

1 **Understanding off-target growth defects introduced to influenza A virus by**
2 **synonymous recoding**

3 Colin P Sharp¹, Beth H Thompson², Blanka Tesla¹, Dominic Kurian¹, Peter Simmonds³, Paul
4 Digard¹, Eleanor Gaunt¹

5 ¹ The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, UK

6 ² MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus,
7 Cambridge, UK

8 ³ Peter Medawar Building for Pathogen Research, 3 South Parks Road, Oxford, UK

9

10

11 **ABSTRACT**

12 CpG dinucleotides are under-represented in the genomes of most RNA viruses.
13 Synonymously increasing CpG content of a range of RNA viruses reliably causes replication
14 defects due to the recognition of CpG motifs in RNA by cellular Zinc-finger Antiviral Protein
15 (ZAP). Prior to the discovery of ZAP as a CpG sensor, we described an engineered influenza
16 A virus (IAV) enriched for CpGs in segment 5 that displays the expected replication defects.
17 However, we report here that this CpG-high ('CpGH') mutant is not attenuated by ZAP. To
18 understand this, we sought to uncover the alternative attenuation mechanism(s). IAV segment
19 5 encodes NP, a component of the viral RNA replication complex. Unexpectedly, while CpG
20 enrichment resulted in depleted segment 5 transcript and NP protein abundance, this did not
21 impair viral polymerase activity. A pair of nucleotide changes, introduced as compensatory
22 changes to maintain base frequencies, were instead found to be responsible for the replication
23 defect. These mutations resulted in the encoding of a stretch of eight consecutive adenosines
24 (8A), a phenomenon not seen in natural IAV isolates. Sequencing experiments revealed
25 evidence of viral polymerase slippage at this site, resulting in the production of aberrant
26 peptides and type I interferon induction. When the nucleotides in either of these two positions
27 were restored to wildtype sequence, no viral attenuation was seen, despite the 86 extra CpGs
28 encoded by this virus. Conversely, when these two adenosines were introduced into wildtype
29 virus (thereby introducing the 8A tract), viral attenuation, polymerase slippage, aberrant
30 peptide production and type I interferon induction were apparent. That a single nucleotide
31 change can offset the growth defects in a virus designed to have a formidable barrier to wild-
32 type reversion highlights the importance of understanding the processes underlying viral
33 attenuation. The lessons from this study will inform improved recoding designs in the future.

34 **INTRODUCTION**

35 To proliferate, viruses must efficiently hijack the host translation machinery to make their own
36 proteins, while subverting cellular antiviral sensors. The evolutionary pressures that these two
37 requirements impart conditions viral genes, manifesting as compositional biases in the
38 genome that become engrained over evolutionary time (1). For example, vertebrate genomes
39 suppress CpG, and consequently, aberrant CpG patterns in viral transcripts may alert the
40 infected cell to the presence of virus. In human cells, this is accomplished through sensing of
41 CpGs in viral RNAs by zinc-finger antiviral protein (ZAP) (2). Viruses with ssDNA, -ssRNA,
42 and some with +ssRNA genomes suppress CpG, thereby mimicking the low genomic CpG
43 content of their vertebrate hosts and evading ZAP-mediated detection (3-5).

44 Adding CpGs into viral genomes is a now well-characterised attenuation mechanism that has
45 been proposed by ourselves and others to have potential application in live attenuated vaccine
46 design (2,6-13), because adding CpGs limits viral replication but is unlikely to affect antigen
47 conformation. Using influenza A virus (IAV) as a tractable model system in which to test this,
48 we recently reported that increasing the CpG content of segment 1 of IAV resulted in a ZAP-
49 mediated attenuation that caused CpG-high transcript turnover, but not type I interferon
50 induction (14).

51 Synonymous recoding of viral genomes, including CpG enrichment, is founded on the principle
52 that attenuation is mediated through hundreds of nucleotide changes, negating the potential
53 for reversion to wildtype sequence. However, this does not guarantee that the recoded virus
54 will not revert to wildtype virus fitness. For example, if an RNA structure in a viral genome is
55 required for optimal virus replication, adding CpG dinucleotides would distort that structure,
56 and the virus would be attenuated. It would appear as though the recoded virus was
57 attenuated due to the added CpGs, but in reality the attenuation was mediated by distortion
58 of an RNA structure attributable to one or two nucleotide changes out of the hundreds made.
59 As an historical example of this, a single nucleotide change in the Sabin type 3 live attenuated
60 poliovirus vaccine 5'UTR restored an internal ribosome entry site, improving virus fitness
61 sufficiently to lead to sporadic cases of acute poliomyelitis in some vaccine recipients (15).
62 This highlights the importance of confirming the mechanism when using nucleotide
63 substitutions for viral attenuation.

64 Prior to the discovery of ZAP as a CpG sensor, we reported that adding CpGs to segment 5
65 of the A/Puerto Rico/8/1934 (PR8) strain of IAV caused viral attenuation (12). Here, we have
66 tested the sensitivity of this virus to ZAP. Unexpectedly, virus attenuation was not abrogated
67 by ZAP knockout. We find that instead, compensatory mutations made to maintain individual
68 nucleotide frequencies resulted in the introduction of a 8-adenosine (8A) stretch responsible
69 for the attenuated phenotype through IAV polymerase slippage leading to aberrant protein
70 production, associated with an enhanced type I interferon response. Attenuation was
71 alleviated by disruption of the 8A motif, and introduction of these two point mutations into
72 wildtype virus resulted an attenuated phenotype. This study is an important warning, pertinent
73 to the growing interest in using large-scale synonymous virus deoptimisation in vaccinology.

74

75 **RESULTS**

76 **CpG enrichment in segment 5 of the IAV genome results in ZAP-independent**
77 **attenuation.** Prior to the discovery of ZAP as the cellular sensor of CpG dinucleotides (2), we
78 had reported the use of CpG enrichment in segment 5 of the PR8 strain of IAV as a successful
79 attenuation approach (12). We therefore tested whether our CpGH IAV was attenuated in
80 ZAP-deficient systems. The virus panel comprised wildtype (WT) PR8, a permuted control

81 with reordered codons but equal dinucleotide composition (CDLR), and CpGH virus, which
82 had 86 CpGs added and further compensatory mutations to retain nucleotide frequencies
83 (**Table 1**). As we previously reported (12), the CpGH virus was significantly attenuated in A549
84 cells, yielding endpoint titres $\sim 2\log_{10}$ lower than WT and control viruses. However, in paired
85 A549 ZAP-/- cells, the fitness defect of the CpGH virus was retained (**Fig 1A**). Similarly,
86 knockout of other factors in the CpG sensing pathway could not rescue the defective
87 replication of this CpGH virus, either when TRIM25 was knocked out of HEK293 cells (**Fig.**
88 **1B**), or KHNYN was knocked out of A549 cells (**Fig. 1C**). The replication defect of the CpGH
89 PR8 virus was therefore not due to ZAP-mediated sensing.

90 **CpG enrichment in segment 5 of the IAV genome does not impair viral packaging.** We
91 considered whether the CpGH virus may be attenuated due to a packaging defect. To test
92 this, RNA was extracted from virus stocks and qPCR was performed to determine the relative
93 amounts of segment 1 and segment 5 RNA in virions. No differences could be found across
94 the panel, in contrast with a known packaging mutant '4c6c', for which more copies of both
95 segment 1 and segment 5 RNA were needed to produce an infectious virus (**Fig. 2A**). RNA
96 from purified virions was inspected visually using urea-PAGE electrophoresis. No differences
97 were observed in band density for any viral segments of any of the viruses in the panel (**Fig.**
98 **2B**). CpG enrichment in segment 5 did not impair IAV genome packaging.

99 **CpG enrichment in segment 5 of the IAV genome reduces NP transcript and protein
100 abundance but does not impair IAV polymerase activity.** We considered whether CpG
101 enrichment had caused a defect in transcription and/ or translation. Firstly, we tested transcript
102 yield from the CpGH construct in an *in vitro* transcription assay (with RNA produced from
103 plasmids under a T7 promoter); no differences were observed across the panel (**Fig. 3A**).
104 Similarly, no differences in protein levels were detected in *in vitro* translation assays using the
105 same constructs (**Fig. 3B**). Next we examined transcript and protein production during virus
106 infection. A549 cells were infected at high MOI and after a full replication cycle, RNAs were
107 harvested and positive sense viral RNAs were assayed using Northern blotting (**Fig. 3C**).
108 Transcript levels for the CpGH virus were down for both segment 5 (encoding NP) and
109 segment 1 (encoding PB2). This correlated with reduced protein levels (**Fig. 3D**). NP and PB2
110 both form part of viral ribonucleoproteins (vRNPs), the formation of which is required for viral
111 mRNA production (16,17). We assayed IAV polymerase protein activity by performing viral
112 polymerase reconstitution assays. This involved transfecting plasmids encoding the vRNP
113 proteins (PB2, PB1, PA and NP) under a pol.II promoter, along with a reporter construct in the
114 negative orientation and flanked by IAV UTRs, so that vRNP formation around reporter -RNA
115 is required for translation of the reporter protein. In contrast with the protein production seen
116 during virus infection, in the polymerase assay, equal amounts of PB2 protein were detectable
117 (**Fig. 3E**). While NP protein production was reduced, abundance of the luciferase protein was
118 not reduced. This was confirmed by reading luminescence, as there were no differences in
119 luciferase signal across the panel (**Fig. 3F**), indicating that the viral polymerase proteins were
120 functional. Taken together, these data show that the reduced transcript and protein abundance
121 consequent of CpG enrichment in segment 5 did not impair viral polymerase activity.

122 **Tiled reversion of the CpGH sequence to wildtype sequence identifies a short region
123 that when restored to wildtype sequence, reconstitutes wildtype virus fitness.** To gain
124 insights into the mechanism by which the CpGH virus was attenuated, we sought to identify
125 the recoded region imparting viral attenuation. Segment 5 CpGH was split into 5 fragments,
126 A-E, with A-C forming three sequential fragments covering the full length of the transcript, and
127 D and E mapping across the overlap regions (**Fig. 4A, Table 1**). Low MOI infections were
128 performed with this virus panel in A549 cells. CpGH viruses with fragments B, C or E reverted
129 to PR8 WT sequence (CpGH/B.PR8 etc) maintained a replication defect similar to the CpGH

130 virus, indicating that mutations applied in these regions did not contribute to attenuation.
131 However, CpGH/A.PR8 recovered replication fitness to levels similar to the WT PR8 virus
132 (**Fig. 4B**), indicating that the defect in the CpGH virus was imparted by mutation(s) applied in
133 these region. Recovery of the CpGH/D.PR8 virus was evident as it no longer had a titre
134 significantly lower than PR8 WT, although mean titres were almost a log lower than WT PR8.
135 Notably, fragments A and fragments D overlap between nucleotides 298 and 626 (Fig. 4A),
136 raising the hypothesis that mutations in the overlap region may be responsible for the
137 replication defect of CpGH virus.

