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Abstract

Background Immunotherapies targeting immune checkpoints have gained increasing
attention in cancer treatment, emphasizing the need for predictive biomarkers. Circular RNAs
(circRNAs) have emerged as critical regulators of tumor immunity, particularly in the PD-
1/PD-L1 pathway, and have shown potential in predicting the efficacy of immunotherapies.
However, the precise roles of circRNAs in cancer immunotherapy remain incompletely
understood. While existing databases focus on either circRNA profiles or immunotherapy
cohorts, there is currently no platform that enables the exploration of the intricate interplay
between circRNAs and anti-tumor immunotherapy. Therefore, the development of a
comprehensive resource that integrates circRNA profiles, immunotherapy response data,
and clinical benefits is crucial for advancing our understanding of circRNA-mediated tumor-
immune interactions and developing effective immunotherapy biomarkers.

Methods To address these gaps, we constructed the Cancer CircRNA Immunome Atlas
(TCCIA), the first database that combines circRNA profiles, immunotherapy response data,
and clinical outcomes across multi-cancer types. The construction of TCCIA involved
applying standardized preprocessing to the raw sequencing FASTQ files, characterizing
circRNA profiles using CIRCexplorer2, analyzing tumor immunophenotypes through I0BR,
and compiling immunotherapy response data from diverse cohorts treated with immune-
checkpoint blockades (ICBs).

Results TCCIA encompasses over 3,700 clinical samples obtained from 18 cohorts treated
with ICBs, including PD-1/PD-L1 and CTLA-4 inhibitors, along with other treatment modalities.
The database provides researchers and clinicians with a cloud-based platform that enables
interactive exploration of circRNA data in the context of ICB. The platform offers a range of
analytical tools, including visualization of circRNA abundance and correlation, association
analysis between circRNAs and clinical variables, assessment of the tumor immune
microenvironment, exploration of tumor molecular signatures, evaluation of treatment
response or prognosis, and identification of altered circRNAs in immunotherapy-sensitive and
resistant tumors. To illustrate the utility of TCCIA, we performed a re-analysis on a melanoma
cohort  with TCCIA, and found that an isoform of  circTMTC3,

TMTC3:+:chr12:88148287:88176319, played a significant role in predicting unfavorable
3
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survival outcomes and treatment nonresponse.
Conclusions TCCIA represents a significant advancement over existing resources, providing

a comprehensive platform to investigate the role of circRNAs in immune oncology.

What is already known on this topic

Prior knowledge indicated that circRNAs are involved in tumor immunity and have potential
as predictive biomarkers for immunotherapy efficacy. However, there lacked a
comprehensive database that integrated circRNA profiles and immunotherapy response data,
necessitating this study.

What this study adds

This study introduces TCCIA, a database that combines circRNA profiles, immunotherapy
response data, and clinical outcomes. It provides a diverse collection of clinical samples and
an interactive platform, enabling in-depth exploration of circRNAs in the context of
checkpoint-blockade immunotherapy.

How this study might affect research, practice or policy

The findings of this study offer valuable insights into the roles of circRNAs in tumor-immune
interactions and provide a resource for researchers and clinicians in the field of immune-
oncology. TCCIA has the potential to guide personalized immunotherapeutic strategies and
contribute to future research, clinical practice, and policy decisions in checkpoint-blockade

immunotherapy and biomarker development.
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Introduction

Immunotherapy has revolutionized the treatment of cancer over the past decade, emerging
as a groundbreaking approach that harnesses the patient's own immune system to fight
cancer. Therapies like immune checkpoint inhibitors, chimeric antigen receptor (CAR) T-cell
therapy, and therapeutic vaccines aim to reinvigorate anti-tumor immunity against malignant
cells [1-3]. Checkpoint inhibitors targeting programmed cell death protein-1 (PD-1), PD-1
ligand (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) in particular have
demonstrated remarkable clinical efficacy across diverse cancer types, highlighting
immunotherapy's potential for a durable and curative response [4]. Adoptive cell transfer
using engineered T cells expressing CARs has also shown great promise for blood cancers
[5]. However, significant challenges remain in extending immunotherapies to larger patient
populations and solid tumors. Heterogeneity in response is a major limitation — while some
patients achieve long-term remission, others exhibit intrinsic resistance or relapse after an
initial response [6]. This variable efficacy likely stems from immunosuppressive mechanisms
within the tumor microenvironment (TME) that enable cancer cells to evade immune attack
[7]. Elucidating the complex cellular and molecular interactions underlying immunotherapy
resistance will be critical to unlock the full potential of immune-based cancer treatments.
Reliable predictive biomarkers are also imperative to guide patient selection and combination
immunotherapies tailored to each patient’'s TME [8].

