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Abstract 
Structural resolution of protein interactions enables mechanistic and functional studies as well 
as interpretation of disease variants. However, structural data is still missing for most protein 
interactions because we lack computational and experimental tools at scale. We thoroughly 
assessed AlphaFold-Multimer accuracy for structure prediction of interactions involving folded 
domains binding to short linear motifs from the ELM database. The structure predictions were 
highly sensitive but not very specific when using small protein fragments. Sensitivity 
decreased substantially when using long protein fragments or full length proteins with 
intrinsically disordered regions. We delineated a fragmentation strategy to optimize sensitivity 
and applied it to interactions between proteins associated with neurodevelopmental disorders. 
This enabled prediction of highly confident and likely disease-related novel interfaces, but also 
resulted in many high scoring false positive predictions. Experiments supported predicted 
interfaces between CREBZF-HCFC1, FBXO23-STX1B, STX1B-VAMP2, ESRRG-PSMC5, 
PEX3-PEX19, PEX3-PEX16, and SNRPB-GIGYF1 providing novel molecular insights for 
diverse biological processes. Our work highlights exciting perspectives, but also reveals clear 
limitations and the need for future developments to maximize the power of Alphafold-Multimer 
for interface predictions. 
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Introduction 
Protein-protein interactions (PPIs) are essential for the proper functioning of essentially all 
cellular processes. The last decade has seen tremendous progress in the systematic mapping 
of human protein interactions. Using yeast two-hybrid (Y2H) as primary screening method, 
more than 60,000 binary interactions between human proteins have been identified (hereafter 
referred to as the HuRI dataset, (Luck et al, 2020)). Mass spectrometry-based approaches 
involving affinity purification or co-fractionation have identified around 150,000 co-complex 
associations between human proteins (Drew et al, 2017; Huttlin et al, 2021). The systematic 
nature of these interactome mapping efforts enabled the discovery of protein interactions for 
many of the remaining poorly characterized proteins. In principle, protein interaction data 
enables gene function prediction and the study of genotype-to-phenotype relationships. 
However, to understand the molecular function of individual PPIs, co-existence or mutual 
exclusivity of partner proteins in protein complexes, and the effect of mutations on protein 
function, structural information on how these proteins interact with each other is required. 
Unfortunately, a structure of the complex at atomic resolution is known only for approximately 
4% of the interactions detected in human binary interactome mapping efforts (Luck et al, 
2020). 
 
Modular proteins interact with each other using a variety of different functional elements such 
as stably folded domains, intrinsically disordered polypeptide regions, short linear motifs 
(hereafter referred to as motifs), or coiled-coil helices forming domain-domain, domain-motif, 
disorder-disorder, or coiled-coil interfaces for example. Resources such as 3did (Mosca et al, 
2014) or the ELM database (ELM DB) (Kumar et al, 2022) collect observed contacts between 
domain types and domain-motif interface types, respectively. Such interface type collections 
can be used to predict occurrences of known interface types in protein interactions (Weatheritt 
et al, 2012; Mosca et al, 2013). However, it is reasonable to expect that many more ways by 
which proteins interact with each other remain to be discovered. This is likely particularly true 
for motif-mediated PPIs, which are anticipated to number in the hundreds of thousands or 
millions (Tompa et al, 2014). Motifs are short stretches of amino acids in disordered regions 
of proteins that usually adopt a more rigid structure upon binding to folded domains in 
interaction partners (Davey et al, 2012). Motif-mediated interactions are of moderate binding 
affinity and thus, are particularly suited to mediate dynamic cell regulatory and signalling 
events (Van Roey et al, 2012). However, due to the transient nature of their interactions and 
the disorderliness of motif-containing proteins, this mode of binding is also expected to be 
highly understudied. Interactome maps like the ones described above are likely a treasure 
trove for the discovery of novel interface types, yet, no good experimental or computational 
methods exist to systematically map or predict protein interaction interfaces.  
 
The release of the neural network-based software AlphaFold (AF) was not only a breakthrough 
for the prediction of monomeric structures of proteins (Jumper et al, 2021) but multiple studies 
published shortly thereafter also suggested the ability of AF to predict structures of pairwise 
protein interactions and complexes. Sensitivities of around 70% were reported using 
benchmark datasets of structurally resolved protein interactions originally developed to 
evaluate docking methods (Akdel et al, 2022; Bryant et al, 2022; preprint:Evans et al, 2021; 
Johansson-Åkhe et al, 2021). Other studies focused on structures of domain-motif interfaces 
to specifically evaluate AF’s ability to predict structures for this mode of binding reporting 
similar success rates (Akdel et al, 2022; Johansson-Åkhe et al, 2021; Tsaban et al, 2022). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 9, 2023. ; https://doi.org/10.1101/2023.08.07.552219doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.07.552219
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

Only few studies also evaluated AF’s specificity for the prediction of interface structures using 
random protein pairs or mutation of motifs to poly-alanine stretches (Akdel et al, 2022; 
Johansson-Åkhe et al, 2021; Tsaban et al, 2022). Different studies used several different 
versions of AF due to fast-paced releases of newer software versions and reported on different 
metrics such as the model confidence, pDockQ, average interface pLDDT, iPAE, ipTM, etc, 
for their ability to distinguish good from bad structural models (Bryant et al, 2022; O’Reilly et 
al, 2023; Tsaban et al, 2022; preprint:Evans et al, 2021; Teufel et al, 2023). We generally lack 
a comprehensive assessment of the latest AF releases and metrics across different types of 
PPI interfaces for their sensitivity, specificity, and potential biases for the prediction of interface 
structures. 
 
Going beyond the studies that used AF for the prediction of interfaces for individual protein 
interactions, in a landmark study researchers applied AF onto 65,000 human PPIs derived 
from HuRI and highly confident co-complex associations to structurally annotate the human 
interactome with AF-derived models. High confidence models were obtained for about 3,000 
PPIs, which increased to 10,000 PPIs at a more lenient confidence cutoff (Burke et al, 2023). 
The authors noted a smaller fraction of highly confident structural models obtained for PPIs 
from the HuRI dataset and reported that proteins in HuRI contain more intrinsic disorder and 
are less conserved compared to proteins from co-complex datasets. AF model confidence 
scores also increased for PPIs with proteins that are less disordered and more conserved, 
indicating that AF predictions work less well for PPIs mediated by interfaces involving 
disordered regions such as domain-motif interfaces, which likely dominate the human 
interactome (Tompa et al, 2014). However, AF benchmarking studies reported similarly high 
success rates for domain-motif interfaces compared to general docking benchmark datasets. 
These discrepancies in sensitivities could be a result of two possible factors. First, they might 
point to differences in AF performance if small interacting fragments are used for interface 
prediction, as done in the benchmark studies, versus full length sequences used for structure 
prediction in (Burke et al, 2023). Second, these discrepancies could also point to difficulties of 
AF to predict structures of interface types involving disordered regions that have not been 
solved before of which there are likely many in HuRI. It remains to be addressed to what extent 
these two possible factors contribute to the challenges encountered specifically for domain-
motif interface modeling. 
 
Determination of accuracies of novel predicted interface structures by AF ultimately requires 
experimentation. AF interface predictions for individual PPIs have occasionally been 
experimentally corroborated (Mishra et al, 2023; preprint:Bronkhorst et al, 2023). A more 
systematic experimental confirmation of AF interface models has been attempted using 
crosslinking mass spectrometry (XL-MS) (Burke et al, 2023; O’Reilly et al, 2023). O’Reilly and 
co-workers reported that only a few of the crosslinks have violated distance constraints for 
interface models that match a stringent ipTM cutoff derived for PPIs from Bacillus subtilis, 
suggesting that most of these models are likely correct at least at the structural resolution that 
in-cell XL-MS can provide (O’Reilly et al, 2023). While in-cell XL-MS is a very elegant approach 
to obtain experimental information on PPI interfaces in unperturbed settings, it is still a method 
that is only accessible to few experts in the field. Other experimental approaches are needed, 
which can, ideally at high throughput, confirm structural models for PPIs. Bioluminescence 
resonance energy transfer (BRET) has been more recently established as a binary PPI assay 
that can be operated in 96 well format using transient transfections in mammalian cell lines 
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(Trepte et al, 2018). Importantly, the readout is quantitative and thus allows determination of 
interaction strength and fusion protein expression levels. 
 
In this study, we thoroughly benchmarked the two most recent versions of AlphaFold Multimer 
(hereafter referred to as AF) for their ability to predict domain-domain and domain-motif 
interfaces (DDIs and DMIs). We found that prediction accuracies drop when using longer 
protein fragments or full length proteins for interface predictions and developed a strategy 
particularly suited for the prediction of novel domain-motif interfaces in human PPIs. We 
applied this strategy to 62 PPIs from HuRI that connect disease-associated proteins and 
experimentally assessed the obtained interface predictions for seven PPIs using BRET 
combined with site-directed mutagenesis. We identify novel interface types and report on 
important limitations and sources of errors in AF-derived structural models, which pave the 
way for future improvements in the field. 

Results 
Evaluation of AlphaFold on annotated domain-motif interfaces 

To thoroughly assess the ability of AF to predict structures of binary protein complexes that 
are formed by a DMI, we extracted information on annotated DMI structures from the ELM DB 
(Kumar et al, 2022). We selected one representative structure per motif class (136 structures 
in total), manually defined the minimal domain and motif boundaries, and submitted the 
corresponding protein sequence fragments for interface prediction to AF (Fig S1A). To 
evaluate the accuracy of the predicted structural models, we superimposed the actual 
structure and predicted model on their domains and based on this superimposition, we 
computed the all atom RMSD between the motif of the predicted model and the actual 
structure (Fig S1A). We found that 35% of the structural models were so accurately predicted 
that even the side chains of the motif were correctly positioned while for another 32% the 
backbone but not the side chains of the motif were accurately predicted. For 26% of the 
structures the motif was modeled into the correct pocket, but in a wrong conformation, while, 
for the remainder of the structures, AF failed to identify the right pocket (Fig 1A). A similar 
performance was obtained when using the DockQ metric (Fig S1B,C, Table S1). This 
performance is unaltered when using or switching off AF's template function (Fig S1D,E). The 
use of DMI structures annotated by the ELM DB enables us to explore potential differences in 
AF's performance regarding motif properties. We find no significant differences in model 
accuracy between different categories of motif classes (two-sided Mann-Whitney test on all 
pairwise combinations, n: DEG=10, DOC=21, LIG=94, TRG=9, MOD=2, α=0.05, test statistics of 
all pairwise combinations between 15 and 852, Fig 1B), secondary structure elements (two-
sided Mann-Whitney test on all pairwise combinations, n: helix=42, strand=7, loop=87, α=0.05, 
test statistics of all pairwise combinations between 184 and 2029, Fig 1C), nor by how 
hydrophobic, symmetric, or degenerate the motif sequence is (Pearson r < abs(0.08), α=0.05 
Fig S1F-H). AF models display significantly more differences to structures solved by other 
methods, i.e. NMR, than X-ray crystallography (two-sided Mann-Whitney test, n: X-ray=115, 
Others=21, p < 0.01, test statistics=811, Fig 1D) possibly because NMR structures better 
represent structural dynamics that AF cannot capture, since it was trained to predict the 
crystallized forms of proteins. The all-atom motif RMSD significantly anti-correlates with 
various AF-derived metrics (Pearson r = -0.55, p-value < 0.05 Fig S1I,J) suggesting that these 
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metrics are indicative of good versus bad structural models and can be used for de novo 
interface predictions. 

Evaluation of AlphaFold’s specificity for domain-motif interfaces 

The benchmarking reported in the previous section evaluated AF's sensitivity for DMI 
predictions when providing sequences for the minimal interacting fragments. To assess AF's 
specificity for this task, we generated three different random DMI datasets. First, we randomly 
paired domain and motif sequences from the positive reference dataset taking into account 
that no motif sequence was paired with a domain sequence from the domain type that the 
motif is known to interact with. Second and third, we mutated one and two key motif residues, 
respectively, to residues of opposite chemico-physical properties. Receiver operating 
characteristic (ROC) and precision-recall (PR) curves using the positive and random datasets 
(Fig 1E, Fig S2A,B, Table S2) show that the AF-derived metrics model confidence 
(preprint:Evans et al, 2021), average interface residue pLDDT, average motif interface residue 
pLDDT, pDockQ (Bryant et al, 2022), and iPAE (Teufel et al, 2023) discriminated well between 
both reference datasets when randomizing domain-motif pairs or introducing two motif 
mutations (max AUC 0.86). The pDockQ score performed slightly worse (AUC=0.77). 
However, all metrics failed when mutating only one motif residue (max AUC 0.66). Metrics 
such as the domain interface residue pLDDT or the number of atoms or residues predicted to 
be in contact with each other, discriminated poorly between all reference datasets (AUC 
around 0.64).  