138 **Serial passage of segment 5 CpGH IAV identifies a reversion mutation within a region**
139 **mutated to compensate for base frequency changes that falls within an 8-nucleotide**
140 **stretch of adenosines.** To try and identify point mutations responsible for the ZAP-
141 independent attenuation, we performed serial passage experiments. Viruses were passaged
142 at low MOI on A549 cells for 10 passages, and then deep sequencing was performed. Titres
143 did not recover for either egg stock (**Fig. 5A**) or MDCK stock (**Fig. 5B**) CpGH virus. Deep
144 sequencing yielded coverage across the genome between 890-64,000X (**Fig. 5C**). While no
145 nucleotide reversions were seen at sites where CpG dinucleotides had been introduced, a
146 single nucleotide reversion occurred in 98.8% of sequencing reads from both egg virus
147 rescues, at nucleotide position 312. A proximal nucleotide reversion was also seen in one of
148 the MDCK stock rescues, with ~40% of reads yielding a reversion at position 315 (**Fig. 5D**).
149 Both of these reversions occurred within the overlap region of fragments A and D between
150 nucleotides 298 – 626. To determine when during passage these mutations arose, PCR
151 amplification across this region was performed on RNA extracted from the P1 viral stock and
152 after a further 1 or 2 passages (P2 and P3), and amplicons were deep sequenced. This
153 sequencing showed that the mutation at nucleotide position 312 was present in the P1 viral
154 stock (~20% of reads), becoming the dominant variant in the next passage and increasing to
155 represent ~90% of reads by P3 (**Fig. 5E**). This offers a possible explanation as to why the egg
156 stock derived CpGH virus titres were ~1log below PR8 WT, whereas the difference in MDCK
157 derived virus titres was typically ~2.5 logs. Visual inspection of nucleotide alignments revealed
158 that the CpGH virus incorporated an 8-adenosine (8A) stretch that included nucleotide
159 positions 312 and 315 (**Fig. 5F**). In over 10,000 human IAV isolate sequences analysed, an
160 adenosine was not seen in positions 312 or 315 (**Fig. 5G**). While sequence reversion at the
161 8A site was observed, the CpGH virus still displayed a replication defect after reversion at this
162 site (Fig. 5A, B), indicating multi-layered attenuation and consistent with ZAP-mediated CpG
163 sensing.

164 **Single nucleotide reversions at positions 312 and 315 of the CpGH virus restored WT**
165 **fitness.** The tiled reversion data (Fig. 4) and serial passage data (Fig. 5) taken together
166 suggest that the ZAP-independent attenuation of CpGH virus was due to the nucleotide
167 changes at positions 312 and/or 315. Therefore, we made CpGH viruses with these
168 nucleotides reverted singly and in combination, and assessed their replicative fitness in A549
169 cells. As previously, the CpGH virus was severely defective in comparison with WT and CDLR
170 control viruses (**Fig. 6A**). However, when the 8A tract in CpGH was disrupted by reverting A
171 to U at position 312 (S5CpGH A312U), or the A at position 315 to G (S5 CpGH A315G), the
172 replication defect was lost. Titres were significantly higher than those of CpGH. The same
173 phenotype was observed for the cognate double mutant (S5CpGH A312U/A315G). When
174 these single nucleotide changes were built into PR8, neither PR8 U312A or PR8 G315A were
175 attenuated, but when both mutations were introduced together (PR8 U312A/G315A) to
176 reconstitute the 8A tract, the virus was significantly attenuated compared to WT PR8. Notably,
177 the CpGH virus, which also incorporated 8A but with CpG enrichment built in, was more
178 attenuated than PR8 U312A/G315A, indicating the presence of two different attenuation

179 strategies. Thus, we propose that double-layered attenuation (CpGs enrichment, and the 8A
180 stretch) were acting synergistically.

181 To determine whether ZAP sensing was evident for any of the CpGH viruses, the same panel
182 was grown in paired A549 ZAP-/ cells. Titres were normalised to PR8 for WT vs ZAP-/ cell
183 lines for direct comparison. No improvement in ZAP-/ cells was observed for any of the
184 viruses in the panel (**Fig. 6B**).

185 With the presence of 8A determining whether virus was attenuated or not, we sought to test
186 whether its ablation would recover transcript production using Northern blotting as in Fig. 3C.
187 The reduced transcript production seen for the CpGH virus was not ablated by A312U A315G
188 mutations, and could not be imparted upon PR8 by cognate U312A G315A mutations,
189 indicating that reduced transcript levels arose due to CpG enrichment and not 8A introduction
190 (**Fig. 6C**). This was in keeping with our previous observations of ZAP-mediated CpG-high
191 transcript degradation (14), but in segment 5 this alone was evidently insufficient to impair viral
192 replication (Fig. 6A).

193 **Introduction of the 8A tract into IAV segment 5 resulted in viral polymerase slippage,
194 aberrant protein production, and triggered type I IFN.** To determine the mechanism by
195 which the 8A tract introduced into segment 5 caused viral attenuation, we considered the
196 possibility that the viral polymerase was slipping, resulting in aberrant transcript production.
197 To generate the polyA tract at the 3' end of viral mRNAs, the IAV polymerase is known to slip
198 on genomic polyU (18), although this occurs at the 3' termini located to the panhandle structure
199 of transcripts rather than in the middle. To test for polymerase slippage, we examined
200 chromatograms of viral transcript sequences when synthesised under different polymerases.
201 Firstly, the CpGH plasmid was transfected into HEK293T cells, and +RNA transcribed from a
202 pol.II promoter was DNase treated, amplified by RT-PCR across the 312/315 region and
203 sequenced to assess for aberrant transcript production. The sequencing chromatogram
204 indicated no evidence of secondary nucleotide peaks around the 8A tract, indicating that RNA
205 polymerase II did not slip on the 8A sequence (**Fig. 7A, top left panel**). Similarly, when A549
206 cells were infected with WT PR8 virus, the viral +RNA yielded a clean chromatogram for RNA
207 synthesised by the viral polymerase (**Fig. 7A, top middle panel**). However, when the same
208 cells were infected with CpGH virus whose +RNA contained 8A, downstream of the
209 polyadenosine there was a mixed transcript pool represented in the chromatogram (**Fig. 7A,
210 top right panel**). This indicated that the mixed transcript population most likely arose through
211 viral polymerase slippage. When the A base at nucleotide position 312 was reverted to a U
212 (as in the WT PR8 sequence), evidence of secondary transcript production was absent,
213 indicating that 7 repeated bases was insufficient to generate a slippage event detectable by
214 these methods (**Fig 7A, middle left panel**). Similarly, evidence of slippage was absent from
215 CpGH A315G (containing nucleotide sequence AAAGAAA; **middle middle panel**) and from
216 CpGH A312U A315G (**Fig. 7A, middle right panel**). Finally, the 8A tract was introduced step-
217 wise into the PR8 WT virus; when either U312A or G315A single substitutions were made, no
218 slippage was evident (**Fig. 7A bottom left and middle panels**). However, when both changes
219 were made together, reconstituting the 8A sequence in PR8 +RNA, the mixed transcript
220 population was again evident in the chromatogram (**Fig. 7A, bottom right panel**). Together,
221 these data indicate that a sequence of eight adenosines may give rise to a mixed transcript
222 population (likely via IAV polymerase slippage), and that seven consecutive adenosines is
223 insufficient to yield this effect.

224 Deep sequencing of amplicons derived directly from CpGH plasmid versus from virus infection
225 confirmed the increased proportion of sequences containing evidence of polymerase slippage
226 on the 8A site in the context of infection (**Fig. 7B**). This was consistent with the data from Fig.

227 3, showing that protein but not transcript abundance was reduced in an IAV polymerase-
228 dependent manner.

229 To assess the consequences of IAV polymerase slippage at 8A on protein production, cell
230 lysates from PR8 WT, CpGH and PR8 U312A G315A infections were analysed using mass
231 spectrometry to determine whether aberrant proteins were produced. Infected cells were
232 treated with MG132 protease inhibitor to prevent their turnover. Sequencing data (Fig. 7B)
233 indicated that frame shifts were most likely to occur in a +1, +2 or -1 orientation, and so the
234 predicted protein translations resulting from such shifts (**Fig. 7C**) were searched for. Due to
235 the 8A stretch introducing multiple lysines, this meant that the standard approach of tryptic
236 cleavage would not allow us to distinguish between +1 and -2, or +2 and -1 frame shift events,
237 and so gluC protease which cleaves downstream of glutamic acid was used instead. This
238 meant that we were unable to detect peptides associated with a -1 frameshift, due to predicted
239 peptides being too short to read. We therefore examined for the presence of peptides
240 associated with canonical, +1, +2 and -2 reading frames (**Fig. 7D**). Due to differences in m/z
241 ratios for the peptides unique to +1 and +2 frameshifted translations, relative abundance
242 cannot be compared across peptide species. For WT PR8, only peptides in the canonical
243 reading frame were identified. For CpGH virus, canonical and +2 frame peptides were
244 identified, but +1 peptides were not. For PR8 U312A G315A, canonical, +1 and +2 frame
245 peptides were identified. No -2 frame peptides were identified in any samples. The detection
246 of +2 frame peptides for CpGH virus suggests that +1 peptides were likely present but of too
247 low abundance or required higher sensitivity detection methods for their identification. Thus,
248 the mass spectrometry confirmed that IAV polymerase slippage resulted in production of
249 aberrant proteins.

250 We considered the possibility that aberrant transcriptional and translational events may result
251 in the induction of type I interferon, which was investigated using HEK Blue assays. As
252 expected due to the potent type I interferon blocking activity of NS1 (19), PR8 WT and CDLR
253 control did not induce interferon above baseline (**Fig. 7E**). Conversely, 8A-containing CpGH
254 virus significantly induced interferon, and this induction was abrogated in the CpGH A312U,
255 A315G and double mutants. In support of this, PR8 A312U A315G (8A-encoding), but not the
256 single mutants, also induced interferon. Together this indicated that production of the aberrant
257 peptide was required for type I interferon induction.

258 **Seg1-CpGH virus attenuation is not augmented by incorporation of seg5-CpGH.** We
259 sought to determine whether the ZAP-sensitivity of our seg1-CpGH virus could be augmented
260 by incorporating further CpG enrichment into segment 5 of the PR8 genome. To test this, we
261 engineered viruses that were either permuted CDLR controls (no change in CpG frequency)
262 in both segments 1 and 5, or were CpG-enriched in both segments, with segment 5 also
263 incorporating A312U/A315G reversions to negate the risk of polymerase slippage. Firstly,
264 these viruses were grown in WT A549 cells. The seg1-CpGH virus was attenuated as
265 expected, consistent with our previous work (**Fig. 8A**). The seg1/ seg5 CDLR virus yielded
266 titres similar to WT PR8, indicating that synonymously recoding both segments did not impair
267 viral packaging or replication. When CpGs were added into both segments 1 and segment 5,
268 this virus was only attenuated to the extent of seg1-CpGH alone. This indicated that synergistic
269 attenuation by incorporating more CpGs was not achieved. As expected, both CpGH viruses
270 (single and double segment mutants) replicated to WT titres in ZAP-/ cells (**Fig. 8B**). Finally,
271 titres were normalised to PR8 in A549 and paired ZAP-/ cells to assess the extent of recovery
272 in ZAP-/ cells (**Fig. 8C**). Recovery of single and double segment CpGH viruses was similar.

273

274 **DISCUSSION**

275 CpG enrichment has gained traction as an attractive model for the development or
276 augmentation of live attenuated vaccines (13,14). Here, we argue that understanding the
277 mechanism of attenuation imparted by synonymous recoding is imperative as a safety feature
278 of this technology. When we added 86 CpGs to the IAV genome (12), the virus was attenuated
279 and phenotypically characteristic of a virus that was being sensed by ZAP. However, through
280 molecular investigations we have now determined that the replication defects observed
281 primarily arose through an unrelated mechanism requiring a single nucleotide change for
282 fitness restoration. This is therefore a possible scenario during live attenuated vaccine design.

283 When we added 126 CpGs to segment 1 of the same PR8 IAV, a ZAP-mediated attenuation
284 was imparted, and ~80 CpGs was sufficient to mediate attenuation. Here, the addition of 86
285 CpGs without also adding the 8A tract (S5CpGH A312U/A315G) imparted a modest
286 attenuation, evident in Fig. 4 and the maintained replication defect after serial passage (Fig.
287 5A, B), but evading statistical significance in Fig. 6. The bigger impact of adding CpGs into
288 segment 1 could simply be attributable to the different expression levels of the two genes (20).
289 NP encoded on segment 5 is produced in high abundance (21), and so it is possible that some
290 degradation of viral transcripts is tolerable. In support of this, we saw that while NP production
291 was dramatically impaired during minireplicon assays, this did not impact polymerase activity.
292 This highlights another previously unreported but important consideration for CpG-based
293 recoding designs, as more robust phenotypes may be evident when targeting process-limiting
294 transcripts (14).

