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Abstract

The functional impact and cellular context of mosaic structural variants (mSVs) in normal
tissues is understudied. Utilizing Strand-seq, we sequenced 1,133 single cell genomes from 19
human donors of increasing age, revealing a heterogeneous mSV landscape in hematopoietic
stem and progenitor cells (HSPCs). While mSV clonal expansions are confined to individuals
over 60, de novo mSV formation occurs consistently across age, frequently leading to
megabase-scale segmental aneuploidies. Cells harboring subclonal mosaicism show evidence for
increased mSV formation. To enable high-resolution cell-typing of each Strand-seq library, we
generated single-cell MNase-seq reference datasets for eight distinct HSPCs. Subclonal mSVs
frequently exhibit enrichment in myeloid progenitors, and single-cell multiomic analysis
suggests that these mSVs result in recurrent dysregulation of pathways related to proliferation
and metabolism, including Ras signaling and lipid metabolism. The comprehensive mSV
landscape identified in this study implicates mSVs in cell type-specific molecular phenotypes,
establishing a foundation for deciphering links between mSVs, aging, and disease risk.
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Introduction
Somatic mutations arise in virtually all tissues and accumulate throughout the human lifespan1–6.
While important insights into mosaic single nucleotide variants (SNVs) have been unveiled, progress
on understanding the cell type-specific impact of mSVs, which include deletions, duplications,
balanced inversions, and complex DNA rearrangements, has lagged much further behind6,7. Findings
from pan-cancer studies indicate that somatic structural variants more frequently serve as a cancer
driver than SNVs8,9. In addition, studies performing bulk and clone-based sequencing in the blood
compartment of healthy donors have reported associations between mosaic copy-number aberrations
(CNAs) and abnormal blood cell counts, cancer susceptibility, and cardiovascular disease2,7,10–12. These
data suggest a potentially important contribution of mSVs to mosaicism in normal tissues, including
hematopoiesis.

However, mSVs represent one of the most cryptic and challenging-to-ascertain classes of human
genetic variation7,8: Bulk whole genome sequencing (WGS) typically fails to detect mSVs with a
clonal fraction (CF) lower than 30% and does not discriminate between cell types, whereas WGS of
single cell-derived clones restricts the analysis to mSVs that are culturable ex vivo, which may result
in the under-reporting of mSVs which lead to large segmental aneuploidy stretches8,13,14. While
single-cell sequencing can access the widest CF range in principle, the resolution of commonly used
methods restricts the reporting to large mosaic CNAs, while other variant classes including balanced
and complex mSVs escape detection15. These challenges extend to single-cell multi-omics methods
capable of concurrent mSV discovery and molecular phenotyping in each cell8. As a consequence, the
cell type-specific context and functional impact of mSVs in normal tissues is poorly understood6,7.

Here we employ Strand-seq, a haplotype-resolved single-cell sequencing technique14,16,17, to study the
cellular context and functional impact of mSVs in a normal tissue. We focus on the blood
compartment, which is maintained by a hierarchically-organized stem cell population. In this
compartment, mosaic mutations including SNVs and CNAs are common among older donors6,7. We
previously reported that Strand-seq offers access to subclonal balanced, unbalanced, and complex
structural variants in cancer cells14. Furthermore, Strand-seq simultaneously yields nucleosome
occupancy (NO) profiles from the same cell, a readout revealing the functional consequences of
somatic chromosomal rearrangements18. Our study reports on the first application of this innovative
single–cell multiomic technology to investigate somatic mosaicism in a phenotypically normal tissue.
By applying Strand-seq to donors of varying age, we unveil a wide spectrum of mSVs classes in
human HSPCs. In 1 out of every 43 cells, we detect de novo mSVs, which emerge regardless of age.
We report hotspots of mSV formation in HSPCs, which coincide with regions exhibiting frequent
sister chromatid exchanges16,18 (SCEs). In addition, by constructing an NO reference dataset via
single-cell MNase-seq19 (scMNase-seq), we resolve the cell-type identity of mSV-bearing cells and
show that mSVs are commonly biased for myeloid progenitor cells. We find that while heterogeneous
with respect to the loci at which they occur, mSVs are recurrently associated with aberrant cell-cycle
pathways, Ras signaling and lipid metabolism, which implies that they may affect common
aging-associated molecular pathways.

Results
Diverse single-cell resolved mSV landscapes in normal human HSPCs
To allow for profiling of mSVs in human blood cells in a cell-type resolved manner, we devised an
experimental workflow for single-cell mSV detection in primary HSPCs (Fig. 1a). Our sample cohort
consists of 19 normal donors from newborn to 92 years of age, with N=3 umbilical cord blood (UCB)
and N=16 bone marrow (BM) samples (Methods). We isolated viable CD34+ HSPCs from these
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samples (Fig. S1), and cultured them ex vivo for one cell division to allow for Strand-seq library
preparation. Following quality control, we identified 1,133 high-quality single-cell libraries, with a
mean of 432,282 uniquely mapped fragments per cell (Fig. S2; Table S1). We used scTRIP14 to
perform single-cell discovery of mSVs and chromosomal aneuploidies (collectively referred to as
‘mosaicisms’) in these libraries (Fig. 1b). Altogether, we identify 51 independently arisen mosaicisms
in our cohort (mean per donor=2.7; range 0–8; mosaicisms detected in 16/19 [84%] donors), which
include: 22 deletions, 12 duplications, 3 complex mSV events, a balanced inversion, and 13 sex
chromosome losses (Fig. 1b, Table S2). These mosaicisms affect 17/24 chromosomes, and exhibit no
particular enrichment except for the Y chromosome, which shows one or more independent losses of
Y (LOYs) in 8/12 (67%) male donors.

We investigated the subclonal composition in each of the 19 donors (Table S2). Out of all mosaicisms
analyzed, 32 are detected in only one cell ('singleton mosaicism'), while the remaining 19 constitute
subclones with CFs of 1.6%-56.1% ('subclonal mosaicism'). While we find no singleton or subclonal
losses of an autosome, subclones with sex chromosome losses (N=12 LOY; N=1 losses of X (LOX))
reached CFs up to 46.4%. We focused most of our investigation on the 38 mSVs (i.e., non-LOY/LOX
mosaicisms) in our dataset, which we mapped with 200 kb resolution, utilizing the scTRIP14

framework. Examination of these mSVs, highlighted notable differences between singleton and
subclonal events. First, 21/31 singleton mSVs (67.74%) exhibit terminal gains or losses, whereas all 7
subclonal mSVs are composed of interstitial rearrangements. Second, all of the 3 complex mSV
events are singletons, and these harbor a multitude of DNA rearrangements affecting a single
chromosomal haplotype – which includes a breakage fusion bridge cycle-mediated14 mSV on the
chromosome 20p-arm, as well as a terminal sister chromatid fusion-mediated amplification to a
copy-number of 7 on 1q (Fig. 1c). Third, singleton mSVs are ~17.6 times larger on average than
subclonal mSVs (mean size of 36.9 and 2.1 Megabasepairs (Mb), respectively; P=0.0009, Wilcoxon
rank-sum test; Fig. 1d). These data indicate that singleton mSVs, detected in 1 out of every 43
HSPCs, bear the characteristics of newly arisen, de novo mSVs (see Supplementary Notes).

We next analyzed the occurrence of mosaicisms with respect to donor age. We detect a significant
increase with donor age both for subclonal mSVs (Pearson’s correlation R=0.16; P=1.1e-07; Fig. 1e)
and for subclonal whole chromosome losses (R=0.087, P=0.0034); with subclonal mSVs occurring
exclusively in donors aged 63 or older. These data align with prior reports of age-related CNA
mosaicism in the blood of healthy individuals2,7,20,21. However, we find that the occurrence of singleton
mSVs – a type of mosaicism not previously amenable to detection – is not significantly correlated
with donor age (R=0.008; P=0.79; Fig. 1e), suggesting that HSPCs acquire mSVs regardless of age.
We also examined the full dataset for co-occurrence of mSVs. Notably, we find evidence for an
elevated number of de novo mSVs (i.e. singleton mSVs) in cells that already contain mosaicisms,
compared to WT cells (Fisher’s exact (FE) test; 4.76% vs. 1.96%; P=0.038; 2.4-fold elevated; Fig.
1f). These data suggest that while SV formation in HSPCs occurs consistently across age, it remains
possible that cells harboring mosaicisms are ‘predisposed’ to accumulate further mSVs.

