH samples are enriched for inflammatory and aging transcriptomic signatures, 

compared to HSC from non-CH samples, revealing a non-cell autonomous mechanism. 

However, DNMT3A and TET2-mutant HSCs have an attenuated inflammatory response 

relative to wild-type HSCs within the same sample. Our data support a model whereby CH 

clones are gradually selected because they are more resistant to the deleterious impact of 

inflammation and aging.  
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Introduction 

Aging tissues accumulate somatic mutations. If these occur in long-lived tissue stem cells, 

they provide a substrate for clonal selection and subsequent clonal expansion, resulting in 

somatic mosaicism.1,2 Somatic mosaicism in phenotypically normal human tissues was first 

described in blood and termed clonal hematopoiesis (CH).3-9 Subsequently, similar findings 

were documented in multiple other tissues.10-19 CH becomes common with aging and is 

associated with a 12-fold increased risk of myeloid malignancy, cardiovascular disease, and 

other adverse outcomes.7-9,20 A key unresolved question in the field is, what are the 

mechanisms that lead to selection of mutant clones? For a selected clone, increasing clone 

size has been shown to contribute the risk of myeloid malignancy,21,22 cardiovascular 

disease,20,23 and diseases associated with human aging.24,25 Though it is likely that multiple 

mechanisms contribute both positively and negatively to the rate of expansion of mutant 

clones,26 mechanistic understanding of the biological principles of expansion remain unclear. 

Interestingly, ~70% of CH cases are associated with mutations in just two genes, DNMT3A 

and TET2.7,8,21,22,27 DNMT3A, a de novo DNA methyltransferase, catalyzes the conversion of 

cytosine to 5-methylcytosine (5mC), usually in CpG dinucleotides.28 TET2 is a dioxygenase 

that catalyzes the conversion of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and 

other oxidized derivatives.29,30 This reaction is the first step in DNA demethylation, although 

5hmC can also act as a stable epigenetic mark with a regulatory role.31,32 Both proteins have 

also been associated with other roles, for example RNA splicing,33 regulation of RNA 

stability,34-37 and recruitment of other epigenetic regulators.37-40 In CH, DNMT3A mutations are 

predominantly heterozygous, scattered throughout the three functional domains and predicted 

to cause loss of function (LoF). In contrast, ~60% of DNMT3A mutations in acute myeloid 

leukemia (AML) affect the R882 hotspot residue in the methyltransferase domain. TET2 

mutations are either missense or truncating variants distributed across the coding region and 

are predicted to inhibit or abolish the enzyme’s catalytic activity.  

In mice, genetic mutants of Dnmt3a and Tet2 confer clonal advantage to HSCs and alter their 

differentiation. Adult Dnmt3a–/– HSCs outcompete wild-type (WT) HSCs in secondary, and 

subsequent, competitive transplants.41 Similarly, Tet2–/– HSCs have a competitive advantage 

over WT HSCs in transplantation assays,42-45 although this advantage is most marked in early 

serial transplants.46 Tet2+/– HSCs have a similar competitive advantage but with longer 

latency.44 The competitive advantage of Dnmt3a–/– HSCs has been attributed to increased 

RNA expression of selected multipotency and self-renewal genes, which correlates with 

hypomethylation of their promoters and gene bodies.41 Re-expression of DNMT3A in Dnmt3a–

/– HSCs partially restores methylation at specific genes and reduces HSC frequency.41 

Notably, clonal advantage of Dnmt3a–/– HSCs is increased when mice are exposed to infection 



and inflammation, and abrogated when receptors for interferon-γ and TNFα are deleted.47,48 

Aging and inflammation also expands both immunophenotypic and functional Tet2−/− and 

Tet2+/− HSCs.49-51 This is mimicked by IL-6 and IL-1 exposure and partially abrogated by 

blocking their cognate receptors.49-51 HSC differentiation is also altered in mouse models of 

CH mutations. Acute bi-allelic deletion of Dnmt3a modestly increases transcriptionally defined 

megakaryocyte-erythroid cells, with a commensurate decrease in myelomonocytic cells.52 

Altered differentiation of Dnmt3a−/− cells may be caused by decreased methylation of binding 

motifs for erythroid versus myeloid transcription factors (TFs), due to differences in motif CpG 

content.52 Tet2−/− cells have a myeloid bias with expansion of GMP and reduction of 

megakaryocyte  erythroid (MEP) and lymphoid progenitors.52 With age, some Tet2−/− mice 

develop chronic myelomonocytic leukemia (CMML).43-45  

However, the murine studies may not capture all the complexities associated with human CH. 

In humans, CH arises when a single cell acquires a mutation that confers a selective 

advantage, leading to gradual clonal expansion over time. Indeed, recent studies using 

population genetic modelling, single-cell phylogenetic analysis, and longitudinal sampling 

have estimated that DNMT3A and TET2 mutant CH clones expand by about 5–20% per year 

and are acquired decades before they reach a substantial clone size.53-55 In contrast, mice are 

kept in controlled environments, have short lifespans and murine studies often assay 

hemopoiesis after transplantation or introduction of a mutant allele in all blood cells, rather 

than study HSC competition dynamics in native hematopoiesis with introduction of subclonal 

mutations.  

In humans, detailed single-cell analyses have been performed in one genetic CH subtype 

(DNMT3A R882+/–) from patients treated for myeloma56 and in cord blood hematopoietic stem 

and progenitor cells (HSPCs) where both TET2 alleles were experimentally deleted.57 In both 

studies, differentiation defects were observed, with engineered TET2–/– cells having a 

competitive advantage in vivo in immunodeficient mice. However, it is unclear from these 

studies how DNMT3A and TET2 mutations confer a gradual clonal advantage to mutant HSC 

in age-associated CH. To address this question, we implemented an optimized single-cell 

multi-omics platform, combining high-fidelity genotyping with high-quality transcriptional 

profiling, to analyze mutant HSPCs separately from non-mutant HSPCs from the same 

individuals, enabling us to dissect the cell-intrinsic and cell-extrinsic consequences of CH 

mutations in human BM. 

 

 



Results 

Bone marrow sampling of HSPCs from individuals with age-related clonal 
hematopoiesis without prior malignancy 

As our goal was to study CH-mutant HSPCs and compare their properties to non-mutant 

HSPCs from the same individual, we needed to obtain bone marrow samples from individuals 

with CH, but without the confounding effects of co-existing malignancy or known inflammatory 

conditions. We collected samples from 195 individuals at various ages with normal blood 

counts undergoing elective total hip replacement surgery for osteoarthritis. To study steady-

state CH, we excluded subjects with prior or current hematological cancer, inflammatory 

arthritis, or systemic steroid use (clinical characteristics, Table S1). We screened samples for 

CH by targeted re-sequencing of bone marrow mononuclear cell (BM MNC) DNA using a 347 

kb panel covering 97 genes to a mean depth of 822X (Figure 1A, Figure S1A, Table S2). 57 

of 195 individuals (29.2%) had CH with somatic driver mutation(s) at a variant allele frequency 

(VAF) ≥ 0.02, and an additional 28 individuals (14.3%) had CH with mutation(s) at a VAF of 

0.01–0.02 (Figure 1B-C, Table S2). Consistent with prior studies, 69% of CH cases had 

mutations in DNMT3A and TET2 predicted to cause loss-of-function (Figure S1B). The median 

VAF of all mutations detected in the cohort was 0.022 (Figures 1D). The frequency of 

secondary mutations increased with age and two or more mutations were observed in 45% of 

CH cases over the age of 80 (Figure 1E). 

CH prevalence correlated with increasing age at a VAF cutoff of 0.02 (Figure 1F) or 0.01 

(Figure S1C). Comparison with previous studies showed heterogeneity in the frequency of CH 

cases across studies,22,58,59 and the prevalence in our cohort was similar to that observed in a 

study of peripheral blood (PB) DNA from 3,359 individuals in the general population,58 and to 

another cohort of individuals undergoing hip replacement surgery59 (Figure 1F and Figure 

S1C).59 Most studies of CH to date have performed sequencing on peripheral blood (PB) DNA. 

To determine whether there is any difference in sensitivity for CH detection in BM compared 

to PB, we compared mutation detection in paired PB granulocytic and BM MNCs DNA on 72 

samples with CH and 27 samples without CH. PB sequencing identified an additional 14 

mutations not previously called in BM sequencing. Although VAFs differed considerably 

between BM and PB for some mutations, there was no difference across all mutated genes 

(Figure 1G; p = 0.11; Wilcoxon signed-rank test), or specifically for DNMT3A and TET2 

mutations (Figure 1H). Of 78 mutations detected with a VAF ≥ 0.02 in either BM or PB, 77% 

were detected in BM with a VAF ≥ 0.02, and 85% were detected in PB with a VAF ≥ 0.02 

(Figure 1I). There was also no significant difference in the number of individuals detected with 

CH between BM and PB (Figure 1J). Our analysis suggests somatic mutations are detected 



with comparable sensitivity in PB and BM and that the frequency of CH is similar between 

patients undergoing hip replacement surgery and the general population. 

HSPC differentiation trajectory in DNMT3A and TET2-mutant clonal hematopoiesis 

As mutant cells in human CH occur at low frequency, a high-fidelity method for distinguishing 

mutant and WT cells within the same sample is needed to accurately study the consequences 

of mutations in human BM. To address this, we further optimized TARGET-seq60, which 

combines high-fidelity single-cell genotyping with transcriptome sequencing on flow cytometry 

index sorted cells. Our new method, TARGET-seq+, incorporates Smart-seq3 chemistry61 to 

increase transcript detection sensitivity. To validate TARGET-seq+, we compared TARGET-

seq and TARGET-seq+ on JURKAT cells and primary human lineage– (Lin–) CD34+ HSPCs 

(Figure S1D). Sequencing metrics were comparable between the methods (Figure S1E), but 

TARGET-seq+ yielded a higher proportion of cells passing quality filters (Figures S1F). 

Furthermore, TARGET-seq+ increased the number of genes detected per cell by 13.5% in 

JURKAT cells and by 19.0% in HSPCs (Figures S1G-H). Increased transcript detection 

sensitivity was observed in both frequently and lowly expressed genes (Figure S1I). 

Consistent with more efficient transcript capture, cell-to-cell correlations of transcript detection 

improved significantly with TARGET-seq+ (Figure S1J). 

We applied TARGET-seq+ to 9 CH samples and 4 age-matched controls without known driver 

mutations (non-CH samples) (Figure 2A, Table S3). We focused on hematopoiesis in 

DNMT3A and TET2-mutant BM samples by selecting 5 cases with heterozygous DNMT3A 

LoF mutations, 3 with TET2 LoF mutations, and one case with mutations in both DNMT3A and 

TET2. VAFs in BM ranged from 0.061 to 0.366 (Table S3). In two CH cases, there were 

additional mutations at low VAF (<0.02) (Table S3). We sorted a mean of 1071 cells/sample 

(range 348–1824), composed of purified Lin–CD34+ HSPCs, further enriched for primitive Lin–

CD34+CD38– HSCs and multipotent progenitors (MPPs), combined with CD34– mature cells 

(Figure S2A). Approximately 40-45% of cells across all samples were Lin–CD34+CD38–; a 

similar percentage were Lin–CD34+CD38+; and ~10% were CD34– (Figure S2B). 95.0% of 

sorted cells (13,247/13,939) were included for further analysis after quality filtering (Figure 

S2C). We detected ~106 RNA counts (Figure S2D) and a median of 6484 genes per cell 

(Figure S2E). These metrics were consistent across samples.  

To generate a hematopoietic landscape based on single-cell RNA profiles, we integrated gene 

expression data across the 13 samples (Figure S2F). We annotated 23 cell clusters using 

published gene signatures62-70 and previously described marker genes for specific populations 

and lineages (Figures 2B, 2C, S2G-H). Using the flow cytometry index data, we overlaid 

immunophenotypic population identities on the transcriptional landscape (Figure 2D). 



Immunophenotypically defined HSPC populations were often present in more than one 

transcriptionally defined population (Figure S2I), consistent with transcriptional clusters 

providing a more granular view of hematopoietic cell states, as previously suggested.62,67  

Downstream of the HSC/MPP cluster, a continuum of transcriptional cell states was observed, 

with initial separation into two distinct clusters, namely the lymphoid-primed multipotent 

progenitor (LMPP) and the erythro/megakaryocytic-primed multipotent progenitor (EMPP) 

(Figure 2B). A series of cell states with neutrophil/monocyte and lymphoid potential extended 

downstream of LMPPs, whereas progressing from the EMPP were erythroid cells and 

megakaryocytes, consistent with prior data.64,71 By examining DNMT3A and TET2 gene 

expression across hematopoiesis, we found that both genes were expressed in HSC/MPPs 

and LMPP, with reduced expression in lymphoid and erythroid lineages (Figure 2E). Notably, 

TET2 expression increased during myeloid maturation, in contrast to DNMT3A. 

Even though CH is mainly composed of normal cells, prior data have shown the frequencies 

of immunophenotypic HSPC change with age72 and in myeloid disease.73-76 As a foundation 

to examine hematopoiesis in CH, we used two approaches to document the size of the HSPC 

compartments in CH. First, we measured the frequency of cells across the transcriptional 

landscape and compared CH samples with non-CH samples (details in Methods). On average, 

DNMT3A-mutant samples had a modest 0.89-fold reduction in transcriptional HSC/MPPs and 

early lympho-myeloid progenitors, and a 1.2 to 1.4-fold increase in late progenitor cells (Figure 

2F). By contrast, TET2-mutant samples showed a modest 1.2-fold expansion of transcriptional 

HSC/MPPs (Figure 2G). We then performed conventional immunophenotyping on a larger 

sample set, which showed Lin–CD34+CD38–CD45RA–CD90+ HSCs and CD49f+ long-term 

HSCs (LT-HSC) were 2-fold and 2.2-fold expanded, respectively, in TET2-mutant samples 

relative to non-CH samples (Figures 2H and S2J). Additionally, DNMT3A- and TET2-mutant 

CH samples showed a 3.9-fold and 2.9-fold increase in the rare immunophenotypic Lin–

CD34+CD38–CD45RA+ LMPP population respectively (Figure 2H), which constitutes a minor 

fraction of the transcriptionally-defined LMPP and multi-lymphoid progenitors (MLP) (Figure 

S2I). Overall, the sizes of the HSPC compartments are moderately perturbed in DNMT3A- 

and TET2-mutant CH.  

