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Abstract

Horses domestication revolutionized human civilization by changing transportation,
farming, and warfare patterns. Despite extensive studies on modern domestic horse
origins, the intricate demographic history and genetic signatures of pony size demand
further exploration. Here, we present a high-quality genome of the Chinese Debao pony
and extensively analyzed 385 individuals from 49 horse breeds. We revea the
conservation of ancient components in East Asian horses and close relationships between
Asian horses and specific European pony lineages. Genetic analysis uncovers Asian
paternal origin for European pony breeds, and these pony-sized horses share a close
genetic affinity due to the presence of a potential ancestral ghost pony population.
Additionally, we identify promising cis-regulatory elements influencing horse withers
height by regulating genes like RFLNA and FOXO1. Overall, our study providesinsightful
perspectives into the development history and genetic determinants underlying body size
in ponies and offers broader implications for horse population management and
improvement.

Teaser

Decoding pony genetics. exploring origins and size determinants sheds light on their
historical and biological impacts.

MAIN TEXT

I ntroduction

The domestication of animals played a pivotal role in shaping human civilization. Horses
were first domesticated approximately 5,500 years ago on the Eurasian steppes(1). Their use
in transportation, agriculture work, and warfare facilitated the expansion of human territories
and the establishment of long-distance trade routes(2-4). Among the diverse group of horse
breeds, ponies are a type of small horses (Equus caballus), which are generaly defined as
individuals that stand less than 14.2 hands (58 inches, 147 cm) at the withers. They have been
selectively bred for their adaptability to diverse local environments(5), ranging from the
islands of Northern Europe to the mountain regions of Southern China. Due to their hardness,
intelligence, and friendly nature, ponies served various purposes including transportation,
work, and companionship(6). In recent years, they have also gained popularity as mounts for
children. Despite the important roles that ponies have played in human history, our knowledge
of the genetic factors contributing to their unique characteristics remains limited. Therefore,
investigating the genetic architecture and diversity of pony breeds could help to provide novel
insghtsinto the domestication history of horses and trace human activity and civilization.

As one of the most important local horse breeds from Guangxi province in China, the
Debao pony reaches a height of around 9.3 hands (39 inches, 100 cm) at the withers and is
believed to be a descendant of ancient breeds that existed 2,000 years ago. While previous
study has provided insight into the origins and spread of domestic horses from the Western
Eurasian steppes(1), the development history of horses after domestication, especially that of
ponies in early times and their relationships, remains unclear. In particular, the genealogy of
pony clusters from Southern China among horse breeds remains uncertain due to the lack of a
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96 comprehensive dataset. Additionally, many previous studies have identified a series of
97 candidate genes (TBX3, NELL1, ZFAT, LASP1, LCORL/NCAPG, ADAMTS17, GH1, OSTN,
98 and HMGA?2) associated with body size in horses(7-11). Still, these findings are limited by a
99 small subset of breeds or geographic regions. Therefore, further integrative analysis, including
100 Eurasian pony breeds, would generate new avenues for understanding the common genetic
101 basis that shapes the characteristic and diversity of ponies.

102 To enhance our understanding of the complex demographic history and genetic signatures
103 of body size in ponies, we first assembled a high-quality Debao pony genome by combining
104 PacBio CLR, Illumina sequencing, and Hi-C technologies. Subsequently, we gained insight
105 into the development and breeding history of ponies by performing a comprehensive whole-
106 genome analysis based on 385 domesticated horse individuals from 49 breeds in the world.
107 Through integrating genetic, 3D genome, and histone mark ChlP-Seq datasets, we uncovered
108 novel genetic factors influencing the withers height of horses. This study provides new
109 perspectives on the horse development history post domestication and has important
110 implications for the management and improvement of modern horse populations.

111

112 Results

113 Genome assembly and annotation of Debao pony genome

114 We assembled a chromosome-level genome of Debao pony by integrating PacBio CLR
115 (296 Gb, 121x), Illumina PE (333 Gb, 136x%), and Hi-C (119 Gb) sequencing technologies
116 (Fig. 1A and fig. S1). The estimated genome size was 2.44 Gb with a heterozygosity of 0.29%
117 (fig. S2 and table S1). By conducting self-correction, trimming, and assembly of PacBio long
118 reads with Canu (fig. S3), we initially obtained 583 contigs with an N50 of 20.48 Mb after
119 purging haplotigs (table S2). The contigs were then anchored, ordered, and orientated into a
120 chromosome-level assembly using the 3D-DNA pipeline. The resulting assembly underwent
121 manual curation and polish (fig. $4). Each step went through rigorous quality checksto ensure
122 accuracy (fig. S5). Hi-C signal heatmap demonstrated clear genomic interaction, suggesting
123 high quality and accuracy (Fig. 1B and fig. S6). The final genome assembly spanned 2.44 Gb,
124 consisting of 31 autosomes, a pair of X/Y sex chromosomes, a mitochondrial genome, and
125 210 unassigned contigs, with a contig N50 of 34.25 Mb and a scaffold N50 of 88.98 Mb (Fig.
126 1C and table S2). Notably, the Debao assembly rectified un-collapsed artificial duplications
127 present in EquCab3.0 (Fig. 1D), exhibiting high contiguity and completeness among rel eased
128 E. caballus genomes (Fig. 1, C and E, fig. S7 and table S2).

