

1 **Cytokinins control secondary cell wall formation in the inflorescence stem of Arabidopsis**

2 Vojtech Didi^{1,2*}, Dominique Arnaud^{1*}, Anna Pacinková^{1,3,4}, Radek Jupa⁵, Radim Cegan⁶, Alesia
3 Melnikava^{1,2}, Jana Vasickova^{1,2}, Mariana Benitez^{1,7}, Faride Unda⁸, Tereza Dobisova^{1,2,9}, Willi
4 Riber¹, Zuzana Dostalova^{1,2}, Shawn D. Mansfield⁸, Ondrej Novak¹⁰, Miroslav Strnad⁹, Roman
5 Hobza⁶, Vít Gloser⁵, Eva Budinska³ and Jan Hejatkó^{1,2}

6 ¹CEITEC - Central European Institute of Technology, Masaryk University Kamenice 5, CZ-625
7 00 Brno, Czech Republic

8 ²National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00
9 Brno, Czech Republic

10 ³Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University
11 Kamenice 5, CZ-625 00 Brno, Czech Republic.

12 ⁴Faculty of Informatics, Masaryk University, Brno, Czech Republic

13 ⁵Department of Experimental Biology, Masaryk University, Faculty of Science, 611 37 Brno,
14 Czech Republic

15 ⁶Institute of Biophysics, The Czech Academy of Sciences of the Czech Republic, Kralovopolska
16 135, 612 65 Brno, Czech Republic.

17 ⁷Current address: Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología,
18 Universidad Nacional Autónoma de México

19 ⁸Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4,
20 Canada.

21 ⁹Labdeers, Ltd., Antonina Navratila 1219/13, Boskovice, 680 01, Czech Republic.

22 ¹⁰Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and
23 Agricultural Research, Institute of Experimental Botany CAS & Palacký University, Olomouc
24 CZ-78371, Czech Republic.

25 *these authors contributed equally

26 Correspondence: hejatk@sci.muni.cz

27 The author responsible for distribution of materials integral to the findings presented in this
28 article in accordance with the policy described in the Instructions for Authors is: Jan Hejatko
29 (hejatko@sci.muni.cz).

30 Running title: Cytokinins and secondary cell wall

31 Keywords: cytokinins, multistep phosphorelay, NAC TFs, tracheary elements, interfascicular
32 fibers, *Arabidopsis*

33

34 **Summary statement**

35 Cytokinins attenuate premature secondary cell wall (SCW) formation via downregulating the
36 expression of NAC TFs, the master switches of SCW transcriptional cascade, thus affecting
37 the tracheary elements size and conductivity.

38

39 **Abstract**

40 Spatiotemporal control over developmental programs is vital to all organisms. Here we show
41 that cytokinin (signaling) deficiency leads to early secondary cell wall (SCW) formation in
42 *Arabidopsis* inflorescence stem that associates with precocious upregulation of a SCW
43 transcriptional cascade controlled by NAC TFs (NSTs). We demonstrate that cytokinin
44 signaling through the *AHK2/3* and the *ARR1/10/12* suppresses the expression of several *NSTs*
45 and SCW formation in the apical portions of stems. Exogenous cytokinin application
46 reconstituted both proper development and apical-basal gradient of *NST1* and *NST3* in a
47 cytokinin biosynthesis-deficient mutant. We show that *AHK2* and *AHK3* required functional
48 *NST1* or *NST3* to control SCW initiation in the interfascicular fibers, further evidencing that
49 cytokinins act upstream of *NSTs* transcription factors. The premature onset of a rigid SCW
50 biosynthesis and altered expression of *NST1/3* and *VND6/7* due to cytokinin deficiency led to
51 the formation of smaller tracheary elements (TEs) and impaired hydraulic conductivity. We
52 conclude that cytokinins downregulate *NSTs* to inhibit premature SCW formation in the
53 apical part of the inflorescence stem, facilitating thus the development of fully functional TEs
54 and interfascicular fibers.

55

56 **Introduction**

57 In the plant postembryonic development, growth is largely controlled by the activity of
58 apical (shoot and root) and lateral (procambium, cambium and axillary) meristems.
59 Meristems maintain a pool of totipotent stem cells that divide and differentiate, facilitating
60 the formation of new plant organs and tissues (Greb and Lohmann, 2016). Procambium,
61 together with latter differentiating cambium ensure formation of a new vascular tissue that
62 is necessary prerequisite for proper plant growth. In the growing shoot apex, procambium is
63 formed first, followed by phloem and subsequently xylem specification. The newly formed
64 tissue connect with previously formed vasculature, thus ensuring the continuity of the shoot
65 vascular system (Esau, 1977). As a result, the developmental gradient along the apical-basal
66 axis is established (Altamura et al., 2001; Baima et al., 2001).

67 *Arabidopsis* inflorescence stems show a collateral eustele pattern, where asymmetric cell
68 division of procambial stem cells leads to phloem and xylem specification on the outer and
69 inner side of the procambial layer, respectively. In the xylem, two cell types, protoxylem and
70 metaxylem, are able to form conductive tracheary elements (TEs) embedded in the
71 surrounding xylem parenchyma and xylary fiber cells (Ruzicka et al., 2015; Schuetz et al.,
72 2013). All fully differentiated xylem cells are characterized by the presence of secondary cell
73 walls (SCWs). Older portions (medial and basal internodia) of stems reaching the stage 1,
74 corresponding to first siliques formation (Altamura et al., 2001), develop interfascicular fibers
75 (also called interfascicular arcs), characterized by massive secondary wall thickening and
76 spanning the neighboring vascular bundles as a mechanical support.

77 In contrast to the dynamic structure of primary cell walls, the lignified SCW is rigid,
78 conferring the SCW-possessing cells the resistance to greater mechanical stresses (Zhong
79 and Ye, 2015). This enables xylary and interfascicular fibers to stabilize the plant body and
80 provides TEs with the ability to withstand the negative pressure resulting from the
81 transpirational stream. SCW synthesis permits xylem to fulfill its main functional role of key
82 evolutionary importance, which is water conductance throughout the plant body.

83 The differentiation of vascular tissues represents a complex process involving dramatic
84 changes in the cell shape and functional properties of the conducting and supporting tissues.
85 Early after specification, the future TEs undergo tremendous expansion in both the radial
86 and longitudinal directions. Once expansion ceases, deposition of the individual components
87 of the SCW follows, culminating in cell death and final maturation of the functional TE
88 (Ruzicka et al., 2015). Xylary and interfascicular fibers undergo a similar differentiation
89 process but remain alive. It is obvious that the entire process requires a delicate
90 spatiotemporal control of several integral processes. In the last few years, significant
91 progress has been made in our understanding of the mechanisms controlling the onset and
92 structure of the SCW (Zhong and Ye, 2015). The transcriptional regulatory cascade was
93 described, allowing the initiation of SCW formation in response to activation by
94 NAM/ATAF/CUC (NAC) transcription factors (Hussey et al., 2013; Taylor-Teeple et al., 2015).
95 NAC transcription factors are considered as master regulators or master switches with
96 VASCULAR-RELATED NAC-DOMAIN 6 (VND6) and VND7 and NAC SECONDARY WALL
97 THICKENING PROMOTING FACTOR 1 (NST1) and NST3 regulating SCW formation in vessels
98 (TEs) and fibers, respectively. When overexpressed, they are able to induce ectopic SCW
99 thickenings even in case of fully differentiated tissues including floral organs or the rosette
100 leaf epidermis (Kubo et al., 2005; Mitsuda et al., 2007). However, how NAC master
101 regulators are controlled in the complex network of developmental events leading to xylem
102 differentiation remains to be clarified.

103 The plant hormones, cytokinins, are potent regulators of plant development. One of the
104 main roles of cytokinins appears to be the fine control over the equilibrium of cell division
105 and cell differentiation (Dello Iorio et al., 2008). Although cytokinins have long been known to
106 be important for xylogenesis and both procambium and cambium formation (Hejatkova et al.,
107 2009; Matsumoto-Kitano et al., 2008; Nieminen et al., 2008; Ye et al., 2021), the specific
108 role(s) of cytokinins in the control of SCW formation are just being elucidated (Didi et al.,
109 2015). Cytokinins are recognized by the sensor ARABIDOPSIS HISTIDINE KINASES (AHKs)2-4
110 that transmit the signal to the nucleus *via* a multistep phosphorelay (MSP) pathway. The first
111 downstream partners of AHK2, AHK3 and AHK4 are ARABIDOPSIS HIS-CONTAINING
112 PHOSPHOTRANSMITTERS (AHPs)1-6. AHPs transfer the signal to the nucleus, where the final
113 transphosphorylation step occurs with the activation of type-B ARABIDOPSIS RESPONSE

114 REGULATORS (RRBs), the GARP-domain containing transcription factors which facilitate the
115 control over expression of primary cytokinin-regulated genes (Kieber and Schaller, 2018).
116 Among the direct targets of RRBs are the type-A response regulators (*RRAs*), whose
117 expression was previously shown to provide a reliable quantitative measure of cytokinin
118 signaling activity (Gordon et al., 2009; Pernisova et al., 2009).

119 Herein, we provide evidence that cytokinins control xylem and fiber development in the
120 *Arabidopsis* inflorescence stem, *via* the transcriptional regulation of the genes for NAC
121 transcription factors *NST1/NST3* and *VND6/VND7*, thus ensuring the proper spatiotemporal
122 control of SCW initiation that is critical for the formation of fully functional fibers and TEs.

123

124 **Results**

125 **Attenuation of cytokinin signaling and endogenous cytokinin deficiency leads to the**
126 **premature secondary cell wall formation**

127 In *Arabidopsis* inflorescence stem, the SCW thickening was found to occur after flower
128 anthesis and individual developmental stages were defined as based on the progress of
129 reproductive growth (Altamura et al., 2001). To normalize the differences of developmental
130 stage between individual plants and genotypes, all samples were collected at stage 1,
131 corresponding to the moment of first siliques (elongated pistil) formation (Fig. S1A). A clear
132 developmental gradient of SCWs is apparent along the apical/basal axis of inflorescence
133 stem in *Arabidopsis* wild-type (WT) Col-0 plants (Fig. 1). In the apical internode (the youngest
134 internode below the flowers), vascular bundles contain only a few proto- and (rarely)
135 metaxylem cells with a developed SCW, while no lignified (SCW-containing) cells were
136 observed in the interfascicular regions. In contrast, in the basal part of the stem (the oldest
137 internode above the rosette leaves), number of metaxylem cells is fully developed and SCW-
138 containing xylem, xylary and extraxylary fibers are clearly visible in vascular bundles and
139 interfascicular regions, respectively, the latter forming there what is called interfascicular
140 arcs (Fig. 1A). Fully differentiated SCW-containing cells, both in vascular bundles and
141 interfascicular arcs, are characterized by the presence of lignin and xylose, an aromatic
142 polymer and the main component of *Arabidopsis* SCW hemicellulose, respectively (Zhong

143 and Ye, 2015). In agreement with our histological analysis, a gradual increase of acid
144 insoluble lignin and xylose content was apparent from the apical to middle and basal
145 internodes of the inflorescence stem (Fig. 1C).

146 Cytokinins were identified as one of the key regulators of plant cell differentiation (Dello Ilio
147 et al., 2008). In addition, the role of cytokinins in anther lignification and associated SCW
148 formation has been described (Jung et al., 2008). Among the three cytokinin receptors
149 known to date, AHK2 and AHK3 were shown to be the most important during both the early
150 (Higuchi et al., 2004; Nishimura et al., 2004; Riefler et al., 2006) and later stages of shoot
151 development (Hejatko et al., 2009). When compared with WT (Col-0), we observed a
152 premature onset of SCW formation in the apical portion of inflorescence stems in the *ahk2-1*
153 *ahk3-1* [*ahk2,3*; (Nishimura et al., 2004)] double mutant at stage 1 (Fig. 1A). In contrast to
154 WT, where a few TEs (mostly of protoxylem identity) with SCWs were found exclusively in
155 vascular bundles, in *ahk2,3* apices more cells with clearly present SCWs were apparent in
156 both vascular bundles and interfascicular arcs. Further, in WT, the first differentiating TEs
157 that could be distinguished as enlarged cells positioned close to the procambium were still
158 encircled with primary cell wall only (highlighted in Fig. 1A). Compared to that, in both apical
159 and basal internodia of *ahk2,3*, all the cells morphologically distinguishable as differentiating
160 TEs seem to develop SCW, even if located in a very close vicinity to procambium (Fig. 1A),
161 implying premature SCW formation even in the vascular bundles. More intense toluidine
162 blue staining also suggested a greater deposition of SCW materials in the basal internode in
163 *ahk2,3*. Relative to WT, measurements of acid-insoluble lignin and xylose confirmed an
164 increase in the SCW components in all three (apical, middle and basal) internodes of *ahk2,3*
165 (Fig. 1C). Importantly, no ectopic SCW formation (e.g. in the pith or phloem) was observed,
166 suggesting that attenuated cytokinin signaling does not affect the determination of xylem
167 and fiber cell identity.

168 Similar phenotypes were also observed in other cytokinin signaling deficient lines such as the
169 quintuple mutant *ahp1,2,3,4,5*, the triple *arr1,10,12* and *arr1,12* and *arr10,12* double
170 mutants (Fig. 1B and Fig. S1B). Furthermore, premature SCW deposition in interfascicular
171 region was also apparent in plants defective in cytokinin biosynthesis (the triple *atipt3,5,7*
172 and particularly the quadruple *atipt1,3,5,7* mutant showing the strongest phenotype), and in
173 plants with depleted endogenous cytokinins due to overexpression of cytokinin catabolizing

174 *CYTOKININ OXIDASE/DEHYDROGENASE* genes (*p35S:CKX2* and *p35S:CKX3*; Fig. 1B, Fig. S1B).
175 Similar to the *ahk2,3*, the overexpression lines, *p35S:CKX2* and *p35S:CKX3*, produced altered
176 acid-insoluble lignin and xylose gradients, mainly due to increased SCW formation in the
177 apical internode (Fig. 1C). The content of other sugars showed differential responses in
178 individual cytokinin (signaling) deficient lines. However, the changes observed in the glucose,
179 galactose, rhamnose, as well as acid-soluble lignin seem to support our data, suggesting the
180 regulatory role of cytokinins in the SCW formation (Fig. S2).

181 Overall, these data suggest that cytokinins control both xylem and extraxylary cell files
182 (interfascicular arcs) development along the apical-basal axis, possibly acting as negative
183 regulators to prevent precocious SCW formation.