Distinct patterns of clonal expansion of DNMT3A- and TET2-mutant clones 

Global differences in HSPC compartments fail to reveal the differential size of co-existing CH 

mutant clones as opposed to WT cells. To address this, we directly compared mutant and WT 

cells within the same samples, by integrating single-cell genotyping data with gene expression 

profiles. DNMT3A and TET2 loci were successfully amplified in 97.7% and 98.1% of cells 

respectively, resulting in clonal assignment for 93.1% of CH cells (Figure S3A). Importantly, 



allelic dropout (ADO) rates were low (7.2–13.4% across 4 loci in which ADO was estimated 

by a heterozygous germline single nucleotide polymorphism in the genotyping amplicon), 

allowing us to confidently identify most mutant and WT cells (Figure S3B). Genotyping rates 

for DNMT3A and TET2 were high across all cell types (Figure S3C), and the frequency of 

mutant cells detected by TARGET-seq+ correlated well with estimates from bulk BM DNA 

sequencing (Figure S3D). In all the subjects with more than one clone, DNMT3A or TET2 

mutations were present in the founder clone, allowing us to determine the effect of these 

mutations in a WT background (Figures S3E-L). 

To determine the expansion or contraction of mutant clones through hematopoietic 

differentiation, we projected genotypes onto the transcriptomic differentiation landscape and 

compared the density of mutant and wild type cells (Figure 3A). We included all successfully 

genotyped cells from CH samples (including Lin–CD34+, Lin–CD34+CD38– and CD34– sorting 

strategies). By considering the ratio of cell density between mutant and WT cells (hereafter 

referred to as the mutant clone likelihood) and normalizing this likelihood to that of the 

HSC/MPP cluster within each sample, we could determine how clone size changes 

downstream of the HSC/MPP (Figure 3A). 

First, we analyzed the pattern of expansion of clones with a single DNMT3A mutation. Cells 

with a single DNMT3A mutation were intermingled with DNMT3AWT cells, both within individual 

samples (Figures S3E-I) and in the integrated dataset (Figure 3B), indicating that DNMT3AMUT 

and DNMT3AWT cells shared a similar differentiation trajectory and that mutant cells did not 

create novel cell states. In HSC/MPPs, the contribution of mutant cells was highly variable, 

with the clone size ranging from 3.4% to 70.4% (Figures 3B and S3E-I). Across all samples, 

changes in DNMT3AMUT clone size through differentiation were modest (Figures 3C and 3D). 

Downstream of HSC/MPPs, the mean mutant clone likelihood was approximately 50% higher 

in early EMPP and LMPP populations than in HSC/MPPs (Figures 3C and 3D). Clone sizes 

were then largely maintained at later stages of differentiation, except for in T cells and to a 

lesser extent B cells, where clone size was on average 50% smaller than in HSC/MPPs. 

Depletion of DNMT3AMUT cells in lymphoid cells was variable between individuals, with mutant 

cells being nearly absent from lymphoid cells in one sample (Figure S3E), consistent with 

previous data from purified peripheral blood cell populations.77-79 Overall, DNMT3AMUT clonal 

expansion occurred primarily in HSCs and early multipotent progenitors. Furthermore, aside 

from depletion in B and T cells, there was no evidence of lineage bias in DNMT3AMUT cells, in 

contrast to data from myeloma remission samples in which DNMT3AR882-mutant CH cells were 

biased towards the megakaryocytic-erythroid lineage.56 

TET2MUT cells also intermingled with TET2WT cells (Figure 3E). Clone size within HSC/MPPs 

varied between 1.1%–32.6% (Figures 3E and S3J-L). In contrast to DNMT3AMUT clones, there 



was more pronounced expansion of TET2MUT clones downstream of HSC/MPPs during 

myelopoiesis (Figures 3F and 3G). Indeed, TET2MUT clones were on average 2.5–3 fold larger 

in granulocyte-monocyte progenitors (GMP) compared to HSC/MPPs. In 2 out of 3 samples, 

the mutant clone also expanded within erythroid progenitors (Figures S3K and S3L). By 

contrast, TET2MUT cells were almost absent from mature B and T cells in all samples, 

suggesting inability to complete terminal lymphoid differentiation. Conversely, there was 

heterogeneity in the contribution of TET2MUT cells to earlier lymphoid progenitors. In 2/3 cases 

we observed a depletion of mutant cells from these populations (Figures S3J and S3L), but in 

one individual the TET2MUT clone constituted 91% of B cell progenitors (Figure S3K). 

Next, to understand the differentiation potential of heterozygous versus homozygous TET2MUT 

clones, we studied one sample where two TET2 mutations were acquired sequentially in a 

linear clonal structure, followed by acquisition of an ATM mutation in a small terminal subclone 

(Figure 3H). The single- and double-TET2MUT clones each contributed to only 1.1% of 

HSC/MPPs. While the single-TET2MUT clone expanded 3–4 fold in downstream erythroid and 

myeloid progenitors, the double-TET2MUT clone dramatically outcompeted the single mutant 

clone during myelopoiesis, contributing to more than half of all cells in GMP, plasmacytoid 

dendritic cells (pDC) and monocytes (Figures 3I and 3J). Notably, immunophenotypic pDC 

were expanded in this sample (Figure 3K). Interestingly, there was also a 2.6-fold expansion 

of the immunophenotypic HSC and MPP populations in this sample relative to non-CH 

samples (Figure 3K). Since 97.6% of transcriptional HSC/MPPs were TET2WT, this raises the 

question of whether TET2MUT CH might increase WT HSC/MPP cell numbers in a non-cell 

autonomous manner (Figure 3K). Overall, TET2 LoF leads to a competitive advantage within 

HSCs and biased cell output towards myelopoiesis in a gene dose dependent manner, 

consistent with TET2 gene expression across hematopoiesis (Figure 2E).  

Finally, we had the informative opportunity to study clonal competition between DNMT3AMUT 

and TET2MUT cells in the same individual in a sample with co-existing, independently acquired 

DNMT3AMUT and TET2MUT clones (Figure 3L). Interestingly, the DNMT3AMUT clone was 6 times 

larger than the TET2MUT clone within HSC/MPPs, but the TET2MUT clone became 4 times larger 

than the DNMT3AMUT clone within the GMPs (Figure 3M and 3N). Notably, the TET2MUT clone 

was also larger than the DNMT3AMUT clone in erythroid and early lymphoid progenitors, as 

well as during early B cell lymphopoiesis (Figure 3M). 

In summary, DNMT3AMUT and TET2MUT clones showed distinct patterns of clonal expansion 

across differentiation. The selective advantage of DNMT3AMUT clones occurs mainly in HSCs 

and early multipotent progenitors, whereas TET2MUT clones expand not only in HSCs, but also 

further through differentiation, especially in myelopoiesis.  



Transcriptional basis for dysregulated myeloid differentiation of TET2-mutant clones 

As TET2MUT clonal expansion was most pronounced in the myeloid lineage, we further 

explored the transcriptional basis of this phenotype in individuals with TET2MUT CH. We first 

compared the density distributions of TET2MUT and TET2WT cells along myeloid pseudotime 

(the differentiation trajectory from HSCs to mature myeloid cells) (Figure 4A). TET2MUT cells 

accumulated particularly at the progenitor stage, within the cycling LMPP, early GMP, and late 

GMP transcriptional clusters, and to a lesser extent at later stages of the trajectory, in mature 

plasmacytoid dendritic cell (pDC) and monocyte clusters (Figure 4B).  

At least two reasons may explain the increased ratio of TET2MUT versus TET2WT cells within 

progenitor stages of myelopoiesis. TET2MUT myeloid progenitor expansion might arise either 

from reduced retention of stem cell transcriptional programs and increased myeloid 

differentiation from HSCs, and/or due to altered maturation of myeloid progenitors.  

To begin to address this, we performed gene set enrichment analysis (GSEA) using published 

HSPC signatures62,66,70 to examine transcriptional differences between TET2MUT and TET2WT 

cells within LMPP and GMP clusters. We first validated these signatures in our dataset (Figure 

S4A). Compared to TET2WT cells, TET2MUT LMPPs, cycling LMPPs and GMPs were negatively 

enriched for HSC signatures (Figure 4C). Conversely, TET2MUT GMPs were enriched for 

neutrophil progenitor and mature neutrophil/monocyte signatures (Figure 4C). Concordantly, 

CD38 and CD45RA surface protein expression was higher in TET2MUT compared to TET2WT 

LMPPs (Figure S4B), consistent with our previous data that higher expression of these 

markers enriches for myeloid potential in LMPPs.67 Finally, megakaryocytic-erythroid 

signatures were also negatively enriched, particularly in TET2MUT cycling LMPP cells (Figure 

S4C), consistent with their myeloid bias.  

To further explore differentiation kinetics, we analyzed the same HSPC signatures across 

myeloid pseudotime by computing the AUCell score80 for these signatures in TET2MUT and 

TET2WT cells (Figure 4D). This showed that HSC genes (both genes with increased expression 

in HSCs versus CD34+ progenitors and those with increased expression in BM LT-HSC versus 

short-term HSCs (ST-HSC)) showed a faster reduction in expression in TET2MUT compared to 

TET2WT cells along the trajectory. Furthermore, gene sets associated with neutrophil 

progenitors and monocytes showed earlier, or “premature”, expression in TET2MUT cells. 

Concordantly, exemplar genes expressed in mature myeloid cells, including MPO, NKG7, 

KLF4, and RBM47, showed premature expression in TET2MUT progenitors along myeloid 

pseudotime (Figure S4D). Taken together, this suggests that early TET2MUT lympho-myeloid 

progenitors retain less HSC and non-myeloid programs, while later in differentiation, TET2MUT 

progenitors commit more rapidly to myelopoiesis. 



We next wanted to identify potential drivers of earlier expression of mature myeloid gene 

programs in TET2MUT myeloid progenitors. We used pySCENIC to compare expression of TFs 

and their putative downstream targets genes (i.e. regulons) between TET2MUT and TET2WT 

cells within LMPP and early GMP clusters, where lymphoid and myeloid lineages diverge. The 

canonical myeloid TFs CEBPD, CEBPA, IRF8 SPI1, and SPIB were all more active in TET2MUT 

LMPPs and early GMPs (Figure 4E). Conversely, TFs associated with HSC self-renewal 

(MEIS1, HOXA9, HOXB2, NFYB and PBX1), and with megakaryocytic-erythroid differentiation 

(GATA1, TAL1, and KLF1) were less active in TET2MUT cells. Regulon activity (Figure 4F and 

4G), as well as TF expression (Figure 4H) of CEBPA, SPI1, IRF8, and CEBPD, peaked earlier 

in TET2MUT versus TET2WT cells along myeloid pseudotime. This quartet of myeloid TFs are 

required both in early (CEBPA, SPI1 and IRF8) and later (SPI1, IRF8 and CEBPD) stages of 

myelopoiesis. In contrast, expression of MEIS1 and its targets were downregulated earlier in 

TET2MUT cells. Interestingly, binding motifs of CEBPA, CEBPD, SPI1, SPIB, and ELF1/2 were 

also enriched within differentially methylated enhancers in peripheral blood granulocytes from 

patients with TET2MUT cytopenia of undetermined significance (CCUS) (Figure 4I).81 This 

suggests a link between altered enhancer methylation and dysregulated myeloid TF activity 

in TET2MUT myeloid cells.  

Finally, we explored the transcriptional consequences of earlier and aberrant myeloid 

differentiation in TET2MUT cells. When we compared TET2MUT and TET2WT LMPP and GMP, 

and performed GSEA (Figure S4E), we identified enrichment of signatures associated with 

cell cycle (cycling LMPP), oxidative phosphorylation, cytokine signaling, and innate immune 

effector function (GMP) in TET2MUT cells. Overall, this suggests that TET2MUT myeloid 

progenitors are biased towards maturation, with accelerated upregulation of mature gene 

expression programs and dysregulated expression of inflammatory pathways. 

Non-cell-autonomous activation of inflammatory transcriptional programs in HSC/MPP 
in clonal hematopoiesis is attenuated in mutant HSCs  

Humans have an estimated 50,000–200,000 HSCs.82 In an individual in which 1% of HSCs 

harbor a CH mutation, this would represent a 500–2,000-fold expansion from a single initiating 

mutant HSC. When compared to this, changes in clone size observed downstream of the HSC 

compartment are modest, implying that the greatest clonal expansion for both DNMT3AMUT 

and TET2MUT (CHMUT) clones occurred within long-lived HSC/MPPs. At least two hypotheses 

could explain the relative clonal advantage of CHMUT HSCs over WT (CHWT) HSCs: either 

CHMUT HSCs may have a cell-autonomous competitive advantage and/or CHWT HSCs may be 

at a competitive disadvantage. 



To begin to dissect which hypotheses were operative, we first compared gene expression 

between HSC/MPPs from CH samples (both CHMUT and CHWT) and HSC/MPPs from age-

matched samples without CH (non-CH samples) (Figure 5A). We first identified differentially 

expressed genes between either DNMT3AMUT (Figure 5B top left) or TET2MUT (Figure 5B top 

right) HSC/MPPs and non-CH HSC/MPPs. GSEA showed enrichment of TNFa signaling via 

NF-κB, inflammatory response, and HSC quiescence signatures in both DNMT3AMUT and 

TET2MUT HSC/MPPs compared to non-CH HSC/MPPs. By contrast, gene sets for progenitors 

(GMP and to a lesser extent LMPP) were negatively enriched in DNMT3AMUT and TET2MUT 

HSC/MPPs, suggesting CHMUT HSC/MPPs are less primed towards differentiation. Strikingly, 

a similar pattern of enrichment was observed when DNMT3AWT and TET2WT HSC/MPPs from 

CH samples were compared to non-CH HSC/MPPs (Figure 5B, bottom panels). Taken 

together, these transcriptional data suggest HSC/MPPs in CH individuals are impacted by an 

inflammatory milieu, regardless of whether they have DNMT3A or TET2 mutations. 

Prior data indicate that aging is associated with chronic inflammation, increased NF-κB 

signaling, increased quiescence and functional decline in HSCs.83-85 To evaluate if aging-

related signatures were enriched in CH HSC/MPPs compared to age-matched non-CH 

HSC/MPPs, we performed single-nucleus RNA-seq (snRNA-seq) on human bone marrow 

HSPCs collected from young and older aged individuals and performed differential expression 

between HSCs to define signatures of aged HSCs (Figure S5A-D). For further validation, we 

defined additional signatures of aged HSCs through re-analysis of two additional human 

HSPC scRNA-seq datasets (Figures S5E-H and Methods).86,87 Notably, transcriptional 

signatures specific to aged human HSCs were enriched in DNMT3AMUT and TET2MUT 

HSC/MPPs from CH samples compared to non-CH WT HSC/MPPs, as well as in DNMT3AWT 

and TET2WT HSC/MPPs from CH samples compared to non-CH WT HSC/MPPs (Figure 5C). 

