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MANUSCRIPT:

Host-microbiota interactions contributing to the heter ogeneous tumor

microenvironment in colorectal cancer

ABSTRACT:

Background: Colorectal cancer (CRC) is a highly heterogeneous cancer with four
consensus molecular subtypes (CMSs) characterized by distinct tumor
microenvironment (TME). We aimed to depict the characteristics of host-microbiota
interactions and their contributions to TME in each CMS.

Methods: Host transcriptome and intratumoral microbiome profiles of 594 CRC
samples were derived from RNA-Seq data from TCGA. Differential host genes and
microbes among CM Ss were identified. Immune microenvironments were assessed by
CIBERSORTx and ESTIMATE and microbial co-abundance analyses were performed
by FastSpar. Host-microbiota associations were evaluated by LASSO penalized
regression in each CM S,

Results: Along with distinct host gene signatures, including ferroptosis-related genes
and immune microenvironments, 293, 153, 66 and 109 intratumoral differential
microbial genera were identified within each of the four CMSs, respectively.
Furthermore, the host-microbiota interactions contributed to distinct TME in each
CMS, represented by 829, 1,270, 634 and 1,882 robust gene-microbe associations,
respectively. The TME in CMS1 was featured with inflammation-related HSF1
activation and interactions between genes of endothelin pathway and Flammeovirga.

Integrins-related genes positively correlated with Sutterella in CMS2 while CMS3
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displayed microbial associations with biosynthetic and metabolic pathways. Genes in
collagens biosynthesis positively correlated with  Sutterella, contributing to
homeostasis disturbance in CMS4. Besides, ferroptosis dysregulation was more
remarkable in immune-high subtypes, which might partly result from the colonization
of tissue microbes.

Conclusions: We systematically profiled the landscapes of TME, of each CMS in
CRC, encompassing host genes, intratumoral microbiome and their interactions,
which could illuminate novel mechanisms for the heterogeneity in CRC and potential

therapeutic targets.
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I ntroduction

Colorectal cancer(CRC) is one of the most common cancers worldwide with high
incidence and mortality, reaching 1.9 million new cases and 935,000 deaths
annually(1). CRC is highly heterogeneous at the molecular level due to genetic,
epigenetic, and tumor microenvironment(TME) alterations, which result in variable
clinical outcomes and treatment responses(2, 3). TME not only consists of
tumor-infiltrating cells such as tumor-associated macrophages(TAMS), B cells, and T
cells, but the whole surrounding environment of the tumor, including vasculatures,
extracellular matrixes(ECMs), and other constituents, such as microbiota(4). To better
siratify CRC patients, the international consortium of colorectal cancer
subtyping(CRCSC) defined a system based on tumor transcriptome and characterized
four consensus molecular subtypes(CMS1-4) with molecular and clinical differences:
CMS1(MSI), CMS2(canonical), CMS3(metabolic) and CM S4(mesenchymal)(5).
Besides, different clinicopathologic properties were observed among CMSs, for
example, the HSPQO inhibition could effectively alleviate the chemoresistance for
CM$A patients(6). Gene expression profiles of CMS2 were largely influenced by
DNA copy number gains in malignant cells, whereas the profiles of CMS1 and CM$4
were driven by the infiltrated non-malignant cells in the TME(7). Moreover, the
state-of-the-art approach, single-cell transcriptomics elucidated the cellular diversity
within the TME across CMSs, highlighting the diverse phenotypes of

cancer-associated fibroblasts(CAFs) and TAMS(8).
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In recent years, emerging evidence has highlighted the vital roles of the
microbiome in detecting CRC and mediating the potential carcinogenesis of CRC,
which was probably through the production of microbial metabolites that interacted
with the host-immune system(9-14). Pioneering researches, including ours, have
identified adenoma-specific bacteria biomarkers for early detection of CRC and
bacteria-fungi interactions promoting the development of CRC based on fecal
microbiome sequencing(15-19). The remarkable work by Poore et al. demonstrated
the high rates of microbial sequencing reads in tumor tissues derived from host
RNA-Seq data and identified unique microbia signatures within and between most
major types of cancer(20), which paved the way for investigating the roles of
intratumoral microbes in cancer pathogenesis. Since microbiota is now regarded as a
crucial component of TME, recent efforts have revealed CMS associated microbes
and potential mechanisms. For example, CM$4 patients with a high abundance of
Fusobacterium nucleatum or Fusobacteriales in tumor tissues were associated with
worse clinical outcomes and severe inflammatory responses(21) while CMS1 patients
were related to Parvimonasmicra(22). Besides, both Purcell et al and Visnovska et al
described the microbial patterns in different CM Ss based on 16S rRNA sequencing(23,
24). However, limited studies explored the whole landscape of gut microbiota and
their interplays with host genes and how they contribute to the heterogeneity of CM Ss

remain unresolved.

Therefore, this study aimed to characterize the global features of TME focusing on

host-microbiota interactions in CMSs and their potential implications in CRC
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pathogenesis. In this study, we collected the host gene expression profile and
corresponding gut microbial abundance matrix of the TCGA-CRC samples,
identifying CMS-specific host genetic and microbia signatures. Further,
CM S-specific and shared host-microbiota interactions were profiled in each CMS,
contributing to the understanding of the TME heterogeneity of CMSs and potential
strategies for personalized intervention.

Methods

1. ResourceAvailability

1.1 Materials availability

This study did not generate new unique reagents.