Circular RNAs (circRNAs) have recently emerged as fascinating non-coding RNA
regulators with unique covalently closed loop structures. Initially considered splicing
byproducts, circRNAs are now recognized as important gene expression modulators with
diverse functions [9,10]. In cancer, circRNAs have been implicated in proliferation, metastasis,
and malignancy hallmarks [11]. Moreover, circRNAs are now recognized as critical regulators
and potential biomarker of tumor immunity and immunotherapy response [7,12,13].
Accumulating evidence indicates circRNAs modulate TME and immunotherapy outcomes
through various mechanisms in cancers like lung cancer, melanoma, colorectal cancer, and
pancreatic cancer [14,15]. For example, circRNAs such as circFGFR1, circ-CPA4, and
circ_0000284 facilitate immune evasion by modulating PD-L1 via sponging tumor-

suppressive microRNAs [16—18]. Additionally, circRNAs including hsa_circ_0000190 [19],
5
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circ_0020710 [20], CDR1-AS [16], and circ-UBAP2 [21] upregulate immune checkpoint
proteins like PD-L1, CTLA-4 and PD-1, hampering T cell function and promoting immune
evasion. Furthermore, cancer cell-derived circRNAs can reprogram intratumoral immune
cells via exosomal transfer or cytokine signaling, thereby impacting facets like angiogenesis
that affect immunotherapy efficacy [22—24]. CircRNAs influence various aspects of the TME,
including vascularization [25], metabolism [26], hypoxia [27], macrophage polarization [28],
natural killer cell cytotoxicity [17], and T cell exhaustion/apoptosis [29]. These factors can
impede the efficacy of immunotherapy [15,30]. Dysregulation of circRNAs promotes immune
destruction evasion and reduced immunotherapy efficacy. CircRNAs employ diverse
regulatory mechanisms—from sponging miRNAs and proteins to scaffolding proteins and
translating peptides [31]. While many circRNAs originate in tumors, others come from stromal
and immune cells, underscoring complex multicellular regulation [32]. Exploring circRNA
networks will be critical to unraveling this intricate cancer-immunity interplay. With emerging
roles in tumor immunity, prognostic potential, and biomarker utility, circRNAs represent a
promising new frontier in cancer immunotherapy.

Despite growing interest in circRNAs and their potential relevance in cancer
immunotherapy, a comprehensive understanding of their precise functions and clinical
implications remains incomplete. Existing databases have limitations in either profiling
circRNAs, such as riboCIRC [33], CSCD [34] and CircNet [35] offering circRNA profiles
across tissues or cancers, or curating immunotherapy cohorts, like ICBatlas [36] and TCIA
[37] compiling immune infiltration and immunotherapy data across tumor types. Crucially, no
resources systematically integrate comprehensive circRNA expression with multi-omics
datasets including immune cell fractions, ICB types, and clinical outcomes for systematic
exploration of the circRNA-immunotherapy interplay.