We then asked how DNMT3A and TET2 mutations alter gene expression to provide CHMUT 

HSC/MPPs a fitness advantage. Specifically, we wanted to understand the cell-intrinsic effects 

of the CH mutation. We compared gene expression between CHMUT and CHWT cells and used 

GSEA to identify gene expression programs that were differentially enriched between 

DNMT3AMUT and DNMT3AWT HSC/MPPs (Figure 5D, left) or between TET2MUT and TET2WT 

HSC/MPPs (Figure 5D, right). TNFα signaling, NF-κB pathway, IL-1 signaling, and IFNa 

response signatures were all negatively enriched in CHMUT HSC/MPPs compared to CHWT 

HSC/MPPs. Furthermore, aged HSC signatures and those that distinguish LT-HSC from ST-

HSC were also negatively enriched in CHMUT HSC/MPPs compared to CHWT HSC/MPPs, 

particularly in individuals with DNMT3AMUT CH. Specific genes associated with interferon, NF-

κB, IL-1, TGF-b signaling and early response were more highly expressed in DNMT3AWT and 

TET2WT HSC/MPPs from CH individuals compared to HSC/MPPs from non-CH individuals 



(Figure 5E, left panel). Conversely, many of the same genes were expressed at lower levels 

in DNMT3AMUT and TET2MUT HSC/MPPs compared to their CHWT counterparts (Figure 5E, 

right panel), consistent with CHMUT HSC/MPPs having an attenuated response to the 

inflammatory environment. 

In contrast, signatures of cycle primed HSC, LMPP, and GMP were enriched in CHMUT 

HSC/MPPs compared to CHWT HSC/MPPs (Figure 5D). Consistent with reduced quiescence 

(or a more ST-HSC-like phenotype), DNMT3AMUT and TET2MUT HSC/MPPs also showed 

positive enrichment for pathways related to mitosis, cell migration, and signaling, particularly 

in TET2MUT cells, compared to CHWT HSC/MPPs (Figure S5I). Furthermore, TET2MUT 

HSC/MPPs had greater RNA content, were larger, more granular, and had lower CD49f 

protein expression compared to TET2WT cells (Figures S5J-M). These results suggest an 

inverse relationship between molecular programs underlying inflammation and aging in 

contrast to programs underlying lympho-myeloid differentiation priming within the HSC/MPP 

compartment. We assessed the expression of these signatures in HSC/MPPs at the single-

cell level using AUCell scores. Indeed, expression of TNFα via NF-κB signaling was strongly 

correlated with the aged HSC signatures, while both sets of signatures were negatively 

correlated with the LMPP signature (Figure S5N). 

These results suggested that CHMUT HSC/MPPs have an altered transcriptional response to 

the CH environment. To generate molecular signatures that capture those processes that 

differ between CH and non-CH samples, we compared gene expression profiles of CHWT 

HSC/MPPs to non-CH HSC/MPPs (Figures 5F and S5O). There were 561 genes upregulated 

in CHWT HSC/MPPs, whereas only 61 genes were upregulated in non-CH HSC/MPPs (Figure 

S5O). Genes upregulated in CHWT HSC/MPPs were enriched for TNFα via NF-κB and TGF-β 

signaling, as well as signatures of HSC quiescence and aging (Figure S5P). We then asked 

whether DNMT3AMUT and TET2MUT HSC/MPPs were impacted differently than CHWT 

HSC/MPPs. Indeed, both DNMT3AMUT and TET2MUT HSC/MPPs were negatively enriched for 

the CHWT HSC/MPP signature (Figure 5G top panels), but positively enriched for the non-CH 

HSC/MPP signature (Figure 5G bottom panels), consistent with our findings above. 

In summary, our data suggest that, compared to their CHWT counterparts, CHMUT HSC/MPPs 

are shifted towards a state that is more similar to non-CH HSC/MPPs. Collectively, these data 

suggests that the transcriptional response to aging and inflammation may be attenuated in 

CHMUT HSC/MPPs. 

HSC are transcriptionally heterogeneous where distinct HSC subsets show differing 
responses to the CH environment 



Transcriptional differences between HSC/MPPs in a CH and non-CH context point to a need 

for a more granular exploration of HSC/MPP heterogeneity. Thus, we subclustered 

HSC/MPPs and the earliest progenitors from CH and non-CH samples (Figure 6A and Figure 

S6A), using self-assembling manifolds (SAM), an unsupervised approach to prioritize 

biologically relevant features among comparatively homogenous cells which has previously 

been applied to human HSC/MPPs.88-90 This identified three distinct HSC clusters (HSC 1-3), 

separated from the MPP, LMPP, and EMPP clusters. HSC1 and HSC2 were composed of 

similar numbers of cells (1701 and 2150 respectively); HSC3 had far fewer cells (484). The 

HSC clusters were the most highly enriched for HSC signatures (including LT-HSC) and 

depleted for ST-HSC, LMPP, GMP and MEP signatures (Figure 6B and Figure S6B). HSC1 

and HSC2 clusters were more enriched for CD49f+ HSCs compared to HSC3 cluster, which 

was immunophenotypically more similar to MPPs (Figure S6C).  

Next, we asked whether the HSC clusters were transcriptionally distinct with respect to 

expression signatures of inflammation and aging (Figure 6C). Interestingly, HSC2 cells 

expressed significantly higher levels of TNFα/NF-κB signaling, aged HSC and quiescent HSC 

signatures,70,90 and lower levels of the activated HSC signature. Concordant with the more 

quiescent transcriptional profile, HSC2 cells expressed fewer genes than HSC1 (Figure S6D). 

Cluster HSC3 exhibited a more heterogeneous AUC cell score distribution and appeared 

transcriptionally intermediate to HSC1 and HSC2 in its transcriptional profile. This pattern of 

gene expression was also mirrored by expression of exemplar genes associated with 

inflammatory signaling, quiescence, and cell cycle across the clusters (Figures S6E-G). For 

example, HSC2 expressed lower levels of CDK6, which promotes exit from quiescence in LT-

HSCs,91 and higher levels of GPRC5C, which marks dormant human BM HSCs (Figures S6F-

G).70 Interestingly, though the HSC1 cluster showed higher expression of genes that promote 

exit from quiescence (Figure S6G), it also showed higher expression of genes and TF regulons 

implicated in HSC self-renewal (Figure S6H-I). Taken together, this suggests the HSC2 cluster 

has a transcriptional phenotype reflecting greater NF-κB pathway activity, increased 

quiescence, less proliferation, and decreased expression of transcription factors that support 

HSC self-renewal. 

Next, we asked if these HSC clusters differed between CH and non-CH samples. To begin to 

address this, we first asked if the clusters differed with respect to their expression of the CHWT 

HSC/MPP and non-CH HSC/MPP signatures (determined earlier, see Figure 5F). By AUCell 

score, HSC2 cells expressed significantly higher levels of the CHWT HSC/MPP signature and 

lower levels of the non-CH HSC/MPP signature (Figure 6D). Thus, there is concordance 

between the elevated expression of inflammatory and aged HSC signatures in WT HSC/MPPs 

from CH samples and in the HSC2 cluster. 



To determine if the heightened inflammatory transcriptional response in HSC/MPPs in CH 

versus non-CH samples correlated with differences in HSC cluster composition, we compared 

the frequency of the different HSC and MPP clusters as a proportion of all cells in the Lin–

CD34+ compartment (excluding Lin–CD34+CD38– enriched cells) of non-CH and CH samples 

(Figure 6E-F). Interestingly, the HSC1 cluster was significantly smaller in CH samples. Though 

the HSC2 cluster was larger in CH samples, this did not reach statistical significance. Taken 

together, this suggests differences in HSC cluster composition between CH and non-CH 

samples may provide a cellular basis for the heightened response to inflammation in CH.  

The analysis above did not examine differences between CHMUT HSCs and WT HSCs within 

CH samples. Specifically, it did not provide an explanation for why the inflammatory and aging 

signatures were attenuated in CHMUT compared to CHWT HSCs. One possible hypothesis is 

that there is an enrichment of CHMUT over CHWT HSCs within the HSC1 cluster, and an over-

representation of CHWT HSCs in the HSC2 cluster. To examine this, we determined the ratio 

of CHMUT to CHWT HSCs in the HSC1 and HSC2 clusters (Figure 6G-H and S6J). This analysis 

showed that this hypothesis was incorrect. The relative density of both DNMT3AMUT and 

TET2MUT to CHWT HSCs was similar across all HSC clusters. This was corroborated by lack of 

statistically significant difference in CHMUT clone size in the HSC1 cluster compared to the 

HSC2 cluster (Figure 6I).  

An alternative hypothesis is that the transcriptional profiles of the different HSC clusters could 

be differently modified by the CH mutation. To test this hypothesis, we compared enrichment 

of the inflammatory, aging, HSC, and progenitor signatures between DNMT3AMUT and 

DNMT3AWT HSCs in DNMT3A-mutant CH samples, within the three HSC clusters (Figure 6J, 

left panel). Specifically within the HSC2 cluster, DNMT3AMUT cells were negatively enriched 

for TNFα signaling via NF-κB, aged HSC, cycle-primed HSC, and LT-HSC signatures, but 

positively enriched for ST-HSC, LMPP, and GMP signatures. Similar results were seen when 

TET2MUT HSCs were compared to TET2WT HSCs in TET2-mutant CH samples (Figure 6J, right 

panel). Some of these differences were shared in the HSC1 and HSC3 clusters in both 

DNMT3AMUT and TET2MUT mutant CH samples but were far less marked. These data support 

the hypothesis that DNMT3A and TET2 mutations, either directly or indirectly, attenuate 

expression of transcriptional programs related to inflammatory signaling and aging, while 

promoting expression of programs associated with lympho-myeloid differentiation, principally 

in the HSC2 cluster. 

Discussion 

Our study has uncovered new insights into the mechanisms whereby the human CHMUT HSC 

population gradually gains an advantage over the vastly more numerous non-mutant HSCs. 



Over time, as the inflammatory milieu of aging suppresses HSC function, the CH mutation 

either directly, or indirectly, attenuates the deleterious HSC response to inflammation, 

enabling CHMUT HSCs to gain a selective advantage (Figure 6K). This insight was enabled by 

the first detailed single-cell examination of CH from older individuals with unperturbed 

hematopoiesis. These samples reflect the outcome of decades-long clonal competition, from 

the time of acquisition of the CH mutation to sampling, in a human bone marrow environment. 

Though laborious, the high-fidelity genotyping achieved with TARGET-seq+ ensures more 

than 90% of all bone marrow cells are genotyped, compared to ~20% with gel bead-based 

approaches.56 Therefore, we can more confidently assign transcriptomes to either wild-type 

cells or CHMUT clones, that usually occur at low frequency. This enables better discrimination 

of the transcriptional programs of CHMUT and wild-type cells within the same individual. Finally, 

TARGET-seq+ also provides high quality scRNA-seq data, both from highly and lowly 

expressed genes, with better inter-cell concordance of transcript levels. 

Our data show that neither DNMT3A nor TET2 heterozygous mutations alter the trajectory of 

hematopoiesis, from HSPC to mature cells. Quantitatively, the vast majority of the steady state 

fitness advantage of DNMT3AMUT and TET2MUT clones occurs at the HSC/MPP level (Figure 

6K). CHMUT clones transit and differentiate normally with modest further expansion in the early 

progenitor compartment. In TET2MUT clones there is further 2-4-fold expansion within 

LMPP/GMP stages through to more mature myelomonocytic and dendritic precursor cells. 

Based on transcriptional kinetics across myeloid differentiation, early TET2MUT lympho-

myeloid progenitors retain less HSC and non-myeloid gene expression programs and show 

premature upregulation of mature programs. Our data hypothesize that this is due to 

increased, and premature, activity of the myeloid transcription factors CEBPA, SPI, IRF8, 

CEBPD, and SPIB. The ability of TET2 mutations to promote abnormal myeloid differentiation 

is further highlighted by the 10-fold increased contribution of a TET2–/– homozygous mutant 

clone to mature myeloid cells compared to a TET2+/– heterozygous clone within the same 

individual. Finally, data from an instructive individual with both DNMT3AMUT and TET2MUT 

clones suggest that DNMT3AMUT clones may outcompete TET2MUT clones in the HSC/MPP 

compartment but that this advantage is reversed during myeloid maturation. An important 

caveat with this interpretation is the larger DNMT3AMUT clone in the HSC/MPP compartment 

may simply reflect a clone that arose earlier in life.  

Prior murine studies show that Tet2–/–,38,49,50 Dnmt3a–/–, and Dnmt3aR878H/+ HSPCs47,48 exhibit 

clonal advantage in inflammatory environments. Various studies have implicated exposure to 

different cytokines in the clonal advantage of mutant HSPCs: IL-1 through the IL-1 receptor,50 

IL-6 through Shp/Stat3 signaling,49 TNFα through the TNFR1,48 and IFN-γ.47 Intestinal 

bacterial translocation38 and chronic mycobacterial infection47 can act as triggers for this 



inflammatory state. Tet2 has been shown to directly repress the pro-inflammatory cytokine IL-

6 through recruitment of the histone demethylase Hdac2 and loss of Tet2 leads to elevated 

IL-6 levels.38 However, the above studies have not fully studied the differential impact of 

inflammation on co-existing WT and CHMUT HSCs in native hematopoiesis. Specifically, these 

studies did not address if CHMUT HSCs clonally outcompete WT HSCs despite both cell 

populations being adversely affected by a heightened inflammatory state, or if CHMUT HSCs 

were more competitive because they were less impacted by the inflammatory environment. 

Furthermore, animal model studies may not adequately replicate human CH where clones are 

exposed to changing environments over decades, and where environments are 

heterogeneous rather than controlled.  

Our data showing enrichment for transcriptional signatures of NF-κB signaling, inflammatory 

response and aging in both CHWT and CHMUT HSC/MPPs in individuals with CH compared to 

HSC/MPPs from age-matched individuals without CH, support the notion of a more 

inflammatory environment in CH. A caveat of our findings is that mean VAF of the CH clones 

studied by TARGET-seq+ was 14% (mean clone size 28%), which is larger than most CH 

clones. This may have resulted in a more inflammatory bone marrow environment than for 

individuals with smaller CH clones. Regardless of this caveat, within any one individual with 

CH that we studied, there was a reduced transcriptional impact of inflammation on CHMUT 

HSCs compared to WT HSCs that co-exist in the same bone marrow microenvironment. Our 

data support two hypotheses: first, that heighted inflammation suppresses HSC function, and 

secondly that the CH mutation either directly, or indirectly, represses the response to 

inflammation within HSCs. In support of the first hypothesis are several studies showing 

various inflammatory stimuli, including chronic IL-1 exposure, impair HSC self-renewal and 

that these changes mimic those seen in aged mice.92-94 Furthermore, an inflammatory bone 

marrow niche in aged mice, including IL-1β produced by a damaged endosteum, leads to 

increased myelopoiesis and impaired hematopoietic recovery.95 In agreement with the second 

hypothesis are data from zebrafish where subclonal CH mutations lead to expression of pro-

inflammatory genes in mature mutant myeloid cells but anti-inflammatory genes in mutant 

HSPCs, providing them with a relative fitness advantage.96 In mice when TET2MUT subclones 

are exposed to IL-1, they functionally outcompete WT HSCs.50 This is correlated with a smaller 

decrease in expression of genes promoting HSC self-renewal in TET2MUT compared to WT 

HSCs. 

