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MANUSCRIPT: 

Host-microbiota interactions contributing to the heterogeneous tumor 

microenvironment in colorectal cancer 

 

ABSTRACT: 

Background: Colorectal cancer (CRC) is a highly heterogeneous cancer with four 

consensus molecular subtypes (CMSs) characterized by distinct tumor 

microenvironment (TME). We aimed to depict the characteristics of host-microbiota 

interactions and their contributions to TME in each CMS. 

Methods: Host transcriptome and intratumoral microbiome profiles of 594 CRC 

samples were derived from RNA-Seq data from TCGA. Differential host genes and 

microbes among CMSs were identified. Immune microenvironments were assessed by 

CIBERSORTx and ESTIMATE and microbial co-abundance analyses were performed 

by FastSpar. Host-microbiota associations were evaluated by LASSO penalized 

regression in each CMS. 

Results: Along with distinct host gene signatures, including ferroptosis-related genes 

and immune microenvironments, 293, 153, 66 and 109 intratumoral differential 

microbial genera were identified within each of the four CMSs, respectively. 

Furthermore, the host-microbiota interactions contributed to distinct TME in each 

CMS, represented by 829, 1,270, 634 and 1,882 robust gene-microbe associations, 

respectively. The TME in CMS1 was featured with inflammation-related HSF1 

activation and interactions between genes of endothelin pathway and Flammeovirga. 

Integrins-related genes positively correlated with Sutterella in CMS2 while CMS3 
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displayed microbial associations with biosynthetic and metabolic pathways. Genes in 

collagens biosynthesis positively correlated with Sutterella, contributing to 

homeostasis disturbance in CMS4. Besides, ferroptosis dysregulation was more 

remarkable in immune-high subtypes, which might partly result from the colonization 

of tissue microbes. 

Conclusions: We systematically profiled the landscapes of TME, of each CMS in 

CRC, encompassing host genes, intratumoral microbiome and their interactions, 

which could illuminate novel mechanisms for the heterogeneity in CRC and potential 

therapeutic targets. 
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Introduction 

Colorectal cancer(CRC) is one of the most common cancers worldwide with high 

incidence and mortality, reaching 1.9 million new cases and 935,000 deaths 

annually(1). CRC is highly heterogeneous at the molecular level due to genetic, 

epigenetic, and tumor microenvironment(TME) alterations, which result in variable 

clinical outcomes and treatment responses(2, 3). TME not only consists of 

tumor-infiltrating cells such as tumor-associated macrophages(TAMs), B cells, and T 

cells, but the whole surrounding environment of the tumor, including vasculatures, 

extracellular matrixes(ECMs), and other constituents, such as microbiota(4). To better 

stratify CRC patients, the international consortium of colorectal cancer 

subtyping(CRCSC) defined a system based on tumor transcriptome and characterized 

four consensus molecular subtypes(CMS1-4) with molecular and clinical differences: 

CMS1(MSI), CMS2(canonical), CMS3(metabolic) and CMS4(mesenchymal)(5). 

Besides, different clinicopathologic properties were observed among CMSs, for 

example, the HSP90 inhibition could effectively alleviate the chemoresistance for 

CMS4 patients(6). Gene expression profiles of CMS2 were largely influenced by 

DNA copy number gains in malignant cells, whereas the profiles of CMS1 and CMS4 

were driven by the infiltrated non-malignant cells in the TME(7). Moreover, the 

state-of-the-art approach, single-cell transcriptomics elucidated the cellular diversity 

within the TME across CMSs, highlighting the diverse phenotypes of 

cancer-associated fibroblasts(CAFs) and TAMs(8). 
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In recent years, emerging evidence has highlighted the vital roles of the 

microbiome in detecting CRC and mediating the potential carcinogenesis of CRC, 

which was probably through the production of microbial metabolites that interacted 

with the host-immune system(9-14). Pioneering researches, including ours, have 

identified adenoma-specific bacterial biomarkers for early detection of CRC and 

bacteria-fungi interactions promoting the development of CRC based on fecal 

microbiome sequencing(15-19). The remarkable work by Poore et al. demonstrated 

the high rates of microbial sequencing reads in tumor tissues derived from host 

RNA-Seq data and identified unique microbial signatures within and between most 

major types of cancer(20), which paved the way for investigating the roles of 

intratumoral microbes in cancer pathogenesis. Since microbiota is now regarded as a 