Evaluating AlphaFold’s performance for the prediction of domain-domain interfaces 

To evaluate whether AlphaFold performs similarly for the prediction of DDIs as it did for DMIs 
and whether the same metrics to discriminate good from bad structural models can be used, 
we used a reference dataset of 58 DDI structures that we manually curated out of random 
selections of domain-domain contact pairs extracted from 3did (Mosca et al, 2014). As a 
negative dataset, we randomized the pairing of these domains. Using ROC and PR statistics 
we found that AlphaFold performed slightly worse on this DDI benchmark dataset compared 
to its performance on DMIs (max AUC 0.79 vs. 0.86) (Fig 1E, Fig S2A,B, Table S2) but still 
showed significant discriminative power. Interestingly, the best performing metric for DDI 
predictions was the average interface pLDDT score, which ranked fourth for DMI predictions.  

Application of AlphaFold for providing structural models for motif classes without 
available structural data 
After evaluating the accuracy of AF to predict DMIs using minimal interacting regions, we 
aimed to use this setup for the prediction of structural models for motif classes in the ELM DB 
for which no structure of a complex has been solved yet. We identified 125 such motif classes 
based on ELM DB annotations (Table S3). Of those, we selected all domain-motif instances 
where both the motif and the domain were derived from human or mouse proteins and 
submitted the corresponding domain and motif sequences for structure prediction to AF. Using 
an average motif pLDDT cutoff of > 70, we obtained confident structural models for 21 motif 
classes. We manually inspected the structural models and noticed that even though these 
ELM classes have no annotations with structures, solved structures for an exact ELM instance 
or a very likely new instance for the ELM class are available for 11 out of the 21 cases, and 
for the rest, a close homolog structure had been solved. For example, for LIG_MYND_3 and 
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LIG_MYND_1, a structure solved by NMR for a LIG_MYND_2 interaction is available (Fig 
S2C,D). For MOD_SUMO_rev_2, a structure of a reversed motif is available (and annotated 
as such in the MOD_SUMO_for_1 class). Here it is interesting to see how very dissimilar 
binding modes (flexible for MOD_SUMO_for_1, helical for MOD_SUMO_rev_2), are still able 
to place the important binding residues in the same pockets (Fig 1F). Finally, for 
CLV_C14_Caspase3-7, the structure of the caspase bound to peptide-like inhibitors has been 
solved (e.g. PDB:1F1J, PDB:5IAN, PDB:6KMZ), and structures of more distant caspases 
bound to a cleaved peptide substrate are also available. For proteases, one great advantage 
of AF is the ability to model both the catalytically active enzyme and an uncleaved substrate, 
which is practically impossible to solve experimentally (Fig 1G).  
 
Finally, LIG_HCF-1_HBM_1 describes a motif class in the ELM DB that is bound by the N-
terminal beta-propeller Kelch domain of HCFC1 consisting of six Kelch repeats. Kelch 
domains have been shown to bind to motifs at a number of different sites, and thus, without 
prior knowledge, it is difficult to determine where the HCFC1-binding motif (HBM) would bind. 
HCFC1 is a transcription factor that associates with other transcription factors (Lu et al, 1997), 
splice factors (Ajuh et al, 2002), and cell cycle regulators (Freiman & Herr, 1997; Machida et 
al, 2009). The motif with the pattern [DE]H.Y consists of three very conserved positions. We 
generated AF models of high confidence for the HCFC1 Kelch domain interacting with multiple 
motif instances that are annotated in the ELM DB. All complexes show the tyrosine of the motif 
docked into a deep pocket at the bottom/top of the Kelch domain (Fig 1H,I and Fig S2E-G), 
with slight variations in how the tyrosine is exactly positioned in the pocket (Fig S2E-G). Based 
on clone availability we selected the structural model between HCFC1 and CREBZF for 
experimental validation. For this purpose, we used a BRET protein interaction assay that is 
based on transient overexpression of two proteins in HEK293 cells (Trepte et al, 2018). Both 
proteins are expressed as fusion constructs either to the Nanoluc luciferase (the donor) or 
mCitrine (the acceptor). Interaction of both proteins results in a BRET from the oxidized 
substrate of the donor to the acceptor molecule, if both are close enough to each other for the 
BRET to occur (see Methods for details). We observed significant binding and BRET 
saturation when assaying wildtype CREBZF and HCFC1 proteins (Fig 1J and Fig S2H,I). 
Mutation of the [DE]H.Y motif tyrosine to alanine (Y306A) or mutation of two residues in the 
Kelch domain pocket (L257F, L138F), which are predicted to be in contact with the motif 
tyrosine or histidine residue (Fig 1I), strongly reduced BRET signals indicating weakening or 
loss of binding (Fig 1J and Fig S2H,I). A pathogenic mutation (S225N, source ClinVar (Henrie 
et al, 2018)) close to the pocket did not result in loss of binding (Fig 1J and Fig S2H,I). In 
accordance, no assertion criteria for the annotation of this mutation to be pathogenic is 
provided by ClinVar. Collectively, these experimental results support the structural models of 
the HCFC1 Kelch domain pocket - motif interaction. 

Evaluation of AlphaFold’s ability to predict interfaces in full length proteins 

Most PPIs known to date have been identified using full length protein sequences in 
systematic interactome mapping efforts. For the vast majority of these PPIs, no fragment or 
interface information is available. Thus, the question emerges how AF would perform on DMI 
predictions when longer protein sequences or full length proteins are submitted. To answer 
this question we selected 31 DMI structures from the positive reference dataset used above 
and generated random domain-motif pairs of those as negative control. The selected 
structures were sampled from different prediction accuracy categories (Fig 1A, Table S4). We 
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then gradually extended the motif and domain sequences by first adding flanking disordered 
regions, then neighboring folded domains before using the full length sequences (Fig 2A). 
Comparison of the motif RMSD computed for extended versus minimal domain-motif pairs 
from the positive reference dataset revealed that the addition of flanking disordered regions 
on the motif or domain side sometimes slightly improved prediction accuracies while the 
addition of neighboring structured domains or the use of full length sequences led to a 
significant worsening of model accuracies (Fig 2A). Interestingly, despite the fact that for 
smaller extensions model accuracies remained the same or slightly improved as determined 
by motif RMSD, AF-derived metrics such as the model confidence or average motif interface 
residue pLDDT gradually dropped with increasing fragment length (Fig 2B, Fig S3A-C). ROC 
plots of predictions for a benchmark consisting of the positive and random domain-motif pairs 
revealed that upon extension the optimal cutoff of model confidence and iPAE considerably 
changed as well (Fig 2C, Fig S3D,E, S4A Table S5). This means that different model 
confidence or iPAE cutoffs are to be used depending on the length of the submitted protein 
sequences, which is rather impractical and thus disfavors both metrics for DMI predictions. 
The average motif interface residue pLDDT metric appeared to be more robust with respect 
to fragment length. 

Extending motif sequences for interface prediction with AlphaFold reveals important 
motif sequence context  
Various studies have highlighted that flanking sequences of motifs can influence binding 
affinities and specificities (Luck et al, 2012; Bugge et al, 2020). Motif annotations in the ELM 
DB usually refer to the core sequence of the motif, often because information on putative roles 
of flanking sequences is missing. In the previous section, we observed that some motif 
extensions notably improved AF prediction accuracies. In the hope that these cases would 
point to motifs with important sequence context, we manually inspected eight predictions for 
which the motif RMSD decreased by more than 1 Å when extending the minimal motif 
sequence once to the left and right by the length of the motif (extension step 1 in Fig 2A,D). 
By doing so interesting patterns emerged: The most prevalent contribution to increased 
prediction accuracies is the stabilization of the secondary structure of the motif (Fig 2E, Fig 
S4C) contributed by both sidechain and backbone atoms in the flanking regions, as shown for 
the interaction involving the motif LIG_CAP-Gly (Fig 2E). For the LIG_NBox_RRM motif, AF 
placed a part of the domain into the binding pocket rather than the motif, although the motif 
had the correct helical conformation. Elongation of the motif extended this helix, thereby 
increasing the interaction surface and eventually pushing out the domain’s tail from the pocket 
(Fig 2F). This fits with other reports where AF has been shown to predict preferential binding 
of competing motifs (Chang & Perez, 2023). For the LIG_HOMEOBOX class prediction, the 
motif is positioned in the wrong pocket unless flanking regions are included (Fig S4C). For 
DOC_MAPK_JIP1, motif extension results in an extended motif conformation and 
consequently in a structural model with lower overall RMSD (Fig S4C). For the LIG_GYF class, 
most models converge into an inverse orientation of the backbone except for one of the 
extended motifs, which lies in the binding pocket in the correct orientation (Fig S4C). A further 
interesting case is the DOC_USP7_UBL2 motif, for which the AF models provide different 
suggestions as to the binding orientations of a repeated motif. When using the isolated motif, 
the prediction converges onto one conformation of a motif backbone very similar to the solved 
crystal structure, but positioned in the opposite orientation. When modeling the extended 
region that includes another copy of the motif, various conformations in the correct orientation 
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are generated, resulting in lower but still high RMSD, and less convergence (Fig 2G). In this 
case, it might well be that several of these conformations would be possible, and indeed, the 
solved structure of the complex of the full PPI suggests that the loop containing this repeated 
motif is long enough to allow for binding in two different orientations. In summary, these 
analyses point to motif classes whose sequence boundaries could be refined. Interestingly, 
for a motif instance from the LIG_BIR_III_2 class, slight motif extensions actually led to a 
substantial decrease in prediction accuracy. In this case, the motif is located at a neo-N-
terminus that is only revealed after cleavage of the protein by a caspase (Fig S4D). When the 
motif is extended in the context of the full length protein, the correct placing of the N-terminus 
of the motif becomes physically impossible, pushing the motif out of the pocket. This highlights 
the importance of incorporating knowledge about sequence context while modeling and 
interpreting AF predictions. 

Comparison of AlphaFold v2.2 with v2.3 

During the course of our work, AF multimer version 2.3 was released. To determine whether 
the new release improved DMI prediction accuracies, we repeated all benchmarking with AF 
v2.3 and found that motif RMSDs and other AF-derived metrics on average improved 
compared to AF v2.2 when using minimal interacting fragments (Fig S5A-D, Table S1, two-
sided Wilcoxon signed-rank test on motif all atom RMSD: n=136, W=2413, p < 0.0001). AF 
v2.3 still showed a decrease in prediction accuracy when using extended protein fragments 
but this decrease was less pronounced compared to the corresponding decrease for v2.2 (Fig 
S5E,F, Table S4). Despite these improvements on the sensitivity side of AF, when 
benchmarked against random datasets, overall prediction accuracies only slightly improved 
compared to v2.2 (Fig S5G,H, Fig S6A-C, Table S2,S6). 

Application of AlphaFold for the discovery of novel interfaces in protein interactions 
without any a priori interface information 

Since the use of larger or full length protein sequences leads to a poor sensitivity for DMI 
predictions by AF, we devised the following strategy for the use of AF for interface predictions 
for known protein interactions: Using AF models of the full length monomeric structures of both 
interacting proteins, we decided on boundaries between structured domains and disordered 
regions based on manual inspection. This was necessary because testing available code 
developed for this purpose, like clustering using the PAE matrix, turned out to be too 
inaccurate because erroneous removal of flanking residues that are still contributing to the 
folding of a structured domain can heavily mislead AF predictions. We then fragmented the 
disordered regions by designing overlapping fragments varying in length from ten residues up 
to the length of the respective disordered region (Fig 3A). We then paired disordered with 
ordered, and ordered with ordered fragments for interface prediction by AF (Fig 3A). To assess 
to which extent this fragmentation approach would lead to an increase in false model 
predictions, we selected 20 out of the 31 DMI structures that were previously used to 
investigate the effect of fragment extension on prediction accuracies. We made 20 random 
pairings of domain and motif proteins, fragmented these proteins, and submitted all fragment 
pairs for interface prediction with AF. As expected from an earlier estimated 20% false positive 
rate (FPR) (Fig S4A), 19 of the 20 random protein pairs had at least one fragment pair that 
produced a model above the cutoff (Fig 3B, Table S7). The fraction of fragment pairs that 
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scored above the cutoff varied from 0% to 15.7 % (Fig 3B, Table S7) indicating that predictions 
done using this fragmentation approach will produce a considerable number of false models. 
 