Further work is now needed to define the diverse drivers of inflammation in humans and the 

mechanisms of how human CHMUT HSCs resist the detrimental effects of inflammation. The 

inflammatory drivers are likely to be highly heterogenous and vary over time. Despite this, 

there may be common final pathways of gene regulation downstream of multiple inflammatory 



signals. A careful examination of the human bone marrow niche in non-CH and CH individuals, 

with different CH clone sizes, would be helpful in this regard. This information, if combined 

with molecular and functional data from HSPCs and inferred rates of clonal expansion from 

the same individuals, may help identify the most potent putative inflammatory drivers of 

selection of CHMUT clones over WT HSCs. These datasets, combined with functional analyses, 

could ultimately lead to therapies that diminish either the most important inflammatory drivers 

of CHMUT clonal selection, or the ability of CHMUT clones to resist the deleterious effect of 

inflammation on HSC function. 
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Figures and Legends  

Figure 1. Identification of cases with age-related clonal hematopoiesis in individuals 
undergoing hip replacement surgery. 
(A) Experimental design for identifying individuals with clonal hematopoiesis. Bone marrow 

samples were collected from 195 individuals undergoing hip replacement surgery. Targeted 

re-sequencing (mean coverage ~800Í) using a 347 kb panel (Table S2) was performed on 

DNA extracted from BM MNCs to identify somatic driver mutations (Table S2). Cases with 

clonal hematopoiesis were defined as those with a somatic driver mutation at a VAF of ≥ 0.01. 

(B) Fraction of samples in the cohort with one or more driver mutations at VAFs of 0.01–0.02 

or ≥ 0.02. 
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(C) Landscape of somatic variants observed in the cohort. Each row represents a gene, and 

each column corresponds to a participant in the study. Top bar plot indicates the number of 

mutations per sample. Variants are color-coded and classified as pathogenic or variants of 

unknown significance (VUS) according to criteria specified in Methods. Samples with >1 

variant in any one gene are classified as Multiple. Samples with ≥ 1 pathogenic driver mutation 

were categorized as having clonal hematopoiesis (bottom bar; red). 

(D) Distribution of VAFs in all mutations observed across the cohort.  

(E) Frequency of mutations detected per individual by age group.  

(F) Prevalence of CH with at least one driver mutation (VAF ≥ 0.02) by age. BM DNA 

sequencing data from participants in this study (n = 195) are compared with a cohort of 676 

individuals reported by Abelson et al.22, a cohort of 3,359 individuals reported by van Zeventer 

et al.58, and a cohort of 199 individuals undergoing total hip replacement (n = 109 BM samples 

and n = 91 PB samples) reported by Hecker et al.59 Error bars represent 95% confidence 

intervals. 

(G) Comparison of VAFs for 128 mutations in paired BM and PB samples. Mutations detected 

with VAF ≥ 0.01 in either sample type were included. The dashed line shows the line of equality 

where BM VAF is equal to PB VAF. R indicates the Pearson correlation coefficient. 

(H) Pairwise comparison of VAFs for mutations detected in DNMT3A (n = 35) and TET2 (n = 

19). Statistical analysis performed using Wilcoxon signed-rank test. 

(I) Proportion of mutations detected with a VAF ≥ 0.02 in BM or PB DNA (n = 78 mutations 

detected with a VAF ≥ 0.02 in either BM or PB in 83 individuals with paired BM and PB 

sequencing data). 

(J) Proportion of CH cases with at least one mutation detected with a VAF ≥ 0.02 in BM or PB 

(n = 83 cases with paired BM and PB sequencing data and a mutation with VAF ≥ 0.02 in 

either BM or PB). 



Figure 2. Hematopoietic differentiation trajectory in DNMT3A and TET2-mutant clonal 
hematopoiesis. 
(A) Experimental design for TARGET-seq+ analysis of BM samples from 9 donors with CH 

and 4 age-matched samples without CH (non-CH). Samples were FACS enriched for Lin–

CD34+ HSPCs, Lin–CD34+CD38– cells and CD34– cells and processed using TARGET-seq+ 

obtaining transcriptome, targeted genotyping, and flow cytometry index immunophenotyping 

for each cell. 

(B) UMAP projection of integrated single-cell transcriptome data (n = 13,247 cells from 13 

donors). Cells are colored by their cluster annotation, see also Figure S2. 

(C) UMAP superimposed with AUCell enrichment scores for the BM long-term HSC 

signature.70 

(D) UMAP superimposed with the cell immunophenotype determined from flow cytometry 

indexing. 

(E) Heatmap of mean log2(normalized counts) for DNMT3A and TET2 in control, DNMT3A- 

and TET2-mutant samples across hematopoietic cell types. 
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(F and G) UMAPs colored by the mean density of Lin–CD34+ cells in DNMT3A-mutant (F) and 

TET2-mutant (G) CH samples relative to age-matched non-CH samples. Cells sorted from the 

total Lin–CD34+ FACS gate were selected (n = 6,629 cells) and MELD 97 was used to estimate 

the density of cells from each sample across the transcriptomic landscape. The mean density 

for each sample type was then calculated and normalized to the mean density in non-CH 

samples. A relative density > 1 indicates that the probability of observing a given cell is greater 

in CH samples than in non-CH samples, whereas a relative density < 1 indicates that the 

probability is lower in CH samples than in non-CH samples. 

(H) Flow cytometry analysis was performed on bone marrow samples from normal age-

matched non-CH samples (n = 18), and CH samples with either DNMT3A (n = 14) or TET2 (n 

= 9) mutations present in the largest clone. Barplots show the frequency of stem/progenitor 

cells as a percentage of BM MNCs. Data are represented as mean ± SEM. P-values calculated 

by Wilcoxon rank sum test with Holm-Bonferroni multiple testing correction. * p < 0.05, ** p < 

0.01. 

HSC, hematopoietic stem cells; MPP, multipotent progenitor; LMPP, lympho-myeloid primed 

multipotent progenitor; GMP, granulocyte-monocyte progenitor; pDC, plasmacytoid dendritic 

cell progenitor; EMPP, erythroid/megakaryocyte primed multipotent progenitor; MkP, 

megakaryocytic progenitor; EryP, erythroid progenitor; EBMP, Eosinophil/basophil/mast cell 

progenitor; MLP, multi-lymphoid progenitor; B-NK, B and NK cell progenitor. 



Figure 3. Distinct patterns of clonal expansion of DNMT3A- and TET2-mutant clones. 
(A) Single-cell genotyping and gene expression data were integrated and, for each sample, 

MELD was used to estimate the density of cells from each clone across the transcriptomic 

landscape (see Methods). The relative likelihood of a cell being mutant vs. WT (relative clone 

likelihood) was calculated and then normalized to the mean likelihood in the HSC/MPP cluster 

within each sample. A mutant relative likelihood > 1 indicates that the probability of a given 

cell being mutant is greater than in the HSC/MPP, whereas a relative likelihood < 1 indicates 

that the probability is lower than in the HSC/MPP. 
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(B) UMAP of WT and single-mutant cells from DNMT3AMUT CH samples (n = 4301 cells from 

5 samples) colored by genotype, either wild-type (WT, n = 2813) or DNMT3AMUT (n = 1488). 

(C)  UMAP of WT and single-mutant cells from DNMT3AMUT CH samples colored by the mean 

likelihood of cells being DNMT3AMUT relative to the average within HSC/MPP. The mean value 

across 5 samples is shown. 

(D) Scatterplot showing the distribution of mean DNMT3AMUT clone likelihoods by cluster. Each 

dot represents a cell. The y axis shows the mean DNMT3AMUT clone likelihood relative to the 

HSC/MPP as in (C). Each dot is colored by the standard deviation of the values across 5 

samples. 

(E) UMAP of WT and single-mutant cells from TET2MUT CH samples (n = 3472 cells from 3 

samples) colored by genotype, either wild-type (WT, n = 2655) or TET2MUT (n = 817). 

(F) UMAP of WT and single-mutant cells from TET2MUT CH samples colored by the mean 

likelihood of cells being TET2MUT relative to the average within HSC/MPP. The mean value 

across 3 samples is shown. 

(G) Scatterplot showing the distribution of mean TET2MUT clone likelihoods by cluster. Each 

dot is colored by the standard deviation of the values across the 3 samples. 

(H) Clonal structure for the NOC002 sample in which 2 separate TET2 mutations and an ATM 

mutation were detected. Cell numbers assigned to each clone are indicated. 

(I) Clonal composition within each cluster for sample NOC002. Each clone is colored as in (H). 

The number of cells analyzed in each cluster is shown above. 

(J) UMAP showing the likelihood of cells being in the double TET2MUT clone (TET2Q726X/ R1261C) 

relative to the average within HSC/MPP in the NOC002 sample.  

(K) Immunophenotypic BM compartment sizes for the NOC002 sample. Left-hand bars show 

compartments as a proportion of total BM MNCs, while right-hand bars show HSPC 

compartments within Lin–CD34+ cells. Data from the NOC002 sample are compared with the 

median population sizes from 18 age-matched control samples. 

(L) Clonal structure for the NOC115 sample in which DNMT3A and TET2 mutations were 

detected. The two mutations were mutually exclusive in single-cell genotyping. Cell numbers 

assigned to each clone are indicated. 

(M) As in (I) but for sample NOC115. Each clone is colored as in the clonal structure in (L). 

(N) UMAPs showing the likelihood of cells being in the DNMT3AMUT (left) and TET2MUT (right) 

clones relative to the average within HSC/MPP in the NOC115 sample. 



Figure 4. TET2-mutant clones lead to dysregulated myeloid differentiation. 
(A) UMAP showing the myeloid differentiation trajectory with cells colored by pseudotime 

score. 

(B) Top: Density plot showing the distribution of TET2WT and TET2MUT cells through 

pseudotime in the myeloid lineage. Cells sorted as part of the total Lin–CD34+ FACS gate were 

downsampled to an equal number cells per sample (n = 176 cells from each of 4 samples). 

Bottom: Histogram showing the density of cells in each cluster along pseudotime for cells 

included in this analysis. 

(C) GSEA against hematopoietic signatures comparing TET2MUT versus TET2WT cells within 

each LMPP and GMP cluster. Differential expression analysis was performed accounting for 

sample and batch effects. Cells from the 4 TET2MUT CH samples were included in the analysis. 

Color intensity indicates the normalized enrichment score (NES); signatures with FDR > 0.05 
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are colored grey. Positive NES values indicate enrichment in mutant cells. BM, bone marrow; 

LT-HSC, long-term HSC; ST-HSC, short-term HSC. 

(D) Local regression of AUCell expression scores for HSC and myeloid gene signatures along 

myeloid pseudotime, comparing TET2WT and TET2MUT cells. 

(E) Volcano plot showing differentially expressed regulons between TET2MUT and TET2WT cells 

within the LMPP cycling and early GMP clusters in TET2MUT CH samples. FDR-corrected P-

values calculated by linear mixed model test accounting for sample effects. 

(F) UMAPs showing activity of the indicated regulons across the hematopoietic landscape 

within non-CH samples. 

(G) Local regression of regulon activity through myeloid pseudotime, comparing TET2MUT and 

TET2WT cells in TET2MUT CH samples. 

(H) Fitted gene expression values along pseudotime for the transcription factors shown in (F) 

and (G) in TET2MUT and TET2WT cells in the myeloid lineage. 

(I) Enrichment of TF motifs within differentially methylated enhancer regions (DMRs) that are 

hypermethylated in monocytes from TET2-mutant CCUS patients81 (y-axis), plotted against 

the ranked change in regulon activity (–log10(FDR) * sign of the fold change) between 

TET2MUT and TET2WT cells within the LMPP cycling and early GMP clusters from (E). 



Figure 5. Non-cell-autonomous activation of inflammatory transcriptional programs in 
HSC/MPP in clonal hematopoiesis is attenuated in mutant HSCs. 
(A) Schematic showing the strategy for differential gene expression analysis between 

HSC/MPPs from CH samples and HSC/MPPs from age-matched non-CH samples (black 

arrows; panels B, C, E), and between CHMUT and CHWT HSC/MPPs within CH samples (grey 

arrows; panels D, E). 

(B) GSEA against Hallmark inflammatory signatures and hematopoietic lineage signatures 

comparing WT or mutant HSC/MPPs from CH samples with HSC/MPPs from age-matched 

non-CH samples. Differential expression analysis was performed accounting for sample, age, 
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and batch effects. The left panels show comparisons between the 4 non-CH samples (n = 

1280 cells) and the five DNMT3AMUT samples (n = 1145 WT cells, n = 405 DNMT3AMUT cells). 

The right panels show comparisons between the 4 non-CH samples (n = 1280 cells) and the 

three TET2MUT samples (n = 1243 WT cells, n = 221 TET2MUT cells). Note the double-mutant 

NOC115 sample was excluded from this analysis. Signatures with FDR > 0.2 are colored grey. 

Positive NES values indicate enrichment in cells from CH samples. 

(C) As in (B) but showing GSEA against aged HSC signatures derived from the in-house 

dataset, and two additional studies comparing aged and young human HSCs.86,87 

(D) GSEA against NF-κB, interferon, and hematopoietic signatures comparing DNMT3AMUT 

versus DNMT3AWT HSC/MPPs (left) and TET2MUT versus TET2WT HSC/MPPs (right) within CH 

samples. Color intensity indicates the normalized enrichment score (NES); signatures with 

FDR > 0.2 are colored grey. Positive NES values indicate enrichment in mutant cells. BM, 

bone marrow; CB, cord blood. 

(E) Heatmap showing log2 fold change in expression of genes related to inflammatory 

pathways within HSC/MPP. The left panel shows results when comparing WT cells from CH 

samples vs. cells from non-CH samples. The right panel shows results when comparing 

mutant cells from CH samples vs WT cells from CH samples. Asterisks represent FDR-

corrected p-values from differential expression testing. * FDR < 0.1, ** FDR < 0.05, *** FDR < 

0.01. 

