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Abstract 60 

Background Immunotherapies targeting immune checkpoints have gained increasing 61 

attention in cancer treatment, emphasizing the need for predictive biomarkers. Circular RNAs 62 

(circRNAs) have emerged as critical regulators of tumor immunity, particularly in the PD-63 

1/PD-L1 pathway, and have shown potential in predicting the efficacy of immunotherapies. 64 

However, the precise roles of circRNAs in cancer immunotherapy remain incompletely 65 

understood. While existing databases focus on either circRNA profiles or immunotherapy 66 

cohorts, there is currently no platform that enables the exploration of the intricate interplay 67 

between circRNAs and anti-tumor immunotherapy. Therefore, the development of a 68 

comprehensive resource that integrates circRNA profiles, immunotherapy response data, 69 

and clinical benefits is crucial for advancing our understanding of circRNA-mediated tumor-70 

immune interactions and developing effective immunotherapy biomarkers. 71 

Methods To address these gaps, we constructed the Cancer CircRNA Immunome Atlas 72 

(TCCIA), the first database that combines circRNA profiles, immunotherapy response data, 73 

and clinical outcomes across multi-cancer types. The construction of TCCIA involved 74 

applying standardized preprocessing to the raw sequencing FASTQ files, characterizing 75 

circRNA profiles using CIRCexplorer2, analyzing tumor immunophenotypes through IOBR, 76 

and compiling immunotherapy response data from diverse cohorts treated with immune-77 

checkpoint blockades (ICBs). 78 

Results TCCIA encompasses over 3,700 clinical samples obtained from 18 cohorts treated 79 

with ICBs, including PD-1/PD-L1 and CTLA-4 inhibitors, along with other treatment modalities. 80 

The database provides researchers and clinicians with a cloud-based platform that enables 81 

interactive exploration of circRNA data in the context of ICB. The platform offers a range of 82 

analytical tools, including visualization of circRNA abundance and correlation, association 83 

analysis between circRNAs and clinical variables, assessment of the tumor immune 84 

microenvironment, exploration of tumor molecular signatures, evaluation of treatment 85 

response or prognosis, and identification of altered circRNAs in immunotherapy-sensitive and 86 

resistant tumors. To illustrate the utility of TCCIA, we performed a re-analysis on a melanoma 87 

cohort with TCCIA, and found that an isoform of circTMTC3, 88 

TMTC3:+:chr12:88148287:88176319, played a significant role in predicting unfavorable 89 
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survival outcomes and treatment nonresponse. 90 

Conclusions TCCIA represents a significant advancement over existing resources, providing 91 

a comprehensive platform to investigate the role of circRNAs in immune oncology. 92 

 93 

What is already known on this topic  94 

Prior knowledge indicated that circRNAs are involved in tumor immunity and have potential 95 

as predictive biomarkers for immunotherapy efficacy. However, there lacked a 96 

comprehensive database that integrated circRNA profiles and immunotherapy response data, 97 

necessitating this study. 98 

What this study adds 99 

This study introduces TCCIA, a database that combines circRNA profiles, immunotherapy 100 

response data, and clinical outcomes. It provides a diverse collection of clinical samples and 101 

an interactive platform, enabling in-depth exploration of circRNAs in the context of 102 

checkpoint-blockade immunotherapy. 103 

How this study might affect research, practice or policy 104 

The findings of this study offer valuable insights into the roles of circRNAs in tumor-immune 105 

interactions and provide a resource for researchers and clinicians in the field of immune-106 

oncology. TCCIA has the potential to guide personalized immunotherapeutic strategies and 107 

contribute to future research, clinical practice, and policy decisions in checkpoint-blockade 108 

immunotherapy and biomarker development. 109 

 110 
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 118 
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Introduction 120 

Immunotherapy has revolutionized the treatment of cancer over the past decade, emerging 121 

as a groundbreaking approach that harnesses the patient's own immune system to fight 122 

cancer. Therapies like immune checkpoint inhibitors, chimeric antigen receptor (CAR) T-cell 123 

therapy, and therapeutic vaccines aim to reinvigorate anti-tumor immunity against malignant 124 

cells [1–3]. Checkpoint inhibitors targeting programmed cell death protein-1 (PD-1), PD-1 125 

ligand (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) in particular have 126 

demonstrated remarkable clinical efficacy across diverse cancer types, highlighting 127 

immunotherapy's potential for a durable and curative response [4]. Adoptive cell transfer 128 

using engineered T cells expressing CARs has also shown great promise for blood cancers 129 