295 Alternatively, RNA structure around CpG sites may determine transcript fate. Binding of CpG
296 motifs by ZAP requires the surrounding RNA to be single stranded (22). TRIM25 is required
297 for ZAP's RNA-degrading activity (23,24), but while TRIM25 is known to bind RNA, no specific
298 motif or structure has been identified for TRIM25 recruitment (25,26). It is unknown whether
299 there is a minimum threshold of ZAP binding to designate transcripts for degradation. CpG
300 enrichment experiments have so far, by necessity, taken crude approaches of adding CpGs
301 to excessive abundance, whereas it may be possible to strategically add fewer CpGs in
302 regions of single-strandedness (and without introducing RNA structure) to deliver the same
303 attenuation phenotype.

304 It was unexpected that combining CpG enrichment in segment 1 and segment 5 together did
305 not augment attenuation. We had expected that if cells were primed to degrade segment 1
306 CpGH transcripts as we previously showed (14), there would be a knock-on effect of enhanced
307 degradation of seg5-CpGH transcripts also that would result in enhanced attenuation.
308 Possibly, the RNA degradation pathway accessed via CpG enrichment was already saturated.
309 This hints at a possible limitation of CpG enrichment as a means for viral attenuation that has
310 not previously been reported.

311 The finding that the IAV polymerase was slipping at the 8A site was surprising, as such
312 slippage has only been reported on the polyU tract at the 5' end of negative sense RNA (18),
313 to produce a polyadenylation signal on viral mRNAs. Here, we provide evidence of polymerase
314 slippage in the middle of a transcript. Our assays do not definitively determine whether the
315 polymerase slips on the 8A of positive sense RNA, or the 8U of negative sense, and it was
316 shown that if polyU was replaced with polyA, IAV polymerase would also slip on the polyU
317 (18). Slippage on polyU at the segment terminus requires a tract of six consecutive uridines,
318 in contrast with our finding that 8-nucleotide repeat but not a 7-nucleotide repeat induced
319 slippage. It could be that the polymerase slips on polyA alone, or the differences may be
320 attributable to the different stoichiometry in the middle of the segment compared with the
321 panhandle structure in which the native polyU sequence resides.

322 With the advent of mRNA vaccine technology, the future of live attenuated vaccines is
323 increasingly uncertain, including for influenza (27,28). Cold-adapted, live attenuated influenza
324 vaccines are typically inoculated in children using nasal sprays (29-32), thereby avoiding the
325 use of needles; a feature that is unlikely to be achieved by mRNA vaccines. Furthermore,
326 synonymous recoding may have applications in both live-attenuated and in mRNA influenza
327 vaccinology in the future (33-35); despite their relative infancy, the SARS-CoV-2 vaccines are
328 codon-optimised (36). Here, we highlight the potential pitfalls of recoding-mediated
329 attenuation, with important implications for vaccine safety.

330

331 METHODS

332 **Cells.** A549 (human adenocarcinoma), Madin-Darby canine kidney (MDCK), and human
333 embryonic kidney (HEK) 293T or 293 cells were cultured in Dulbecco's modified essential
334 medium (DMEM) (Sigma) with 10% foetal calf serum (FCS) (Thermo Fisher) and 1% penicillin/
335 streptomycin (Thermo Fisher) (growth medium), and were passaged twice weekly. A549 ZAP-
336 /- cells were a gift from Prof. Sam Wilson (37). HEK 293 TRIM25/- cells were a gift from Prof.
337 Gracjan Michlewski (26). A549 KHNYN/- cells were a gift from Dr Chad Swanson (38). The
338 knockout status of these cell lines was previously verified by our lab (14). Cells were checked
339 monthly for mycoplasma contamination using Lonza MycoAlert kit.

340 **Plasmids and plasmid mutagenesis.** IAV reverse genetics plasmids for the A/Puerto
341 Rico/8/1934 (PR8) virus were derived from the UK National Institute of Biological Standards
342 & Control strain (39). The CpGH virus, with CpGs added into segment 5 of the PR8 strain, has
343 been previously described (12). To generate a panel of reversion mutants with fragments of
344 the CpGH region reverted to wildtype sequence, PCR and Gibson assembly were used. For
345 PCR reactions, fragments of either the WT PR8 segment 5 plasmid, or seg5-CpGH plasmid,
346 were amplified (as was the plasmid backbone, which is the same for both constructs; primers
347 are listed in Table S1A). The fragments generated are summarised in Fig. 1A and Table 1.
348 Generated fragments and backbone were added in 1:1 ratios directly to the Gibson assembly
349 reaction mix equivalent to half the total reaction volume, and reactions were carried out in
350 accordance with the manufacturer's instructions (NEB, M5510A) to generate new plasmids,
351 confirmed by agarose gel electrophoresis. These were heat-shocked into DH5 α chemically
352 competent *Escherichia coli*, and grown on agar plates containing 50 μ g/ml ampicillin selection.
353 Picked colonies were sequenced using colony PCR, and plasmids containing the correct insert
354 sequences were amplified using Qiagen midi-prep kit, then checked again by Sanger
355 sequencing.

356 Introduction of single nucleotide changes in segment 5, corresponding to nucleotide positions
357 312 and 315, was achieved using QuikChange II site directed mutagenesis kit (Agilent)
358 according to manufacturer's instructions. Primers are tabulated (**Table 2**).

359 Full segment sequences are summarised (Table 1).

360 **Table 1. Properties of CpG modified PR8 IAVs recoded in segment 5.**

Mutation	Recoded region	No. CpGs	ΔCpG	No. UpAs	Δ UpA
Wildtype segment 5	-	43	-	52	-
CDLR	159-1404	43	-	52	-
CpGH	162-1413	129	+86	54	+2
CpGH-A	628-1413	100	+57	53	+1
CpGH-B	151-624; 986-1413	110	+67	48	-4
CpGH-C	151-986	91	+48	58	+6
CpGH-D	151-297; 783-1413	98	+55	49	-3
CpGH-E	151-780; 1283-1413	94	+51	53	+1

361

362 **Virus rescues.** Virus rescues were performed as previously described (12,40,41). Growth
 363 medium on HEK293T cells at 90% confluence in 6 well plates was replaced with Opti-MEM
 364 reduced serum medium (Thermo Fisher) and cells in each well were transfected with 250ng
 365 each of 8 pDUAL reverse genetics plasmids, one per segment of viral genome, in combination
 366 with 4 µl Lipofectamine 2000 (Thermo Fisher). Mocks were transfected with 7 plasmids, with
 367 segment 5 plasmid omitted. The next day, Opti-MEM was replaced with DMEM containing 1
 368 µg/ml tosyl phenylalanyl chlormethyl ketone (TPCK)-treated trypsin and 0.14% bovine serum
 369 albumin (w/v) (Sigma) (viral growth medium). After 48 hours, supernatants containing viruses
 370 were collected and inoculated into the allantoic fluid of embryonated hens' eggs at 10 days
 371 post-fertilisation (100 µl/ egg). To generate a control virus defective in packaging, a virus with
 372 several amino acid changes in segments 4 and 6, encoding the surface glycoproteins, referred
 373 to as '4c6c', was propagated in MDCK cells rather than eggs to minimise the risk of reversion
 374 (Gog 2007 NAR; eNP).

375

376 **Table 2. Site directed mutagenesis primers targeting nucleotide positions 312 and 315**
 377 **in PR8 segment 5**

Target strain	Segment 5 mutation	Sequence
PR8 WT	T312A_Fw	GTCCTCCAGTTTCTTGATCTTCCCCGAC
	T312A_Rev	GTGCGGGAAAGATCCAAGAAAATGGAGGAC
	G315A_Fw	ATAGGTCTCCAGTTTTAGGATCTTCCCCGC
	G315A_Rev	GCGGGAAAGATCCTAAAAAAACTGGAGGACCTAT
	T312A G315A_Fw	TATAGGTCTCCAGTTTTGGATCTTCCCCGACTG
	T312A G315A_Rev	CAGTGCAGGGAAAGATCAAAAAAACTGGAGGACCTATA
PR8 segment 5 CpGH	A312T_Fw	GGTCCTCCAGTTTTAGGATCTTACCGCGCT
	A312T_Rev	AGCGCGGGTAAAGATCCTAAAAAAACTGGAGGACCC
	A315G_Fw	ATGGGTCTCCAGTTCTTGATCTTACCGCG
	A315G_Rev	GCGGGTAAAGATCCAAGAAAATGGAGGACCCAT
	A312T A315G_Fw	AATGGGTCTCCAGTTCTAGGATCTTACCGCGCTC
	A312T A315G_Rev	GAGCGCGGGTAAAGATCTAAGAAAATGGAGGACCCATT

378

379 **Virus titrations.** The amount of infectious virus in virus stocks and infection supernatants was
 380 quantified using plaque assays. 300 µl volumes of ten-fold serial dilutions were inoculated
 381 onto confluent MDCK cells in 12-well plates. After ~1 hour, cells were overlaid with viral growth
 382 medium diluted 1:1 in 2.4% cellulose (Sigma). Plaque assays were incubated for 48 hours,
 383 then 1ml/ well 10% neutral buffered formalin was added to fix the cells for at least 20 minutes.
 384 Overlay was then discarded and cells were stained using toluidine blue dye (0.1%) (Sigma).

385 **Virus infections.** For viral growth assays and serial passage experiments, cells were infected
 386 at low MOI (0.01) and infected for 48 hours in viral growth medium. For interferon induction,
 387 replication kinetics and mass spectrometry experiments, high MOI (3) infections were
 388 performed for 8 hours in serum-free medium. For all infections, virus was incubated on cells

389 for ~1 hour, after which time (considered to be 1 hour post infection) cells were washed and
390 the relevant medium was added.

391 **Virus purification and Urea-PAGE gel electrophoresis.** 10¹⁰ PFU of egg-derived virus
392 stocks were semi-purified by pelleting through a 25% sucrose cushion (100 mM NaCl, 10 mM
393 Tris-HCl pH 7.0, 1 mM EDTA) using centrifugation in a Beckman Coulter Max-E ultracentrifuge
394 at 280,000 g for 90 minutes at 4C with a SW32Ti rotor. Pelleted virions were resuspended into
395 350 µl RLT buffer and RNAs were extracted with an RNEasy mini extraction kit (Qiagen).
396 RNAs were loaded onto homemade 5% urea polyacrylamide gels in 1X Tris-borate-ETA (TBE)
397 buffer (89 nM Tris-borate, 2 mM EDTA pH8.3) and separated by electrophoresis at 120 V for
398 6 hours. RNA as visualised using Bio-Rad Silver Stain Plus Kit and a Samsung Xpress
399 C480FW scanner.

400 **In vitro transcription assay.** To generate DNA input under a T7 promoter suitable for use in
401 cell-free transcription assays, full length segment 5 was amplified by PCR using primers with
402 a T7 promoter sequence added to the 5' end of the forward primer (Table S1A). Q5 DNA
403 polymerase kit (NEB) was used to make amplicons, with 25 ng plasmid and an initial
404 incubation of 95°C for 5 minutes, followed by 30 cycles of 95°C for 30 seconds, 50°C for 30
405 seconds and 72°C for 2 minutes, then a 72°C for 5 minute final extension. PCR products were
406 run on an agarose gel, then bands of the expected size were excised and gel purified using
407 Qiagen MinElute Gel Extraction Kit. DNA yield was quantified using Qubit dsDNA BR Assay
408 (Thermo Fisher). 40 ng amplicon was used as template in MEGAscrpt T7 transcription assays
409 (Thermo Fisher) with half-reaction volumes, for 10, 20, 45 or 90 minutes. Reactions were
410 terminated and RNA was quantified using Qubit RNA HS Assay (Thermo Fisher).