crucial component of TME, recent efforts have revealed CMS associated microbes 

and potential mechanisms. For example, CMS4 patients with a high abundance of 

Fusobacterium nucleatum or Fusobacteriales in tumor tissues were associated with 

worse clinical outcomes and severe inflammatory responses(21) while CMS1 patients 

were related to Parvimonasmicra(22). Besides, both Purcell et al and Visnovska et al 

described the microbial patterns in different CMSs based on 16S rRNA sequencing(23, 

24). However, limited studies explored the whole landscape of gut microbiota and 

their interplays with host genes and how they contribute to the heterogeneity of CMSs 

remain unresolved. 

Therefore, this study aimed to characterize the global features of TME focusing on 

host-microbiota interactions in CMSs and their potential implications in CRC 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2023. ; https://doi.org/10.1101/2023.07.17.549261doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.17.549261
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

pathogenesis. In this study, we collected the host gene expression profile and 

corresponding gut microbial abundance matrix of the TCGA-CRC samples, 

identifying CMS-specific host genetic and microbial signatures. Further, 

CMS-specific and shared host-microbiota interactions were profiled in each CMS, 

contributing to the understanding of the TME heterogeneity of CMSs and potential 

strategies for personalized intervention. 

Methods 

1. Resource Availability 

1.1 Materials availability 

This study did not generate new unique reagents. 

1.2 Data and code availability 

All the data for this manuscript are publicly available. The pre-processed host 

mRNA expression profile data in this study have been deposited in the TCGA 

database. The pre-processed microbial abundance profile data and corresponding 

metadata are available at http://ftp.microbio.me/pub/cancer_microbiome_analysis/. 

The survival phenotypic data of TCGA-COAD and TCGA-READ samples are 

accessible through the SAGE Synapse platform under accession syn7343873. All 

programming scripts can be found at our GitHub repository link: 

https://github.com/FragmentsLi/CMS. 

2. Study design and data preprocessing 
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Since this study focused on the heterogeneity of different CRC subtypes, we began 

with 618 CRC samples with matched microbial abundance and host gene expression 

profiles. After excluding samples without survival information or with an overall 

survival(OS) time of 0, 594 samples remained. 

In addition, we removed 12 genera with raw microbial abundance equal to 0 in all 

CRC samples from the normalized microbial profiles to avoid false positives. ComBat 

was applied to remove batch effects of sequencing platforms in host gene expression 

data(25). Principal component analysis(PCA) was performed to visualize the sample 

distribution before and after batch correction(See Supplementary Figure 1). 

3. Host gene expression characterization analysis 

3.1 CMS classification 

The CMS classification labels of CRC samples were obtained from the SAGE 

Synapse platform(Accession: syn2623706)(5). Samples without labels were classified 

using the random forest(RF) classifier in R package “CMSclassifier”(v 1.0.0)(5) 

based on the preprocessed host gene expression data. 

3.2 Immune cell infiltration analysis 

CIBERSORT(v 1.03) was performed to estimate the infiltration of 22 immune cell 

types among CMSs based on the preprocessed host gene expression data(26). 

Similarly, the Estimation of Stromal and Immune cells in Malignant Tumours using 

Expression data(ESTIMATE) algorithm(v 1.0.13) was used to evaluate the tumor 
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purity scores, stromal cells, and immune cells infiltration levels among CMSs(27). 

The infiltration results across CMSs were considered statistically significant when P 

value<0.05, by the Kruskal–Wallis rank sum test. 