1.2 Data and code availability

All the data for this manuscript are publicly available. The pre-processed host
MRNA expression profile data in this study have been deposited in the TCGA
database. The pre-processed microbial abundance profile data and corresponding
metadata are available at http://ftp.microbio.me/pub/cancer_microbiome analysis/.
The survival phenotypic data of TCGA-COAD and TCGA-READ samples are
accessible through the SAGE Synapse platform under accession syn7343873. All
programming scripts can be found a our GitHub repository link:

https://github.com/FragmentsLi/CM S.

2. Study design and data preprocessing
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Since this study focused on the heterogeneity of different CRC subtypes, we began
with 618 CRC samples with matched microbia abundance and host gene expression
profiles. After excluding samples without survival information or with an overall

survival(0S) time of 0, 594 samples remained.

In addition, we removed 12 genera with raw microbial abundance equal to O in all
CRC samples from the normalized microbial profiles to avoid false positives. ComBat
was applied to remove batch effects of sequencing platforms in host gene expression
data(25). Principal component analysis(PCA) was performed to visualize the sample

distribution before and after batch correction(See Supplementary Figure 1).

3. Host gene expression char acterization analysis

3.1 CMSclassification

The CMS classification labels of CRC samples were obtained from the SAGE
Synapse platform(Accession: syn2623706)(5). Samples without labels were classified
using the random forest(RF) classifier in R package “CMSclassifier” (v 1.0.0)(5)

based on the preprocessed host gene expression data.

3.2 Immunecdl infiltration analysis

CIBERSORT (v 1.03) was performed to estimate the infiltration of 22 immune cell
types among CMSs based on the preprocessed host gene expression data(26).
Similarly, the Estimation of Stromal and Immune cells in Malignant Tumours using

Expression data(ESTIMATE) agorithm(v 1.0.13) was used to evaluate the tumor
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purity scores, stromal cells, and immune cells infiltration levels among CMSs(27).
The infiltration results across CM Ss were considered statistically significant when P

value<0.05, by the Kruskal-Wallis rank sum test.

3.3 Differential expression analysis

To identify robust differentia genes, we first selected effective genes from the
entire list of the preprocessed host genes by (1)excluding non-protein-coding genes
via R package “biomaRt” (v 2.46.3)(28); (2)excluding genes expressed in less than
half of all the CRC samples; and (3)excluding genes with variances < 25% quantile of
variances across all samples. We obtained a total of 11,304 effective genes, which
were further analyzed to determine differential genes among CMSs by implementing
Kruskal-Wallis rank sum test followed by Dunn’'s post hoc test for multiple
comparisons. Differential genes in one specific CMS were defined with
Kruskal-Wallis test P value <0.05 and Dunn’s post hoc test P value<0.05 in al
comparisons. Pathway enrichment analysis was performed based on the differential

genes in each CM S viaclusterProfiler(v 4.2.2) with athreshold P value <0.05.

3.4 Characterization of ferroptosis-related genes

Ferroptosis-related gene lists were obtained from FerrDB

V 2(http://www.zhounan.org/ferrdb/)(29). This list of 564 genes includes 9 marker

genes, 264 driver genes, 238 suppressor genes, and 110 unclassified genes. These
genes were further mapped to differential genes to investigate the pathological roles

of ferroptosisin CRC.
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4. Gut microbiome analysis

4.1 Microbial ecological analysis

To measure the diversity and richness of microbial communities, the preprocessed
microbia abundance profiles were transformed to non-negative data by nneg function
in R package “NMF’(v 0.21.0)(30). Alpha diversity metrics were estimated via
Shannon and Gini Simpson indices for each sample, and similarly, Kruskal-Wallis
rank sum test was used to assess the differences among CM Ss(P value<0.05). The
microbial community difference was measured by beta diversities based on
Bray-Curtis distances, and the differences among CM Ss were tested using Analysis of

similaritiestANOSIM) by 9,999 permutations in vegan packages(v 2.6.2).

4.2 Differential abundance analysis

To identify differential microbes, differential abundance analysis was performed
among CMSs by implementing Wilcoxon rank sum test against 797 genera with
prevalence over 20% in all samples. Differentially abundant genera were defined as
they showed significant statistical differences between a specific CMS and all other

CMSs combined (P value<0.05).

4.3 Microbiotaco-abundance analysis

Microbial co-abundance associations were inferred based on the microbial counts
in each CM S through FastSpar(v 0.0.10)(31), a rapid C++ implementation of SparCC

algorithm. In FastSpar, 1,000 iterations, 100 exclusion iterations, and 1,000 random
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permutations were used to calculate P values. The correlations were considered
statistically significant with P value<0.05 and absolute correlation r>0.7, which were

further visualized through Gephi(v 0.9.7).

5. Host-microbiota association analysis and pathway enrichment

5.1 Procrustes analysisand mantel test

Procrustes analysis and mantel test were performed toassess the structural similarity
between host gene expression and microbial abundance profiles. The host gene
expression profiles were measured with Aitchison’s distance and microbial abundance
profiles with Bray-Curtis distance through R package “vegan” (v 2.6.2). The statistical

significance of the correspondence was measured by 9,999 permutations.