184

185 **Cytokinins regulate the transcriptional cascade controlling the onset of secondary cell wall
186 biosynthesis**

187 To elucidate the molecular mechanisms of cytokinin-mediated control over SCW formation,
188 we performed genome-wide transcriptional profiling in WT and the *ahk2,3* mutant. We
189 identified differentially expressed genes (DEGs) between apical and basal internodes in both
190 genotypes (Table S1). Considering the nature of the phenotype observed in *ahk2,3*
191 (disturbed apical-basal developmental gradient), DEGs representing potential cytokinin
192 targets and contributors to SCW formation were identified as (i) those genes showing a loss
193 of WT apical-to-basal expression gradient in *ahk2,3* plants (3439 WT gradient-specific genes),
194 or (ii) subset of intersecting genes whose apical-to-basal differential regulation differed by a
195 factor ≥ 2 in amplitude between WT and *ahk2,3* (1499 out of 9050 intersecting genes
196 revealing apical-to-basal gradient in both WT and *ahk2,3*; Fig. 2A, Table S2).

197 In the case of the 3439 WT gradient-specific genes, the gene ontology (GO) analysis revealed
198 'mRNA modification' and 'negative regulation of gene expression' categories (Fig. S3A, Table
199 S2) as significantly overrepresented categories. In comparison, the cell wall-related
200 categories were frequently enriched among the 1499 intersecting genes, taken as a whole or
201 separately for four possible gene subsets categorized according to the direction of the
202 apical-basal difference in both genotypes (Fig. 2B, Fig. S3B-E, Table S2). Noteworthy, auxin

203 signaling was strongly overrepresented in the subset showing higher basal than apical
204 expression in both the WT and *ahk2,3* (Fig. S3C).

205 Based on published data, we constructed a multilevel regulatory cascade controlling SCW
206 formation [Fig. 2C; (Didi et al., 2015; Hussey et al., 2013; Taylor-Teeple et al., 2015)]. At the
207 top of the cascade, there are two groups of master regulators belonging to the group of NAC
208 transcription factors: VASCULAR RELATED NAC-DOMAIN PROTEINS (VNDs) and NAC
209 SECONDARY WALL THICKENING PROMOTING FACTORs (NSTs). While VNDs largely control
210 SCW formation in TEs (Kubo et al., 2005; Zhou et al., 2014), NSTs are primarily responsible
211 for SCW development in both xylary and interfascicular fibers (Mitsuda et al., 2007; Zhong et
212 al., 2007). NSTs and VNDs regulate a battery of downstream transcription factors, which may
213 act as either negative or positive regulators of SCW formation. These transcription factors
214 orchestrate the expression of effector genes for cellulose, hemicellulose and lignin
215 biosynthesis, as well as markers of xylem development, including genes for programmed cell
216 death and microtubule rearrangement during xylem formation (Fig. 2C).

217 The SCW-associated gene set (124 genes identified in the literature search, mostly members
218 of the regulatory SCW transcriptional cascade, Table S3) was significantly enriched in the
219 intersecting 9050 DFGs, showing apical-to-basal gradient in both WT and *ahk2,3* (Fig. 2A)
220 when compared with all the protein coding genes detected in the whole dataset (Fisher's
221 exact test, *p*-value < 0.001). That is in the agreement with the apical-to-basal developmental
222 gradient observed in the selected developmental stage of the *Arabidopsis* inflorescence
223 stem (stage 1). In agreement with the observed phenotype, we detected an upregulation of
224 most members of the SCW transcriptional cascade in apical internode of *ahk2,3* (highlighted
225 in green in Fig. 2C). With few exceptions, the upregulation occurred mostly in the NST-
226 regulated branch, including the upregulation of all *NSTs* (*NST1-NST3*). Furthermore, the
227 majority of the NST-regulated genes revealed similar changes in the apical-to-basal
228 expression gradient (Fig. 2D, Table S3). In comparison to WT, in *ahk2,3* we observed a higher
229 expression of *NSTs* and their downstream targets in apical (differentiating) portion of
230 inflorescence stem, while lower expression of the NST-regulated genes was apparent in the
231 basal part (fully differentiated cells). In contrast, most of the *VNDs* genes associated with TE
232 formation showed similar apical-basal distribution in WT and *ahk2,3* plants, except some
233 *VNDs* revealing slight changes in apical and basal parts of *ahk2,3* mutant (Fig. 2D). Thus, the

234 cytokinin signaling deficiency in *ahk2,3* seems to preferentially activate the NST-regulated
235 branch of the SCW regulatory cascade; however, the effect on VND-regulated SCW
236 formation in vascular bundles cannot be excluded.

237 Taken together, these data demonstrate that the expression profile of the NST-controlled
238 subset of SCW transcriptional cascade positively correlates with the developmental gradient
239 observed along the apical-basal axis and suggest that cytokinin signaling controls the apical-
240 basal gradient of SCW-related genes. Based on our data, cytokinins appear to act as negative
241 regulators of *NST* master switches, thereby negatively regulating the entire downstream
242 SCW transcriptional cascade in the apical portion of the inflorescence stem.

243

244 **Cytokinins downregulate the expression of *NSTs* to control secondary cell wall formation
245 in apical internodes**

246 To test if cytokinins act as negative regulator of *NSTs* expression, we assayed *NST3*
247 expression in *proNST3:NST3-GUS* plants after the application of exogenous cytokinin
248 (spraying the plants with 6-Benzylaminopurine (BAP) solution twice in 48 hours, Fig. 3A). In
249 line with previous reports (Mitsuda et al., 2005), in the DMSO-treated controls we observed
250 (weak) *NST3* expression predominantly in the interfascicular arcs; however, *NST3* activity
251 was also detectable in the vascular bundles. In a good agreement with our transcriptional
252 profiling data, there was an apparent increase in the *NST3* activity in the basal segments
253 when compared to apical internodes, again both in the interfascicular regions and in the
254 vascular bundles. In the plants treated with exogenous cytokinins (1 and 10 µM BAP), we
255 observed a concentration-dependent inhibition of *NST3* expression (Fig. 3A).

256 Our genome-wide transcriptional profiling data suggest disturbed apical-basal gradient of
257 *NSTs* in *ahk2,3* background with higher levels in the apex, but lower at the base (Fig. 2D).
258 This is implying cytokinins as negative regulators of *NSTs* specifically in the apex with
259 possible consequences for *NST* activity in the older portions of the inflorescence stem. To
260 corroborate the developmental importance of cytokinin-mediated *NST* regulations, we
261 inspected the levels of *NST1* and *NST3* expression in the cytokinin biosynthesis-deficient
262 *ipt1,3,5,7* quadruple mutant plants, both in the absence and presence of exogenous

263 cytokinins (spraying the plants by BAP solution once a day for one week in the time interval
264 from the onset of flowering until reaching stage 1 development). To get a better resolution,
265 one cm portions of stems were collected at the apical, sub-apical, medial and basal
266 internodes of the inflorescence (See Methods and Fig. S1A). In mock-treated *ipt1,3,5,7*
267 plants, the precocious SCW formation (Fig. 3B) was associated with strongly disturbed *NSTs*
268 expression gradients (assayed using RT-qPCR, Fig. 3C). When compared with the WT, *NST1*
269 and *NST3* were strongly upregulated in the apical and sub-apical portions of *ipt1,3,5,7*
270 inflorescence stems. On the other hand, we detected decreased levels of *NST3* in the medial
271 internodia and both *NST1* and *NST3* were downregulated in the basal internodia of
272 cytokinin-deficient line, confirming thus our genome-wide transcriptional profiling results in
273 *ahk2,3* mutant (Fig. 2). Similar aberrant changes, i.e. upregulation in the apical internodia,
274 but no change or even decrease in expression in the medial and basal internodia were
275 observed for *IRX3* and *IRX8*, the downstream members of the *NST*-regulated SCW
276 transcriptional cascade and markers of SCW-specific cellulose and hemicellulose biosynthesis
277 (Fig. S4D). The expression of *VND6* and *VND7* involved in meta- and protoxylem
278 development (Kubo et al., 2005) was downregulated in sub-apical, medial and basal portion
279 of *ipt1,3,5,7* mutant (Fig. 3D).

280 While treatment with 0.1 and 1 μ M BAP did not show any distinct phenotypic effects,
281 application of 10 μ M and 100 μ M BAP inhibited precocious SCW formation in the apical part
282 of the inflorescence stem of *ipt1,3,5,7* plants (Fig. 3B). Moreover, 10 μ M BAP treatment
283 partially rescued the growth defect (e.g. stem length) of *ipt1,3,5,7* mutant (Fig. S4A and S4B)
284 and we observed a recovery of the stem diameter phenotype and number and architecture
285 of vascular bundles (Fig. 3B), the traits previously demonstrated to be under the control of
286 cytokinins (Hejatko et al., 2009; Matsumoto-Kitano et al., 2008; Nieminen et al., 2008).
287 Importantly, the exogenous cytokinin treatment was able to rescue not only the SCW
288 phenotype, but the *ipt1,3,5,7* mutant treated with 10 μ M BAP plants also showed a WT-like
289 apical-basal expression gradient of *NST1* and *NST3* revealing even higher levels in medial and
290 basal internodia when compared to DMSO control (Fig. 3C). The expression of *IRX3* and *IRX8*
291 in *ipt1,3,5,7* mutant was also rescued to WT-like pattern after treatment with 10 μ M BAP;
292 however, the rescue was not fully comparable to WT in case of *VND6* and *VND7* (Fig. S4A;

293 Fig. 3D). Similarly to *NST1/NST3*, the expression of NST-regulated *IRX3/8* was exceeding the
294 WT levels in BAP-treated *ipt1,3,5,7* (Fig. 3D and Fig. S4D).

295 To wrap it up, in line with RNAseq data discussed in the previous section, our results from
296 cytokinin-deficient *ipt1,3,5,7* line support the idea that cytokinins act as regulators in the
297 NAC TF-regulated SCW cascade. Proper levels of endogenous cytokinins seem to be
298 necessary for preventing the precocious onset of SCW formation and apical/basal gradient of
299 *NST1* and *NST3* expression. Interestingly, even the non-targeted application of exogenous
300 cytokinins is able to rescue the developmental defects and recover the expression patterns
301 of key TFs, particularly *NST1/NST3*, as well as their downstream targets.

302

303 **Cytokinin signaling controls expression of genes for NAC TFs along the apical/basal axis of
304 inflorescence stem**

305 To elucidate the role of AHK2/3-initiated cytokinin signaling in the regulation of SCW
306 formation, we quantified the expression of selected NAC TFs and their downstream targets
307 in mutants deficient in ARR1, ARR10 and ARR12, the type-B ARRs acting downstream of
308 cytokinin-responsive AHKs and mediating dominantly cytokinin signaling (Argyros et al.,
309 2008). We also used the *ahk2-2tk ahk3-3* double mutant, another allelic version of the
310 *ahk2,3* (Higuchi et al., 2004) to confirm RNA-seq data performed on the *ahk2-1 ahk3-1*
311 double mutant. Indeed, compared to Col-0 WT, we found *NST1*, *NST3* and *IRX3* strongly up-
312 regulated in the apical, sub-apical and medial portions of the *ahk2,3* inflorescence stem (Fig.
313 4A, 4C and Fig. S5A). Similarly, *VND6* expression was higher in all stem portions of *ahk2,3*
314 mutant compared to WT plants (Fig. 4E), while *VND7* was significantly up-regulated only in
315 apical portion (Fig. 4G). Compared to that, the RT-qPCR analyses indicate that *VNDs* and
316 *NSTs* expression profile in the *arr1,10,12* triple mutant is more similar to the *ipt1,3,5,7* than
317 the *ahk2,3* background. In *arr1,10,12*, *NST3* was up-regulated in the apical and sub-apical
318 portions but down-regulated in the basal part (Fig. 4B). Moreover, *NST1*, *VND7* and *IRX3*
319 were slightly up-regulated in the apical or sub-apical portions but down-regulated in the
320 medial and basal parts of *arr1,10,12* stem compared to Col-0 WT (Fig. 4D, 4H and Fig. S5B).
321 *VND6* expression was repressed in both sup-apical and medial segments of *arr1,10,12* stem
322 (Fig. 4F).

323 As previously observed (Higuchi et al., 2004; Argyros et al., 2008; Hejatko, 2009), the *ahk2,3*
324 and *arr1,10,12* mutants are affected in their growth and development (Fig. S6A). Compared
325 to WT plants, *ahk2,3* and *arr1,10,12* showed a delay of about 5-7 days in the appearance of
326 the first differentiated siliques and a 30% to 40% reduction of the stem length respectively at
327 the time of collection (Fig. S6B and C). Because a strong delay in flowering or a shorter stem
328 length could influence SCW formation, we next analyzed the *arr1,10*, *arr1,12* and *arr10,12*
329 double mutants which are less affected in their growth and development [(Argyros et al.,
330 2008); Fig. S6]. Our phenotypic data indicated that in contrast to delay of flowering observed
331 in triple *arr1,10,12* mutants, *arr1,10* and *arr1,12* double mutants exhibited an even slightly
332 earlier appearance of the first differentiated siliques (one to two days, respectively), when
333 compared to WT (Fig. S6B). The *arr1,10* mutant also showed a slight but significant reduction
334 in stem length of about 14% relative to WT (Fig. S6C). Importantly, the expression of *NST3*
335 and *IRX3* was up-regulated in sub-apical portions of *arr1,10*, *arr1,12* and *arr10,12* double
336 mutants compared to WT, while in the medial and basal portion *NST3* was significantly up-
337 regulated only in the *arr1,10* mutant (Fig. 4I and Fig. S7B). This mutant also showed a slight
338 but significant up-regulation of *NST1* expression in the sub-apical and apical portions (Fig.
339 S7A).

340 To wrap it up, our results show a role of cytokinin-regulated MSP signaling in the regulation
341 of expression pattern of NAC TFs along the inflorescence stem in *Arabidopsis*. We observed
342 differences in the transcriptional regulation of the NAC transcription factors between the
343 *ahk2,3* mutant (no or only small effect) and the *arr1,10,12* and *ipt1,3,5,7* mutants
344 (repression) in the medial and basal parts of inflorescences, possibly suggesting more
345 complex cytokinin-dependent regulation. Nevertheless, both the cytokinin receptor kinases
346 AHK2 and AHK3 and the type-B ARRPs ARR1, ARR10 and ARR12 likely repress SCW formation
347 in the apical portion through the downregulation of *VND7*, *NST1*, *NST3* and *IRX3* expression.
348 ARR1 (see also later in the text) and ARR10 may play a prominent role in repressing genes
349 involved in SCW formation in the sub-apical and apical portions of the inflorescence stems.