To address this unmet need, we developed the first-of-its-kind database, The Cancer
CircRNA Immunome Atlas (TCCIA), a comprehensive database that integrates circRNA
profiles, immunotherapy response data, and clinical outcomes for multiple cancer types, with
the objective of providing a valuable resource for systematic exploration of the circRNA-
immune axis, advancing our understanding of their functions and to facilitates discovery of

potential biomarkers, therapeutic targets and clinical implications in cancer immunotherapy.
6
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Results

Integrating circular RNAs in cancer immunotherapy

The development of the TCCIA database encompassed a comprehensive process involving
data collection, preprocessing, and integration (Figure 1). In terms of data collection, we
carefully curated research articles detailing cohorts treated with immune-checkpoint
blockades (ICBs), utilizing the PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/) for
selection. We acquired raw RNA-seq datasets from several genome sequence archive
repositories, including dbGaP, EGA, EMBL-EBI and GSA. We applied standardized
preprocessing techniques to identify circRNAs, quantify TME/gene signatures, and
incorporate clinical annotations and outcomes. This approach was aimed at improving the
consistency and comparability of data across different datasets. Notably, TCCIA addresses
a crucial gap by providing a unified platform with multiple tools that facilitates the exploration
of circRNAs' impact on immunotherapy outcomes (Figure 1). This sets it apart from many
existing databases [33-47] that predominantly focus on circRNA profiles, circRNA

annotations, or immunotherapy cohorts (Table 1).

Database Construction Exploration and Analysis Tools
Data Collection Repository
S Signature

”AJL db GaP emsL-EBI i CircRNA

. §GSA

- DO 1eoa S

Integration of Data

2 Molecule-centred Analysis
a2 Correlation

profiles

.'..

Immunotherapy

Standardized -
preprocessing response @ Cox-Analysis
N data/Clinical - =
Immunotherapy outcomes across =
fastq resp:nse five cancer types
& Distribution
CircRNA Clinical TME/gene ﬁ = »
expression outcomes signatures ,,,,
profiles = -
z GRCh38

Figure 1. Overview of TCCIA.
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Table 1. Comparison between TCCIA and other similar database resources [33—47].

Type

Name

Publication

Last update

Support species

Sample types (N)

Number of samples

Data sources

Characteristics

Mixed

TCCIA

Submitted

2023

Homo sapiens

cancer (5)

> 3700 cancer samples

dbGaP, EMBL-EBI, EGA, GSA

The first online interface for exploring circRNA expression
and analysis in 18 immunotherapy cohorts, supporting
systematic comparisons between circRNAs, clinical
phenotypes, and immune signatures/infiltration at both
the cohort and molecular levels, and offering the ability to
explore differential gene expression between responsive
and non-responsive groups for biomarker discovery.

CircRNA related

CsCD2

NAR Database Issue (2022)

2022

Homo sapiens

cancer (23)

825 tissues + 288 cell lines

ENCODE, SRA

Includes a large number of circRNAs, predicts potential
miRNA-circRNA and RBP-circRNA interactions, and the
potential fulHength and open reading frame sequence.

circMine

NAR Database Issue (2022)

2022

Homo sapiens

disease (87 )

1107 samples

GEO

Provides online analytical functions to comprehensively
evaluate the clinical and biological significance of circRNA
and discover the circRNA-mIiRNA interaction and circRNA
translatability.

CircR2Disease2

Genomics, Proteomics & Bioinformatics (2021)

2022

5 species

disease (313)

2449 studies

PubMed

Serves as a platform to systematically investigate the
roles of dysregulated circRNAs in various diseases and
further explore the posttranscriptional regulatory function
in diseases.

CircNet2

NAR Database Issue (2021)

2021

Homo sapiens

cancer (37)

2732 cancer samples

TCGA, GEO, CircAtlas, MiOncoCirc

Cancer tissue-specific circRNA expression profiles and
circRNA-miRNA-gene regulatory network.

riboCIRC

Genome Biology (2021)

2021

21 species

tissue/cell line (314)

1970 samples

GEO

Provides computationally predicted ribosome-associated
circRNAs and experimentally verified translated circRNAs.

CircAtlas2

Genome Biology (2020)

2020

7 species

tissue (20)

1070 samples

SRA, NGDC, GeneBank

Integrating the most comprehensive circRNAs and their
expression and functional profiles in vertebrates, which
provides a foundation for investigating their biological
significance.

