

1 TCCIA: A Comprehensive Resource for Exploring CircRNA in 2 Cancer Immunotherapy

3
4 Shixiang Wang^{1,2,#}, Yi Xiong^{3,4,5,#}, Yihao Zhang^{3,4,5,#}, Haitao Wang^{6^}, Minjun Chen¹, Jianfeng
5 Li⁷, Peng Luo⁸, Yung-Hung Luo^{9,10}, Markus Hecht¹¹, Benjamin Frey¹², Udo S Gaipf¹²,
6 Xuejun Li^{3,4,5,*}, Qi Zhao^{2,*}, Hu Ma^{1,*}, Jian-Guo Zhou^{1,*}

7
8 Affiliations of authors:

9 ¹ Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi,
10 563000, P. R. China.

11 ² Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key
12 Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,
13 Sun Yat-sen University, Guangzhou, 510060, P. R. China.

14 ³ Xiangya School of Medicine, Central South University, Changsha, 410013, P. R. China.

15 ⁴ Hunan International Scientific and Technological Cooperation Base of Brain Tumor
16 Research, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.

17 ⁵ Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha,
18 410008, P. R. China.

19 ⁶ Center for Precision Medicine Research and Training, Faculty of Health Sciences,
20 University of Macau, Macau SAR, 999087, P. R. China.

21 ⁷ State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National
22 Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University,
23 School of Medicine, Shanghai, 200025, P. R. China.

24 ⁸ Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou,
25 510091, P. R. China.

26 ⁹ Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.

27 ¹⁰ School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei,
28 Taiwan.

29 ¹¹ Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center,

30 Homburg, 66421, Germany.

31 ¹² Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, 91054,
32 Germany.

33 [^] Current address: Thoracic Surgery Branch, Center for Cancer Research, NCI, NIH,
34 Bethesda, MD 20892, United States

35

36 # Co-first author.

37 * Corresponding author.

38 Correspondence: Jian-Guo Zhou (jianguo.zhou@zmu.edu.cn), Hu Ma (mahuab@163.com),
39 Qi Zhao (zhaoqi@sysucc.org.cn), Xuejun Li (lxjneuro@csu.edu.cn)

40 Lead contact: Jian-Guo Zhou

41

42 **Keywords:** Circular RNA, Database, Checkpoint immunotherapy, Biomarker

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60 **Abstract**

61 **Background** Immunotherapies targeting immune checkpoints have gained increasing
62 attention in cancer treatment, emphasizing the need for predictive biomarkers. Circular RNAs
63 (circRNAs) have emerged as critical regulators of tumor immunity, particularly in the PD-
64 1/PD-L1 pathway, and have shown potential in predicting the efficacy of immunotherapies.
65 However, the precise roles of circRNAs in cancer immunotherapy remain incompletely
66 understood. While existing databases focus on either circRNA profiles or immunotherapy
67 cohorts, there is currently no platform that enables the exploration of the intricate interplay
68 between circRNAs and anti-tumor immunotherapy. Therefore, the development of a
69 comprehensive resource that integrates circRNA profiles, immunotherapy response data,
70 and clinical benefits is crucial for advancing our understanding of circRNA-mediated tumor-
71 immune interactions and developing effective immunotherapy biomarkers.

72 **Methods** To address these gaps, we constructed the Cancer CircRNA Immunome Atlas
73 (TCCIA), the first database that combines circRNA profiles, immunotherapy response data,
74 and clinical outcomes across multi-cancer types. The construction of TCCIA involved
75 applying standardized preprocessing to the raw sequencing FASTQ files, characterizing
76 circRNA profiles using CIRCexplorer2, analyzing tumor immunophenotypes through IOBR,
77 and compiling immunotherapy response data from diverse cohorts treated with immune-
78 checkpoint blockades (ICBs).

79 **Results** TCCIA encompasses over 3,700 clinical samples obtained from 18 cohorts treated
80 with ICBs, including PD-1/PD-L1 and CTLA-4 inhibitors, along with other treatment modalities.
81 The database provides researchers and clinicians with a cloud-based platform that enables
82 interactive exploration of circRNA data in the context of ICB. The platform offers a range of
83 analytical tools, including visualization of circRNA abundance and correlation, association
84 analysis between circRNAs and clinical variables, assessment of the tumor immune
85 microenvironment, exploration of tumor molecular signatures, evaluation of treatment
86 response or prognosis, and identification of altered circRNAs in immunotherapy-sensitive and
87 resistant tumors. To illustrate the utility of TCCIA, we performed a re-analysis on a melanoma
88 cohort with TCCIA, and found that an isoform of circTMTC3,
89 TMTC3:+:chr12:88148287:88176319, played a significant role in predicting unfavorable

90 survival outcomes and treatment nonresponse.

91 **Conclusions** TCCIA represents a significant advancement over existing resources, providing
92 a comprehensive platform to investigate the role of circRNAs in immune oncology.

93

94 **What is already known on this topic**

95 Prior knowledge indicated that circRNAs are involved in tumor immunity and have potential
96 as predictive biomarkers for immunotherapy efficacy. However, there lacked a
97 comprehensive database that integrated circRNA profiles and immunotherapy response data,
98 necessitating this study.

99 **What this study adds**

100 This study introduces TCCIA, a database that combines circRNA profiles, immunotherapy
101 response data, and clinical outcomes. It provides a diverse collection of clinical samples and
102 an interactive platform, enabling in-depth exploration of circRNAs in the context of
103 checkpoint-blockade immunotherapy.

104 **How this study might affect research, practice or policy**

105 The findings of this study offer valuable insights into the roles of circRNAs in tumor-immune
106 interactions and provide a resource for researchers and clinicians in the field of immune-
107 oncology. TCCIA has the potential to guide personalized immunotherapeutic strategies and
108 contribute to future research, clinical practice, and policy decisions in checkpoint-blockade
109 immunotherapy and biomarker development.

110

111

112

113

114

115

116

117

118

119

120 **Introduction**

121 Immunotherapy has revolutionized the treatment of cancer over the past decade, emerging
122 as a groundbreaking approach that harnesses the patient's own immune system to fight
123 cancer. Therapies like immune checkpoint inhibitors, chimeric antigen receptor (CAR) T-cell
124 therapy, and therapeutic vaccines aim to reinvigorate anti-tumor immunity against malignant
125 cells [1–3]. Checkpoint inhibitors targeting programmed cell death protein-1 (PD-1), PD-1
126 ligand (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) in particular have
127 demonstrated remarkable clinical efficacy across diverse cancer types, highlighting
128 immunotherapy's potential for a durable and curative response [4]. Adoptive cell transfer
129 using engineered T cells expressing CARs has also shown great promise for blood cancers
130 [5]. However, significant challenges remain in extending immunotherapies to larger patient
131 populations and solid tumors. Heterogeneity in response is a major limitation – while some
132 patients achieve long-term remission, others exhibit intrinsic resistance or relapse after an
133 initial response [6]. This variable efficacy likely stems from immunosuppressive mechanisms
134 within the tumor microenvironment (TME) that enable cancer cells to evade immune attack
135 [7]. Elucidating the complex cellular and molecular interactions underlying immunotherapy
136 resistance will be critical to unlock the full potential of immune-based cancer treatments.
137 Reliable predictive biomarkers are also imperative to guide patient selection and combination
138 immunotherapies tailored to each patient's TME [8].

139 Circular RNAs (circRNAs) have recently emerged as fascinating non-coding RNA
140 regulators with unique covalently closed loop structures. Initially considered splicing
141 byproducts, circRNAs are now recognized as important gene expression modulators with
142 diverse functions [9,10]. In cancer, circRNAs have been implicated in proliferation, metastasis,
143 and malignancy hallmarks [11]. Moreover, circRNAs are now recognized as critical regulators
144 and potential biomarker of tumor immunity and immunotherapy response [7,12,13].
145 Accumulating evidence indicates circRNAs modulate TME and immunotherapy outcomes
146 through various mechanisms in cancers like lung cancer, melanoma, colorectal cancer, and
147 pancreatic cancer [14,15]. For example, circRNAs such as circFGFR1, circ-CPA4, and
148 circ_0000284 facilitate immune evasion by modulating PD-L1 via sponging tumor-
149 suppressive microRNAs [16–18]. Additionally, circRNAs including hsa_circ_0000190 [19],

150 circ_0020710 [20], CDR1-AS [16], and circ-UBAP2 [21] upregulate immune checkpoint
151 proteins like PD-L1, CTLA-4 and PD-1, hampering T cell function and promoting immune
152 evasion. Furthermore, cancer cell-derived circRNAs can reprogram intratumoral immune
153 cells via exosomal transfer or cytokine signaling, thereby impacting facets like angiogenesis
154 that affect immunotherapy efficacy [22–24]. CircRNAs influence various aspects of the TME,
155 including vascularization [25], metabolism [26], hypoxia [27], macrophage polarization [28],
156 natural killer cell cytotoxicity [17], and T cell exhaustion/apoptosis [29]. These factors can
157 impede the efficacy of immunotherapy [15,30]. Dysregulation of circRNAs promotes immune
158 destruction evasion and reduced immunotherapy efficacy. CircRNAs employ diverse
159 regulatory mechanisms—from sponging miRNAs and proteins to scaffolding proteins and
160 translating peptides [31]. While many circRNAs originate in tumors, others come from stromal
161 and immune cells, underscoring complex multicellular regulation [32]. Exploring circRNA
162 networks will be critical to unraveling this intricate cancer-immunity interplay. With emerging
163 roles in tumor immunity, prognostic potential, and biomarker utility, circRNAs represent a
164 promising new frontier in cancer immunotherapy.

165 Despite growing interest in circRNAs and their potential relevance in cancer
166 immunotherapy, a comprehensive understanding of their precise functions and clinical
167 implications remains incomplete. Existing databases have limitations in either profiling
168 circRNAs, such as riboCIRC [33], CSCD [34] and CircNet [35] offering circRNA profiles
169 across tissues or cancers, or curating immunotherapy cohorts, like ICBatlas [36] and TCIA
170 [37] compiling immune infiltration and immunotherapy data across tumor types. Crucially, no
171 resources systematically integrate comprehensive circRNA expression with multi-omics
172 datasets including immune cell fractions, ICB types, and clinical outcomes for systematic
173 exploration of the circRNA-immunotherapy interplay.

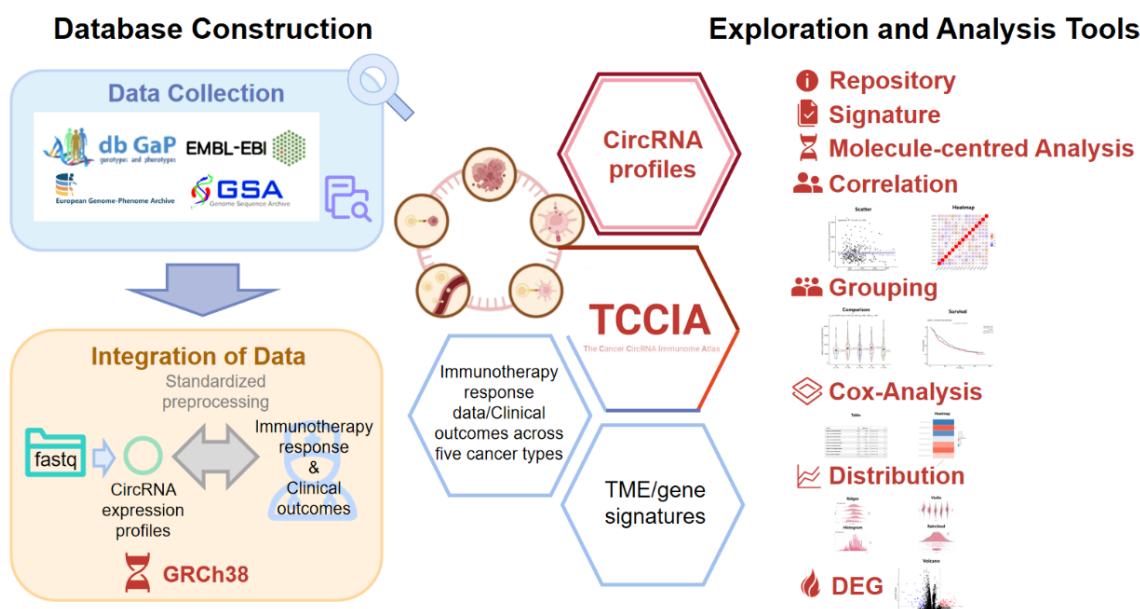
174 To address this unmet need, we developed the first-of-its-kind database, The Cancer
175 CircRNA Immunome Atlas (TCCIA), a comprehensive database that integrates circRNA
176 profiles, immunotherapy response data, and clinical outcomes for multiple cancer types, with
177 the objective of providing a valuable resource for systematic exploration of the circRNA-
178 immune axis, advancing our understanding of their functions and to facilitates discovery of
179 potential biomarkers, therapeutic targets and clinical implications in cancer immunotherapy.