(F) Schematic showing the strategy for deriving CHWT HSC/MPP and non-CH HSC/MPP 

signatures. Differential expression analysis was performed between HSC/MPPs from the 4 

non-CH samples (n = 1280 cells) and WT cells from the 9 CH samples (n = 2632 cells), 

accounting for sample, age, and batch effects. Genes with FDR < 0.1 and log2FC > 0.5 were 

included in each signature. 

(G) GSEA enrichment plots for the CH HSC/MPP signature (top panels) and non-CH 

HSC/MPP signature (bottom panels), comparing WT and mutant cells within CH samples. 

Positive enrichment scores indicate enrichment in mutant cells. 



Figure 6. HSC are transcriptionally heterogeneous where distinct HSC subsets show 
differing responses to the CH environment. 
(A) UMAP embedding of 8059 cells from the HSC/MPP, EMPP, LMPP and LMPP cycling 

clusters after feature weight derivation with the Self-Assembling Manifolds (SAM) algorithm. 

Cells are colored by cluster annotation. 

(B) UMAP superimposed with AUCell enrichment scores for a signature of genes differentially 

expressed between HSCs and progenitors66. 

(C) AUCell enrichment scores for the Hallmark TNFa via NF-κB, HSC aging, dormant BM 

HSC70, and quiescent vs activated CB HSC signatures90, comparing the 3 HSC clusters. P-
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values calculated by pairwise unpaired t test. The area of each violin is proportional to the cell 

numbers. 

(D) AUCell enrichment scores for the CHWT and non-CH HSC/MPP signatures, comparing the 

3 HSC clusters. P-values calculated by pairwise unpaired t test. 

(E) UMAP embeddings showing cells from non-CH and CH samples. Cells are colored by 

sample type. 

(F) Quantification of the size of each HSC/MPP cluster as a proportion of Lin–CD34+ cells, 

comparing CH and non-CH samples. Only cells sorted from the total Lin–CD34+ FACS gate 

were included. Data are represented as mean ± SEM. Each dot represents a sample. P-values 

calculated by unpaired t test. 

(G) UMAPs of cells from DNMT3AMUT CH samples (left panel) and TET2MUT CH samples (right 

panel) colored by the mean likelihood of cells being in the mutant clone relative the average 

in the HSC/MPP. As for Figure 3C-D and 3F-G, MELD was used to estimate the density of 

cells from each genotype within each sample using the SAM-weighted PCA as input. The 

mutant clone likelihood was then divided by the mean likelihood in the HSC/MPP cluster to 

obtain a relative likelihood, and the mean relative likelihood across all samples analyzed is 

shown (n = 6 DNMT3AMUT CH samples; n = 4 TET2MUT CH samples). A relative likelihood ≥ 1 

indicates that the probability of a given cell being mutant is greater than the average for the 

HSC/MPP, whereas a relative likelihood ≤ 1 indicates that the probability is lower. 

(H) Scatterplot showing the distribution of mean mutant clone likelihoods from (G) in the HSC1 

and HSC2 clusters. Each dot represents a cell, and the color scale shows the standard 

deviation of likelihood values across the samples. 

(I) Comparison of the mutant clone size between HSC1 and HSC2 clusters for DNMT3AMUT 

clones (left) and TET2MUT clones (right). Each dot represents a sample. P-values calculated 

by paired Wilcoxon signed-rank test.  

(J) GSEA against NF-κB, interferon, aging, and hematopoietic signatures comparing 

DNMT3AMUT versus DNMT3AWT HSC/MPPs (left) and TET2MUT versus TET2WT HSC/MPPs 

(right) within CH samples. Signatures with FDR > 0.2 are colored grey. Positive NES values 

indicate enrichment in mutant cells. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

(K) Model of DNMT3AMUT and TET2MUT clonal expansion. Exposure to inflammation impairs 

the function of CHWT HSCs but mutant HSCs are less affected, leading to clonal expansion 

over time (circular arrows). Downstream of the HSC, both DNMT3AMUT and TET2MUT clones 

expand moderately in early progenitors (linear arrows). In later differentiation, DNMT3AMUT 

clone size is largely maintained, but TET2MUT clones expand further and have a myeloid bias. 

  



METHODS 

Cell culture  
JURKAT human cell line was cultured in RPMI-1640 medium (Cat# 21875034, Gibco) 

supplemented with 10% FBS and 1% V/V Pen-Strep (Cat# 15140122, Gibco). Cells were 

regularly screened for Mycoplasma contamination using the MycoAlert Mycoplasma Detection 

Kit (Cat# LT07-218). Cells were passaged every 2-3 days and seeded at approximately 

500,000 cells/mL. Cell lines were kept in a CO2 incubator at 37°C. 

Patient samples  
Patient samples were collected from individuals undergoing elective total hip replacement 

(THR) surgery at the Nuffield Orthopaedic Centre, Oxford, under the Mechanisms of Age-

Related Clonal Haematopoiesis (MARCH) Study. Written informed consent was obtained from 

all participants in accordance with the Declaration of Helsinki. This study was approved by the 

Yorkshire & The Humber - Bradford Leeds Research Ethics Committee (NHS REC Ref: 

17/YH/0382). Exclusion criteria were: History of rheumatoid arthritis or other inflammatory 

arthritis, history of septic arthritis in the limb undergoing surgery, history of hematological 

cancer, bisphosphonate use, and oral steroid use. Patient characteristics are summarized in 

Table S1. 

For the multi-ome analysis in young versus aged human bone marrow, bone marrow cells 

from young donors (26-year-old female, and 24-year-old male) were purchased from Lonza, 

while bone marrow samples from aged donors (70 and 77-year-old females) undergoing hip 

replacement surgery were collected at the Traumatology and Orthopedics Hospital Lomas 

Verdes (IMSS), Mexico. These elderly donors were confirmed to have no dysplasia of any 

hematopoietic lineages by histological and CBC analysis.98 Ethical approval was obtained 

from the Institutional Review Board (R-2012-785-092). Patient consent was obtained verbally, 

and as determined by the Institutional Ethical Board. 

Sample collection and processing  
Trabecular bone fragments and bone marrow aspirates were obtained from the femoral canal 

and collected in 10 mL anticoagulated buffer containing acid-citrate-dextrose, heparin sodium 

and DNase. Samples of peripheral blood were collected in EDTA vacutainers.  

All samples were processed within 24 hours of collection. Peripheral blood and bone marrow 

aspirate samples were diluted 1:1 in RPMI-1640 (Gibco) and filtered through a 70 μm cell 

strainer. Trabecular bone samples were manually fragmented with scissors and washed 

thoroughly in RPMI media with DNase to collect trabecular marrow, which was then filtered 

through a 70 μm cell strainer to obtain a single cell suspension and combined with the bone 

marrow aspirate. Mononuclear cells were then isolated by Ficoll density gradient separation 



(Sigma-Aldrich). For some samples, bone marrow CD34+ cells were purified using a CD34 

MicroBead kit and MACS separation columns (Miltenyi Biotec), according to the 

manufacturer’s instructions. Unseparated MNCs, CD34-enriched and CD34-deplete fractions 

were frozen in 90% fetal bovine serum (FBS, Sigma-Aldrich) with 10% dimethyl sulfoxide 

(DMSO) and stored in liquid nitrogen until further use. 

Peripheral blood granulocytic cell pellets isolated by Ficoll density gradient centrifugation were 

frozen for DNA sequencing analysis of mutations in peripheral blood.  

Targeted DNA sequencing 

Library preparation and sequencing 
Targeted DNA sequencing was performed on bone marrow MNCs and peripheral blood 

granulocytic DNA samples. Pre-capture DNA libraries were prepared using the KAPA 

HyperPlus protocol (Roche). 100 ng of genomic DNA was fragmented by enzymatic 

fragmentation. Following end repair and A-tailing, adapter ligation was performed using KAPA 

dual-indexed adapters (Roche). Library cleanup and double-sided size selection was 

performed using Agencourt AMPure XP beads (Beckman Coulter) to obtain fragments of ~320 

bp. Libraries were amplified by ligation-mediated PCR for 6 cycles using a KAPA HiFi HotStart 

high-fidelity DNA polymerase (Roche) and purified using AMPure XP beads. 

Targeted capture was performed using a custom pool of biotinylated capture probes (SeqCap 

EZ Prime Choice, Roche) targeting 97 genes recurrently mutated in myeloid malignancies and 

clonal hematopoiesis spanning 347 kb (Table S2). Amplified DNA libraries were hybridized to 

the capture probes in pools of 10-12 samples according to the manufacturer’s instructions. 

The captured DNA libraries were amplified by 14 cycles of PCR using a KAPA HiFi HotStart 

DNA polymerase and purified using AMPure XP Beads.  

Post-capture amplified DNA libraries were quantified by Qubit (Life Technologies) and size 

distribution and quality analyzed using a Bioanalyzer chip (Agilent Technologies). Libraries 

were pooled in equimolar concentrations and were sequenced on an Illumina NextSeq 500 

using paired-end reads. 

Somatic variant calling 
Sequencing data were analyzed with a custom Python pipeline based on the GATK Best 

Practices (GATK v4.1.2.0 and Picard v2.21.3). Raw sequencing reads were converted to an 

unmapped BAM file and adapter sequences soft-clipped using Picard MarkIlluminaAdapters. 

Following conversion back to a FASTQ file, reads were mapped to the hg38 human reference 

genome assembly using the Burrows–Wheeler aligner v0.7.1799 with alternate contig-aware 

alignment. Mapped and unmapped BAM files were merged using MergeBamAlignment and 

reads from different sequencing lanes were combined. Duplicate reads were marked using 



Picard MarkDuplicates and base quality scores recalibrated with GATK BaseRecalibrator and 

ApplyBQSR. Somatic variant calling was performed on the pre-processed BAM files using 

VarDictJava v1.7.0100 and Mutect2101 in tumor-only mode. For VarDict, variants were called 

with a minimum variant allele frequency of 0.01, minimum base quality score of 25 and 

minimum supporting reads of 2, with indel realignment and removal of adapter sequences. 

For Mutect2, a minimum tumor LOD of 2 was used and variants were filtered for sequence 

context-dependent artefacts using FilterMutectCalls and FilterByOrientationBias. Indels were 

left-aligned and normalized using bcftools norm (v1.9). Variants were annotated using 

Annovar102. Target enrichment metrics and coverage was calculated using Picard 

CollectHsMetrics and custom scripts. 

VarDict and Mutect2 variant calls were analyzed separately to identify a consensus list of high-

confidence variants. The following post-processing filters were applied to VarDict calls to 

exclude likely sequencing artefacts:  

1. Minimum of 5 variant reads for SNVs (with at least 2 reads in forward and reverse 

directions), or minimum of 10 variant reads for indels (with at least 4 reads in forward 

and reverse directions). 

2. Minimum base quality score 30. 

3. Minimum mapping quality score 40, except for variants in U2AF1;U2AF1L5, where the 

mapping quality was ignored. This is because in hg38, there is a duplication of the 

U2AF1 gene on chromosome 21 called U2AF1L5, which results in reads being flagged 

as multi-mapped. 

4. Maximum strand bias Fisher p-value of 0.0001. 

5. No position bias towards beginning or end of reads. 

The following post-processing filters were applied to Mutect2 calls:  

1. Passed all default Mutect2 filters or only failing the clustered_events filter. 

2. Minimum of 5 variant reads for SNVs (with at least 2 reads in forward and reverse 

directions), or minimum of 10 variant reads for indels (with at least 4 reads in forward 

and reverse directions). 

Variants were flagged as likely germline, or sequencing artefacts, if any of the following 

applied:  

1. Variant allele with a population allele frequency >1 in 1,000 according to any of three 

large polymorphism databases (Gnomad, 1000 Genomes Project, ESP6500) that is 

not a hotspot driver mutation with a COSMIC (v88) occurrence count of >100 cases or 



is present in a list of clonal hematopoiesis-associated mutations compiled from five 

large studies.7,8,21,22,103 

2. Variant allele frequency (VAF) between 0.4–0.6 or >0.9 unless recurrent in COSMIC 

>5 times, or previously reported in clonal hematopoiesis.  

3. Present in a panel of normal cord blood samples.  

4. Recurrent in the cohort unless present at least 5 times in COSMIC or at least 2 times 

in the clonal hematopoiesis studies.  

After filtering, variants were manually inspected using the Integrative Genomics Viewer (IGV) 

tool (http://software.broadinstitute.org/software/igv/).  

Annotation of pathogenic driver variants  
Samples were annotated as having CH based on the presence of at least one driver mutation 

in bone marrow sequencing at VAF ≥ 0.01. Variants were annotated as pathogenic driver 

mutations using the following criteria:  

1. Truncating mutations (nonsense, splice site or frameshift indel) in the following genes: 

DNMT3A, TET2, ASXL1, NF1, IKZF1, RAD21, WT1, KMT2D, SH2B3, TP53, CEBPA, 

RUNX1, BCOR, KDM6A, STAG2, PHF6, KMT2C, KMT2E, PPM1D, ATRX, EZH2, 

CREBBP, NOTCH1, CUX1 and ZRSR2.  

2. Non-synonymous variants at the following hotspot residues: CBL E366, L380, C384, 

C396, C404 and R420; DNMT3A R882; FLT3 D835; IDH1 R132; IDH2 R140 and 

R172; JAK2 V617F; KIT W557, V559 and D816; KRAS G12, G13, Q61 and A146; 

MPL W515; NRAS G12, G13 and Q61; SF3B1 K666 and K700; SRSF2 P95; U2AF1 

S34, R156 and Q157.  

3. Non-synonymous variants occurring within the following residues of DNMT3A: p.292-

350, p.482-614 and p.634-912; TET2: p.1104-1481 and p.1843-2002; or NOTCH1: 

p.1574-1620, p.1671-1721.  

4. Truncating variants in CALR exon 9.  

5. FLT3 internal tandem duplications.  

6. Non-synonymous variants reported at least 10 times in COSMIC with VAF < 0.4.  

7. Non-synonymous variants falling within an annotated InterPro domain with VAF < 0.4.  

8. Non-synonymous variants reported in COSMIC > 100 times.  

If a variant did not meet these criteria, it was annotated as a variant of unknown significance 

(VUS). 



Comparison of bone marrow and peripheral blood allele frequencies  
Variants were called in peripheral blood DNA sequencing data as described above, using a 

minimum VAF cutoff of 0.005. Unfiltered variant calls were intersected with the list of curated 

bone marrow variants to compare the VAF between bone marrow and blood. For those 

mutations known to be present in bone marrow which were not called in peripheral blood, raw 

allele counts were performed directly from the BAM files using bcftools mpileup (with minimum 

base quality of 30 and minimum mapping quality of 35), and the allele frequency was 

calculated.  