411 **In vitro translation assay.** RNA transcripts generated as above were used as input templates
412 for cell-free translation assays using Promega Rabbit Reticulocyte Lysate kit with one fifth
413 volume reactions. Transcend Biotin-Lysyl-tRNA (Promega) was incorporated in reactions so
414 that reaction products could be identified using western blotting as above, except that
415 membranes were blocked using 5% BSA/TBS for 60 minutes, then incubated with IRDye
416 800CW Streptavidin (LICOR) for a further 60 minutes, and then imaged using LICOR
417 Odyssey Fc imaging system.

418 **Western blotting.** Cell lysates from each well of a 24-well plate were harvested in 100 µl
419 Laemmli buffer (2X) and boiled for ten minutes. Samples were cooled and 5 µl/ well was
420 loaded into 10% polyacrylamide precast gels (Bio-Rad) and SDS-PAGE was performed.
421 Resolved proteins were wet-transferred onto nitrocellulose membranes (Fisher Scientific) at
422 100V for 90 minutes. Membranes were blocked for 30 minutes with 5% skimmed milk powder
423 diluted in PBS (w/v) and 0.1% Tween-20. Membranes were probed with NP, PB2 (42), firefly
424 luciferase (EPR17790, Abcam) (all 1:1000) and β-tubulin (clone YL1/2, Bio-Rad; 1:5000)
425 antibodies at 4°C overnight, washed three times, and then incubated with 1:5000 Alexafluor-
426 680 or -800 species-specific antibodies for 90 minutes. After three washes, membranes were
427 visualised on a LICOR Odyssey Fc imaging system.

428 **Northern blotting.** Northern blotting was performed as previously described (14). Briefly,
429 A549 cells infected at MOI 3 for 8 hours. Cells were collected, RNA was extracted, then
430 separated by urea-PAGE electrophoresis. RNA was transferred onto nylon membrane
431 overnight then membranes were baked at 68°C for 10 minutes followed by UV crosslinking.
432 Positive control segment 1 and segment 5 transcripts were generated using in vitro
433 transcription assays. Membranes were hybridised overnight with biotinylated probes, then
434 washed, blocked, washed and incubated with HRP-conjugated streptavidin for 30 minutes.
435 Membranes were washed then visualised by exposure to chemiluminescent film.

436 **Minigenome assay.** To measure viral polymerase activity, minigenome reporter assays were
437 performed as described previously (14,41). HEK293T cells were grown to ~80% confluence
438 in 24-well plates, and then medium was replaced with 400 μ l Opti-MEM. Each well was then
439 transfected with 50 ng of PR8 segments 1, 2, 3 and 5 reverse genetics plasmids, or CDLR or
440 CpGH segment 5 plasmids (or no segment 5 plasmid as negative control). In this assay,
441 segment 5 plasmids were titrated, with inputs of 0.005, 0.05, 0.5, 5, 50 or 500 ng, and
442 transfections were performed in technical quadruplicate.

443 **Serial passage.** Wildtype and dinucleotide modified viruses were serially passaged at an MOI
444 of 0.01 for 10 passages in A549 cells and sequenced at passage 10 as previously described
445 (14) with the exception that Seg5 CpGH specific segment 5 primers (amplicons A, B, C and
446 D, **Table 3**) were included in place of the WT PR8 specific segment 5 primers in the pool.
447 Earlier passages were sequenced using set of primers for segment 5 only in 6 overlapping
448 amplicons. These PCRs were performed with the specified primer sets (a, c and e or b, d and
449 f) and Q5 High-Fidelity Polymerase (NEB) according to manufacturer's instructions. Cycling
450 conditions were 98°C for 30 seconds, then 30 cycles of 98°C for 20 seconds, 55°C for 20
451 seconds then 72°C for 30 seconds with a final extension of 72°C for 2 minutes. Amplicons
452 purified using the PureLink PCR purification kit (Invitrogen) and subjected to a second PCR
453 round to add partial Illumina sequences and barcodes using the primers in Table 3. Again,
454 reactions were performed using Q5 High-Fidelity Polymerase (NEB) according to
455 manufacturer's instructions and cycling conditions were 98°C for 30 seconds, then 10 cycles
456 of 98°C for 20 seconds, 55°C for 20 seconds then 72°C for 30 seconds with a final extension
457 of 72°C for 2 minutes. Amplicons were gel purified using the MinElute Gel Extraction kit
458 (Qiagen) and were sent for sequencing using the Amplicon-EZ service (Genewiz). Sequencing
459 data handling and analyses were performed using the Galaxy platform (43). Primer sequences
460 were trimmed from reads using cutadapt and output sequences were joined using fastq-join.
461 Sequences were aligned to the CpGH recoded segments 5 using bowtie2 (44). Variants and
462 coverage levels in the resultant BAM datasets were analysed using iVar variants with tabular
463 outputs.

464 **Slippage PCR.** RNA was extracted from culture supernatants using Viral RNA mini kit
465 (Qiagen) according to manufacturer's instructions. Extracted RNAs were reverse transcribed
466 using SuperScript III reagents (Invitrogen) with the IAV gRNA specific Uni12 primer
467 (AGCAAAAGCAGG) or cRNA/mRNA specific Uni13 primer (AGTAGAAACAAGG) (45)
468 according to manufacturer's instructions. PCRs were performed using specific reaction primer
469 pairs specific to the appropriate parental segment (Table 3) and Q5 High-Fidelity Polymerase
470 (NEB) according to manufacturer's instructions. Cycling conditions were 98°C for 30 seconds,
471 then 30 cycles of 98°C for 20 seconds, 55°C for 20 seconds then 72°C for 30 seconds with a
472 final extension of 72°C for 2 minutes. Amplicons were sent for sequencing using the Amplicon-
473 EZ service (Genewiz) or Sanger sequencing with the reverse primer. Deep amplicon
474 sequencing data handling and analyses were performed using the Galaxy platform (43).
475 Primer sequences were trimmed from reads using cutadapt and output sequences were joined
476 using fastq-join. Sequences were aligned reference genome datasets with 5-15 As in the
477 canonical nucleotide 312-319 region using bowtie2 (44). Coverage levels in the resultant BAM
478 datasets were analysed using Samtools depth. Sanger sequencing traces were visualised
479 using Chromas v2.5.1.

480 **Serial passage.** The virus panel was serially passaged in A549 cells at an MOI of 0.01. Four
481 biological repeats were passaged, with two repeats derived from egg-based virus rescues and
482 two from MDCK-based virus rescues. Viruses were then deep-sequenced after ten passages.
483 For this, RNA was extracted from cell infection supernatants using Qiagen Viral RNA Mini Kit
484 and reverse transcribed using Superscript III (Invitrogen) and primers specific to IAV vRNA
485 (AGCAAAAGCAGG (45)). Whole viral genomes were then amplified in ~400 base fragments
486 with 60 base overlaps. For PCR, primers from alternate fragments were pooled so that non-
487 overlapping amplicons were generated, with four pools generated in total and segment 5

488 primers specific to the virus being amplified (Table S1A). PCR reaction mixes included specific
489 primers at a final concentration of 500 nM each and Q5 High-Fidelity Polymerase. Cycling
490 conditions were 98°C for 30 seconds, then 45 cycles of 98°C for 20 seconds, 55°C for 20
491 seconds, and 72°C for 30 seconds, followed by 72°C final extension for 2 minutes. Multiplexed
492 amplicons were purified using PureLink PCR Purification kit, then DNA was quantified using
493 Qubit dsDNA BR assay kit and pooled in equimolar ratios. Pooled amplicons were sequenced
494 using Genewiz Amplicon-EZ service. Sequencing data was processed and analysed using
495 Galaxy software (43), in which primer sequences were trimmed and then gene fragments were
496 concatenated using PR8 or recoded sequence as the reference genome with Bowtie2 (44).
497 Sequence coverage and variation was analysed using iVar (46).

498 **Mass spectrometry.** To test whether the polyA tract introduced into the CpGH virus resulted
499 in the production of a frame-shifted peptide, ~ 1 x 10⁶ A549 cells were infected at MOI 3 for 8
500 hours in the presence or absence of 10 µM MG132 protease inhibitor. Cells were trypsinised
501 and spun down, then stored immediately at -80°C until processing. A549 cells were
502 resuspended in 250 µL 20 mM Tris-pH 7.5, 200 mM NaCl and 1% (w/v) octylthioglucoside
503 then incubated for 1 hour with gentle agitation. Samples were pelleted using centrifugation for
504 20 minutes at 16000 g and 4 °C, and supernatant containing protein was collected. Protein
505 was acetone precipitated then resuspended in 100 mM triethylammonium bicarbonate (TEAB)
506 buffer containing 0.1% SDS, and the protein concentration was measured. 10 µg protein
507 sample was reduced with 5 mM tris(2-carboxyethyl)phosphine (TCEP) for 1 hour at 60 °C then
508 alkylated with 10 mM methylmethanethiosulfonate (MMTS) for 30 minutes in the dark. Due to
509 multiple lysines being encoded at the putative polymerase slippage site, trypsin treatment was
510 unsuitable, and so proteins were instead digested using sequencing grade gluC (Promega
511 Corporation) added to the solution in a 1:20 mass ratio, and incubated at 37 °C. Cleaved
512 peptides were then labelled with iTRAQ reagents (4-Plex system) according to the
513 manufacturer's instructions (Sciex). iTRAQ labeling reagents were dissolved in ethanol, and
514 then transferred to vials containing tryptic peptides (one per sample). Two hours later the
515 reaction was quenched by adding water 1:1. Labelled peptides were pooled and dried under
516 vacuum. Peptides were then fractionated by basic pH reversed-phase chromatography and
517 fractions were desalted on Stage-Tip columns as previously described (47,48). Peptide
518 fractions were loaded on to an Acclaim PepMap100, C₁₈, 100 Å, 75 µm × 15 cm column using
519 a Dionex UltiMate RSLC nano System (ThermoFisher Scientific, UK). Peptides were analyzed
520 by a micrOTOF-Q II mass spectrometer (Bruker Daltonics, Bremen, Germany) which using
521 data-dependent acquisition. The *m/z* values of tryptic peptides were measured using MS scan
522 (300–2000 *m/z*). Raw spectral data were processed using PEAKS software (49) against
523 aligned reference PR8 genome.

524 **HEK Blue assay.** Type I IFN production was measured using HEK Blue reporter assays. Sub-
525 confluent A549 cells in 24-well plates were infected at MOI 10 for 10 hours. Supernatants were
526 then harvested and UV treated to inactivate virus by exposing to 120 mJ/cm² in a UVP CL-
527 1000 UV crosslinker for 10 minutes. 20 µl UV-treated sample was inoculated onto 4x10⁴ cells/
528 well of HEK-Blue IFN α / β cells (InvivoGen) in 96-well plates, or titrated human recombinant
529 IFN- β as control (5, 50 or 500 pg/ µl). Cells were incubated at 37°C for 24 hours before
530 supernatants were collected and mixed with QuantiBlue reagent (Invivogen). Colour changes,
531 visible after 15-30 minutes and reflective of the amount of IFN present, were measured by
532 reading absorbance at 620 nm.

533 **Statistics.** All experiments were performed in at least biological triplicate unless otherwise
534 stated, and statistical analyses were only performed on data representative of at least three
535 biological repeats. One way ANOVA tests were performed to assess differences across
536 groups under the same experimental conditions using GraphPad Prism 9.