3.3 Differential expression analysis 

To identify robust differential genes, we first selected effective genes from the 

entire list of the preprocessed host genes by (1)excluding non-protein-coding genes 

via R package “biomaRt”(v 2.46.3)(28); (2)excluding genes expressed in less than 

half of all the CRC samples; and (3)excluding genes with variances < 25% quantile of 

variances across all samples. We obtained a total of 11,304 effective genes, which 

were further analyzed to determine differential genes among CMSs by implementing 

Kruskal-Wallis rank sum test followed by Dunn’s post hoc test for multiple 

comparisons. Differential genes in one specific CMS were defined with 

Kruskal-Wallis test P value <0.05 and Dunn’s post hoc test P value<0.05 in all 

comparisons. Pathway enrichment analysis was performed based on the differential 

genes in each CMS via clusterProfiler(v 4.2.2) with a threshold P value <0.05. 

3.4 Characterization of ferroptosis-related genes 

Ferroptosis-related gene lists were obtained from FerrDB 

V2(http://www.zhounan.org/ferrdb/)(29). This list of 564 genes includes 9 marker 

genes, 264 driver genes, 238 suppressor genes, and 110 unclassified genes. These 

genes were further mapped to differential genes to investigate the pathological roles 

of ferroptosis in CRC. 
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4. Gut microbiome analysis 

4.1 Microbial ecological analysis 

To measure the diversity and richness of microbial communities, the preprocessed 

microbial abundance profiles were transformed to non-negative data by nneg function 

in R package “NMF”(v 0.21.0)(30). Alpha diversity metrics were estimated via 

Shannon and Gini Simpson indices for each sample, and similarly, Kruskal–Wallis 

rank sum test was used to assess the differences among CMSs(P value<0.05). The 

microbial community difference was measured by beta diversities based on 

Bray-Curtis distances, and the differences among CMSs were tested using Analysis of 

similarities(ANOSIM) by 9,999 permutations in vegan packages(v 2.6.2). 

4.2 Differential abundance analysis 

To identify differential microbes, differential abundance analysis was performed 

among CMSs by implementing Wilcoxon rank sum test against 797 genera with 

prevalence over 20% in all samples. Differentially abundant genera were defined as 

they showed significant statistical differences between a specific CMS and all other 

CMSs combined (P value<0.05). 

4.3 Microbiotaco-abundance analysis 

Microbial co-abundance associations were inferred based on the microbial counts 

in each CMS through FastSpar(v 0.0.10)(31), a rapid C++ implementation of SparCC 

algorithm. In FastSpar, 1,000 iterations, 100 exclusion iterations, and 1,000 random 
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permutations were used to calculate P values. The correlations were considered 

statistically significant with P value<0.05 and absolute correlation r>0.7, which were 

further visualized through Gephi(v 0.9.7). 

5. Host-microbiota association analysis and pathway enrichment 

5.1 Procrustes analysis and mantel test 

Procrustes analysis and mantel test were performed toassess the structural similarity 

between host gene expression and microbial abundance profiles. The host gene 

expression profiles were measured with Aitchison’s distance and microbial abundance 

profiles with Bray-Curtis distance through R package “vegan”(v 2.6.2). The statistical 

significance of the correspondence was measured by 9,999 permutations. 

5.2 Host-microbiota association analysis 

To identify specific robust associations between host genes and gut microbes, a 

LASSO penalized regression model developed by Priya et al(32) was implemented to 

identify host-microbiota associations, i.e., gene-microbe associations, in each CMS. 

First, in the model estimation, the expressions of the differential genes of each sample 

in a CMS served as responses while their paired microbial abundances of the 

differential microbes served as predictors. The desparsified LASSO achieved 95% 

confidence intervals and P values for the coefficient of each predictor (microbe) 

corresponding to the given response(host gene). The Benjamini-Hochberg(FDR) 

method was used to adjust for multiple tests. Next, stability selection based on a 100 
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times re-sampling was performed for each host gene to select considered stable 

correlated microbes which appeared in at least 60% of the fitted models. Finally, the 

overlapped between gene-microbe associations with FDR<0.1 and gene-microbe 

associations considered stable were identified as significant robust gene-microbe 

associations. In addition, ferroptosis related gene-microbe associations were selected 

from significant robust gene-microbe associations with the criterion of ferroptosis 

related differential genes having an absolute of Spearman's rho coefficient> 0.3 

calculating between gene expressions and paired microbial abundances. All 

gene-microbe association networks were visualized through Cytoscape(v 3.9.1). 