Investigation of mSV breakpoint regions unveils hotspots of mSV formation in HSPCs
The distinctive capabilities of Strand-seq to detect sister-chromatid exchanges (SCEs) allows accurate
mapping of DSBs that were subject to DNA repair and resolved by a crossover event16. Since DSBs
play a crucial role in triggering DNA rearrangement formation8,22, we therefore examined the
correlation between DSB acquisition and donor age. We mapped SCEs across all 1,133 single cells
(Methods), and identified 4,528 in total, averaging 4 SCEs per single cell (Fig. S3), consistent with
prior reports23. We find an inverse correlation between SCE abundance and age (R=-0.089; P=0.0027;
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Fig. 1g), with on average 4.6 SCEs/cell in individuals < 60 years of age compared to 3.9 SCEs/cell in
individuals >60, independent of tissue of origin (Fig. S4). Collectively the data imply that, despite the
accumulation of subclonal mSVs with age, HSPCs from older donors do not exhibit increased mSV or
SCE formation; with mSVs rather arising consistently over an individual’s lifetime.

Since DNA rearrangement formation can be mediated by the local genomic context8, we analysed the
location of SCE and mSV breakpoints. We find SCEs are unevenly distributed in the genome of
HSPCs (Fig. 1b), with 6.67% (302/4,528) clustering into 20 SCE ‘hotspots’ (Methods, Fig. S5, Table
S3). Only 25% (5/20) of the SCE hotspots coincide with a previously reported common fragile site
(CFS) (Table S4) – genomic regions vulnerable to DSB formation during replication stress24. We also
find that 3% (133) of the 4,528 SCEs intersect with the breakpoint regions of an interstitial mSV, with
these breakpoints showing significant overlap with SCEs (P<0.0001, derived from 10,000
permutations; Fig. 1h,i, Fig. S6, Table S3) and CFSs (P<0.0002) (Fig. S6). Notably, we identify
recurrent mSVs at SCE hotspots – not all of which correspond to known CFS (e.g., FRA3B) (Fig.
1b,j; Fig. S7; Table S2, S3, S4) – suggesting that SCE hotspots (e.g., chromosome
9:68,300,000-68,500,000) likely represent DNA rearrangement hotspots in HSPCs. These findings
highlight the association between SCEs and mSV formation in HSPCs, suggesting that SCEs and
mSVs can arise through shared processes such as break-induced replication and non-homologous
end-joining22.

High-resolution cell typing of HSPCs using indexed scMNase-seq-based NO reference datasets
The cell-type-specific molecular impact of mSVs is yet to be established. We set out to examine this
in the context of the blood compartment, using the scNOVA tool designed for cell-type classification
based on single-cell NO data, which we previously showed to be effective for cell-typing of
Strand-seq libraries into various cell lines and tissue types18. In spite of the availability of various
multiomics data from the blood compartment25, NO reference datasets are lacking. We thus generated
single-cell NO reference profiles for both UCB- and BM-derived HSPCs, for 8 distinct HSPC cell
types. These cell types include: hematopoietic stem cells (HSCs), multipotent progenitors (MPPs),
lymphoid-primed multipotent progenitors (LMPPs), common lymphoid progenitors (CLPs),
plasmacytoid-dendritic cells (pDC), common myeloid progenitors (CMPs), granulocyte-macrophage
progenitors (GMPs), and megakaryocyte–erythroid progenitors (MEPs) (Fig. 2a, Fig. S8). Using
predefined immunophenotypes (Table S5; Fig. S8) we index-sorted HPSCs, and devised a
preamplification-free scMNase-seq protocol to generate single-cell NO profiles for each cell-type
separately (Methods).

We obtained 480 high-quality scMNase-seq reference libraries (Table S6): 305 from BM-derived cells
(1 donor) and 175 from UCB-derived cells (5 donors) (Table S1). Using scNOVA, we identify 899
and 819 genes exhibiting cell-type-specific NO patterns in their gene bodies in the UCB- and
BM-derived datasets, respectively, indicative for cell-type specific gene activity18 (Fig. 2b, Fig. S9).
These included several previously identified as marker genes in HSPCs (Table S7A,B): For instance,
using the BM-derived NO reference dataset, we infer that the canonical marker MME (CD10) shows
increased activity in CLPs26, while HDC exhibits increased gene activity in CMPs, reflecting its
involvement in myeloid lineage priming27. We also observe differential NO at several genes not
previously reported as HSPC markers – such as SH2D4B and FAT3 (Table S7A) – indicative for
potentially novel cell-type-specific gene activity. Overall, the gene activities inferred from NO are
broadly consistent with previously reported RNA-seq expression data28 (Fig. 2c), supporting the
applicability of our NO reference datasets for cell typing.

4

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.25.550502doi: bioRxiv preprint 

https://paperpile.com/c/CzEyW7/pkhso
https://paperpile.com/c/CzEyW7/6PyPa
https://paperpile.com/c/CzEyW7/UfOCA
https://paperpile.com/c/CzEyW7/YWRE9
https://paperpile.com/c/CzEyW7/7HTG
https://paperpile.com/c/CzEyW7/YWRE9
https://paperpile.com/c/CzEyW7/0whKd
https://paperpile.com/c/CzEyW7/hRkTs
https://paperpile.com/c/CzEyW7/zngMb
https://doi.org/10.1101/2023.07.25.550502
http://creativecommons.org/licenses/by-nc-nd/4.0/


Harnessing these NO marker gene sets, we built novel cell-type classifiers to enable accurate
cell-typing of discrete HSPCs from Strand-seq data. We utilized NO measurements within the gene
bodies of marker genes as features for developing a supervised model using partial linear square
discriminant analysis (Fig. 2d-f, Fig. S9, Table S7A, B; Methods). The classifiers provide excellent
accuracy, with an average area under the curve (AUC) of 0.97 for BM and 1.00 for UCB, as estimated
by leave-one-out cross-validation (Fig. 2d, Fig. S9). UMAP projections of the latent variables further
corroborate the discriminatory power of these classifiers in comparison to an unsupervised
classification (Fig. 2e,f, Fig. S9). These data establish that both NO based classifiers offer robust
cell-typing of single-cell NO data, providing a new means for unraveling the cellular context of mSVs
in HSPCs identified using Strand-seq.

Subclonal mSVs commonly exhibit a lineage-bias towards myeloid HSPCs
Using the trained cell type classifiers, we performed cell-typing of each Strand-seq library (Fig. 3a,
Table S8). We find that tissue-level cell abundances show consistency with previous studies28–31, such
as an expanded HSC frequency amongst BM donors with age (from 8.1% to 80%; FDR-adjusted P
(Padj)=0.013; mixed linear model analysis), and a greater abundance of MPPs in UCB donors vs
BM28,29 (37% in UCB vs. 0.1% in BM; Padj=2.45e-33; FE test; Fig. S10). MPPs, CLPs, and pDCs
exhibit a lower prevalence than other cell-types, likely reflecting their natural scarcity in HSPCs28 and
known challenges with sustaining these cells in vitro.32

Using these cell type classifications, we explored the cellular context of mSVs in normal cells, by
testing subclonal mosaicisms for cell-type enrichment in each donor (Methods). Of 19 subclonal
mosaicisms in our dataset, we find 8 (47%) display significant subclone-specific cell-type enrichment
(FDR 10%; Fig. 3b; Fig. S11, S12). Out of these, we find that 5/7 (71%) subclonal mSVs exhibit
significant cell-type-bias. Notably, while diverse in their affected locus and CF, subclonal mSVs are
predominantly enriched in myeloid, or a combination of myeloid and primitive, cell-types: with either
myeloid or myelo-primitive enrichment observed in all 5 cell-type biased mSV subclones in our study
(Fig. 3c). These lineage-biased subclonal mSVs include: a 10 Mb inversion (Inv) on chromosome Xq
enriched in MEPs (BM65); a 1 Mb duplication (Dup) on chromosome 13q enriched in MEPs (BM70);
a 300 kb Dup on chromosome 19q enriched in CMPs (BM63); and two sequentially arisen deletions
(Del) on chromosome 17p (1.2 Mb) and 17q (500 kb) enriched in both CMPs and HSCs (BM712).