We selected PPIs from HuRI that connect proteins associated with neurodevelopmental 
disorders (NDDs) and subjected these to our AF fragmentation pipeline to predict putative 
DMIs and DDIs. Out of a total of 67 PPIs, we modeled 62 (5 were too large), and for 51 PPIs 
we obtained at least one structural model of significant confidence (Fig 3C,D). In retrospect, 
manual inspection of the predictions obtained for these PPIs revealed that for 9 PPIs a solved 
structure of the interface was already available. Reassuringly, six out of these were accurately 
predicted by AF. For the remainder of the PPIs, 12, 16, and 14 resulted in a likely correct, 
questionable, or likely wrong prediction, respectively (Fig 3C,D, Table S8, Text S1). Of note, 
for 8 of the 12 PPIs with a likely correct prediction, AF predictions performed using the full 
length proteins (Burke et al, 2023) did not result in a high confidence prediction (Fig 6E), 
highlighting the importance to use smaller protein fragments for interface predictions. Based 
on clone availability, we selected 49 of the 62 PPIs for experimental validation of the predicted 
interfaces using the BRET assay introduced earlier. For 30 of the 49 selected PPIs for 
experimental testing we obtained sequence-confirmed clones with luciferase and mCitrine 
fusions. For 28 of these PPIs both partners were expressed in our experimental system as 
determined by total luminescence and fluorescence measurements (Fig 3D,F). These 28 PPIs 
were thus amenable for experimental testing. Significant BRET signals were observed for 11 
of these 28 PPIs (Fig 3F). Of those, 7 PPIs were selected for mutation design and interface 
validation (Fig 3D,F). The remaining four PPIs were not further considered because for three 
of them a structure already exists (CSNK2B-CSNK2A1, PNKP-XRCC4, UBA5-GABRAPL2) 
and for the fourth interaction (KCTD7-CUL3) we classified the predicted interface as likely 
wrong. In the following, we will describe for the seven selected PPIs the structural models that 
we obtained, the experimental results aimed at validating or disproving the predictions, and 
how this aligns with published work starting with the least and ending with the most exciting 
findings. 

TRIM37 and PNKP 

TRIM37 is a RING domain-containing E3 ligase known to regulate centriole reduplication, 
transcriptional repression, and peroxisome import (Kallijärvi et al, 2005; Bhatnagar et al, 2014; 
Wang et al, 2017). PNKP has dual phosphatase and kinase activity that it uses to modify 
broken DNA strands preparing them for repair (Aceytuno et al, 2017; Jilani et al, 1999). Both 
proteins showed clear signs for interaction in the BRET assay (Fig 3F). AF predicted the PNKP 
FHA domain to bind to several disordered stretches in TRIM37 (Fig 4A) that are overall 
negatively charged. These short regions were predicted to bind to a pocket on the FHA domain 
that is known to bind phosphorylated threonines (Durocher et al, 2000), which led us to 
conclude that these predictions were likely wrong. AF also predicted the MATH domain of 
TRIM37 to bind to two separate disordered putative motifs located between the FHA domain 
and phosphatase domain in PNKP (Fig 4A-C). In particular, the motif ranging from 110-116 
attracted our attention because phosphorylation of S114 has been reported  to stabilize PNKP 
protein levels (Parsons et al, 2012). We hypothesized that S114 phosphorylation might hinder 
binding of TRIM37 to PNKP and subsequent ubiquitylation. To confirm the accuracy of this 
predicted interface we assayed binding of PNKP S114D and P112R as well as TRIM37 F328R 
and N376R mutants for loss of binding to the wildtype partner protein (Fig 4D, S7A). BRET 
titration curves show a titration behavior where reproducibly for high acceptor to donor ratios, 
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a sudden increase in BRET signal is observed, hindering a fit and proper BRET50 estimation 
(Fig 4D). Regardless, none of the mutants showed a decrease in BRET signal compared to 
wildtype indicating that TRIM37 and PNKP do not interact with each other via this interface. 

PSMC5 and ESRRG 

PSMC5 is a subunit of the 19S regulatory complex of the 26S proteasome. It has been shown 
previously that PSMC5 is recruited to promoters of nucleic acid receptor target genes and to 
interact with the nucleic acid receptor RARA thereby regulating transcription (Ferry et al, 
2009). Interestingly, in HuRI, PSMC5 was found to interact with RARA and RARB as well as 
with other nuclear receptors such as ESRRG, RORB, and RORA. AF predicted with high 
confidence two different supposedly disordered motifs in PSMC5 to dock into the NR-box 
pocket of the hormone receptor domains of ESRRG, RORB, and RARB (Fig 4E-G). Hormone 
receptor domains bind LxxLL motifs (LIG_NRBOX class in ELM DB). In our BRET system, we 
could detect the interaction between PSMC5 and ESRRG (Fig 3F), and selected both putative 
motifs in PSMC5 as well as residues in the domain pocket of ESRRG for single point 
mutagenesis (Fig 4F,G). Of note, the first motif located N-terminal to the AAA domain in 
PSMC5 is predicted by AF with modest confidence to make intramolecular contacts with the 
AAA domain. These contacts are also observed in solved structures of the proteasome (i.e. 
PDB:5VFT (Zhu et al, 2018)). The second motif is at the very C-terminus of PSMC5 and carries 
a tryptophan, which is much more bulky compared to leucine residues usually observed to 
bind NR-box pockets. In line with these critical observations, we reproducibly found that none 
of the motif mutations decreased binding to ESRRG compared to wildtype PSMC5 while both 
domain pocket mutations led to a remarkable reduction in BRET signal (Fig 4H, S7B,C) 
indicating that PSMC5 might bind to ESRRG via this pocket but not with the predicted motifs. 

STX1B, FBXO28, and VAMP2 

We were able to confirm binding between STX1B and FBXO28 as well as between STX1B 
and VAMP2 in the BRET assay (Fig 3F). STX1B (OMIM:616172) and FBXO28 
(OMIM:619777) are associated with epileptic phenotypes while mutations in VAMP2 
(OMIM:618760) lead to NDD phenotypes with autistic features. Specific cellular functions of 
FBXO28 are unknown but because of the presence of an Fbox domain, it is supposed to 
function as an SCF E3 ligase in the ubiquitin-proteasome pathway. AF predicted multiple 
modest confident interfaces between STX1B and FBXO28 involving disordered regions in 
STX1B or FBXO28 and a coiled-coil interface between the extended helix of FBXO28 and the 
SNARE domain of STX1B (Fig 5A,B). AF also predicted a coiled-coil interface between STX1B 
and VAMP2 of modest confidence (Fig 5A,C). STX1B is a close homolog to STX1A. STX1A 
is a subunit of the SNARE complex together with VAMP2 and SNAP25 mediating fusion of 
synaptic vesicles with the presynaptic plasma membrane. The complex between STX1A, 
VAMP2, and SNAP25 has been solved structurally and shows a 4-helix bundle with a 1:1:2 
stoichiometry, respectively (PDB:1N7S (Ernst & Brunger, 2003)). This structure together with 
our predictions suggest that STX1B might bind VAMP2 in a similar way. Indeed, removal of 
the SNARE domain in STX1B led to complete loss of binding to VAMP2 (Fig 5D, S8A,B). The 
same deletion construct or removal of the extended helix in FBXO28 also reproducibly 
reduced, but did not abolish, BRET signals for the STX1B-FBXO28 interaction supporting a 
coiled-coil interface between both proteins (Fig 5E, S8C,D). We identified three pathogenic or 
likely pathogenic mutations in the SNARE domain of STX1B in ClinVar of which V216E and 
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G226R are associated with generalized epilepsy with febrile seizures plus, type 9. Testing all 
three mutations in the BRET assay we observed a drastic decrease in binding to FBXO28 for 
STX1B V216E (Fig 5F, S8C,D). However, the effect of the mutations on the interaction with 
FBXO28 does not correlate with their location at the predicted interface with FBXO28 where 
STX1B V216E for example, is not predicted to be in contact with residues of FBXO28 (Fig 
5B). This indicates that the actual predicted orientation of the two extended helices with 
respect to each other is likely incorrect. 
Do these PPIs also involve contributions from DMI interactions? The fact that the above 
mentioned deletion of the extended helix in FBXO28 or the SNARE domain in STX1B reduced 
but did not abrogate binding of both proteins to each other (Fig 5E) suggests that a secondary 
interface might exist. To test this hypothesis we designed mutations aimed at disrupting two 
predicted DMIs between STX1B and FBXO28 (named i and ii in Fig 5A). Using the BRET 
assay, we observed a decrease in BRET signal for a mutation on the helical bundle domain 
of FBXO28 predicted to bind to the N-terminal motif in STX1B (Fig S8E-H). However, mutation 
of the motif did not result in any loss of binding (Fig S8E-H). Mutations aimed at disrupting 
interface ii did not result in any loss of binding (Fig S8I-L). Interestingly, the pathogenic 
mutation R348L in FBXO28 predicted to be at interface ii seemed to increase binding to 
STX1B (Fig S8I-L). Overall, our experimental data indicate that multiple regions of FBXO28 
and STX1B may be involved in the binding but the structural details of this interaction remain 
to be elucidated. 

PEX3, PEX19, and PEX16 

Peroxisomes are single membrane-bound organelles that function in amino acid and lipid 
biosynthesis as well as in the regulation of reactive oxygen species. Peroxisomes mediate 
these functions via peroxisomal membrane proteins (PMPs) and proteins in the peroxisomal 
matrix (Islinger et al, 2018). Peroxisome homeostasis is regulated by peroxin (PEX) proteins, 
two of which, PEX3 and PEX19, were shown to have essential roles in this process. PEX3 is 
a peroxisome membrane-bound protein, which serves as a docking site for PEX19 (Fujiki et 
al, 2006). PEX19 in turn is believed to be a cytosolic carrier for PMPs to the peroxisome (Fujiki 
et al, 2006). Studies suggested two distinct interfaces between PEX19 and PEX3, one of 
which, believed to be the dominant one, was crystallized and is described in the ELM DB as 
an interaction between an N-terminal motif in PEX19 that binds to the cytosolic alpha-helical 
domain of PEX3 (PDB:3MK4, (Schmidt et al, 2010)). A monomeric model of PEX19 predicted 
by AF shows a disordered N-terminal tail with six isolated alpha helices, the first one 
corresponding to the known PEX3-binding motif. AF is known for its tendency to predict the 
bound conformation of disordered regions in their monomeric state, suggesting that at least 
some of the other isolated helices might represent sites for interaction. Indeed, AF interface 
predictions for various isolated PEX19 fragments when paired with the PEX3 domain identified 
highly confident interface predictions involving either the known PEX3-binding motif or helix 3, 
5, or 6 (Fig 5G). The interaction between the known motif in PEX19 and the cognate PEX3 
pocket is highly similar to the solved structure (Fig S9 A,B). Interestingly, isolated helix 5 and 
6 are predicted to dock to a distal site on PEX3 while helix 3 is predicted to bind to the known 
docking site for the PEX19 N-terminal motif. When using the full disordered N-terminal tail of 
PEX19 (1-170), AF predicts the known PEX3-binding motif and helix 4 and 5 to dock into the 
primary and secondary pocket, respectively (Fig 5H). In Burke et al, AF predictions using both 
full length proteins resulted in a less confident complex prediction (average interface 
pLDDT=72 compared to 87) with helix 4 and 5 being docked differently into the second binding 
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site (Burke et al, 2023). We introduced mutations in the known PEX19 motif and PEX3 pocket 
(Fig S9A) and found, using the BRET assay, that F29K in the known PEX19 motif weakens 
but clearly maintains binding, supporting the notion of a second binding site (Fig 5I, S9C,D) 
while also highlighting the sensitivity of the BRET assay. Unfortunately, L107D in PEX3 did 
not express while T90Q in PEX3 did not alter binding to PEX19 (Fig 5I, S9C,D). 
 