129 Repetitive sequences accounted for 41.26% of the Debao genome using Dfam, Repbase,
130 and Repeatmodeler (table S3). We predicted a total of 21,038 high-confidence protein-coding
131 genes based on an optimized MAKER annotation pipeline that combined ab initio gene
132 prediction, protein-based homology searches, RNA-Seq, and Iso-Seq (Fig. 1, Fand G, and fig.
133 S8). The gene models were further refined usng Apollo. Notably, utilizing the assemblies of
134 Debao pony and thoroughbred as representatives of E. caballus, we revealed a significant
135 gene loss associated with olfactory receptor activity, a phenomenon observed across diverse
136 horse breeds(12). This finding suggests that this gene family may undergo relaxed selective
137 constraints during horse domestication (fig. S9). The high quality of the Debao pony genome
138 establishes it as a valuable resource for genetic research.
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Fig. 1. Genome assembly and annotation of the Debao pony. (A) Schematic diagram
illustrating the pipeline for genome assembly and annotation. (B) Hi-C chromatin
interactions of the assembled pony genome. (C) Comparison of assembly contiguity
between current released horse genomes and DeBaol.0 assembly. (D) Copy number
spectrum (spectra-cn) of k-mers for EquCab3.0 and DeBaol.0. Spectra-cn of k-mers
larger than 1 (2, 3, 4, >4) are enlarged within each plot. (E) Assembly statistics of
EquCab3.0 and DeBaol.0. The contig N50 was calculated by breaking the genome
into contigs at the gap region. (F) Landscape of the assembled pony genome, showing
chromosome names, GC contents, repeat density, gene density, and ncRNA density in
different tracks from outer to inner. (G) Annotation edit distance (AED) using iterative
Maker3 annotation to assess annotation accuracy.

Genome-wide variation and population structure of E. caballus
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To gain a comprehensive understanding of the genetic architectures of ponies across horse
populations, we re-sequenced 10 Debao ponies, 10 Baise horses, and six Warmbloods at an
average depth of approximately 10.87x. Then, we collected 384 previousy sequenced
genomes to capture more genetic diversity in horses. After excluding potential crossbred
samples, we obtained a panel of 385 samples representing 49 horse breeds worldwide (Fig.
2A and tables 4 and S5). Using the Genome Analysis Toolkit (GATK), we identified
35,926,564 high-quality SNPs throughout the genome (fig. S10 and tables S6 and S7), with
60.60% located within intergenic regions and 27.36% within introns (table S8).
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Fig. 2. Geographic distribution and population structure of E. caballus. (A) Geographic
origin of 49 horse breeds, with colors representing regions and withers height
consistent throughout the study. (B) Principal component analysis (PCA) plot showing
the genetic relationships among horse populations. The black triangle indicates the
European pony lineage, which includes the Shetland pony, Icelandic horse, and
Miniature horse. The colors of the data point in the main plot and the thumbnail (top
left) represent regions and withers height, respectively. (C) Neighbor-joining (NJ) tree
rooted on Przewalski's horses depicting the genetic clustering of horse populations.
The black inner section ring highlights the European pony lineage of Shetland pony,
Icelandic horse, and Miniature horse. Colors of the outer section ring indicate regions,
while branch colors represent withers height. (D) Admixture analysis of horse
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172 populations (K = 5), revealing genetic contributions from different ancestral sources.
173 Breeds are ordered by regions and are represented by strip colors.

174 All eligible SNPs were employed to investigate population structure and diversity within
175 the horse population. Principal component analysis (PCA) exhibited geographic clustering and
176 a clear spectrum reflecting the gradient change of withers height (Fig. 2B and table S9).
177 Notably, horses in East Asia were generally pony-sized, and ponies from other regions,
178 especially those belonging to the lineage containing Shetland pony, Icelandic horse, and
179 Miniature horse, exhibited relatively closer relationship with East Asian horses. Furthermore,
180 the neighbor-joining (NJ) phylogenetic tree displayed similar classification patterns, albeit
181 with relatively scattered geographic clustering due to complex breeding history (Fig. 2C). The
182 pony lineage of Shetland pony, Icelandic horse, and Miniature horse showed phylogenetic
183 proximity to East Asian horses. These findings were also strongly supported by the admixture
184 results. With an optimized K value of five, the European pony lineage predominantly shared
185 more ancestry components with Asian horses rather than European horses (Fig. 2D and fig.
186 S11). With higher K values, this lineage segregated from Asian horses and formed a distinct
187 group (fig. S12 and table S10). Our analysis reveals the genome-wide variation and
188 population structure of E. caballus and provides novel insights into the close relationship
189 between the specific European pony lineage and the East Asian horse.

190 Y chromosome haplotypes (HTs) and phylogenetic analysis

Przewalski's horse
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» Icelandic horse,'
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191

192 Fig. 3. Characterization of the Y chromosome in stallions. (A) Y chromosome haplotypes
193 inatotal of 177 horses across 38 breeds. (B) Haplotype networks constructed based on
194 Y chromosome segregating sites. Circle size represents the frequency of each
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haplotype, while the length of lines corresponds to the number of mutations. (C)
Hierarchical clustering based on variations observed in the Y chromosome. The letters
“S” and “I” represent the Shetland pony and the Icelandic horse, respectively.

To investigate the paternal genetic history of pony populations, we analyzed Y
chromosome haplotypes and phylogeny using 177 male individuals in our horse dataset (fig.
S13 and table S11). In total, we identified 59 diverse haplotypes, and Przewalski’s horse
harbored a unique haplotype distinct from all domestic horses (Fig. 3A and table S12). The
haplotype network comprised three major haplogroups (I, V, and VI), with Asia horses like
Debao pony, Mongolian horse, and Tibetan pony displaying the highest haplotypes diversity,
which surrounded the ancient HT Il (Fig. 3B). Notably, we found that the paternal lines of
Shetland pony and Icelandic horse originated from HT |l and its closely related haplotypes,
respectively. Furthermore, the phylogenetic analysis revealed that the paternal lineages of the
Shetland pony and Icelandic horse were primarily descended from horses in Asia, suggesting
an orient paternal origin (Fig. 3C). Overall, our analysis by tracing paternal lineage ancestry
provides further evidence for the genetic diversity and evolutionary history of ponies.