[5]. However, significant challenges remain in extending immunotherapies to larger patient 130 

populations and solid tumors. Heterogeneity in response is a major limitation – while some 131 

patients achieve long-term remission, others exhibit intrinsic resistance or relapse after an 132 

initial response [6]. This variable efficacy likely stems from immunosuppressive mechanisms 133 

within the tumor microenvironment (TME) that enable cancer cells to evade immune attack 134 

[7]. Elucidating the complex cellular and molecular interactions underlying immunotherapy 135 

resistance will be critical to unlock the full potential of immune-based cancer treatments. 136 

Reliable predictive biomarkers are also imperative to guide patient selection and combination 137 

immunotherapies tailored to each patient’s TME [8]. 138 

 Circular RNAs (circRNAs) have recently emerged as fascinating non-coding RNA 139 

regulators with unique covalently closed loop structures. Initially considered splicing 140 

byproducts, circRNAs are now recognized as important gene expression modulators with 141 

diverse functions [9,10]. In cancer, circRNAs have been implicated in proliferation, metastasis, 142 

and malignancy hallmarks [11]. Moreover, circRNAs are now recognized as critical regulators 143 

and potential biomarker of tumor immunity and immunotherapy response [7,12,13]. 144 

Accumulating evidence indicates circRNAs modulate TME and immunotherapy outcomes 145 

through various mechanisms in cancers like lung cancer, melanoma, colorectal cancer, and 146 

pancreatic cancer [14,15]. For example, circRNAs such as circFGFR1, circ-CPA4, and 147 

circ_0000284 facilitate immune evasion by modulating PD-L1 via sponging tumor-148 

suppressive microRNAs [16–18]. Additionally, circRNAs including hsa_circ_0000190 [19], 149 
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circ_0020710 [20], CDR1-AS [16], and circ-UBAP2 [21] upregulate immune checkpoint 150 

proteins like PD-L1, CTLA-4 and PD-1, hampering T cell function and promoting immune 151 

evasion. Furthermore, cancer cell-derived circRNAs can reprogram intratumoral immune 152 

cells via exosomal transfer or cytokine signaling, thereby impacting facets like angiogenesis 153 

that affect immunotherapy efficacy [22–24]. CircRNAs influence various aspects of the TME, 154 

including vascularization [25], metabolism [26], hypoxia [27], macrophage polarization [28], 155 

natural killer cell cytotoxicity [17], and T cell exhaustion/apoptosis [29]. These factors can 156 

impede the efficacy of immunotherapy [15,30]. Dysregulation of circRNAs promotes immune 157 

destruction evasion and reduced immunotherapy efficacy. CircRNAs employ diverse 158 

regulatory mechanisms—from sponging miRNAs and proteins to scaffolding proteins and 159 

translating peptides [31]. While many circRNAs originate in tumors, others come from stromal 160 

and immune cells, underscoring complex multicellular regulation [32]. Exploring circRNA 161 

networks will be critical to unraveling this intricate cancer-immunity interplay. With emerging 162 

roles in tumor immunity, prognostic potential, and biomarker utility, circRNAs represent a 163 

promising new frontier in cancer immunotherapy. 164 

 Despite growing interest in circRNAs and their potential relevance in cancer 165 

immunotherapy, a comprehensive understanding of their precise functions and clinical 166 

implications remains incomplete. Existing databases have limitations in either profiling 167 

circRNAs, such as riboCIRC [33], CSCD [34] and CircNet [35] offering circRNA profiles 168 

across tissues or cancers, or curating immunotherapy cohorts, like ICBatlas [36] and TCIA 169 

[37] compiling immune infiltration and immunotherapy data across tumor types. Crucially, no 170 

resources systematically integrate comprehensive circRNA expression with multi-omics 171 

datasets including immune cell fractions, ICB types, and clinical outcomes for systematic 172 

exploration of the circRNA-immunotherapy interplay. 173 

 To address this unmet need, we developed the first-of-its-kind database, The Cancer 174 

CircRNA Immunome Atlas (TCCIA), a comprehensive database that integrates circRNA 175 

profiles, immunotherapy response data, and clinical outcomes for multiple cancer types, with 176 

the objective of providing a valuable resource for systematic exploration of the circRNA-177 

immune axis, advancing our understanding of their functions and to facilitates discovery of 178 

potential biomarkers, therapeutic targets and clinical implications in cancer immunotherapy. 179 
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 180 