Circlnteractome

RNA Biology (2016)

2020

Homo sapiens

tissue/cell line (34)

34 samples

circBase

Predicts the interactions between miRNAs and circRNAs
with 109 RBPs, and the database also focus on IRESs
and ORFs.

TransCirc

NAR Database Issue (2020)

2020

Homo sapiens

tissues (17)

17 tissues

CircAtlas

Provides comprehensive evidence supporting the
translation potential of circRNAs.

circRic

Genome Medicine (2019)

2019

Homo sapiens

cancer (22)

935 cancer celllines

CCLE

Characterizes circRNA expression profiles; analyzes the
circRNA biogenesis regulators, the effect of circRNAs on
drug response, the association of circRNAs with mRNAs,
proteins, and mutations, etc.

CIRCpedia2

Genomics, Proteomics & Bioinformatics (2018)

2018

6 species

tissue (13)

185 samples

GEO, ENCODE, EMBL-EBI

Comprehensive circRNA annotation from over 180 RNA-
seq datasets across six different species. Conservation
analysis of circRNAs between humans and mice.

circBase

RNA (2014)

2014

6 species

tissues/cell line (77)

77 samples

GEO, ENCODE, EMBL-EBI

Explores merged and unified circRNA data sets and the
evidence supporting their expression. Provides scripts to
identify known and novel circRNAs in sequencing data.

Immunotherapy related

TISMO

NAR Database Issue (2022)

2022

Mouse

cancer (19)

1518 mouse samples

GEO and In-house data

Interactive interfaces for exploring gene expression and
immune infiltration, and allowing systematic comparisons
between different model characteristics, and treatment
and response groups.

ICBatlas

Cancer Immunol Res (2022)

2022

Homo sapiens

cancer (9)

1515 cancer samples

GEO,ArrayExpress, TCGA, dbGaP

Transcriptome features of ICB therapy through the
analysis of 1,515 ICB-treated samples from 25 studies
across nine cancer types.

ImmuCellAl

Advanced Science (2020)

2020

Homo sapiens

cancer (37)

NA

GEO, TCGA, dbGaP

The abundance of 24 immune cell types including 18 T-
cell subsets, from gene expression data from self-
designed approach Immune Cell Abundance Identifier.

TCIA

Cell Reports (2017)

2017

Homo sapiens

cancer (20)

9562 cancer samples

TCGA and two immunotherapy studies

Exploration of comprehensive immunogenomic analyses
of next generation sequencing data for 20 solid cancers
from TCGA and other datasources.
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Figure 2. Content of TCCIA. (A) Inclusion of cancer types, cohort and publication years in this study. Abbr. BLCA, Bladder
urothelial carcinoma; HNSC, Head and neck squamous cell carcinoma; KIRC, Kidney renal clear cell carcinoma; NSCLC,
non-small lung cancer; SKCM, Skin cutaneous melanoma. (B-C) The number of detected circRNAs, length of circRNAs,
mean BSJ (back-splicing junction count) and mean CPM (counts per million) in different cancer types (B) or cohort (C). (D)
UMAP plot of all samples, colored by cancer types.

Data summary of TCCIA

In this study, a comprehensive compilation was made, involving approximately 3700 patients
from 18 immune-checkpoint blockade (ICB) cohorts [48-63] with raw RNA-seq datasets
published between 2012 and 2022, encompassing 5 distinct cancer types (Figure 2A). The
circRNA profiling revealed the identification of an impressive total of 281,556 circRNAs.
Among these, kidney renal clear cell carcinoma (KIRC) exhibited the highest count,
encompassing 159,577 circRNAs (representing 56.7% of the total). Conversely, head and
neck squamous cell carcinoma (HNSC) demonstrated the lowest count, with only 680
circRNAs, constituting a mere 0.2% of the total (Figure 2B). The average lengths of these
circRNAs demonstrated notable consistency across various cancer types, ranging from

21,739.64 to 23,582.26, as well as within individual cohorts, ranging from 17,041.13 to

9
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23,112.20 (Figure 2B, C). Intriguingly, skin cutaneous melanoma (SKCM) exhibited the
highest mean back-splice junction (BSJ) reads at 0.13, whereas non-small cell lung cancer
(NSCLC) had the lowest mean at 0.04. Additionally, HNSC displayed the highest mean
counts per million (CPM) at 1,470.6, while KIRC had the lowest mean CPM at 9.0. A
comprehensive analysis encompassing all the circRNAs from the sampled datasets was
visualized using a UMAP plot (Figure 2D). This visualization revealed discernible circRNA
clustering patterns specific to various cancer types, highlighting the nuanced circRNA
heterogeneity within human cancers and emphasizing the need for independent circRNA

analysis considerations.