LOY/LOX events exhibit more variability, with donor-specific enrichments seen in only 3/12 (25%)
mosaicisms. Furthermore each shows bias for a different lineage (Fig. S13), with LOY enriched in
MEPs in BM66, LMPPs in BM702, and HSCs in BM712. The reduced cell-type bias and high
recurrence of sex chromosome loss suggest that the functional consequences of LOY may be less
impactful and/or more context-specific33 compared to subclonal mSVs. By comparison, singleton
mSVs do not show cell-type bias across donors (Fig. S12), suggesting that the principal driver for cell
type-specific subclonal expansion of these mosaicisms in HSPCs is likely linked to a specific impact
of the subclonal mSVs on cell function, rather than their biased acquisition in certain cell-types.
Altogether, these data suggest a potentially appreciable functional effect of mSVs, which is cell-type-
and locus-specific.

Despite the diversity of genomic loci impacted by mosaicism, we find evidence for recurrent
molecular phenotypic effects. We observe substantial overlap in dysregulated genes and pathways
across donors (Fig. 3c, d, e; Fig. S13, S14, S15; Table S9, S10, S17). These recurrent pathways
include Ras and JAK/STAT signaling, both of which are commonly associated with clonal
hematopoiesis, proliferation, and hematological malignancy34. These data directly link subclonal

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.25.550502doi: bioRxiv preprint 

https://paperpile.com/c/CzEyW7/qG05G+zngMb+cdN8H+qYbs
https://paperpile.com/c/CzEyW7/qG05G+zngMb
https://paperpile.com/c/CzEyW7/zngMb
https://paperpile.com/c/CzEyW7/qeomz
https://paperpile.com/c/CzEyW7/o9n0r
https://paperpile.com/c/CzEyW7/8MHgg
https://doi.org/10.1101/2023.07.25.550502
http://creativecommons.org/licenses/by-nc-nd/4.0/


mSVs to commonly observed changes in aging-related pathways in HSPCs. As such, we expand on
the cellular context and functional consequences of two particularly interesting examples in the
following sections.

Cell-type-specific consequences of a mosaic inversion
The molecular consequences of mosaic inversions in normal tissues are under-appreciated, reflecting
prior difficulties in subclonal inversion discovery7,8. We therefore investigated the effects of the
subclonal balanced inversion identified on chromosome Xq12-Xq21.1 (‘Xq-Inv’), seen in 22.6%
(19/84) of cells from a 65-year old female donor (BM65; Fig. 4a). Analysis of the chromosome X NO
profiles18 confirms the inversion arose on the active X-homolog (Fig. S16), supporting its potential for
driving a functional consequence. We refined the inversion breakpoints from the Strand-seq data35,
and fine-mapped the 10 Mb inversion to chrX:66753519-76960327, with breakpoint confidence
intervals of ~10 kb and ~18 kb, respectively. While neither breakpoint directly overlaps a gene, they
fuse two annotated topologically-associating domains (TADs) (Fig. 4b), potentially reorganizing the
local gene regulatory environment36 in these regions.

To investigate the regulatory landscape of the inversion, we interrogated the haplotype-resolved NO
profiles at cis-regulatory elements (CREs) to infer chromatin accessibility18 on each homolog. Using a
haplotype-aware sliding window analysis (Methods), we normalized NO between the active and
inactive X, and compared Xq-Inv cells with those lacking the mSV (WT cells). We identify 13 peak
regions with significantly altered NO (10% FDR; Fig. 4b), with four (31%) located within one of the
disrupted TADs. The most significant peak fell into an intergenic region within a disrupted TAD, and
showed decreased NO on the inverted haplotype, indicative for increased chromatin accessibility18.
This peak is located adjacent to the androgen receptor gene (AR), which was previously identified as a
clonal hematopoiesis driver by analyzing normal blood for somatic mutations with evidence of
positive selection37. Closer analysis shows 3 annotated AR enhancers fall within this peak of increased
chromatin accessibility (Table S11), all of which reside in the fused TAD (Fig. 4b, Fig. S16). These
data suggest AR as a potential target of gene dysregulation and contributor to subclonal expansion,
through disruption of TADs by a balanced inversion. Indeed, androgens are widely used to treat bone
marrow failure syndromes owing to their ability to induce increased HSPC proliferation, although the
mode of action is incompletely understood38.

We performed a genome-wide search for differential gene activity18, by comparing the NO of gene
bodies between Xq-Inv and WT cells (Methods), in order to identify potential downstream effects of
the Xq-Inv outside the of affected Xq chromosomal region. We find 123 genes displaying differential
NO (Fig. 4c, Table S10) – all of which reside outside the inversion locus – suggesting a strong trans
effect of Xq-Inv. Gene-set over-representation analysis (Methods) reveals dysregulation of several
pathways including Rap1 signaling, platelet activation and metabolism of lipids (10% FDR; Fig. 4d;
Table S12). Several of these pathways, notably, have previously been reported to be modulated by AR
activity, such as Ras signaling and erythropoietin (Epo) signaling (Table S12). Epo signaling, in
particular, has been shown to contribute to an erythroid-bias of HSCs in association with elevated AR
activity39,40. Finally, TF-target enrichment analysis18 reveals 3 TFs with differential activity in Xq-Inv
cells: EGR1, RUNX1, and IKZF1 - all of which are linked to AR signaling (Fig. S17). These data
therefore provide independent support that AR activation represents an important functional
consequence of the mosaic Xq-Inv.

Notably, the three TFs identified above (EGR1, RUNX1 and IKZF1) also play critical roles in the
MEP lineage41–43. This suggests AR activation may directly drive the striking enrichment of MEPs
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seen in the Xq-Inv subclone (Fig. 4e). To explore this, we performed a cell-type-resolved analysis of
NO in the AR gene-body, revealing elevated AR activity from the rearranged homolog specifically in
HSCs with Xq-Inv, but not in MEPs (10% FDR; Fig. S18). Moreover, upon testing AR target genes
(Table S13) we find increased activity in Xq-Inv HSCs, but not Xq-Inv MEPs (10% FDR, Fig. 4f,
Fig. S17) – suggesting HSC-specific AR overactivation as consequence of the mosaic inversion.
Consistent with this, Xq-Inv HSCs contain several unique differential NO peaks not found in MEPs
(10% FDR), including at 2 AR enhancers (Fig. 4g, Fig. S19). These enhancers, which contain binding
sites for EGR1, RUNX1 and IKZF1, are more accessible, suggesting cell-type specific enhancer
activity, in Xq-Inv HSCs (Fig. S20). Finally, where Xq-Inv HSCs show regulatory changes consistent
with elevated AR signaling (with 3/4 differential NO genes representing annotated AR targets), the
Xq-Inv myeloid cells (CMPs and MEPs) show a more diffuse signal (with 23/105 and 12/55
differential NO genes being AR targets, respectively; Table S9, Fig. S17). Among the MEP-specific
genes, we infer high activity of RIT1 (FDR 10%, Padj=0.0057), a gene whose overexpression has been
implicated in clonal hematopoiesis leading to MEP expansion44. Altogether, our data strongly imply
an increased AR activity in the mosaic subclone which is HSC-specific, and suggest a ‘priming’ role
of the Xq-Inv that biases differentiation towards the megakaryocyte-erythroid lineages.

Stepwise accumulation of mosaic deletions drives HSPC clonal expansion
The data we obtained from BM65 indicate that subclonal mSVs can have a considerable impact on
molecular phenotypes that arise in a cell-type specific manner. Yet, how subclonal expansions are
facilitated in cells showing more than one co-existing mSV remains unclear. We explored such
complex subclonal dynamics in BM712. This 71-year-old male donor shows five distinct subclones,
three of which exhibit a cell-type bias (FDR 10%; Fig. 5a). Of the 123 cells sequenced, 103 (84%)
harbor at least one subclonal mosaicism. The mSVs include two interstitial deletions affecting distinct
chromosome 17 loci and three independently-arisen LOYs (Fig. 5a,b). We tracked the subclonal
evolution18 of BM712 using shared, haplotype-resolved mSVs. One subclone (26% CF) shows LOY
as the only mSV event and is enriched for HSCs. The four other subclones trace back to a ~1.2Mb
deletion at 17p11.2 (17p-Del), seen in 56% of cells, that was followed by the progressive acquisition
of additional mosaicisms, including a ~500kb deletion at 17q11.2 (17q-Del) and two independent
LOYs (Fig. 5c,d,e). Using bulk WGS of sorted CD34- cells from BM712, we verified the presence of
both subclonal 17q-Del and 17p-Del events, allowing us to refine the 17q-Del breakpoints at high
resolution, and to confirm that the mosaicisms are also detectable in mature peripheral blood cells
(Methods; Fig. 5e, Fig. S21). These data show that HSPCs can sequentially accumulate mSVs that
are carried into mature blood cells.