5.3 Pathway enrichment 

Genes in significant robust gene-microbe associations in each CMS were subjected 

to enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes(KEGG), 

Pathway Interaction Database(PID) and REACTOME gene sets from the MsigDB(33). 

Significant host pathways were determined by Fisher’s exact test with P values<0.05, 

where the input of the LASSO models(i.e., differential genes in one specific CMS) 

served as background genes and genes in significant robust gene-microbe associations 

served as genes of interest. 

 

Results 

1. CMS-specific characteristics of host gene expression 
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To comprehensively explore the TME characteristics of different CMSs in CRC, we 

performed analyses on host gene expression patterns, intratumoral microbial 

signatures, and host-microbe associations(Figure 1). After quality control, a total of 

594 CRC samples with matched host gene expression profiles and intratumoral 

microbial abundance profiles were extracted from the TCGA database and then 

classified into four CMSs based on host gene expression data, excluding sample with 

mixed signatures(Figure 1). Of all metadata variables, we found that CMS1 samples 

were predominantly located on the right side of the abdomen(count, percentile: 49, 

64.5%) while CMS2 were on the left side of the abdomen(count, percentile:139, 

62.6%, See Supplementary Table 1) as reported in previous studies(34-36). The 

different distribution might be attributed to the different incidences of MSI-status, 

BRAF mutation and the TP53 mutation rates(37). In addition, significant associations 

between CMS classification and either TNM or tumor stages were 

identified(chi-square test, P value<0.05). Samples in CMS2 and CMS4 have a higher 

possibility of metastasis with cancers in lymph nodes and distant metastasis than other 

CMSs(See Supplementary Table 1). 
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Figure 1. Workflow of the study. Paired host gene expression data and gut microbial abundance data 

of 594 CRC samples from TCGA were classified into four CMSs based on gene expression profiles. 

Characteristics of the host gene expression and gut microbiota were examined in each CMS, followed 

by host-microbiota interaction analysis with the integrated data. 

Though the molecular heterogeneity of four CMSs against host transcriptome has 

been comprehensively clarified(5, 38-40), here we revisited the host gene expression 

profiles and consistently found a large number of differential genes (2,403 in 

CMS1(See Supplementary Table 2a), 1,140 in CMS2(See Supplementary Table 2b), 

1,359 in CMS3(See Supplementary Table 2c) and 2,091 in CMS4(See Supplementary 

Table 2d)), highlighting the great heterogeneities among four CMSs(Figure 2a). Since 

the vital roles of ferroptosis have been reported on the progression and treatment of 

CRC(41-44), we examined the expression patterns of ferroptosis-related genes in four 
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CMSs and identified 89, 34, 41, and 76 ferroptosis-related differential genes in CMS1, 

CMS2, CMS3, and CMS4, respectively(Figure 2b). Moreover, the expression levels 

of these ferroptosis-related genes highly varied among CMSs with no common driver 

and suppressor gene identified(Figure 2b). Specifically, in CMS1, a series of 

ferroptosis-related differential genes exhibited strong positive associations 

internally(See Supplementary Figure 2), including up-regulated driver genes IDO1, 

TRIM21, SLC25A28 and down-regulated suppressor genes PARP9, PARP12, PARP14, 

and SREBF1. Fewer ferroptosis-related differential genes were identified in CMS2, 

with driver gene BRD7 and suppressor gene ETV4 up-regulated, while another 

suppressor gene ARF6 down-regulated(See Supplementary Figure 3). Interestingly, 

CMS3 was probably negative for ferroptosis, which was reflected by the 

down-regulation of a panel of positively associated genes, including driver genes 

WWTR1, DDR2, and ZEB1(See Supplementary Figure 4). Most of the 

ferroptosis-related genes were positively associated with CMS4(See Supplementary 

Figure 5). These genes included up-regulated driver genes TGFBR1, WWTR1, DDR2 

and down-regulated suppressor genes EZH2, FANCD2, and CDC25A. Taken together, 

these findings suggest differential activities and patterns of ferroptosis among the 

CMSs, and that the ferroptosis status was suppressed in CMS3 but relatively active in 

CMS1 and CMS4. 
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Figure 2.CMS-specific characteristics of host gene expression. (a)Heatmap displaying the top 100 

up-regulated differential genes among CMSs. Samples and genes were clustered within CMS, indicated 

by the colors. The clinical characteristics of samples were indicated on the top. Genes ranked in the top 

100 according to the maximum differences between any specific CMS and the others were selected. 