PEX16 was suggested to serve as an integral membrane-bound receptor for PEX3 (Matsuzaki 
& Fujiki, 2008). However, from a structural point of view, the interaction between PEX3 and 
PEX16 is less well understood. The monomeric AF model of PEX16 shows a helical fold, 
which could in its entirety be transmembrane (TM). Between the putative TM helix 4 and 5 
there is a large loop (132-214), which was predicted by AF with very high confidence to bind 
to a third pocket on the PEX3 domain, opposite to both binding sites mentioned earlier for 
PEX19 (Fig 5G,H,J). Of note, different fragments of this loop as well as the entire PEX16 were 
repeatedly predicted to bind in similar modes to PEX3 further increasing the confidence in this 
prediction. Encouraged by these results, we submitted all three full length PEX sequences for 
complex prediction to AF and obtained a model that supports simultaneous binding of PEX16 
and PEX19 to PEX3 (Fig S9E). We individually mutated two residues in the PEX16 loop, 
deleted the loop in its entirety (del162-192), and mutated two residues on PEX3 (highlighted 
in Fig 5J). Unfortunately, higher expression levels of PEX16 seem to trigger degradation of 
PEX3 (Fig S9F), which we did not observe for the same constructs when co-expressed with 
PEX19 (Fig S9G). As a consequence, we could not obtain titration curves and BRET50 
estimates but obtained reliable BRET signals for lower PEX3-PEX16 DNA transfection ratios 
showing that the deletion as well as both PEX3 mutants significantly decreased binding to 
PEX16 (Fig 5K, S9H). Of note, these PEX3 mutants (R54S and E272R) did not alter binding 
to PEX19 showing that the overall structural integrity of PEX3 was not perturbed by these 
mutations (Fig 5I, S9D). 
Combining all structure prediction and experimental results with previously published work on 
the three PEX proteins, a model for a trimeric complex emerges (Fig 5L) where PEX16 fully 
inserts into the peroxisome membrane via a fold that consists of seven helices (residues 19-
286) with its N-terminal end being cytosolic and its C-terminal end protruding into the 
peroxisome. The extended loop between TM helix 4 and 5 reaches into the cytosol and docks 
onto PEX3, which is further anchored into the peroxisomal membrane via its N-terminal TM 
helix (residues 13-45). PEX19 docks onto PEX3, opposite to where PEX16 is bound, via two 
interaction surfaces - one corresponding to the known PEX3-binding motif in PEX19 and a 
second one likely corresponding to a novel motif (residues 99-146) docking at a hitherto 
unknown second binding site on PEX3 for PEX19. This model explains how PEX3 is anchored 
to the peroxisomal membrane via PEX16 and how PEX3 can bind very tightly PEX19, which 
can then deliver PMPs to the peroxisome. Mutations in any of the three PEX proteins are 
associated with severe developmental phenotypes referred to as peroxisome biogenesis 
disorders (Fujiki et al, 2022). The vast majority of the around 150 mutations annotated for the 
three proteins are uncharacterized (Henrie et al, 2018), dozens of which fall into the predicted 
interfaces. The structural models obtained from this work can inform future studies aimed at 
characterizing the effects of these mutations. 

SNRPB and GIGYF1 

SNRPB is one of seven Sm proteins that together form a heptameric ring, which binds small 
nuclear RNA. They form the core for four of five small nuclear ribonucleoprotein complexes 
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that mediate mRNA splicing. The heptameric ring is formed via interactions between the LSM 
domains that occur at the N-terminus of each Sm protein. Sm proteins are generally small 
(less than 100 amino acids) with the majority of them only consisting of the LSM domain. 
SNRPB’s protein architecture is special in that it contains a disordered C-terminal tail of around 
140 residues. This disordered region is particularly rich in prolines and glycines and has been 
shown previously to bind to the OCRE domain of RBM5 (Mourão et al, 2016). In HuRI, an 
interaction was detected between SNRPB and GIGYF1. GIGYF proteins are associated with 
functions such as mRNA degradation, translational repression, mRNA decapping, and 
miRNA-mediated gene silencing (Sobti et al, 2023). GIGYF1 contains a GYF domain. GYF 
domains are generally known to bind proline-rich motifs as also annotated in the ELM DB 
(LIG_GYF). However, current motif annotations denote conserved positively charged residues 
surrounding a stretch of four consecutive prolines. This pattern does not match the SNRPB 
protein sequence. AF predicted with high confidence multiple disordered regions in the C-
terminal region of SNRPB to bind to the GYF domain of GIGYF1 (Fig 6A,B). Interestingly, 
these putative motifs repeatedly displayed the sequence PPPGM(R). AF also predicted with 
similar confidence binding of the LSM domain to various fragments in the long disordered 
regions of GIGYF1 (Fig 6A). These regions did not display any common sequence pattern. 
Comparison with a solved structure of the Sm complex (PDB:4WZJ, (Leung et al, 2011)) 
revealed that these sequences were docked onto the LSM domain where neighboring LSM 
domains of other Sm proteins would bind SNRPB as part of the heptameric Sm complex (Fig 
6C). We thus conclude that these predictions are likely wrong. We focused on interface 
predictions involving the GYF domain of GIGYF1 and the C-terminal region of SNRBP. During 
the course of these studies, a structure was published (PDB:7RUQ, Sobti et al, 2023) showing 
binding of the GYF domain of GIGYF1 to a motif of sequence PPPGL of the protein TNRC6C 
confirming the binding mode predicted by AF where a hydrophobic residue (M or L) inserts 
into a hydrophobic pocket and where the proline residues contact the surrounding domain 
surface (Fig 6B,D). Of note, this hydrophobic pocket does not exist in the previously solved 
structure of the GYF domain of CDBP2 binding to a proline-rich peptide (PDB:1L2Z, (Freund 
et al, 2002)). Encouraged by these findings, we designed various deletion constructs of 
SNRPB that would gradually remove more and more of the repeated proline-rich motif and 
observed, using the BRET assay, that these deletion constructs gradually decreased binding 
to GIGYF1 (Fig 6E, S10A,B). We also mutated the GYF domain pocket and found that W498E 
but not L508F would decrease binding to SNRPB (Fig 6E,F, S10A-D). This was further 
corroborated in a co-immunoprecipitation experiment, where endogenous GIGYF1 interacted 
with HA-tagged full-length SNRPB (Fig 6G). This interaction appeared less pronounced upon 
truncation of the C-terminal proline-containing region of SNRPB (Fig 6G). This further 
suggests that both proteins interact with each other in cells and that this interaction is stabilized 
by the predicted interface.  

Discussion 
In this study we have investigated the ability of AF to model domain-motif interactions on a 
large scale using as reference annotations from the ELM DB. We were interested on the one 
hand in a robust assessment of AF performance for this modeling task, and on the other hand 
in our ability to reveal new insights on characterized as well as uncharacterized DMIs and the 
PPIs that they reflect. Our study allowed us to line out successes as well as the limitations of 
the currently leading Deep Learning tool AF. Using minimal interacting regions of curated DMI 
structures from the ELM DB, we obtained sensitivity estimates for AF of around 80%, which is 
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similar compared to previously published work (Tsaban et al, 2022; Johansson-Åkhe et al, 
2021). However, contrary to some earlier reports, we did not observe any significant 
differences in AF performance between various motif characteristics (Tsaban et al, 2022; 
Akdel et al, 2022). Our DMI benchmark dataset almost exclusively consisted of structures that 
AF has seen in the training process. Interestingly, benchmark studies done with unseen 
structures reported similar sensitivities (Bret et al, 2023) indicating that AF is not strongly 
biased towards structures it has seen before. We thoroughly investigated AF’s FPR using 
random domain-motif pairs and found it to be around 20%. However, asking AF to discriminate 
binders from non-binders when motif sequences carried one disruptive mutation, we found 
that prediction accuracies were close to random. This points to an important limitation in AF’s 
ability to predict binding specificities and is in line with previous reports on AF’s inability to 
predict the effect of mutations (Buel & Walters, 2022). Comparison of different metrics to 
discriminate good from bad structural models using either minimal interacting fragments or 
extensions revealed the average interface pLDDT for DDI models and the motif interface 
pLDDT for DMI models to be the most robust and highest performing metric. However, when 
manually inspecting AF predictions we found it useful to consider multiple metrics, suggesting 
that in the future a combination of different metrics might be even more powerful to 
discriminate good from bad structural models. Interestingly, the number of residues or atoms 
predicted to be in contact with each other was poorly predictive, in contrast to a previous report 
(Bryant et al, 2022), confirming our observations that AF will always put both chains in contact 
with each other to create atomic contacts, and from visual inspection alone it is very 
challenging to tell good from bad structural models apart. We applied AF to annotated DMI 
instances from the ELM DB for which information on the minimal interacting fragments exists 
but no structural details, and obtained highly confident structural models for 21 out of 30 motif 
classes, one of which we experimentally validated. AF predictions can thus further enrich 
annotations for motif classes from the ELM DB. More work is needed to develop benchmark 
datasets of coiled-coil and disorder-disorder interfaces to also evaluate AF’s performance for 
these modes of binding. 
 
We extensively explored the influence of protein fragment length on AF’s performance and 
found that slight extensions of minimal motif sequences can improve prediction accuracies. 
Inspection of individual cases revealed novel information on important motif sequence context 
that was so far missing in corresponding motif entries at the ELM DB. Slightly longer motif 
sequences seem to enable AF to build multiple sequence alignments for these fragments, 
thereby improving prediction accuracies in some cases. However, longer disordered 
fragments or fragments containing ordered and large disordered regions generally decrease 
AF prediction accuracies as also reported in a recent preprint (preprint:Bret et al, 2023). 
Furthermore, optimal cutoffs for various metrics such as the model confidence decreased 
when using longer protein fragments, making them less robust for interface prediction with AF. 
When evaluating performance differences for longer and shorter protein fragments we 
identified three DMI pairs involving the motif classes DEG_APCC_KENBOX_2, LIG_Pex14_3, 
and LIG_GYF, for which, during fragment extension, a second known motif occurrence was 
added to the fragment. This second motif was selected by AF during interface prediction, 
displacing the original motif and leading to a high RMSD score. We removed these instances 
from the dataset when evaluating AF’s performance on fragment extension but they point to 
biologically correct variability in AF prediction outcomes due to existing multivalency of many 
DMIs in protein interactions. Other work suggested that AF is able to select the stronger binder 
among two motif occurrences (Chang & Perez, 2023), which might at least in some cases 
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guide AF motif selections. However, in other cases this motif preference might also hinder 
discovery of multivalency in PPIs. For example, the use of smaller protein fragments for the 
protein pair SNRPB and GIGYF1 enabled the discovery of a proline-rich repeat motif in 
SNRPB. 
 
In comparison to predictions made using full length proteins (Burke et al, 2023) we found that 
protein fragmentation increased the probability of obtaining a high confident interface 
prediction, especially for cases involving proteins with long disordered regions such as 
GIGYF1. For smaller and more globular proteins like the PEX proteins studied above, full 
length predictions can identify the right binding sites but these can be further substantiated by 
running additional predictions with smaller fragments. The fragmentation approach increases 
the number of prediction runs per protein pair from one to a couple hundred, depending on 
the length and modularity of both proteins. The vast majority of these fragment pairs should 
not interact. With a FPR of 20%, this means that in absolute terms more actual non-interacting 
fragment pairs will result in a prediction that makes the cutoff compared to actual interacting 
fragments. A big challenge is thus to identify likely correct interface predictions among all those 
that made the cutoff. This is also illustrated by the prediction results that we obtained for the 
seven protein pairs that we followed up experimentally. Clearly, AF’s general limited specificity 
contributes to these false predictions. We observed that additional sources of error can arise 
from exposed intramolecular binding sites resulting from fragmentation, incorrectly designed 
boundaries of folded regions, and docking of protein fragments into enzymatic pockets of 
metabolic enzymes or sites for metal ion, DNA, or RNA binding. AF’s high sensitivity with 
respect to intramolecular binding sites and wrongly fragmented folded regions will make it 
particularly hard to fully automate the fragment design process. Despite these challenges we 
found that recurrent interface predictions from overlapping fragments can help gain confidence 
in predictions, as also highlighted in a recent preprint (preprint:Bronkhorst et al, 2023), since 
we rarely observed this recurrence for likely wrong predictions.  
 