Flow cytometry and FACS sorting  

Thawing media was prepared with IMDM medium (Gibco) supplemented with 20% FBS and 

110 µg/mL DNase.  Bone marrow samples were thawed at 37°C in a water bath, 1 mL warm 

FBS was added, and the suspension then diluted by dropwise addition of 8 mL thawing media. 

The suspension was centrifuged at 400 g for 10 mins, cells were resuspended in flow 

cytometry staining medium (IMDM with 10% FBS and 10 μg/mL DNase), filtered through a 35 

μm cell strainer, and placed on ice. 

Cells were stained with antibodies listed for 20–30 min on ice. Following antibody incubations, 

cells were washed with 1 mL flow cytometry staining buffer, centrifuged at 350 g for 5 min and 

resuspended in flow cytometry staining buffer containing the live/dead stain. 

For flow cytometry analysis of BM samples, unseparated BM MNCs were used. Samples were 

stained with the following antibodies: anti-CD38-BV421 (1:20, Biolegend, clone HIT2), anti-

CD10-BV605 (1:40, Biolegend, clone HI10a), anti-CD49f-BV650 (1:40, Biolegend, clone 

GoH3), anti-CD117-BV785 (1:40, Biolegend, clone 104D2), anti-CD45RA-BB515 (1:40, BD, 

clone HI100), anti-CD123-PE (1:40, Biolegend, clone 6H6), anti-CD90-PE/Cy7 (1:20, 

Biolegend, clone HI100), anti-CD34-APC (1:160, Biolegend, clone 581), anti-CD2-PE/Cy5 

(1:160, Biolegend, clone RPA-2.10), anti-CD3-PE/Cy5 (1:320, Biolegend, clone HIT3a), anti-

CD4-PE/Cy5 (1:160, Biolegend, clone RPA-T4), anti-CD8a-PE/Cy5 (1:320, Biolegend, clone 

RPA-T8), anti-CD11b-PE/Cy5 (1:160, Biolegend, clone ICRF44), anti-CD14-PE/Cy5 (1:160, 

eBioscience, clone 61D3), anti-CD19-PE/Cy5 (1:160, Biolegend, clone HIB19), anti-CD20-

PE/Cy5 (1:160, Biolegend, clone 2H7), anti-CD56-PE/Cy5 (1:80, Biolegend, clone MEM188), 

anti-CD235ab-PE/Cy5 (1:320, Biolegend, clone HIR2), and propidium iodide (final 

concentration 3 μM; Biolegend) was used for dead cell exclusion. Analysis was done on a 

LSR Fortessa X20 (BD Biosciences). Unstained, single-stained (CompBeads, BD 

Biosciences), and fluorescence-minus-one (FMO) controls were used to determine 

background staining and compensation in each channel. Gating was kept consistent across 

all samples to enable quantification of population sizes. 



For FACS sorting of BM samples for TARGET-seq+, either unseparated BM MNCs or CD34-

enriched BM MNCs were used. Samples were stained with the following antibodies: anti-

CD38-BV421 (1:20, Biolegend, clone HIT2), anti-CD10-BV605 (1:40, Biolegend, clone HI10a), 

anti-CD117-BV785 (1:40, Biolegend, clone 104D2), anti-CD45RA-BB515 (1:40, BD, clone 

HI100), anti-CD123-PE (1:40, Biolegend, clone 6H6), anti-CD49f-PE/Dazzle594 (1:160, 

Biolegend, clone GoH3), anti-CD90-PE/Cy7 (1:20, Biolegend, clone HI100), anti-CD34-APC 

(1:160, Biolegend, clone 581), anti-CD2-PE/Cy5 (1:160, Biolegend, clone RPA-2.10), anti-

CD3-PE/Cy5 (1:320, Biolegend, clone HIT3a), anti-CD4-PE/Cy5 (1:160, Biolegend, clone 

RPA-T4), anti-CD8a-PE/Cy5 (1:320, Biolegend, clone RPA-T8), anti-CD11b-PE/Cy5 (1:160, 

Biolegend, clone ICRF44), anti-CD14-PE/Cy5 (1:160, eBioscience, clone 61D3), anti-CD19-

PE/Cy5 (1:160, Biolegend, clone HIB19), anti-CD20-PE/Cy5 (1:160, Biolegend, clone 2H7), 

anti-CD56-PE/Cy5 (1:80, Biolegend, clone MEM188), anti-CD235ab-PE/Cy5 (1:320, 

Biolegend, clone HIR2), and 7-AAD (Biolegend) was used for dead cell exclusion. For sample 

NOC156, cells were stained with the same panel except anti-CD49f, and anti-CD117 was 

substituted for anti-CD117- PE/Dazzle594 (1:80, Biolegend, clone 104D2). Single-cell index 

sorting was performed on a Sony MA900 into 384-well plates containing 3 µL lysis buffer 

(except for optimization experiments, which were done in 96-well plates). Unstained, single-

stained, and FMO controls were used to determine background staining and compensation in 

each channel. Doublets and dead cells were excluded. The following populations were sorted: 

Live/Lin–CD34+, Live/Lin– CD34+CD38–, and CD34– cells (except for sample NOC156, where 

only CD34+ cells were analyzed). In addition to the sample of interest, cells from the NOC153 

control sample were sorted onto every plate, making up approximately 10% of wells on each 

plate, and two empty wells were used as no-template controls. After sorting, each plate was 

centrifuged and snap frozen on dry ice prior to storage at –80°C. 

Flow cytometry data analysis was performed using FlowJo v10.8.1 and R.  

TARGET-seq+ library preparation 

Primer design 
Targeted genotyping primers used in the pre-amplification RT-PCR step were designed to 

amplify regions 180–900 bp long. Where possible, gDNA primers were designed to anneal 

within intronic regions flanking the mutation of interest, while mRNA primers were designed to 

anneal to exonic regions outside of the gDNA amplicon, so that independent amplicons would 

be generated from mRNA and gDNA. Furthermore, when a heterozygous SNP was observed 

close to the mutation, primers were placed in order to cover the SNP within the amplicon, 

enabling a direct measurement of allelic dropout. Primers were designed with Primer3Plus104 

and specificity was checked using Primer-BLAST.105 For each target,  primer pairs were tested 

for specificity and efficiency in bulk PCR reactions and in single cells. 



Targeted primers for use in the genotyping PCR1 step were designed to be nested within each 

of the amplicons generated in the pre- amplification RT-PCR. Nested amplicons were 290–

631 bp in length. As for pre-amplification primers, gDNA primers were designed to anneal 

within intronic regions flanking the mutation, and cDNA primers were designed to anneal to 

exonic regions outside of the gDNA amplicon, to generate independent mutational readouts 

from cDNA and gDNA where possible. Primer pairs were tested for specificity and efficiency 

in bulk PCR reactions and in single cells. 

Lysis buffer preparation  
Lysis buffer was prepared as described in Table S4, consisting of 0.1% Triton X-100 (Sigma-

Aldrich), 0.5 mM dNTPs (Life Technologies), 5% PEG 8000 (Sigma-Aldrich), 0.5 U/μL RNase 

inhibitor (Takara), 2.7 x 10-05 AU/μL protease (Qiagen), and 1:8,000,000 diluted ERCC spike-

in mix (Ambion). 25 μL of lysis buffer was dispensed into each well of a 384-well stock plate 

using a Formulatrix Mantis with a high-volume chip, and 1.79 μL of 10 μM barcoded oligodT-

ISPCR primer was added to each well using an INTEGRA Viaflow. 3 μL of barcoded oligodT-

lysis buffer mix was then transferred into each well of a 384-well plate. Plates were sealed and 

stored at –80°C and thawed prior to cell sorting. 

Reverse transcription and pre-amplification  
Plates containing sorted cells were removed from –80°C storage and incubated at 72°C for 

15 min to perform cell lysis, RNA denaturation and protease heat inactivation. For reverse 

transcription (RT), 1 µL of RT mix was added, bringing reaction concentrations to 25 mM Tris-

HCl (Thermo Scientific), 30 mM NaCl (Invitrogen), 2.5 mM MgCl2 (Invitrogen), 1 mM GTP 

(Thermo Scientific), 8 mM Dithiothreitol (DTT, Thermo Scientific), 0.5 U/μl RNase inhibitor 

(Takara), 2 μM of Smart-seq2 template switching oligo (TSO, IDT), 2 U/μl of Maxima H-minus 

reverse transcriptase enzyme (Thermo Scientific), and target-specific mRNA primers (70 µM 

final concentration). RT was performed by incubation at 42°C for 90 min followed by 10 cycles 

of 50°C for 2 min and 42°C for 2 min. The reaction was terminated by incubating at 85°C for 

5 min. 

Pre-amplification PCR mix containing target-specific genotyping primers was prepared as 

described in Table S4, to achieve reaction concentrations of 1× KAPA HiFi HotStart Ready 

Mix (Roche), 50 nM ISPCR primer, 28 nM target-specific cDNA primers, and 400 nM target-

specific gDNA primers. Pre-amplification PCR was performed directly after reverse 

transcription by addition of 6 μL PCR mix and incubation on a thermocycler using the following 

program: 98°C for 3 min for initial denaturation, 21 cycles of 98°C for 20 s, 67°C for 30 s and 

72°C for 6 min. Final elongation was performed at 72°C for 5 min. Conditions used for all RT-

PCR steps are listed in Table S4. The sequences of the primers used in the RT-PCR steps 



for whole transcriptome amplification and targeted genotyping amplification are listed in Table 

S4.  

Following cDNA amplification, successful libraries contain whole transcriptome cDNA and 

amplicons spanning each targeted mutation. An aliquot of this cDNA-amplicon mix was used 

for whole transcriptome library preparation and another aliquot for single-cell genotyping 

library preparation. 1 μL of cDNA-amplicon mix was pooled per well to create cDNA pools from 

192 uniquely barcoded single-cell libraries, using a Mosquito HTS liquid handling platform 

(TTP Labtech). Each cDNA pool was purified twice using Ampure XP beads with 0.6:1 beads 

to cDNA ratio. Pooled cDNA libraries were checked using a High Sensitivity DNA Kit on a 

Bioanalyzer (Agilent) or a High Sensitivity NGS Fragment Analysis Kit (1 bp - 6,000 bp) on a 

Fragment Analyzer (Agilent). Libraries were quantified by Qubit dsDNA HS Assay (Life 

Technologies). These pools were used to generate 3’ biased whole-transcriptome libraries. 

The remainder of the cDNA-amplicon mix was diluted 1:2 with water and stored at –20°C for 

use in single-cell genotyping.  

Whole-transcriptome library preparation and sequencing  
Bead-purified cDNA pools were used for tagmentation-based library preparation with a 

Nextera XT DNA Library Preparation Kit (Illumina) using a custom PCR amplification strategy 

to generate 3’ biased libraries containing oligodT cell barcodes as previously published,60 with 

some modifications. Pooled cDNA libraries were diluted to 800 pg/μL and a total of 4 ng (5 μL) 

from each pool was used in the tagmentation reaction with 10 μL tagmentation buffer (TD) 

and 5 μL ATM enzyme. The reaction was incubated at 55°C for 10 min, followed by the 

addition of 5 μL 0.2% SDS to release Tn5 from the DNA. Library amplification was performed 

using 5 μL Nextera XT i7 forward index primer (Illumina) and 5 μL custom i5 index primers (2 

μM) (see Table S4 for sequences). The custom i5 index primer binds the barcoded oligodT-

ISPCR adapter, resulting in amplification of the 3’ fragments containing the cell barcode. PCR 

was performed by adding NPM enzyme (Nextera XT DNA Library Preparation Kit, Illumina) 

and incubation on a thermocycler using the following program: 95°C for 30 s, 14 cycles of 

95°C for 10 s, 55°C for 30 s and 72°C for 30 s, and then a final elongation of 5 min at 72°C. 

After tagmentation, each indexed pool was purified twice with Ampure XP beads using a 0.7:1 

beads to cDNA ratio. Library quality was checked using a High Sensitivity DNA Kit on a 

Bioanalyzer and quantified using Qubit dsDNA HS Assay. Equimolar pools were made and 

sequenced using custom sequencing primers for Read1 and Index2 (P5-SEQ, I5-SEQ, 300 

nM in HT1 buffer, see Table S4). For benchmarking experiments, libraries were sequenced 

on a NextSeq 500/550 High Output v2.5 (75 cycle) kit (Illumina) using the following sequencing 

configuration: 15 bp R1; 8 bp index read; 69 bp R2. For the main experiments, up to 9,984 

single-cell libraries (52 pools of 192 single-cell libraries) were sequenced on a NovaSeq S4 



flow cell with a targeted sequencing depth of 1 million reads/cell using the following 

sequencing configuration: 15 bp R1; 8 bp index read 1; 8 bp index read 2; 200 bp R2.  

Targeted single-cell genotyping  
To generate Illumina-compatible libraries for single-cell genotyping, two PCR steps were 

performed as previously published in the TARGET-seq protocol.60 As the genotyping 

amplicons generated by the pre-amplification RT-PCR are not barcoded, genotyping PCR 

reactions were carried out separately for each single-cell library.  

In the first PCR step (genotyping PCR1), nested target-specific primers containing universal 

CS1 (forward primer) or CS2 (reverse primer) adapters are used to amplify the target regions 

of interest. Incorporation of a barcode sequence specific to each plate into these primers 

enables libraries from different plates to be pooled subsequently. Primer sequences used for 

genotyping PCR1 for each sample are listed in Table S4. PCR1 reactions were performed 

using 3.25 μL of KAPA 2G Robust HS Ready Mix (Sigma-Aldrich), 1.5 μL of diluted cDNA-

amplicon mix and 300 nM target-specific primers, in a 6.5 μL reaction.  

In the second PCR step (genotyping PCR2), Illumina-compatible adapters containing a 10 bp 

cell barcode are attached to the genotyping PCR1 product by binding to the CS1/CS2 

adapters. PCR2 reactions were performed using FastStart High Fidelity polymerase (Sigma-

Aldrich) with 1.0 μL of PCR1 product and 1.2 μL of each barcode primer mix (Access Array 

Barcode Library for Illumina Sequencers- 384, Single Direction, Fluidigm) in a 6.2 μL reaction.  

Indexed amplicons were pooled using a Mosquito HTS liquid handling platform and purified 

with Ampure XP beads using a 0.8:1 beads to PCR product ratio. Purified pools were 

quantified using Qubit dsDNA HS Assay and the quality checked using a Tapestation High 

Sensitivity D1000 kit (Agilent) to ensure the size distribution of amplicons was as expected. 

Each pool was diluted to a final concentration of 4 nM and further diluted to 10 pM in HT1 

buffer prior sequencing. Libraries were sequenced on a NextSeq 500/550 Mid Output v2.5 kit 

(300 cycle) (Illumina) using 150 bp paired-end reads, with 10 bp for the cell barcode index 

read and custom sequencing primers (Table S4).  