Phylogenetic reconstruction, genetic affinities, and demogr aphic infer ences of ponies

To further evaluate the amount of shared genetic drift between any two horse populations,
we carried out phylogenetic reconstruction and outgroup f3-statistics analysis. Heatmaps of
outgroup f3-statistics showed early breeding of Asian horses, followed by European ponies,
which aligned with our population structure results (Fig. 4A and figs. S14 and S15). The rapid
linkage disequilibrium (LD) decay of ponies also suggested a more primitive state (Fig. 4B).
To capture global relationships as well as developmental trgectories of different breeds, we
calculated the likelihood of transition between states by employing the potential of heat
diffuson for affinity-based transition embedding (PHATE). The PHATE-embedded data
generated nine major linear trajectories representing divergent genetic states, which extended
from the central portion (Fig. 4C and table S13). Notably, the Shetland pony formed one of
the major trgectories. Moreover, the two Debao ponies were positioned at the basal portion,
reflecting transitional genetic states between the Shetland pony and their wild ancestry.
Investigation using TreeMix inferred gene flow points from the Y akutian horse to both the
Shetland pony and the Debao pony (Fig. 4D and table S14). To further classify gene flows
underlying pony domestication and breeding history, we calculated f4-statistics for every
possible combination across all sequenced breeds and constructed a pony relationship network
based on key f4-statistic values (fig. S16). The network indicates that gene flows and
connections between western and eastern ponies were mainly mediated by the Y akutian horse
(Fig. 4E and fig. S17). Based on geographic distance and prior knowledge of Y akutian horse
origin, we speculated that the majority of modern ponies descended from an ancient
unidentified pony lineage rooted in DOM2, which was closely related to the Y akutian horse.
Demographic inference usng SMC++ displayed an early bottleneck in eastern pony
populations, followed by western pony populations with lower effective population sizes (Ne),
supporting early breeding of eastern ponies and subsequent westward dispersal of a small
fraction of the pony population (Fig. 4F). Altogether, we hypothesized that the propagation of
contemporary ponies primarily originated from a shared ancestral pony population within
DOM2 in the Eurasian steppe (Fig. 4G).
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239 Fig. 4. Genetic affinities of ponies in the horse population. (A) TreeMix Phylogenetic
240 relationships and outgroup f3-statistics (Equus caballus, Equus caballus, E.a.som) of
241 the horse population. (B) Linkage disequilibrium (LD) decay for the top-sized horses
242 and bottom-sized ponies. (C) PHATE plot depicting distinct horse breeds. (D)
243 Phylogeny and inferred mixture events by TreeMix. (E) Pony-related network based
244 on f4-statistics. Line colors ranging from light to dark indicate genetic relationships
245 from distant to close. The top left thumbnail illustrates the basic unit of f4-statistics.
246 Examples of P3, such as the Yakutian horse, Shetland pony, and Debao pony, are
247 displayed surrounding the main network. The most genetically closely related breeds
248 for each P3 are listed starting from the top left. (F) Demographic trajectories of pony
249 populationsinferred by SMC++. (G) Modeled dispersal of ponies based on sequencing
250 data analysis and historical knowledge. The red star represents the inferred horse
251 domestication center.

252 Novel selection signatures associated with hor se wither s height

253 To decipher the genetic basis of body size variation in horses, we performed a
254 comprehensive genome-wide selection analysis by focusing on three pony breeds and eleven
255 horse breeds with divergent withers heights (Fig. 5A). By integrating multiple selection
256 metrics including fixation index (Fsr), nucleotide diversity (m) ratio, and cross-population
257 extended haplotype homozygosity (XP-EHH), we identified numerous candidate genomic
258 regions and associated genes (Figs. 5, B and C, and tables S15 to S17). Notably, the genes
259 covered by the selective regions identified by these three methods exhibited significant
260 enrichment in the Dorso-ventral axis formation KEGG pathway, highlighting the role of early
261 developmental processes in shaping body size differences (Fig. 5, C and D, and table S18).
262 Within these candidate regions, we discovered several genes previously implicated in horse
263 body size, such as HMGA2 and TBX3. Additionally, our analysis revealed several novel
264 candidate genes, including ACSF3/CENPBD1 (genomic region), RFLNA, KIF2B, FOXO1,
265 and ABT1, which are potentially involved in regulating horse withers height (Fig. 5B).

266 One of the identified selective regions corresponds to a regulatory element located
267 upstream of the RFLNA gene, which is known to be involved in the regulation of bone
268 mineralization, bone maturation, and chondrocyte development, spanning approximately 1.3
269 kb on chromosome 8 (Fig. 5E). This region exhibited the lowest XP-EHH values (pony vs.
270 horse) across the entire genome, indicating positive selection for large body size. Moreover,
271 the horse populations displayed reduced nucleotide diversity in this genomic region, further
272 supporting itsrole in selection for body size. By integrating three histone marks ChiP-seq data
273 from the FAANG database, we revealed the potential enhancer function for the regulatory
274 element of RFLNA, which is supported by the topologically associating domain (TAD)
275 inferred from Hi-C data.

276 Another identified selective region harbored multiple enhancers located downstream of
277 the FOXOL1 gene, which is known regulate osteoblast numbers, bone mass, and chondrogenic
278 commitment of skeletal progenitor cells, spanning from 18.75 to 19.08 Mb on chromosome 17
279 (Fig. 5F). The presence of low nucleotide diversity and extended runs of homozygosity
280 (ROH) in the pony population suggests the conservation of this region across most pony
281 breeds, emphasizing its significance in determining small body size (fig. S18). These closely
282 positioned enhancers, along with the proximity to the FOXO1 gene, suggest their potential
283 synergistic regulation of FOXO1. The consecutive blocks exhibiting high phyloP scores
284 further support its pivotal role.
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286 Fig. 5. Selective regions associated with horse withers height. (A) Breeds representing
287 large-size horses and small-size ponies. Horses (top height): Shire horse, Percheron,
288 Oldenburger, Holsteiner, Wirttemberger, Hanoverian horse, Dutch Warmblood,
289 Westphalian horse, Bavarian Warmblood, Warmblood, and Trakehner. Ponies (bottom
290 height): Shetland pony, Debao pony, and Miniature horse. (B) Genome-wide selective
291 signals associated with horse body size based on Fsr, 7 ratio, and XP-EHH (pony vs.
292 horse). The top 1% and 5% quantiles are indicated by grey dashed lines. Red points
203 represent candidate regions, blue points represent gene regions enriched in the Dorso-
204 ventral axis formation KEGG pathway, and green points represent previously reported
295 gene regions associated with horse body size. (C) Overview of selective signals
296 incorporating Fsr, 7 ratio, and XP-EHH. The top 5% quantiles are indicated by grey
297 dashed lines. (D) Top enriched KEGG pathways. (E) Candidate selective region on
298 chromosome 8. From top to bottom are XP-EHH, 6z, Hi-C matrix, genomic
299 interactions, gene models, and histone ChiP-Seq (diaphysis of metacarpal bone)
300 signals. TADs are indicated with black triangles in the Hi-C matrix. (F) Candidate
301 selective region on chromosome 17. From top to bottom are & ratio (07pnoy/0mhorse),
302 ROHpony, 6m, phyloP, genomic interactions, gene models, and histone ChiIP-Seq
303 (diaphysis of metacarpal bone) signals. (G) Genotype frequency of candidate regions
304 at different withers heights located on chromosomes 8 and 17, respectively.