Results 181 

Integrating circular RNAs in cancer immunotherapy 182 

The development of the TCCIA database encompassed a comprehensive process involving 183 

data collection, preprocessing, and integration (Figure 1). In terms of data collection, we 184 

carefully curated research articles detailing cohorts treated with immune-checkpoint 185 

blockades (ICBs), utilizing the PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/) for 186 

selection. We acquired raw RNA-seq datasets from several genome sequence archive 187 

repositories, including dbGaP, EGA, EMBL-EBI and GSA. We applied standardized 188 

preprocessing techniques to identify circRNAs, quantify TME/gene signatures, and 189 

incorporate clinical annotations and outcomes. This approach was aimed at improving the 190 

consistency and comparability of data across different datasets. Notably, TCCIA addresses 191 

a crucial gap by providing a unified platform with multiple tools that facilitates the exploration 192 

of circRNAs' impact on immunotherapy outcomes (Figure 1). This sets it apart from many 193 

existing databases [33–47] that predominantly focus on circRNA profiles, circRNA 194 

annotations, or immunotherapy cohorts (Table 1). 195 

 196 
Figure 1. Overview of TCCIA. 197 
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Table 1. Comparison between TCCIA and other similar database resources [33–47]. 198 

 199 

Type Name Publication Last update Support species Sample types (N) Number of samples Data sources Characteristics
M

ix
ed TCCIA Submitted 2023 Homo sapiens cancer (5) > 3700 cancer samples dbGaP, EMBL-EBI, EGA, GSA

The first online interface for exploring circRNA expression
and analysis in 18 immunotherapy cohorts, supporting
systematic comparisons between circRNAs, clinical
phenotypes, and immune signatures/infiltration at both
the cohort and molecular levels, and offering the ability to
explore differential gene expression between responsive
and non-responsive groups for biomarker discovery.

CSCD2 NAR Database Issue (2022) 2022 Homo sapiens cancer (23) 825 tissues + 288 cell lines ENCODE, SRA
Includes a large number of circRNAs, predicts potential
miRNA–circRNA and RBP–circRNA interactions, and the
potential full-length and open reading frame sequence.

circMine NAR Database Issue (2022) 2022 Homo sapiens disease (87） 1107 samples GEO

Provides online analytical functions to comprehensively
evaluate the clinical and biological significance of circRNA
and discover the circRNA–miRNA interaction and circRNA
translatability.

CircR2Disease2 Genomics, Proteomics & Bioinformatics (2021) 2022 5 species disease (313) 2449 studies PubMed

Serves as a platform to systematically investigate the
roles of dysregulated circRNAs in various diseases and
further explore the posttranscriptional regulatory function
in diseases.

CircNet2 NAR Database Issue (2021) 2021 Homo sapiens cancer (37) 2732 cancer samples TCGA, GEO, CircAtlas, MiOncoCirc Cancer tissue-specific circRNA expression profiles and
circRNA-miRNA-gene regulatory network.

riboCIRC Genome Biology (2021) 2021 21 species tissue/cell line (314) 1970 samples GEO Provides computationally predicted ribosome-associated
circRNAs and experimentally verified translated circRNAs.

CircAtlas2 Genome Biology (2020) 2020 7 species tissue (20) 1070 samples SRA, NGDC, GeneBank

Integrating the most comprehensive circRNAs and their
expression and functional profiles in vertebrates, which
provides a foundation for investigating their biological
significance.

CircInteractome RNA Biology (2016) 2020 Homo sapiens tissue/cell line (34) 34 samples circBase
Predicts the interactions between miRNAs and circRNAs
with 109 RBPs, and the database also focus on IRESs
and ORFs.

TransCirc NAR Database Issue (2020) 2020 Homo sapiens tissues (17) 17 tissues CircAtlas Provides comprehensive evidence supporting the
translation potential of circRNAs.

circRic Genome Medicine (2019) 2019 Homo sapiens cancer (22) 935 cancer celllines CCLE

Characterizes circRNA expression profiles; analyzes the
circRNA biogenesis regulators, the effect of circRNAs on
drug response, the association of circRNAs with mRNAs,
proteins, and mutations, etc.