Given the reported uncertainties in AF predictions, even for high confidence cutoffs, 
experimental validation is essential. The BRET assay used here has been shown in previous 
studies to be sensitive enough to quantify weakening of binding introduced by point mutations 
and to detect motif-mediated PPIs (Ebersberger et al, 2023; Trepte et al, 2018; Mo et al, 2022). 
Using the BRET assay, we were able to detect 11 out of 28 PPIs from the HuRI dataset. This 
retest rate is actually higher compared to retest rates of gold standard PPI datasets used in 
the past to benchmark various binary PPI assays including this BRET assay, attesting the 
overall detectability of PPIs from HuRI (Braun et al, 2009; Trepte et al, 2018; Choi et al, 2019). 
Further increases in retest rate can be obtained by testing all possible combinations of N- and 
C-terminal fusions to the NanoLuc luciferase and mCitrine (preprint:Trepte et al, 2021; 
preprint:Trepte et al, 2023). Comparison of BRET50 estimates from titration curves is 
conceptually the best way to assess differences in binding strengths between PPIs. However, 
in some cases we could not observe BRET signal saturation or the mode of binding deviated 
from a classical 1:1 stoichiometry, and thus, we were unable to obtain reliable BRET50 
estimates. In these cases, differences in binding strength between wildtype and mutant 
constructs can be assessed using BRET measurements at fixed sub-saturation 
acceptor/donor transfection ratios under conditions where mutant and wildtype proteins 
expressed equally. Monitoring the expression levels of mutant constructs is important to rule 
out loss of binding because of a destabilization of the protein. However, we cannot exclude 
the possibility that some expressed mutants might still be partially unfolded or mislocalized 
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and thus, some loss of binding detected in our study might be unspecific and not the result of 
a specific perturbation of the predicted interface. Furthermore, preservation of binding 
observed for some other mutants at the predicted interface might result from the mutations 
not being disruptive enough and thus, do not necessarily disprove the predicted interface. All 
mutations in this study were designed manually from inspection of the structural models. 
Mutation design could be improved in future studies using tools that predict the effect of 
mutations on protein folding or binding. In addition, using deletion constructs can be 
informative as seen for PEX16, but are also more likely to alter expression levels (i.e. for 
STX1B and FBXO28) or the distance of the donor and acceptor to each other and thus, make 
BRET comparisons more problematic. 
 
Despite these limitations, we were able to assess the validity of seven interface predictions 
using experimentation. We discovered a likely novel DMI type that mediates binding between 
PEX3 and PEX16, and proposed a model for how PEX3, PEX16, and PEX19 form a trimeric 
complex at the peroxisomal membrane. We also validated a variation of the LIG_GYF motif 
class in SNRPB that mediates binding to GIGYF1 thereby potentially connecting mRNA 
splicing with posttranscriptional control mechanisms. These results confirm in principle that 
AF is able to predict novel interface types and that it can be used to extend existing interface 
type definitions. However, our experimental results also highlight clear limitations of AF 
predictions. Our data suggests that FBXO28 and STX1B as well as STX1B and VAMP2 
interact via coiled-coil interfaces but likely at higher stoichiometries and different 
conformations than predicted. We confirmed the binding pocket in ESRRG but not the 
predicted interfaces in PSMC5 and we could not substantiate interface predictions for TRIM37 
and PNKP. Highly confident interface predictions were obtained for seven additional PPIs that 
we unfortunately could not further explore experimentally because the PPIs either retested as 
negative in the BRET assay or because we could not obtain wildtype, full length clones. In 
summary, we provided experimental evidence and structural information for PPIs whose 
disruption is likely associated with neurodevelopmental disorders. This information can be 
explored in future studies aimed at delineating potential molecular mechanisms causing 
disease. Our study furthermore laid out clear limitations, perspectives, and future needs in AI-
based structure prediction to bring us closer to a fully structurally annotated human protein 
interactome. 
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Materials and Methods 

Selection of structures for DMI benchmark dataset 

To gather a list of ELM classes with structural evidence and annotate their minimal interacting 
fragments, we downloaded a dataset of solved structures of all ELM classes from ELM DB on 
08.10.2021 (ELM class version 1.4) for instances that are annotated as true positives (Kumar 
et al, 2022). The structures were subject to a series of manual inspections to check their 
validity for further analysis. First, since AlphaFold can only model the 20 standard amino acids, 
we excluded any structures with post-translational modifications in the motif. Structures that 
do not solve all of the residues in a motif as curated by ELM DB were excluded. Third, we 
restrict our studies to only binary interactions, so DMIs that require more than two proteins to 
form the binding interface were excluded. Likewise, DMIs with only intramolecular interaction 
evidence were excluded. We manually annotated the boundaries of the domains by visual 
inspection of the structures. After this filtering, we identified 136 structures from 136 different 
ELM classes that formed our DMI benchmark dataset (Table S1). 

Selection of structures for the DDI benchmark dataset 

We randomly selected 100 pairs of Pfam domain types that were described in the 3did 
resource (Mosca et al, 2014) to be in contact with each other in solved structures in the Protein 
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Data Bank (PDB). We manually inspected all PDB entries listed to contain contacts between 
instances of a given Pfam domain pair until we found one that we considered a genuine 
domain-domain interaction. These decisions were primarily based on the number of atomic 
contacts observed and the validity that two folded domains were interacting with each other. 
Out of the 100 selected Pfam domain pairs, we identified 58 DDI types and 58 corresponding 
approved DDI structural instances that we selected for the DDI benchmark dataset. The 
sequences of the minimal interacting domain regions were manually annotated by visual 
inspection of the structures and used for prediction. A more detailed description of the curation 
procedure and information on the pairs will be soon published elsewhere (Geist et al in 
preparation). 

Generation of random reference sets with minimal interacting regions 

Mutating motif sequences 
Key conserved residues of the motifs in the DMI benchmark dataset were identified 
computationally using the regular expression of the corresponding ELM class in the ELM DB 
and SLiMSearch (Krystkowiak & Davey, 2017). The defined positions are any positions in the 
regular expression that are not wildcards. To mutate the key residues to the ones with opposite 
physico-chemical properties, we substituted one or two key residues with the ones that are of 
the largest Miyata distance (Miyata et al, 1979) (Table S2). 
 
Randomizing pairings of known domain motif interfaces 
To simulate non-binding domain-motif pairs, we randomized the pairings of known domain 
motif interfaces. As some domain types can bind to motifs from distinct ELM classes, we 
manually checked that the randomized pairings did not coincide with actual domain-motif 
interface types (Table S2). 
 
Randomizing pairings of known domain-domain interfaces 
The pairings between known domain-domain interfaces were randomized to form the random 
reference set for DDIs (Table S2). 

Generation of positive DMI reference set with fragment extensions 

Among the 136 solved structures that we selected previously, we further filtered for structures 
that consist of only human proteins. To test the potential effect of extension on DMIs that were 
predicted with different accuracies in their minimal forms, we selected 12 DMI types from the 
correct sidechain category, 8 DMI types from the correct backbone category and 11 DMI types 
from the correct pocket category as determined using the motif RMSD calculation. In total, 31 
DMI types were selected for extension. Three additional DMI types were originally selected 
but later on discarded because they contained secondary motif occurrences complicating data 
analysis. The extensions were done on the canonical sequence of the proteins used to solve 
the structure. Motif extension 1 extended the motif sequence at both N and C termini by n 
residues where n is the length of the known motif. Motif extension 2 further extended the motif 
sequence by another n residues at both termini. Motif extension 3 and 4 each extended the 
motif sequence by 2n residues at both termini. Motif extension 5 extended the motif sequence 
by including neighboring domains and motif extension 6 used the full-length protein sequence. 
On the domain side, domain extension 1 extended the domain sequence to include the 
disordered regions N- and C-terminal of the binding domain until its neighboring domain(s) 
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boundaries. Domain extension 2 included the sequence region of the neighboring domains 
and domain extension 3 used the full-length protein sequence. In cases where the known motif 
or binding domain is at the C terminus, we extended the motif or domain sequence on only 
the N terminus and vice versa. There were some cases where the last extension steps, motif 
extension 6 and domain extension 3, extended the protein minimally (less than 20 residues N 
or C terminal to the previous extension step). These cases were excluded from the analysis. 
The dataset of extended DMIs is in Table S4. In total, 709 fragment pairs were submitted to 
AlphaFold. From these, 632 and 616 were successfully predicted by AF v2.2 and v2.3, 
respectively. 

Generation of random DMI reference set with fragment extensions 

To generate a random reference set using the extensions, we randomized the pairings of the 
34 DMI types that we selected for extensions and paired their extensions for prediction. Motif 
extension 6 and domain extension 3 were excluded from the pairing. The dataset of DMIs with 
random pairings and their extensions can be found in Table S5. In total, 612 predictions were 
generated, among which 566 and 522 predictions were successfully predicted by AF v2.2 and 
v2.3, respectively. Since motif extension 6 and domain extension 3 were excluded from the 
random reference set using the extensions, we also excluded them from the positive reference 
set extensions during ROC analysis. This resulted in 563 and 540 predictions from the positive 
reference set extensions for AF v2.2 and v2.3, respectively. 

Selection of reference datasets for comparison of AF v2.2 with v2.3 

All predictions for the minimal DMIs and the random DMIs involving minimal fragments were 
successfully predicted by both versions of AF. Some extensions from the positive reference 
set were not successfully predicted by AF v2.2 and v2.3 due to failure from HHblits. To 
compare AF v2.2 with v2.3, we used only predictions that were successfully predicted by both 
versions of AF. This resulted in 616 predictions from the extensions of the positive reference 
set. 

Selection of DMI structures and randomization to evaluate specificity of fragmentation 
approach 

Among the 34 DMIs selected for extension, we further selected 20 DMIs and randomized their 
pairing to form random domain-motif protein pairs. These random protein pairs were subject 
to the fragmentation approach and generated 11045 fragment pairs of which 11044 resulted 
in an AlphaFold prediction. The information on random protein pairs, their prediction result and 
statistics were stored in Table S7. 

AlphaFold versions and runs 

We used a local installation of AlphaFold Multimer version 2.2.0 and 2.3.0 (Evans et al, 2021) 
for all protein complex predictions with the following parameters: 
--max_template_date=2020-05-14 
--db_preset=full_dbs 
--use_gpu_relax=False 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 9, 2023. ; https://doi.org/10.1101/2023.08.07.552219doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.07.552219
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

For every AlphaFold run, five models were predicted with single seed per model by setting the 
following parameter: 
--num_multimer_predictions_per_model=1 
 
The databases queried during AlphaFold predictions were specified following the instructions 
from the github page of AlphaFold 
(https://github.com/deepmind/alphafold#running-alphafold): 
For running AlphaFold Multimer v2.2, the following databases were queried: 
--bfd_database_path=bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt 
--mgnify_database_path=alphafold_v220_databases/mgy_clusters_2018_12.fa 
--obsolete_pdbs_path=alphafold_v220_databases/pdb_mmcif/obsolete.dat 
--pdb_seqres_database_path=alphafold_v220_databases/pdb_seqres/pdb_seqres.txt 
--template_mmcif_dir=alphafold_v220_databases/pdb_mmcif/mmcif_files 
--uniprot_database_path=alphafold_v220_databases/uniprot/uniprot.fasta 
--
uniclust30_database_path=alphafold_v220_databases/uniclust30/uniclust30_2018_08/unicl
ust30_2018_08 
--uniref90_database_path=alphafold_v220_databases/uniref90/uniref90.fasta 
 
For running AlphaFold Multimer v2.3, the following databases were queried: 
--
bfd_database_path=alphafold_v230_databases/bfd/bfd_metaclust_clu_complete_id30_c90_
final_seq.sorted_opt 
--mgnify_database_path=alphafold_v230_databases/mgnify/mgy_clusters_2022_05.fa 
--obsolete_pdbs_path=alphafold_v230_databases/pdb_mmcif/obsolete.dat 
--pdb_seqres_database_path=alphafold_v230_databases/pdb_seqres/pdb_seqres.txt 
--template_mmcif_dir=alphafold_v230_databases/pdb_mmcif/mmcif_files 
--uniprot_database_path=alphafold_v230_databases/uniprot/uniprot.fasta 
--uniref30_database_path=alphafold_v230_databases/uniref30/UniRef30_2021_03 
--uniref90_database_path=alphafold_v230_databases/uniref90/uniref90.fasta 
 
To test the effect of template use on prediction accuracy, the following parameter setting was 
used to switch off the use of templates during the prediction: 
--max_template_date=1950-01-01 
 
For the fragmentation approach, the multiple sequence alignments (MSAs) of a given protein 
fragment can be reused in subsequent runs where the same fragment is involved. The MSAs 
were first moved to the prediction output folder and the following parameter was added to 
enable the reuse of MSAs. 
--use_precomputed_msas=True 
 
For efficient computing, we segregated the MSA generation part by using only the CPUs and 
the model fitting part using the GPUs. 

Calculation of metrics for structural models 

Motif RMSD 
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We used the software PyMOL (TM) Molecular Graphics System, Version 2.5.0. Copyright (c) 
Schrodinger, LLC., for the superimposition of AlphaFold models with corresponding solved 
structures. First, we used the align command to align the domain chain in AlphaFold models 
with the domain chain in the solved structure. Then, we used the rms_cur command to 
calculate the all-atom RMSD between the motif chain in AlphaFold models and the motif chain 
in the solved structure. To ensure that the RMSD calculation was done based on all atom 
identifiers and without any outlier rejection refinement, the arguments of the rms_cur 
command, matchmaker and cycles, were set to 0. 
 