180

181 **Results**

182 **Integrating circular RNAs in cancer immunotherapy**

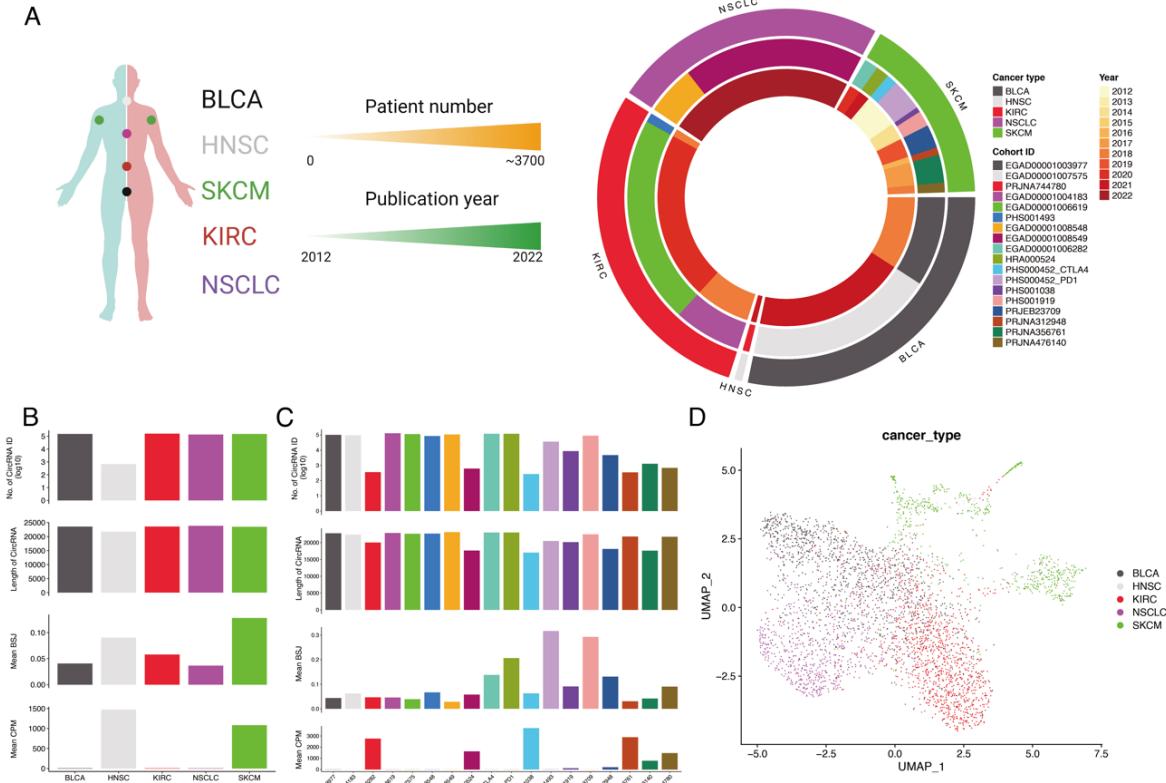
183 The development of the TCCIA database encompassed a comprehensive process involving
184 data collection, preprocessing, and integration (Figure 1). In terms of data collection, we
185 carefully curated research articles detailing cohorts treated with immune-checkpoint
186 blockades (ICBs), utilizing the PubMed database (<https://www.ncbi.nlm.nih.gov/pubmed/>) for
187 selection. We acquired raw RNA-seq datasets from several genome sequence archive
188 repositories, including dbGaP, EGA, EMBL-EBI and GSA. We applied standardized
189 preprocessing techniques to identify circRNAs, quantify TME/gene signatures, and
190 incorporate clinical annotations and outcomes. This approach was aimed at improving the
191 consistency and comparability of data across different datasets. Notably, TCCIA addresses
192 a crucial gap by providing a unified platform with multiple tools that facilitates the exploration
193 of circRNAs' impact on immunotherapy outcomes (Figure 1). This sets it apart from many
194 existing databases [33–47] that predominantly focus on circRNA profiles, circRNA
195 annotations, or immunotherapy cohorts (Table 1).



196
197 **Figure 1. Overview of TCCIA.**

Table 1. Comparison between TCCIA and other similar database resources [33–47].

Type	Name	Publication	Last update	Support species	Sample types (N)	Number of samples	Data sources	Characteristics
Mixed	TCCIA	Submitted	2023	Homo sapiens	cancer (5)	> 3700 cancer samples	dbGaP, EMBL-EBI, EGA, GSA	The first online interface for exploring circRNA expression and analysis in 18 immunotherapy cohorts, supporting systematic comparisons between circRNAs, clinical phenotypes, and immune signatures/infiltration at both the cohort and molecular levels, and offering the ability to explore differential gene expression between responsive and non-responsive groups for biomarker discovery.
CircRNA related	CSCD2	NAR Database Issue (2022)	2022	Homo sapiens	cancer (23)	825 tissues + 288 cell lines	ENCODE, SRA	Includes a large number of circRNAs, predicts potential miRNA-circRNA and RBP-circRNA interactions, and the potential full-length and open reading frame sequence.
	circMine	NAR Database Issue (2022)	2022	Homo sapiens	disease (87)	1107 samples	GEO	Provides online analytical functions to comprehensively evaluate the clinical and biological significance of circRNA and discover the circRNA-miRNA interaction and circRNA translatability.
	CircR2Disease2	Genomics, Proteomics & Bioinformatics (2021)	2022	5 species	disease (313)	2449 studies	PubMed	Serves as a platform to systematically investigate the roles of dysregulated circRNAs in various diseases and further explore the posttranscriptional regulatory function in diseases.
	CircNet2	NAR Database Issue (2021)	2021	Homo sapiens	cancer (37)	2732 cancer samples	TCGA, GEO, CircAtlas, MiOncoCirc	Cancer tissue-specific circRNA expression profiles and circRNA-miRNA-gene regulatory network.
	riboCIRC	Genome Biology (2021)	2021	21 species	tissue/cell line (314)	1970 samples	GEO	Provides computationally predicted ribosome-associated circRNAs and experimentally verified translated circRNAs.
	CircAtlas2	Genome Biology (2020)	2020	7 species	tissue (20)	1070 samples	SRA, NGDC, GeneBank	Integrating the most comprehensive circRNAs and their expression and functional profiles in vertebrates, which provides a foundation for investigating their biological significance.
	CircInteractome	RNA Biology (2016)	2020	Homo sapiens	tissue/cell line (34)	34 samples	circBase	Predicts the interactions between miRNAs and circRNAs with 109 RBPs, and the database also focus on IRESS and ORFs.
	TransCirc	NAR Database Issue (2020)	2020	Homo sapiens	tissues (17)	17 tissues	CircAtlas	Provides comprehensive evidence supporting the translation potential of circRNAs.
	circRic	Genome Medicine (2019)	2019	Homo sapiens	cancer (22)	935 cancer cellines	CCLE	Characterizes circRNA expression profiles; analyzes the circRNA biogenesis regulators, the effect of circRNAs on drug response, the association of circRNAs with mRNAs, proteins, and mutations, etc.
	CIRCpedia2	Genomics, Proteomics & Bioinformatics (2018)	2018	6 species	tissue (13)	185 samples	GEO, ENCODE, EMBL-EBI	Comprehensive circRNA annotation from over 180 RNA-seq datasets across six different species. Conservation analysis of circRNAs between humans and mice.
Immunotherapy related	circBase	RNA (2014)	2014	6 species	tissues/cell line (77)	77 samples	GEO, ENCODE, EMBL-EBI	Explores merged and unified circRNA data sets and the evidence supporting their expression. Provides scripts to identify known and novel circRNAs in sequencing data.
	TISMO	NAR Database Issue (2022)	2022	Mouse	cancer (19)	1518 mouse samples	GEO and In-house data	Interactive interfaces for exploring gene expression and immune infiltration, and allowing systematic comparisons between different model characteristics, and treatment and response groups.
	ICBAtlas	Cancer Immunol Res (2022)	2022	Homo sapiens	cancer (9)	1515 cancer samples	GEO, ArrayExpress, TCGA, dbGaP	Transcriptome features of ICB therapy through the analysis of 1,515 ICB-treated samples from 25 studies across nine cancer types.
	ImmucellAI	Advanced Science (2020)	2020	Homo sapiens	cancer (37)	NA	GEO, TCGA, dbGaP	The abundance of 24 immune cell types including 18 T-cell subsets, from gene expression data from self-designed approach Immune Cell Abundance Identifier.
199	TCIA	Cell Reports (2017)	2017	Homo sapiens	cancer (20)	9562 cancer samples	TCGA and two immunotherapy studies	Exploration of comprehensive immunogenomic analyses of next generation sequencing data for 20 solid cancers from TCGA and other datasources.



200

201 **Figure 2. Content of TCCIA.** (A) Inclusion of cancer types, cohort and publication years in this study. Abbr. BLCA, Bladder
202 urothelial carcinoma; HNSC, Head and neck squamous cell carcinoma; KIRC, Kidney renal clear cell carcinoma; NSCLC,
203 non-small lung cancer; SKCM, Skin cutaneous melanoma. (B-C) The number of detected circRNAs, length of circRNAs,
204 mean BSJ (back-splicing junction count) and mean CPM (counts per million) in different cancer types (B) or cohort (C). (D)
205 UMAP plot of all samples, colored by cancer types.

206

207 Data summary of TCCIA

208 In this study, a comprehensive compilation was made, involving approximately 3700 patients
209 from 18 immune-checkpoint blockade (ICB) cohorts [48–63] with raw RNA-seq datasets
210 published between 2012 and 2022, encompassing 5 distinct cancer types (Figure 2A). The
211 circRNA profiling revealed the identification of an impressive total of 281,556 circRNAs.
212 Among these, kidney renal clear cell carcinoma (KIRC) exhibited the highest count,
213 encompassing 159,577 circRNAs (representing 56.7% of the total). Conversely, head and
214 neck squamous cell carcinoma (HNSC) demonstrated the lowest count, with only 680
215 circRNAs, constituting a mere 0.2% of the total (Figure 2B). The average lengths of these
216 circRNAs demonstrated notable consistency across various cancer types, ranging from
217 21,739.64 to 23,582.26, as well as within individual cohorts, ranging from 17,041.13 to

218 23,112.20 (Figure 2B, C). Intriguingly, skin cutaneous melanoma (SKCM) exhibited the
219 highest mean back-splice junction (BSJ) reads at 0.13, whereas non-small cell lung cancer
220 (NSCLC) had the lowest mean at 0.04. Additionally, HNSC displayed the highest mean
221 counts per million (CPM) at 1,470.6, while KIRC had the lowest mean CPM at 9.0. A
222 comprehensive analysis encompassing all the circRNAs from the sampled datasets was
223 visualized using a UMAP plot (Figure 2D). This visualization revealed discernible circRNA
224 clustering patterns specific to various cancer types, highlighting the nuanced circRNA
225 heterogeneity within human cancers and emphasizing the need for independent circRNA
226 analysis considerations.