350

351 **AHK2 and AHK3 act upstream of *NST1* and *NST3* in the control of SCW formation in**
352 **interfascicular fibers but independently of *NST1/3* in the vascular bundles**

353 To investigate the nature of genetic interaction between the AHK2- and AHK3-mediated
354 cytokinin signaling and NAC TFs, the *ahk2-1* and *ahk3-1* mutations were introduced by
355 crossing into the *nst1-1 nst3-1 (nst1,3)* background, previously shown to be deficient in the
356 SCW formation in the interfascicular arcs, but not in the TEs (Mitsuda et al., 2007). In
357 quadruple *ahk2,3 nst1,3* mutants, we observed formation of smaller vascular bundles and
358 reduced procambial activity, a phenotype typical for *ahk2,3*. Similarly to what we described
359 for the *ahk2,3* in the text above (first section of Results, Fig. 1A), in both *ahk2,3* and *ahk2,3 nst1,3*
360 we observed absence of differentiating TEs with primary CW and found metaxylem
361 TEs with developed SCW to localize in a close proximity of procambium, suggesting
362 accelerated xylem differentiation compared to WT. However, in contrast to the cytokinin
363 (signaling) deficient lines, the presence of *nst1,3* resulted into a lack of SCW formation in the
364 interfascicular fibers of *ahk2,3 nst1,3* inflorescence stem, both in the apical and basal
365 internodia (Fig. 5). Interestingly, in the *ahk2,3 nst1* and *ahk2,3 nst3* triple mutants, a lack of
366 SCW formation in the interfascicular fibers of inflorescence stem was also observed in the
367 apical internode but not in the basal internode (Fig. S8). Nevertheless, in the basal portions
368 of the *ahk2,3 nst1* triple mutant and to a lesser extend in the *ahk2,3 nst3* mutant, the
369 interfascicular fibers showed a weaker toluidine blue staining compared to WT Col-0. This
370 provides evidence that *nst1* and *nst3* are epistatic to *ahk2* and *ahk3* in the control of SCW
371 initiation in the interfascicular arcs.

372 In summary, AHK2- and AHK3-regulated cytokinin signaling seems to control the onset of
373 SCW formation *via* *NST1* and *NST3* in the interfascicular arcs. However, our data suggest
374 existence of *NST1/3*-independent mechanism controlling SCW formation downstream of
375 AHK2/3 in the xylem cells of vascular bundles.

376

377 **Cytokinin signaling is highly responsive in the apical and basal portions of the inflorescence
378 stem**

379 The aforementioned results suggest that cytokinins could be important in establishing the
380 longitudinal expression pattern of NAC TFs. To analyze cytokinins distribution along the
381 apical-basal axis, we measured the content of endogenous cytokinins along the
382 inflorescence stem in WT and *ipt1,3,5,7* plants (Fig. 6). In WT apical internodes, we observed

383 slightly higher levels of both *trans*-zeatin (*tZ*) and *N*⁶-(Δ ²-isopentenyl)adenine (*iP*), considered
384 the dominant active cytokinins in plants, when compared to medial internodes. The effect
385 was even more pronounced if the *tZ* and *iP* ribosides (*tZR* and *iPR*, respectively), proposed to
386 act dominantly as activatable transport cytokinin forms, were included. On the other hand,
387 we also observed a slight increase in both *tZ* and *iP* cytokinins in the basal segments relative
388 to medial internodes, resulting into a “V-shaped” distribution of endogenous cytokinins
389 along the apical-basal axis in the *Arabidopsis* inflorescence stem.

390 When compared to WT, the levels of *tZ* and *iP* in *ipt1,3,5,7* were strongly downregulated in
391 all (apical, medial and basal) internodes (Fig. 6). In good agreement with previously reported
392 data (Miyawaki et al., 2006) the opposite effect, *i.e.* the upregulation of *cis*-zeatin (*cZ*), was
393 observed in *ipt1,3,5,7* when compared to WT (Fig. S9). This implies the activation of a
394 compensatory mechanism, possibly mediated by the *AtIPT2* and/or *AtIPT9*, which are
395 proposed to be responsible for *cZ* biosynthesis in the *AtIPT*-deficient line (Miyawaki et al.,
396 2006). However, *cZ* was shown to be much less active in most cytokinins bioassays, and its
397 role in the cytokinin-mediated regulation of plant development remains uncertain
398 (Gajdosova et al., 2011; Hosek et al., 2019; Schafer et al., 2015).

399 The V-shaped endogenous cytokinin distribution was also partially reflected in the activity of
400 cytokinin signaling, as could be seen from the expression of cytokinin-responsive type-A
401 ARR5, *ARR7* and *ARR15*. Although the differences observed in the WT were rather
402 small and significantly higher expression in apical and basal internodia compared to medial
403 ones was detectable only for *ARR15* (and partially also in case of *ARR7*), the higher
404 expression in apical and basal internodia compared to subapical and/or medial internodia of
405 all assayed type-A ARRs (*ARR5*, *ARR7* and *ARR15*) was seen in BAP-treated *ipt1,3,5,7* (Fig.
406 S4E-F), suggesting higher cytokinin responsiveness particularly in apical and basal internodia.
407 *ARR5*, *ARR7* and *ARR15* expression was strongly decreased in all internodia of DMSO-treated
408 *ipt1,3,5,7*, pointing to the impaired cytokinin signaling in cytokinin-deficient lines (Fig. S4E-F).

409 The expression of *ARR5* and *ARR7* was also analyzed in the stems of *ahk2,3* double mutant
410 and type-B ARR triple and double mutants to verify that cytokinin signaling is effectively
411 repressed in these mutants (Fig. S5C-F and S7C, D). With the exception of *ARR5* in the *ahk2,3*
412 mutant, our RT-qPCR results indicate that cytokinin signaling is generally down-regulated in

413 all stem portions (apical, sub-apical, medial and basal) of the of *ahk2,3, arr1,10,12, arr1,10*
414 and *arr1,12* mutants, but not in *arr10,12*. Therefore, ARR1 is probably the major type-B ARR
415 transcription factor regulating cytokinin response in the inflorescence stem.

416 To understand the possible mechanism of differential cytokinin signaling responsiveness
417 along the longitudinal axis of the inflorescence stem, we analyzed the expression of type-B
418 ARRs *ARR1, ARR2, ARR10, ARR11* and *ARR12* in the individual sections of inflorescence stem
419 in Col-0 WT plants. With the exception of ARR10 and ARR11, revealing higher expression in
420 basal/medial internodia compared to apical/subapical ones, we did not observe strong
421 differences in the expression of type-B ARRs along the apical/basal axis of the inflorescence
422 stem (Fig. S10).

423 In conclusion, the results of our measurements indicate that higher levels of endogenous
424 cytokinins are correlated with elevated cytokinin signaling activity in the apical and basal
425 portions of *Arabidopsis* inflorescence stem. Together with recovery of the V-shape pattern
426 of cytokinin signaling even after equal application of exogenous cytokinin to the entire
427 flowering *ipt1,3,5,7* plants, it is implying spatially-specific responsiveness of cytokinin
428 signaling pathway. However, rather uniform activity of genes for type-B ARRs cannot explain
429 this type of spatial-specific cytokinin response.

430

431 **Cytokinins control functional properties of water conducting elements**

432 To assess the functional properties of TEs along the apical-basal axis in the WT inflorescence
433 stem, we measured hydraulic conductivity in the individual inflorescence internodes. The
434 hydraulic conductivity is a function of total TE area that depends on both the number and
435 diameter of functional TEs. And, it has been shown that water conductivity increases
436 exponentially (to the fourth power) with increasing vessel diameter (Tyree et al., 1994). Our
437 analysis showed a remarkable increase in the hydraulic conductivity of the basal segments
438 compared to apical internodes (Fig. 7A). We visualized functional TEs using the recently
439 developed protocol of Jupa et al. (2015). Apparently, increases in both TE number
440 (particularly of metaxylem type) and TE diameter contribute to the substantive increase in

441 hydraulic conductivity along the apical-basal axis of WT inflorescence stems (Fig. 7B, Fig.
442 S11).

443 To assess the possible influence of premature SCW formation on TE properties in cytokinin
444 (signaling) deficient lines, we assayed hydraulic conductivity of functional TEs in the
445 inflorescence stem of *ahk2,3*, *p35S:CKX3* and *ipt1,3,5,7* lines. Relative to WT, we found that
446 all mutant and transgenic lines tested demonstrated decreases in the total proto- and
447 metaxylem area with a strongly impaired hydraulic conductivity in the basal internode, and
448 in most of these lines (2 out of 3), this was also observed in the apical internode (Fig. 7A, Fig.
449 S11A). The strongest effect on the water conductivity gradient (loss of the statistically
450 significant difference between the apical and basal internode) was apparent in the
451 quadruple mutant *ipt1,3,5,7*. This is in line with a strong upregulation of SCW formation in
452 the apical internode of the quadruple *atipt* mutant, leading to the almost complete absence
453 of developmental gradient in SCW formation (Fig. 1). Interestingly, in the *ahk2,3* mutant, the
454 total TE number (both proto- and metaxylem type) was comparable to that observed in WT
455 (with metaxylem TEs being even upregulated compared to WT; Fig. S11A). However, the
456 average diameter of functional TEs was decreased, leading to a decline in the total TE area
457 and reduction in the hydraulic conductivity (Fig. 7A). The same trend, *i.e.* decrease in the
458 diameter of functional TEs, was observed in *35S:CKX3* and particularly in the *ipt1,3,5,7*. In
459 both of these lines, the drop in the cell number also accounted for the decline in the total TE
460 area (Fig. 7A, Fig. S11A). Even more importantly, the absence of fraction of largest TEs, being
461 responsible for the majority of hydraulic conductance in the WT (Fig. S11B), seems to be the
462 main factor leading to the decreased hydraulic conductivity in all cytokinin (signaling)
463 deficient lines (Fig. 7B).

464 Together, the data indicates that premature SCW formation or alteration in *VNDs*
465 expression, induced by deficiency in particularly AHK2- and AHK3-mediated cytokinin
466 signaling or endogenous cytokinin levels, can be associated with the decrease in a diameter
467 of functional TEs, resulting in a strongly impaired water conductance of shoot vasculature.

468

469 **Ectopic overexpression of *NST1* mimics the effects of cytokinin deficiency on secondary cell
470 wall formation and hydraulic conductivity**

471 To inspect the possible effect of (cytokinin-mediated) misregulation of NAC TFs on SCW
472 formation and the functional properties of TEs, we inspected SCW formation and water
473 conductivity of *nst1,3* and *p35S:NST1* plants. In agreement with previous reports, we
474 observed that *nst1,3* plants display absence of interfascicular arcs, but are unaffected in the
475 onset of SCW in TEs (Figs. 5, 8A). Accordingly, we observed a WT-like ability to conduct water
476 in both apical and basal internodes of *nst1,3* plants (Fig. 8B). In contrast, *p35S:NST1* mimics
477 the enhanced SCW formation both in the vascular bundles and interfascicular arcs. In the
478 VBs, the overexpression of *NST1* mimics the phenotype observed in the cytokinin (signaling)
479 deficient lines, i.e. absence of differentiating TEs surrounded with primary CW and formation
480 of cells with SCW in the close vicinity of (pro)cambium or cambial cells, even facing the
481 phloem (Fig. 8A). That also associated with a decreased hydraulic conductivity in basal
482 internodes relative to WT (Fig. 8B). Thus, similarly to the strong phenotype of *ipt1,3,5,7*,
483 *p35S:NST1* also lacks an apical-basal gradient in hydraulic conductivity.

484 In summary, these data show that elevated expression of *NST1* partially phenocopies the
485 developmental aberrations observed in both the vascular bundles and interfascicular arcs in
486 cytokinin (signaling) deficient lines.

487

488 **Discussion**

489 **Cytokinins control NAC TF-regulated SCW formation**

490 We observed clear developmental gradient along the apical/basal axis of the inflorescence
491 stem in *Arabidopsis*, associated with gradient in the expression (low in apex, high at the
492 base) of genes for *NST1/3* master regulators controlling SCW transcriptional cascade.
493 Impaired cytokinin signaling or deficiencies in endogenous cytokinins results in perturbed
494 xylem and interfascicular arcs development characterized by premature SCW formation and
495 alterations in the apical/basal expression pattern of genes encoding NAC TFs as well as their
496 downstream targets acting in the SCW-inducing transcriptional cascade. The observed
497 differences in the expression of *NST1/3* and *VND6/7* in the apical and/or subapical portion of
498 the inflorescence stem (low in WT but high in cytokinin signaling deficient *ahk2,3* line)
499 together with high activity of cytokinin signaling in apex suggest that cytokinin-mediated

500 downregulation of genes for NAC TF in the apical/subapical internodia is an important part
501 of a mechanism allowing formation of proper developmental gradient along the apical-basal
502 axis of the inflorescence stem.

503 Although the detailed mechanism remains to be clarified, our data suggest that AHK2 and
504 AHK3 downregulate the expression of the genes for NAC TF *NST1/3* and *VND6/7* in the apical
505 and *NST1/3* and *VND6* in the subapical portions of the inflorescence stem. Further, we
506 demonstrate that type-B ARR_s ARR1, ARR10 and ARR12 act redundantly in repressing the
507 expression of *NST1* and *NST3* in apical portions and that ARR1 and ARR10 may play a
508 prominent role in this process. The analysis of *ARR5* and *ARR7* expression in *arr1,10, arr1,12*
509 and *arr10,12* double mutants also indicated that ARR1 is the main type-B ARR activating
510 cytokinin signaling along the inflorescence stems.

511 The developmental gradient can be seen not only along the apical-basal axis, but also at the
512 level of individual vascular bundles. In the WT, the differentiating (expanding) metaxylem
513 TE_s located proximally to procambial cells are still surrounded by primary cell wall and the
514 SCW is formed in the developmentally older cells located more centrally to the inflorescence
515 stem. Compared to that, in the cytokinin (signaling) deficient lines, this developmental
516 gradient is much steeper and vast majority of cells morphologically distinguishable as future
517 metaxylem TE_s develops SCW although still located in the close vicinity of procambium.
518 Thus, it seems that AHK2- and AHK3-mediated cytokinin signaling delays precocious SCW
519 formation not only in the interfascicular arcs, but also in the differentiating TE_s within
520 vascular bundles.