CIRCpedia2 Genomics, Proteomics & Bioinformatics (2018) 2018 6 species tissue (13) 185 samples GEO, ENCODE, EMBL-EBI
Comprehensive circRNA annotation from over 180 RNA-
seq datasets across six different species. Conservation
analysis of circRNAs between humans and mice.

circBase RNA (2014) 2014 6 species tissues/cell line (77) 77 samples GEO, ENCODE, EMBL-EBI
Explores merged and unified circRNA data sets and the
evidence supporting their expression. Provides scripts to
identify known and novel circRNAs in sequencing data.

TISMO NAR Database Issue (2022) 2022 Mouse cancer (19) 1518 mouse samples GEO and In-house data

Interactive interfaces for exploring gene expression and
immune infiltration, and allowing systematic comparisons
between different model characteristics, and treatment
and response groups.

ICBatlas Cancer Immunol Res (2022) 2022 Homo sapiens cancer (9) 1515 cancer samples GEO,ArrayExpress, TCGA, dbGaP
Transcriptome features of ICB therapy through the
analysis of 1,515 ICB-treated samples from 25 studies
across nine cancer types.

ImmuCellAI Advanced Science (2020) 2020 Homo sapiens cancer (37) NA GEO, TCGA, dbGaP
The abundance of 24 immune cell types including 18 T-
cell subsets, from gene expression data from self-
designed approach Immune Cell Abundance Identifier.

TCIA Cell Reports (2017) 2017 Homo sapiens cancer (20) 9562 cancer samples TCGA and two immunotherapy studies
Exploration of comprehensive immunogenomic analyses
of next generation sequencing data for 20 solid cancers
from TCGA and other datasources.
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 200 

Figure 2. Content of TCCIA. (A) Inclusion of cancer types, cohort and publication years in this study. Abbr. BLCA, Bladder 201 
urothelial carcinoma; HNSC, Head and neck squamous cell carcinoma; KIRC, Kidney renal clear cell carcinoma; NSCLC, 202 
non-small lung cancer; SKCM, Skin cutaneous melanoma. (B-C) The number of detected circRNAs, length of circRNAs, 203 
mean BSJ (back-splicing junction count) and mean CPM (counts per million) in different cancer types (B) or cohort (C). (D) 204 
UMAP plot of all samples, colored by cancer types. 205 
 206 

Data summary of TCCIA 207 

In this study, a comprehensive compilation was made, involving approximately 3700 patients 208 

from 18 immune-checkpoint blockade (ICB) cohorts [48–63] with raw RNA-seq datasets 209 

published between 2012 and 2022, encompassing 5 distinct cancer types (Figure 2A). The 210 

circRNA profiling revealed the identification of an impressive total of 281,556 circRNAs. 211 

Among these, kidney renal clear cell carcinoma (KIRC) exhibited the highest count, 212 

encompassing 159,577 circRNAs (representing 56.7% of the total). Conversely, head and 213 

neck squamous cell carcinoma (HNSC) demonstrated the lowest count, with only 680 214 

circRNAs, constituting a mere 0.2% of the total (Figure 2B). The average lengths of these 215 

circRNAs demonstrated notable consistency across various cancer types, ranging from 216 

21,739.64 to 23,582.26, as well as within individual cohorts, ranging from 17,041.13 to 217 
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23,112.20 (Figure 2B, C). Intriguingly, skin cutaneous melanoma (SKCM) exhibited the 218 

highest mean back-splice junction (BSJ) reads at 0.13, whereas non-small cell lung cancer 219 

(NSCLC) had the lowest mean at 0.04. Additionally, HNSC displayed the highest mean 220 

counts per million (CPM) at 1,470.6, while KIRC had the lowest mean CPM at 9.0. A 221 

comprehensive analysis encompassing all the circRNAs from the sampled datasets was 222 

visualized using a UMAP plot (Figure 2D). This visualization revealed discernible circRNA 223 

clustering patterns specific to various cancer types, highlighting the nuanced circRNA 224 

heterogeneity within human cancers and emphasizing the need for independent circRNA 225 

analysis considerations. 226 

 227 

Web functionality of TCCIA 228 

TCCIA introduces an array of advanced analytical tools, encompasses multifaceted 229 

functionalities to aid researchers in uncovering intricate connections and insights (Figure 1). 230 