227

228 **Web functionality of TCCIA**

229 TCCIA introduces an array of advanced analytical tools, encompasses multifaceted
230 functionalities to aid researchers in uncovering intricate connections and insights (Figure 1).
231 These functionalities empower the exploration of circRNA abundance, correlation,
232 associations with clinical variables, the tumor immune microenvironment, molecular
233 signatures, treatment responses, and prognosis predictions, along with identifying circRNAs
234 implicated in immunotherapy-sensitive and resistant tumor scenarios (Figure 3). The well-
235 established exploration and analysis pipeline within the TCCIA framework is described in
236 Figure 4. This schematic outlines the typical path that researchers follow when engaging with
237 the platform. A more comprehensive elucidation of all fundamental modules is provided below.

238

239 **Cohort Selection and Data Access.** The TCCIA interface offers an intuitive approach for
240 cohort selection and data access. The Repository Page serves as a gateway, enabling users
241 to filter datasets based on crucial parameters such as cancer type, treatment modalities,
242 drugs administered, and cohort sizes. Essential details pertaining to each dataset are
243 presented in a comprehensive cohort table, facilitating informed decision-making regarding
244 cohort selection.

245

246 **Cohort/Molecule-Centered Analysis Modules.** At the heart of TCCIA's capabilities lie the
247 cohort-centered analysis modules and molecule-centred analysis modules (for analyzing

248 circRNAs across multiple cohorts), providing a profound lens into circRNA dynamics within
249 specific immunotherapy cohorts. These modules encompass:

250 (1) *Scatter-Correlation and Heatmap-Correlation*: Researchers gain insights into circRNA
251 correlations through scatter plots and heatmaps. These visualizations are pivotal in
252 elucidating potential connections between circRNAs and other variables within the chosen
253 cohort.

254 (2) *Group-Comparison (including simplified and comprehensive versions)*: TCCIA facilitates
255 nuanced analysis of numeric differences in circRNA expression across multiple groups
256 within a cohort. The dual modes of simplified and comprehensive group comparison
257 empower researchers to unravel intricate circRNA expression patterns.

258 (3) *KM-Analysis and Cox-Analysis*: Survival analysis is made accessible through the KM-
259 Analysis module, which generates Kaplan Meier survival curves among distinct variable
260 groups. Additionally, the Cox-Analysis module allows for an in-depth examination of
261 survival outcomes of any circRNA expression, opening avenues to prognostic evaluations.

262

263 **Signature and DEG Analysis.** TCCIA introduces dedicated modules for signature analysis
264 and differential expression circRNAs (DEG) assessment. The Signature Page facilitates the
265 investigation of associations between circRNAs and tumor microenvironment metrics using
266 eight prominent deconvolution methods. It also allows for the examination of connections
267 between circRNAs and 255 cancer signatures categorized into three distinct groups: TME-
268 associated, tumor-metabolism, and tumor-intrinsic signatures. These analyses encompass a
269 wide range of cohorts, ensuring comprehensive exploration of these relationships. The DEG
270 Page empowers researchers to pinpoint differentially expressed circRNAs between patients
271 who respond and those who do not respond to immunotherapy, thus unraveling the intricate
272 web of circRNA involvement in treatment outcomes.

273

274 **User Customized Configurations.** Global settings within TCCIA add a layer of refinement
275 to the user experience, allowing for customized exploration. These settings grant users
276 control over data access and enable tailoring analyses to align with their specific research
277 objectives. For example, by default, the platform prioritizes immunotherapy-related sample

278 data by filtering out samples without checkpoint immunotherapy treatment, streamlining
279 analyses for coherent research goals. As users become acclimated to the platform,
280 customization options foster enhanced flexibility, enabling researchers to uncover novel
281 insights.

282

283 In essence, the web functionality of TCCIA embodies an advanced and user-centric avenue
284 for investigating the complex roles of circRNAs in cancer immunotherapy. The integration of
285 diverse analysis modules, coupled with a cohort-centered approach and adaptable settings,
286 positions TCCIA as an indispensable tool for advancing our comprehension of circRNA-
287 mediated immune responses and guiding the formulation of personalized immunotherapeutic
288 strategies. This interactive platform stands poised to reshape the landscape of circRNA-
289 immunotherapy research.

290

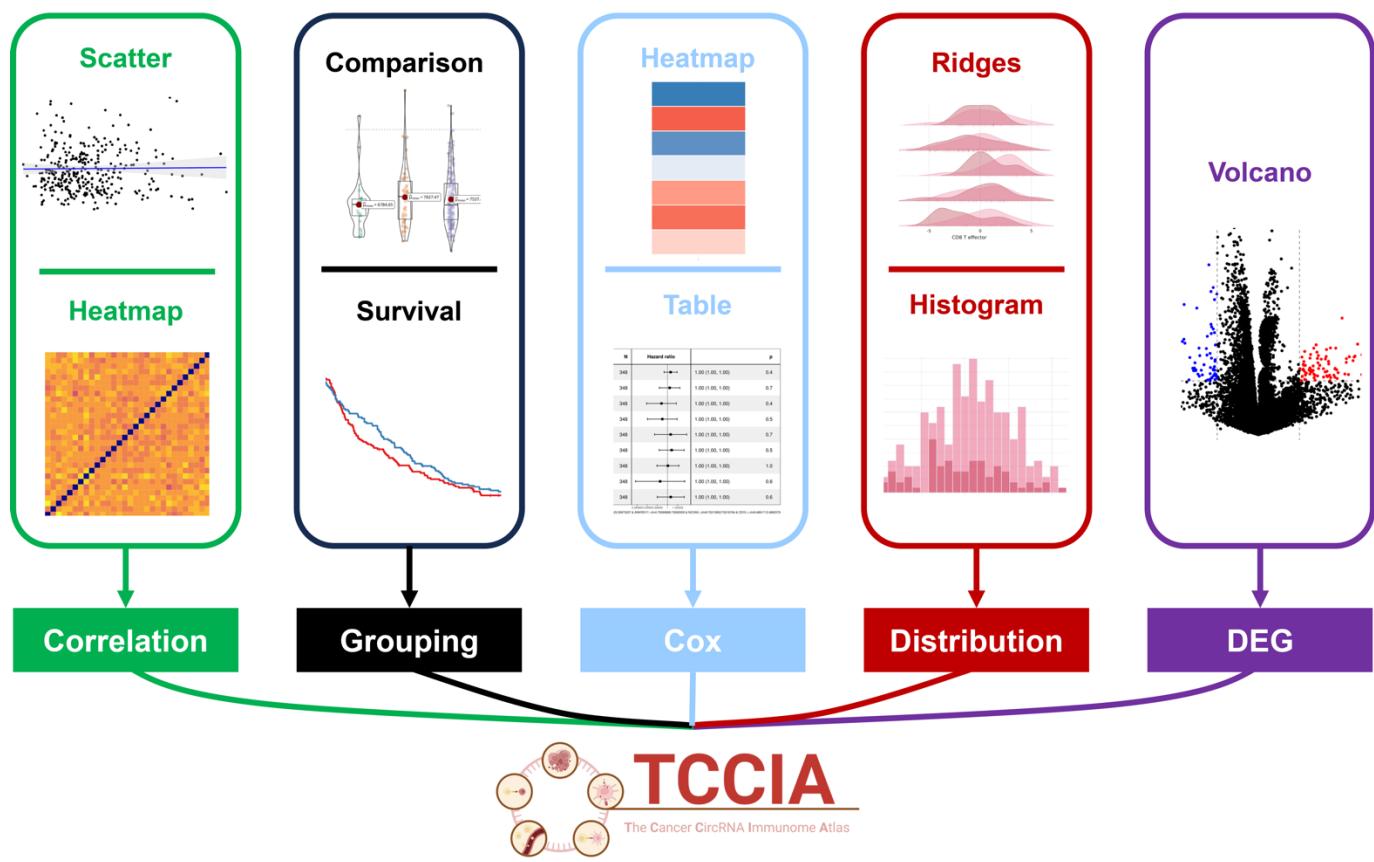
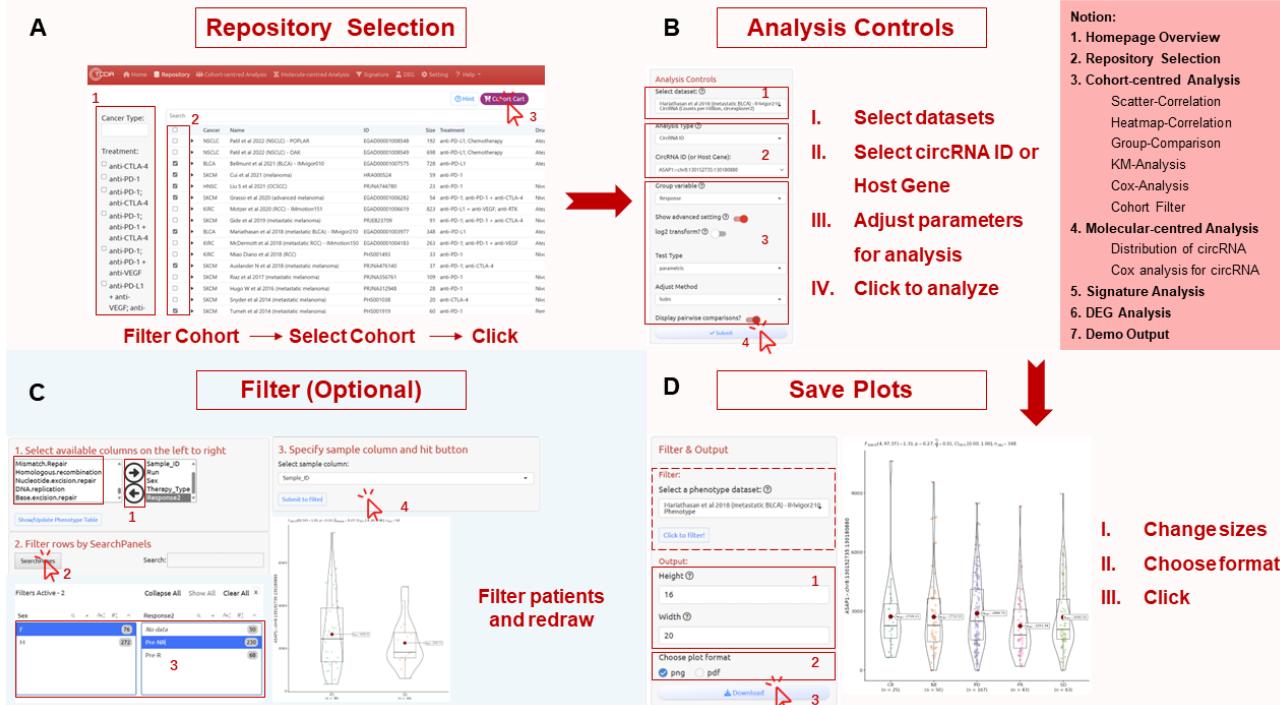


Figure 3. The core modules of TCCIA.