521 The differences in the expression of the genes for NAC TFs we have observed between
522 *ahk2,3* on one side and *arr1,10,12* and *ipt1,3,5,7* on the other one seem to be the result of
523 strong developmental aberrations we observed in the inflorescence stem of *arr1,10,12* and
524 *ipt1,3,5,7*, confirming the previously described role of cytokinin signaling in both primary and
525 secondary growth (Hejatko et al., 2009; Matsumoto-Kitano et al., 2008; Nieminen et al.,
526 2008). The weak upregulation of *VND7* and no upregulation of *VND6* in the apical internodia
527 in case of *arr1,10,12* and *ipt1,3,5,7* can be a result of strongly impaired primary growth
528 (highly reduced procambial activity) resulting in small vascular bundles and in case of
529 *ipt1,3,5,7* also decreased number of vascular bundles, thus leading to reduction in a number

530 of SCW forming cells. Besides the differences in the expression of *VND6/7*, there is also
531 absence of *NST1* and *NST3* downregulation in medial and basal internodia in *ahk2,3* line
532 compared to *ipt1,3,5,7* and *arr1,10,12*. This seems to be the result of differential effects of
533 cytokinin signaling, being much more disturbed in *ipt1,3,5,7* and *arr1,10,12* compared to
534 *ahk2,3*. This can be well demonstrated on the expression pattern of type-A ARR, particularly
535 *ARR5*, being strongly downregulated in all internodia of both *arr1,10,12* and *ipt1,3,5,7*, but
536 nearly not affected in *ahk2,3*. On the other hand, *ARR7* is downregulated to a comparable
537 extent in apical and subapical internodia in both *ahk2,3* and *arr1,10,12*, but it is much more
538 downregulated in medial and basal internodia of *arr1,10,12* than in the corresponding stem
539 fragments of *ahk2,3*. Thus, the only remaining cytokinin sensor *AHK4* is apparently able to
540 mediate partial cytokinin signaling in *ahk2,3*, however, with some spatial specificity (medial
541 and basal internodia) and revealing preference for the individual proteins within the MSP
542 signaling (both type-B and type-A ARR, as can be judged on the dominant role of *ARR1* in
543 mediating the *AHK2*- and *AHK3*-dependent cytokinin signaling in the inflorescence stem).
544 This is in line with previous findings, suggesting certain level of specificity of individual
545 cytokinin sensors (Higuchi et al., 2004; Nishimura et al., 2004; Riefler et al., 2006). The *AHK4*-
546 mediated cytokinin signaling in medial/basal internodia may be possibly playing a positive
547 role in the secondary growth (developmental switch of procambium to cambium), as
548 recently demonstrated in the root (Ye et al., 2021), being responsible for the formation of
549 SCW-containing (and thus NAC TFs expressing) cells at the base of the *Arabidopsis*
550 inflorescence stem. Furthermore, because of precocious and excessive SCW production in
551 strong cytokinin mutants, unnecessary SCW synthesis can be repressed or at least not
552 activated as an adaptive mechanism in later stages of inflorescence development in
553 cytokinin-deficient lines. The apparent increase in SCW deposition at the base of
554 inflorescence of strong cytokinin mutants supports this hypothesis. In this scenario, negative
555 feedback regulation of *NSTs* master switch by downstream MYB transcription factors is
556 possible (Wang et al., 2011), thus explaining the downregulation of NACs in the medial and
557 basal internodia of *arr1,10,12* and *ipt1,3,5,7*.

558 Cytokinins and *AHK2*- and *AHK3*-mediated cytokinin signaling is required for the
559 (pro)cambium activity and radial growth (Hejatko et al., 2009; Nieminen et al., 2008).
560 Consequently, the defects in primary growth observed in *ahk2,3* and particularly *ipt1,3,5,7*,

561 and *arr1,10,12* mutants may induce compensatory mechanisms leading to early SCW
562 formation. However, the number of protoxylem and metaxylem TEs is comparable in the WT
563 and *ahk2,3*, suggesting the defect in the primary growth (proliferative procambium activity)
564 is not that strong and can be partially compensated by the upregulation of metaxylem TEs
565 differentiation. Furthermore, even though the *arr1,10*, *arr1,12* and *arr10,12* double mutants
566 are less affected in their development (e.g. these lines do show stem length and flowering
567 time comparable with WT Col-0), there is still significant upregulation of *NST3* as well as its
568 downstream target *IRX3* detectable in the sub-apical stem fragment in the double *arr*
569 mutants, suggesting that *NST*-regulated SCW is under negative control of cytokinin signaling
570 in the early stages of primary growth of the inflorescence stem.

571 In spite of key importance of cytokinin signaling and endogenous cytokinins demonstrated in
572 our study, cytokinins may cooperate with other factor(s), both positive and negative
573 regulators of SCW formation, in achieving proper timing of SCW thickening. The results of
574 our GO analysis together with the extensively described role of auxin in the control of xylem
575 differentiation (Ruzicka et al., 2015) and xylem fiber and TEs expansion (Nilsson et al., 2008)
576 makes auxin a likely candidate. Noteworthy, the overexpression of auxin-inducible *AtHB8*
577 results in a phenotype resembling that of a cytokinin deficiency [precocious
578 differentiation/SCW formation of interfascicular arcs; (Baima et al., 2001)], implying auxin as
579 a potential positive regulator of SCW formation. A strong mutually negative interaction
580 between cytokinins and abscisic acid (ABA) signaling was described (Skalak et al., 2021; Zubo
581 and Schaller, 2020). Accordingly, ABA was shown to act as positive regulator of SCW
582 formation in Arabidopsis and *VND7* and *NST1/3* were up-regulated by elements of ABA
583 signaling pathway (Campbell et al., 2018; Ramachandran et al., 2021). Furthermore, SnRK2
584 kinases acting in ABA signaling were shown to phosphorylate *NST1*, allowing to control the
585 *NST1*-regulated genes acting in the SCW formation (Liu et al., 2021). Thus, ABA could be
586 another partner of cytokinins in the control of SCW formation.

587 **Cytokinin-regulated onset of SCW formation impacts on TE hydraulic conductivity**

588 Our results indicate that precocious SCW in cytokinin insufficient lines leads to drop in
589 hydraulic conductivity due to formation of smaller TEs. Importantly, thanks to our previously
590 introduced approach (Jupa et al., 2015), we were able to correlate the total inflorescence

591 stem water conductivity with the size of only functional TEs, thus avoiding possible bias due
592 to including the size of non-functional TE/TE-like cells. Although NSTs were shown to induce
593 SCW formation largely in the interfascicular fibers (Mitsuda et al., 2007; Zhong et al., 2007),
594 both *NST1* and *NST3* were found to be expressed not only in the interfascicular regions, but
595 also in the xylem cells differentiating into vascular vessels (Mitsuda et al., 2007).
596 Furthermore, it was observed that *NST3* overexpression induces a slight increase in thickness
597 of SCW in TEs but a decreased SCW in xylary and interfascicular fibers (Zhong et al., 2006, Ko
598 et al., 2007) suggesting that regulation of SCW formation in both interfascicular and xylary
599 fibers need a proper *NST3* dosage. This data is in a good accordance with our findings that
600 the premature formation of SCWs in the differentiating TEs observed in *ahk2,3* but also in
601 other cytokinin (signaling) deficient lines can be partially phenocyped by *NST1*
602 overexpression, suggesting that misregulation of *NST1/3* is able to affect not only
603 interfascicular arcs, but also TEs differentiation. However, in terms of the TE size, there will
604 be probably relevant also upregulation of *VND6* and *VND7*, previously shown to be
605 responsible for the SCW formation in metaxylem TEs and protoxylem, respectively (Kubo et
606 al., 2005). This seems to be the case particularly in the absence of functional *NST1/3* in
607 *ahk2,3 nst1,3* quadruple mutant line, where the upregulation of *VND6* and/or *VND7* is
608 probably responsible for the early SCW formation in the differentiating metaxylem TEs.

609 **Conclusions and future outlines**

610 Based on our findings, we propose that high activity of AHK2- and AHK3-mediated cytokinin
611 signaling in the apical portion of the inflorescence stem prevents premature SCW formation
612 in vascular bundles as well as interfascicular regions, thus ensuring the proper timing of both
613 xylem and interfascicular fiber differentiation. In the absence of endogenous cytokinins
614 and/or attenuated cytokinin signaling, the ectopic upregulation of genes for NAC TFs
615 initiates precocious formation of SCWs, before the cell expansion of differentiating TEs is
616 complete. The premature formation of a rigid SCW prevents TEs from reaching normal
617 diameters, thus impairing their hydraulic conductivity (Fig. S12).
618 Importance of cell wall properties in the developmental regulations in plants is emerging
619 (Braybrook and Jonsson, 2016; Didi et al., 2015; Chebli and Geitmann, 2017; Sassi and Traas,
620 2015; Trinh et al., 2021). Our results imply that the molecular machinery controlling the

621 onset of SCW formation is an important target of hormonal regulations, strongly affecting
622 progression of differentiation and consequently functional properties of xylem cells. Our
623 study clearly indicates that cytokinin signaling pathway plays a positive role in controlling
624 long-range water transport in plants. This further supports the importance of MSP signaling
625 in mediating the plant growth and highlights the individual members of the pathway as
626 valuable targets of molecular-assisted breeding and/or synthetic biology approaches in the
627 efforts to improve plant biomass formation.

628

629 **Materials and methods**

630 **Plant materials and growth conditions**

631 The double mutants *ahk2-2tk ahk3-3*, *ahk2-1 ahk3-1 (ahk2,3)*, *arr1-3 arr10-5 (arr1,10)*, *arr1-*
632 *3 arr12-1 (arr1,12)*, *arr10-5 arr12-1 (arr10,12)*, the triple mutant *arr1-3 arr10-5 arr12-1*
633 *(arr1,10,12)*, the triple *atipt3-2 atipt5-1 atipt7-1 (ipt3,5,7)*, the quadruple *atipt1-1 atipt3-2*
634 *atipt5-1 atipt7-1 (ipt1,3,5,7)* mutant, the quintuple mutant *ahp1-1 ahp2-1 ahp3 ahp4 ahp5-1*
635 *(ahp1,2,3,4,5)*, the *p35S:CKX2* and *p35S:CKX3* overexpressing lines and the *proNST3:NST3-*
636 *GUS* line are in *Arabidopsis* Col-0 background and were previously described (Werner et al.,
637 2001; Nishimura et al., 2004; Higuchi et al., 2004; Argyros et al., 2008; Hutchison et al., 2006;
638 Miyawaki et al., 2006; Zhong et al., 2006). Plants were grown on soil (compost [TS-3;
639 Klasmann-Deilmann], perlite and sand in the ratio of 12:3:4 respectively) in a growth
640 chamber under long-day conditions (16 h light at 21°C/8 h dark at 19°C), at 60% humidity
641 and illuminated with fluorescent tubes at 100 $\mu\text{mol m}^{-2} \text{s}^{-1}$ light intensity. Stem samples
642 were collected when the plants reach the developmental stage 1 of the first elongated
643 siliques (Altamura et al., 2001).

644

645 **Plant transversal sectioning**

646 50 μm -thick cross sections were prepared from apical and basal internodes of *Arabidopsis*
647 inflorescence stems at stage 1 (Altamura et al., 2001) by a vibrating blade microtome (Leica
648 VT1200 S), stained with a 0.05% (w/v) solution of toluidine blue in water for 1 min and
649 rinsed in distilled water three-times for 30 s. The water-mounted native cross sections were

650 observed using microscope [Olympus BX61; (digital camera – Olympus DP70)]. Pictures of
651 each individual vascular bundle were photographed at 4x, 10x, 20x or 40x magnification.

652

653 **BAP treatment and GUS staining**

654 *proNST3:NST3-GUS* in Col-0 background were grown under the conditions as described
655 above. Plants were sprayed once per day for 48 hours with 1 µM, 10 µM, 100 µM BAP or
656 mock (0.1 % DMSO, Sigma). Small pieces (approximately 0.5 cm) of apical and basal portion
657 of the inflorescence stem were cut and incubated in GUS staining buffer (0.1% Triton X-100,
658 1 mM X-GlcA sodium trihydrate, 20% methanol and 0.5 mM potassium ferricyanide and 0.5
659 mM potassium ferrocyanide) for 24 hours under vacuum in darkness and at room
660 temperature. Stained parts were analyzed as is described in plant transversal sectioning
661 section.

662

663

664 **Illumina library construction and sequencing**

665 Total RNA was extracted and used for library construction and sequenced using Illumina
666 TrueSeq protocols by [GATC Biotech AG](#), Constance, Germany. After removal of low-quality
667 reads, >30 million mapped reads were retained for further analysis from each sample. In
668 total, the expression of ~26,900 distinct protein coding genes was detected.

669

670 **Sequence alignment**

671 The adapters were removed using Cutadapt (Martin, 2011). Reads were mapped to the
672 reference *A. thaliana* genome (TAIR10) using TopHat 2.0.8 (Kim et al., 2013) with the
673 following parameters: minimum intron length, 20 bp; maximum intron length, 4 000 bp; only
674 reads across junctions indicated in the supplied GFF (TAIR10) were utilized; all other
675 parameters were set to default settings).

676

677 **Differential gene expression analysis**

678 Cuffdiff 2.2.1 software (Trapnell et al., 2013) was used with default settings with a false
679 discovery rate of 0.05. The most biologically relevant genes for SCW development were
680 identified as differentially expressed genes showing the same or opposite direction of
681 change between apical and basal internodes and with a significantly different amplitude of
682 change (\log_2 fold changes ≥ 1.1 (\log_2 fold change_{ahk2 ahk3} – \log_2 fold change_{WT}) ≥ 1.1)).

683

684 **Gene set enrichment analysis**

685 We performed a gene enrichment analysis using GOrilla software (Eden et al., 2009) with a
686 FDR value of 0.001 as the threshold of significance.

687

688 **Cell wall chemistry**

689 Arabidopsis stems from plants just reaching the developmental stage 1 (Altamura et al.,
690 2001) were used to determine lignin and carbohydrate content following a modified Klason
691 method (Porth et al., 2013). Briefly, samples were ground in a Wiley mill to pass a 40-mesh
692 screen, treated with acetone overnight using a Soxhlet apparatus and then dried for 48 h at
693 50°C. Approximately 100 mg of dried extractive-free tissue was treated with 72% sulphuric
694 acid for 2 h, diluted to ~3% with 112 ml DI water and autoclaved at 121°C for 60 min. The
695 mixture was filtered through a medium coarseness crucible and the retentate dried at 105°C.
696 The acid-insoluble lignin was determined gravimetrically by weighing the retentate, while
697 the acid-soluble lignin was measured from an aliquot of the filtrate using an UV
698 spectrophotometer at 205 nm. Carbohydrate contents were determined by HPLC analysis of
699 the filtrate. Fucose, glucose, xylose, mannose, galactose, arabinose and rhamnose were
700 analyzed using a Dx-600 anion-exchange HPLC (Dionex, Sunnyvale, CA, USA) equipped with a
701 CarboPac PA1 column (Dionex) at 1 ml min⁻¹ and post column detection (100mM NaOH min⁻¹)
702 using an electrochemical detector. Sugar concentrations were calculated from standard
703 curves created from external standards.