537 **Table 3. Primers used to generate PCR amplicons.**

Primer name	Sequence	Target fragments/ function
pDual_backbone_Fw	GAGTGATTATCTACCCCTGCTTTGCT	Complete segment
pDual_backbone_Rev	GAGTAGCACAATTAAAGAAAAATACCCCTGTTCTACT	Complete segment
T7_Seg5_+sense_Fw	TAATACGACTCACTATAGGGAGCAAAGCAGGGTAGATAATCA	Complete segment
T7_Seg5_+sense_Rev	AGTAGAAAACAAGGGTATTTCTTAATTGT	Complete segment
T7_Seg5_-sense_Fw	AGCAAAAGCAGGGTAGATAATCA	Complete segment
T7_Seg5_-sense_Rev	TAATACGACTCACTATAGGGAGTAGAAAACAAGGGTATTTCTTAA TTGT	Complete segment
Seg5_302-329_Fw	GGAAAGATCCTAAGAAAATGGAGGACC	D
Seg5_598-624_Fw	GGAGTTGAACAATGGTGTGATGGAATTG	A, B
Seg5_755-780_Fw	CAATGATGGATCAAGTGAGAGAGAGC	D, E
Seg5_959-986_Fw	GACTGCTCAAAACAGCCAAGTGTACAG	B, C
Seg5_1256-1283_Fw	GCCAAATCAGCATACAACCTACGTTCTC	E
Seg5_1565-1528_Rev	AGTAGAAAACAAGGGTATTTCTTAAATTGTCGTACTC	A, B, C, D, E
Seg5_1283-1256_Rev	GAGAACGTAGGGTGTGCTGATTGGC	E
Seg5_986-959_Rev	CTGTACACTGGCTGTGTTGAAGCAGTC	B, C
Seg5_780-755_Rev	GCTCTCTCACTTGATCCATATTG	D, E
Seg5_624-598_Rev	CAATTCCATACCATTGTTCAACTCC	A, B
Seg5_329-302_Rev	GGTCCTCCAGTTCTTAGGATCTTCC	D
Seg5_CpGH amplicon A	CAAAAGCAGGGTAGATAATC	Seg5 serial passage
Seg5_CpGH amplicon A	TCGTCAACCATTGTTCGCTTG	Seg5 serial passage
Seg5_CpGH amplicon B	GCGCGAACTAATACCTTACG	Seg5 serial passage
Seg5_CpGH amplicon B	TTACGGCTCTCTCAACTTG	Seg5 serial passage
Seg5_CpGH amplicon C	AAAATTCAAACCGCGGCGC	Seg5 serial passage
Seg5_CpGH amplicon C	TTTGAAGCTATTGAACGCC	Seg5 serial passage
Seg5_CpGH amplicon D	CATAAAAGGAACGAAAGTCC	Seg5 serial passage
Seg5_CpGH amplicon D	GTACTCCTCTGCATTGTC	Seg5 serial passage
IIIuminaTag1F	ACACTCTTCCCTACACGACGCTTCCGATCTAACACATCGTAAA ACGACGGCCAGT	Deep sequencing
IIIuminaTag3F	ACACTCTTCCCTACACGACGCTTCCGATCTCCGTATATGTAAA ACGACGGCCAGT	Deep sequencing
IIIuminaTag5F	ACACTCTTCCCTACACGACGCTTCCGATCTGAGATAACGTAAA ACGACGGCCAGT	Deep sequencing
IIIuminaTag8F	ACACTCTTCCCTACACGACGCTTCCGATCTTGCTCCGAGTAAA ACGACGGCCAGT	Deep sequencing
IIIuminaTagR	GACTGGAGTTCAGACGTGTGCTTCCGATCTCAGGAAACAGCTAT GAC	Deep sequencing
Seg5_PR8_F	GTAAAACGACGGCCAGTTCTGCTTTGACGAAAGGAG	Slippage sequencing
Seg5_PR8_R	CAGGAAACAGCTATGACAACCTTGATCAGAGAGCAC	Slippage sequencing
Seg5_CDLR_F	GTAAAACGACGGCCAGTTCTGCTTTGACGAAAGAAG	Slippage sequencing
Seg5_CDLR_R	CAGGAAACAGCTATGACAGCCTGATCAGAGAGCAC	Slippage sequencing

538

539 **ACKNOWLEDGEMENTS**

540 PD, EG and CPS are supported by a BBSRC Institute Strategic Programme grants
541 (BB/P013740/1 and BB/X010937/1). BHT was supported by a Microbiology Society Harry
542 Smith Vacation studentship (GA002550), Wellcome 766 Trust ISSF3 funding and a Carnegie
543 Trust Undergraduate Vacation Scholarship (VAC011866). PD is supported by BBSRC grant
544 no BB/S00114X/1 and the European Union's Horizon 2020 research and innovation
545 programme under grant agreement no. 727922 (DELTA-FLU). PS is supported by Wellcome
546 Investigator Award 769 (WT103767MA). EG, CPS and BT are also supported by a Wellcome
547 Trust/ Royal Society Sir Henry Dale Fellowship 773 (211222_Z_18_Z). The funders had no
548 role in study design, data collection and analysis, decision to publish, or preparation of the
549 manuscript. For the purpose of open access, the author has applied a CC 775 BY public
550 copyright licence to any Author Accepted Manuscript version arising from this submission.

551

552 **REFERENCES**

- 553 1. Greenbaum, B.D., Levine, A.J., Bhanot, G. and Rabadan, R. (2008) Patterns of evolution and
554 host gene mimicry in influenza and other RNA viruses. *PLoS pathogens*, **4**, e1000079-
555 e1000079.
- 556 2. Takata, M.A., Gonçalves-Carneiro, D., Zang, T.M., Soll, S.J., York, A., Blanco-Melo, D. and
557 Bieniasz, P.D. (2017) CG dinucleotide suppression enables antiviral defence targeting non-
558 self RNA. *Nature*, **550**, 124-127.
- 559 3. Simmonds, P., Xia, W., Baillie, J.K. and McKinnon, K. (2013) Modelling mutational and
560 selection pressures on dinucleotides in eukaryotic phyla –selection against CpG and UpA in
561 cytoplasmically expressed RNA and in RNA viruses. *BMC Genomics*, **14**.
- 562 4. Bird, A.P. (1980) DNA methylation and the frequency of CpG in animal DNA. *Nucleic Acids
563 Research*, **8**, 1499-1504.
- 564 5. Cooper, D.N. and Krawczak, M. (1989) Cytosine methylation and the fate of CpG
565 dinucleotides in vertebrate genomes. *Human Genetics*, **83**, 181-188.
- 566 6. Antzin-Anduetza, I., Mahiet, C., Granger, L.A., Odendall, C. and Swanson, C.M. (2017)
567 Increasing the CpG dinucleotide abundance in the HIV-1 genomic RNA inhibits viral
568 replication. *Retrovirology*, **14**, 49.
- 569 7. Atkinson, N., Witteveldt, J., Evans, D. and Simmonds, P. (2014) The influence of CpG and UpA
570 dinucleotide frequencies on RNA virus replication and characterization of the innate cellular
571 pathways underlying virus attenuation and enhanced replication. *Nucleic Acids Research*, **42**,
572 4527-4545.
- 573 8. Fros, J.J., Dietrich, I., Alshaikhahmed, K., Passchier, T.C., Evans, D.J. and Simmonds, P. (2017)
574 CpG and UpA dinucleotides in both coding and non-coding regions of echovirus 7 inhibit
575 replication initiation post-entry. *Elife*, **6**.
- 576 9. Simmonds, P., Tulloch, F., Evans, D.J. and Ryan, M.D. (2015) Attenuation of dengue (and
577 other RNA viruses) with codon pair recoding can be explained by increased CpG/UpA
578 dinucleotide frequencies. *Proceedings of the National Academy of Sciences*, **112**, E3633.
- 579 10. Tulloch, F., Atkinson, N.J., Evans, D.J., Ryan, M.D. and Simmonds, P. (2014) RNA virus
580 attenuation by codon pair deoptimisation is an artefact of increases in CpG/UpA
581 dinucleotide frequencies. *Elife*, **3**, e04531.
- 582 11. Digard, P., Lee, H.M., Sharp, C., Grey, F. and Gaunt, E. (2020) Intra-genome variability in the
583 dinucleotide composition of SARS-CoV-2. *Virus Evol*, **6**, veaa057.
- 584 12. Gaunt, E., Wise, H.M., Zhang, H., Lee, L.N., Atkinson, N.J., Nicol, M.Q., Highton, A.J.,
585 Klenerman, P., Beard, P.M., Dutia, B.M. *et al.* (2016) Elevation of CpG frequencies in
586 influenza A genome attenuates pathogenicity but enhances host response to infection. *Elife*,
587 **5**, e12735-e12735.
- 588 13. Gaunt, E.R. and Digard, P. (2021) Compositional biases in RNA viruses: Causes, consequences
589 and applications. *WIREs RNA*, e1679.
- 590 14. Sharp, C.P., Thompson, B.H., Nash, T.J., Diebold, O., Pinto, R.M., Thorley, L., Lin, Y.-T., Sives,
591 S., Wise, H., Clohisey Hendry, S. *et al.* (2023) CpG dinucleotide enrichment in the influenza A
592 virus genome as a live attenuated vaccine development strategy. *PLOS Pathogens*, **19**,
593 e1011357.
- 594 15. Svitkin, Y.V., Cammack, N., Minor, P.D. and Almond, J.W. (1990) Translation deficiency of the
595 sabin type 3 poliovirus genome: Association with an attenuating mutation C472 → U.
596 *Virology*, **175**, 103-109.
- 597 16. Eisfeld, A.J., Neumann, G. and Kawaoka, Y. (2015) At the centre: influenza A virus
598 ribonucleoproteins. *Nature reviews. Microbiology*, **13**, 28-41.
- 599 17. Te Velthuis, A.J. and Fodor, E. (2016) Influenza virus RNA polymerase: insights into the
600 mechanisms of viral RNA synthesis. *Nature reviews. Microbiology*, **14**, 479-493.

601 18. Poon, L.L.M., Pritlove, D.C., Fodor, E. and Brownlee, G.G. (1999) Direct Evidence that the
602 Poly(A) Tail of Influenza A Virus mRNA Is Synthesized by Reiterative Copying of a U Track in
603 the Virion RNA Template. **73**, 3473-3476.

604 19. García-Sastre, A., Egorov, A., Matassov, D., Brandt, S., Levy, D.E., Durbin, J.E., Palese, P. and
605 Muster, T. (1998) Influenza A Virus Lacking the NS1 Gene Replicates in Interferon-Deficient
606 Systems. *Virology*, **252**, 324-330.

607 20. Phan, T., Fay, E.J., Lee, Z., Aron, S., Hu, W.-S. and Langlois, R.A. (2021) Segment-Specific
608 Kinetics of mRNA, cRNA, and vRNA Accumulation during Influenza Virus Infection. **95**,
609 e02102-02120.

610 21. Michalak, P., Soszynska-Jozwiak, M., Biala, E., Moss, W.N., Kesy, J., Szutkowska, B.,
611 Lenartowicz, E., Kierzek, R. and Kierzek, E. (2019) Secondary structure of the segment 5
612 genomic RNA of influenza A virus and its application for designing antisense
613 oligonucleotides. *Sci Rep*, **9**, 3801.

614 22. Luo, X., Wang, X., Gao, Y., Zhu, J., Liu, S., Gao, G. and Gao, P. (2020) Molecular Mechanism of
615 RNA Recognition by Zinc-Finger Antiviral Protein. *Cell Reports*, **30**, 46-52.e44.

616 23. Li, M.M.H., Lau, Z., Cheung, P., Aguilar, E.G., Schneider, W.M., Bozzacco, L., Molina, H.,
617 Buehler, E., Takaoka, A., Rice, C.M. *et al.* (2017) TRIM25 enhances the antiviral action of zinc-
618 finger antiviral protein (ZAP). *PLoS Pathogens*, **13**, e1006145.