291
292



293

294 **Figure 4. A standard exploration and analysis pipeline within TCCIA.** (A) Users need to navigate to the Repository
 295 page and select the clinical trial dataset of their interest. On the leftmost panel, users can filter the dataset based on
 296 various parameters. (B) Users can choose an appropriate analysis strategy according to their needs (core analysis steps
 297 are listed on the rightmost panel). The analysis consists of four steps: I. Select the dataset. II. Choose the CircRNA ID or
 298 Host Gene of interest. III. Adjust various parameters such as Test Type, Color Selection, etc. IV. Click the Submit button to
 299 obtain the analysis results. (C) For users aiming for in-depth analysis, a more personalized clinical data filtering suite is
 300 provided. Users can perform patient selection based on different features such as Sex, Response, etc., and redraw the
 301 plots. (D) Users have the option to save the result images in PDF or PNG format, with the desired dimensions.

302

303 **Case study: validating circTMC3 prediction efficacy in Gide et al. melanoma cohort**

304 ICB therapies targeting PD-1 and CTLA-4 have significantly transformed the field of oncology,
 305 particularly in the treatment of metastatic melanoma. However, it is important to note that only
 306 a limited number of melanoma patients experience positive outcomes from these
 307 immunotherapies. Consequently, there is a pressing need to identify predictive biomarkers
 308 that can guide precision oncology.

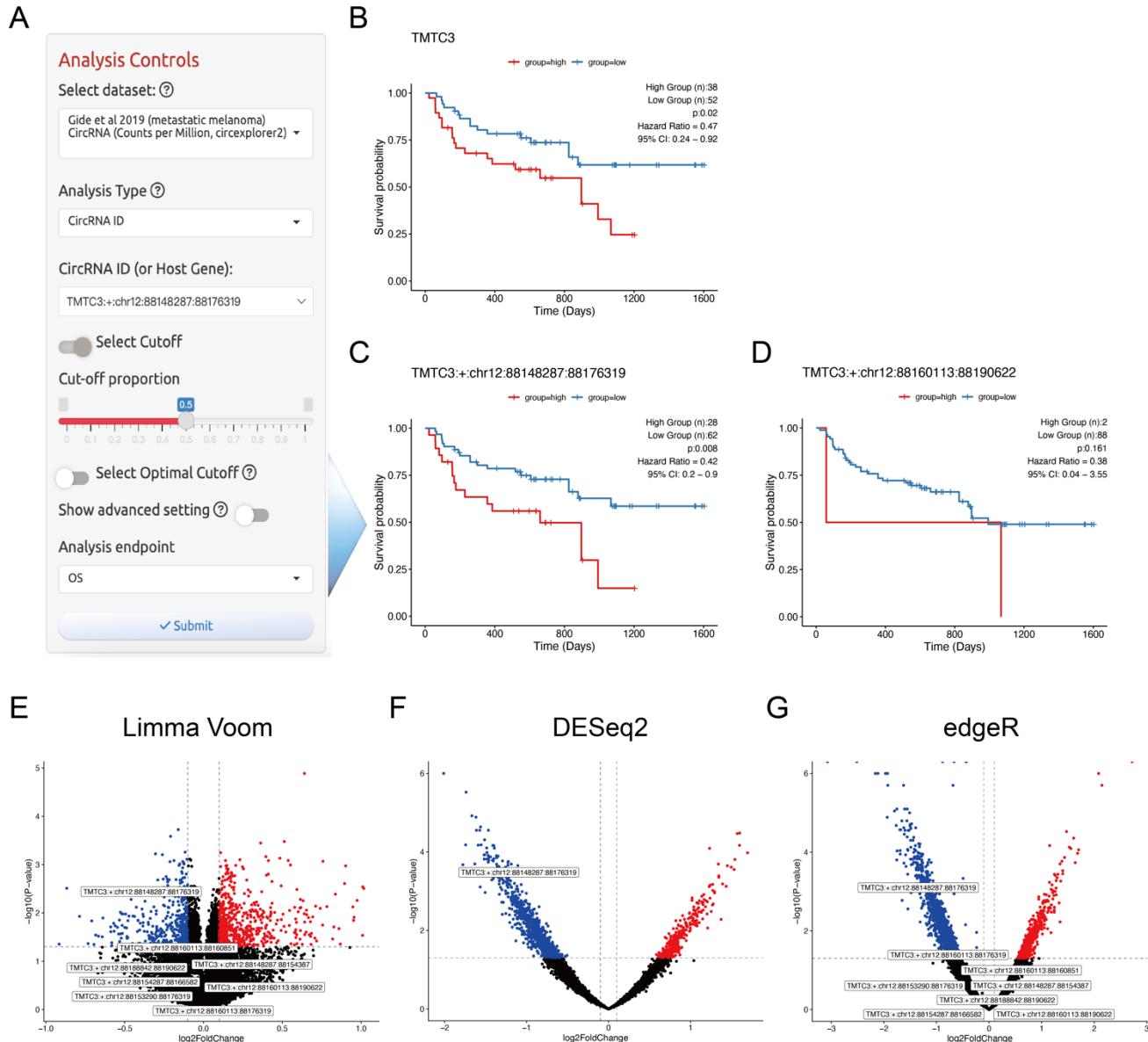
309 In a study conducted by Dong et al. [13], it was observed that melanoma patients from
 310 the study (cohort ID: PRJEB23709) by Gide et al. [54], who exhibited high expression of
 311 circTMC3, experienced poorer survival outcomes and demonstrated reduced treatment
 312 responsiveness compared to those with low circTMC3 expression. To illustrate the
 313 functionality of the TCCIA, here, we performed a re-analysis on the same cohort. [Figure 5A](#)

314 provides an overview of the analysis panel used to assess the association between a circRNA
315 and patient survival. Additionally, [Figure 5B](#) clearly demonstrates that high levels of
316 circTMTC3 are predictive of poor overall survival ($HR_{low \ vs \ high}=0.47$, 95% CI: 0.24-0.92,
317 $P=0.02$). Upon closer examination of the different isoforms of circRNAs derived from TMTC3,
318 it was found that only TMTC3:+:chr12:88148287:88176319 was abundant in this patient
319 cohort and played a significant role in predicting unfavorable survival outcomes ([Figure 5C](#),
320 $HR_{low \ vs \ high}=0.42$, 95% CI: 0.2-0.9, $P=0.008$). The remaining isoforms, such as
321 TMTC3:+:chr12:88160113:88190622, did not exhibit the same predictive ability ([Figure 5D](#)).
322 Furthermore, employing three different approaches to assess differential expression of
323 circRNAs between checkpoint immunotherapy responders and non-responders, it was
324 consistently discovered that TMTC3:+:chr12:88148287:88176319 was the sole isoform of
325 circTMTC3 that displayed significant upregulation in non-responding patients ([Figure 5E-G](#)).
326

327 **Discussion**

328 Circular RNAs, emerging as pivotal gene expression regulators, exert diverse functions
329 across biological processes, with substantial clinical research potential [64]. However, the
330 existing landscape of circRNA-related tumor-immune checkpoint research falls short of
331 satisfying the burgeoning need for insights. This limitation is compounded by constraints
332 stemming from sample quantity and diversity, which subsequently curtail the generalizability
333 of research findings due to geographical, racial, and tumor-specific factors. Consequently,
334 given this evolving landscape, the urgency and significance of developing a CircRNA tool for
335 preliminary data mining have become increasingly pronounced. TCCIA (the Cancer CircRNA
336 Immunome Atlas) an integrated online platform, building upon datasets from four genome
337 sequence archive repositories, encompassing around 3,700 cancer samples, spanning five
338 cancer types and 18 checkpoint-blockade immunotherapy cohorts, incorporating over
339 280,000 circRNA expression profiles, 255 established cancer signatures, and TME
340 decomposition results from eight immune infiltration algorithms. TCCIA emphasizes user-
341 friendly visual presentations, eliminating the need for intricate programming skills. Moreover,
342 the platform offers a range of customizable visualization options, ensuring adaptability to user
343 needs. Notably, TCCIA is readily accessible without mandatory registration or login,

344 potentially rendering it an economical and efficient solution for both researchers and clinical
 345 practitioners.



346
 347 **Figure 5. circTMTC3 predicts poor survival and non-response to checkpoint immunotherapy in the melanoma**
 348 **cohort of Gide et al. (A)** Analysis panel for analyzing and visualizing associations between circRNAs and patient survival.
 349 Here, we present the data and analysis settings used to generate the plot shown in (C). **(B)** CircTMTC3 predicts poor survival.
 350 **(C)** A circRNA isoform of circTMTC3, TMTC3:+:chr12:88148287:88176319, predicts poor survival. **(D)** A circRNA isoform
 351 of circTMTC3, TMTC3:+:chr12:88160113:88190622, predicts poor survival. **(E-G)** Volcano plots showing differential
 352 expressed circRNAs between checkpoint immunotherapy response and nonresponse patients using the approaches: **(E)**
 353 Limma Voom, **(F)** DESeq2, and **(G)** edgeR.

354
 355 In this manuscript, we delineate the data sources, collection and standardization
 356 processes, TCCIA's functionalities, website analysis modules, and provide a step-by-step
 357 guide to its operation. To further illustrate TCCIA, we present a concrete example of the

358 circTMTc3 as a molecular marker for melanoma and confirm its specific isoform,
359 TMTc3:+:chr12:88148287:88176319, in playing a major role in prognosticating unfavorable
360 survival outcomes and non-response to treatment.

361 While TCCIA has various advantages and uniqueness, there are still some limitations. In
362 terms of data, although TCCIA includes data from five different types of cancer, the sample
363 size for head and neck cancer remains sparse. Recently, the application of immunotherapy
364 has been expanding to more cancer types, such as digestive system tumors. However, it is
365 important to note that our TCCIA does not currently cover these types of tumors. The main
366 reason for this is that current clinical genomics research of such cancer types primarily
367 focuses on the DNA level, specifically on whole exome sequencing and targeted sequencing
368 [65]. As a result, there are few RNA-seq datasets to infer the presence of circRNAs. Another
369 reason is that some raw RNA-seq datasets are difficult to access due to restricted availability,
370 e.g., Carroll et al. study [66]. In terms of circRNA abundance, there are significant differences
371 between different cohorts, batch effects may exist in different cohorts, and there is also strong
372 heterogeneity within the same tumor type, so users need to be cautious when performing
373 cross-dataset analysis and comparison. In terms of functionality, some databases provide the
374 characteristics of studying circRNA-miRNA-gene regulatory networks (such as CSCD2 [34],
375 circMine [38], and CircNet2 [35]), which have not been considered in TCCIA with two reasons:
376 First, further experimental validation is generally required to confirm the authenticity of
377 detected circRNAs. In the recent large-scale circRNA detection benchmark study [67],
378 Vromman et al. recommended using qPCR+ Ribonuclease R or qPCR+amplicon sequencing
379 for circRNA validation. Therefore, it is recommended to incorporate these experimental
380 validation methods to ensure the accuracy of circRNA detection. Second, the focus of our
381 study is on integrating circRNA profiles and clinical outcomes in cancer patients treated with
382 immunotherapy. However, instead of duplicating efforts, users can leverage already well-
383 established and high-quality circRNA databases to complete other circRNA annotation and
384 analysis explorations. By linking to these databases (a widget is provided in the footer of the
385 TCCIA website), users can access comprehensive circRNA information and utilize existing
386 tools for further analysis, optimizing the accuracy and efficiency of circRNA annotation and
387 deep investigation.

388 Looking ahead, we aim to continually update TCCIA by incorporating more circRNA data
389 from diverse immunotherapy cohorts and introducing new functionalities based on user
390 feedback. In summary, the distinctive features, analytical capabilities, and potential for growth
391 position it as a pivotal tool in advancing our understanding of circRNAs in tumor immunity
392 and in shaping development of personalized immunotherapy strategies guided by circRNA.