704

705 **Measurements of endogenous cytokinins**

706 Quantification of cytokinin metabolites were performed according to an ultra-high
707 performance liquid chromatography-electrospray tandem mass spectrometry method
708 described by Svačinová et al. (2012). All samples (20 mg FW) were homogenized and
709 extracted in 1 ml of modified Bielecki buffer (60% MeOH, 10% HCOOH and 30% H₂O)
710 together with a cocktail of stable isotope-labeled internal standards (0.25 pmol of CK bases,
711 ribosides, *N*-glucosides, and 0.5 pmol of CK *O*-glucosides, nucleotides per sample added).
712 The extracts were purified using the Oasis MCX column (30 mg/1 ml, Waters) conditioned
713 with 1 ml each of 100% MeOH and H₂O, equilibrated sequentially with 1 ml of 50% (v/v) nitric
714 acid, 1 ml of H₂O, and 1 ml of 1M HCOOH. After sample application onto an MCX column,
715 unretained compounds were removed by a wash step using 1 ml of 1M HCOOH and 1 ml
716 100% MeOH, preconcentrated analytes were eluted by two-step elution using 1 ml of 0.35M
717 NH₄OH aqueous solution and 2 ml of 0.35M NH₄OH in 60% (v/v) MeOH solution. The eluates
718 were then evaporated to dryness *in vacuo* and stored at -20°C prior the LC-MS/MS analyses.
719 Cytokinin levels were determined using stable isotope-labelled internal standards as a
720 reference and four independent biological replicates were performed.

721

722 **Gene expression analysis**

723 Four stem portions of one cm were collected at the developmental stage when the first
724 siliques differentiated on the inflorescence (Altamura et al., 2001). The basal, medial, sub-
725 apical and apical portions of stem correspond respectively to the mature stem above the
726 rosette leaves, the second internode, the third internode (below the last node) and the stem
727 portion just under the apical meristem (Fig. S5A). For each biological replicate, the stem
728 portions from three different plants were pooled and flash frozen immediately in liquid
729 nitrogen. Total RNA was extracted using Trizol reagent (Invitrogen) and genomic DNA was
730 removed by digestion with DNase I (Thermo Scientific) according to the manufacturer's
731 protocol. One microgram of total RNA was reverse transcribed using the RevertAid First
732 Strand cDNA Synthesis Kit and oligo(dT)18 following the manufacturer's instructions
733 (Thermo Scientific). Quantitative real-time PCR reaction was performed on a Rotor-Gene Q
734 (Qiagen) using 10 µL FastStart SYBR Green Master (Roche), 2 µL of 2-fold diluted cDNA, and

735 0.3 μ M of primers in a total volume of 20 μ L per reaction. The cycling conditions were
736 composed of an initial 10 min denaturation step at 95°C, followed by 45 cycles of 95°C for 10
737 s, 60°C for 15 s, 72°C for 15 s. A melting curve was run from 65°C to 98°C to ensure the
738 specificity of the products. Data were analyzed with the delta Ct method. Ubiquitin 10
739 (*UBQ10*) was used as a reference gene for normalization of gene expression levels. qRT-PCR
740 primer sequences are listed in Table S4.

741

742 **Statistical analysis**

743 The experiments reported here were repeated at least twice with similar results unless
744 otherwise specified. Experiments were analyzed by ANOVAs followed by Tukey's honestly
745 significant difference (HSD) *post hoc* test using R software (R Core Team, <https://www.R-project.org>). For non-normal count data (e.g. number of days) a Poisson mixed model was
746 used to identify differences between genotypes.
747

748

749 **Acknowledgements**

750 We are grateful to Eva Benkova and Phil Jackson for careful reading of the manuscript and
751 their valuable comments, and Hana Martíková and Ivan Petřík for their help with
752 phytohormone analyses. Plant Sciences Core Facility of CEITEC Masaryk University is
753 gratefully acknowledged for plants cultivation.

754

755 **Competing interests**

756 No competing interests declared.

757

758 **Funding**

759 The work was supported by the Ministry of Education, Youth and Sports of CR from
760 European Regional Development Fund-Project "Centre for Experimental Plant Biology": No.

761 CZ.02.1.01/0.0/0.0/16_019/0000738, „SINGING PLANT“, No.
762 CZ.02.1.01/0.0/0.0/16_026/0008446 and the Czech Science Foundation (19-24753S). A.B.
763 and E.B. were supported by the CETOCOEN PLUS project and the RECETOX Research
764 Infrastructure (LM2015051). Computational resources were supplied by the Ministry of
765 Education, Youth and Sports of the Czech Republic under the Projects CESNET (LM2015042)
766 and CERIT-Scientific Cloud (LM2015085).

767

768 **Data availability**

769 All relevant data can be found within the article and its supplementary information.

770

771 **References**

772 **Altamura, M. M., Possenti, M., Matteucci, A., Baima, S., Ruberti, I. and Morelli, G.** (2001).
773 Development of the vascular system in the inflorescence stem of *Arabidopsis*. *New*
774 *Phyto**logist* **151**, 381-389.

775 **Argyros, R. D., Mathews, D. E., Chiang, Y. H., Palmer, C. M., Thibault, D. M., Etheridge, N., Argyros,**
776 **D. A., Mason, M. G., Kieber, J. J. and Schaller, G. E.** (2008). Type B response regulators of
777 *Arabidopsis* play key roles in cytokinin signaling and plant development. *Plant Cell* **20**, 2102-
778 2116.

779 **Baima, S., Possenti, M., Matteucci, A., Wisman, E., Altamura, M. M., Ruberti, I. and Morelli, G.**
780 (2001). The *arabidopsis* ATHB-8 HD-zip protein acts as a differentiation-promoting
781 transcription factor of the vascular meristems. *Plant Physiol* **126**, 643-655.

782 **Braybrook, S. A. and Jonsson, H.** (2016). Shifting foundations: the mechanical cell wall and
783 development. *Curr Opin Plant Biol* **29**, 115-120.

784 **Campbell, L., Etchells, J. P., Cooper, M., Kumar, M. and Turner, S. R.** (2018). An essential role for
785 abscisic acid in the regulation of xylem fibre differentiation. *Development* **145**.

786 **Dello Ioio, R., Linhares, F. S. and Sabatini, S.** (2008). Emerging role of cytokinin as a regulator of
787 cellular differentiation. *Curr Opin Plant Biol* **11**, 23-27.

788 **Didi, V., Jackson, P. and Hejatk, J.** (2015). Hormonal regulation of secondary cell wall formation.
789 *Journal of Experimental Botany* **66**, 5015-5027.

790 **Eden, E., Navon, R., Steinfield, I., Lipson, D. and Yakhini, Z.** (2009). GOrilla: a tool for discovery and
791 visualization of enriched GO terms in ranked gene lists. *BMC Bioinformatics* **10**, 48.

792 **Esau, K.** (1977). *Anatomy of seed plants*. New York: Wiley.

793 **Gajdosova, S., Spichal, L., Kaminek, M., Hoyerova, K., Novak, O., Dobrev, P. I., Galuszka, P., Klima,**
794 **P., Gaudinova, A., Zizkova, E., et al.** (2011). Distribution, biological activities, metabolism,
795 and the conceivable function of cis-zeatin-type cytokinins in plants. *J Exp Bot* **62**, 2827-2840.

796 **Gordon, S. P., Chickarmane, V. S., Ohno, C. and Meyerowitz, E. M.** (2009). Multiple feedback loops
797 through cytokinin signaling control stem cell number within the *Arabidopsis* shoot meristem.
798 *Proc Natl Acad Sci U S A* **106**, 16529-16534.

799 **Greb, T. and Lohmann, J. U.** (2016). Plant Stem Cells. *Curr Biol* **26**, R816-821.

800 Hejatko, J., Ryu, H., Kim, G. T., Dobesova, R., Choi, S., Choi, S. M., Soucek, P., Horak, J., Pekarova, B., Palme, K., et al. (2009). The Histidine Kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 Regulate Vascular Tissue Development in Arabidopsis Shoots. *Plant Cell* **21**, 2008-2021.

801 Higuchi, M., Pischke, M. S., Mahonen, A. P., Miyawaki, K., Hashimoto, Y., Seki, M., Kobayashi, M., Shinozaki, K., Kato, T., Tabata, S., et al. (2004). In planta functions of the Arabidopsis cytokinin receptor family. *Proc Natl Acad Sci U S A* **101**, 8821-8826.

802 Hosek, P., Hoyerova, K., Kiran, N. S., Dobrev, P. I., Zahajská, L., Filepová, R., Motyka, V., Müller, K. and Kamínek, M. (2019). Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. *New Phytol.*

803 Hussey, S. G., Mizrahi, E., Creux, N. M. and Myburg, A. A. (2013). Navigating the transcriptional roadmap regulating plant secondary cell wall deposition. *Front Plant Sci* **4**, 325.

804 Chebli, Y. and Geitmann, A. (2017). Cellular growth in plants requires regulation of cell wall biochemistry. *Curr Opin Cell Biol* **44**, 28-35.

805 Jung, K. W., Oh, S. I., Kim, Y. Y., Yoo, K. S., Cui, M. H. and Shin, J. S. (2008). Arabidopsis histidine-containing phosphotransfer factor 4 (AHP4) negatively regulates secondary wall thickening of the anther endothecium during flowering. *Mol Cells* **25**, 294-300.

806 Jupa, R., Didi, V., Hejatko, J. and Glosner, V. (2015). An improved method for the visualization of conductive vessels in Arabidopsis thaliana inflorescence stems. *Front Plant Sci* **6**, 211.

807 Kieber, J. J. and Schaller, G. E. (2018). Cytokinin signaling in plant development. *Development* **145**.

808 Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. and Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biol* **14**, R36.

809 Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., Mimura, T., Fukuda, H. and Demura, T. (2005). Transcription switches for protoxylem and metaxylem vessel formation. *Gene Dev* **19**, 1855-1860.

810 Liu, C., Yu, H., Rao, X., Li, L. and Dixon, R. A. (2021). Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1. *Proc Natl Acad Sci U S A* **118**.

811 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal* **17**, 10-12.

812 Matsumoto-Kitano, M., Kusumoto, T., Tarkowski, P., Kinoshita-Tsujimura, K., Vaclavikova, K., Miyawaki, K. and Kakimoto, T. (2008). Cytokinins are central regulators of cambial activity. *Proc Natl Acad Sci U S A* **105**, 20027-20031.

813 Mitsuda, N., Iwase, A., Yamamoto, H., Yoshida, M., Seki, M., Shinozaki, K. and Ohme-Takagi, M. (2007). NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. *Plant Cell* **19**, 270-280.

814 Mitsuda, N., Seki, M., Shinozaki, K. and Ohme-Takagi, M. (2005). The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. *The Plant cell* **17**, 2993-3006.

815 Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., Kato, T., Sato, S., Tarkowska, D., Tabata, S., Sandberg, G. and Kakimoto, T. (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. *Proc Natl Acad Sci U S A* **103**, 16598-16603.

816 Nieminen, K., Immanen, J., Laxell, M., Kauppinen, L., Tarkowski, P., Dolezal, K., Tahtiharju, S., Elo, A., Decourteix, M., Ljung, K., et al. (2008). Cytokinin signaling regulates cambial development in poplar. *Proc Natl Acad Sci U S A* **105**, 20032-20037.

817 Nilsson, J., Karlberg, A., Antti, H., Lopez-Vernaza, M., Mellerowicz, E., Perrot-Rechenmann, C., Sandberg, G. and Bhalerao, R. P. (2008). Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. *Plant Cell* **20**, 843-855.

850 Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S. and Ueguchi, C. (2004). Histidine kinase
851 homologs that act as cytokinin receptors possess overlapping functions in the regulation of
852 shoot and root growth in *Arabidopsis*. *Plant Cell* **16**, 1365-1377.

853 Pernisova, M., Klima, P., Horak, J., Valkova, M., Malbeck, J., Soucek, P., Reichman, P., Hoyerova, K.,
854 Dubova, J., Friml, J., et al. (2009). Cytokinins modulate auxin-induced organogenesis in
855 plants via regulation of the auxin efflux. *Proc Natl Acad Sci U S A* **106**, 3609-3614.

856 Porth, I., Klapste, J., Skyba, O., Lai, B. S., Geraldes, A., Muchero, W., Tuskan, G. A., Douglas, C. J., El-
857 Kassaby, Y. A. and Mansfield, S. D. (2013). *Populus* trichocarpa cell wall chemistry and
858 ultrastructure trait variation, genetic control and genetic correlations. *New Phytol* **197**, 777-
859 790.

860 Ramachandran, P., Augstein, F., Mazumdar, S., Nguyen, T. V., Minina, E. A., Melnyk, C. W. and
861 Carlsbecker, A. (2021). Abscisic acid signaling activates distinct VND transcription factors to
862 promote xylem differentiation in *Arabidopsis*. *Curr Biol* **31**, 3153-3161 e3155.

863 Riefler, M., Novak, O., Strnad, M. and Schmülling, T. (2006). *Arabidopsis* cytokinin receptor mutants
864 reveal functions in shoot growth, leaf senescence, seed size, germination, root development,
865 and cytokinin metabolism. *Plant Cell* **18**, 40-54.

866 Ruzicka, K., Ursache, R., Hejatkova, J. and Helariutta, Y. (2015). Xylem development - from the cradle
867 to the grave. *New Phytol* **207**, 519-535.

868 Sassi, M. and Traas, J. (2015). When biochemistry meets mechanics: a systems view of growth
869 control in plants. *Curr Opin Plant Biol* **28**, 137-143.

870 Schafer, M., Brutting, C., Meza-Canales, I. D., Grosskinsky, D. K., Vankova, R., Baldwin, I. T. and
871 Meldau, S. (2015). The role of cis-zeatin-type cytokinins in plant growth regulation and
872 mediating responses to environmental interactions. *J Exp Bot* **66**, 4873-4884.

873 Schuetz, M., Smith, R. and Ellis, B. (2013). Xylem tissue specification, patterning, and differentiation
874 mechanisms. *Journal of Experimental Botany* **64**, 11-31.

875 Skalak, J., Nicolas, K. L., Vankova, R. and Hejatkova, J. (2021). Signal Integration in Plant Abiotic Stress
876 Responses via Multistep Phosphorelay Signaling. *Front Plant Sci* **12**, 644823.

877 Svacina, J., Novak, O., Plackova, L., Lenobel, R., Holik, J., Strnad, M. and Dolezal, K. (2012). A new
878 approach for cytokinin isolation from *Arabidopsis* tissues using miniaturized purification:
879 pipette tip solid-phase extraction. *Plant Methods* **8**, 17.

880 Taylor-Teeple, M., Lin, L., de Lucas, M., Turco, G., Toal, T. W., Gaudinier, A., Young, N. F.,
881 Trabucco, G. M., Veling, M. T., Lamothe, R., et al. (2015). An *Arabidopsis* gene regulatory
882 network for secondary cell wall synthesis. *Nature* **517**, 571-575.

883 Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L. and Pachter, L. (2013).
884 Differential analysis of gene regulation at transcript resolution with RNA-seq. *Nat Biotechnol*
885 **31**, 46-53.