Web functionality of TCCIA

TCCIA introduces an array of advanced analytical tools, encompasses multifaceted
functionalities to aid researchers in uncovering intricate connections and insights (Figure 1).
These functionalities empower the exploration of circRNA abundance, -correlation,
associations with clinical variables, the tumor immune microenvironment, molecular
signatures, treatment responses, and prognosis predictions, along with identifying circRNAs
implicated in immunotherapy-sensitive and resistant tumor scenarios (Figure 3). The well-
established exploration and analysis pipeline within the TCCIA framework is described in
Figure 4. This schematic outlines the typical path that researchers follow when engaging with

the platform. A more comprehensive elucidation of all fundamental modules is provided below.

Cohort Selection and Data Access. The TCCIA interface offers an intuitive approach for
cohort selection and data access. The Repository Page serves as a gateway, enabling users
to filter datasets based on crucial parameters such as cancer type, treatment modalities,
drugs administered, and cohort sizes. Essential details pertaining to each dataset are
presented in a comprehensive cohort table, facilitating informed decision-making regarding

cohort selection.

Cohort/Molecule-Centered Analysis Modules. At the heart of TCCIA's capabilities lie the

cohort-centered analysis modules and molecule-centred analysis modules (for analyzing

10
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circRNAs across multiple cohorts), providing a profound lens into circRNA dynamics within

specific immunotherapy cohorts. These modules encompass:

(1) Scatter-Correlation and Heatmap-Correlation: Researchers gain insights into circRNA
correlations through scatter plots and heatmaps. These visualizations are pivotal in
elucidating potential connections between circRNAs and other variables within the chosen
cohort.

(2) Group-Comparison (including simplified and comprehensive versions): TCCIA facilitates
nuanced analysis of numeric differences in circRNA expression across multiple groups
within a cohort. The dual modes of simplified and comprehensive group comparison
empower researchers to unravel intricate circRNA expression patterns.

(3) KM-Analysis and Cox-Analysis: Survival analysis is made accessible through the KM-
Analysis module, which generates Kaplan Meier survival curves among distinct variable
groups. Additionally, the Cox-Analysis module allows for an in-depth examination of

survival outcomes of any circRNA expression, opening avenues to prognostic evaluations.

Signature and DEG Analysis. TCCIA introduces dedicated modules for signature analysis
and differential expression circRNAs (DEG) assessment. The Signature Page facilitates the
investigation of associations between circRNAs and tumor microenvironment metrics using
eight prominent deconvolution methods. It also allows for the examination of connections
between circRNAs and 255 cancer signatures categorized into three distinct groups: TME-
associated, tumor-metabolism, and tumor-intrinsic signatures. These analyses encompass a
wide range of cohorts, ensuring comprehensive exploration of these relationships. The DEG
Page empowers researchers to pinpoint differentially expressed circRNAs between patients
who respond and those who do not respond to immunotherapy, thus unraveling the intricate

web of circRNA involvement in treatment outcomes.

User Customized Configurations. Global settings within TCCIA add a layer of refinement
to the user experience, allowing for customized exploration. These settings grant users
control over data access and enable tailoring analyses to align with their specific research

objectives. For example, by default, the platform prioritizes immunotherapy-related sample
11
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data by filtering out samples without checkpoint immunotherapy treatment, streamlining

analyses for coherent research goals. As users become acclimated to the platform,

customization options foster enhanced flexibility, enabling researchers to uncover novel

insights.