393

394 **Methods**

395 **Data collection**

396 To conduct a systematic search, we utilized PubMed (<https://www.ncbi.nlm.nih.gov/pubmed/>)
397 to search for articles related to Bulk RNAseq data from solid cancer patients treated with
398 immune checkpoint blockers (ICB). The search expression used was "(ICB [Title/Abstract]
399 OR PD-1[Title/Abstract] OR PD-L1[Title/Abstract] OR CTLA-4[Title/Abstract]) AND
400 (rnaseq[Title/Abstract] OR rna-seq[Title/Abstract] OR rna-sequencing[Title/Abstract] OR rna
401 seq[Title/Abstract] OR rna sequencing[Title/Abstract])". No filters were applied, and there
402 were no restrictions on language or geographic region. Peer-reviewed publications, preprints,
403 and press releases were considered for inclusion. To obtain raw RNA sequencing data, we
404 submitted requests to the Database of Genotypes and Phenotypes (dbGaP)
405 (<https://dbgap.ncbi.nlm.nih.gov/>), the European Genome-phenome Archive (EGA)
406 (<https://ega-archive.org/>), and the Genome Sequence Archive (GSA)
407 (<https://ngdc.cncb.ac.cn/gsa/>) of the National Genomics Data Center (NGDC) after receiving
408 approval from the Data Access Committee (DAC). However, it is important to note that not all
409 raw RNAseq datasets were accessible and available for use. In total, we collected 16 studies
410 [48–63] related to checkpoint immunotherapy that provided raw RNAseq datasets. We
411 gathered relevant clinical data from publications and clinical meta documents associated with
412 these RNAseq datasets. Additionally, we extracted information on the cohorts' fundamental
413 characteristics, such as sample size, treatment methods, and specific drugs used, based on
414 the abstracts. It should be noted that, for Patil et al. study, two clinical cohorts were included;
415 and for the study identified as PHS000452, the two patient subgroups had distinct drug
416 treatments and clinical annotations. Hence, we treated them as two separate cohorts during
417 the analysis. For the TCCIA project, CircRNA profiles, immunotherapy response, and clinical

418 benefits were analyzed for five cancer types. This analysis included over 3,700 clinical
419 samples from 18 cohorts treated with immune-checkpoint blockades (ICBs) such as PD-
420 1/PD-L1 and CTLA-4 inhibitors, as well as other treatments. The analysis considered both
421 pre-treatment and on-treatment responses.

422

423 **CircRNA identification and differential expression analysis**

424 We aligned the raw RNA sequencing data to the human genome hg38 using STAR [68]. Next,
425 we utilized CIRCexplorer2 [69] to identify, parse, and annotate circRNA junctions within each
426 sample. These identified junctions were then analyzed for differential expression using
427 Limma Voom [70], edgeR [71], and DESeq2 [72], enabling a comparison between patients
428 who responded to checkpoint immunotherapy and those who did not.

429

430 **TME decomposition and cancer gene signature estimation**

431 We employed IOBR [73] for TME decomposition and the scoring of cancer gene signatures.
432 IOBR seamlessly integrates eight widely-used open-source deconvolution methods,
433 including CIBERSORT [74], ESTIMATE [75], quanTlseq [76], TIMER [77], IPS [37],
434 MCPCounter [78], xCell [79], and EPIC [80]. Furthermore, IOBR incorporates a
435 comprehensive compilation of 255 established cancer signatures. These diverse signatures
436 are organized into three distinct categories: TME-associated, tumor-metabolism, and tumor-
437 intrinsic signatures.

438

439 **TCCIA implementation**

440 The TCCIA database is developed as a Web application leveraging R Shiny
441 (<https://shiny.posit.co/>) and built using the golem framework (<https://github.com/ThinkR-open/golem>) to achieve optimization. TCCIA, is developed solely for research purposes and
443 does not utilize any cookies or collect any personal identifiable information. TCCIA is free
444 available in <https://tccia.zmu-zhoulab.com/> and <https://shiny.hiplot.cn/TCCIA>.

445

446 **Statistical analysis**

447 We performed Kaplan-Meier survival analysis to generate and compare survival curves. The

448 log-rank test was used for comparison. We also conducted multivariate survival analysis
449 using the Cox regression model. All reported *P*-values are two-tailed, and a significance level
450 of $p \leq 0.05$ was used unless otherwise specified. All statistical analyses and visualization were
451 conducted using R v4.2.0.

452

453 **Patient consent for publication**

454 Not applicable.

455

456 **Data availability**

457 All relevant data reported in the study can be found in the article or on the TCCIA website.
458 Please note that access to the raw RNA-seq datasets is not provided. For any other data
459 requests, please contact the leader of this project, Jian-Guo Zhou.

460

461 **Funding**

462 This work was supported by the National Natural Science Foundation of China (Grant No.
463 81660512, 81472594, 81770781, 82270825), Chunhui program of the Chinese Ministry of
464 Education (Grant No. HZKY20220231), the Natural Science Foundation of Guizhou Province
465 (Grant No. ZK2021-YB435), Guangdong Basic and Applied Basic Research Foundation
466 (Grant No. 2021A1515011743), Youth Talent Project of Guizhou Provincial Department of
467 Education (Grant No. QJJ2022-224), China Postdoctoral Science Foundation (Grant No.
468 2021M703733), China Lung Cancer Immunotherapy Research Project, and Special funds for
469 innovation in Hunan Province (Grant No. 2020SK2062).

470

471 **Contributions**

472 SW: Conceptualization, software, methodology, formal analysis, writing original draft, review
473 and editing. YX: Software, methodology, formal analysis, visualization, writing original draft.
474 YZ: Software, formal analysis, visualization, writing original draft. HW: Conceptualization,
475 writing original draft, review and editing. JL and USG: Resources, review and editing. MC:
476 Visualization, review and editing. PL, YHL, MH and BF: Review and editing. XL, QZ and HM:
477 Supervision, resources, funding acquisition. JGZ: Conceptualization, methodology,

478 resources, supervision, funding acquisition, project administration, writing original draft,
479 writing–review and editing.

480

481 **Conflict of interest**

482 None were declared.

483

484 **Acknowledgments**

485 We thank Dr. Jianming Zeng (University of Macau), and all the members of his bioinformatics
486 team, biotrainee, for generously sharing their experience and codes. We thank Juan Zhang
487 (Echo Biotech Co., Ltd., Beijing, China) for her help in the data pre-processing.

488

489

490 **References**

491 1 Sharma P, Allison JP. Immune Checkpoint Targeting in Cancer Therapy: Toward Combination
492 Strategies with Curative Potential. *Cell* 2015;**161**:205–14. doi:10.1016/j.cell.2015.03.030

493 2 Maude SL, Laetsch TW, Buechner J, *et al.* Tisagenlecleucel in Children and Young Adults with
494 B-Cell Lymphoblastic Leukemia. *N Engl J Med* 2018;**378**:439–48.
495 doi:10.1056/NEJMoa1709866

496 3 Guo C, Manjili MH, Subjeck JR, *et al.* Chapter Seven - Therapeutic Cancer Vaccines: Past,
497 Present, and Future. In: Tew KD, Fisher PB, eds. *Advances in Cancer Research*. Academic
498 Press 2013. 421–75. doi:10.1016/B978-0-12-407190-2.00007-1

499 4 Topalian SL, Hodi FS, Brahmer JR, *et al.* Safety, Activity, and Immune Correlates of Anti-PD-
500 1 Antibody in Cancer. *N Engl J Med* 2012;**366**:2443–54. doi:10.1056/NEJMoa1200690

501 5 Neelapu SS, Locke FL, Bartlett NL, *et al.* Axicabtagene Ciloleucel CAR T-Cell Therapy in
502 Refractory Large B-Cell Lymphoma. *N Engl J Med* 2017;**377**:2531–44.
503 doi:10.1056/NEJMoa1707447

504 6 Sharma P, Hu-Lieskovian S, Wargo JA, *et al.* Primary, Adaptive, and Acquired Resistance to
505 Cancer Immunotherapy. *Cell* 2017;**168**:707–23. doi:10.1016/j.cell.2017.01.017

506 7 Vinay DS, Ryan EP, Pawelec G, *et al.* Immune evasion in cancer: Mechanistic basis and
507 therapeutic strategies. *Semin Cancer Biol* 2015;**35**:S185–98.
508 doi:10.1016/j.semcan.2015.03.004

509 8 Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based
510 immunotherapy. *Lancet Oncol* 2016;**17**:e542–51. doi:10.1016/S1470-2045(16)30406-5

511 9 Salzman J. Circular RNA Expression: Its Potential Regulation and Function. *Trends Genet*
512 2016;**32**:309–16. doi:10.1016/j.tig.2016.03.002

513 10 Liu C-X, Chen L-L. Circular RNAs: Characterization, cellular roles, and applications. *Cell*
514 2022;**185**:2016–34. doi:10.1016/j.cell.2022.04.021

515 11 Kristensen LS, Hansen TB, Venø MT, *et al.* Circular RNAs in cancer: opportunities and
516 challenges in the field. *Oncogene* 2018;**37**:555–65. doi:10.1038/onc.2017.361

517 12 Zhou J-G, Liang R, Wang H-T, *et al.* Identification and characterization of circular RNAs as
518 novel putative biomarkers to predict anti-PD-1 monotherapy response in metastatic melanoma
519 patients – Knowledge from two independent international studies. *Neoplasia* 2023;**37**:100877.
520 doi:10.1016/j.neo.2023.100877

521 13 Dong Y, Gao Q, Chen Y, *et al.* Identification of CircRNA signature associated with tumor
522 immune infiltration to predict therapeutic efficacy of immunotherapy. *Nat Commun*
523 2023;**14**:2540. doi:10.1038/s41467-023-38232-y

524 14 Pandey PR, Young KH, Kumar D, *et al.* RNA-mediated immunotherapy regulating tumor
525 immune microenvironment: next wave of cancer therapeutics. *Mol Cancer* 2022;**21**:58.
526 doi:10.1186/s12943-022-01528-6

527 15 Guan L, Hao Q, Shi F, *et al.* Regulation of the tumor immune microenvironment by cancer-
528 derived circular RNAs. *Cell Death Dis* 2023;**14**:1–12. doi:10.1038/s41419-023-05647-w

529 16 Tanaka E, Miyakawa Y, Kishikawa T, *et al.* Expression of circular RNA CDR1-AS in colon
530 cancer cells increases cell surface PD-L1 protein levels. *Oncol Rep* 2019;**42**:1459–66.
531 doi:10.3892/or.2019.7244

532 17 Zhang P-F, Gao C, Huang X-Y, *et al.* Cancer cell-derived exosomal circUHRF1 induces natural
533 killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma.