(b)Venn diagram of the ferroptosis related drivers and suppressors across CMSs, significant ferroptosis 

related genes were annotated. For genes in one specific CMS, up-regulated genes were colored in red 

while down-regulated genes were colored in blue. Genes that appeared in multiple CMSs were colored 

in black. 

We then performed pathway enrichment analysis on differential genes of each CMS 

to elucidate their biological functions. In total, we identified 77 pathways in CMS1, 

i.e., CMS1-specific pathways(See Supplementary Table 2e), 19 CMS2-specific 

pathways(See Supplementary Table 2f), 44 CMS3-specific pathways(See 
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Supplementary Table 2g) and 66 CMS4-specific pathways(See Supplementary Table 

2h). Among them, most of the CMS1 and CMS4-specific pathways were related to 

immune activation. Furthermore, we explored the heterogeneity of TME by 

estimating the immune-stromal score and the proportion of immune cells in TME for 

each CMS. Firstly, CMS1 and CMS4 showed higher immune scores than CMS2 and 

CMS3(Figure 3a). Similarly, CMS4 displayed the highest stromal score, suggesting 

the presence of a large number of stromal cells including mesenchymal stromal cells 

(MSCs). Then, with CIBERSORTx, the proportions of 22 immune cells were 

estimated and manifesting distinct immune microenvironments across CMSs. In detail, 

CMS1 exhibited higher levels of CD8+ T cells, follicular helper T cells, and M1 

macrophages as well as decreased Treg cells and monocytes compared to the others 

(Figure 3b). In contrast, CMS4 was dominated by M0 and M2 macrophages 

accounting for over 20% of total cells, with fewer M1 macrophages and CD8+ T 

cells(Figure 3b), reflecting a distinct immune pattern probably due to higher 

infiltration of inflammatory components in CMS4(45). Meanwhile, CMS2 and CMS3 

exhibited higher fractions of plasma cells compared to CMS1 and CMS4 (Figure 3b). 
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Figure 3. Immune characteristics of CMSs. (a)Differences in immune scores, stromal scores, and 

tumor purity calculated by ESTIMATE among CMSs. (b)Differences in immune cell infiltration were 

calculated by CIBERSORTx among CMSs. See the differences in the infiltration of the remaining 

14immune cells in Supplementary Figure 6. 

2. CMS-specific characteristics of gut tissue microbiota 

Intratumoral microbiota emerges as an important factor that contributes to the 
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heterogeneity of TME(13), we thus examined the characteristics of tumor-associated 

microbiota in different CMSs at multiple layers based on the microbial profiles 

derived from Poore’s work(20), which has been well annotated after decontamination 

and benchmarking. First, though decreased microbial alpha diversity was reported in 

CRC tumor tissues compared toadjacent normal tissues(46), we didn’t observe 

asignificant difference in microbial diversity among CMSs and the intratumoral 

microbiota generally displayed similar compositions (Figure 4a, See Supplementary 

Figure 7), reflecting a considerable difference between intratumoral and fecal 

microbiota, which was further validated in the microbial composition at the phylum 

level. Proteobacteria was the dominant phylum accounting for 38.7-38.8% relative 

abundance in CRC tissues, while the dominant fecal phyla Firmicutes and 

Bacteroidetes only represented 13.8-13.9% and 9.2%, respectively, of the fecal 

microbiota(Figure 4b). In addition, Euryarchaeota (3.9%), a major phylum from 

archaea, and virus(8.8%) were also detected in tumor tissues. 