To explore the functional impact of the initiating mSV, the 17p-Del, we compared gene-body NO of
17p-Del cells with cells bearing a WT chromosome 17 using scNOVA, identifying 76 dysregulated
genes (10% FDR; Fig 5f). TF-target over-enrichment analysis18 shows enrichment for targets of 7
TFs, with the most-significant TF gene being SREBF1 (Padj=0.0047) (Fig. S22). This gene is
hemizygously deleted by the 17p-Del (whereas the other TFs fall outside of the deletion region),
suggesting a potential role of SREBF1 loss in mediating the molecular phenotype of 17p-Del cells and
influencing their subsequent expansion (Fig. 5d). Protein-protein interaction (PPI) mapping of all 7
dysregulated TFs using STRING45 (Supplementary Methods) reveals a significant PPI network
connecting all TFs (P=3.57e-08; Fig. S22), highlighting a functional relationship between these TF
pathways (Supplementary Notes). Pathway enrichment analysis shows that the PPI network is
enriched for components of the MAPK signaling pathway (Padj=0.0028), which has been previously
linked to cell-cycle activation of aging HSCs46, and which may thus mediate clonal expansion.
Gene-set enrichment analysis of the 76 genes with differential NO further supports MAPK activation
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in the 17p-Del subclone (Fig. 5g), and also identifies dysregulation of lipid homeostasis - a
well-known contributor to increased myelopoiesis47. Taken together, these data suggest that the
17p-Del mSV triggers increased MAPK activity that likely drives myeloid-biased clonal expansion
via hemizygous loss of SREBF1.

We next examined the consequences of the second mSV: the 0.49 Mb 17q-Del, which arose in the
17p-Del subclone and expanded to a CF of 43.1%. Our breakpoint mapping shows the deletion results
in the hemizygous loss of the NF1 tumor suppressor via loss of protein-coding exon 1 (Fig. 5e, Fig.
S23, S24). Notably, NF1 exon 1 deletions were previously reported to cause the neurofibromatosis 1
hereditary cancer syndrome48. Furthermore, NF1 has been proposed as a clonal hematopoiesis driver
gene based on an SNV analysis, which annotated 175 mosaic SNVs arising within NF1.37 We find
26/175 (15%) of these SNVs are predicted loss-of-function (pLoF) variants, including 17 stop gains
and 9 frameshifts. Additionally, 21/175 (12%) are predicted to affect splicing and thus potentially
result in irregular NF1 transcripts (Supplementary Notes). Collectively, these data suggest that NF1
hemizygous loss could fuel clonal expansion.

To examine the downstream consequences of 17q-Del, we utilized scNOVA to identify dysregulated
genes between 17q-Del cells and WT cells. We find 112 dysregulated genes, and pathway
over-representation analysis shows altered metabolism and upregulated mTOR signaling in the
17q-Del subclone (Fig. S25). Given the known critical role of NF1 in mTOR signaling49, and the role
of mTOR signaling in cell proliferation and HSPC differentiation50, these findings indicate the
17q-Del results in the hemizygous disruption of NF1 to induce mTOR dysregulation, potentially
leading to accelerated subclonal expansion of the 17q-Del mSV.

To further characterize these subclonal dynamics, we generated 4,109 scRNA-seq libraries from
CD34+ cells isolated from BM712 (Fig. S26), which we assigned into HSPC cell types using a
transcriptome reference of human blood51 (Fig. 5h). While the resolution of scRNA-seq data is
thought to be inadequate for mSV discovery, Strand-seq-derived DNA rearrangement calls can be
utilized to perform targeted re-calling of CNAs, allowing transcriptomic analysis of some CNAs
across a wide dynamic expression range18. Therefore, leveraging the mSV breakpoint assignments
from scTRIP, we conducted targeted re-calling of each mosaic CNA (Methods; Table S14), which
infers 2,571 (63%) 17p-Del, 1,841 (45%) 17q-Del, and 995 (24%) LOY scRNA-seq cells in the
dataset. Co-occurrence analysis of these mosaicisms corroborates the intricate subclonal structure of
BM712, initially constructed from Strand-seq (Fig. S27). Moreover, and also in line with our
Strand-seq findings, cell-type enrichment analysis of the scRNA-seq data verify all 3 mosaicisms
show significant lineage biases with the 17p-Del enriched for CMPs and LMPPs (Padj=2.0e-11;
0.0064; FE test), and both 17q-Del and LOY clones enriched for HSCs (Padj=2.6e-14, Padj=1.0e-56; FE
test; Fig 5i, j; Fig. S26).

We next performed a transcriptomic analysis of each BM712 mosaic subclone, to obtain a more
nuanced view of the molecular phenotypes of the identified subclones. Gene ontology analysis of the
differentially expressed genes between HSCs with and without LOY reveals dysregulation of
pathways linked with HSC quiescence52,53 (10% FDR; Table S15, S16), potentially explaining the
observed HSC enrichment of LOY in this donor, which was not seen for any other LOY in the cohort.
Furthermore, consistent with our NO analyses, 17q-Del cells show a highly distinct transcriptional
profile compared to WT cells, with differential gene activity seen for 16 pathways (MSigDB
Hallmark; Table S15; Table S16; Fig. S28) including those related to HSPC proliferation,
differentiation and metabolism. Notably, these pathways include MYC and mTOR signaling through
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mTORC1 – two known downstream effectors of somatic NF1 inactivation49,54 – which have been
linked to HSC expansion and inhibition of differentiation55,56. Interestingly, we find a significant
enrichment of HSCs in 17q-Del cells compared to 17p-Del cells (Padj=2.1e-05; Fig. 5j), potentially
mediated through the upregulation MYC and/or mTORC155,56. Finally, the 17q-Del subclone shows
evidence for an altered DNA damage response, with decreased expression of genes such as BRCA1,
BRCA2, FANCI and BLM – suggesting that 17q-Del cells might be prone to acquire further somatic
mutations. Together, these data suggest that BM712 underwent a stepwise acquisition to a potentially
‘higher-risk’ molecular phenotype; firstly by enabling HSCs to exit quiescence and biasing their
differentiation; and secondly, by inducing a proliferative and more HSC-like molecular phenotype
which could be more permissive to acquiring further mosaicism.

Functional effects of mSVs in blood samples based on targeted re-analysis in the UK
Biobank
Based on our in-depth characterization of subclonal mSVs found in two donors, we identified target
genes that are dysregulated and appear to drive or influence HSPC subclone expansion. To explore
whether these findings can be extrapolated to a larger cohort, and test whether they also have
implications for circulating blood cells, we interrogated the UK Biobank57. The extensive phenotypic
data paired with whole-exome sequencing (WES) data for 469,792 blood donors57 provide the
opportunity to study somatic mutations in relation to blood counts in the normal human population.
Focusing on the genes that showed direct functional evidence within the 17p-Del, 17q-Del and Xq-Inv
subclones (respectively NF1, SREBF1 and AR), we extracted rare (MAF<1%) SNVs and small InDels
from the WES data, which we classified based on their potential for functional impact (Methods;
Table S18). Since CNA losses affecting both the 17p-Del and 17q-Del regions have been observed in
in UK Biobank samples2,58, we additionally made use of WES-based CNA loss calls recently
generated for 200,624 UK Biobank donors58 which we analyzed by burden testing (Methods). We
first concentrated our analyses on the 17p and 17q regions, analyzing variants leading to gene
disruption. We find a bimodal somatic variant allele frequency (VAF) distribution for NF1 and
SREBF1 pLoF SNVs, but not for synonymous variants (Fig. 6a; Fig. S29) – indicating pLoF SNVs,
but not other SNVs, exhibit mosaicism at these loci. These data hence underpin the link between
gene-disrupting mosaicisms affecting SREBF1 and NF1 and clonal expansions in normal blood.

At the SREBF1 locus, we find both CNA losses and pLOF SNVs are associated with altered blood
counts (n=2 losses and n=74 pLOF SNVs; Table S18), with this gene being the most significant hit
within the 17p-Del region for several categories, including elevated total leukocytes (Padj=0.00012;
loss), elevated lymphocytes (Padj=0.00013; loss) and elevated nucleated red blood cell count
(Padj=0.039; pLOF) (Fig. 6b; Fig. S29). While these findings do not formally rule out potential effects
from other genes in this region, they bolster support for our findings that disruption of SREBF1 can
contribute to a cell-type skewing in healthy blood. Delineating the causal relationship will require
further study. When repeating the same analysis for all genes in the 17q-Del region, we find losses at
5/6 are associated with elevated total leukocytes – yet, only for the NF1 locus we find that both loss
and pLoF SNVs are significant (Padj=0.042 for both; Table S18; Fig. 6c; Fig. S29). This supports the
notion that both 17p-Del and 17q-Del contribute to cell-type skewing and potentially clonal expansion
within the blood. Interestingly, pLOF in NF1 alone exhibits a highly significant increase in neutrophil
counts (Padj=0.00019) – which strongly implicates this gene in myeloid-skewed hematopoiesis.