TARGET-seq+ validation experiments 

Validation experiments comparing TARGET-seq+ with TARGET-seq were performed in 96-

well plates using JURKAT cells and primary human CD34+ HSPCs. 3’ TARGET-seq libraries 

were generated according to the published protocol60. Cells were sorted into 4.1 μL lysis 

buffer, consisting of 0.18% Triton X-100 (Sigma- Aldrich), 1.0 mM dNTP (Life Technologies), 

1.0 U/μl RNase inhibitor (Takara), 2.7 × 10−5 AU/mL protease (Qiagen), 1.0 μM barcoded 

oligodT-ISPCR primer. RT was performed using SMARTScribe enzyme, RNase inhibitor, 

Smart-seq2 TSO (1 μM final concentration) and targeted mRNA primers (700 nM final 



concentration). PCR pre-amplification was performed using SeqAmp DNA polymerase, 

ISPCR primers (50 nM final concentration) and targeted gDNA and cDNA primers. TARGET-

seq+ RT-PCR was performed as described above using double volumes per well. For both 

conditions, 20 cycles of amplification were used for JURKAT cells and 24 cycles of 

amplification for HSPCs. 3’ transcriptome libraries were prepared as for TARGET-seq+ 

libraries detailed above and were sequenced on a NextSeq 500/550 High Output v2.5 (75 

cycle) kit. 

Targeted single-cell genotyping analysis  

Pre-processing and mutation calling  
Single-cell genotyping reads were pre-processed using the custom TARGET-seq pipeline 

(https://github.com/albarmeira/TARGET-seq).60 Reads were first demultiplexed using the 384 

well barcodes introduced via the genotyping PCR2 reaction, followed by demultiplexing based 

on plate barcodes introduced during genotyping PCR1. This generated separate fastq files for 

each single cell. Reads were aligned to hg38 using STAR version 2.7.3a with default settings 

and cDNA/gDNA amplicons were separated into different bam files, extracting reads matching 

the primer sequences used for targeted PCR barcoding. This allowed independent mutational 

information to be obtained from cDNA and gDNA amplicons. Variant calling was performed 

with mpileup (samtools version 1.1, options: --minBQ 30, --count-orphans, --ignore overlaps) 

and results were summarized using the custom pipeline. 

Mutational calling on single cells was then performed with custom R scripts, separately for 

each mutation. Coverage for each cell was calculated as the sum of all reads across the 

variant locus for that cell. Empty wells routinely displayed zero or very few reads (usually up 

to 2), indicating no cross-well contamination. A filtering threshold was applied to remove cells 

where the amplicon was not detected, or where coverage was too low for reliable genotyping. 

The minimum coverage was 50 reads for gDNA amplicons and 30 reads for cDNA amplicons. 

In cells with coverage below the threshold, the amplicon was called undetected. 

The single-cell variant allele frequency (scVAF) for each cell was calculated with the following 

formula: 

scVAF = variant reads / coverage 

PCR amplification and next-generation sequencing have an inherent error rate, which needs 

to be accounted for when calling cell genotypes. WT control bone marrow cells from a healthy 

individual sorted onto every plate enabled the error rate for each mutant allele to be 

determined. The scVAF threshold for calling a cell WT was set using the following formula: 

WT scVAF threshold = mean(scVAF in WT control) + 3 × SD of scVAF in WT control 

https://github.com/albarmeira/TARGET-seq


Cells with scVAF below this threshold were called WT for that amplicon. The scVAF threshold 

for calling a cell mutant was set using the following formula: 

Mutant scVAF threshold = mean(scVAF in WT control) + 3 × SD of scVAF in WT control + 0.01 

Cells with scVAF above this threshold were called mutant for that amplicon. Furthermore, we 

required a minimum number of 10 mutant reads for a cell to be called mutant. Cells with a 

borderline scVAF (between the WT and mutant scVAF thresholds), where the number of 

mutant reads was <10, or where allelic dropout (see next section) was confirmed by analysis 

of a germline SNP were called undetermined. 

Genotyping information from gDNA and cDNA amplicons were then combined, and a 

consensus genotype assigned. Consensus genotypes were assigned as follows: 

1. If the mutation was identified in either the gDNA or cDNA amplicon, the cell was called 

mutant. 

2. If both amplicons were WT, the cell was called WT. 

3. If the gDNA amplicon was WT but the cDNA amplicon was undetected or 

undetermined, the cell was called WT. 

4. If the cDNA amplicon was WT but the gDNA amplicon was undetected or 

undetermined, the cell was called undetermined, due to the high allelic dropout rate of 

cDNA amplicons. 

Allelic drop-out (ADO) estimation using germline heterozygous SNPs 

Allelic dropout (ADO) rates were estimated for heterozygous germline SNPs present in the 

gDNA amplicon for four mutations. A scVAF threshold to detect the reference or alternate 

alleles was set for each SNP based on the scVAF distribution in WT control cells. Cells were 

called heterozygous (Het) if the VAF was within that boundary and a minimum of 10 reads 

were detected for each allele. Otherwise, cells were called homozygous reference (Hom Ref) 

or homozygous alternate (Hom Alt). SNP alleles were phased with each mutation based on 

the positive or negative correlation in VAF. When neither a mutation or the in-phase SNP allele 

were detected, a cell was assigned an undetermined genotype as we couldn’t discern whether 

it was WT or mutant. 

For each allele, we then calculated the fraction of cells in which ADO occurred: 

ADO rate = Cells below scVAF threshold / Total number of cells 

Inference of clonal hierarchies  
In samples with multiple mutations, the pattern of mutational co-occurrence was used to 

determine clonal structures and assign a clonal identity to each cell as previously 

described.106,107 In samples where mutations were mutually exclusive, such as in samples 



NOC131, NOC117, and NOC115, it was clear that these belonged to independent clones. In 

cases where mutations co-occur in the same cells, a linear or branching clonal structure may 

be present. We used infSCITE108 to determine the phylogenetic tree which represented the 

statistically most likely course of somatic events. As input, we used the matrix containing the 

mutational status for each locus in each cell and ran infSCITE with default parameters and ‘-r 

200 -L 10000 -fd 0.01 -ad 0.02 -e 0.2 -p 1000’. We confirmed each phylogenetic tree was 

consistent with the frequency of cells of each genotype and the clonal size determined by bulk 

BM sequencing VAF. 

The occurrence of ADO means that in some cells, a mutation that is present will not be 

detected. In some of these cases, we were still able to assign a cell to a clone. For example, 

in sample NOC002 there were 12 cells in which the TET2 p.R1261C mutation was detected, 

but the ancestral TET2 p.Q726X mutation was not detected. In these cases, we inferred that 

ADO of the ancestral mutation had occurred, and the cell was assigned to the appropriate 

daughter clone. In all cases, this was a rare occurrence consistent with our estimates of the 

ADO rate.  

For all downstream analyses, including differential gene expression, the clone assignment 

rather than the raw genotype was used to categorize WT and mutant cells. 

Analysis of FACS index data 

Flow cytometry index data were recorded for each single cell during FACS sorting for 

TARGET-seq+. Fluorescence values were recorded for forward scatter (FSC), back-scatter 

(BSC; equivalent to side scatter, SSC), Lineage/live/dead, CD34, CD38, CD117, CD45RA, 

CD10, CD90, CD123 and CD49f (except for the NOC156 control sample). Index data were 

matched with single-cell identifiers based on the well coordinate and combined with 

genotyping calls and other metadata into a unified data set. Virtual FACS gating was 

performed in R based on the strategy used for sorting. Gates were set based on populations 

that were negative for each marker. Cells were labelled as positive or negative for each 

surface marker, and Boolean logic used to assign an immunophenotypic population label. For 

example, cells that were Lin–CD34+CD38–CD10–CD45RA–CD90+ were labelled as 

immunophenotypic HSC. 

Single-cell transcriptome data pre-processing 

Mapping and transcript counting  

Transcriptome sequencing data were demultiplexed into FASTQ files for each plate with a 

unique i7-i5 index combination using bcl2fastq. These files contained reads from up to 384 

cells with shared plate indexes. A custom python pipeline was used to further demultiplex and 



map the sequencing reads. First, reads from each plate were demultiplexed using the 14 bp 

single-cell barcode sequence in Read1 using cutadapt (v3.4). Concurrently, cDNA reads 

(Read2) were trimmed for polyA tails, Nextera adapters and low-quality reads. This generated 

individual FASTQ files with single-ended cDNA reads corresponding to each single-cell 

barcode. Reads were then mapped to the hg38 reference genome and ERCC92 transcripts 

with STARsolo (v2.7.10a) using the GENCODE v38 reference gene annotation (filtered to 

include protein coding genes and long non-coding RNAs), and counts for each gene were 

obtained using default parameters except the following: ‘--soloType SmartSeq --soloFeatures 

GeneFull_Ex50pAS’. Sequencing and mapping quality metrics were calculated with FastQC 

(v0.11.9), Samtools flagstat (v1.12), MultiQC (v1.11) and the outputs of STAR.  

Transcript detection and dropout frequency calculation  
For the comparison of transcript detection sensitivity between TARGET-seq and TARGET-

seq+ (Figure S1G and S1H), data were first downsampled to 5 × 105 reads per cell to remove 

differences due to unequal sequencing depth. The number of genes detected per cell was 

calculated as the sum of genes with at least one assigned read.  

For calculation of dropout rates (Figure S1I), data downsampled to 5 × 105 reads per cell were 

used. A random sample of 16 cells per chemistry were compared for JURKAT and 20 cells 

per chemistry for HSPC. The dropout frequency for a given gene was calculated as the 

percentage of cells in which the gene was not detected (normalized counts < 1). Genes were 

divided into three groups to compare the dropout rate in: a) all expressed genes, defined as 

genes detected in at least 2 cells by any method; b) frequently expressed genes, defined as 

genes detected in >50% of all cells; and c) lowly expressed genes, defined as genes with a 

mean of 2–10 normalized counts per cell.  

Cell-to-cell correlation analysis  
Cell-to-cell correlations for JURKAT cells processed with each method (Figure xx) were 

calculated using pairwise Pearson correlations in libraries downsampled to 5 × 105 reads per 

cell.  

Single-cell transcriptome analysis 
Quality control, normalization, and variable gene identification 
Single-cell transcriptome analysis was performed using the SingCellaR package (v1.2.1, 

https://github.com/supatt-lab/SingCellaR).65 Metadata including genotyping and FACS index 

data were matched with single-cell identifiers based on the plate and well coordinates. Cells 

meeting the following filtering criteria were included in the analysis: reads assigned to genes 

> 25,000; genes detected > 2,000 and < 15,000; reads assigned to ERCC transcripts < 50%; 

reads in mitochondrial genes < 15%. Genes expressed in fewer than 10 cells were removed. 



Reads were normalized by library size using the pool normalization method with prior 

clustering from the scran package.109  

Dimensionality reduction, data integration and clustering 

Variable genes were identified by fitting a generalized linear model to the relationship between 

the mean expression and squared coefficient of variation (CV2) for the ERCC spike-ins, used 

to estimate technical noise (using the BrenneckeGetVariableGenes function from the M3Drop 

package).110,111 Genes for which the CV2 exceeded technical noise (FDR < 0.05) were 

considered variable, excluding mitochondrial and ribosomal genes and ERCC transcripts. This 

identified 17,324 variable genes which were used for principal components analysis (PCA). 

Data integration was performed using Harmony112 to correct for sample effects, using the 

sample identifier as the batch, and the top 100 principal components (PCs). The top 100 

Harmony-adjusted PCs were then used for Uniform Manifold Approximation and Projection 

(UMAP) analysis and Louvain graph-based clustering implemented in SingCellaR, with k-

nearest neighbors (KNN) equal to 15. Effectiveness of the integration was confirmed by: (a) 

UMAP visualization pre- and post-integration, to confirm representation of all samples across 

cell types (Figures S2F and S3E-L); (b) comparison of cluster identities across samples, to 

confirm representation of all samples across clusters, while allowing for unequal distributions 

between samples as is expected from biological variation; (c) concordance between the 

cluster assignment of cells and their immunophenotype across samples. For example, we 

confirmed that the majority of cells in the HSC/MPP cluster consisted of immunophenotypic 

HSCs and MPPs in all samples, and conversely, the majority of immunophenotypic HSCs and 

MPPs were assigned to the HSC/MPP cluster. 

Clusters were manually annotated based on gene set enrichment of published signatures, 

immunophenotypic surface marker expression, and expression of canonical marker genes. 

The SingCellaR ‘identifyGSEAPrerankedGenes’ function was used to pre-rank genes 

obtained from differential gene expression analysis comparing each individual cluster with all 

other clusters, and gene set enrichment analysis (GSEA) was performed using the fgsea 

package (v1.20.0) against gene sets obtained from 9 studies that have characterized human 

hematopoiesis.62-70  Marker genes differentially expressed in each cluster were identified with 

the SingCellaR ‘findMarkerGenes’ function, which uses a non-parametric Wilcoxon test on 

log-transformed, normalized counts, to compare expression levels, and Fisher’s exact test to 

compare the frequency of cells expressing each gene. Louvain clustering identified 28 

clusters, which were collapsed into 23 main clusters based on similarity of GSEA results, 

marker gene expression and immunophenotype. 



The HSC/MPP, LMPP, LMPP cycling, and EMPP clusters were further subclustered using the 

self-assembling manifolds (SAM) algorithm, using default settings with Harmony-adjusted PCs 

as input and using the sample identifier as the batch.88 The resulting SAM-weighted PCA was 

then used as input to generate the UMAP in Figure 6 and for Louvain clustering, which 

identified 7 clusters. For consistency with earlier analyses, these SAM-derived cluster 

assignments for LMPP, LMPP cycling, and EMPP were used throughout the paper, while cells 

assigned to the HSC1-3 and MPP clusters were labelled HSC/MPP in Figures 2–5.  

Differential abundance analysis  
Differential abundance between sample types (CH vs non-CH) and between mutant and WT 

cells within CH samples was analyzed using MELD,97 a single-cell compositional analysis 

method that quantifies the likelihood of a cellular state appearing in each sample or condition.  

For the comparison between sample types (Figures 2F-G), only cells sorted as part of the total 

Lin–CD34+ gate were included (excluding the Lin–CD34+CD38– and CD34– sorting strategies), 

to avoid bias introduced by enrichment of CD38– cells. Sample-associated densities were 

calculated by running MELD using the Harmony-adjusted PCs as input, and with optimal knn 

and beta values identified using the MELD parameter search. The mean relative density was 

calculated using the following formula: 

Mean relative density = mean(Density of CH samples) / mean(Density of non-CH samples) 

Thus, a mean relative density ≥ 1 indicates that the probability of observing a given cell is 

greater in CH samples compared to non-CH samples, whereas a relative density ≤ 1 indicates 

that the probability is lower in CH samples compared to non-CH samples. 