DockQ 
The calculation of DockQ scores of AlphaFold models was done in reference to their solved 
structures using the code available on the github repository of DockQ 
(https://github.com/bjornwallner/DockQ, (Basu & Wallner, 2016). 
 
pDockQ 
The calculation of pDockQ of AlphaFold models was done by adapting the code available on 
the github repository from the Elofsson lab (https://gitlab.com/ElofssonLab/FoldDock/-
/blob/main/src/pdockq.py, (Bryant et al, 2022)). The pDockQ score is created by fitting a 
sigmoidal curve to the DockQ scores of a series of AlphaFold predicted models. The score 
takes into account the number of interface contacts as well as their pLDDT scores. Of note, 
the calculation of pDockQ score takes Cβs (Cα for glycine) from different chains within 8 Å 
from each other as interface contacts which is different from our interface definition (see the 
subsection below Domain chain and motif chain interface pLDDT and average interface 
pLDDT).  
 
iPAE 
The calculation of iPAE of AlphaFold models was done by adapting code available on the 
github repository https://github.com/fteufel/alphafold-peptide-receptors/tree/main (Teufel et al, 
2023). The iPAE is the median predicted aligned error at the interface. The authors consider 
residues in contact if their distance is below 0.35nm (3.5Å). The iPAE score could not be 
calculated for models generated by AlphaFold Multimer version 2.3.0 due to JAX dependency 
of the pickle files generated by AlphaFold Multimer version 2.3.0. 
 
Model confidence 
The model confidence of AlphaFold models was extracted from the ranking_debug json file. 
The model confidence is a weighted combination of pTM and ipTM to account for both intra- 
and interchain confidence: 

𝑚𝑜𝑑𝑒𝑙	𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒	 = 	0.8	 ∙ 𝑖𝑝𝑇𝑀	 + 	0.2	 ∙ 𝑝𝑇𝑀 
 
Domain chain and motif chain interface pLDDT and average interface pLDDT 
Since AlphaFold conveniently stores the pLDDT confidence measure for each residue in the 
B-factor field of the output PDB files, the pLDDT of residues at the interface was parsed from 
the output PDB files of AlphaFold. Residues at the interface are defined as those that have at 
least one heavy atom that is less than 5Å away from any heavy atom of the other chain 
(calculated using the PyMOL API). The pLDDT of the residues at the interface from the domain 
chain and motif chain was averaged to compute the domain chain and motif chain interface 
pLDDT, respectively. The pLDDT of all the residues from both chains was averaged to 
compute the average interface pLDDT. 
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Residue-residue and atom-atom contacts 
Following the interface definition above, the number of unique residue-residue and atom-atom 
contacts were also quantified as measurements to assess AlphaFold models. 

Quantification of motif properties 

Motif hydropathy score and symmetry score 
By referring to the Kyte-Doolittle hydrophobicity scale, (Kyte & Doolittle, 1982) the hydropathy 
scores of the amino acids in a given motif were summed and averaged to compute the average 
hydropathy of the motif. The average motif symmetry score was computed by taking the sum 
of the absolute difference of hydropathy scores between motif position n and n - motif length 
+ 1 and division of this sum by half of the motif length: 
 

𝑃𝑒𝑝𝑡𝑖𝑑𝑒	𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦	𝑠𝑐𝑜𝑟𝑒 = 	
∑ |(𝐻! −	𝐻"#!$%)|&
!'%

𝑎
 

 
where x is the length of the motif and a is the floor division of x by 2. 
 
Motif probability 
The motif probability reflects the degeneracy of a given motif class as quantified by its regular 
expression that is annotated in the ELM DB. The motif probability was retrieved from the ELM 
DB version 1.4. 
 
Secondary structure elements of motifs 
We extracted the secondary structure elements of motifs using the PyMOL API. In cases 
where the motif adopts partial secondary structure, such as loop-helix-loop or loop-strand-
loop, they are treated as helical or strand, respectively. 

Selection of motif classes from ELM DB without annotated structural instances and 
prediction with AlphaFold 

By querying the ELM DB for all ELM classes, we retrieved a list of ELM classes and the 
number of instances with a structure solved (column #instances_in_PDB). We filtered for ELM 
classes with 0 instances_in_PDB and selected 205 instances out of the filtered ELM classes 
for AF prediction. The ELM instances were extended at both N and C termini by n residues 
where n is the length of the ELM instance, according to the benchmarking results. The minimal 
binding domains of the ELM instances were detected in the interaction partner using Pfam 
HMMs (Mistry et al, 2021). As the domain boundaries detected by Pfam HMMs could be 
inaccurate, we also extended the domain sequence at the N and C terminus by 20 residues 
to ensure that the whole folded region was covered. The predictions were performed using AF 
version 2.3.0. To select a subset of these motif classes, where we can do experimental testing, 
we also used the InParanoid resource (Persson & Sonnhammer, 2023) to map ELM instances 
where both proteins are from mouse to their human orthologs. To verify that they indeed do 
not have structural homologues in the PDB, we both used the SIFTS mapping (Dana et al, 
2019) between the Pfam domain in ELM and the PDB and also looked at the ELM classes 
that were listed as homologs on the ELM website. 
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Evaluation of effect of fragment extensions on AF prediction accuracies 

We superimposed the AF models generated with DMI extensions onto the corresponding 
solved DMI structures to quantify AF prediction accuracy using motif RMSD calculations. To 
this end, we aligned the two structures on their minimal binding domains and calculated the 
all-atom RMSD between the minimal motif in the extension AF model and the minimal motif in 
the solved structure. To determine potential differences in DMI prediction accuracy when using 
minimal versus extended protein fragments, we computed the log2 fold change of the all-atom 
motif RMSD before and after extension. 

𝐹𝑜𝑙𝑑	𝑐ℎ𝑎𝑛𝑔𝑒	𝑖𝑛	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 𝑙𝑜𝑔((
𝑎𝑙𝑙	𝑎𝑡𝑜𝑚	𝑅𝑀𝑆𝐷	𝑚𝑜𝑡𝑖𝑓)*!*)&+	-./
𝑎𝑙𝑙	𝑎𝑡𝑜𝑚	𝑅𝑀𝑆𝐷	𝑚𝑜𝑡𝑖𝑓0"10!202	-./

)	 

Fragment design and fragment pairing for fragmentation approach 

We first inspected the monomeric structural models from the AlphaFold database (Varadi et 
al, 2022) of both interacting proteins to determine the boundaries of their ordered and coiled-
coil regions, which were also treated as “ordered”. All regions that were not annotated as 
ordered were annotated as disordered. In some cases, an extended loop with low pLDDT can 
be found within an ordered region. As they can also potentially carry a motif or mediate 
interactions in another way, these regions were also annotated as disordered in addition to 
their annotation as being part of a larger ordered region. The disordered regions of the proteins 
were fragmented into fragment sizes of 10, 20 and 30 residues. To allow AF to sample 
continuous sequences, we also generated another set of fragments of same sizes that overlap 
with the previous fragments by sliding the sequence by half the size of the fragment. The 
unfragmented disordered regions, as well as their fragments, from one protein were then 
paired with the ordered regions from its interacting partner and vice versa for prediction. The 
ordered regions from both proteins were also paired for prediction. 

Selection of NDD proteins 

A list of NDD genes was assembled using whole exome and whole genome sequencing 
studies of cohorts of NDD patients from Gene4Denovo (Zhao et al, 2020) and Deciphering 
Developmental Disorders (DDD) study (Firth et al, 2011), respectively. From Gene4Denovo, 
we selected genes linked to autism-spectrum disorders (ASD), intellectual disability (ID), 
epilepsy (EE), undiagnosed developmental disorders (UDD) and NDDs in general. Genes with 
non-coding mutations as well as genes with a false discovery rate (FDR) >= 0.05 were 
excluded. Similarly, in the DDD study, genes associated with developmental disorders with a 
neurological component, as well as genes found to be mutated in at least three children with 
NDDs (labeled as confirmed genes) were retained. The final list included 984 NDD-risk genes. 
We filtered the HuRI network (Luck et al, 2020) for interactions mediated exclusively by 
proteins from this NDD gene list. Self-interactions were excluded. Since our fragmentation 
approach generates many fragments, we did not consider PPIs involving proteins that are 
more than 1500 amino acids in length. 

Manual inspection of interface predictions for NDD-NDD PPIs 

Paired fragments from NDD-NDD PPIs were predicted using AF version 2.2 and the prediction 
results are stored in Table S8. We manually inspected all NDD-NDD PPIs that obtained at 
least one structural model with either an average motif interface pLDDT of ≥ 70 for the 
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disordered fragment or with a model confidence of ≥ 0.7 for ordered-ordered fragment pair 
interface predictions. We inspected the ranked_0 models for all fragment pairs that met the 
above cutoffs. For every NDD-NDD PPI we used Interactome3D (Mosca et al, 2013) and PDB 
database searches (https://www.rcsb.org/ (Berman et al, 2000)) to identify whether a structure 
already existed for this PPI. In our evaluation of the structural models we also considered if a 
certain interface was recurrently predicted for different overlapping fragments because this 
usually hints at increased confidences for the correctness of the interface prediction. We 
furthermore explored the number and kind of residue-residue contacts predicted by AF by 
visual inspection of the structural models using PyMol. We searched for functional annotations 
and existing structures for the monomers using the PDB, ProViz (Jehl et al, 2016) , SMART 
(Letunic et al, 2021), and the scientific literature to identify enzymatic pockets or binding 
interfaces for DNA, RNA, or metal ions. Observations and justifications for the final evaluation 
of the predictions for every NDD-NDD PPI are provided in Text S1. 

Softwares used 

We used the software PyMOL (TM) Molecular Graphics System, Version 2.5.0. Copyright (c) 
Schrodinger, LLC., for the visualization and superimposition of AlphaFold models.  
 
All codes were written in Python3 and analyses were done using Jupyter notebooks. We used 
the Python libraries pandas (McKinney, 2010) for data analysis, and Matplotlib (Hunter, 2007) 
and seaborn (Waskom, 2021) for data visualization. ROC and PR statistics were calculated 
using the Python package sci-kit learn (Pedregosa et al, 2012). 

Cell line culture and maintenance 

HEK293 cells were grown and maintained in DMEM (Thermo Fisher), supplemented with 10% 
FBS (PAN-Biotech), 2 mM glutamine (Thermo Fisher) and 1% penicillin–streptomycin 
(Thermo Fisher). Cells were incubated at 37°C with 5% CO2 . Subcultivation was performed 
with 1 ml of 0.05% trypsin every 2–3 days for up to 40 passages. For each passage 1-2x106 
cells were seeded in T25 flasks (Sarstedt). Then, new cells were thawed from stocks 
containing 2×106 cells in 1 ml of growth medium, supplemented with 10% DMSO (Sigma). 
Every 3 months cells were checked for mycoplasma contamination using a PCR test (Table 
S9). 
 
Plasmid construction 
Standard controls 
The donor and acceptor vectors pcDNA3.1-cmyc-NL-GW (Addgene plasmid ID #113446), 
pcDNA3.1-GW-NL-cmyc (Addgene plasmid ID #113447), pcDNA3.1 GW-His3C-mCit, 
pcDNA3.1 mCit-His3C-GW as well as controls pcDNA3.1-NL-cmyc (Addgene plasmid ID 
#113442), pcDNA3.1-PA-mCit (Addgene plasmid ID #113443) were kindly provided by the 
Wanker Group (Max-Delbrück-Centrum für Molekulare Medizin, Germany) (Table S10). By 
default we cloned all ORFs of interest into N-terminal NL and mCit fusion destination vectors 
and occasionally also transferred ORFs into C-terminal fusion vectors if N-terminal fusions did 
not result in sufficient BRET signals but the interaction was of high interest to this study and 
predicted interfaces were closer to the C-terminus (Table S11). Trepte et al have shown that 
testing protein pairs in different configurations increases detection rates while maintaining low 
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false detection rates and that BRET signals are higher if fusions are close to the actual 
interaction interface (Trepte et al, 2018; preprint:Trepte et al, 2021; preprint:Trepte et al, 2023). 
 
GATEWAY cloning procedure 
Full-length wild-type human open reading frames (ORFs) being cloned in GATEWAY entry 
vectors from the ORFeome collaboration are stored as bacterial glycerol stocks. (ORFeome 
Collaboration, 2016) 

1. The ORFs were inoculated in 96-well plates (Corning), with each well containing 200 
uL of LB medium and 100 µg/ml ampicillin. The plate was incubated at 37°C and left 
to shake overnight at 190 rpm. 