Lastly, we analyzed rare missense SNVs at the Xq-Inv locus (n=5 genes), motivated by prior reports
of activating somatic missense mutations at the AR locus in cancer59 – which we reasoned could
potentially mirror the AR activation-based molecular phenotype we observe in the female BM65
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donor. In females, we observe a bimodal VAF for missense, but not pLoF, SNVs, which affirms that
AR missense SNVs, but not AR pLoF SNVs, exhibit somatic mosaicism in normal blood (Fig. 6d;
Supplemental Notes). Furthermore, we find that 5 rare AR missense, but not AR pLoF SNVs, are
associated with altered blood cell counts (Padj<0.05, for all 5 SNVs; Fig. 6e). These fall into exon 1
(n=3), exon 2 (n=1), and exon 4 (n=1), all which also harbor somatic missense SNVs in cancer which
on AR function59. We observe association with increased nucleated red blood cell count for n=4
missense SNVs (Padj<0.05, for all 4 SNVs), and decreased basophil cell count for the remaining SNV
(Padj=0.043). These findings strongly support our above analyses, associating activation of AR with
altered blood cell counts – specifically in the megakaryocyte-erythroid lineages – in a large cohort of
healthy blood donors.

Discussion
Our study provides a systematic cell-type-resolved exploration of distinct mosaicism classes,
illuminating the functional impact and cellular context of mSVs in HSPCs for the first time. Earlier
studies reporting on mosaic CNAs in the blood highlighted the discovery of subclonal CNAs as a
feature of the normal aging population, seen in sample subsets2,6,7,20,21. In comparison, the high
mapping resolution of Strand-seq14 (Fig. S31) identifies mSVs in the majority of samples, spanning
the donor age spectrum. Our data imply that mSVs may impact both gene activity and the
locus-specific cis-regulatory environment of genes in a cell-type-specific manner. Despite arising
within distinct loci, we find subclonal mSVs converge on aberrant growth and/or developmental
signaling pathways and most frequently associate with the myeloid lineage. This cell-type bias is
notable given the commonly observed age-related myeloid bias of HSPCs30 and disease pathology
involving myeloid lineage cells, including leukemia development60. By comparison, LOYs exhibit
more variability, with cell-type enrichments differing in each donor.

The close association of SCEs and mSVs suggests that mSV formation is frequently triggered by
abnormal DSB repair, either through unequal sister chromatid recombination61 or non-homology
associated repair processes22. Our observations indicate that mSV formation in HPSCs occurs
irrespective of age, suggesting a pattern akin to some point mutation processes which show a
consistent rate throughout life62. However, our data imply that cells harboring mosaicisms are more
prone to accumulate additional mSVs, potentially owing to increased propensity to generate or
tolerate additional mutations, which could foster cumulative functional effects of mSVs in certain
subclones. While longitudinal data would be needed to corroborate this, we note that our data hint at a
potential similarity between mSVs and clonal hematopoiesis associated with SNVs, whereby the
individuals with multiple mosaic SNVs are considered at higher risk for malignant transformation63.
Furthermore, newly formed mSVs frequently result in large terminal gains and losses, whereas all
clonally expanded mSVs in our dataset represent interstitial events. These large terminal gains and
losses may not (or only rarely) reach appreciable CF, perhaps due to the detrimental consequences of
autosomal aneuploidy13 inhibiting cell proliferation in normal HSPCs. Moreover, these data imply that
factors other than an elevated mSV formation rate contribute to mSV subclonal expansion during
aging. Depletion or exhaustion of the HSC pool resulting in decreased clonal diversity over time12, or
changes to the BM microenvironment such as increased inflammation that may favor cells bearing
particular large scale mosaicisms, could mediate mSV subclonal expansion during aging.

Prior reports have associated mosaic CNAs in blood with clonal hematopoiesis2,7,20,21, an age-related
phenomenon where HSPCs contribute to genetically distinct blood cell subpopulations. Our findings
imply that subclonal mSVs, seen in 36% of donors over 60 years, commonly impact HSPC function
by affecting diverse genomic loci, including genes with known or suspected roles in clonal
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hematopoiesis37. The prevalence of this class of mosaicism implies that the cumulative phenotypic
impact of mSVs on specific tissues or organs could potentially at least parallel that of SNVs, a finding
that underscores the necessity for future studies in larger cohorts. Given known challenges in
detecting mSVs present with a low CF8, an important consideration will be the choice of technology
for coupling genomic and functional readouts. High-throughput production of Strand-seq libraries in
nanoliter vessels may be a promising path forward to enable more large-scale studies, given the
unique capabilities of this technology to enable single-cell multiomics of a wide variety of structural
variant classes, and at appreciable scale18,64. While Strand-seq could in principle access any dividing
cell, post-mitotic tissues as well as mSVs smaller than 200 kb in size (such as mobile element
insertions) are not currently amenable to profiling with this technology. Finally, an unaddressed
question of interest is whether mSVs may synergise with SNV mosaicism associated with clonal
hematopoiesis4,5, a question that was not the focus of this study. We caution, however, that single-cell
multiomic methods capturing both mSVs and SNVs sensitively in single cells, and at scale, are
presently missing8, highlighting an important need for further technology development, before such
investigations could be effectively conducted.

In conclusion, the heterogeneous mSV landscape we unveil in the blood compartment has
implications for understanding how mSVs impinge on the molecular phenotypes of HSPCs over life.
The single-cell multiomic framework applied in this study, which is guided by a novel
scMNase-seq-based NO reference for HSPCs, paves the way for systematically linking mSVs to
molecular phenotypes related to clonal expansions in diverse normal human tissues.

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.25.550502doi: bioRxiv preprint 

https://paperpile.com/c/CzEyW7/zqOcL
https://paperpile.com/c/CzEyW7/pkhso
https://paperpile.com/c/CzEyW7/8i3tp+YWRE9
https://paperpile.com/c/CzEyW7/gSZ4p+yjNPu
https://paperpile.com/c/CzEyW7/pkhso
https://doi.org/10.1101/2023.07.25.550502
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data and materials availability
We have made all genomics data generated in this study (Strand-seq, scMNase-seq, scRNA-seq, bulk
WGS) available under the following accession: EGAS00001006567.

Code availability
Our study has publicly made available a novel scMNase/NO-based classifier for cell-typing
Strand-seq libraries in HSPCs. This classifier can be accessed and downloaded from GitHub, to
facilitate its use in further studies: https://github.com/jeongdo801/NO_based_HSPC_classifier
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Methods
Human samples
Healthy donor human umbilical cord blood and bone marrow were obtained either as frozen aliquots
of mononuclear cells (MNCs) or freshly isolated from Heidelberg University Hospital, Ulm
University Hospital, Mannheim University Hospital, and ATCC (ATCC PCS-800-013™), and were
cryopreserved in liquid nitrogen until processing. Strand-seq library generation was initiated from
cultures obtained either from freshly isolated or freshly thawed MNCs. For scMNase-seq and 10X
scRNA-seq library generation, freshly thawed MNCs were used.

Statistical testing and multiple test correction
All significance tests used are reported, where applied, in the main text. Multiple test correction was
utilized as required, indicated by Padj, with a false discovery rate (FDR) of 10%. Our targeted analysis
of UK Biobank data employed a more stringent significance threshold of Padj < 0.05. FE test is used as
an abbreviation for Fisher’s exact test.