These functionalities empower the exploration of circRNA abundance, correlation, 231 

associations with clinical variables, the tumor immune microenvironment, molecular 232 

signatures, treatment responses, and prognosis predictions, along with identifying circRNAs 233 

implicated in immunotherapy-sensitive and resistant tumor scenarios (Figure 3). The well-234 

established exploration and analysis pipeline within the TCCIA framework is described in 235 

Figure 4. This schematic outlines the typical path that researchers follow when engaging with 236 

the platform. A more comprehensive elucidation of all fundamental modules is provided below. 237 

 238 

Cohort Selection and Data Access. The TCCIA interface offers an intuitive approach for 239 

cohort selection and data access. The Repository Page serves as a gateway, enabling users 240 

to filter datasets based on crucial parameters such as cancer type, treatment modalities, 241 

drugs administered, and cohort sizes. Essential details pertaining to each dataset are 242 

presented in a comprehensive cohort table, facilitating informed decision-making regarding 243 

cohort selection. 244 

 245 

Cohort/Molecule-Centered Analysis Modules. At the heart of TCCIA's capabilities lie the 246 

cohort-centered analysis modules and molecule-centred analysis modules (for analyzing 247 
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circRNAs across multiple cohorts), providing a profound lens into circRNA dynamics within 248 

specific immunotherapy cohorts. These modules encompass: 249 

(1) Scatter-Correlation and Heatmap-Correlation: Researchers gain insights into circRNA 250 

correlations through scatter plots and heatmaps. These visualizations are pivotal in 251 

elucidating potential connections between circRNAs and other variables within the chosen 252 

cohort. 253 

(2) Group-Comparison (including simplified and comprehensive versions): TCCIA facilitates 254 

nuanced analysis of numeric differences in circRNA expression across multiple groups 255 

within a cohort. The dual modes of simplified and comprehensive group comparison 256 

empower researchers to unravel intricate circRNA expression patterns. 257 

(3) KM-Analysis and Cox-Analysis: Survival analysis is made accessible through the KM-258 

Analysis module, which generates Kaplan Meier survival curves among distinct variable 259 

groups. Additionally, the Cox-Analysis module allows for an in-depth examination of 260 

survival outcomes of any circRNA expression, opening avenues to prognostic evaluations. 261 

 262 

Signature and DEG Analysis. TCCIA introduces dedicated modules for signature analysis 263 

and differential expression circRNAs (DEG) assessment. The Signature Page facilitates the 264 

investigation of associations between circRNAs and tumor microenvironment metrics using 265 

eight prominent deconvolution methods. It also allows for the examination of connections 266 

between circRNAs and 255 cancer signatures categorized into three distinct groups: TME-267 

associated, tumor-metabolism, and tumor-intrinsic signatures. These analyses encompass a 268 

wide range of cohorts, ensuring comprehensive exploration of these relationships. The DEG 269 

Page empowers researchers to pinpoint differentially expressed circRNAs between patients 270 

who respond and those who do not respond to immunotherapy, thus unraveling the intricate 271 

web of circRNA involvement in treatment outcomes. 272 

 273 

User Customized Configurations. Global settings within TCCIA add a layer of refinement 274 

to the user experience, allowing for customized exploration. These settings grant users 275 

control over data access and enable tailoring analyses to align with their specific research 276 

objectives. For example, by default, the platform prioritizes immunotherapy-related sample 277 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2023. ; https://doi.org/10.1101/2023.08.24.554049doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.24.554049
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

data by filtering out samples without checkpoint immunotherapy treatment, streamlining 278 

analyses for coherent research goals. As users become acclimated to the platform, 279 

customization options foster enhanced flexibility, enabling researchers to uncover novel 280 

insights. 281 

 282 

In essence, the web functionality of TCCIA embodies an advanced and user-centric avenue 283 

for investigating the complex roles of circRNAs in cancer immunotherapy. The integration of 284 

diverse analysis modules, coupled with a cohort-centered approach and adaptable settings, 285 

positions TCCIA as an indispensable tool for advancing our comprehension of circRNA-286 

mediated immune responses and guiding the formulation of personalized immunotherapeutic 287 

strategies. This interactive platform stands poised to reshape the landscape of circRNA-288 