534 18 *Mol Cancer* 2020;19:110. doi:10.1186/s12943-020-01222-5

535 18 Hong W, Xue M, Jiang J, *et al.* Circular RNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates
536 cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer
537 (NSCLC). *J Exp Clin Cancer Res* 2020;39:149. doi:10.1186/s13046-020-01648-1

538 19 Luo Y-H, Yang Y-P, Chien C-S, *et al.* Circular RNA hsa_circ_0000190 Facilitates the
539 Tumorigenesis and Immune Evasion by Upregulating the Expression of Soluble PD-L1 in Non-
540 Small-Cell Lung Cancer. *Int J Mol Sci* 2021;23:64. doi:10.3390/ijms23010064

541 20 Wei C-Y, Zhu M-X, Lu N-H, *et al.* Circular RNA circ_0020710 drives tumor progression and
542 immune evasion by regulating the miR-370-3p/CXCL12 axis in melanoma. *Mol Cancer*
543 2020;19:84. doi:10.1186/s12943-020-01191-9

544 21 Zhao R, Ni J, Lu S, *et al.* CircUBAP2-mediated competing endogenous RNA network
545 modulates tumorigenesis in pancreatic adenocarcinoma. *Aging* 2019;11:8484–501.
546 doi:10.18632/aging.102334

547 22 Ou Z-L, Luo Z, Wei W, *et al.* Hypoxia-induced shedding of MICA and HIF1A-mediated
548 immune escape of pancreatic cancer cells from NK cells: role of circ_0000977/miR-153 axis. *RNA Biol*
549 2019;16:1592–603. doi:10.1080/15476286.2019.1649585

550 23 Wang X, Sheng W, Xu T, *et al.* CircRNA hsa_circ_0110102 inhibited macrophage activation
551 and hepatocellular carcinoma progression via miR-580-5p/PPAR α /CCL2 pathway. *Aging*
552 2021;13:11969–87. doi:10.18632/aging.202900

553 24 Li Z, Huang C, Bao C, *et al.* Exon-intron circular RNAs regulate transcription in the nucleus. *Nat Struct Mol Biol* 2015;22:256–64. doi:10.1038/nsmb.2959

555 25 Liu C, Yao M-D, Li C-P, *et al.* Silencing Of Circular RNA-ZNF609 Ameliorates Vascular
556 Endothelial Dysfunction. *Theranostics* 2017;7:2863–77. doi:10.7150/thno.19353

557 26 Di Timoteo G, Dattilo D, Centrón-Broco A, *et al.* Modulation of circRNA Metabolism by m6A
558 Modification. *Cell Rep* 2020;31:107641. doi:10.1016/j.celrep.2020.107641

559 27 Jiao B, Liu S, Zhao H, *et al.* Hypoxia-responsive circRNAs: A novel but important participant
560 in non-coding RNAs ushered toward tumor hypoxia. *Cell Death Dis* 2022;13:666.
561 doi:10.1038/s41419-022-05114-y

562 28 Pan Z, Zhao R, Li B, *et al.* EWSR1-induced circNEIL3 promotes glioma progression and
563 exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. *Mol
564 Cancer* 2022;21:16. doi:10.1186/s12943-021-01485-6

565 29 Yang C, Wu S, Mou Z, *et al.* Exosome-derived circTRPS1 promotes malignant phenotype and
566 CD8+ T cell exhaustion in bladder cancer microenvironments. *Mol Ther J Am Soc Gene Ther*
567 2022;30:1054–70. doi:10.1016/j.ymthe.2022.01.022

568 30 Zheng Y, Ren S, Zhang Y, *et al.* Circular RNA circWWC3 augments breast cancer progression
569 through promoting M2 macrophage polarization and tumor immune escape via regulating the
570 expression and secretion of IL-4. *Cancer Cell Int* 2022;22:264. doi:10.1186/s12935-022-02686-
571 9

572 31 Pamudurti NR, Bartok O, Jens M, *et al.* Translation of CircRNAs. *Mol Cell* 2017;66:9–21.e7.
573 doi:10.1016/j.molcel.2017.02.021

574 32 Fang Z, Jiang C, Li S. The Potential Regulatory Roles of Circular RNAs in Tumor Immunology
575 and Immunotherapy. *Front Immunol*
576 2021;11.https://www.frontiersin.org/articles/10.3389/fimmu.2020.617583 (accessed 11 Aug
577 2023).

578 33 Li H, Xie M, Wang Y, *et al.* riboCIRC: a comprehensive database of translatable circRNAs.
579 *Genome Biol* 2021;22:79. doi:10.1186/s13059-021-02300-7

580 34 Feng J, Chen W, Dong X, *et al.* CSCD2: an integrated interactional database of cancer-specific
581 circular RNAs. *Nucleic Acids Res* 2022;50:D1179–83. doi:10.1093/nar/gkab830

582 35 Chen Y, Yao L, Tang Y, *et al.* CircNet 2.0: an updated database for exploring circular RNA
583 regulatory networks in cancers. *Nucleic Acids Res* 2022;50:D93–101.
584 doi:10.1093/nar/gkab1036

585 36 Yang M, Miao Y-R, Xie G-Y, *et al.* ICBatlas: A comprehensive resource for depicting immune
586 checkpoint blockade therapy characteristics from transcriptome profiles. *Cancer Immunol Res*
587 2022;:CIR-22-0249. doi:10.1158/2326-6066.CIR-22-0249

588 37 Charoentong P, Finotello F, Angelova M, *et al.* Pan-cancer Immunogenomic Analyses Reveal
589 Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint
590 Blockade. *Cell Rep* 2017;18:248–62. doi:10.1016/j.celrep.2016.12.019

591 38 Zhang W, Liu Y, Min Z, *et al.* circMine: a comprehensive database to integrate, analyze and
592 visualize human disease-related circRNA transcriptome. *Nucleic Acids Res* 2022;50:D83–92.
593 doi:10.1093/nar/gkab809

594 39 Fan C, Lei X, Tie J, *et al.* CircR2Disease v2.0: An Updated Web Server for Experimentally
595 Validated circRNA–disease Associations and Its Application. *Genomics Proteomics
596 Bioinformatics* 2022;20:435–45. doi:10.1016/j.gpb.2021.10.002

597 40 Wu W, Ji P, Zhao F. CircAtlas: an integrated resource of one million highly accurate circular
598 RNAs from 1070 vertebrate transcriptomes. *Genome Biol* 2020;21:101. doi:10.1186/s13059-
599 020-02018-y

600 41 Dudekula DB, Panda AC, Grammatikakis I, *et al.* CircInteractome: A web tool for exploring
601 circular RNAs and their interacting proteins and microRNAs. *RNA Biol* 2016;13:34–42.
602 doi:10.1080/15476286.2015.1128065

603 42 Huang W, Ling Y, Zhang S, *et al.* TransCirc: an interactive database for translatable circular
604 RNAs based on multi-omics evidence. *Nucleic Acids Res* 2021;49:D236–42.
605 doi:10.1093/nar/gkaa823

606 43 Ruan H, Xiang Y, Ko J, *et al.* Comprehensive characterization of circular RNAs in ~ 1000
607 human cancer cell lines. *Genome Med* 2019;11:55. doi:10.1186/s13073-019-0663-5

608 44 Dong R, Ma X-K, Li G-W, *et al.* CIRCpedia v2: An Updated Database for Comprehensive
609 Circular RNA Annotation and Expression Comparison. *Genomics Proteomics Bioinformatics*
610 2018;16:226–33. doi:10.1016/j.gpb.2018.08.001

611 45 Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. *RNA*
612 2014;20:1666–70. doi:10.1261/rna.043687.113

613 46 Zeng Z, Wong CJ, Yang L, *et al.* TISMO: syngeneic mouse tumor database to model tumor
614 immunity and immunotherapy response. *Nucleic Acids Res* 2022;50:D1391–7.
615 doi:10.1093/nar/gkab804

616 47 Miao Y, Zhang Q, Lei Q, *et al.* ImmuCellAI: A Unique Method for Comprehensive T-Cell
617 Subsets Abundance Prediction and its Application in Cancer Immunotherapy. *Adv Sci*
618 2020;7:1902880. doi:10.1002/advs.201902880

619 48 Patil NS, Nabet BY, Müller S, *et al.* Intratumoral plasma cells predict outcomes to PD-L1
620 blockade in non-small cell lung cancer. *Cancer Cell* 2022;40:289–300.e4.
621 doi:10.1016/j.ccr.2022.02.002

622 49 Bellmunt J, Hussain M, Gschwend JE, *et al.* Adjuvant atezolizumab versus observation in
623 muscle-invasive urothelial carcinoma (IMvigor010): a multicentre, open-label, randomised,
624 phase 3 trial. *Lancet Oncol* 2021;22:525–37. doi:10.1016/S1470-2045(21)00004-8

625 50 Cui C, Xu C, Yang W, *et al.* Ratio of the interferon- γ signature to the immunosuppression
626 signature predicts anti-PD-1 therapy response in melanoma. *Npj Genomic Med* 2021;6:7.
627 doi:10.1038/s41525-021-00169-w

628 51 Liu S, Knochelmann HM, Lomeli SH, *et al.* Response and recurrence correlates in individuals
629 treated with neoadjuvant anti-PD-1 therapy for resectable oral cavity squamous cell carcinoma.
630 *Cell Rep Med* 2021;2:100411. doi:10.1016/j.xcrm.2021.100411

631 52 Grasso CS, Tsoi J, Onyshchenko M, *et al.* Conserved Interferon- γ Signaling Drives Clinical
632 Response to Immune Checkpoint Blockade Therapy in Melanoma. *Cancer Cell* 2020;38:500-
633 515.e3. doi:10.1016/j.ccr.2020.08.005

634 53 Motzer RJ, Banchereau R, Hamidi H, *et al.* Molecular Subsets in Renal Cancer Determine
635 Outcome to Checkpoint and Angiogenesis Blockade. *Cancer Cell* 2020;38:803-817.e4.
636 doi:10.1016/j.ccr.2020.10.011

637 54 Gide TN, Quek C, Menzies AM, *et al.* Distinct Immune Cell Populations Define Response to
638 Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. *Cancer Cell*
639 2019;35:238-255.e6. doi:10.1016/j.ccr.2019.01.003

640 55 Mariathasan S, Turley SJ, Nickles D, *et al.* TGF β attenuates tumour response to PD-L1
641 blockade by contributing to exclusion of T cells. *Nature* 2018;554:544–8.
642 doi:10.1038/nature25501

643 56 McDermott DF, Huseni MA, Atkins MB, *et al.* Clinical activity and molecular correlates of
644 response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal
645 cell carcinoma. *Nat Med* 2018;24:749–57. doi:10.1038/s41591-018-0053-3

646 57 Miao D, Margolis CA, Gao W, *et al.* Genomic correlates of response to immune checkpoint
647 therapies in clear cell renal cell carcinoma. *Science* 2018;359:801–6.
648 doi:10.1126/science.aan5951

649 58 Auslander N, Zhang G, Lee JS, *et al.* Robust prediction of response to immune checkpoint
650 blockade therapy in metastatic melanoma. *Nat Med* 2018;24:1545–9. doi:10.1038/s41591-018-
651 0157-9

652 59 Riaz N, Havel JJ, Makarov V, *et al.* Tumor and Microenvironment Evolution during
653 Immunotherapy with Nivolumab. *Cell* 2017;171:934-949.e16. doi:10.1016/j.cell.2017.09.028

654 60 Hugo W, Zaretsky JM, Sun L, *et al.* Genomic and Transcriptomic Features of Response to Anti-
655 PD-1 Therapy in Metastatic Melanoma. *Cell* 2016;165:35–44. doi:10.1016/j.cell.2016.02.065

656 61 Snyder A, Makarov V, Merghoub T, *et al.* Genetic Basis for Clinical Response to CTLA-4
657 Blockade in Melanoma. *N Engl J Med* 2014;371:2189–99. doi:10.1056/NEJMoa1406498

658 62 Tumeh PC, Harview CL, Yearley JH, *et al.* PD-1 blockade induces responses by inhibiting
659 adaptive immune resistance. *Nature* 2014;515:568–71. doi:10.1038/nature13954

660 63 Berger MF, Hodis E, Heffernan TP, *et al.* Melanoma genome sequencing reveals frequent
661 PREX2 mutations. *Nature* 2012;485:502–6. doi:10.1038/nature11071

662 64 Pisignano G, Michael DC, Visal TH, *et al.* Going circular: history, present, and future of
663 circRNAs in cancer. *Oncogene* Published Online First: 16 August 2023. doi:10.1038/s41388-
664 023-02780-w

665 65 Horak P, Fröhling S, Glimm H. Integrating next-generation sequencing into clinical oncology:

666 strategies, promises and pitfalls. *ESMO Open* 2016;1:e000094. doi:10.1136/esmoopen-2016-
667 000094

668 66 Carroll TM, Chadwick JA, Owen RP, *et al.* Tumor monocyte content predicts
669 immunochemotherapy outcomes in esophageal adenocarcinoma. *Cancer Cell* 2023;41:1222-
670 1241.e7. doi:10.1016/j.ccr.2023.06.006

671 67 Vromman M, Anckaert J, Bortoluzzi S, *et al.* Large-scale benchmarking of circRNA detection
672 tools reveals large differences in sensitivity but not in precision. *Nat Methods* 2023;20:1159-69.
673 doi:10.1038/s41592-023-01944-6

674 68 Dobin A, Davis CA, Schlesinger F, *et al.* STAR: ultrafast universal RNA-seq aligner.
675 *Bioinformatics* 2013;29:15-21. doi:10.1093/bioinformatics/bts635

676 69 Zhang X-O, Dong R, Zhang Y, *et al.* Diverse alternative back-splicing and alternative splicing
677 landscape of circular RNAs. *Genome Res* 2016;26:1277-87. doi:10.1101/gr.202895.115

678 70 Law CW, Chen Y, Shi W, *et al.* voom: precision weights unlock linear model analysis tools for
679 RNA-seq read counts. *Genome Biol* 2014;15:R29. doi:10.1186/gb-2014-15-2-r29

680 71 Robinson MD, McCarthy DJ, Smyth GK. edgeR : a Bioconductor package for differential
681 expression analysis of digital gene expression data. *Bioinformatics* 2010;26:139-40.
682 doi:10.1093/bioinformatics/btp616

683 72 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-
684 seq data with DESeq2. *Genome Biol* 2014;15:550. doi:10.1186/s13059-014-0550-8

685 73 Zeng D, Ye Z, Shen R, *et al.* IOBR: Multi-Omics Immuno-Oncology Biological Research to
686 Decode Tumor Microenvironment and Signatures. *Front Immunol*
687 2021;12.https://www.frontiersin.org/articles/10.3389/fimmu.2021.687975 (accessed 20 Aug
688 2023).

689 74 Newman AM, Liu CL, Green MR, *et al.* Robust enumeration of cell subsets from tissue
690 expression profiles. *Nat Methods* 2015;12:453-7. doi:10.1038/nmeth.3337

691 75 Yoshihara K, Shahmoradgoli M, Martínez E, *et al.* Inferring tumour purity and stromal and
692 immune cell admixture from expression data. *Nat Commun* 2013;4:2612.
693 doi:10.1038/ncomms3612

694 76 Finotello F, Mayer C, Plattner C, *et al.* Molecular and pharmacological modulators of the tumor
695 immune contexture revealed by deconvolution of RNA-seq data. *Genome Med* 2019;11:34.
696 doi:10.1186/s13073-019-0638-6

697 77 Li B, Liu JS, Liu XS. Revisit linear regression-based deconvolution methods for tumor gene
698 expression data. *Genome Biol* 2017;18:127. doi:10.1186/s13059-017-1256-5

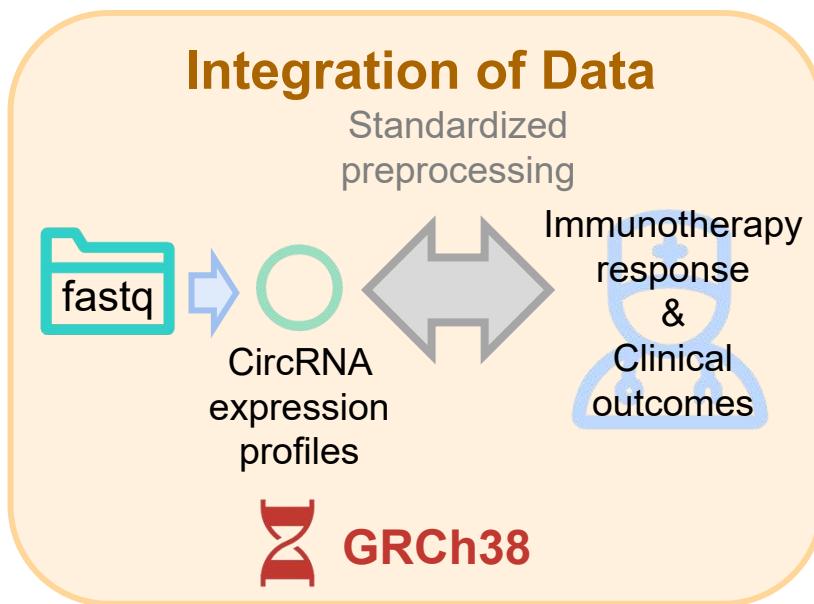
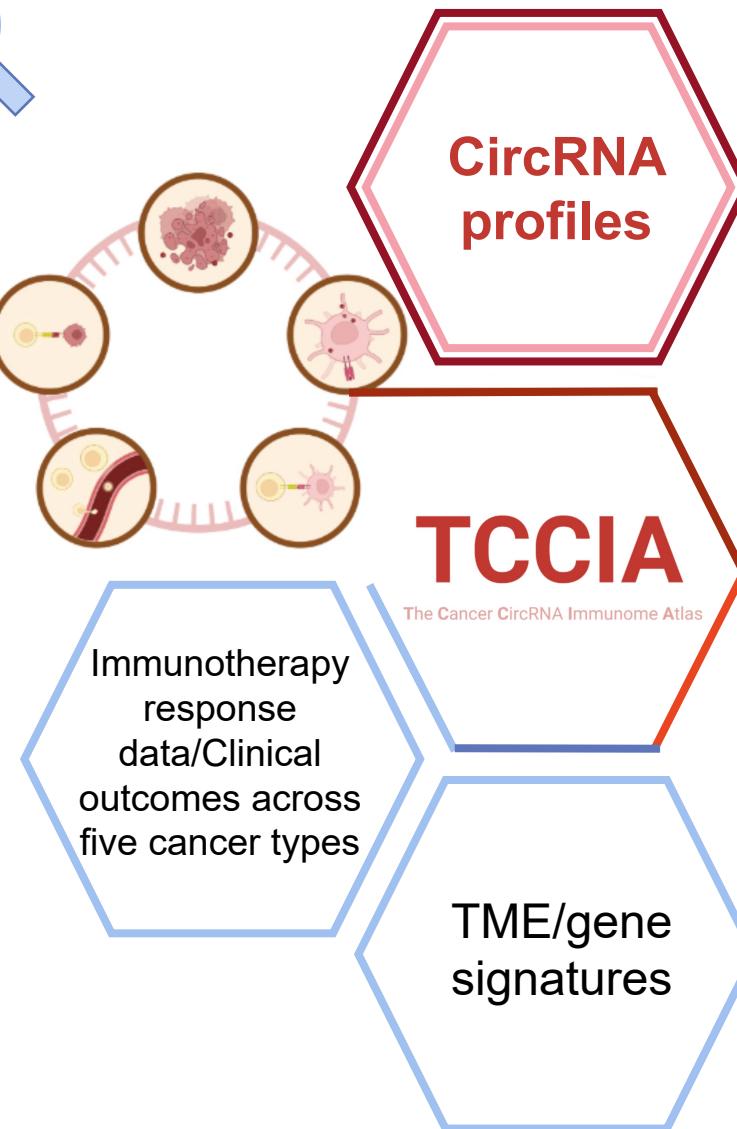
699 78 Becht E, Giraldo NA, Lacroix L, *et al.* Estimating the population abundance of tissue-
700 infiltrating immune and stromal cell populations using gene expression. *Genome Biol*
701 2016;17:218. doi:10.1186/s13059-016-1070-5

702 79 Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape.
703 *Genome Biol* 2017;18:220. doi:10.1186/s13059-017-1349-1

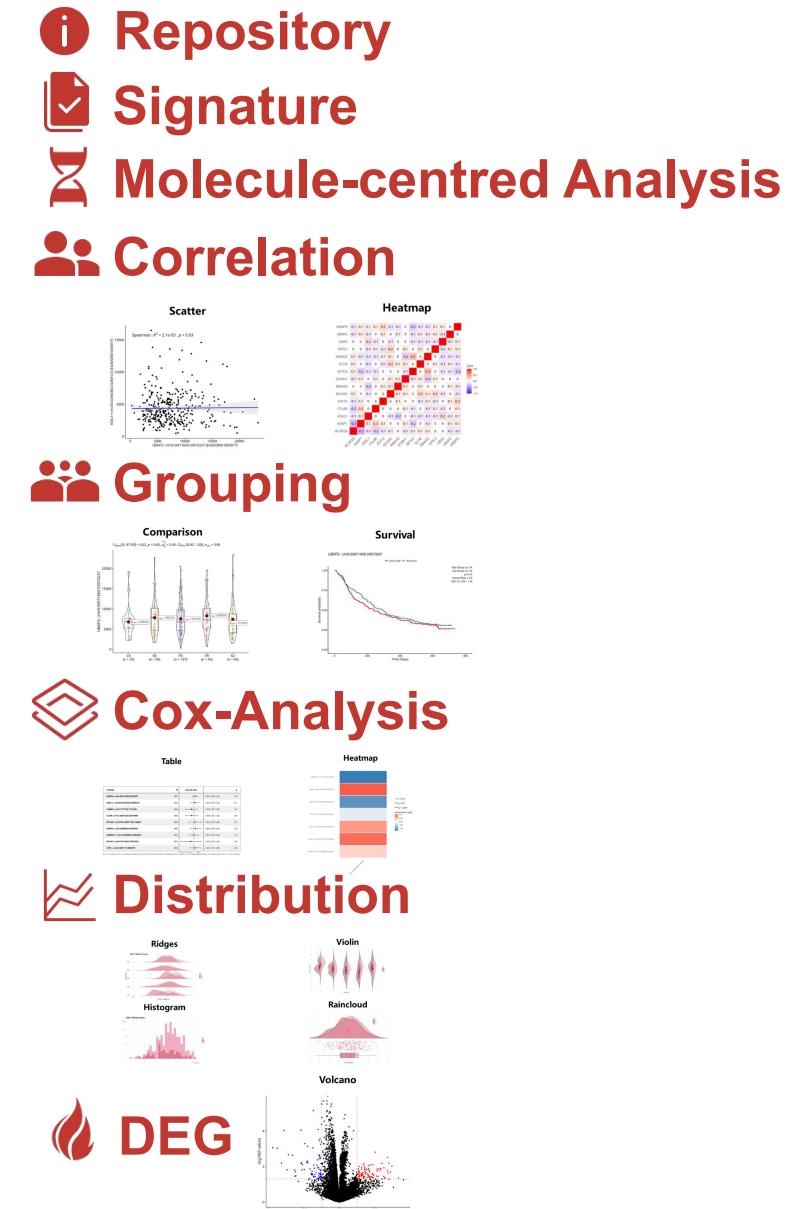
704 80 Racle J, de Jonge K, Baumgaertner P, *et al.* Simultaneous enumeration of cancer and immune
705 cell types from bulk tumor gene expression data. *eLife* 2017;6:e26476. doi:10.7554/eLife.26476