619 24. Zheng, X., Wang, X., Tu, F., Wang, Q., Fan, Z. and Gao, G. (2017) TRIM25 is required for the
620 antiviral activity of zinc finger antiviral protein. *Journal of Virology*, **91**, e00088-00017.

621 25. Choudhury, N.R., Heikel, G., Trubitsyna, M., Kubik, P., Nowak, J.S., Webb, S., Granneman, S.,
622 Spanos, C., Rappaport, J., Castello, A. *et al.* (2017) RNA-binding activity of TRIM25 is
623 mediated by its PRY/SPRY domain and is required for ubiquitination. *BMC Biology*, **15**, 105.

624 26. Choudhury, N.R., Trus, I., Heikel, G., Wolczyk, M., Szymanski, J., Bolembach, A.,
625 Dos Santos Pinto, R.M., Smith, N., Trubitsyna, M., Gaunt, E. *et al.* (2022) TRIM25 inhibits
626 influenza A virus infection, destabilizes viral mRNA, but is redundant for activating the RIG-I
627 pathway. *Nucleic Acids Research*, **50**, 7097-7114.

628 27. Arevalo, C.P., Bolton, M.J., Le Sage, V., Ye, N., Furey, C., Muramatsu, H., Alameh, M.-G.,
629 Pardi, N., Drapeau, E.M., Parkhouse, K. *et al.* (2022) A multivalent nucleoside-modified
630 mRNA vaccine against all known influenza virus subtypes. **378**, 899-904.

631 28. Singanayagam, A., Zambon, M., Lalvani, A. and Barclay, W. (2018) Urgent challenges in
632 implementing live attenuated influenza vaccine. *The Lancet Infectious Diseases*, **18**, e25-e32.

633 29. Chen, J.-R., Liu, Y.-M., Tseng, Y.-C. and Ma, C. (2020) Better influenza vaccines: an industry
634 perspective. *Journal of Biomedical Science*, **27**.

635 30. Jang, Y.H. and Seong, B.-L. (2012) Principles underlying rational design of live attenuated
636 influenza vaccines. *Clin Exp Vaccine Res*, **1**, 35-49.

637 31. Kassianos, G., MacDonald, P., Aloysius, I. and Reynolds, A. (2020) Implementation of the
638 United Kingdom's childhood influenza national vaccination programme: A review of clinical
639 impact and lessons learned over six influenza seasons. *Vaccine*, **38**, 5747-5758.

640 32. Maassab, H.F. and DeBorde, D.C. (1985) Development and characterization of cold-adapted
641 viruses for use as live virus vaccines. *Vaccine*, **3**, 355-369.

642 33. Moratorio, G., Henningsson, R., Barbezange, C., Carrau, L., Bordería, A.V., Blanc, H.,
643 Beaucourt, S., Poirier, E.Z., Vallet, T., Boussier, J. *et al.* (2017) Attenuation of RNA viruses by
644 redirecting their evolution in sequence space. *Nature Microbiology*, **2**, 17088.

645 34. Mueller, S., Coleman, J.R., Papamichail, D., Ward, C.B., Nimnuan, A., Futcher, B., Skiena, S.
646 and Wimmer, E. (2010) Live attenuated influenza virus vaccines by computer-aided rational
647 design. *Nature Biotechnology*, **28**, 723-726.

648 35. Yang, C., Skiena, S., Futcher, B., Mueller, S. and Wimmer, E. (2013) Deliberate reduction of
649 hemagglutinin and neuraminidase expression of influenza virus leads to an ultraprotective
650 live vaccine in mice. *Proc Natl Acad Sci U S A*, **110**, 9481-9486.

651 36. Corbett, K.S., Edwards, D.K., Leist, S.R., Abiona, O.M., Boyoglu-Barnum, S., Gillespie, R.A.,
652 Himansu, S., Schäfer, A., Ziwawo, C.T., DiPiazza, A.T. *et al.* (2020) SARS-CoV-2 mRNA vaccine
653 design enabled by prototype pathogen preparedness. *Nature*, **586**, 567-571.

654 37. Shaw, A.E., Rihn, S.J., Mollentze, N., Wickenhagen, A., Stewart, D.G., Orton, R.J., Kuchi, S.,
655 Bakshi, S., Collados, M.R., Turnbull, M.L. *et al.* (2021) The antiviral state has shaped the CpG
656 composition of the vertebrate interferome to avoid self-targeting. *PLoS biology*, **19**,
657 e3001352.

658 38. Ficarelli, M., Wilson, H., Pedro Galão, R., Mazzon, M., Antzin-Anduetza, I., Marsh, M., Neil,
659 S.J.D. and Swanson, C.M. (2019) KHNYN is essential for the zinc finger antiviral protein (ZAP)
660 to restrict HIV-1 containing clustered CpG dinucleotides. *Elife*, **8**, e46767.

661 39. de Wit, E., Spronken, M.I., Bestebroer, T.M., Rimmelzwaan, G.F., Osterhaus, A.D. and
662 Fouchier, R.A. (2004) Efficient generation and growth of influenza virus A/PR/8/34 from
663 eight cDNA fragments. *Virus Res*, **103**, 155-161.

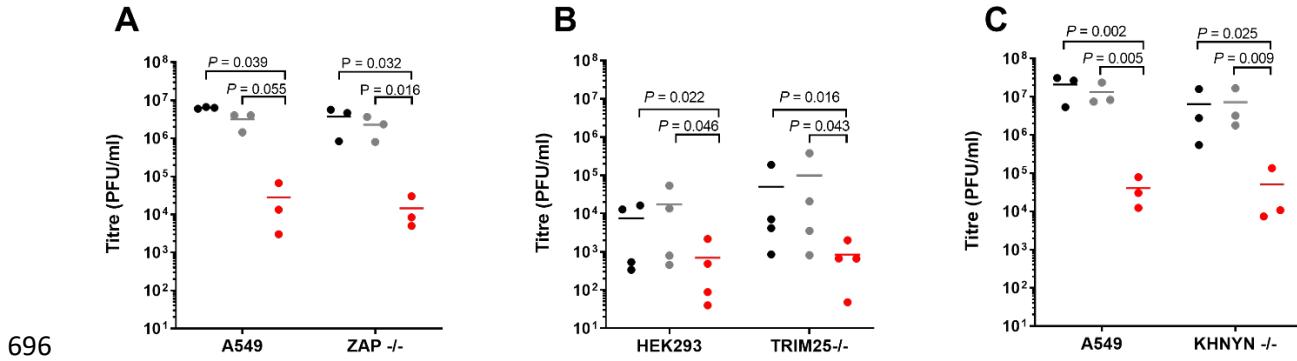
664 40. Hutchinson E. C., Curran M. D., Read E. K., Gog J. R. and Digard, P. (2008) Mutational Analysis
665 of cis-Acting RNA Signals in Segment 7 of Influenza A Virus. *Journal of Virology*, **82**, 11869-
666 11879.

667 41. Wise HM., Foeglein, A., Sun, J., Dalton Rosa, M., Patel, S., Howard, W., Anderson E. C.,
668 Barclay W. S. and Digard, P. (2009) A Complicated Message: Identification of a Novel PB1-
669 Related Protein Translated from Influenza A Virus Segment 2 mRNA. *Journal of Virology*, **83**,
670 8021-8031.

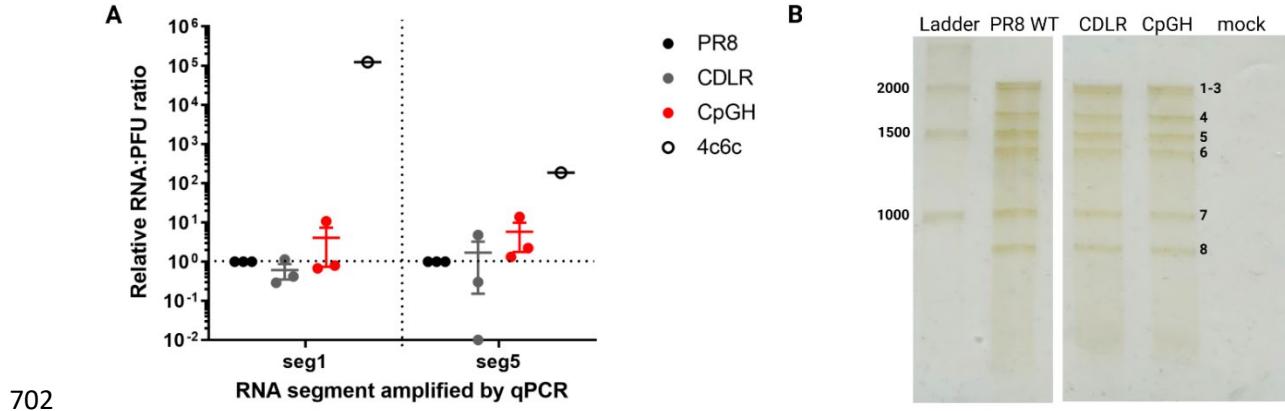
671 42. Carrasco, M., Amorim, M.J. and Digard, P. (2004) Lipid raft-dependent targeting of the
672 influenza A virus nucleoprotein to the apical plasma membrane. *Traffic (Copenhagen, Denmark)*, **5**, 979-992.

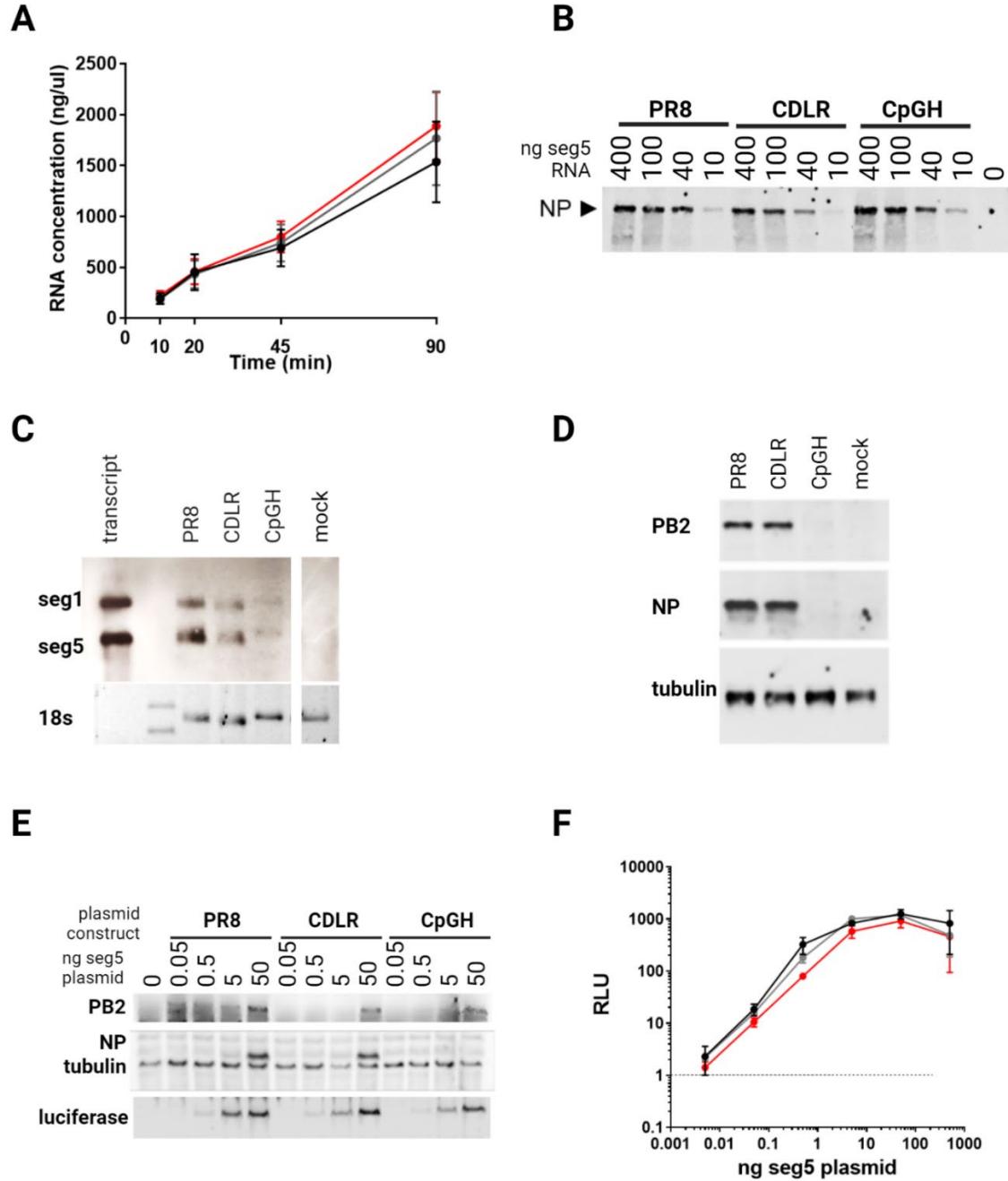
674 43. Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Čech, M., Chilton, J., Clements,
675 D., Coraor, N., Grüning, B.A. *et al.* (2018) The Galaxy platform for accessible, reproducible
676 and collaborative biomedical analyses: 2018 update. *Nucleic Acids Research*, **46**, W537-
677 W544.