5.2 Host-microbiota association analysis

To identify specific robust associations between host genes and gut microbes, a
LASSO penalized regression model developed by Priya et al(32) was implemented to
identify host-microbiota associations, i.e., gene-microbe associations, in each CMS.
First, in the model estimation, the expressions of the differential genes of each sample
in a CMS served as responses while their paired microbial abundances of the
differential microbes served as predictors. The desparsified LASSO achieved 95%
confidence intervals and P values for the coefficient of each predictor (microbe)
corresponding to the given response(host gene). The Benjamini-Hochberg(FDR)

method was used to adjust for multiple tests. Next, stability selection based on a 100
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times re-sampling was performed for each host gene to select considered stable
correlated microbes which appeared in at least 60% of the fitted models. Finally, the
overlapped between gene-microbe associations with FDR<0.1 and gene-microbe
associations considered stable were identified as significant robust gene-microbe
associations. In addition, ferroptosis related gene-microbe associations were selected
from significant robust gene-microbe associations with the criterion of ferroptosis
related differential genes having an absolute of Spearman's rho coefficient> 0.3
calculating between gene expressions and pared microbial abundances. All

gene-microbe associ ation networks were visualized through Cytoscape(v 3.9.1).

5.3 Pathway enrichment

Genes in significant robust gene-microbe associations in each CM S were subjected
to enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes(KEGG),
Pathway Interaction Database(PID) and REACTOM E gene sets from the MsigDB(33).
Significant host pathways were determined by Fisher’s exact test with P values<0.05,
where the input of the LASSO models(i.e., differential genes in one specific CMS)
served as background genes and genes in significant robust gene-microbe associations

served as genes of interest.

Results

1. CMS-specific characteristics of host gene expression
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To comprehensively explore the TME characteristics of different CMSsin CRC, we
performed analyses on host gene expression patterns, intratumoral microbial
signatures, and host-microbe associations(Figure 1). After quality control, a total of
594 CRC samples with matched host gene expression profiles and intratumoral
microbial abundance profiles were extracted from the TCGA database and then
classified into four CM Ss based on host gene expression data, excluding sample with
mixed signatures(Figure 1). Of al metadata variables, we found that CMS1 samples
were predominantly located on the right side of the abdomen(count, percentile: 49,
64.5%) while CMS2 were on the left side of the abdomen(count, percentile:139,
62.6%, See Supplementary Table 1) as reported in previous studies(34-36). The
different distribution might be attributed to the different incidences of MSl-status,
BRAF mutation and the TP53 mutation rates(37). In addition, significant associations
between CMS classification and either  TNM or tumor stages were
identified(chi-square test, P value<0.05). Samples in CMS2 and CM $4 have a higher
possibility of metastasis with cancers in lymph nodes and distant metastasis than other

CM Ss(See Supplementary Table 1).
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Figure 1. Wor kflow of the study. Paired host gene expression data and gut microbial abundance data
of 594 CRC samples from TCGA were classified into four CMSs based on gene expression profiles.
Characterigtics of the host gene expression and gut microbiota were examined in each CM S, followed

by host-microbiota interaction analysis with the integrated data.

Though the molecular heterogeneity of four CMSs against host transcriptome has
been comprehensively clarified(5, 38-40), here we revisited the host gene expression
profiles and consistently found a large number of differential genes (2,403 in
CM S1(See Supplementary Table 2a), 1,140 in CM S2(See Supplementary Table 2b),
1,359 in CM S3(See Supplementary Table 2¢) and 2,091 in CM S4(See Supplementary
Table 2d)), highlighting the great heterogeneities among four CM Ss(Figure 2a). Since
the vital roles of ferroptosis have been reported on the progression and treatment of

CRC(41-44), we examined the expression patterns of ferroptosis-related genes in four
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CMSs and identified 89, 34, 41, and 76 ferroptosis-related differential genesin CM S1,
CMS2, CMS3, and CM 4, respectively(Figure 2b). Moreover, the expression levels
of these ferroptosis-related genes highly varied among CM Ss with no common driver
and suppressor gene identified(Figure 2b). Specificaly, in CMS1, a series of
ferroptosis-related  differential  genes exhibited strong positive associations
internally(See Supplementary Figure 2), including up-regulated driver genes IDO1,
TRIM21, SLC25A28 and down-regulated suppressor genes PARP9, PARP12, PARP14,
and SREBF1. Fewer ferroptosis-related differential genes were identified in CMS2,
with driver gene BRD7 and suppressor gene ETV4 up-regulated, while another
suppressor gene ARF6 down-regulated(See Supplementary Figure 3). Interestingly,
CMS3 was probably negative for ferroptosis, which was reflected by the
down-regulation of a panel of positively associated genes, including driver genes
WWTR1, DDR2, and ZEB1(See Supplementary Figure 4). Most of the
ferroptosis-related genes were positively associated with CM S4(See Supplementary
Figure 5). These genes included up-regulated driver genes TGFBR1, WWTR1, DDR2
and down-regulated suppressor genes EZH2, FANCD2, and CDC25A. Taken together,
these findings suggest differential activities and patterns of ferroptosis among the
CMSs, and that the ferroptosis status was suppressed in CM S3 but relatively active in

CMS1 and CM 4.
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Figure 2.CM S-specific characteristics of host gene expression. (a)Heatmap displaying the top 100
up-regulated differential genes among CM Ss. Samples and genes were clustered within CM S, indicated
by the colors. The clinical characteristics of samples were indicated on the top. Genes ranked in the top
100 according to the maximum differences between any specific CMS and the others were selected.
(b)Venn diagram of the ferroptosis related drivers and suppressors across CM Ss, significant ferroptosis
related genes were annotated. For genes in one specific CMS, up-regulated genes were colored in red
while down-regulated genes were colored in blue. Genes that appeared in multiple CM Ss were colored

in black.