886 Trinh, D. C., Alonso-Serra, J., Asaoka, M., Colin, L., Cortes, M., Malivert, A., Takatani, S., Zhao, F.,
887 Traas, J., Trehin, C., et al. (2021). How Mechanical Forces Shape Plant Organs. *Curr Biol* **31**,
888 R143-R159.

889 Tyree, M. T., Davis, S. D. and Cochard, H. (1994). Biophysical Perspectives of Xylem Evolution - Is
890 There a Tradeoff of Hydraulic Efficiency for Vulnerability to Dysfunction. *Iawa J* **15**, 335-360.

891 Ye, L., Wang, X., Lyu, M., Siligato, R., Eswaran, G., Vainio, L., Blomster, T., Zhang, J. and Mahonen,
892 A. P. (2021). Cytokinins initiate secondary growth in the *Arabidopsis* root through a set of
893 LBD genes. *Curr Biol* **31**, 3365-3373 e3367.

894 Zhong, R., Richardson, E. A. and Ye, Z. H. (2007). Two NAC domain transcription factors, SND1 and
895 NST1, function redundantly in regulation of secondary wall synthesis in fibers of *Arabidopsis*.
896 *Planta* **225**, 1603-1611.

897 Zhong, R. and Ye, Z. H. (2015). Secondary cell walls: biosynthesis, patterned deposition and
898 transcriptional regulation. *Plant Cell Physiol* **56**, 195-214.

899 Zhou, J. L., Zhong, R. Q. and Ye, Z. H. (2014). *Arabidopsis* NAC Domain Proteins, VND1 to VND5, Are
900 Transcriptional Regulators of Secondary Wall Biosynthesis in Vessels. *Plos One* **9**, 13.

901 **Zubo, Y. O. and Schaller, G. E.** (2020). Role of the Cytokinin-Activated Type-B Response Regulators in
902 Hormone Crosstalk. *Plants (Basel)* **9**.

903

904 **Figure legends**

905 **Figure 1. Cytokinin (signaling) deficiency leads to premature SCW formation.**

906 **(A)** Toluidine blue-stained transverse section through the living WT Col-0 and *ahk2,3*
907 inflorescence stems showing premature SCW formation (red arrowhead) in the apical
908 internode (APEX) of *ahk2,3*. Note the comparative lack of SCW formation (green arrowhead)
909 in WT plants. Differentiating TEs surrounded by primary CW and SCW are depicted by blue
910 and orange arrowheads, respectively. A stronger toluidine blue staining indicative of
911 increased SCW deposition (empty arrowheads) can also be seen in the basal internode
912 (BASE) of *ahk2,3*, particularly in interfascicular fibers (see also in B). The presence of the
913 interfascicular cambium at the base of the WT (black arrow) indicates the developmental
914 switch to secondary growth that is missing in the *ahk2,3* line. High resolution micrographs
915 are provided allowing to zoom to even 800 % of the original image size to see the detailed
916 VBs structure. c – cambium; co – cortex; if – interfascicular fibers; mx – metaxylem; pc –
917 procambium; ph – phloem; pi – pith; px – protoxylem; xf – xylary fibers. Scale bars 50 μ m.

918 **(B)** Premature SCW formation (interfascicular arcs, red arrowhead) in the apex of cytokinin
919 (signaling) deficient plants compared to Col-0 WT (absence of SCW depicted by green
920 arrowhead); abbreviations as in A. Scale bars 50 μ m.

921 **(C)** Relative acid-insoluble lignin and xylose content (\pm SE, three biological replicates) in
922 apical, medial and basal sections of inflorescence stems of WT Col-0, *ahk2,3*, *p35S:CKX2* and
923 *p35S:CKX3*. Data are means \pm SE of two independent experiments ($n \geq 3$). Different letters
924 indicate significant differences at $P < 0.05$ based on a Tukey's HSD test.

925

926 **Figure 2. Cytokinins regulate the transcriptional cascade controlling the onset of SCW
927 biosynthesis.**

928 **(A)** Venn diagram showing the overlap of differentially expressed genes between two
929 experiments comparing apical versus basal internodes in WT Col-0 (AB_WT) and in *ahk2,3*
930 mutant (AB_ahk23). The significance level was set at 0.05.

931 **(B)** Heatmap of 1499 DEGs revealing the significant change in apical-to-basal expression in
932 both WT and *ahk2,3*. At the same time, the apical-to-basal ratio of those genes differs by a
933 factor ≥ 2 between WT and *ahk2,3*; for the list of the genes in individual subsets categorized
934 according to the direction of the apical/basal difference in both genotypes (the color key on
935 the left-hand side of the image) see Table S2.

936 **(C)** Simplified scheme of the transcriptional cascade regulating SCW formation. Green and
937 red indicate the upregulation or downregulation of the genes, respectively, in the apex of
938 *ahk2,3* when compared to WT.

939 **(D)** Comparison of the mean FPKM (Fragments Per Kilobase of exon per Million reads
940 mapped) expression values of 19 genes from the SCW cascade in apical and basal
941 internodes. Key: sd: standard deviation; mt: *ahk2,3* mutant; wt: Col-0 wild type.

942

943 **Figure 3. Cytokinins control the onset of SCW via the transcriptional regulation of *NSTs*.**

944 **(A)** Histochemical detection of *NST3* activity at the apex and base of the inflorescence stem
945 in *pNST3:NST3-GUS* showing downregulation of *NST3* after 48 hours BAP treatment. Scale
946 bars 200 μ m.

947 **(B)** Phenotype rescue of *ipt1,3,5,7* by exogenous BAP. Note the WT-like architecture of
948 vascular bundles, upregulated procambial activity and absence of interfascicular arcs in
949 apical internodia (green arrowheads) of plants treated with 10 μ M and particularly 100 μ M
950 BAP. Red arrowheads point to the premature SCW formation.

951 **(C-D)** RT-qPCR quantification of *NST3* and *NST1* **(C)**, and *VND6* and *VND7* **(D)** expression in
952 apical, sub-apical, medial and basal internodes of inflorescence stems in control (DMSO)-
953 and cytokinin (BAP)-treated WT Col-0 and *ipt1,3,5,7* mutant. Transcript levels were
954 normalized to *UBQ10*. The relative *target gene/UBQ10* expression ratios are shown. Data are
955 means \pm SE from a representative experiment (n \geq 3). Different letters indicate significant

956 differences at $P < 0.05$ based on a Tukey's HSD test. The experiments were repeated 3 times
957 with similar results.

958

959 **Figure 4. Defects in cytokinin signaling induce an up-regulation of *NST1*, *NST3* and *VND7* in**
960 **the apical portion of stems.**

961 **(A-I)** RT-qPCR analysis of *NST3* (**A**, **B** and **I**), *NST1* (**C** and **D**), *VND6* (**E** and **F**) and *VND7* (**G** and
962 **H**) expression in the apical, sub-apical, medial and basal portions of stems collected from WT
963 (*Col-0*), *ahk2,3* double mutant (**A,C, E** and **G**), *arr1,10,12* triple mutant (**B, D, F**, and **H**),
964 *arr1,10*, *arr1,12* and *arr10,12* double mutants (**I**). Transcript levels were normalized to
965 *UBQ10*. The relative *target gene/UBQ10* expression ratios are shown. Data are means \pm SE
966 from a representative experiment ($n \geq 3$). Different letters indicate significant differences at P
967 < 0.05 based on a Tukey's HSD test. The experiments were repeated 3 times with similar
968 results.

969

970 **Figure 5. *AHK2* and *AHK3* act upstream of *NST1* and *NST3* in the control of SCW initiation.**

971 **(A)** Transverse sections through the inflorescence stem of WT *Col-0*, double mutants *ahk2-1*
972 *ahk3-1* (designated as *ahk2,3*) and *nst1-1 nst3-1* (*nst1,3*) and quadruple mutant *ahk2-1*
973 *ahk3-1 nst1-1 nst3-1* (*ahk2,3 nst1,3*). Note the lack of the SCW formation in the
974 interfascicular regions at the base of the inflorescence stem in *nst1,3* and both apex and
975 base in *ahk2,3 nst1,3* (green arrowheads) when compared to WT and *ahk2,3* (red
976 arrowheads). Also note the precocious SCW formation in differentiating TEs located very close
977 to procambium in both *ahk2,3* and *ahk2,3 nst1,3* (orange arrowheads) compared to the
978 absence of SCW in the differentiating TEs in WT and *nst1,3* (blue arrowheads). Smaller
979 vascular bundles and reduced procambial activity is apparent in *ahk2,3* and *ahk2,3 nst1,3* as
980 a result of attenuated cytokinin signaling. High resolution micrographs are provided allowing
981 to zoom to even 800 % of the original image size to see the detailed VBs structure. Key: c –
982 cambium; co – cortex; pi – pith; mx – metaxylem; px – protoxylem; pc – procambium; ph –
983 phloem; if . interfascicular fibers. Scale bars: 50 μ m

984

985 **Figure 6. Endogenous cytokinin distribution reveals only small variability along the apical-
986 basal axis of the inflorescence stem.**

987 Measurement of endogenous cytokinin species tZ, trans-zeatin; tZR, tZ riboside; iP, N⁶-(Δ²-
988 isopentenyl)adenine; iPR, iP riboside in the apical, medial and basal internodes of Col-0 WT
989 and *ipt1,3,5,7* mutant. Data are means ± SE from a representative experiment (n≥4).
990 Different letters indicate significant differences at $P < 0.05$ based on a Tukey's HSD test.

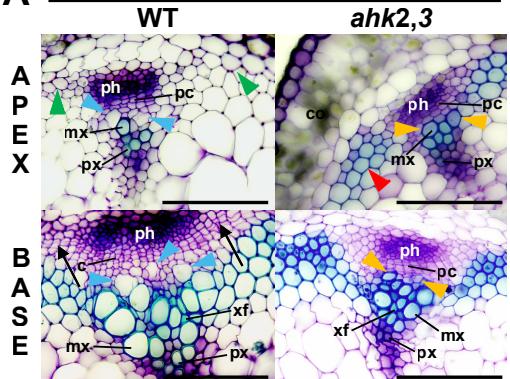
991

992 **Figure 7. Cytokinin (signaling) deficiency impairs hydraulic conductivity of functional
993 tracheary elements.**

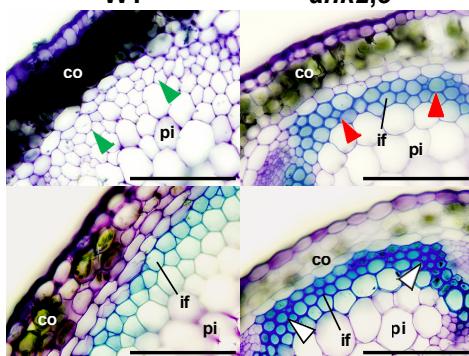
994 **(A)** Hydraulic conductivity and total xylem lumen area in the inflorescence stems of WT, and
995 cytokinin (signaling) deficient lines (±SE); values are shown in the chart for the (very low)
996 hydraulic conductivity of *ipt1,3,5,7* line (±SE). Data are means ± SE from a representative
997 experiment (n≥6). Different letters indicate significant differences at $P < 0.05$ based on a
998 Tukey's HSD test.

999 **(B)** The distribution of the individual classes of proto- and metaxylem TEs clustered
1000 according to their diameter in the apical and basal internodes of WT and cytokinin (signaling)
1001 deficient lines.

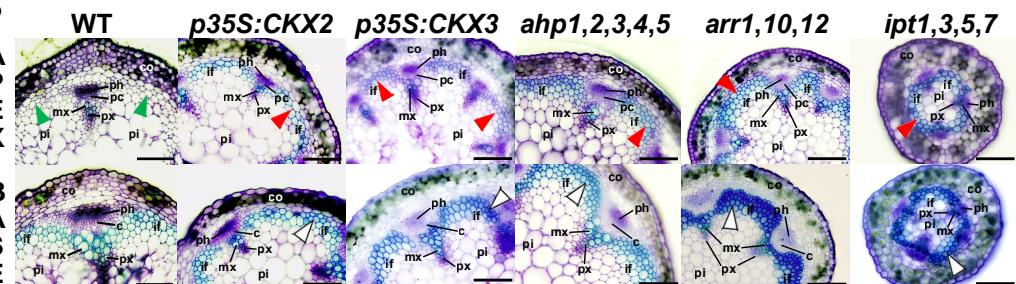
1002

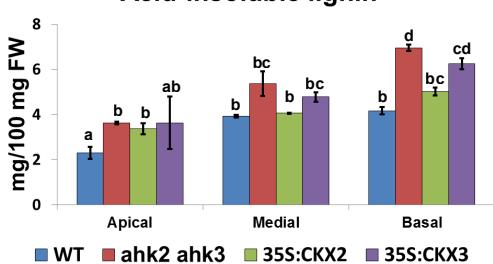

1003 **Figure 8. The ectopic overexpression of *NST1* mimics cytokinin (signaling) deficiency effects
1004 on SCW formation and hydraulic conductivity.**

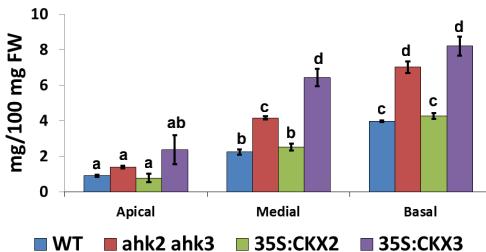
1005 **(A)** Toluidine blue-stained transverse sections of living WT Col-0, *nst1-1 nst3-1* and
1006 *p35S:NST1* inflorescence stems. Note the premature formation of SCW in the interfascicular
1007 xylem fibers/parenchyma in the apical internodes of *p35S:NST1* plants, while its absence in
1008 *nst1,3* (red and green arrowheads, respectively), in the latter case even at the base of the
1009 stem. Note also stronger toluidine blue staining at the base of the *p35S:NST1* stems and
1010 formation of radial arrays of xylary procambial-like cells (black arrowheads or yellow dashed
1011 line) revealing precocious SCW formation and formation of SCW in cambial cells even facing
1012 the phloem (white arrowheads). High resolution micrographs are provided allowing to zoom

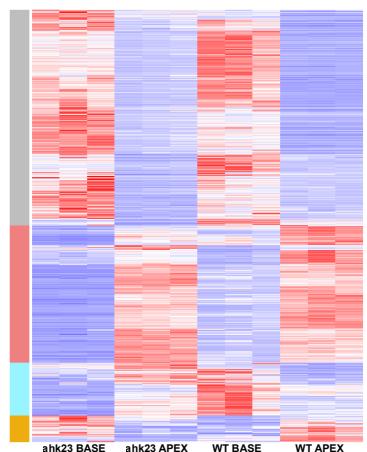
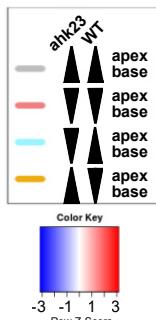
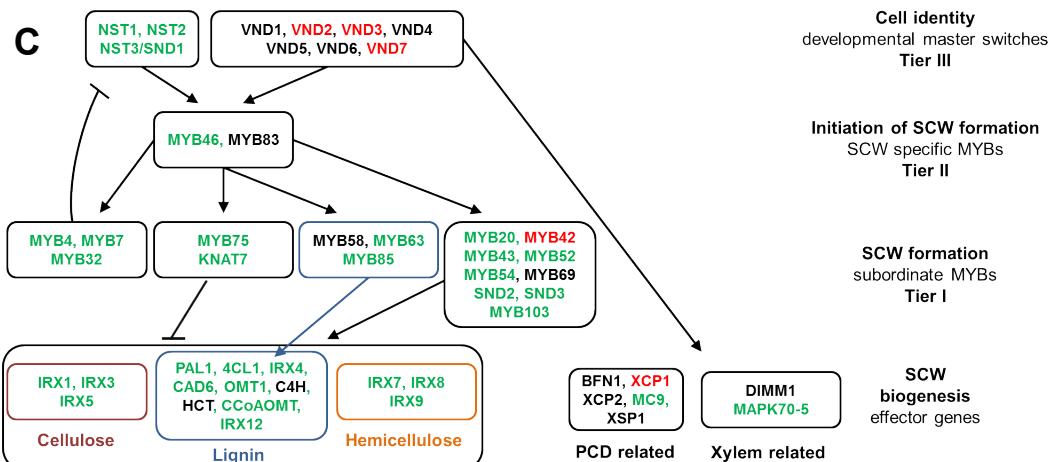

1013 to even 800 % of the original image size to see the detailed VBs structure. Abbreviations as
1014 in 1A; scale bars: 50 μm .