In essence, the web functionality of TCCIA embodies an advanced and user-centric avenue

for investigating the complex roles of circRNAs in cancer immunotherapy. The integration of

diverse analysis modules, coupled with a cohort-centered approach and adaptable settings,

positions TCCIA as an indispensable tool for advancing our comprehension of circRNA-

mediated immune responses and guiding the formulation of personalized immunotherapeutic

strategies. This interactive platform stands poised to reshape the landscape of circRNA-

immunotherapy research.
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Figure 3. The core modules of TCCIA.
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Figure 4. A standard exploration and analysis pipeline within TCCIA. (A) Users need to navigate to the Repository

page and select the clinical trial dataset of their interest. On the leftmost panel, users can filter the dataset based on
various parameters. (B) Users can choose an appropriate analysis strategy according to their needs (core analysis steps
are listed on the rightmost panel). The analysis consists of four steps: |. Select the dataset. Il. Choose the CircRNA ID or
Host Gene of interest. Ill. Adjust various parameters such as Test Type, Color Selection, etc. IV. Click the Submit button to
obtain the analysis results. (C) For users aiming for in-depth analysis, a more personalized clinical data filtering suite is
provided. Users can perform patient selection based on different features such as Sex, Response, etc., and redraw the

plots. (D) Users have the option to save the result images in PDF or PNG format, with the desired dimensions.

Case study: validating circTMTC3 prediction efficacy in Gide et al. melanoma cohort
ICB therapies targeting PD-1 and CTLA-4 have significantly transformed the field of oncology,
particularly in the treatment of metastatic melanoma. However, it is important to note that only
a limited number of melanoma patients experience positive outcomes from these
immunotherapies. Consequently, there is a pressing need to identify predictive biomarkers
that can guide precision oncology.

In a study conducted by Dong et al. [13], it was observed that melanoma patients from
the study (cohort ID: PRJEB23709) by Gide et al. [54], who exhibited high expression of
circTMTC3, experienced poorer survival outcomes and demonstrated reduced treatment
responsiveness compared to those with low circTMTC3 expression. To illustrate the

functionality of the TCCIA, here, we performed a re-analysis on the same cohort. Figure 5A
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provides an overview of the analysis panel used to assess the association between a circRNA
and patient survival. Additionally, Figure 5B clearly demonstrates that high levels of
circTMTC3 are predictive of poor overall survival (HRiow vs high=0.47, 95% CI: 0.24-0.92,
P=0.02). Upon closer examination of the different isoforms of circRNAs derived from TMTC3,
it was found that only TMTC3:+:chr12:88148287:88176319 was abundant in this patient
cohort and played a significant role in predicting unfavorable survival outcomes (Figure 5C,
HRiow vs high=0.42, 95% CI: 0.2-0.9, P=0.008). The remaining isoforms, such as
TMTC3:+:chr12:88160113:88190622, did not exhibit the same predictive ability (Figure 5D).
Furthermore, employing three different approaches to assess differential expression of
circRNAs between checkpoint immunotherapy responders and non-responders, it was
consistently discovered that TMTC3:+:chr12:88148287:88176319 was the sole isoform of
circTMTC3 that displayed significant upregulation in non-responding patients (Figure 5E-G).

Discussion

Circular RNAs, emerging as pivotal gene expression regulators, exert diverse functions
across biological processes, with substantial clinical research potential [64]. However, the
existing landscape of circRNA-related tumor-immune checkpoint research falls short of
satisfying the burgeoning need for insights. This limitation is compounded by constraints
stemming from sample quantity and diversity, which subsequently curtail the generalizability
of research findings due to geographical, racial, and tumor-specific factors. Consequently,
given this evolving landscape, the urgency and significance of developing a CircRNA tool for
preliminary data mining have become increasingly pronounced. TCCIA (the Cancer CircRNA
Immunome Atlas) an integrated online platform, building upon datasets from four genome
sequence archive repositories, encompassing around 3,700 cancer samples, spanning five
cancer types and 18 checkpoint-blockade immunotherapy cohorts, incorporating over
280,000 circRNA expression profiles, 255 established cancer signatures, and TME
decomposition results from eight immune infiltration algorithms. TCCIA emphasizes user-
friendly visual presentations, eliminating the need for intricate programming skills. Moreover,
the platform offers a range of customizable visualization options, ensuring adaptability to user