We then performed pathway enrichment analysis on differential genes of each CM S
to elucidate their biological functions. In total, we identified 77 pathways in CM S1,
i.e, CMSl-specific pathways(See Supplementary Table 2e), 19 CMS2-specific

pathways(See Supplementary Table 2f), 44 CMS3-specific pathways(See

14


https://doi.org/10.1101/2023.07.17.549261
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.17.549261; this version posted July 17, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Table 2g) and 66 CM S4-specific pathways(See Supplementary Table
2h). Among them, most of the CMS1 and CM $4-specific pathways were related to
immune activation. Furthermore, we explored the heterogeneity of TME by
estimating the immune-stromal score and the proportion of immune cellsin TME for
each CMS. Firstly, CMS1 and CM$4 showed higher immune scores than CMS2 and
CMS3(Figure 3a). Smilarly, CM$4 displayed the highest stromal score, suggesting
the presence of a large number of stromal cells including mesenchymal stromal cells
(MSCs). Then, with CIBERSORTX, the proportions of 22 immune cells were
estimated and manifesting distinct immune microenvironments across CM Ss. In detail,
CMSL1 exhibited higher levels of CD8+ T cells, follicular helper T cells, and M1
macrophages as well as decreased Treg cells and monocytes compared to the others
(Figure 3b). In contrast, CM$4 was dominated by MO and M2 macrophages
accounting for over 20% of total cells, with fewer M1 macrophages and CD8+ T
cells(Figure 3b), reflecting a distinct immune pattern probably due to higher
infiltration of inflammatory components in CM $4(45). Meanwhile, CMS2 and CM S3

exhibited higher fractions of plasma cells compared to CM S1 and CM &4 (Figure 3b).
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Figure 3. Immune characteristics of CM Ss. (a)Differences in immune scores, stromal scores, and

tumor purity calculated by ESTIMATE among CM Ss. (b)Differences in immune cell infiltration were
calculated by CIBERSORTXx among CMSs. See the differences in the infiltration of the remaining

14immune cells in Supplementary Figure 6.

2. CMS-specific characteristics of gut tissue microbiota

Intratumoral microbiota emerges as an important factor that contributes to the
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heterogeneity of TME(13), we thus examined the characteristics of tumor-associated
microbiota in different CMSs at multiple layers based on the microbial profiles
derived from Poore’s work(20), which has been well annotated after decontamination
and benchmarking. First, though decreased microbial alpha diversity was reported in
CRC tumor tissues compared toadjacent normal tissues(46), we didn't observe
asignificant difference in microbia diversity among CMSs and the intratumoral
microbiota generally displayed similar compositions (Figure 4a, See Supplementary
Figure 7), reflecting a considerable difference between intratumoral and fecal
microbiota, which was further validated in the microbial composition at the phylum
level. Proteobacteria was the dominant phylum accounting for 38.7-38.8% relative
abundance in CRC tissues, while the dominant fecal phyla Firmicutes and
Bacteroidetes only represented 13.8-13.9% and 9.2%, respectively, of the fecal
microbiota(Figure 4b). In addition, Euryarchaeota (3.9%), a major phylum from

archaea, and virus(8.8%) were also detected in tumor tissues.

At the genus level, we identified considerable differential genera among CMSs,
including 293 differential genera in CMS1, 153 in CMS2, 66 in CMS3, and 109 in
CMSA(Figure 4c). There were 195 genera that were significantly increased in
CM S1(See Supplementary Table 3a), accounting for 66.6% total relative abundance,
and most of them belong to Proteobacteria including Desulfuromonas, Bilophila, and
Nitrosomonas. Besides, some SCFA-producing genera also increased in CMS1, such
as Akkermansia, Lachnoclostridium, and Ruminococcus. On the other hand, 98 genera

exhibited decreased abundances in CMSL, including Paeniclostridium and
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Marinitoga. In CMS2, increased abundances were observed for 98 genera(See
Supplementary Table 3b), including Paenarthrobacter, Lactobacillus, and
Thermoanaerobacter, while decreased abundances were observed for 55 genera,
including SCFA-producers Dorea, Ruminococcus, and Butyrivibrio. In CMS3, 33
genera were enriched, such as Ruminococcus, Rhodothermus, and Bacteroides, while
the abundances of Sutterella, Collimonas and Lactobacillus were reduced(See
Supplementary Table 3c). In CM$4, 61 genera were enriched, including Sutterella,
Actibacterium, Enterococcus, and Flammeovirga. Meanwhile, 48 genera were
decreased, including Desulfococcus, Fusobacterium, and Succinimonas(See
Supplementary Table 3d). These findings suggest that immune-high subtypes(CM S1
and CM$4) exhibited an opposing abundance pattern in intratumoral microbiota
against the immunosuppressive subtypes(CM S2 and CM S3), with top enriched genera
in immune-high subtypes such as Flammeovirga, Sutterella, and Collimonas depleted
in immunosuppressive subtypes. Besides, we also identified differential
bacteriophages in the CMSs, which may have contributed to the changes in the

bacteriome.

Next, co-abundance associations of the differentia genera were examined in each
CMSs(Figure 4d). Distinct patterns were observed for different CM Ss. Compared to
the others, CMS1 exhibited more complex associations with 605 edges among 60
genera, consistent with its strong immune activation status in which gut microbiota
could take part(See Supplementary Table 3e).Methanobrevibacter, Enterococcus,

and Mycoplasma, with depleted abundance, were highly connected to other nodes in
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the network(higher degrees), suggesting their hub roles in maintaining the microbial
microecology in CMS1 network. The co-abundance network of CMS2 consisted of
34 genera with 211 edges, including increased Methanobrevibacter,
Thermoanaerobacter, and Caldicellulosiruptor(See Supplementary Table 3f). The
co-abundance network in CMS3 was the sparsest(21 co-abundance associations
among 12 genera, see Supplementary Table 3g), with highly connected nodes
Helicobacter and Paeniclostridium. In CM$4, there were 53 co-abundance
correlations among 21 genera, with Enterococcus, Marichromatium, and
Succinimonas as the hub genera in the co-abundance network (See Supplementary
Table 3h). Succinimonas was less abundant in CM $4 and was previously reported as
a biomarker in recurrence or metastasis of lung cancer(47). Taken together, our data
displayed distinct structures and key genera of intratumoral microbial environments
among CMSs, suggesting potential contributions of intratumoral microbes in the