At the genus level, we identified considerable differential genera among CMSs, 

including 293 differential genera in CMS1, 153 in CMS2, 66 in CMS3, and 109 in 

CMS4(Figure 4c). There were 195 genera that were significantly increased in 

CMS1(See Supplementary Table 3a), accounting for 66.6% total relative abundance, 

and most of them belong to Proteobacteria including Desulfuromonas, Bilophila, and 

Nitrosomonas. Besides, some SCFA-producing genera also increased in CMS1, such 

as Akkermansia, Lachnoclostridium, and Ruminococcus. On the other hand, 98 genera 

exhibited decreased abundances in CMS1, including Paeniclostridium and 
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Marinitoga. In CMS2, increased abundances were observed for 98 genera(See 

Supplementary Table 3b), including Paenarthrobacter, Lactobacillus, and 

Thermoanaerobacter, while decreased abundances were observed for 55 genera, 

including SCFA-producers Dorea, Ruminococcus, and Butyrivibrio. In CMS3, 33 

genera were enriched, such as Ruminococcus, Rhodothermus, and Bacteroides, while 

the abundances of Sutterella, Collimonas and Lactobacillus were reduced(See 

Supplementary Table 3c). In CMS4, 61 genera were enriched, including Sutterella, 

Actibacterium, Enterococcus, and Flammeovirga. Meanwhile, 48 genera were 

decreased, including Desulfococcus, Fusobacterium, and Succinimonas(See 

Supplementary Table 3d). These findings suggest that immune-high subtypes(CMS1 

and CMS4) exhibited an opposing abundance pattern in intratumoral microbiota 

against the immunosuppressive subtypes(CMS2 and CMS3), with top enriched genera 

in immune-high subtypes such as Flammeovirga, Sutterella, and Collimonas depleted 

in immunosuppressive subtypes. Besides, we also identified differential 

bacteriophages in the CMSs, which may have contributed to the changes in the 

bacteriome. 

Next, co-abundance associations of the differential genera were examined in each 

CMSs(Figure 4d). Distinct patterns were observed for different CMSs. Compared to 

the others, CMS1 exhibited more complex associations with 605 edges among 60 

genera, consistent with its strong immune activation status in which gut microbiota 

could take part(See Supplementary Table 3e).Methanobrevibacter, Enterococcus, 

and Mycoplasma, with depleted abundance, were highly connected to other nodes in 
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the network(higher degrees), suggesting their hub roles in maintaining the microbial 

microecology in CMS1 network. The co-abundance network of CMS2 consisted of 

34 genera with 211 edges, including increased Methanobrevibacter, 

Thermoanaerobacter, and Caldicellulosiruptor(See Supplementary Table 3f). The 

co-abundance network in CMS3 was the sparsest(21 co-abundance associations 

among 12 genera, see Supplementary Table 3g), with highly connected nodes 

Helicobacter and Paeniclostridium. In CMS4, there were 53 co-abundance 

correlations among 21 genera, with Enterococcus, Marichromatium, and 

Succinimonas as the hub genera in the co-abundance network (See Supplementary 

Table 3h). Succinimonas was less abundant in CMS4 and was previously reported as 

a biomarker in recurrence or metastasis of lung cancer(47). Taken together, our data 

displayed distinct structures and key genera of intratumoral microbial environments 

among CMSs, suggesting potential contributions of intratumoral microbes in the 

heterogeneity of TME. 
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Figure 4. CMS-specific characteristics of intratumoral microbiota. (a)Alpha diversities(Shannon 

index) in the CMSs. See the Gini Simpson indices and beta diversities in the CMSs in Supplementary 

Figure 7. (b)The top 10 abundant phyla varied among CMSs. (c)Venn diagram of the CMS-specific 

genera counts among CMSs. (d)CMS-specific co-abundance networks. Only significant 

correlations(absolute correlations rho> 0.7) are shown, each node indicates one genus. The colors of 

nodes represent the phyla to which the genus belongs. The colors of the edges represent the 

positive(orange) or negative(blue) correlation between genera. 