678 44. Langmead, B., Trapnell, C., Pop, M. and Salzberg, S.L. (2009) Ultrafast and memory-efficient
679 alignment of short DNA sequences to the human genome. *Genome Biology*, **10**, R25.


680 45. Hoffmann, E., Stech, J., Guan, Y., Webster, R.G. and Perez, D.R. (2001) Universal primer set
681 for the full-length amplification of all influenza A viruses. *Arch Virol*, **146**, 2275-2289.

682 46. Grubaugh, N.D., Gangavarapu, K., Quick, J., Matteson, N.L., De Jesus, J.G., Main, B.J., Tan,
683 A.L., Paul, L.M., Brackney, D.E., Grewal, S. *et al.* (2019) An amplicon-based sequencing
684 framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar.
685 *Genome Biology*, **20**, 8.


686 47. Rappaport, J., Mann, M. and Ishihama, Y. (2007) Protocol for micro-purification, enrichment,
687 pre-fractionation and storage of peptides for proteomics using StageTips. *Nature Protocols*,
688 **2**, 1896-1906.


689 48. Withatanung, P., Kurian, D., Tangjittipokin, W., Plengvidhya, N., Titball, R.W., Korbsrisate, S.
690 and Stevens, J.M. (2019) Quantitative Proteomics Reveals Differences in the Response of
691 Neutrophils Isolated from Healthy or Diabetic Subjects to Infection with Capsule-Variant
692 Burkholderia thailandensis. *Journal of Proteome Research*, **18**, 2848-2858.

693 49. Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G.A. and
694 Ma, B. (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and
695 accurate peptide identification. *Molecular & cellular proteomics : MCP*, **11**, M111.010587.

697 **Figure 1. CpG enrichment in segment 5 of the IAV genome results in ZAP-independent**
698 **attenuation.** PR8 WT, CDLR control and CpGH viruses were used to infect permissive cells
699 and counterpart ZAP-pathway knockout cells, and infectious virus production was measured.
700 **A.** WT A549 cell or paired ZAP-/- cell infections. **B.** WT HEK293 cell or paired TRIM25-/- cell
701 infections. **C.** WT A549 or paired KHNYN-/- cell infections.

709
710
Figure 3. CpG enrichment in segment 5 of the IAV genome reduces NP transcript and
711 **protein abundance but does not impair IAV polymerase activity.** A. To assay transcription

712 efficiency, in vitro transcription assays were performed using the segment 5 plasmids, with

713 RNA quantified at 10, 20, 45 and 90 minutes. B. To assay combined transcription and

714 translation in a cell-free system, limiting dilutions of segment 5 plasmids were used in

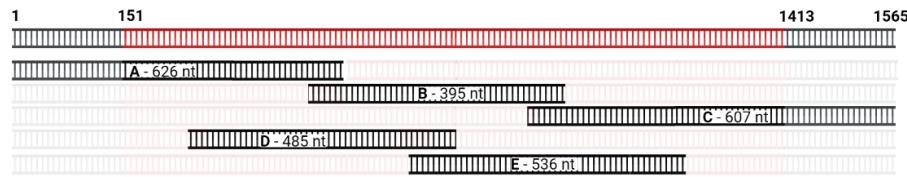
715 combined transcription and translation assays, and NP protein was detected by western

716 blotting. C-D. A549 cells were infected at high MOI for a single viral replication cycle, then

717 RNA abundance was examined by Northern blotting (C) and protein abundance by western

718 blotting (D). E-F. Minireplicon assays were performed using limiting dilutions of the segment

719 5-encoding plasmid for PR8 WT, CDLR and CpGH as a combined measure of transcription

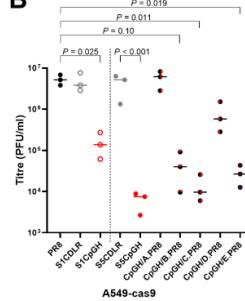

720 and translation in HEK293T cells. E. Cell lysates from the minireplicon assays were probed

721 for viral (PB2 and NP) and reporter (luciferase) proteins by western blotting. F. Luciferase

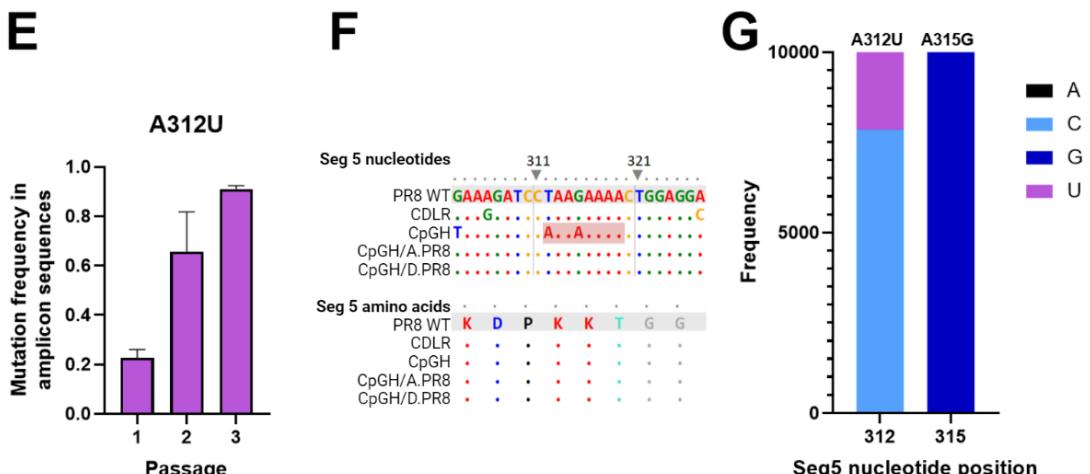
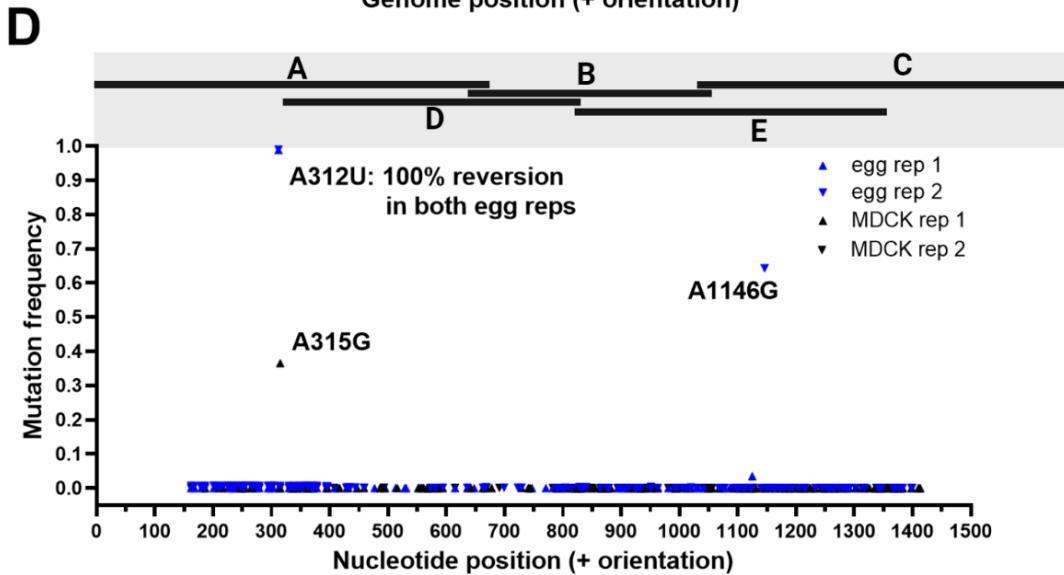
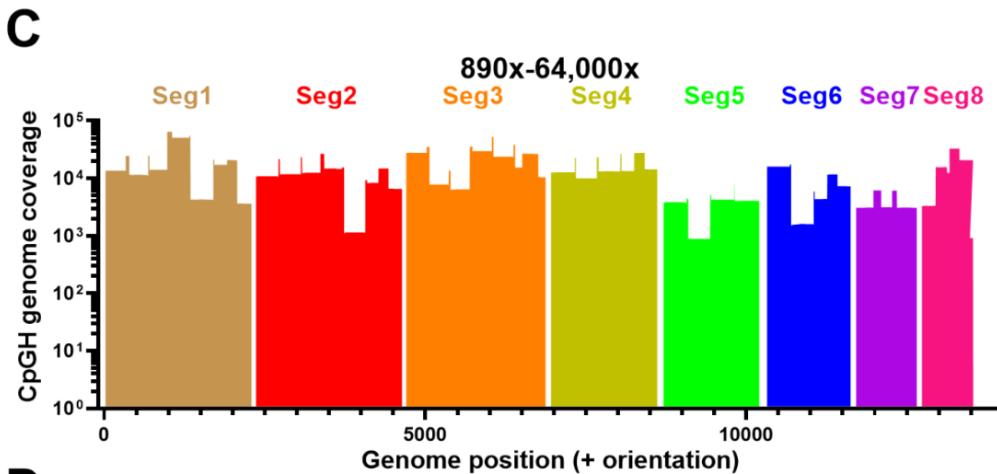
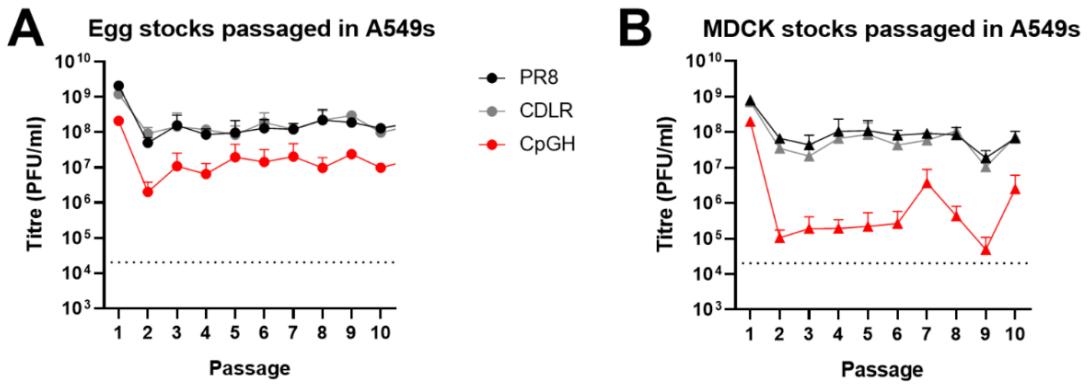
722 signal was measured by fluorimetry.