heterogeneity of TME.
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Figure 4. CM S-specific characteristics of intratumoral microbiota. (a)Alpha diversities(Shannon
index) in the CM Ss. See the Gini Simpson indices and beta diversities in the CMSs in Supplementary
Figure 7. (b)The top 10 abundant phyla varied among CMSs. (c)Venn diagram of the CM S-specific
genera counts among CMSs. (d)CMS-specific co-abundance networks. Only significant
correlations(absolute correlations rho> 0.7) are shown, each node indicates one genus. The colors of
nodes represent the phyla to which the genus belongs. The colors of the edges represent the

positive(orange) or negative(blue) correlation between genera.

3. Host-microbiotainteractionsin CM Ss

To understand the host-microbiota interactions in different CM Ss, we performed an
integrated analysis to identify associations between host gene expression levels and
microbial genera. By Procrustes analysis and mantel test(See Supplementary Figure

8), 829, 1,270, 634, and 1,882 robust host gene-microbe associations were identified
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in CMS1, CMS2, CMS3, and CM$4, respectively. These represent associations
between 717 host genes and 180 microbial generain CM S1(See Supplementary Table
43), between 814 host genes and 100 microbial generain CM S2(See Supplementary
Table 4b), between 547 host genes and 59 microbial genera in CMS3(See
Supplementary Table 4c), and between 1,313 host genes and 89 microbia genera in

CM SA(See Supplementary Table 4d).

To elucidate the biological functions mediated by host genes that are associated
with intratumoral microbiota across CMSs, we subjected the host genes from
gene-microbe associations in each CMS to perform pathway enrichment
analysis(Figure 5a). Overall, we identified 21 pathways enriched by host genes from
gene-microbe associations in CMSL(See Supplementary Table 4€), 6 pathways in
CM S2(See Supplementary Table 4f), 18 pathways in CM S3(See Supplementary Table
4g), and 29 pathways in CMS4(See Supplementary Table 4h), including several
CMS-specific pathways(Figure 53d). For a better understanding of the potential
mechanism mediated by host gene-microbiota associations, we constructed the
interaction network among host genes, gut microbiota, and the enriched pathways
(Figure 5b). Host genes from gene-microbe associations in CMS1 were specifically
enriched in pathways related to immune activation, including platelet aggregation
plug formation and were mostly up-regulated compared to immunosuppressive
subtypes. Enriched HSF1 activation in CMS1 was also reported to orchestrate
inflammation and ECM remodeling(48). Flammeovirga, Sutterella, and Algiphilus

with increased abundance were positively correlated with genes from endothelin
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pathway, such as COL1A2, COL3A1, and JUN. COL1A2 and COL3AL are collagen
genes, which have been associated with cancer metastasis via regulating WNT
pathway(49). Desulfotalea, a sulfate-reducing delta-Proteobacterium with putative
cutC genes, was negatively associated with LDLR in plasma lipoprotein assembly
remodeling and clearance pathway. In CM S2, the enriched host pathways were related
to integrins, such as integrinl, integrin3signaling. Our data highlighted that
differentially depleted Qutterella was positively associated with a panel of genes in
integrins-related signalings, such as THBS2, PDGFRB, and collagen genes COL6AL
and COL6A2. Most of these genes were down-regulated compared to immune-high
subtypes, which were consistent with the suppression of integrin3 pathway in
CMS2(5). CM S3 was specifically enriched with biosynthetic and metabolic pathways,
including glycosphingolipid biosynthesis lacto and neo lacto series, synthesis of bile
acids and hile salts, sialic acid metabolism. Notably, Methanomethylovorans and
Metallosphaera, two archaeal genera, were negatively associated with FUT2, FUTS3,
and FUT6. The knockdown of FUT genes can potentially inhibit the biosynthesis of
certain oligosaccharide chains on tumor cell surface, making them desirable
therapeutic targets(50). The abundance of Ornithobacterium was positively correlated
with the gene expression of SLC35A1, a transporter of CMP-sidic acid, which
modulates the immune system in diverse ways(51). In CM$4, specifically
up-regulated host gene enriched pathways were mostly involved with ECM collagen
construction, such as collagen biosynthesis and modifying enzymes, non-integrin
membrane ECM interactions, assembly of collagen fibrils and other multimeric
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structures. Notably, Sutterella, Collimonas, and Campylobacter with increased
abundance were positively associated with the majority of genes in collagen
biosynthesis and modifying enzymespathway, such as COL1A1, COL1A2, COL3AL,
COL5A1, COL8A2, and CRTAP. Moreover, the enhanced expression of COL1Al and
COL1A2 indicated the activation of wound healing CAFs, which was also a

representative signature of CMS4(5, 8).
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Figure 5. Interaction networks of host genes, gut microbiota, and enriched pathways of CM Ss.
(a)Boxplot of the pathways enriched with host genes that were significantly associated with microbes.
Analyses were performed individually in each CMS (color coded). (b)The corresponding interaction
network of (a), consisting of relevant host genes, gut microbiota, and enriched pathways. For nodes in

the network, triangular nodes represent gut microbes, circular nodes represent host genes, hexagon
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nodes represent pathways. The colors of the nodes indicate different CMSs. The colors of the edges
indicate positive(blue), negative(red), or gene-pathway(grey) associations while edge thickness

represents Spearman rho coefficient.