immunotherapy research. 289 

 290 

 291 
Figure 3. The core modules of TCCIA. 292 
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 293 
Figure 4. A standard exploration and analysis pipeline within TCCIA. (A) Users need to navigate to the Repository 294 
page and select the clinical trial dataset of their interest. On the leftmost panel, users can filter the dataset based on 295 
various parameters. (B) Users can choose an appropriate analysis strategy according to their needs (core analysis steps 296 
are listed on the rightmost panel). The analysis consists of four steps: I. Select the dataset. II. Choose the CircRNA ID or 297 
Host Gene of interest. III. Adjust various parameters such as Test Type, Color Selection, etc. IV. Click the Submit button to 298 
obtain the analysis results. (C) For users aiming for in-depth analysis, a more personalized clinical data filtering suite is 299 
provided. Users can perform patient selection based on different features such as Sex, Response, etc., and redraw the 300 
plots. (D) Users have the option to save the result images in PDF or PNG format, with the desired dimensions. 301 

 302 

Case study: validating circTMTC3 prediction efficacy in Gide et al. melanoma cohort 303 

ICB therapies targeting PD-1 and CTLA-4 have significantly transformed the field of oncology, 304 

particularly in the treatment of metastatic melanoma. However, it is important to note that only 305 

a limited number of melanoma patients experience positive outcomes from these 306 

immunotherapies. Consequently, there is a pressing need to identify predictive biomarkers 307 

that can guide precision oncology.  308 

 In a study conducted by Dong et al. [13], it was observed that melanoma patients from 309 

the study (cohort ID: PRJEB23709) by Gide et al. [54], who exhibited high expression of 310 

circTMTC3, experienced poorer survival outcomes and demonstrated reduced treatment 311 

responsiveness compared to those with low circTMTC3 expression. To illustrate the 312 

functionality of the TCCIA, here, we performed a re-analysis on the same cohort. Figure 5A 313 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 26, 2023. ; https://doi.org/10.1101/2023.08.24.554049doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.24.554049
http://creativecommons.org/licenses/by-nc/4.0/


14 
 

provides an overview of the analysis panel used to assess the association between a circRNA 314 

and patient survival. Additionally, Figure 5B clearly demonstrates that high levels of 315 

circTMTC3 are predictive of poor overall survival (HRlow vs high=0.47, 95% CI: 0.24-0.92, 316 

P=0.02). Upon closer examination of the different isoforms of circRNAs derived from TMTC3, 317 

it was found that only TMTC3:+:chr12:88148287:88176319 was abundant in this patient 318 

cohort and played a significant role in predicting unfavorable survival outcomes (Figure 5C, 319 

HRlow vs high=0.42, 95% CI: 0.2-0.9, P=0.008). The remaining isoforms, such as 320 

TMTC3:+:chr12:88160113:88190622, did not exhibit the same predictive ability (Figure 5D). 321 

Furthermore, employing three different approaches to assess differential expression of 322 

circRNAs between checkpoint immunotherapy responders and non-responders, it was 323 

consistently discovered that TMTC3:+:chr12:88148287:88176319 was the sole isoform of 324 

circTMTC3 that displayed significant upregulation in non-responding patients (Figure 5E-G). 325 

 326 

Discussion 327 

Circular RNAs, emerging as pivotal gene expression regulators, exert diverse functions 328 

across biological processes, with substantial clinical research potential [64]. However, the 329 

existing landscape of circRNA-related tumor-immune checkpoint research falls short of 330 

satisfying the burgeoning need for insights. This limitation is compounded by constraints 331 

stemming from sample quantity and diversity, which subsequently curtail the generalizability 332 

of research findings due to geographical, racial, and tumor-specific factors. Consequently, 333 

given this evolving landscape, the urgency and significance of developing a CircRNA tool for 334 

preliminary data mining have become increasingly pronounced. TCCIA (the Cancer CircRNA 335 

Immunome Atlas) an integrated online platform, building upon datasets from four genome 336 

sequence archive repositories, encompassing around 3,700 cancer samples, spanning five 337 

cancer types and 18 checkpoint-blockade immunotherapy cohorts, incorporating over 338 