305 In addition to the aforementioned instances, several other selective signals were associated
306 with body size (figs. S19 to S21). Given that body size is a polygenetic trait, we showed the
307 difference in the allele frequency spectrum at candidate loci regarding four groups of body
308 size. The presence of a gradient trend in allele frequencies across these selective regions, in
309 concordance with withers height, further emphasizes their association with horse body size
310 (Fig. 5G and fig. S22). Collectively, these findings underscore the significance of the
311 regulatory elements flanking the candidate genes and their potential contribution to the
312 variation in horse body size.

313

314 Discussion

315 The origin and domestication of modern horses have long fascinated researchers and
316 garnered significant interest(13-15). The Western Eurasian steppes, particularly the lower
317 Volga-Don region, have been identified as the probable domestication center of modern
318 domestic horses known as DOM 2, potentially dating back to around 3000 BC(1). This marked
319 the beginning of their global expansion, resulting in the emergence of diverse horse breeds
320 with a wide range of body sizes, varying from less than 1 meter to nearly 1.8 meters at the
321 withers. Among these horse breeds, ponies have gained increasing popularity worldwide due
322 to their small size, versatility, appeal to various age groups, accessibility, and therapeutic
323 benefits(6). However, their genetic relationships and breeding history have remained largely
324 unknown. To gain valuable ingghts into the development history and specific characteristics
325 of ponies, we assembled the pony genome and conducted subsequent analyses using global
326 seguencing data.

327 In contrast to using short-read data in EquCab3.0(16), we directly employed Pachio long-
328 read datato congtruct the genome backbone. This approach yielded remarkable improvements
329 in contiguity, with an impressive 20-fold increase in the contig N50 value. Moreover, we
330 achieved a base accuracy comparable to that of EquCab3.0, which was established from the
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331 foundation of Sanger sequence data(16). Importantly, the current assembly also addressed the
332 issue of false repetitive sequences that were overrepresented in EquCab3.0, potentially
333 causing overestimated gene family expansions(17). The resulting high-quality pony genome
334 enhances our understanding of horse genetic diversity and provides the scientific community
335 with a valuable resource for horse genetics and genomics. Moving forward, the pony genome
336 along with other horse assemblies can be employed for large-scale pan-genome analysis,
337 which would not only enrich the genome-wide genetic variations but also shed light on the
338 biological adaptability across diverse horse breeds(18).

339 Population structure analysis revealed that the western pony lineage, consisting of the
340 Shetland pony, Icelandic horse, and Miniature horse, exhibited a closer genetic relationship to
341 oriental horses. This suggests potential historical connections and gene flow between these
342 pony breeds and oriental horse populations. Historically, horses have been transported and
343 traded through various means, including invasion, immigration, or commerce(19-21).
344 Previous evidence suggests that early breeders likely selected stallions for breeding based on
345 visible phenotypic traits(22). Therefore, we delved deeper into the genetic history by
346 investigating the Y chromosome lineages, providing compelling evidence supporting an
347 oriental paternal origin for this European pony lineage. East Asia, particularly the
348 southwestern region of China, has preserved a rich diversity of Y chromosomal haplotypes
349 and ancient paternal horse lineages(23). In contrast, Europe has experienced a decline in
350 genetic diversity among ancient domestic stallions over the past 4,000 years. Notably, Y-HT-1
351 (haplotypes exhibited by present-day horses) has replaced most European haplotypes, except
352 for Yakutian horses, which suggests a higher diversity of patrilineages originating from
353 further East(24-26). However, limited ancient materials have been preserved or found to
354 reveal the landscape of ancient horse Y chromosomes in East Asia. In our research, we further
355 elucidated the ancient component of East Asian horses and demonstrated a genetic connection
356 between European and Asian ponies through Y akutian horses. Contemporary Y akutian horses
357 were most likely introduced following the migration of the Y akut people from the Altai-Sayan
358 and/or Baikal area between the 13" and 15™ centuries or even earlier(27). The fast adaptation
359 and geographical isolation of Yakutian horses helped maintain abundant ancestral components
360 in their genome. Previous studies estimated that the Shetland pony and Icelandic horse
361 originated over 1,000 years ago, accompanying the arrival of Norse settlers during the Viking
362 Age(28).

363 The Debao pony is believed to be a descendant of the ancient Guoxia breed, which dates
364 back thousands of years. However, the exact origins of their ancestors remain elusive and
365 cannot be traced with certainty. War horses, known for their large size and high speed,
366 facilitated the spread of humans and horse breeds through warfare(29). However, pony-sized
367 horses do not possess the same physical attributes or speed advantage. Therefore, the breeding
368 history and spreading route of ponies may be more complex and obscured by the intricate
369 relationships among horses. Based on our comprehensive analyses, we speculated that they
370 originated from the ancestral ghost pony population within DOM2, likely centered around the
371 Central Asian Steppe. The absence of the ancestral ghost population and the close affinity of
372 Y akutian horses with it results in the current genetic relationship network. Interestingly, these
373 pony-sized breeds are all located on islands or in mountainous regions, where isolated
374 geography has hindered gene exchange to some extent, leading to their basal localization in
375 the phylogeny. Given that previous studies have predominantly focused on European
376 horses(24), these findings extend our understanding of the ancient component and genetic
377 diversity of East Asia horses. To fully understand the breeding history of ponies and other
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378 horse breeds post-domestication, additional ancient genomes covering a wider geographical
379 range, especially in East Asiaand local rural areas, will be crucial.