HSPC culturing and Strand-seq
UCB samples were obtained from Heidelberg University Hospital. BM from healthy donors was
isolated either from donor BM aspirations (N=2), discarded pelvis from hip replacement surgeries
(N=6), or sternum removed during routine heart surgeries (N=8) (Table S1). Cells were stained on ice
in the dark for 30 mins with CD34-APC (clone 581; Biolegend; 1:100), CD38-PE/Cy7 (clone HB7;
eBioscience), CD45Ra-FITC (clone HI100; eBioscience), CD90-PE (clone 5E10; eBioscience), and
LIVE/DEAD Fixable Near-IR Dead Cell Stain (Thermofisher). Single, viable, CD34+ cells (gating as
per Fig. S1) were FACS-sorted (BD FACSMelody, 100 μM nozzle, single-cell mode) directly into
ice-cold complete medium (Stemspan serum-free expansion medium (SFEM) supplemented with
100 ng/ml SCF and Flt3 (Stem Cell Technologies) and 20 ng/ml IL-3, IL-6, G-CSF and TPO (Stem
Cell Technologies). Cells were seeded into Corning® Costar® Ultra-Low Attachment 96-well plates
(Sigma-Aldrich) at a density of 1-2x105 cells/ml and cultured for 42h in the presence of BrdU.
BrdU-containing nuclei were sorted into 96-well plates and subject to Strand-seq library preparation.
All Strand-seq libraries were generated using a Biomek FXP liquid handling robotic system, as
previously described16,23. Libraries were sequenced on an Illumina NextSeq 500 sequencing platform
(MID-mode, 75 base pair paired-end sequencing protocol). Somatic structural variant calling and NO
profiling was pursued using the scTRIP14 and scNOVA18 workflows, as previously described.

Single-cell micrococcal nuclease sequencing (scMNase-seq)
HSPCs from a healthy BM donor were obtained from ATCC (ATCC PCS-800-013™), whereas
normal UCB samples were obtained from Heidelberg University Hospital. Frozen MNCs were thawed
and stained as per Table S5 with antibodies outlined in Table S19 in order to distinguish the 8 distinct
HSPC populations outlined in Fig. S8. Single, viable HSPCs (gating strategy Fig. S8) were
index-sorted using a BD FACSAria™ Fusion Cell Sorter (100 μM nozzle, single-cell mode) into
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96-well plates containing 5 μl modified freeze buffer (0.1% NP-40, 7.5. % DMSO, 42.5 % 2X
Profreeze-CDM (Lonza) in PBS) and frozen. ScMNase-seq libraries were generated from sorted,
frozen single cells as per Strand-seq library preparation23, with the following modification: the
Hoechst/UV treatment step was omitted (with scMNase-seq requiring no BrdU incorporation).
Following single cell sequencing, each cell had an average sequencing coverage of 613,483 uniquely
mapped fragments.

Building NO reference set cell type classifiers
The scNOVA framework enables cell-typing in single cell NO datasets based on supervised machine
learning classification approach. While previously applied to distinguish cell lines from distinct
tissues18, here we sought to apply scNOVA to classify closely related HSPC cell-lineages, based on
generating single-cell NO reference profiles from FACS-sorted HSPCs subjected to scMNase-seq. We
constructed distinct NO based classifiers for cells derived from each source. We index-sorted both the
BM-derived and UCB-derived CD34+ cells from eight HSPC cell types using previously-defined
immunophenotypes28 (Fig. S8, Table S5). Indexed scMNase-seq libraries were used as the
ground-truth input for cell type classifiers. In the case of BM HSPCs, gene body NO profiles were
extracted for 305 high quality single cells and normalized by library size to obtain reads per million
(RPM). These normalised values were log2-transformed and standardised, before being subject to
supervised partial linear square discriminant analysis65 (PLS-DA) to (1) identify informative feature
sets, and subsequently (2) build a classification model. To identify informative feature (gene) sets for
each cell type, we used variable autosomal genes to build an X-matrix (305 cells x 18,851 genes) and
Y-matrix (305 cells x 8 cell types). These X and Y variables were passed to the PLS-DA, which
output variance importance in the projection (VIP) for each feature. The 1,904 genes with a VIP value
>90 % of the null distribution from the permutation test were retained for the second stage of feature
selection. In the second feature selection stage, a second X-matrix (305 cells x 1,904 genes) and
Y-matrix (305 cells x 1 cell type; with cell type in this case being binary information for each cell
either belonging to that cell type (1) or not (0), based on FACS indexes) were passed to the PLS-DA,
and features with a VIP value >95 % of the null distribution from permutation test were retained. This
process was repeated for each cell type, resulting in a final informative feature set of 819 genes for
BM HSPCs. We repeated these steps for 175 high quality single-cells obtained from UCB HSPCs,
which resulted in 899 genes as significant feature sets for cell-type classification. Our study has
openly released this classifier (see Code Availability) to facilitate its use in other research studies.

Cell type enrichment test for donor specific mSVs
We devised cell-type enrichment tests for each of the identified subclones exhibiting specific mSVs,
using a control group consisting of all individuals over the age of 60 who were not affected by mSVs.
We performed a binomial test to determine if the number of cells in a particular cell type within the
subclone was greater than expected, based on the single cell based cell type composition of the control
group. We then calculated permutation-based adjusted p-values for each subclonal mSV by randomly
sampling the same number of HSPCs from the entire single-cell population 100,000 times and tallying
the number of cells from given cell types in question belonging to that subclone.
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Single-cell multiomic analysis of differential gene activities in HSPC subclones
Differentially active genes in subclones affected by mSVs were identified using scNOVA18. We used
scNOVA's infer altered gene activity module, using the PLS-DA option, which is recommended for
the investigation of low CF subclones18. To regress-out cell-type effects in the identification of
differential gene activity, we considered predicted cell-type for each single cell as a confounding
factor when we executed scNOVA's infer altered gene activity module. Genes within the deleted
region were masked from this analysis, given that the correlation of CNAs with the expression of the
affected genes does not always directly correlate66. Genes with significantly altered gene activity
(10% FDR) were subjected to gene set over-representation analysis using ConsensusPathDB67.
Significantly overrepresented pathways (10% FDR) were visualized as dot plots. When comparing
17p-cells and WT cells in BM712 in Fig. 5f, we considered all cells carrying the 17p-Del including
those harboring other mosaicisms in addition to 17p-Del as '17p-cells'.

Investigation of potential cis-effects of a balanced inversion
To investigate the local effects of Xq-Inv in BM65, we employed scNOVA18. We utilized a sliding
window approach previously used to uncover cis-effects of balanced somatic DNA rearrangements in
leukemia in a haplotype-aware manner18. We focused on the Xq-Inv-affected segment, including both
of its rearranged TADs. We firstly defined CREs based on a prior study utilizing ATAC-seq in
HSPCs28. We used a sliding window (300kb in size, moving 10kb each)18 analyzing CREs along
chromosome X, to infer chromosome-wide haplotype-specific NO for the mSV subclone and WT
cells, which is predictive for chromatin accessibility18. For each sliding window, haplotype-specific
NO values at CREs from the mSV subclone (NO in the active X chromosome / NO in the inactive X)
and WT cells (NO in the active X / NO in the inactive X) were compared using likelihood ratio tests
to obtain nominal P-values [P real]. As a multiple testing correction to control the type I error, we
performed a permutation test by randomly shuffling genotype labels of each single cell (mSV or WT),
in the single-cell RPM matrix 1000 times. For each permutation we performed likelihood ratio tests to
compare NO between randomly shuffled mSV subclones and WT cells. We computed the number of
incidences we observed the same, or a lower, P-value than [P real] from 1000 permutations, and
divided this value by the number of trials (N=1000) to estimate the permutation-adjusted P-value.
Sliding windows with permutation-adjusted P-value lower than 0.1 were identified as significantly
altered windows, and were assigned to the nearest genes within the same topologically associated
domain (TAD) boundaries.

Single-cell RNA sequencing (scRNA-seq)
Bone marrow MNCs were thawed and stained as previously described, with the following antibodies:
CD34-AF488 (clone 561; BioLegend; 1:20), CD38-PE/Cy7 (clone HB7; eBioscience; 1:100). Cells
were washed and resuspended as above, and stained for 5 mins with DAPI prior to sorting. The gating
strategy as described in Fig. S1 was used to sort CD34+ cells and CD34- cells respectively into ice
cold 0.04 % BSA in PBS using a BD FACSMelody cell sorter. For each donor, 2 samples were
prepared: one sample of CD34+ cells and one sample a 50:50 mixture of CD34+ and CD34- cells.
scRNA-seq libraries for each sample were generated as per the standard 10x Genomics Chromium 3′
(v.3.1 chemistry) protocol. Completed libraries were sequenced on a NextSeq5000 sequencer
(HIGH-mode, 75 bp paired-ends).

scRNA-seq data processing, unsupervised clustering and cell type annotation
Transcripts were aligned to the human reference genome (GRCh38) and quantified into count
matrices using Cellranger mkfastq and count workflows (10X Genomics, V 3.1.0, default parameters).
Seurat68 (V 3.2.2) was used for QC of single cells and unbiased clustering of the data. Briefly, cells
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with < 1000 UMIs and cells with > 6 % of mitochondrial reads were removed as ‘low quality’.
Normalisation, feature selection, scaling and dimensionality reduction were carried out using default
settings. To annotate cell-types, previously reported scRNA-seq data from HSPCs51 were used as a
reference for cell-type labeling using SingleR69. Differential expression analysis to identify
cluster-/genotype-specific marker genes was carried out using the FindMarkers function from Seurat.