280,000 circRNA expression profiles, 255 established cancer signatures, and TME 339 

decomposition results from eight immune infiltration algorithms. TCCIA emphasizes user-340 

friendly visual presentations, eliminating the need for intricate programming skills. Moreover, 341 

the platform offers a range of customizable visualization options, ensuring adaptability to user 342 

needs. Notably, TCCIA is readily accessible without mandatory registration or login, 343 
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potentially rendering it an economical and efficient solution for both researchers and clinical 344 

practitioners. 345 

 346 
Figure 5. circTMTC3 predicts poor survival and non-response to checkpoint immunotherapy in the melanoma 347 
cohort of Gide et al. (A) Analysis panel for analyzing and visualizing associations between circRNAs and patient survival. 348 
Here, we present the data and analysis settings used to generate the plot shown in (C). (B) CircTMTC3 predicts poor survival. 349 
(C) A circRNA isoform of circTMTC3, TMTC3:+:chr12:88148287:88176319, predicts poor survival. (D) A circRNA isoform 350 
of circTMTC3, TMTC3:+:chr12:88160113:88190622, predicts poor survival. (E-G) Volcano plots showing differential 351 
expressed circRNAs between checkpoint immunotherapy response and nonresponse patients using the approaches: (E) 352 
Limma Voom, (F) DESeq2, and (G) edgeR. 353 

 354 

 In this manuscript, we delineate the data sources, collection and standardization 355 

processes, TCCIA's functionalities, website analysis modules, and provide a step-by-step 356 

guide to its operation. To further illustrate TCCIA, we present a concrete example of the 357 
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circTMTC3 as a molecular marker for melanoma and confirm its specific isoform, 358 

TMTC3:+:chr12:88148287:88176319, in playing a major role in prognosticating unfavorable 359 

survival outcomes and non-response to treatment. 360 

 While TCCIA has various advantages and uniqueness, there are still some limitations. In 361 

terms of data, although TCCIA includes data from five different types of cancer, the sample 362 

size for head and neck cancer remains sparse. Recently, the application of immunotherapy 363 

has been expanding to more cancer types, such as digestive system tumors. However, it is 364 

important to note that our TCCIA does not currently cover these types of tumors. The main 365 

reason for this is that current clinical genomics research of such cancer types primarily 366 

focuses on the DNA level, specifically on whole exome sequencing and targeted sequencing 367 

[65]. As a result, there are few RNA-seq datasets to infer the presence of circRNAs. Another 368 

reason is that some raw RNA-seq datasets are difficult to access due to restricted availability, 369 

e.g., Carroll et al. study [66]. In terms of circRNA abundance, there are significant differences 370 

between different cohorts, batch effects may exist in different cohorts, and there is also strong 371 

heterogeneity within the same tumor type, so users need to be cautious when performing 372 

cross-dataset analysis and comparison. In terms of functionality, some databases provide the 373 

characteristics of studying circRNA-miRNA-gene regulatory networks (such as CSCD2 [34], 374 

circMine [38], and CircNet2 [35]), which have not been considered in TCCIA with two reasons: 375 

First, further experimental validation is generally required to confirm the authenticity of 376 

detected circRNAs. In the recent large-scale circRNA detection benchmark study [67], 377 

Vromman et al. recommended using qPCR+ Ribonuclease R or qPCR+amplicon sequencing 378 

for circRNA validation. Therefore, it is recommended to incorporate these experimental 379 

validation methods to ensure the accuracy of circRNA detection. Second, the focus of our 380 

study is on integrating circRNA profiles and clinical outcomes in cancer patients treated with 381 

immunotherapy. However, instead of duplicating efforts, users can leverage already well-382 

established and high-quality circRNA databases to complete other circRNA annotation and 383 

analysis explorations. By linking to these databases (a widget is provided in the footer of the 384 

TCCIA website), users can access comprehensive circRNA information and utilize existing 385 

tools for further analysis, optimizing the accuracy and efficiency of circRNA annotation and 386 

deep investigation. 387 
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 Looking ahead, we aim to continually update TCCIA by incorporating more circRNA data 388 

from diverse immunotherapy cohorts and introducing new functionalities based on user 389 

feedback. In summary, the distinctive features, analytical capabilities, and potential for growth 390 

position it as a pivotal tool in advancing our understanding of circRNAs in tumor immunity 391 

and in shaping development of personalized immunotherapy strategies guided by circRNA. 392 

 393 

Methods 394 

Data collection 395 

To conduct a systematic search, we utilized PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) 396 

to search for articles related to Bulk RNAseq data from solid cancer patients treated with 397 

immune checkpoint blockers (ICB). The search expression used was "(ICB [Title/Abstract] 398 

OR PD-1[Title/Abstract] OR PD-L1[Title/Abstract] OR CTLA-4[Title/Abstract]) AND 399 