380 While previous work identified candidate genes associated with body size, most of these
381 studies focused on specific breeds/regions or relied on low-density Chip datasets(8, 10). By
382 integrating a large-scale resequencing dataset encompassing horses with a wide range of
383 heights, we were able to uncover previously unknown genetic information related to body
384 size. For instance, frameshift variants in RFLNA have been linked to spondylocarpotarsal
385 synostosis syndrome, a skeletal disorder characterized by short stature and carpal/tarsal
386 synostosis(30). The involvement of FOXOL1 in embryonic development, bone growth and
387 remodeling, and cartilage repair processes underscores its essential function in skeleta
388 development(31). Additionally, the ACSF3/CENPBD1 genomic region showed enrichment of
389 genes, including ACSF3, ANKRD11(32), CDK10, TCF25, DEFS8, and CENPBDL, involved in
390 body development (fig. S19). Another signal was identified near KIF2B gene, which belongs
391 to the KIF family involved in the development of the nervous system and early embryo (fig.
392 S20). Furthermore, a selective signal encompassed regulatory elements of the ABT1 gene,
393 which plays a critical role in growth and height trait (fig. S21)(33). One interesting finding is
394 that most candidate regions were located within cis-regulatory elements, underscoring the
395 significant role of transcriptional evolution in driving rapid adaptation and the breeding
396 process. These newly discovered cis-regulatory elements not only provide insights into the
397 function of noncoding regions but also deepen our understanding of the regulation of horse
398 height. Further functional characterization and validation of these genes will contribute to our
399 understanding of the molecular mechanisms driving withers height variation in horses.

400 In conclusion, our study assembled and annotated a high-quality pony genome, providing
401 a valuable resource for future horse research endeavors. Through comprehensive genetic
402 analysis, we gained profound insights into the intricate genetic relationships among various
103 pony breeds. Additionally, our investigation into the horse withers height led to the discovery
104 of nove cisregulatory elements involved in this trait. These findings enhance our
405 understanding of pony genetics and provide a foundation for future studies on breed
106 characteristics and trait selection.

407

108 Materialsand Methods

109 Ethics statement

410 Our study adhered to the ethical guidelines outlined in the Guide for the Care and Use of
411 Experimental Animals, as established by the Ministry of Agriculture and Rural Affairs
412 (Beijing, China). The protocols were reviewed and approved by the Institutional Animal Care
413 and Use Committee of both the Chinese Academy of Agricultural Sciences and the Guangxi
414 Veterinary Research Ingtitute. To minimize any potential suffering, horses were humanely
415 euthanized as required prior to tissue sampling.

416 Genome assembly

417 A male Debao pony from Debao County, Baise, Guangxi Province, China, was selected
418 for genome assembly. Genomic DNA was extracted from its blood using the DNeasy Blood &
419 Tissue Kit (Qiagen, Beijing, China), and DNA quality was assessed by agarose gel
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420 electrophoresis. For long-read sequencing, single molecular rea-time (SMRT) PacBio
21 sequencing libraries were prepared following standard Pacific Biosciences protocols and
422 sequenced on the PacBio Sequel platform. Hi-C libraries were constructed using Phase
423 Genomics Proximo Hi-C Animal Kit (Phase Genomics, Washington, USA). Following the
124 manufacturer's instructions, chromatin was digested with the Dpnll restriction enzyme, and
125 the Hi-C libraries were sequenced on an Illumina NovaSeq 6000 platform. Additionally,
126 short-read paired-end (PE) sequencing libraries were prepared and sequenced on an Illumina
427 NovaSeq 6000 platform.

428 The genome assembly followed the Vertebrate Genomes Project (VGP) assembly
429 pipeling(34) with specific modifications (fig. S1). The genome size of the Debao pony was
130 estimated by analyzing the frequency distributions of 17, 19, 21, 23, 25, 27, 29, and 31 mers
431 from Illlumina PE reads using jelyfish (v2.2.10)(35) and calculated usng GenomeScope
432 (v2.0)(36). The PacBio reads were independently assembled into contigs using three different
433 assemblers:. FALCON (v0.3.0)(37), wtdbg2 (v2.5)(38), and Canu (v2.1.1)(39). Redundant
434 sequences from the Canu assembly were removed using purge_dups (v1.2.5)(40). The contigs
435 generated by Canu were then scaffolded based on continuity and completeness (fig. S3 and
436 table S2), which used the 3D-DNA pipeling(41l) with Hi-C data preprocessed by fastp
437 (v0.20.1)(42). The genome assembly was manually curated using PacBio long reads, telomere
438 locations, Hi-C signals, and synteny information with the EQuCab3.0 reference genome, aided
439 by Juicebox Assembly Tools (v1.11.08)(43). The curated genome, along with the
440 mitochondrial genome generated by GetOrganelle (v1.7.5)(44), was polished through two
141 rounds of PacBio long reads using the Arrow algorithm and two rounds of Illumina short
142 reads using Pilon (v1.24)(45). Chromosome numbers were assigned based on the alignment
443 with EquCab3.0 (fig. S5). Throughout the genome profiling stage, the assembly quality was
144 evaluated usng BUSCO (v5.2.2, mammalia_odb10)(46), Merqury (v1.3)(47), MUMmer
445 (v4.0.0rc1)(48), and QUAST (v5.0.2)(49).