1015 **(B)** Hydraulic conductivity in apical and basal internodes of WT Col-0, *nst1,3* and *p35S:NST1*
1016 inflorescence stems ($\pm\text{SE}$). Data are means \pm SE from a representative experiment ($n\geq 12$).
1017 Different letters indicate significant differences at $P < 0.05$ based on a Tukey's HSD test.

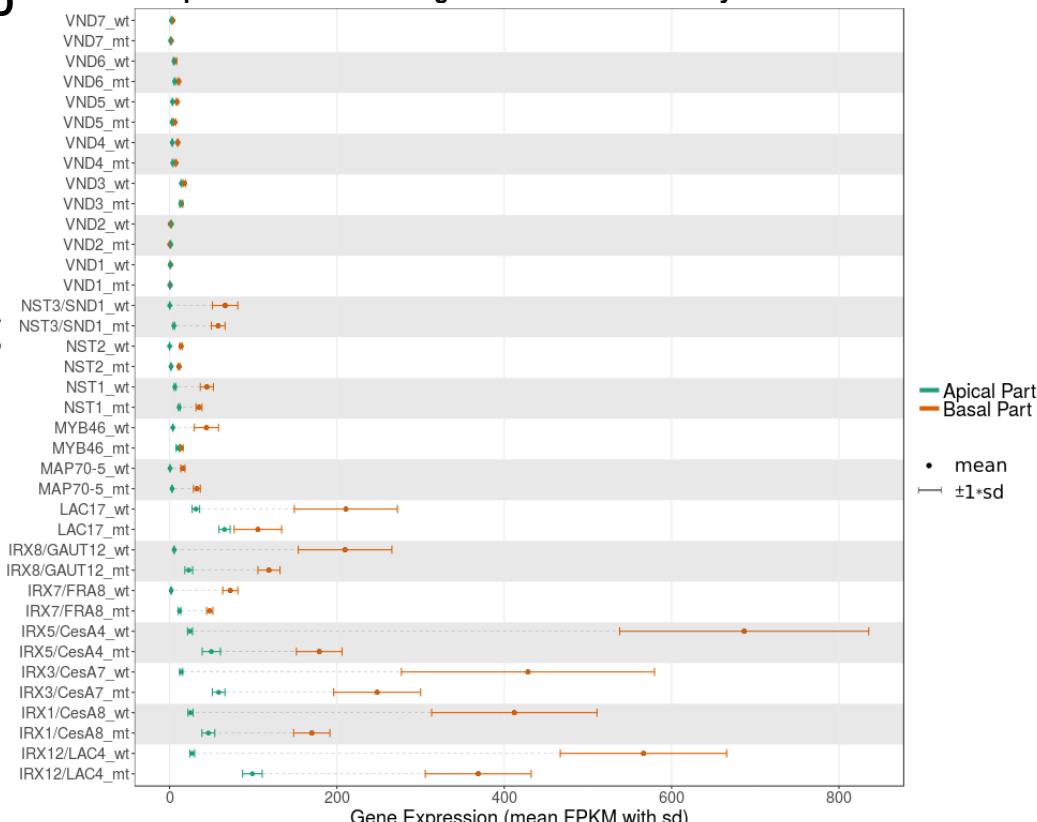

vascular bundle

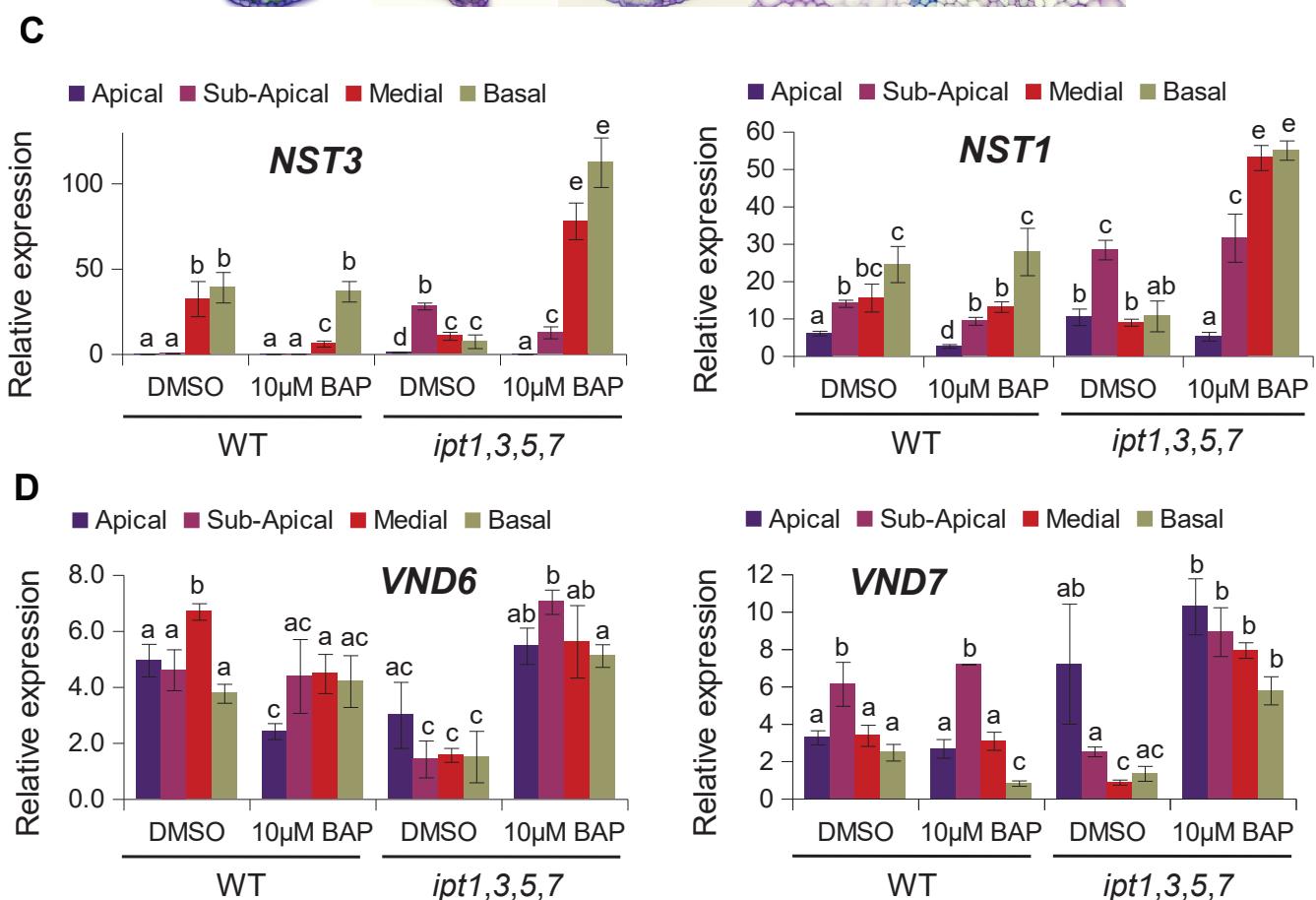
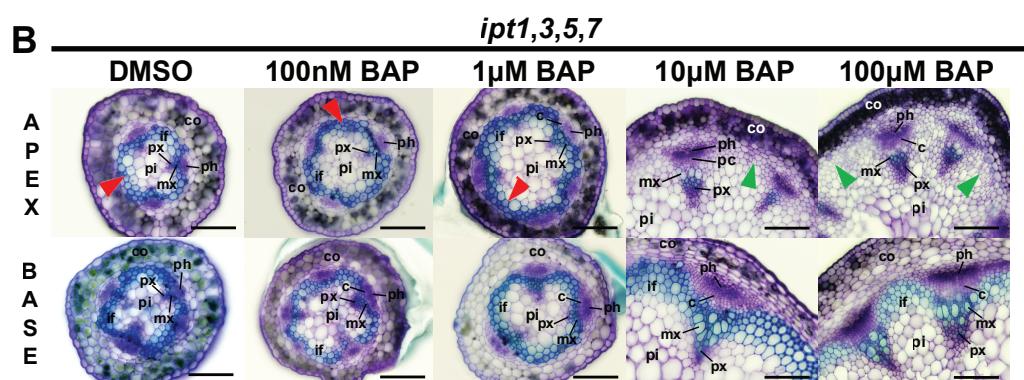
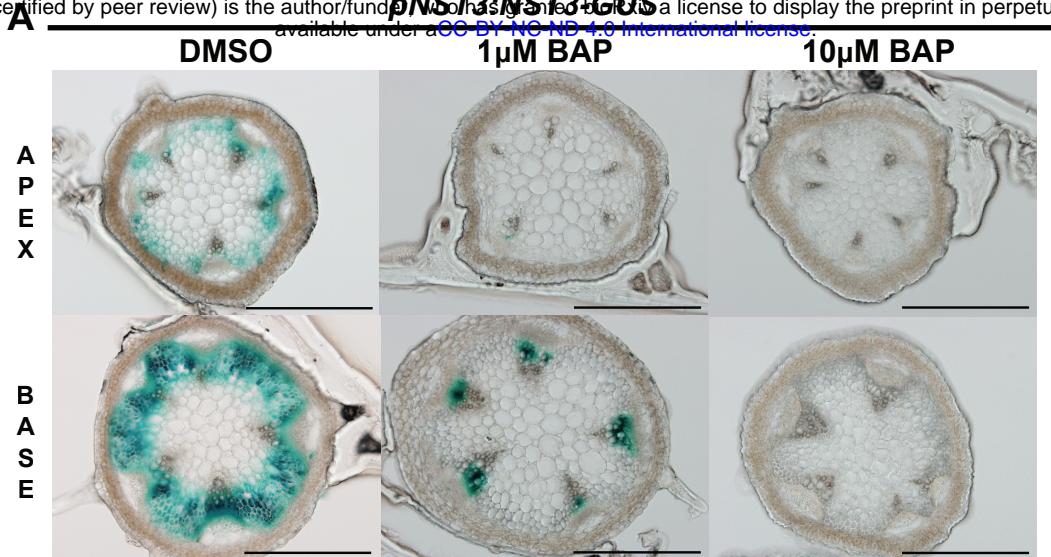