2. In a 96-well PCR plate (Brand) 10 ng of each selected ORF was used per 50 µl PCR 
reaction (denaturation at 98°C for 10 s, annealing at 55°C for 30 s and extension at 
72°C for 3 min, 30 cycles of amplification) using phusion high-fidelity polymerase 
(NEB) and primers annealing to the backbone of the plasmid (forward: 
5’TTGTAAAACGACGGCCAGTC and reverse: 5’ GCCAGGAAACAGCTATGACC).  

3. The PCR products (6 µl per well) were confirmed through 96-well E-gel with SYBR 
(Thermo Fisher, Catalog no G720801) using 25 µl of loading buffer (Thermo Fisher) 
and 20µl of E-Gel 96 High range DNA marker (Thermo Fisher). 

4. In a 96-well PCR plate 1 µl of each amplified PCR product together with 200 ng of 
above-mentioned destination vectors were directly used per 10 µl LR reaction using 
4x LR clonase (Invitrogen), thereby generating expression vectors. 

5. The full 10 µl of LR reaction was transformed into chemically competent DH5a cells 
(30 µl) in a 96-well PCR plate, then recovered in 80 µl of pre-warmed SOC medium at 
37˚C for 1 hour without shaking. 

6. 70 µl of transformed bacteria was plated on 48-well square agar plates and incubated 
at 37°C overnight.  

7. Afterwards, colonies were selected and inoculated into a 96 deep-well plate containing 
2 ml of LB medium and 100 µg/ml ampicillin. The plate was then incubated at 37˚C 
with continuous shaking at 700 rpm in the incumixer for 24 hours. 

8. The amplified vectors were extracted from the inoculated culture using Plasmid Plus 
96-well Miniprep kit (Qiagen). The concentration of each vector was measured with a 
Nanophotometer and diluted to 100 ng/µl. Next, 600 ng of insert was used for full-
length sequencing using the backbone primers (tag-specific NanoLuc forward: 
5’GAACGGCAACAAAATTATCGAC, mCitrine forward: 5’AGCAGAATACGCCCATCG 
and reverse: 5’GGCAACTAGAAGGCACAGTC) and ORF-specific primers (Table S9) 
to fully cover the ORFs where it was needed (Table S10). 

 
Site-directed mutagenesis  
The primers were manually designed using the following criteria: 

1. For point mutation the primers should overlap the site of mutation. The overlap should 
be 15-20 nucleotides (nt). 

2. For the deletion the primers should be designed to exclude the deletion site, but still 
overlap and the overlap should be as mentioned in step 1. 

3. Primer length should be in the range of 32-36 nt. 
4. GC content should be between 40-60%. 
5. Difference in melting temperature of primers should not exceed 5°C. 
6. The primer ideally should start and end with guanine or cytosine.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 9, 2023. ; https://doi.org/10.1101/2023.08.07.552219doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.07.552219
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 

7. The designed oligos were grouped by annealing temperature for the next step. 
8. In 96-well PCR plate 10 ng of DNA template together with oligos were used per 50 uL 

of PCR reaction (denaturation at at 98°C for 2 min, annealing for 15 s and extension 
at 72°C for 5 min, 25 cycles of amplification) using phusion high-fidelity polymerase 
(NEB). 

9. 1 µL of DpnI (NEB) was added to the plate with PCR products and incubated at 37°C 
for 1 hour. The reaction was stopped at 65°C for 20 min. 

10. The PCR products (6 µl per well) were confirmed through 96-well E-gel with SYBR 
(Thermo Fisher, Catalog no G720801) using 25 µl of loading buffer (Thermo Fisher) 
and 20µl of E-Gel 96 High range DNA marker (Thermo Fisher). 

11. 3 µL of digested PCR product was transformed into chemically competent DH5a cells 
(30 µL) in a 96-well PCR plate, then recovered in 80 µL of pre-warmed SOC medium 
at 37˚C for 1 hour without shaking. 

12. 70 µL of transformed bacteria was plated on 48-well square agar plates and incubated 
at 37°C overnight.  

13. Afterwards, colonies were selected and inoculated into a 96 deep-well plate containing 
2 ml of LB medium and 100 µg/ml ampicillin. The plate was then incubated at 37˚C 
with continuous shaking at 700 rpm in the incumixer for 24 hours. 

14. The amplified vectors were extracted from the inoculated culture with Plasmid Plus 96-
well Miniprep kit (Qiagen). The concentration was measured with a Nanophotometer 
and diluted to 100 ng/µl. Next, 600 ng of insert was used for full-length sequencing 
using primers covering the mutation and ORF-specific primers (Table S9) to fully cover 
the ORF length (Table S10). 

BRET assay 

Transfection 
HEK293 cells were grown and maintained in high-glucose (4.5 g/l) DMEM (Thermo Fisher) for 
BRET assays. Media was supplemented with 10% fetal bovine serum (PAN-Biotech) and 1% 
Penicillin/Streptomycin. Cells were grown at 37 oC, 5% CO2, and 85% RH. Cells were 
subcultured every 2-3 days and transfected with lipofectamine 2000 transfection reagent 
(Invitrogen) in Opti-MEM medium (Thermo Fisher) using the reverse transfection method 
according to the manufacturer’s instructions. For transfections, cells were seeded at a density 
of 4.0 x 104 cells per well in a white 96-well microtiter plate (Greiner) in phenol-red-free, high-
glucose DMEM media (Thermo Fisher) supplemented with 5% fetal bovine serum (Thermo 
Fisher). Transfections were performed with a total DNA amount of 200 ng per well. If the 
expression plasmid concentration amount was below 200 ng/well, pcDNA3.1 (+) was used as 
a carrier DNA to reach the total amount of DNA of 200 ng. All protein pairs were tested in both 
N-terminal fusion orientations (NL-A with mCit-B and NL-B with mCit-A). The following proteins 
were also tested as C-terminal fusions: CSNK2B-NL, ESRRG-NL, CUL3-NL, PEX3-NL, 
PEX19-NL, PSMC5-NL, PEX3-mCit, PEX19-mCit, PEX16-mCit, RORB-mCit, ESRRG-mCit, 
PAX6-mCit, CSNK2B-mCit, PSMC5-mCit, KCTD7-mCit (Table S10). 

Measurement 
The plate was incubated 2 days at 37 oC, 5% CO2, and 85% RH before measurements. All 
measurements were done with the Infinite M200 Pro microplate reader (Tecan). First, 100 µl 
of the medium was aspirated from each well. The mCitrine fluorescence (FL) was measured 
in intact cells (excitation/emission 513 nm/548 nm) using a gain of 100. On rare occasions, 
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the plate reader recorded an overflow with these settings (i.e. for GIGYF1 constructs). In these 
cases, we repeated the measurement with optimal gain settings and used a fluorescein control 
to normalize fluorescence signals measured with different gain settings. For this purpose, 
Fluorescein was obtained from Sigma-Aldrich (Catalog No 46955-250MG-F) and used without 
further purification. A stock solution of Fluorescein (1mg/ml in Ethanol) was prepared by 
dissolving 1.3 mg Fluorescein in 1.3 ml absolute ethanol. 100 µl of a 20 µg/ml solution of 
Fluorescein were added to an empty well immediately before starting the fluorescence 
measurements. The 20 µg/ml solution of Fluorescein was obtained by preparing a 1:50 dilution 
in water of the stock solution. After measuring the fluorescence, coelenterazine-h (PJK Biotech 
GmbH) was added to a final concentration of 5 µM. The cells were briefly shaken for 15 s and 
incubated for 15 min inside the plate reader at 37 oC. After incubation, total luminescence was 
measured first followed by short-wavelength (WL) and long-wavelength luminescence (LU) 
measurements using the BLUE1 (370-480 nm) and the GREEN1 (520-570 nm) filters at 1,000 
ms integration time. Corrected BRET ratios were calculated as described in (Trepte et al, 
2018). Briefly, for every transfected protein pair NL-A and mCit-B, the following two control 
pairs were measured: NL-Stop with mCit-B and NL-A with mCit-Stop. The maximal BRET from 
both control pairs was subtracted from the actual test pair to correct for donor bleedthrough, 
unspecific binding to the tags, and background signal. 
 
Determination of binding events in BRET assay 
To determine whether a protein pair interacted in the BRET assay or not, we used 
donor:acceptor DNA transfection ratios of 2:50 ng in all cases except for PEX3-PEX16 where 
we used 8:25 and PEX3:PEX19 where we used 8:50 ng DNA ratios due to low expression 
levels of PEX3 and a degradation effect of higher PEX16 protein levels on PEX3 expression 
levels. We requested that cBRETs determined at these transfection ratios were ≥ 0.05, 
fluorescence measurements representing mCitrine fusion expression levels to be ≥ 500 units, 
and total luminescence measurements representing NL fusion expression levels to be ≥ 
50000. 
 
Saturation Assay 
For donor saturation experiments various donor DNA amounts (1, 2, 4 and 8 ng) encoding NL-
fused proteins were co-transfected with increasing amounts of acceptor DNA (12.5, 25, 50, 
100, 200 ng) encoding mCitrine-fused proteins. Fluorescence, total luminescence, and BRET 
measurements were done as described before. BRET measurements were corrected for 
bleedthrough using NL-Stop transfections. Fluorescence and total luminescence 
measurements were corrected for background signal using transfections with pcDNA3.1(+) 
and subsequently used to estimate amounts of expressed proteins and to plot acceptor/donor 
ratios on the x-axis of titration plots. 
 
Fitting of titration curves 
Titration curves were fitted using the leastsq function from the scipy.optimize python package 
(Virtanen et al, 2020) using the model BRET = ((A/D) * BRETmax)/(BRET50 + (A/D)) 
described in (Drinovec et al, 2012) to obtain estimates for the BRETmax and BRET50. 
Standard errors of the BRET50 estimates were obtained from the variance-covariance matrix, 
calculated by multiplying the fractional covariance matrix (output by leastsq function) by the 
residual variance. Measuring BRET signals in intact cells for increasing acceptor/donor protein 
expression ratios results in an eventual saturation of the signal. Fitting this curve allows 
extraction of the maximal BRET that can be reached and the BRET50, which is the 
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acceptor/donor ratio at which half of the maximal BRET is obtained. The BRET50 is indicative 
of binding affinity, in analogy to the IC50, however, its accurate estimation requires saturation 
of the BRET to be observed in the experimental system, which cannot always be achieved 
because of limited amounts of DNA that cells can be transfected with. Alternatively, if 
mutations are unlikely to change the overall structure of the fusion constructs and do not alter 
expression levels compared to wildtype, single point BRET measurements at acceptor/donor 
ratios prior to BRET saturation are also indicative of changes in binding strength. 

Antibodies 

Purified anti-HA.11 Epitope Tag, Clone: [16B12], Mouse, Monoclonal (Biolegend, BLD-
901502), 1:2000. 
Purified anti-GIGYF1, Rabbit, Polyclonal (BETHYL laboratories, Cat. #A304-132A-1), 1:1000. 
GAPDH Loading Control Monoclonal Antibody (GA1R), HRP-coupled (Thermo Fisher Cat. 
MA515738HRP), 1:3000. 