needs. Notably, TCCIA is readily accessible without mandatory registration or login,
14
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potentially rendering it an economical and efficient solution for both researchers and clinical

practitioners.
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Figure 5. circTMTC3 predicts poor survival and non-response to checkpoint immunotherapy in the melanoma

cohort of Gide et al. (A) Analysis panel for analyzing and visualizing associations between circRNAs and patient survival.

Here, we present the data and analysis settings used to generate the plot shown in (C). (B) CircTMTC3 predicts poor survival.
(C) A circRNA isoform of circTMTC3, TMTC3:+:chr12:88148287:88176319, predicts poor survival. (D) A circRNA isoform
of circTMTC3, TMTC3:+:chr12:88160113:88190622, predicts poor survival. (E-G) Volcano plots showing differential
expressed circRNAs between checkpoint immunotherapy response and nonresponse patients using the approaches: (E)
Limma Voom, (F) DESeq2, and (G) edgeR.

In this manuscript, we delineate the data sources, collection and standardization

processes, TCCIA's functionalities, website analysis modules, and provide a step-by-step

guide to its operation. To further illustrate TCCIA, we present a concrete example of the
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circTMTC3 as a molecular marker for melanoma and confirm its specific isoform,
TMTC3:+:chr12:88148287:88176319, in playing a major role in prognosticating unfavorable
survival outcomes and non-response to treatment.

While TCCIA has various advantages and uniqueness, there are still some limitations. In
terms of data, although TCCIA includes data from five different types of cancer, the sample
size for head and neck cancer remains sparse. Recently, the application of immunotherapy
has been expanding to more cancer types, such as digestive system tumors. However, it is
important to note that our TCCIA does not currently cover these types of tumors. The main
reason for this is that current clinical genomics research of such cancer types primarily
focuses on the DNA level, specifically on whole exome sequencing and targeted sequencing
[65]. As a result, there are few RNA-seq datasets to infer the presence of circRNAs. Another
reason is that some raw RNA-seq datasets are difficult to access due to restricted availability,
e.g., Carroll et al. study [66]. In terms of circRNA abundance, there are significant differences
between different cohorts, batch effects may exist in different cohorts, and there is also strong
heterogeneity within the same tumor type, so users need to be cautious when performing
cross-dataset analysis and comparison. In terms of functionality, some databases provide the
characteristics of studying circRNA-miRNA-gene regulatory networks (such as CSCD2 [34],
circMine [38], and CircNet2 [35]), which have not been considered in TCCIA with two reasons:
First, further experimental validation is generally required to confirm the authenticity of
detected circRNAs. In the recent large-scale circRNA detection benchmark study [67],
Vromman et al. recommended using gPCR+ Ribonuclease R or gPCR+amplicon sequencing
for circRNA validation. Therefore, it is recommended to incorporate these experimental
validation methods to ensure the accuracy of circRNA detection. Second, the focus of our
study is on integrating circRNA profiles and clinical outcomes in cancer patients treated with
immunotherapy. However, instead of duplicating efforts, users can leverage already well-
established and high-quality circRNA databases to complete other circRNA annotation and
analysis explorations. By linking to these databases (a widget is provided in the footer of the
TCCIA website), users can access comprehensive circRNA information and utilize existing
tools for further analysis, optimizing the accuracy and efficiency of circRNA annotation and

deep investigation.
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Looking ahead, we aim to continually update TCCIA by incorporating more circRNA data
from diverse immunotherapy cohorts and introducing new functionalities based on user
feedback. In summary, the distinctive features, analytical capabilities, and potential for growth
position it as a pivotal tool in advancing our understanding of circRNAs in tumor immunity

and in shaping development of personalized immunotherapy strategies guided by circRNA.