Inspired by the distinct status of ferroptosis among CMSs, we then focused on
ferroptosis-related gene-microbe associations, namely associations involving
ferroptosis-related genes. We identified 35 ferroptosis-related gene-microbiota
associations in CMS1, 7 associations in CMS2, 13 associations in CMS3, and 49
associations in CMS4(Figure 6). In CMSL1, one-to-one associations were identified
between ferroptosis-related genes and microbial genera. Among these, the most
differentially enriched genus in CMS1, Flammeovirga, was positively correlated with
ferroptosis driver gene DDR2(Figure 6a). In CMS2, Apibacter positively correlated
with driver gene PGRMC1 and negatively correlated with suppressor gene
SRC(Figure 6b). On the contrary, in CMS3, a positive correlation between
Ruminococcus with suppressor gene RARRES? and negative correlations between
Chamaesiphon with driver genes ACSL4 as well as IDH1 were identified(Figure 6c¢).
In CM$A(Figure 6d), the mgjority of the associations were between Sutterela,
including driver genes DDR2, WWTR1, and TIMP1, suggesting the vital role of

Sutterella in ferroptosis dysregulation in CM $4.
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For a better understanding of the intratumoral microbes associated with host genes
across CMSs, we examined the common genera mediating gene-microbiota
associations in all CMSs. We identified six genera that appeared in all CMSs, that is
Sutterella, Paenarthrobacter, Luteibacter, Sphaerochaeta, Ignicoccus, and
Halolamina(Figure 7). These genera correlated with different genes. Among these
correlations, SQutterella, Luteibacter, Sphaerochaeta, and Halolamina exhibited
increased abundances in immune-high subtypes compared to immunosuppressive
subtypes. Sutterella positively associated with different genes across CM Ss, including
COL6A3 in CMSL1, GFPT2 in CMS2, COL1A2 in CMS3 and BGN, SERPINGL in
CM$A. Luteibacter showed positive correlations with genes in immunosuppressive
subtypes, such as heparinase(HPSE) in CMS2 and B4GALNT2 in CMS3.
Paenarthrobacter showed increased abundances in CMS2, with positive correlations
with genes including AHCY in CMS1, RAEL in CMS2, and RPL13A in CMS3. Some
negative associations were also identified. For example, Luteibacter negatively
correlated with ZBTB10 in CMS1 and NEU1 in CM$4. Paenarthrobacter exhibited

negative correlations with genes such as TBRG4 and WDR7 in CM$4.
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Figure 7. Heatmap of the gene-microbe associations of the genera common for all CM Ss. Top
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associated genes of six common are plotted. Genes were clustered within each CMS.

Discussion

In this proof-of-concept study, we systematically profiled the landscapes of the
TME of each CMSsin CRC. We depicted the distinctions of host genes and immune
environments, especially the ferroptosis-related genes. Host transcriptomes,
intratumoral microbial compositions, and ecological communities across all CMSs
were characterized. Notably, CM S-specific host gene-microbiota association patterns

were profiled for the first time.

Microbiota dysregulation in CRC hasbeen broadly acknowledged based on fecal
16S rRNA and whole metagenome sequencing. Microbial biomarkers, including
bacterial species and multi-kingdom species, are now emerging as potential
non-invasive diagnostic and prognostic tools(15, 16, 19).Recently, tissue microbiota
hasbeen detectedin tumors and implicated in regulating TME, including inflammatory
mediators, resident and recruited immune cells(52, 53). As for CRC, Younginger et al
has highlight that the associations between the intratumoral microbiota and host gene
among CMSs were both speciess and tumor-context-specific, for example,
collagen-related pathways were associated with P. dorel in CMS2 and Fanimalisin
CM&4, respectively(54). However, the explorations of whole landscape of
intratumoral microbiota are still in infancy, and the pan-cancer intratumoral
microbiome data generated by Poore et a from RNA-Seq studies(20) provided an

essential resource for tumor researches. We found that the intratumoral microbiotain
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CRC was dominated by Proteobacteria accounting for 38.7-38.8%. Besides, archaea
and viruses were also observed in CRC tissues(Figure 4b). Considerable differences
were identified among CM Ssin intratumoral microbial composition. SCFA-producing
genera were increased in CMS1 but decreased in CMS2, such as Akkermansia,
Lachnoclostridium, and Ruminococcus(See Supplementary Table 3a and 3b).
Alterations in SCFA levels could impact colonic health and predispose colonocytes to
aberrant metabolism and tumor transformation(55). Therefore, such contrast in
SCFA-producers in different CMSs highlighted the heterogeneity of intratumoral
microbiota and indicates distinct host-microbiota crosstalk in different CM Ss. Besides,
the immune-high subtypes exhibited an opposing abundance pattern in intratumoral
microbiota against immunosuppressive subtypes, with top differentially enriched
genera in immune-high subtypes such as Flammeovirga, Sutterella and Collimonas
depleted in CMS2 and CMS3(See Supplementary Table 3b and 3c). Among these
genera, Flammeovirga was positively associated with the infiltrated CD8" T cells(56),
in line with the higher fraction of CD8" T cellsin CMSL in our study. Sutterella was
found to be the most abundant genus in colon adenocarcinomas(57, 58). Although it
induced mild or even negligible inflammatory responses, Sutterella could serve as an
IgA-degrading bacteriathat results in homeostasis disruption and a TME conducive
topathobiont invasion(59). Furthermore, the intratumoral microbia co-abundance
associations in each CMS exhibited disparate patterns. The networks of CMS1 and
CM4 were dominated by Firmicutes and Proteobacteria genera compared to the other
CMSs. Enterococcus from Firmicutes, a hub genus in CM$4, could stimulate
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CXCL10 and thus lead to inflammation and take part in CRC development(60). The
strain of Enterococcus, E. faecalis, a double-edged sword in CRC, attenuates
inflammation via T helper(Th)-1 and Th17 suppression while accelerates EMT via
macrophage MMP9 activation(61). Consistently, a higher expression of in CXCL10
and MMP9 was observed in immune-high subtypes(See Supplementary Table 2a and
2d). The infection of Helicobacter in phylum Proteobacteria, a hub genus ranked sixth
in CMS1, could induce pro-inflammatory responses in the intestine of mouse models,
accompanied by a reduction of Treg cells(62). Similarly, our study revealed that the