Co-immunoprecipitation and western blot 

Snrpb (full-length) and C-terminal truncation mutant (amino acids 1-190) was cloned from 
mouse cDNA and ligated into pFRT-TO destination plasmid using AscI and PacI restriction 
sites. The constructs additionally contain C-terminal 2xHA and mNeonGreen tags. Flp-In™ T-
REx™ 293 Cell Lines (Thermo Fisher, catalog number: R78007) expressing Snrpb 
endogenously from a single locus were generated according to the manufacturer's 
instructions. In brief, pFRT-TO and pOG44 plasmids were co-transfected and hygromycin-
resistant colonies were grown, picked and expanded. The Snrpb transgene expression was 
validated by Western blot, RT-qPCR, and immunofluorescence, which showed that ectopic 
Snrpb-HA was expressed at levels highly similar to the endogenous Snrpb protein (data not 
shown). 
For the co-immunoprecipitation experiments, 8x106 cells were seeded in a 10 cm dish. The 
following day, expression of Snrpb-HA was induced by adding 0.1 μg/mL Doxycycline (D9891, 
Sigma Aldrich) to the culture medium. Parental cells not expressing any HA-tagged transgene 
were used as a negative control of immunoprecipitation. The next morning the cells were 
harvested by scraping in culture media, followed by centrifugation and a single wash in ice-
cold PBS. The whole cell extract was prepared by 15 min incubation on ice with 0.3 mL of lysis 
buffer (200 mM NaCl, 50 mM HEPES, pH 7.6, 0.1% IGEPAL, 10 mM MgCl2, 10% Glycerol, 
Protease Inhibitor Cocktail (P8340, Sigma Aldrich), Phosphatase Inhibitor (P5726, Sigma 
Aldrich) followed by 2 cycles of sonication in a Bioruptor Plus (30 seconds on, 30 seconds off) 
and centrifugation for 20 minutes at 16000xg. The extract was quantified by a Bradford assay 
and 1 mg was used for immunoprecipitation, for which the NaCl concentration was adjusted 
to 100 mM final concentration by diluting with an equal volume of Lysis Buffer containing 0 
mM NaCl. 0.05 mg was set aside as input control (5%). 0.02 mL of Thermo Scientific™ 
Pierce™ Anti-HA Magnetic Beads (Thermo Fisher Cat. 13464229) were incubated with 1 mg 
protein extract for 1 hour at 4°C on a rotating wheel. The beads were washed 3 times before 
eluting the immunoprecipitated proteins with 0.02 mL of 1 x NuPAGE™ LDS Sample Buffer 
by incubating at 42°C for 10 min while shaking at 800 rpm. Another 0.01 mL were used for 
elution, were then combined making a total of 30 μL, which were transferred to a fresh tube 
and to which 3 μL of 1M DTT were added. Input and immunoprecipitated eluates were then 
separated on a 10% Tris-Glycine SDS PAGE using 1xMOPS buffer, immunoblotted on 0.45 
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μm PVDF membranes (Tris-Glycin Transfer Buffer, 10% Methanol, 300 mA, 1 hour), blocked 
with 5% milk in TBS-0.2% Tween for 30 min at RT. Primary antibodies were incubated 
overnight at 4°C on a rocker followed by washes and incubation with secondary HRP-labelled 
antibodies (1 hour at RT in 5% milk, TBS-0.2% Tween). Blots were developed using Pierce™ 
ECL Western Blotting Substrate (Thermo Fisher Cat. 32209) or SuperSignal West Femto 
Maximum Sensitivity Substrate Kit (Thermo Fisher Cat. 34095) and imaged on a ChemiDoc 
MP V3 (Biorad).  
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Figure legends 

Figure 1. Benchmarking and application of AF for DMI interface prediction using 
minimal interacting fragments. 
A Proportion of structures of DMIs predicted by AF to different levels of accuracy. Categories 
were defined based on motif RMSD cutoffs. B Accuracy of AF DMI predictions stratified 
according to the annotated functional categories of DMIs in the ELM DB. DEG=degron, 
DOC=docking, LIG=ligand, TRG=targeting, MOD=modification. C Accuracy of AF DMI 
predictions stratified according to the secondary structure element formed by the motif in the 
solved structure. D Accuracy of AF DMI predictions stratified according to the method used to 
solve the structures in the benchmark dataset. E Area under the Receiver Operating 
Characteristics Curve (AUROC) for different metrics using the DMI or DDI benchmark dataset 
as positive reference and the following different random reference sets: Left (DMI), 1 mutation 
introduced in conserved motif position; middle-left (DMI), 2 mutations introduced in conserved 
motif position, middle-right (DMI), random domain-motif pairs from reshuffling of pairings from 
positive DMI reference dataset; right (DDI), random domain-domain pairs from reshuffling 
pairings from positive DDI reference dataset. F Superimposition of AF structural model for 
motif class MOD_SUMO_rev_2 (orange) with homologous solved structure (PDB:1KPS) from 
motif class MOD_SUMO_for_1 (blue). The motif sequence used for prediction is indicated at 
the bottom, colored by pLDDT (dark blue=highest pLDDT). G Superimposition of AF structural 
model for motif class CLV_C14_Caspase3-7 (orange) with homologous structure (PDB:5IAN) 
solved with a peptide-like inhibitor (blue). The motif sequence used for prediction is indicated 
at the bottom, colored by pLDDT (dark blue=highest pLDDT). H AF prediction of a LIG_HCF-
1_HBM_1 motif in CREBZF (orange) binding to the beta-propeller Kelch domain of HCFC1 
(gray). Mutated domain residues for experimental testing are colored in green. I Close up on 
the interface shown between CREBZF and HCFC1 from H. Coloring is the same as in H. Key 
conserved motif residues are drawn as sticks. Mutated residues in the domain and motif for 
experimental testing are labeled. J BRET titration curves are shown for wildtype interactions 
and mutant constructs for CREBZF-HCFC1 pairs for two biological replicates, each with three 
technical replicates. Protein acceptor over protein donor expression levels are plotted on the 
x-axis determined from fluorescence and luminescence measurements, respectively. 
 
Figure 2. Effect of protein fragment extensions on the accuracy of AF predictions. 
A Schematic of motif and domain sequence extensions and heatmap showing the fold change 
in motif RMSD before and after extension where positive values indicate improved predictions 
from extension and negative values indicate worse prediction outcomes. 31 DMI structures 
from the positive benchmark dataset were selected for this extension analysis. B Heatmap of 
the average model confidence for combinations of different motif and domain sequence 
extensions. Extensions like in A. C Optimal cutoffs derived for different metrics from ROC 
analysis for benchmarking AF with predictions using different combinations of motif and 
domain extensions from the reference dataset used in A and random pairings of domain and 
motif sequences. pLDDT-related metrics were divided by 100 for visualization purposes. D 
Scatterplot of motif RMSDs using minimal motif sequences (extension 0) vs extending motif 
sequences once by the length of the motif to the left and right (extension 1). Labels in the plot 
refer to figure panels with examples of how slight extensions improved AF prediction 
accuracies. Sizes of the dots in the plot reflect the difference in RMSD between the two 
extensions. E-G Superimposition of the structural model of the minimal (left, orange) or 
extended (right, yellow) motif sequence with the solved structure (motif in blue) for three 
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different motif classes as indicated on the top of each panel. The motif sequence from the 
solved structure is indicated at the bottom of each panel. Motif residues are underlined, motif 
residues not resolved in the structure have a gray background. Sticks indicate the motif 
residues, domain surfaces are shown in gray based on experimental structures. 
 
Figure 3. AF prediction and experiments on PPIs connecting NDD proteins. 
A Schematic showing fragmentation approach. B Fraction of fragment pairs with structural 
model scoring above thresholds for 20 random protein pairs. Numbers on top of the bars 
indicate the total number of fragment pairs predicted for each random protein pair. C AF 
prediction outcome on 67 HuRI PPIs connecting NDD proteins. D PPI networks illustrating AF 
prediction outcomes and experimental retesting of PPIs in BRET assay. E Number of PPIs 
connecting NDD proteins with structural models at indicated pDockQ cutoffs from (Burke et 
al, 2023) grouped based on AF prediction outcomes using the fragmentation approach as 
shown in C. F cBRET, total luminescence, and fluorescence for 28 PPIs connecting NDD 
proteins that were tested in the BRET assay. Luminescence and fluorescence measurements 
indicate expression levels of NL and mCit fusion proteins, respectively. Black horizontal lines 
indicate expression level and PPI detection cutoffs. The gray vertical line separates the 
detected (left) from undetected PPIs. Protein pairs in bold indicate those selected for interface 
validation via site-directed mutagenesis. 
 
Figure 4. Verification of interface predictions for TRIM37-PNKP and ESRRG-PSMC5. 
A Schematic of the domain architecture of PNKP and TRIM37 with indication of top predicted 
interfaces. Numbers in blue indicate the average motif interface pLDDT for the respective 
interface. Roman numbering refers to structural models in B and C. B Structural model of 
interface i shown in A with labeled residues that were mutated. C Structural model of interface 
ii shown in A. D BRET titration curves are shown for wildtype interaction and mutants for two 
biological replicates, each with three technical replicates. Protein acceptor over protein donor 
expression levels are plotted on the x-axis determined from fluorescence and luminescence 
measurements, respectively. The BRET trajectory could not be fitted because of an unusual 
saturation behavior. E Schematic of the domain architecture of ESRRG and PSMC5 with 
indication of top predicted interfaces. Numbers in blue indicate the average motif interface 
pLDDT for the respective interface. Roman numbering refers to structural models in F and G. 
F Structural model of interface iii shown in E with labeled residues that were mutated. G 
Structural model of interface iv shown in E. H BRET titration curves are shown for wildtype 
interaction and mutants of ESRRG-PSMC5 pairs for two biological replicates, each with three 
technical replicates. Protein acceptor over protein donor expression levels are plotted on the 
x-axis determined from fluorescence and luminescence measurements, respectively. In 
panels B, C, F, and G motif sequences are indicated at the bottom. Gray letters indicate 
residues not predicted to bind. 
 
Figure 5. Verification of interface predictions for STX1B-FBXO28, STX1B-VAMP2, PEX3-
PEX19, and PEX3-PEX16. A Schematic of the domain architecture of STX1B, FBXO28, and 
VAMP2 with indication of top predicted interfaces. Numbers in blue indicate the average motif 
interface pLDDT or model confidence (DDI) for the respective interface. Roman numbering 
refers to structural models in B, C, Fig S8E, and Fig S8I. B Structural model of interface iii 
shown in A with tested pathogenic mutations labeled and colored in green. C Structural model 
of interface iv shown in A. In panel B and C, the chains are color-coded according to the colors 
of the domains in A. D-F BRET titration curves are shown for wildtype interactions and deletion 
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constructs for two biological replicates, each with three technical replicates. Protein acceptor 
over protein donor expression levels are plotted on the x-axis determined from fluorescence 
and luminescence measurements, respectively. G Schematic of the domain architecture of 
PEX3, PEX19, and PEX16 with indication of top predicted interfaces. Numbers in blue indicate 
the average motif interface pLDDT for the respective interface. Roman numbering refers to 
structural models in H, J, and Fig S9A. Region vi covers residues 1-170, which includes the 
previously reported N-terminal motif as well as three putative motifs suggested by the AF 
models.  H Superimposition of structural models of interface vi and vii on the PEX3 domain. 
Note that modeling smaller fragments of PEX19 generates alternative interactions with the 
binding sites. I BRET titration curves are shown for wildtype interaction and mutants of PEX3-
PEX19 pairs for three technical replicates. Protein acceptor over protein donor expression 
levels are plotted on the x-axis determined from fluorescence and luminescence 
measurements, respectively. The left plot displays mutants aimed at disrupting binding 
between PEX3-PEX19 while the right plot displays mutants aimed at disrupting the PEX3-
PEX16 PPI why binding between PEX3-PEX19 should not be altered. J Structural model of 
interface vii shown in G. K BRET values with subtracted bleedthrough for PEX3-PEX16 
wildtype and various mutated constructs. Three technical replicates are shown. L Proposed 
model for how the trimeric complex of PEX3, PEX19, and PEX16 might assemble at the 
peroxisomal membrane. 
 
Figure 6. Verification of interface predictions for SNRPB-GIGYF1. A Schematic of the 
domain architecture of SNRPB and GIGYF1 with indication of top predicted interfaces. 
Numbers in blue indicate the average motif interface pLDDT for the respective interface. 
Roman numbering refers to structural models in B and C. B Structural model of interface i 
shown in A with tested domain mutations labeled and colored green. The motif sequence is 
indicated at the bottom. C Structural model of interface ii shown in A (left) and in comparison 
a solved structure (PDB:4WZJ) of the Sm ring complex (right) bound to RNA (orange). The 
LSM domain of SNRPB is shown in cyan. The position of the predicted motif (left) or 
neighboring LSM domain of SNRPD3 (right) are indicated in gold. Black circles indicate the 
predicted interface in the model and corresponding interface in the complex on the LSM 
domain of SNRPB. D Solved structure (PDB:7RUQ) of the GYF domain of GIGYF1 bound to 
a proline-rich motif in TNRC6C. E-F BRET titration curves are shown for wildtype interactions, 
deletion constructs of SNRPB, and single point mutants in GIGYF1 for two biological 
replicates, each with three technical replicates. Protein acceptor over protein donor expression 
levels are plotted on the x-axis determined from fluorescence and luminescence 
measurements, respectively. G Cropped immunoblot of input (5%) and HA antibody 
immunoprecipitation (IP) performed in parental HEK cells (empty, untagged negative control), 
Snrpb(full-length, 1-231)-2xHA-mNeonGreen, Snrpb(1-190)-2xHA-mNeonGreen expressed 
from a single locus in Flp-In™ T-REx™ 293 Cell Lines. The HA antibody was used for 
detecting the immunoprecipitated Snrpb-proteins, endogenous GIGYF1 was detected with 
GIGYF1 antibody, GAPDH serves as a loading and negative-IP control. The experiment was 
performed twice with equivalent outcome, one representative experiment is shown. 
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