723

A



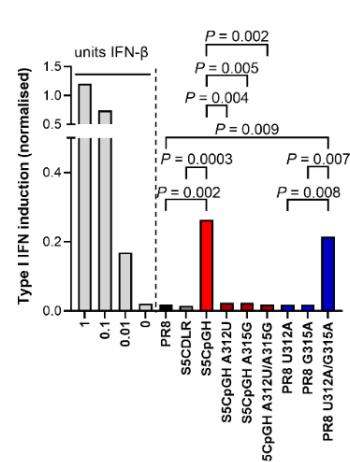
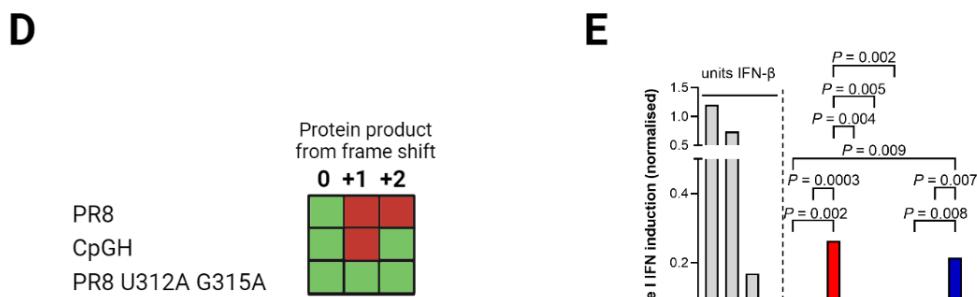
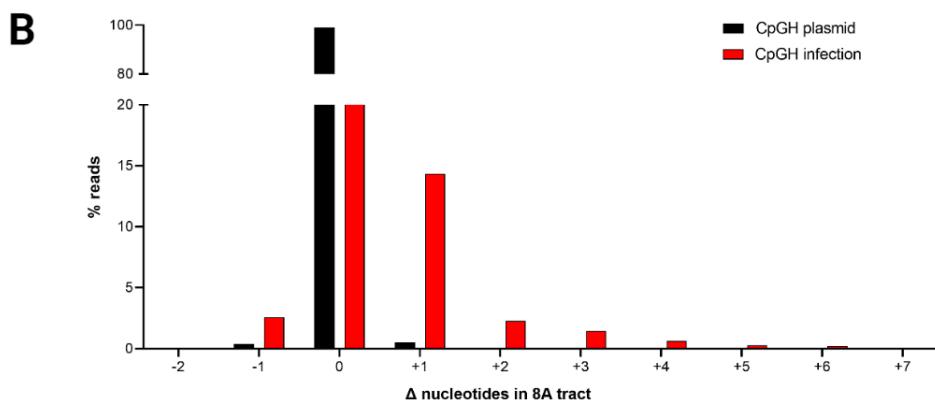
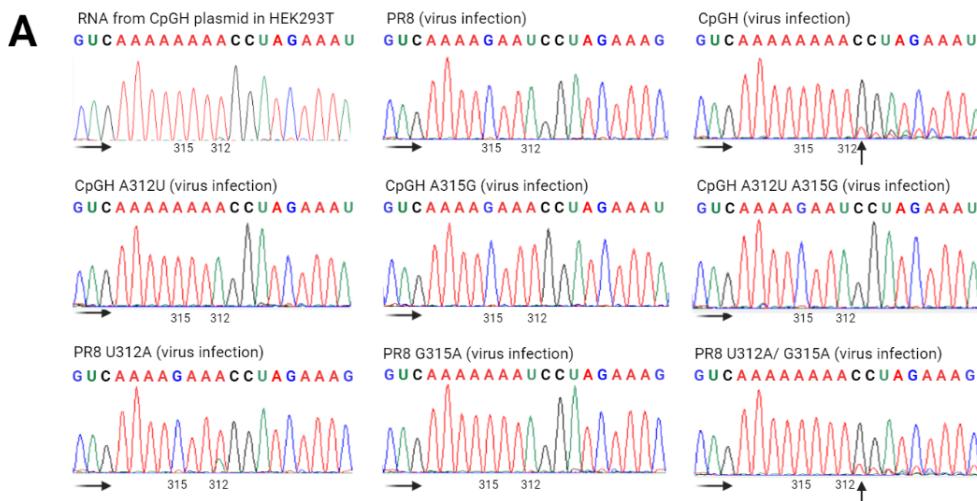
724





725 **Figure 4. Tiled reversion of the CpGH sequence to wildtype sequence identifies a short**
726 **region that when restored to wildtype sequence, reconstitutes wildtype virus fitness.**

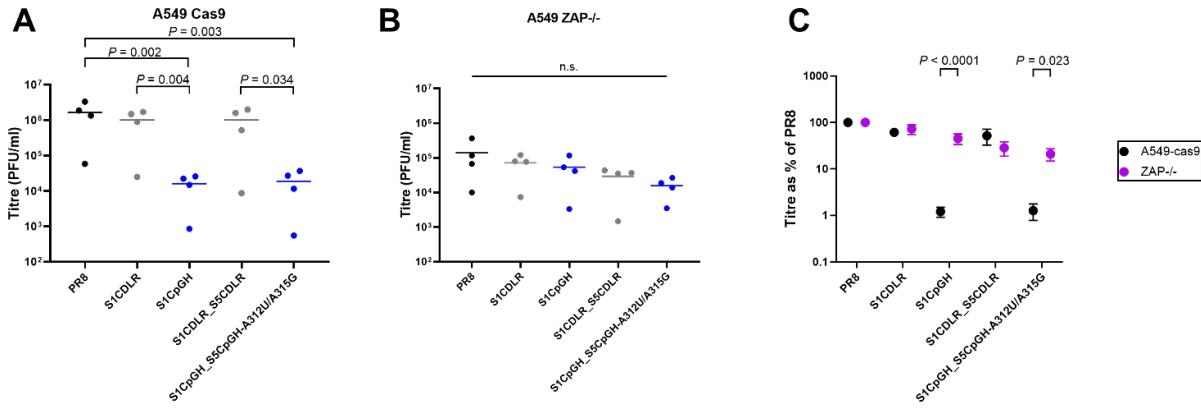
727 **A.** Schematic illustrating reversion of the CpGH sequence in segment 5, achieved using 5
728 fragments. **B.** Titres of tiled-reversion viruses in A549 cells.

B

729

730 **Figure 5. Serial passage of segment 5 CpGH IAV identifies a reversion mutation within**
731 **a region mutated to compensate for base frequency changes that falls within a 7-**
732 **nucleotide stretch of adenosines.** Virus panel generated from either egg (**A**) or MDCK (**B**)
733 rescue was serially passaged ten times at low MOI in A549 cells, with virus titred after each
734 passage, for four biological repeats (two with starting inoculum of egg rescue and two of
735 MDCK). At passage ten, virus was deep sequenced. **C.** Read depth from deep sequencing of
736 CpGH virus. **D.** Mutations occurring exclusively in the CpGH virus were plotted. None of these
737 mutations occurred at CpG sites. **E.** Egg rescue derived serially passaged viruses were
738 sequenced after 1, 2 and 3 passages; for the CpGH virus, mutation frequency at position 312
739 is shown. **F.** Reversion mutations at positions 312 and 315 corresponded with an 8-adenosine
740 tract introduced exclusively into the CpGH virus. **G.** Variability of segment 5 nucleotide
741 positions in nature (10,000 human sequence isolates analysed over 5 years between 2018-
742 2022).



743

744 **Figure 6. Single nucleotide reversions at positions 312 and 315 of the CpGH virus**
745 **restored WT fitness.** The CpGH virus ('S5CpGH') incorporated an 8A tract in the coding
746 sequence. This was removed by reversion to WT sequence at these nucleotide positions
747 through mutations A312U and/or A315G. Conversely, the polyA was introduced into WT PR8
748 via U312A and/or G315A mutations. **A.** Titre of virus panel grown at low MOI in A549 cells. **B.**
749 To determine whether ZAP sensing was apparent for any mutants, the virus panel was grown
750 in ZAP-/- cells and titres were normalised to PR8 WT titres. **C.** A549 cells were infected with
751 CpGH A312U A315G (no 8A) or PR8 U312A G315A (8A present) at MOI 3 for 10 hours, then
752 RNA was electrophoresed and probed for IAV segments 1 and 5 (positive orientation).
753 Ribosomal RNA (rRNA) serves as loading control.

755 **Figure 7. Introduction of the 8A tract into IAV segment 5 resulted in viral polymerase**
756 **slippage, aberrant protein production, and triggered type I IFN. A.** WT PR8, CpGH, and
757 cognate viruses with switched nucleotides at positions 312 and 315 were used to infect A549
758 cells at MOI 3 for 8 hours, after which RNA was extracted, amplified and sequenced.
759 Chromatogram traces were examined for evidence of multiple RNA species generated
760 downstream from the 8A sequence of CpGH virus, encoded at nucleotide positions 312-319.
761 Faded black arrows indicate direction of sequencing read. Solid black arrow indicate sites of
762 polymerase slippage. *Top left*: CpGH plasmid was transfected into HEK293T cells, and +RNA
763 was produced from a pol.II promoter. *Top middle*: PR8 WT virus infection. *Top right*: CpGH
764 virus infection. *Middle left*: CpGH A312U virus (7A tract) infection. *Middle middle*: CpGH
765 A315G virus (4A tract) infection. *Middle right*: CpGH A312U A 315G (4A tract) virus infection.
766 *Bottom left*: PR8 U312A virus (4A tract) infection. *Bottom middle*: PR8 virus G315A (7A tract)
767 infection. *Bottom right*: PR8 U312A G315A virus (8A tract) infection. **B.** CpGH plasmids and
768 infections were deep sequenced and percentage of sequence reads with changes in the length
769 of the 8A tract were calculated. **C.** Top panel – nucleotide alignment of PR8, PR8 G312A
770 U315A, and CpGH sequence surrounding the polyA site, with alignments to show the
771 nucleotide sequence resulting from +1, +2, -1 and -2 polymerase slippage events. The bottom
772 panel shows the resulting peptide species arising from these transcripts. **D.** Presence/
773 absence of peptide species matrix. Due to differences in m/z ratios for the peptides unique to
774 +1 and +2 frameshifted translations, relative abundance cannot be compared across peptide
775 species. The -1 frameshift followed by gluC digestion resulted in predicted peptides that were
776 not of sufficient length for detection by mass spectrometry. No peptides predicted to have
777 arisen from the -2 frameshift were detected. **E.** Type I interferon competent A549 cells were
778 infected with virus panel for 10 hours at MOI 3, after which time supernatant was harvested,
779 UV treated to inactivate infectious virus and used to treat HEK Blue cells. HEK Blue cells were
780 also treated with IFN standard (light grey bars). IFN induction in these reporter cells was
781 measured by HEK Blue assay. Means of 3 biological repeats are shown.

782
783 **Figure 8. Adding CpGs to segment 5 of a seg1-CpGH virus does not augment the**
784 **attenuation phenotype.** Our previously published seg1-CpGH virus, known to be ZAP-
785 sensitive, was combined with segment 5 mutants to engineer 6:2 virus rescues with segments
786 1 and 5 both recoded. **A.** Virus panel was used to infect A549 cells expressing cas9. **B.** Virus
787 panel was used to infect ZAP-/- cells. **C.** Titres were normalised to WT PR8 to assess recovery
788 of fitness in ZAP-/- cells.