interfascicular fiber

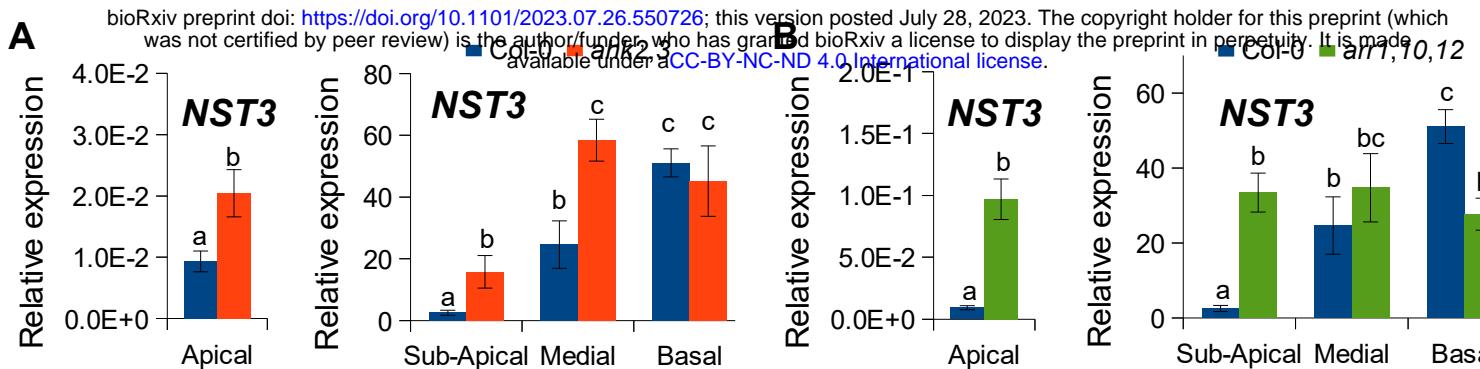
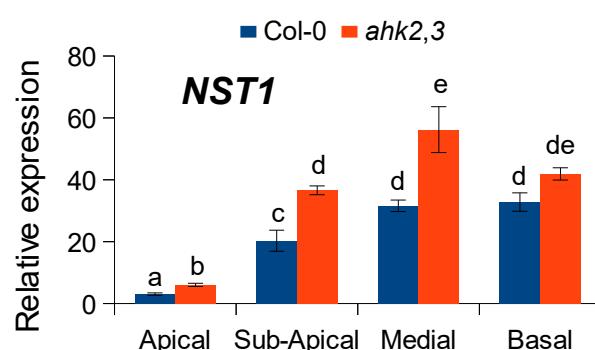
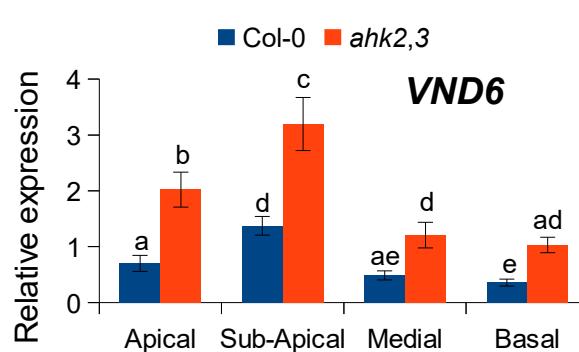
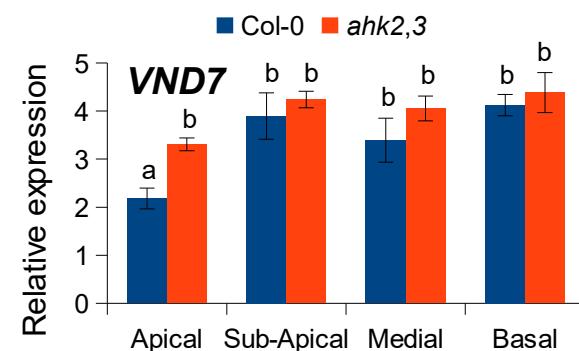
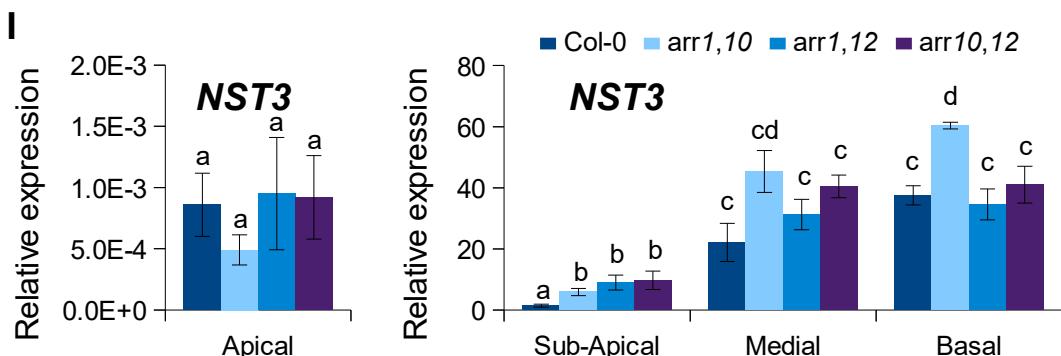
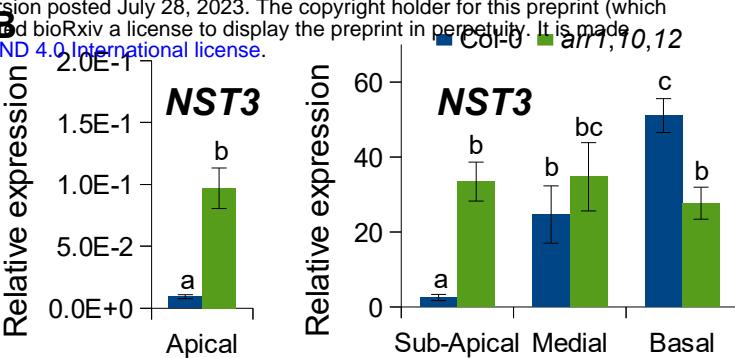
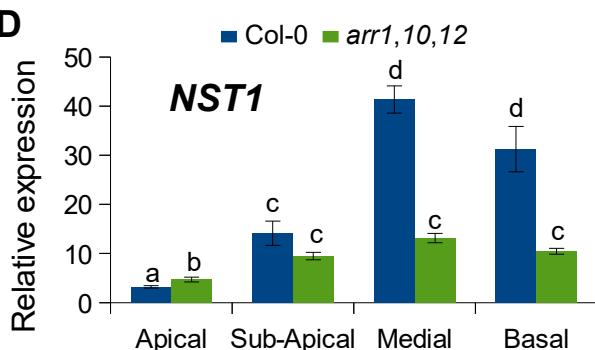
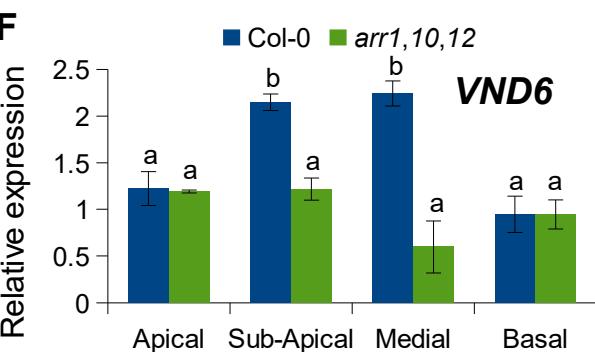
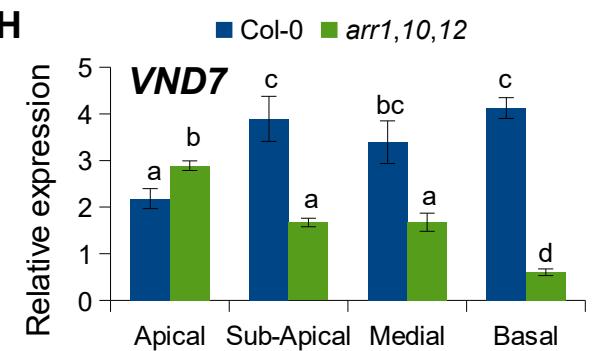

B

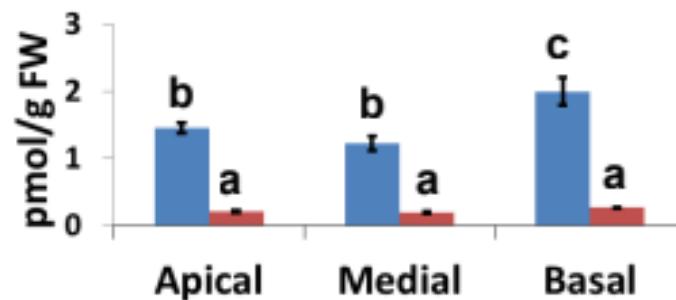
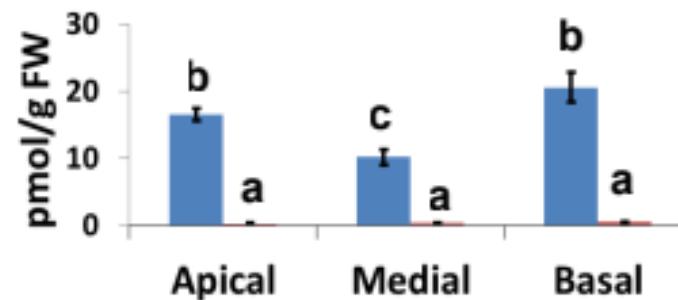
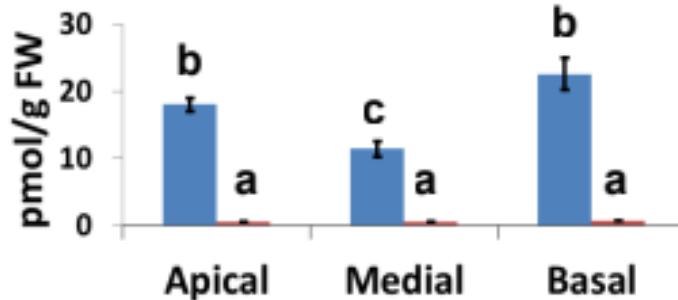
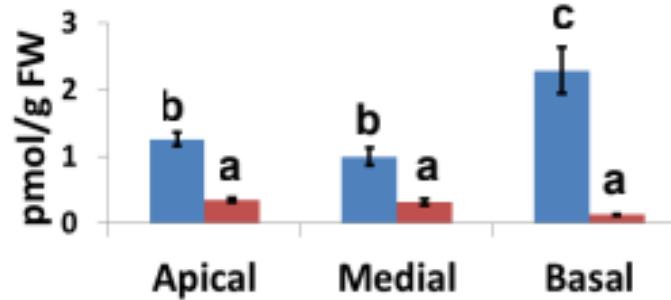
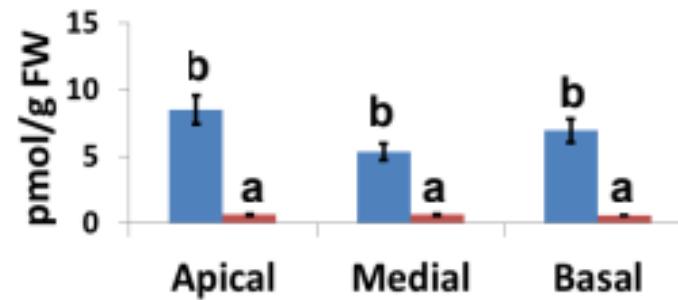
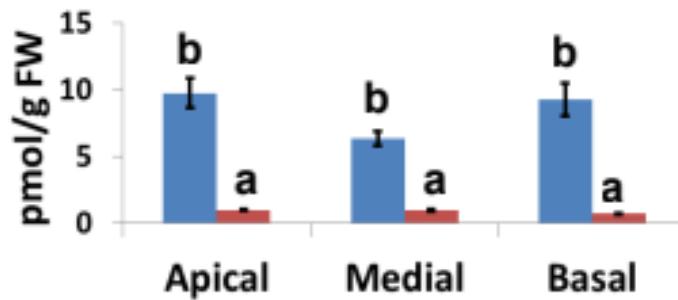
C

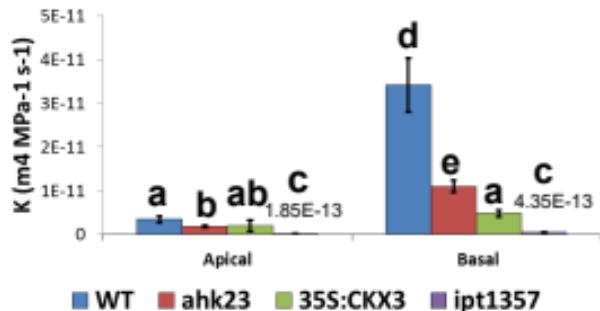
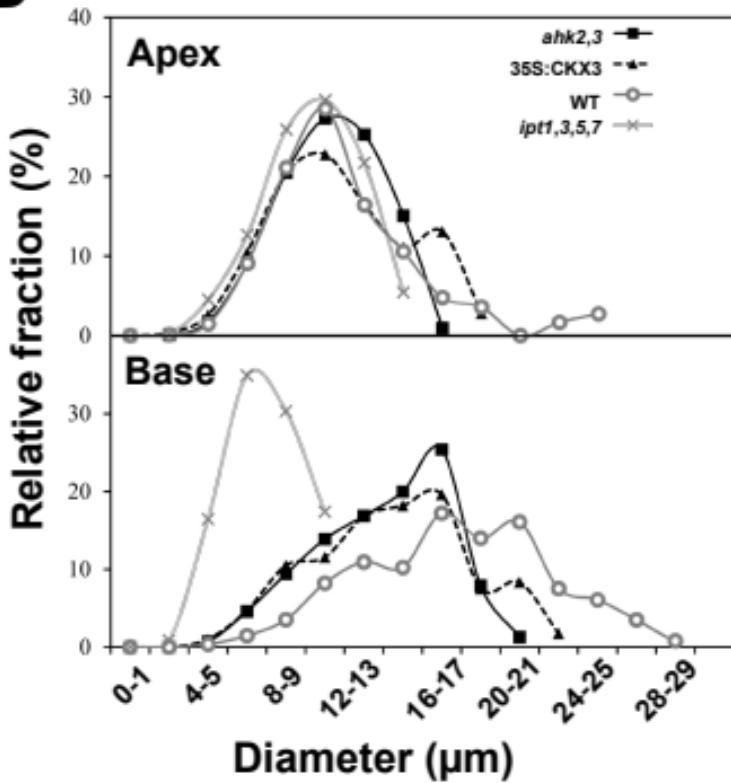


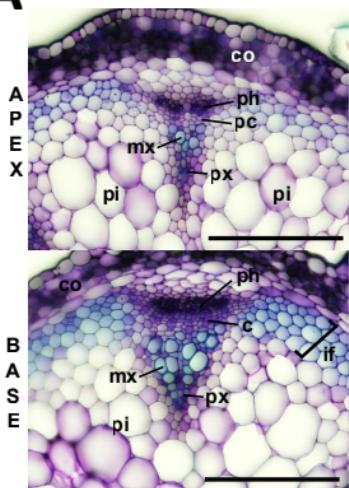
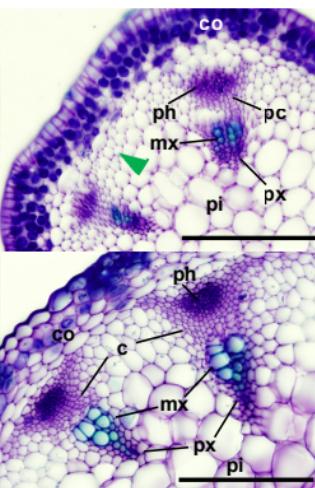
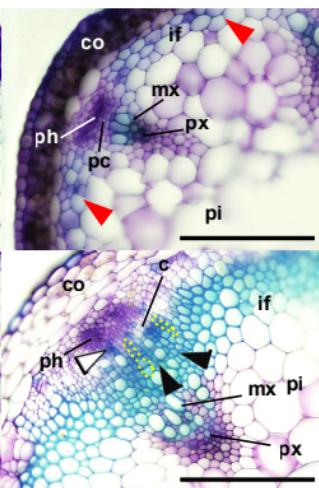
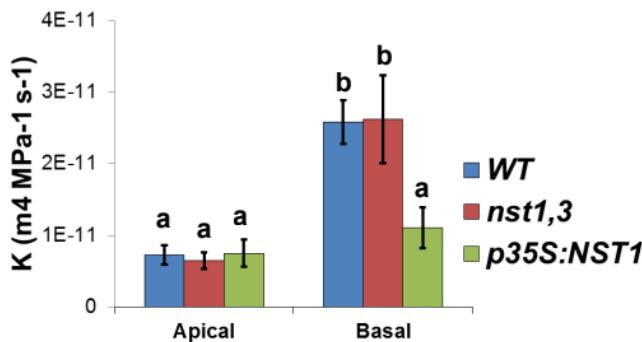



Xylose

A**B****C****D**







FPKM expression values of 19 genes from the secondary cell wall cascade



A**C****E****G****I****B****D****F****H**

tZ■ WT ■ *ipt1357***tZR**■ WT ■ *ipt1357***tZ + tZR**■ WT ■ *ipt1357***iP**■ WT ■ *ipt1357***iPR**■ WT ■ *ipt1357***iP + iPR**■ WT ■ *ipt1357*

A

Hydraulic Conductivity

B

A**WT*****nst1,3******p35S:NST1*****B**