Targeted CNA re-calling in scRNA-seq data
Single cell RNA-seq data was normalized to counts per million (CPM) and transformed into
log2(CPM/10+1) using Seurat68 (V3.2.2). These values were then subject to targeted CNA recalling
using the CONICSmat package70, as described previously18. For the analysis of donor BM712, all
three subclonal mosaicisms were investigated: 17p-Del, 17q-Del, and LOY. By default, the
CONICSmat ‘plotChrEnrichment’ function considers genomic loci which have more than 100
expressed genes for CNA discovery. Since we performed targeted re-calling variants which were
previously identified in the donor cells, and given the small size of the CNAs in question, regions with
5 or more expressed genes were considered in this analysis. The number of expressed genes detected
per mSV were as follows: 17p-Del: 24 genes, 17q-Del: 5 genes, LOY: 17 genes (Table S14). To
profile the mSV regions with expressed genes, CONICSmat generates distributions of average
expression levels across single cells in the given regions, and then fits 1-component and 2-component
mixture models to these distributions. It further compares the likelihood ratios of being 1-component
(unimodal; i.e. absence of CNAs) and 2-component (bimodal; i.e. presence of CNAs), to determine
the most-likely state in those regions based on the Bayesian information criterion (BIC). Candidate
CNA regions identified as likely to be bimodal within a 1 % FDR criterion (based on a Chi-squared
likelihood ratio test) were considered further for downstream analysis. Once the region was inferred to
have bimodality, the posterior probability for each single cell to belong to the normal clone or CNA
subclone was calculated. A posterior probability cutoff of 0.8 was used to assign single cells into one
of the two clones. This analysis was repeated for each subclonal mosaicism event.

Construction of genome-wide SCE maps in single cells and locus-specific SCE enrichment
We constructed genome-wide maps of SCEs in each single cell by subjecting the Strand-seq data of
single cells to the scTRIP computational pipeline14, followed by manual inspection and curation of
each call yielding SCE positional coordinates for each cell. These coordinates were padded by 1 bp
upstream and downstream. The human reference genome (GRCh38) was divided into 500 kb bins
using the bedtools makewindows command71, and overlaps between these 500 kb bins and our SCE
callset were generated using bedtools intersect; giving the number of times each bin is hit by an SCE.
A genomic bin was considered to be hit if the majority of an SCE confidence interval fell within that
bin, and each SCE was only counted in a single bin. To compute significance of the calculated SCE
counts per bin, the count data per bin genome-wide was then fit to a negative binomial distribution
using the fitdist function from fitdistrplus72, and p-values were calculated using the qnbinom function
(with size=1.2506716, mu=0.4823156), with Benjamini-Hochberg correction. To compute overlap of
mSV breakpoints with SCEs, we considered 200kb-sized breakpoint regions (reported breakpoints +/-
100 kb).

Bulk DNA isolation and mSV breakpoint refinement in whole genome sequencing data
Bulk genomic DNA was isolated from CD34- cells (viable cells from the donors which were not put
into culture to be used for Strand-seq library preparation) using the QIAamp DNA Blood Maxi Kit as
per the manufacturer’s instructions. Samples were sequenced using a NextSeq 5000 (HIGH mode, 75
bp paired end). Raw whole genome sequencing reads were aligned to the human reference genome,
sorted, marked for duplicates and indexed. Structural variants were called using Delly2 (default
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parameters), combining split read, paired-end and read depth analysis73. Unfiltered mSV calls were
compared to our mSV callset. Since split read analysis failed to identify the precise breakpoints of the
17p-Del which resides in a repeat-rich area on chromosome 17, we generated a single, directional
composite bam file35 of the region based on our Strand-seq data to allow for 17p-Del breakpoint
refinement with BreakpointR35.

UK Biobank analysis
Data collection. The UK Biobank is a large-scale population database of approximately half a million
participants aged 40-69 years in the UK. For SNVs and INDELs, we used the population level exome
OQFE variants for 469,792 individuals (UK Biobank field ID 23157). For autosomal large deletions,
we used CNA loss calls on WES data that were recently generated by subjecting 200,624 individuals
from the UK Biobank to the CNest copy-number caller58. We considered CNA calls >1 kb.
Additionally, we obtained phenotypic data for 11 blood count traits (UK Biobank category ID
100081), containing count for white blood cells, basophils, eosinophils, monocytes, neutrophils,
lymphocytes, red blood cells, nucleated red blood cells, platelets, reticulocytes and high light scatter
reticulocytes. This research was conducted under the application number 83497. The UK Biobank has
ethics approval from the North West Multi-centre Research Ethics Committee (21/NW/0157).
Variant annotation. We annotated SNVs/INDELs from WES data using Variant Effect Predictor (VEP
v1.0.3) with Loss-Of-Function Transcript Effect Estimator (LOFTEE v0.3-beta) plugin. Variant
annotation was performed using Hail v.0.2. According to annotation results, we grouped variants into
rare loss of function variants (“high confidence” identified by LOFTEE with a minor allele frequency
(MAF) < 1%) and rare missense variants (missense variants annotated by VEP with MAF < 1% in UK
Biobank cohort). In the case of CNA losses, we considered deletions overlapping coding exons with
MAF < 1%.
Association testing. The blood count data were rank normalized using the ‘RNOmni’ package in R.
Linear regression models (blood count ~ genotype + covariates) were used to assess the association
between three loci of interests (17p-Del, 17q-Del and Xq-Inv) and blood count adjusted for several
covariates including age, sex, and the first five principal components derived from genotype arrays.
For all genes at the respective 17p and 17q loci, we used gene rare pLoF burden and rare large CNA
loss burden as genotype in the regression model. For all genes at the X chromosomal locus of interest,
we used gene burden for rare pLoF variants and rare missense variants in the model. Moreover, since
missense variants can have distinct functional impact, we also performed single variant association
analysis for rare missense mutations at the Xq-Inv locus by sex. The volcano plot in Fig. 6e presents
nominal P-values derived solely from female donors only, generated since we made the observation of
sex-biased VAF distributions at the AR locus in UK Biobank samples. For all data, see Fig. S30. A
minimum of three individuals with relevant variants was required for association tests of a given gene,
with the exception of the 17p-Del CNA seen in only two UK Biobank donors based on WES.
P-values were obtained using the Wald test and the Benjamini and Hochberg method was used to
correct for multiple hypothesis testing.
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Figures:

Figure 1: Human HSPCs acquire a wide diversity of mSVs with age, without increased
genomic instability.
a) Cohort and experimental workflow used for profiling somatic mosaicisms in human HSPCs. b)
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Genome-wide karyogram of mSVs identified in human HSPCs. Bars indicate the size of identified
mSVs, colour indicates the class, and the relative size of the bubble linked to the middle of each mSV
indicates the cellular fraction (CF) of the mSV. Filled circles denote subclonal mSVs, while unfilled
are singleton mSVs. Stars indicate bins significantly enriched for SCEs. c) Examples of singleton
complex rearrangements identified in the cohort. Copy-number estimates in regions affected by
complex mSVs are indicated next to the respective segments. d) Singleton mSVs are significantly
larger, when comparing mean total affected base pairs, than mSVs (Wilcoxon rank-sum test; P =
0.00094). e,g) Jitter plots depicting trends in the number of subclonal/singleton mSVs (e) and SCEs
(g) across age in human HSPCs (R = correlation coefficient calculated from the number of
mSVs/SCEs given the donor age). f) Barplot of the incidence of singleton mSVs (y-axis) in cells with
or without mosaicism. Significance is tested with an FE test. h) Results of permutation test shuffling
singleton mSV breakpoints (100kb confidence interval) and SCE hotspots (200kb bin) genome-wide
for 10,000 permutations showing a significantly greater than expected number of overlaps between
the two. Adjusted p-value indicates the significance of the difference between the permuted (black
line) and actual (green line) number of overlaps between singleton mSV breakpoints and SCE
hotspots. i) Local Z-score of enrichment of overlaps between singleton mSV breakpoints and SCE
hotspots from BM/UCB data. mSV breakpoints are shifted in windows of 100 kb to 10 Mb +/- the bin
in which an SCE hotspot is located, and the enrichment Z-score plotted each time. Additional
permutations plotted in Fig. S6. j) Strand-seq data showing recurrent SCE and mSV co-occurrence at
the SCE hotspot and common fragile site (CFS) FRA3B in donor BM762.
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Figure 2: scMNase-seq atlases for 8 distinct HSPCs enable cell type-aware single-cell
multiomic profiling of mSV landscapes
a) Computational single-cell multiomic profiling workflow used to characterize cell-type specific
mSV landscapes in HSPCs using Strand-seq, which involves single-cell mSV discovery (scTRIP14),
single-cell NO analysis to identify mSV functional effects (scNOVA18), and single-cell cell-typing
(informed by scMNase-seq-derived classifiers). b) Construction of BM and UCB-specific NO
reference datasets, based on subjecting eight distinct HSPC cell-types (BM-based reference is
depicted here; the UCB-based reference is shown as Fig. S7) to index sorting using FACS followed
by scMNase-seq. Heatmap of single cell NO of gene bodies of 305 single BM HSPCs. The 819
signature genes depicted (rows) allow for discrimination between 8 distinct HSPC cell-types
(columns). Cells are grouped and colour-coded by immunophenotype, determined by FACS. Example
marker genes for each cell type are shown to the right of the heatmap, colour-coded by the defined
cell type. Differential NO of marker genes is represented by Z-scores. c) Comparison of inferred gene
activity18 (act; inverse NO, using scMNase-seq) and gene expression (RNA-seq) for the representative
classifier genes from the BM scMNase-seq reference. Publicly available RNA-seq data was used for
this analysis28. Gene activity at gene bodies was inferred using the NO Z-score multiplied by (-1).
Color and the dot sizes reflect the Z-score of inferred gene activity and RNA expression, respectively.
d) Unsupervised UMAP dimensionality reduction of BM HSPC scMNase-seq data. e) Supervised
UMAP dimensionality reduction of BM HSPC scMNase-seq data using the BM cell-type classifier. f)
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ROC curve showing leave-one-out cross-validation of the BM cell-type classifier’s performance using
single cell NO patterns.

21

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.25.550502doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.25.550502
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: mSVs in human HSPCs frequently exhibit lineage-bias, in a donor-specific
context.
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a) Predicted cell type composition per donor, in order of increasing age. b) Dotplot of results of the
cell-type enrichment analysis for each mSV identified, showing the CF, enrichment and significance
of each cell type per mSV sub-clone vs an idealized control. The number in brackets indicates the
number of single cells of a given cell-type in a given sub-clone used to calculate the enrichment of
that cell-type. Data here shows enrichment for single genotypes, for combined enrichments see Fig.
S12. c) Summary of lineage biases observed in all subclonal mSVs across the cohort. d) Circle
packing plot summarizing the mSVs and inferred cell type composition of each sub-clone for each of
the 19 donors in this study. Each transparent circle with a solid outline represents a distinct sample.
Transparent inner circles with dashed outlines represent distinct mSV sub-clones within that
individual, while coloured circles denote the cell types contributing to that clone. Each circle is
proportional to the total number of single cells composing that cell-type/sub-clone. A grey
background identifies sub-clones which contain a significant (FDR 10 %) cell type-enrichment with
respect to a control population made from randomly sampling karyotypically normal cells from
donors over 60 years. e) Enrichment analysis of pathways grouped by Jaccard similarity, for subclonal
mSVs across the cohort. Only groups of pathways enriched in 2 or more mSVs are shown. For all
individual pathways, see Fig. S14. For all groups of pathways and details on Jaccard similarity-based
grouping see Fig. S32.
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Figure 4: Somatic mosaic inversion driving MEP-biased cell fate and subclonal expansion of
HSPCs through cis and trans effects. a) Strand-seq data of X chromosomal homologs from BM65
depicting the unaffected haplotype 2 (also denoted ‘WT’; top) and the Xq-Inv on haplotype 1

24

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 28, 2023. ; https://doi.org/10.1101/2023.07.25.550502doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.25.550502
http://creativecommons.org/licenses/by-nc-nd/4.0/


(bottom). b) Genome browser track showing the confidence interval of inversion breakpoints and the
TAD boundaries74 around them. Below, NO differences at CREs between Xq-Inv and WT cells are
shown as log2 fold changes. Permutation adjusted P-values were computed using a sliding window
approach as previously described18. The most significant signal out of 13 peaks representing patterns
of haplotype-specific NO is a region with inferred increased chromatin accessibility, which overlaps
with annotated AR enhancers75 residing 386 kbp apart from the AR gene. Three annotated AR
enhancers intersecting with the most significant peak are highlighted in red. c) Boxplot of NO of
known AR target genes, which exhibit an AR-binding motif in their promoter based on MSigDB76, in
Xq Inv and WT cells in all cell-types (left), HSCs only (middle) and MEPs (right). d) Circle-packing
plot depicting cell type-resolved mSV landscape in BM65. Dotted lines denote mSVs, and the grey
coloured background denotes a measured cell type enrichment. e) Heatmap of differential NO
(diffNO) genes identified for the Inv subclone, compared to the WT cells, generated after regressing
out the contribution of individual cell types. The Y-axis represents single cells analyzed using scTRIP,
and diffNO genes are plotted on the X-axis. Change in NO is coloured from red (increased NO) to
blue (decreased NO). f) Pathways over-represented by the genes with differential NO (FDR 10%). g)
Cell-type specific analysis of NO differences at CREs between the mSV subclone and WT cells. Padj
values of significant peak regions (FDR<10%) are highlighted. A red arrow indicates the
HSC-specific significant peak region containing two AR enhancers, in which we infer increased
chromatin accessibility (the two enhancers are highlighted in red in Fig. S20).
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Figure 5: mSV accumulation in a single donor driving clonal expansion.
a) Circle-packing plot of mSVs found in BM712. b) Strand-seq karyograms of unmutated (WT;
upper), 17p-Del only (middle) and 17p-Del and 17q-Del (bottom) somatic genotypes. c) Bubble
hierarchy plot of mSVs identified in BM712. Bubbles are coloured by somatic genotype, and scaled
proportional to each subclone’s frequency within the donor. CF is noted beside each bubble, and the
distinguishing mSV acquired by each subclone are indicated on the adjoining arm from the parent
population. d-e) UCSC genome browser tracks for the 17p-Del (d) and 17q-Del (e) genomic
segments. Tracks for both panels include composite read data and BreakpointR35 based breakpoint
calls, and highlight relevant genes. In (e), the high confidence deletion call from bulk sequencing is
also displayed (the inferred VAF from the Delly2 deletion call is 28.5%). f) Heatmap of genes
showing differential NO between WT, and the union of 17p-Del and 17pq-Del cells. g) Pathway
over-representation analysis using ConsensusPathDB67 for the genes identified in the pairwise
comparison of 17p-Del and 17pq-Del subclones to WT cells. Significant pathways were identified
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with an FDR of 10%. In the x-axis, NO-U and NO-D indicate increased and decreased nucleosome
occupancy, respectively. h-i) UMAP plot of scRNA-seq of CD34+ cells from BM712, with inferred
cell-type from reference data51 overlaid (h) and inferred LOY status (i). j) Cell-type composition and
enrichment analysis for 17p-Del and 17pq-Del subclones in scRNA-seq from BM712.
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Figure 6: Functional effects of mSVs are supported by informed re-analysis of
large-scale bulk dataset.
a) VAF plot for mutations in left) SREBF1 and right) NF1, separated by mutation type, from the UK
Biobank. b-c) Volcano plot showing burden test results for 17p-Del (b) and 17q-Del (c). Genes with
Padj < 0.05 are labeled. Only selected leukocyte count traits are shown. See Fig. S29 for all blood
count traits. Y-axes show nominal P-values. d) VAF plot for mutations in AR, separated by mutation
type. See Fig. S30 for male data. e) Volcano plot showing association test results of single rare
missense variant at the Xq-Inv locus for all 11 blood count traits (generated from female donors; see
Methods). The full respective list of missense variants analyzed is available from Table S18. Variants
with Padj<0.05 are colored by gene and labeled by trait: NRBC, nucleated red blood cell count;
basophil, basophil count. Variants with Padj >= 0.05 are colored in gray. Y-axis in (b), (c) and (e)
depicts nominal P-values.
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