(rnaseq[Title/Abstract] OR rna-seq[Title/Abstract] OR rna-sequencing[Title/Abstract] OR rna 400 

seq[Title/Abstract] OR rna sequencing[Title/Abstract])". No filters were applied, and there 401 

were no restrictions on language or geographic region. Peer-reviewed publications, preprints, 402 

and press releases were considered for inclusion. To obtain raw RNA sequencing data, we 403 

submitted requests to the Database of Genotypes and Phenotypes (dbGaP) 404 

(https://dbgap.ncbi.nlm.nih.gov/), the European Genome-phenome Archive (EGA) 405 

(https://ega-archive.org/), and the Genome Sequence Archive (GSA) 406 

(https://ngdc.cncb.ac.cn/gsa/) of the National Genomics Data Center (NGDC) after receiving 407 

approval from the Data Access Committee (DAC). However, it is important to note that not all 408 

raw RNAseq datasets were accessible and available for use. In total, we collected 16 studies 409 

[48–63] related to checkpoint immunotherapy that provided raw RNAseq datasets. We 410 

gathered relevant clinical data from publications and clinical meta documents associated with 411 

these RNAseq datasets. Additionally, we extracted information on the cohorts' fundamental 412 

characteristics, such as sample size, treatment methods, and specific drugs used, based on 413 

the abstracts. It should be noted that, for Patil et al. study, two clinical cohorts were included; 414 

and for the study identified as PHS000452, the two patient subgroups had distinct drug 415 

treatments and clinical annotations. Hence, we treated them as two separate cohorts during 416 

the analysis. For the TCCIA project, CircRNA profiles, immunotherapy response, and clinical 417 
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benefits were analyzed for five cancer types. This analysis included over 3,700 clinical 418 

samples from 18 cohorts treated with immune-checkpoint blockades (ICBs) such as PD-419 

1/PD-L1 and CTLA-4 inhibitors, as well as other treatments. The analysis considered both 420 

pre-treatment and on-treatment responses. 421 

 422 

CircRNA identification and differential expression analysis 423 

We aligned the raw RNA sequencing data to the human genome hg38 using STAR [68]. Next, 424 

we utilized CIRCexplorer2 [69] to identify, parse, and annotate circRNA junctions within each 425 

sample. These identified junctions were then analyzed for differential expression using 426 

Limma Voom [70], edgeR [71], and DESeq2 [72], enabling a comparison between patients 427 

who responded to checkpoint immunotherapy and those who did not. 428 

 429 

TME decomposition and cancer gene signature estimation 430 

We employed IOBR [73] for TME decomposition and the scoring of cancer gene signatures. 431 

IOBR seamlessly integrates eight widely-used open-source deconvolution methods, 432 

including CIBERSORT [74], ESTIMATE [75], quanTIseq [76], TIMER [77], IPS [37], 433 

MCPCounter [78], xCell [79], and EPIC [80]. Furthermore, IOBR incorporates a 434 

comprehensive compilation of 255 established cancer signatures. These diverse signatures 435 

are organized into three distinct categories: TME-associated, tumor-metabolism, and tumor-436 

intrinsic signatures. 437 

 438 

TCCIA implementation 439 

The TCCIA database is developed as a Web application leveraging R Shiny 440 

(https://shiny.posit.co/) and built using the golem framework (https://github.com/ThinkR-441 

open/golem) to achieve optimization. TCCIA, is developed solely for research purposes and 442 

does not utilize any cookies or collect any personal identifiable information. TCCIA is free 443 

available in https://tccia.zmu-zhoulab.com/ and https://shiny.hiplot.cn/TCCIA.  444 

 445 

Statistical analysis 446 

We performed Kaplan-Meier survival analysis to generate and compare survival curves. The 447 
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log-rank test was used for comparison. We also conducted multivariate survival analysis 448 

using the Cox regression model. All reported P-values are two-tailed, and a significance level 449 

of p≤0.05 was used unless otherwise specified. All statistical analyses and visualization were 450 

conducted using R v4.2.0. 451 

 452 

Patient consent for publication 453 

Not applicable. 454 
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All relevant data reported in the study can be found in the article or on the TCCIA website. 457 

Please note that access to the raw RNA-seq datasets is not provided. For any other data 458 

requests, please contact the leader of this project, Jian-Guo Zhou. 459 
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