amount of Treg cells was decreased in CM S1(Figure 3b).

We identified gene-microbe associations through LASSO panelized regression
model and performed pathway enrichment based on genes in these associations in
each CMS. The interactions between host genes, tissue microbiota, and biological
pathway collectively revealed discordant biological mechanismsin each CMS. At the
pathway level, CMSL interaction network was featured with inflammation related
pathways while CM S2 exhibited suppression of integrins pathways. CMS3 and CM$4
interaction networks were populated by biosynthesis and metabolism pathways and
ECM-related pathways, respectively. Likewise, we also identified CM S-specific
gene-microbe associations. Although some genera appeared in multiple CMS
interaction networks, they were associated with different host genesin each CMS. For
example, the abundance of Sutterella was correlated with host genes in integrin
signaling in CMS2 but with collagen-related genes in CMS4(8). Similarly, the

abundance of Sphaerochaeta, which was reported to have notable enrichment in CRC
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and inflammatory bowel diseases(IBD)(63, 64), correlated with P4HB in CMS1 but

with OSBPL2 in CM S3.

Recently, Luo et al provided a comprehensve TME landscape mediated by
ferroptosis in CRC, revealing that ferroptosis was positively correlated with CMS1
and CM$4 characteristics and might affect CRC through immune activation and
stromal pathways activation(44). Consistently, our study also found that immune-high
subtypes showed ferroptosis activation compared to the other CMSs(See
Supplementary Figure 2-5). Moreover, we examined the ferroptosis relevant
gene-microbe associations and discovered more complex association networks in
immune-high subtypes(Figure 6), which suggests that tissue microbes might be
significant contributors to ferroptosis dysregulation in CMS1 and CM$4. For example,
ferroptosis related genes CISD2 and GCH1 are involved in immune activation and
CD8" T inflitration(44). Correspondingly, we observed the highest level of CD8" T
cells and associations between CISD2 and Sphaerochaeta, and between GCH1 and
Alphapapillomaviru in CMS1 (Figure 6a). Other ferroptosis related genes such as
PLIN4 and HIC1 are involved in stromal infiltration(44), and in CM$4, PLIN4 was
associated with Bibersteinia, while HIC1 was associated with Sutterella, Haliangium,
and Mannheimia(Figure 6d). Besides, Sutterella served as the key genus in
ferroptosis-related gene-microbes network in CMS4(Figure 6d), suggesting that it
might affect CRC through ferroptosis dysregulation.

In conclusion, we systematically described the CM S-specific landscapes of TMES

encompassing multiple aspects, including the expression of host genes, immune
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infiltrations, tissue microbiota, and biological pathways based on TCGA-CRC
RNA-Seq studies. Especially, we first profiled the CMS-specific gene-microbe
associations, revealing distinct interaction patterns in each CMS and further
exploredthe potential functional relevance in CRC pathophysiology. The growing
understanding of heterogeneity in gene-microbe associations across CM Ss could shed

light on novel mechanismsin CRC development and potential therapeutic targets.
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FigureTitlesand L egends

Figure 1. Wor kflow of the study. Paired host gene expression data and gut microbial
abundance data of 594 CRC samples from TCGA were classified into four CMSs
based on gene expression profiles. Characteristics of the host gene expression and gut
microbiota were examined in each CMS, followed by host-microbiota interaction
analysis with the integrated data.

Figure 2. CMS-specific characteristics of host gene expression. (a)Heatmap
displaying the top 100 up-regulated differential genes among CMSs. Samples and
genes were clustered within CM S, indicated by the colors. The clinical characteristics
of samples were indicated on the top. Genes ranked in the top 100 according to the
maximum differences between any specific CMS and the others were selected.
(b)Venn diagram of the ferroptosis related drivers and suppressors across CMSs,
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significant ferroptosis related genes were annotated. For genes in one specific CM S,
up-regulated genes were colored in red while down-regulated genes were colored in
blue. Genes that appeared in multiple CM Ss were colored in black.

Figure 3. Immune characteristics of CMSs. (a)Differences in immune scores,
stromal scores, and tumor purity calculated by ESTIMATE among CMSs.
(b)Differences in immune cell infiltration were calculated by CIBERSORTX among
CMSs. See the differences in the infiltration of the remaining 14 immune cells in
Supplementary Figure 6.