446 Genome annotation

447 Repeat sequences were identified using a combination of homology-based and de novo
148 approaches. The homology-based method employed the RMBlast (v2.9.0,
449 http://www.repeatmasker.org/rmblast/) search engine with the transposable element (TE)
450 database from Dfam (v3.2, https.//dfam.org) and Repbase (v20181026)(50). De novo
451 prediction was performed usng RepeatModeler (v2.0.1)(51), which integrated TRF
452 (v4.09)(52), RECON (v1.08)(53), RepeatScout (v1.0.6)(54), and LTR_Retriever (v2.9.0)(55).
453 The merged TE library was utilized for repeat sequence identification using RepeatM asker
454 (v4.1.1, http://www.repeatmasker.org).

455 For genome annotation, an optimized iterative approach using MAKER3 (v3.01.03) was
456 employed (fig. S8)(56, 57). The repeat library generated above was used to mask the genome.
457 Evidence for gene annotation included protein sequences of six species (Bos taurus, Equus
458 caballus, Homo sapiens, Mus musculus, Ovis aries, and Sus scrofa) retrieved from UniProt
459 (https.//www.uniprot.org/), as well as transcripts of 14 tissues (adipose, cerebellum, cerebrum,
460 dorsal muscle, heart, kidney, lung, large intestine, leg muscle, liver, stcomach, small intestine,
161 spleen, testis) collected from the assembled Debao pony. Transcripts were obtained through
162 RNA-Seq using HISAT2 (v2.2.1)(58) and StringTie (v2.1.4)(59), as well as pooled 1so-Seq
163 using 1s0Seq3 (v3.4.0, https://github.com/PacificBiosciences/IsoSeq) and minimap2
164 (v2.20)(60). RNA-Seq and 1so-Seq were sequenced on the Illumina NovaSeq 6000 platform
465 and PacBio Sequel platform, respectively. The initial round of annotation utilized GeneMark-
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166 ES (v4.64)(61) for gene model training and prediction with evidence support. The second
167 round involved training SNAP (v2006-07-28)(62) and AUGUSTUS (v3.4.0)(63) with
168 predicted gene models, and the results were integrated to predict gene models. An additional
469 iterative ab initio gene prediction step was implemented. Gene models without evidence
470 support were rescued if they were annotated by BUSCO or InterProScan (v5.54-87.0)(64).
471 Gene modeds that were absent compared with the NCBI Annotation Release 103 of
472 EquCab3.0 were merged with our annotation dataset using GFF3toolkit (v2.1.0,
473 https.//github.com/NAL -i5K/GFF3toolkit). The final Maker3 gene models were manually
474 curated with spliced aignment data from RNA-Seq and Iso-Seq using Apollo
475 (https.//cpt.tamu.edu/galaxy-pub/)(65). The accuracy of the genome annotation was assessed
476 using annotation edit distance (AED). Functional annotation was assigned based on the best
477 hit from DIAMOND (v2.0.14)(66) alignment to the TrEMBL database. Motifs and domains
478 of protein-coding genes were determined using InterProScan. GO terms and KEGG pathways
479 were assigned using the best-match classfication. Noncoding RNAs were predicted using
480 RNAmMmer (v1.2)(67), tRNAscan-SE (v2.0.7)(68), and Infernal (v1.1.4)(69).

181 Compar ative genomics analysis

182 The protein-coding genes from 14 genomes, including horse (Equus caballus,
483 Thoroughbred & Debao pony), ass (Equus asinus), plains zebra (Equus quagga), dog (Canis
184 lupus familiaris), goat (Capra hircus), sheep (Ovis aries), cattle (Bostaurus), pig (Sus scrofa),
485 human (Homo sapiens), chimpanzee (Pan troglodytes), rhesus monkey (Macaca mulatta),
186 house mouse (Mus musculus), and platypus (Or nithor hynchus anatinus), were employed. The
487 longest protein sequences from alternative transcripts were selected to represent unique genes.
488 Orthologous gene families were inferred using OrthoFinder (v2.5.4)(70). Single-copy gene
489 families with more than 100 amino acids were aligned using MUSCLE (v5.1)(71), and the
190 resulting protein sequence alignment was used to construct the maximum likelihood (ML)
191 phylogenetic tree with RAXML (v8.2.12)(72). Divergence times were estimated using the
492 MCMCTree  program  of PAML (v4.9)(73) with  TimeTree  database
493 (http://www.timetree.org/). Gene family expansion and contraction were detected using CAFE
494 (v5.0)(74). GO enrichment analysis was performed using the R package clusterProfiler
495 (v4.6.0)(75).

496 Resequencing and variant calling

497 Blood samples were collected from 10 Debao ponies, 10 Baise horses, and 6 Warmbloods.
498 Genomic DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen, Beijing, China),
499 and DNA integrity was assessed using agarose gels. PE sequencing libraries were prepared
500 and sequenced on an Illumina NovaSeq 6000 platform, generating 150-bp reads with a target
501 depth of 10x coverage. Publicly available whole-genome sequencing (WGS) data for 376
502 domestic horses, eight Przewalski's horses, five domestic donkeys, and one Somali wild ass
503 (E.a.som) were downloaded from NCBI. Detailed information for all 416 individuals is
504 provided in table $4.

505 Raw WGS data underwent quality control using fastp. Clean reads were mapped to the
506 assembled Debao pony genome using BWA-MEM (v0.7.17-r1188)(76) with default
507 parameters (table S6). The mapped reads were sorted and converted to BAM format using
508 SAMtools (v1.12)(77). Variations were detected using the GATK (v4.2.0.0) germline short
509 variant discovery pipeline (https.//gatk.broadingtitute.org/). In brief, duplicate reads were
510 identified using the MarkDuplicates module. Variations were called via local re-assembly of
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511 haplotypes using the HaplotypeCaller module. Raw genomic variant call format (GVCF) files
512 were merged using the GenomicsDBImport module, and joint genotyping was performed
513 using the GenotypeGVCFs module. The resulting variant calls (SNPs and Indels) were
514 subjected to hard-filtering based on specific parameter distributions. QD < 2.0 || MQ < 50.0 ||
515 FS>60.0 || SOR > 3.0 || MQRankSum < -5.0 || ReadPosRankSum < -5.0 || QUAL < 30.0 (fig.
516 S10). SNP dataset was annotated using SnpEff (v5.1d)(78).