Methods

Data collection

To conduct a systematic search, we utilized PubMed (https://www.ncbi.nlm.nih.gov/pubmed/)
to search for articles related to Bulk RNAseq data from solid cancer patients treated with
immune checkpoint blockers (ICB). The search expression used was "(ICB [Title/Abstract]
OR PD-1[Title/Abstractf OR PD-L1[Title/Abstract] OR CTLA-4[Title/Abstract]) AND
(rnaseq[Title/Abstract] OR rna-seq[Title/Abstract] OR rna-sequencing[Title/Abstract] OR rna
seq[Title/Abstract] OR rna sequencing[Title/Abstract])". No filters were applied, and there
were no restrictions on language or geographic region. Peer-reviewed publications, preprints,
and press releases were considered for inclusion. To obtain raw RNA sequencing data, we
submitted requests to the Database of Genotypes and Phenotypes (dbGaP)
(https://dbgap.ncbi.nlm.nih.gov/), the European Genome-phenome Archive (EGA)
(https://ega-archive.org/), and the Genome Sequence Archive (GSA)
(https://ngdc.cncb.ac.cn/gsa/) of the National Genomics Data Center (NGDC) after receiving
approval from the Data Access Committee (DAC). However, it is important to note that not all
raw RNAseq datasets were accessible and available for use. In total, we collected 16 studies
[48-63] related to checkpoint immunotherapy that provided raw RNAseq datasets. We
gathered relevant clinical data from publications and clinical meta documents associated with
these RNAseq datasets. Additionally, we extracted information on the cohorts' fundamental
characteristics, such as sample size, treatment methods, and specific drugs used, based on
the abstracts. It should be noted that, for Patil et al. study, two clinical cohorts were included;
and for the study identified as PHS000452, the two patient subgroups had distinct drug
treatments and clinical annotations. Hence, we treated them as two separate cohorts during

the analysis. For the TCCIA project, CircRNA profiles, immunotherapy response, and clinical
17
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benefits were analyzed for five cancer types. This analysis included over 3,700 clinical
samples from 18 cohorts treated with immune-checkpoint blockades (ICBs) such as PD-
1/PD-L1 and CTLA-4 inhibitors, as well as other treatments. The analysis considered both

pre-treatment and on-treatment responses.

CircRNA identification and differential expression analysis

We aligned the raw RNA sequencing data to the human genome hg38 using STAR [68]. Next,
we utilized CIRCexplorer2 [69] to identify, parse, and annotate circRNA junctions within each
sample. These identified junctions were then analyzed for differential expression using
Limma Voom [70], edgeR [71], and DESeq2 [72], enabling a comparison between patients

who responded to checkpoint immunotherapy and those who did not.

TME decomposition and cancer gene signature estimation

We employed IOBR [73] for TME decomposition and the scoring of cancer gene signatures.
IOBR seamlessly integrates eight widely-used open-source deconvolution methods,
including CIBERSORT [74], ESTIMATE [75], quanTlseq [76], TIMER [77], IPS [37],
MCPCounter [78], xCell [79], and EPIC [80]. Furthermore, IOBR incorporates a
comprehensive compilation of 255 established cancer signatures. These diverse signatures
are organized into three distinct categories: TME-associated, tumor-metabolism, and tumor-

intrinsic signatures.

TCCIA implementation

The TCCIA database is developed as a Web application leveraging R Shiny
(https://shiny.posit.co/) and built using the golem framework (https://github.com/ThinkR-
open/golem) to achieve optimization. TCCIA, is developed solely for research purposes and
does not utilize any cookies or collect any personal identifiable information. TCCIA is free

available in https://tccia.zmu-zhoulab.com/ and https://shiny.hiplot.cn/TCCIA.

Statistical analysis

We performed Kaplan-Meier survival analysis to generate and compare survival curves. The
18
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log-rank test was used for comparison. We also conducted multivariate survival analysis
using the Cox regression model. All reported P-values are two-tailed, and a significance level
of p<<0.05 was used unless otherwise specified. All statistical analyses and visualization were

conducted using R v4.2.0.
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