To compare mutant and WT cells within CH samples (Figures 3 and 6), sample and genotype-

associated densities were calculated for every genotype by running MELD using the Harmony-

adjusted PCs as input, with optimal knn and beta values identified using the MELD parameter 

search. The relative density of single-mutant and WT cells was then calculated (using L1 

normalization to enforce cell-wise sum to be 1), and normalized to the mean relative density 

in the HSC/MPP cluster for each sample, in order to quantify the relative expansion or 

contraction of the clone downstream of the HSC/MPP using the following formula: 

Normalized likelihood = Relative likelihood of MUT:WT / mean(Relative likelihood of MUT:WT in HSC/MPP) 

These values are visualized per sample in Figures 3J, 3N and S3E-L. Finally, the normalized 

likelihood was averaged across samples for visualization in Figures 3C-D, 3F-G, and 6G-H. 

Pseudotime analysis  
Diffusion map embeddings113 were calculated in scanpy using the Harmony-adjusted PCs as 

input to the neighborhood graph, excluding the T cell, plasma cell and endothelial cell clusters. 



Diffusion pseudotime was then calculated using the HSC at the extreme of the second 

diffusion component as the root cell. Pseudotime scores were extracted for cells in the 

HSC/MPP, LMPP, GMP, pDC and Monocyte clusters and plotted on the UMAP embedding to 

visualize the myeloid trajectory. For comparison of TET2MUT and TET2WT cell density along the 

myeloid trajectory, cells were downsampled to an equal number per sample (n = 176 cells 

from each of the 4 samples). 

Differential gene expression analysis  
Differential expression testing was performed with a linear mixed model to account for sample 

covariance using the dream pipeline from the variancePartition package,114 which is based on 

limma-voom.115 Testing was performed on log normalized counts, using the scran 

normalization size factors. Genes were filtered to include only those expressed in at least 10% 

of cells in either group, except for pDCs and monocytes, where a 20% filter was used. A linear 

mixed model was fitted to each gene using ‘dream’ and differential expression testing was 

performed using ‘variancePartition::eBayes’. For comparisons between sample types, the 

sample type was used as the test variable, and the sample identifier, age, sex, and batch 

effects included as covariates. For comparisons between genotypes within CH samples, the 

clone was used as the test variable, and the sample identifier and batch effect included as 

mixed effect covariates. Samples were excluded from the comparison if they had less than 5 

cells in either genotype, except for pDCs and monocytes where a minimum of 2 cells was 

used. P values were adjusted for multiple testing with Benjamani-Hochberg correction, and 

differentially expressed genes were defined as those with FDR < 0.1. For defining the CHWT 

HSC/MPP and non-CH HSC/MPP signatures, thresholds of FDR < 0.1 and log2FC > 0.5 were 

used.  

Changes in gene expression along pseudotime 

For plotting gene expression along pseudotime, log2 normalized expression data were fitted 

to the pseudotime rank using a generalized additive model (GAM) separately for WT and 

mutant cells.  

Gene set enrichment analysis (GSEA)  
Gene rankings for gene set enrichment analysis (GSEA) were generated by differential gene 

expression testing using the dream mixed model as described above. Genes were ranked by 

the z statistic from dream. To perform GSEA, the fgseaMultilevel function from the fgsea 

package116 was used. Gene sets were obtained from MsigDB v7.5.1 and published studies. 

Hematopoietic gene sets used in GSEA and AUCell analyses relating to Figure 4-6 are listed 

in Table S5. Significantly enriched gene sets were filtered using the FDR as described in each 

figure. 



AUCell signature analysis  
The AUCell package (v1.18.1)80 was used to quantify the gene set activity in single cells. 

AUCell gene-expression rankings were created using the SingCellaR 

‘Build_AUCell_Rankings’ function. AUCell gene signature enrichment was then calculated 

using the ‘Run_AUCell’ function with the gene matrix transposed (GMT) file of gene sets. 

Hematopoietic gene sets were the same as those used for GSEA analysis described above. 

Differences in mean AUCell scores between WT and mutant cells were tested by a linear 

mixed model, using clone identity as the fixed effect and sample identity as mixed effects. P-

values were obtained by a likelihood ratio test of the full model with the clone effect against 

the model without the clone effect. 

SCENIC transcription factor regulon analysis 
To infer transcription factor (TF) regulon activity, regulon analysis was performed using 

pySCENIC.80 pySCENIC was run as per the workflow guidelines from Van de Sande et al.117 

to identify candidate TF-regulons, using the filtered, pre-processed raw counts as the input, 

and a list of human TFs from Lambert et al.118. Candidate regulons were pruned using the 

annotations of TF motifs ‘motifs-v10nr_clust-nr.hgnc-m0.001-o0.0.tbl’, and CisTarget was 

applied using the ‘mc_v10_clust’ databases of known human TF motifs annotated at: a) 500 

bp upstream and 100 bp downstream of the transcription start site (TSS); and b) 10 kilobases 

centered around the TSS. No drop-out masking was applied. Enrichment of refined TF 

regulons was quantified using AUCell, with default parameters. Tests for differential regulon 

activity were performed using a linear mixed model, as described above. 

FACS sorting and snRNA-seq for ‘in-house’ aging dataset 
BM samples were thawed via slow dropwise addition of X-VIVO 10 media (LONZA) with 50% 

FBS and 100μg/mL DNaseI (Roche). Cells were centrifuged at 400g for 10 min, then dead 

cell depleted using a commercial kit (EasySep Dead Cell Removal (Annexin V) Kit, 

STEMCELL) per the manufacturer’s instructions. Cells were resuspended in PBS + 5% FBS 

and stained for 15 min at RT for fluorescence-activated cell sorting with the following 

antibodies: anti-CD45RA-FITC (1:50, BD, clone HI100), anti-CD90-PE (1:50, BD, clone 5E10), 

anti-CD19-BV711 (1:50, BD, clone SJ25C1), anti-CD49f-PE-Cy5 (1:50, BD, clone GoH3), 

anti-CD271-APC (1:100, Miltenyi, ME20.4-1.H4), anti-CD34-APC-Cy7 (1:200, BD, clone 581), 

anti-CD38-PE-Cy7 (1:200, BD, clone HB7), anti-CD10-AlexaFluor700 (1:50, BD, clone 

HI10a), anti-CD14-BV605 (1:200, BD, clone M5E2), anti-CD45-V500 (1:50, BD, clone HI30) 

and anti-CD33-BV421 (1:100, BioLegend, clone WM53). Cells were washed following staining 

and resuspended in PBS + 2% FBS containing propidium iodide and filtered through 40μm 

nylon mesh for cell sorting. Lin–CD34+CD38– and Lin–CD34+CD38+ populations were sorted 

into PBS + 0.04% BSA + EDTA on a BD FACSAria Fusion or BD FACSAria III. Cells were 



counted and Lin–CD34+CD38– and Lin–CD34+CD38+ cells mixed in the following manner 

(1:0.33 for 24yM, 1:1 for 26yF, 1:1 for 70yF, and 1:0.5 for 77yF) for downstream 10x Genomics 

multiome sample preparation by the Princess Margaret Genome Centre. 

Single-nucleus RNA-seq processing - In-house aging dataset 
Single-nucleus RNA-seq processing was performed using Seurat 4.3.0 in R and applied to 

each sample before merging. The UMI count matrix (BM24M, BM26F, BM70F, and BM77F) 

was loaded in the R environment using Read10X. Doublets were identified using scDblFinder 

on the RNA with a pre-generated embedding after filtering genes expressed in more than 3 

cells, cells with more than 200 features and more than 0.05 percent ribosomal genes. After 

filtering out doublets, quality control was further performed by filtering out cells with unique 

feature counts below 200 and greater than 3000, and percent mitochondrial genes above 10%. 

The 10x count matrix for each sample was corrected for ambient RNA contamination using 

SoupX and used for downstream analysis with the cells that passed quality control. The 

samples were merged, and the counts were normalized using Scran. The 2000 highly variable 

features were selected using the “vst” selection method with FindVariableFeatures in Seurat. 

The cells were scaled, and the samples were integrated using Harmony correcting the sample 

assignments as a covariate. The optimal number of Harmony-corrected PCA components for 

downstream analysis was assessed using an elbow plot optimizing at 10. A k-nearest 

neighbors graph was constructed using FindNeighbors with the Harmony corrected principal 

components (PCA), and clusters were identified using the louvain algorithm (resolution = 0.8). 

A cell-type mixed louvain cluster was sub-clustered to more effectively pull out distinct 

populations. UMAP on all single cells was performed using RunUMAP at 30 neighbours and 

10 Harmony corrected PCA components.  

Single-cell RNA-seq processing - Ainciburu et al. dataset 
The single-cell RNA-seq data was downloaded from GSE18029886 and processed using 

Seurat 4.3.0 in R and applied to each sample before merging. The UMI count matrix (young1, 

young2, young3, young4, young5, elderly1, elderly2, elderly3) was loaded in the R 

environment using Read10X. Doublets were identified using scDblFinder on the RNA after 

filtering genes expressed in more than 3 cells, cells with more than 200 features and more 

than 0.05 percent ribosomal genes. Doublets and cells with unique feature counts and percent 

mitochondrial genes above a sample-specific threshold were filtered out (young1: 200 > 

nFeature_RNA > 4000, percent.mt > 10; young2: 200 > nFeature_RNA > 2700, percent.mt > 

10; young3: 200 > nFeature_RNA > 4000, percent.mt > 5; young4: 200 > nFeature_RNA > 

4000, percent.mt > 5; young5: 200 > nFeature_RNA > 5000, percent.mt > 10; elderly1: 200 > 

nFeature_RNA > 4000, percent.mt > 10; elderly2: 200 > nFeature_RNA > 4000, percent.mt > 

10; elderlyt3: 200 > nFeature_RNA > 5000, percent.mt > 10). The samples were merged and 



normalized using Scran. The 2000 highly variable features were selected using the “vst” 

selection method with FindVariableFeatures in Seurat. The cells were scaled, and the samples 

were integrated using Harmony correcting the sample assignments and technology (10x 3’ V2 

chemistry vs 10x 3’ V3 chemistry) as covariates. The optimal number of Harmony-corrected 

PCA components for downstream analysis was assessed using an elbow plot optimizing at 

15. A k-nearest neighbors graph was constructed using FindNeighbors with the Harmony 

reduction, and clusters were identified using the Louvain algorithm (resolution = 0.5). UMAP 

was performed using RunUMAP at 30 neighbours and 15 PCA components.  

Single-cell RNA-seq processing - Aksöz et al. dataset 
This dataset consists of 10x 3’ V2 single-cell RNA-seq data from FACS-purified Lin–

CD34+CD38–CD90+CD45RA– HSCs from 3 young and 3 aged donors (all male).87 Briefly, the 

raw fastq files were aligned against the GRCh38 (Ensembl 93) reference genome (10X Cell 

Ranger reference GRCh38 v3.1.0) and quantified using the Cell Ranger pipeline (v3.1.0) with 

default parameters and further processed using Seurat (v4.3.0). Quality control was performed 

separately for each donor by first filtering out cells with < 200 genes detected, and then 

retaining only cells with < 10% mitochondrial reads and gene counts that are less than double 

the median gene count detected in the data for that donor. Genes detected in less than 3 cells 

were removed. All cells that passed quality control were included in differential expression 

analysis. 

Aged vs Young HSC Differential Expression 
Pseudobulk profiles of HSCs from each donor were created by taking the sum of all counts for 

each gene across cells belonging to the HSC cluster within that donor. For the in-house aging 

dataset, raw counts from young and aged HSC pseudobulks were modeled with DESeq and 

differential expression was run between aged HSC and young HSC with donor sex as a 

covariate. Young HSC and aged HSC-specific genes with log2FoldChange > 1 and FDR < 

0.01 were retained as signatures for downstream analysis. For the Ainciburu dataset, DESeq 

was run on raw counts from young and aged HSC pseudobulks only within samples profiled 

by 10x 3’ scRNA-seq V2 chemistry to avoid technology-driven batch effects. This comparison 

in the Ainciburu dataset was confounded by donor sex, wherein all aged samples were male 

and all aged samples were female. To attenuate this, sex specific genes (X-inactivation genes 

XIST and TSIX, as well as ChrY genes outside of the para-autologous region) were filtered 

out from the DE results. Young HSC and aged HSC-specific genes with log2FoldChange > 1 

and FDR < 0.01 were retained as signatures for downstream analysis. For the Aksöz dataset, 

raw count pseudobulks were modeled with EdgeR as implemented in the Libra (v1.0.0) 

package,119 and differential expression was run using a likelihood ratio test between aged HSC 

and young HSC. Gene identifiers were converted to GENCODE v38 and young HSC and aged 



HSC-specific genes with log2FoldChange > 1 and FDR < 0.01 were retained as signatures for 

downstream analysis, excluding genes not in the GENCODE reference annotation. 

The quality of each resulting signature was evaluated by scoring across donors within our CH 

cohort and evaluating their association with age. While we validated that aged HSC signatures 

from each dataset were positively correlated with age, young HSC signatures were 

uncorrelated with age rather than having the expected negative correlation. Thus, only aged 

HSC signatures were used for downstream analysis (Table S5). 

 

Quantification and Statistical Analysis  

Data analysis and statistical tests were performed using R version 4.2.1. Plots were generated 

using ggplot2 (v3.3.6) or FlowJo (v10.8.1). Detail on statistical tests used in the different 

figures and definition of relevant summary statistics are included in each figure legend.  

 

RESOURCE AVAILABILITY 

Lead Contact 
Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Paresh Vyas (paresh.vyas@imm.ox.ac.uk). 

Materials Availability 
The list of all oligo sequences designed in this study and used for single-cell genotyping can 

be found in Table S4. These include both target-specific oligos used in the PCR after reverse 

transcription, and nested barcoded target-specific oligos used in genotyping PCR1. Barcoded 

oligodT-ISPCR primers were kindly provided by Prof. Adam Mead and Dr. Alba Rodriguez-

Meira, and the sequences are listed in Table S4.  

Data and Code Availability 
Raw targeted DNA sequencing data, TARGET-seq+ scRNA-seq, and TARGET-seq+ single-

cell genotyping data have been deposited at European Genome-Phenome Archive (EGA) in 

order to comply with ethical approvals and will be available as of the date of publication. 

Processed TARGET-seq+ scRNA-seq, single-cell genotyping and metadata will be made 

available through Figshare. Single-nucleus RNA-seq data for the in-house aged and young 

bone marrow dataset have been deposited in GEO. 
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