517 Population genetics analysis

518 Population genetic analysis was conducted using a dataset of horse samples (table $4). To
519 ensure the reliability of breed records and the purity of lineages, potential crossbred samples
520 were excluded based on population structure inconsistencies. Filtering of SNPs was
521 performed using PLINK (v1.90b6.21)(79) with the following criteria: missing genotype rate
522 per sample > 30%, missing genotype rate per variants > 20%, minor allele frequency (MAF) <
523 0.01, Hardy-Weinberg equilibrium < 0.000001, and SNPs pruned in LD block (window size:
524 50; step size: 5; r? threshold: 0.5). The resulting dataset consisted of 4,881,874 autosomal
525 SNPs from 385 samples representing 49 horse breeds, which were used for subsequent
526 analyses. PCA was performed using GCTA (v1.93.2beta)(80) with default settings. For
527 phylogenetic analysis, the p-distance matrix was caculated usng VCF2Dis
528 (https://github.com/BGl-shenzhen/VCFE2Dis). Based on the p-distance matrix, a neighbor-
529 joining (NJ) phylogenetic tree was constructed using the fneighbor command of EMBOSS
530 (v6.6.0.0)(81). The tree was rooted on Przewalski's horses and visualized using the R package
531 ggtree (v3.6.2)(82). Ancestry and population structure were analyzed using ADMIXTURE
532 (v1.3.0)(83) with K values ranging from 2 to 20. In the SNPs pruning step, the parameters
533 used were window size: 50, step size: 10, and r? threshold: 0.1. The optimal K value was
534 determined based on the cross-validation error.

535 Y chromosome haplotype

536 Y chromosome analysis was conducted on male individuals (table $4). The sex of each
337 individual was determined based on the read coverage on the Y chromosome, resulting in the
538 identification of 177 male horses with read coverage exceeding 93.9% on the Y chromosome
539 (fig. S13 and table S11). SNPs specific to the Y chromosome were extracted, and
340 heterozygous sites were excluded to minimize false positive rates in the male-specific region
341 of the Y chromosome (MSY). The remaining SNPs were filtered using specific criteria
342 missing genotype rate per sample > 20% and missing genotype rate per variant > 10%. A
343 phylogenetic tree rooted on Przewalski's horses was constructed based on the p-distance
544 matrix calculated using VCF2Dis and the fneighbor command of EMBOSS. For haplotype
345 analysis, variant sites with missing genotypes were removed. Haplotypes were identified, and
546 a haplotype network was computed using the R package pegas (v1.2)(84).

547 Genome evolution analysis

548 Genome evolution analysis included a dataset of horse and donkey samples (table $4)(85).
549 SNPswerefiltered using PLINK with the following criteria: missing genotype rate per sample
550 > 30%, missing genotype rate per variants > 20%, minor allele frequency (MAF) < 0.005,
351 Hardy-Weinberg equilibrium < 0.000001, and SNPs pruned in LD block (window size: 50;
552 step size: 5; r? threshold: 0.5).
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353 Historical population relationships were inferred by constructing the ML phylogenetic tree
354 and calculating outgroup f3-statistics. The ML tree was built using TreeMix (v1.13)(86) with
355 variants present in all individuals. SNPs were further pruned with specific parameters:
556 window size: 50, step size: 10, and r? threshold: 0.2. This resulted in a dataset of 15,497,130
557 autosomal SNPs, which were transformed into TreeMix input format using the
358 plink2treemix.py script. The ML tree was rooted on E.a.som with 1000 bootstrap replicates.
559 Shared genetic drift between pairs of populations was quantified by calculating the f3-
360 statistics in the form f3(X, Y, outgroup), where X and Y represent all possible pairwise
361 combinations of domestic horse breeds included in this study, and outgroup represents
362 E.a.som. The f3-statistics were computed with 59,971,670 autosomal SNPs using the R
563 package ADMIXTOOLS 2 (v2.0.0)(87).
364 LD decay patterns were measured in two groups (tables $4 and S5): 106 top-height horses
365 (Shire horse, Percheron, Oldenburger, Holsteiner, Wirttemberger, Hanoverian horse, Dutch
566 Warmblood, Westphalian horse, Bavarian Warmblood, Warmblood, Trakehner,
367 Thoroughbred, and Standardbred) and 93 bottom-height horses (Miniature horse, Debao pony,
568 Shetland pony, Baise horse, Jgu horse, Tibetan pony, Erlunchun horse, DUlmener pony, and
569 Chakouyi horse). The LD decay analysis was performed using PopLDdecay (v3.42)(88).
570 A two-dimensional PHATE embedding was generated using the top 98 principal
571 components from the PCA as input in the R package phateR (v1.0.7)(89), which exhibited a
572 clear hierarchical structure and transition state trgectories. The parameters used were: ndim =
573 2, knn =5, decay = 40, gamma= 1, t = 26, and seed = 1234.
574 Gene flows of pony populations were inferred with TreeMix using representative
575 populations (Przewalski's horse, Icelandic horse, Baise horse, Debao pony, Yakutian horse,
576 Tibetan pony, Jgu horse, Mongolian horse, Akhal-Teke, Arabian horse, and Thoroughbred).
577 The SNPs were filtered as described in the above TreeMix procedure. The topology was
578 rooted on E.a.som with 1000 bootstrap replicates. The TreeMix model was run from O to 30
579 migration events with 10 replicates. The optimal migration edges were inferred using the R
580 package optM (v0.1.6) with 1000 bootstraps performed using the R package BITE
581 (v1.2.0008)(90).
582 The f4-statistics were calculated to assess the genetic relationship between populations
583 with autosomal SNPs used in the f3-statistics analysis. The f4-statistics were modelled as
384 f4(P1, P2, P3, OG) using the R package ADMIXTOOLS 2. Where P1, P2, and P3 represent
585 all possible permutations of domestic horse breeds, and OG represents E.a.som as the
586 outgroup. A relationship network was constructed by integrating every possible combination
587 of f4-statistics, and distances between edges were calculated using the following formulas:
588 disf4(a,b)="_ f4(breed,,breed,, breed, ,outgroup) / n (1)
i=1
589 disedgela, b) = [disf4(a, b)+ disf4(b, )}/ 2 )
590 Where disf4(a, b) represents the directional distance from breed, to breedy; f4(a, i, b,
591 outgroup) represents the specific f4-statistics formulation; n represents the number of horse
592 breeds included in the analysis; disedge(a, b) represents the non-directional distance between
593 breed, and breed;,
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594 Demographic history of representative horse populations (Debao pony, Erlunchun horse,
595 Yakutian horse, Connemara pony, and Shetland pony) in the relationship network was
596 estimated using SMC++ (v1.15.5)(91). A mutation rate of 7.242 1x[110° per base pair per
597 generation and a generation time of eight years were assumed to convert coalescence
598 generations into demographic events of Ne.