Figure 4.CMS-specific characteristics of intratumoral microbiota. (a)Alpha
diversities(Shannon index) in the CMSs. See the Gini Simpson indices and beta
diversities in the CMSs in Supplementary Figure 7. (b)The top 10 abundant phyla
varied among CMSs. (c)Venn diagram of the CMS-specific genera counts among
CMSs. (d)CM S-specific co-abundance  networks. Only significant
correlations(absol ute correlations rho> 0.7) are shown, each node indicates one genus.
The colors of nodes represent the phyla to which the genus belongs. The colors of the
edges represent the positive(orange) or negative(blue) correlation between genera.
Figure 5. Interaction networks of host genes, gut microbiota, and enriched
pathways of CM Ss. (a)Boxplot of the pathways enriched with host genes that were
significantly associated with microbes. Analyses were performed individually in each
CMS(color coded). (b)The corresponding interaction network of (&), consisting of
relevant host genes, gut microbiota, and enriched pathways. For nodes in the network,
triangular nodes represent gut microbes, circular nodes represent host genes, hexagon
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nodes represent pathways. The colors of the nodes indicate different CMSs. The
colors of the edges indicate positive (blue), negative (red), or gene-pathway(grey)
associations while edge thickness represents Spearman rho coefficient.

Figure 6. Ferroptosisrelated gene-microbe associations in the CMSs. The
gene-microbe associations involving ferroptosis-related genes in CM S1(a), CM S2(b),
CMS3(c) and CM$A(d). Triangular nodes represent gut microbes; circular nodes
represent host genes. Colors of the triangles represent different phyla. The colors of
the circles represent different functions: driver, suppressor or genes with multiple
functions. The edge colors represent positive(blue) or negative(red) associations while
edge thickness represents Spearman rho coefficient.

Figure 7.Heatmap of the gene-microbe associations of the genera common for all
CM Ss. Top associated genes of six common are plotted. Genes were clustered within

each CMS.

Supplementary Figure Titlesand L egends:

Supplementary Figure 1. Principal component analysis(PCA) across sequencing
platforms. (a) PCA of host gene expression data before ComBat correction. (b) PCA
of host gene expression after ComBat correction. (¢) PCA of gut microbial abundance
data before Voom-SNM correction. (d) PCA of gut microbial abundance data after
Voom-SNM correction.

Supplementary Figure 2. Heatmap displaying the co-expresson of
ferroptosis-related CM Sl-specific genes. Genes in row(column) were classified as
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driver(red), suppressor(green), unclassified(grey). Genes that were assigned to
multiple groups were colored in blue.

Supplementary Figure 3. Heatmap displaying the co-expresson of
ferroptosis-related CM S2-specific genes. Genes in row(column) were classified as
driver(red), suppressor(green), unclassified(grey). Genes that were assigned to
multiple groups were colored in blue.

Supplementary Figure 4. Heatmap displaying the co-expression of
ferroptosis-related CM S3-specific genes. Genes in row(column) were classified as
driver(red), suppressor(green), unclassified(grey). Genes that were assigned to
multiple groups were colored in blue.

Supplementary Figure 5. Heatmap displaying the co-expresson of
ferroptosis-related CM $4-specific genes. Genes in row(column) were classified as
driver(red), suppressor(green), unclassified(grey). Genes that were assigned to
multiple groups were colored in blue.

Supplementary Figure 6. Differences in the infiltration of the remaining 14 immune
cells calculated by CIBERSORTx among CM Ss.

Supplementary Figure 7. The microbia diversity among CMSs. (a)Comparison of
alpha diversity (Gini Simpson index) among CMSs. (b) Principal coordinate analysis
(PCoA) of al samples based on Bray—Curtis distance, estimating the beta diversity of
CMSs.

Supplementary Figure 8. Procrustes analysis and mantel test between host gene
expression and gut microbial abundance data. Aitchison’s distance was used for host
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gene expression data and Bray-Curtis distance was used for gut microbial abundance

data (green, triangles).

Supplementary Tablewith Titles and L egends:

Supplementary Table 1. The Distribution of CMS Cohorts by Clinical
Characteristics.

Supplementary Table 2: Differentia and KEGG enrichment analysis of host gene
expression. Related to Figure 2. (a)Differential Genes of CM S1. (b)Differential Genes
of CM&2.(c)Differential Genes of CMS3. (d)Differential Genes of CM$4. (e)The
Enriched KEGG Pathways of Differentiad Genes of CMSL(P value<0.05). (f)The
Enriched KEGG Pathways of Differential Genes of CMS2(P value<0.05). (g)The
Enriched KEGG Pathways of Differential Genes of CMS3(P value<0.05). (h)The
Enriched KEGG Pathways of Differential Genes of CM SA4(P value<0.05).
Supplementary Table 3: Differential and co-abundance analysis of gut microbiome.
Related to Figure 4.(a)Differential Genera of CM S1. (b)Differential Genera of CM S2.
(c) Differential Genera of CM S3. (d) Differential Genera of CM $4. (e)CM S1-specific
Co-abundance Network Nodes. (f)CMS2-specific Co-abundance Network Nodes.
(g)CM S3-specific Co-abundance Network Nodes. (h)CM$4-specific Co-abundance
Network Nodes.

Supplementary Table 4. Gene-microbe associations and the enriched pathways of
host genes from gene-microbe associations. (a)CMS1-specific Gene-Microbe
Associations.  (b)CM S2-specific  Gene-Microbe Associations.  (¢)CM S3-specific
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Gene-Microbe Associations. (d)CM $4-specific Gene-Microbe Associations. (€)The
Enriched Pathways of Host Genes from CM S1-specific Gene-Microbe Associations.
(HThe Enriched Pathways of Host Genes from CMS2-specific Gene-Microbe
Associations. (g)The Enriched Pathways of Host Genes from CMS3-specific
Gene-Microbe Associations. (h)The Enriched Pathways of Host Genes from

CM SA-specific Gene-Microbe Associations.
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