706

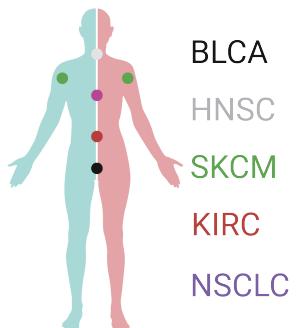
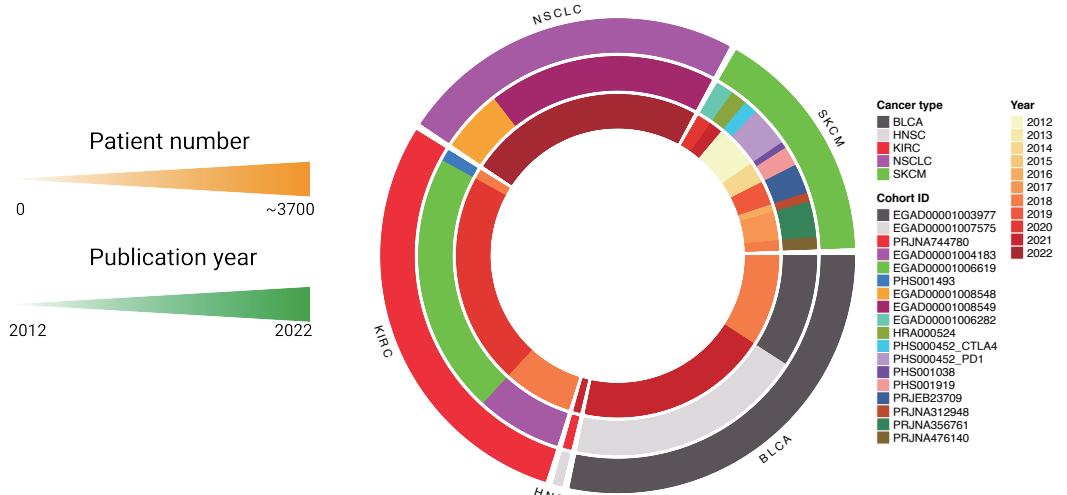
Database Construction



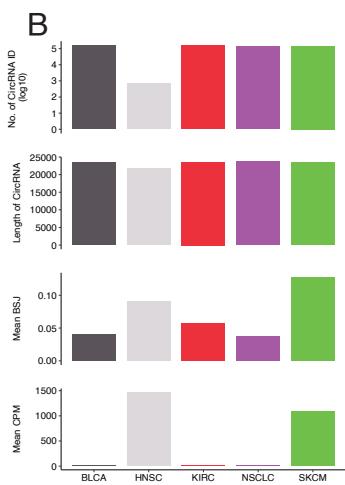
Exploration and Analysis Tools



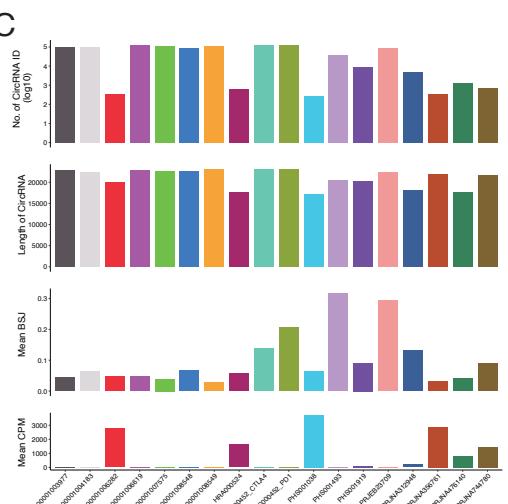
A



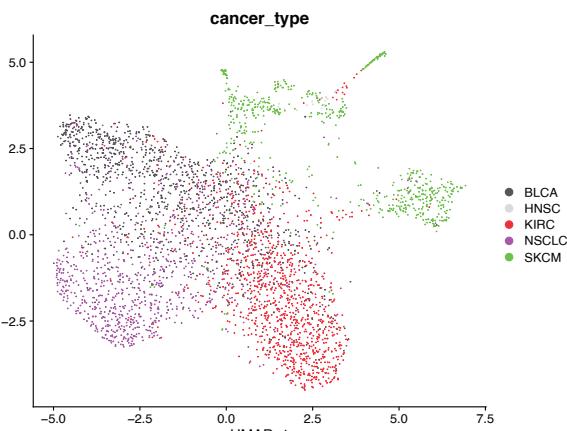
B

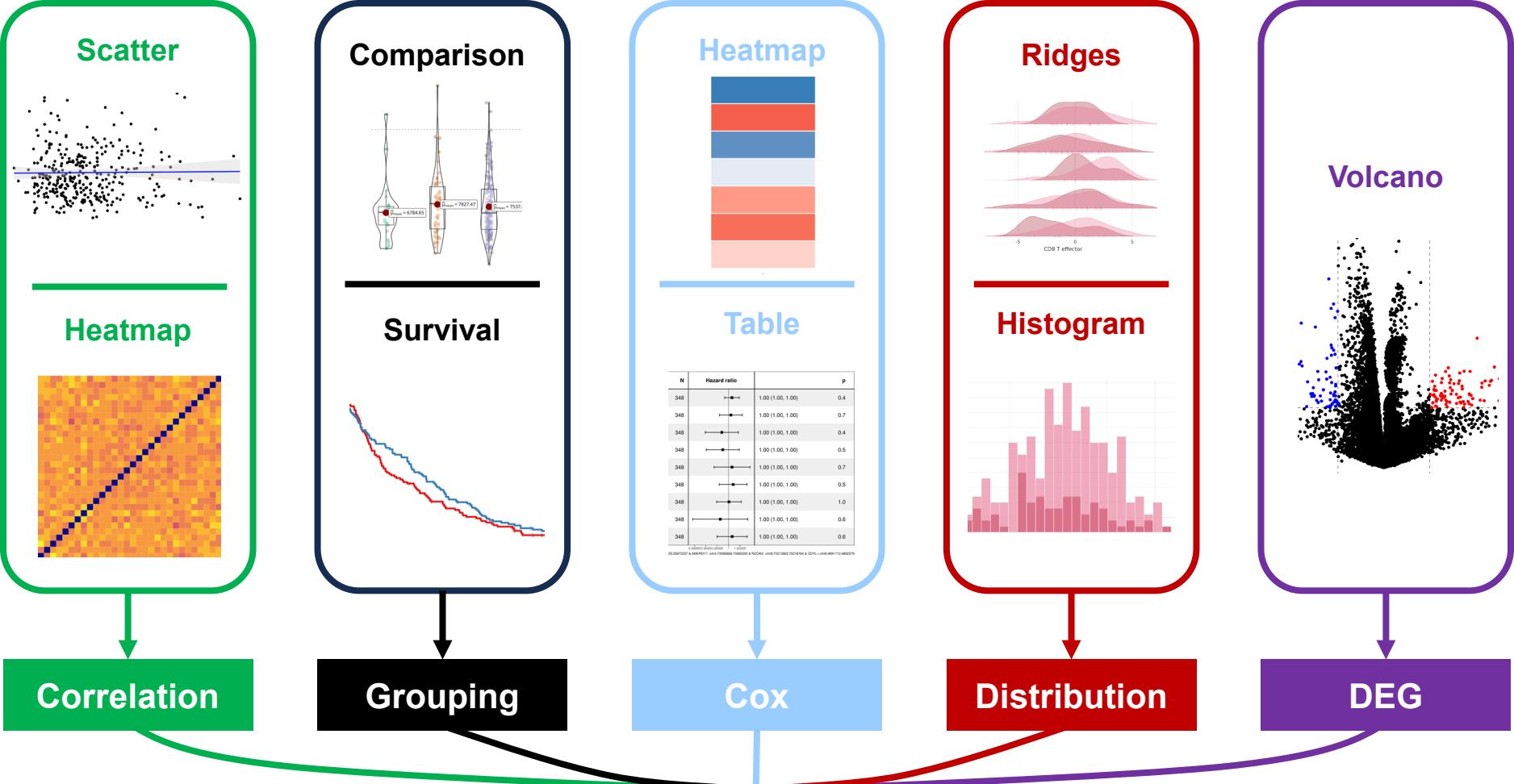


C



D





A

Repository Selection

1

2

3

Filter Cohort → Select Cohort → Click

B

Analysis Controls

1

2

3

4

I. Select datasets
II. Select circRNA ID or Host Gene
III. Adjust parameters for analysis
IV. Click to analyze

C

Filter (Optional)

1. Select available columns on the left to right

2. Filter rows by SearchPanels

3. Specify sample column and hit button

4

Filter patients and redraw

D

Save Plots

1

2

3

I. Change sizes
II. Choose format
III. Click

Notion:

1. Homepage Overview
2. Repository Selection
3. Cohort-centred Analysis
- Scatter-Correlation
- Heatmap-Correlation
- Group-Comparison
- KM-Analysis
- Cox-Analysis
- Cohort Filter
4. Molecular-centred Analysis
- Distribution of circRNA
- Cox analysis for circRNA
5. Signature Analysis
6. DEG Analysis
7. Demo Output

A

Analysis Controls

Select dataset: ②

Gide et al 2019 (metastatic melanoma)
CircRNA (Counts per Million, circexplorer2) ▾

Analysis Type ②

CircRNA ID

CircRNA ID (or Host Gene):

TMTC3+::chr12:88148287:88176319 ▾

Select Cutoff

Cut-off proportion

0.5

Select Optimal Cutoff ②

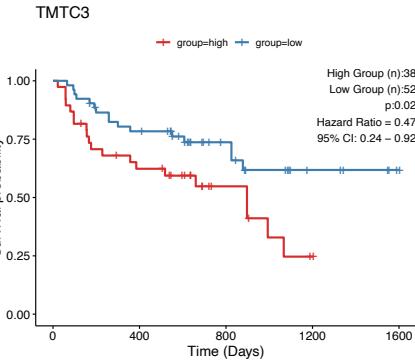
Show advanced setting ②

Analysis endpoint

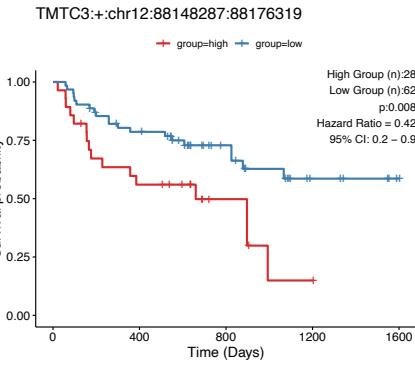
OS

Submit

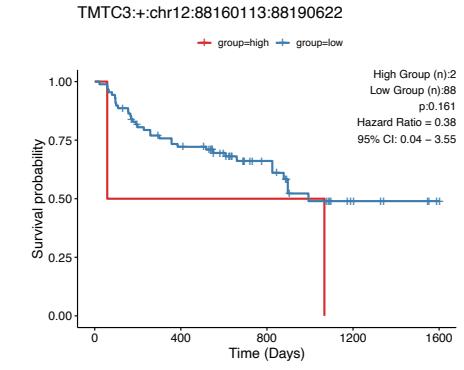
B



C

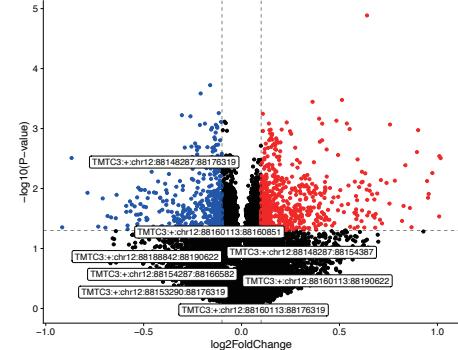


D



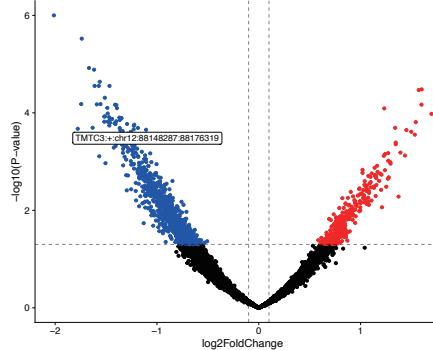
E

Limma Voom



F

DESeq2



G

edgeR