599 I dentification of height-related genes

300 Identification of height-related genes involved a comprehensive analysis of horse and
501 pony samples (tables S4 and S5). The dataset included 26 horse individuals representing top
502 height breeds (Shire horse, Percheron, Oldenburger, Holsteiner, Wirttemberger, Hanoverian
503 horse, Dutch Warmblood, Westphalian horse, Bavarian Warmblood, Warmblood, and
504 Trakehner) and 31 pony individuals representing bottom height breeds (Shetland pony, Debao
305 pony, and Miniature horse).

506 The variant dataset was imputed and phased using Beagle (v5.4)(92). To detect selective
507 signals, scans for selection signatures were performed using fixation index (Fsr), nucleotide
308 diversity (m) ratio (Bmonoy/0Thorse), @nd cross-population extended haplotype homozygosity
509 (XP-EHH). Genetic statistics of Fst and 6z were calculated across the whole genome using 10
510 kb nonoverlapping sliding windows with VCFtools (v0.1.16)(93). The XP-EHH analysis was
511 performed with bi-alldlic sites usng selscan (v1.2.0)(94), and averaged XP-EHH scores were
512 calculated with 10 kb nonoverlapping siding windows. Genes located in genomic regions
513 with top 5% values in all three tests were subjected to KEGG pathway enrichment analysis
514 using the R package clusterProfiler. Gene functions were annotated using eggNOG-mapper
515 (v2.1.8)(95), and the organism package for DeBaol.0 assembly was built using the R package
516 AnnotationForge (v1.40.0). Genomic regions with top 1% values in at least two selection
517 signatures were considered selective sweeps. Only genes in the selective sweep regions with
518 potential impacts on body size were identified as candidate height-related genes.

519 Hi-C data analysis was conducted using the HiCExplorer (v3.7.2) pipeling(96). To ensure
520 a robust result, Hi-C data from both the Debao assembly in this study and the EquCab3.0
521 assembly were merged initially. Hi-C reads preprocessed by fastp were mapped to the
522 DeBaol.0 genome using BWA-MEM with specific parameters (-Al, -B4, -E50, and -L0). The
523 aligned reads in BAM format were filtered, and a contact matrix with a bin size of 10 kb was
524 created using the hicBuildMatrix function. The Hi-C matrix was then normalized and
525 corrected with a threshold of 1.5 using the hicNormalize and hicCorrectMatrix functions,
526 respectively. Topologically associating domains (TADs) were identified using the
527 hicFindTADs function.

528 Regulation elements were annotated utilizing ChlP-Seq data obtained from the FAANG
529 database (https://data.faang.org). Specifically, histone marks including H3K4mel, H3K4me3,
5330 H3K27ac, and H3K27me3 were retrieved from the diaphysis of metacarpal bone and then
531 processed using Trim Galore (v0.6.7,
532 https.//www.bi oi nformatics.babraham.ac.uk/projects/trim_galore/). Clean reads were
333 subsequently mapped to the DeBaol.0 genome using Bowtie 2 (v2.4.5)(97) with default
534 parameters. To ensure data quality, non-aligned and poorly mapped reads (MAPQ < 10) were
335 filtered out usng SAMtools. The aligned reads were sorted, and duplicate alignments were
336 marked using SAMtools. ChiP-Seq peak calling was performed employing MACS2
337 (v2.2.7.1)(98). Bigwig files were generated for track visualization using deepTools
538 (v3.5.1)(99).

Science Advances Manuscript Template Page 18 of 28


https://doi.org/10.1101/2023.08.25.554910
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.25.554910; this version posted August 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

339 Runs of homozygosity (ROH) were analyzed using the --homozyg function in PLINK
340 with specific parameters (table S4): ROH ratio (kb/variant) < 50, between-variant distance
341 within an ROH < 100, ROH length > 500 kb, ROH variant count > 50, hets in a scanning
5342 window hit < 1, scanning window size (SNP) = 50, and a scanning window hit rate for a
343 variant to beincluded in an ROH > 0.05 (fig. S18).

344 PhyloP scores were calculated based on conservation scoring by phyloP (phylogenetic p-
345 values)(100) for multiple alignments of placental mammal to the human genome, which were
346 available at
347 (http://hgdownl oad.cse.ucsc.edu/goldenPath/hg19/phyl oP46way/placental M ammals/). Briefly,
348 the alignment was achieved by aligning the DeBaol.0 genome to the EquCab2.0 genome
5349 using minimap2. Subsequently, a chain file was created from minimap2 using transanno
350 (v0.3.0, https://github.com/informationsea/transanno). Genome coordinates were then
351 converted with the chain file created above and obtained from UCSC
352 (https.//hgdownload.soe.ucsc.edu/gol denPath/equCab?2/liftOver/equCab2ToHg19.over.chain.g
353 2) using liftOver (v447)(101). Lastly, blocks with a distance of less than 10 bp were merged
354 using BEDTools (v2.30.0)(102).

355 Candidate regions were visualized using the R package plotgardener (v1.4.2)(103). For
356 most of the visualizations, the R package ggplot2 (v3.4.2) was utilized unless otherwise
357 specified.

358
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