3. Host-microbiota interactions in CMSs 

To understand the host-microbiota interactions in different CMSs, we performed an 

integrated analysis to identify associations between host gene expression levels and 

microbial genera. By Procrustes analysis and mantel test(See Supplementary Figure 

8), 829, 1,270, 634, and 1,882 robust host gene-microbe associations were identified 
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in CMS1, CMS2, CMS3, and CMS4, respectively. These represent associations 

between 717 host genes and 180 microbial genera in CMS1(See Supplementary Table 

4a), between 814 host genes and 100 microbial genera in CMS2(See Supplementary 

Table 4b), between 547 host genes and 59 microbial genera in CMS3(See 

Supplementary Table 4c), and between 1,313 host genes and 89 microbial genera in 

CMS4(See Supplementary Table 4d). 

To elucidate the biological functions mediated by host genes that are associated 

with intratumoral microbiota across CMSs, we subjected the host genes from 

gene-microbe associations in each CMS to perform pathway enrichment 

analysis(Figure 5a). Overall, we identified 21 pathways enriched by host genes from 

gene-microbe associations in CMS1(See Supplementary Table 4e), 6 pathways in 

CMS2(See Supplementary Table 4f), 18 pathways in CMS3(See Supplementary Table 

4g), and 29 pathways in CMS4(See Supplementary Table 4h), including several 

CMS-specific pathways(Figure 5a). For a better understanding of the potential 

mechanism mediated by host gene-microbiota associations, we constructed the 

interaction network among host genes, gut microbiota, and the enriched pathways 

(Figure 5b). Host genes from gene-microbe associations in CMS1 were specifically 

enriched in pathways related to immune activation, including platelet aggregation 

plug formation and were mostly up-regulated compared to immunosuppressive 

subtypes. Enriched HSF1 activation in CMS1 was also reported to orchestrate 

inflammation and ECM remodeling(48). Flammeovirga, Sutterella, and Algiphilus 

with increased abundance were positively correlated with genes from endothelin 
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pathway, such as COL1A2, COL3A1, and JUN. COL1A2 and COL3A1 are collagen 

genes, which have been associated with cancer metastasis via regulating WNT 

pathway(49). Desulfotalea, a sulfate-reducing delta-Proteobacterium with putative 

cutC genes, was negatively associated with LDLR in plasma lipoprotein assembly 

remodeling and clearance pathway. In CMS2, the enriched host pathways were related 

to integrins, such as integrin1, integrin3 signaling. Our data highlighted that 

differentially depleted Sutterella was positively associated with a panel of genes in 

integrins-related signalings, such as THBS2, PDGFRB, and collagen genes COL6A1 

and COL6A2. Most of these genes were down-regulated compared to immune-high 

subtypes, which were consistent with the suppression of integrin3 pathway in 

CMS2(5). CMS3 was specifically enriched with biosynthetic and metabolic pathways, 

including glycosphingolipid biosynthesis lacto and neo lacto series, synthesis of bile 

acids and bile salts, sialic acid metabolism. Notably, Methanomethylovorans and 

Metallosphaera, two archaeal genera, were negatively associated with FUT2, FUT3, 

and FUT6. The knockdown of FUT genes can potentially inhibit the biosynthesis of 

certain oligosaccharide chains on tumor cell surface, making them desirable 

therapeutic targets(50). The abundance of Ornithobacterium was positively correlated 

with the gene expression of SLC35A1, a transporter of CMP-sialic acid, which 

modulates the immune system in diverse ways(51). In CMS4, specifically 

up-regulated host gene enriched pathways were mostly involved with ECM collagen 

construction, such as collagen biosynthesis and modifying enzymes, non-integrin 

membrane ECM interactions, assembly of collagen fibrils and other multimeric 
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structures. Notably, Sutterella, Collimonas, and Campylobacter with increased 

abundance were positively associated with the majority of genes in collagen 

biosynthesis and modifying enzymespathway, such as COL1A1, COL1A2, COL3A1, 

COL5A1, COL8A2, and CRTAP. Moreover, the enhanced expression of COL1A1 and 

COL1A2 indicated the activation of wound healing CAFs, which was also a 

representative signature of CMS4(5, 8). 

 

Figure 5. Interaction networks of host genes, gut microbiota, and enriched pathways of CMSs. 

(a)Boxplot of the pathways enriched with host genes that were significantly associated with microbes. 

Analyses were performed individually in each CMS (color coded). (b)The corresponding interaction 

network of (a), consisting of relevant host genes, gut microbiota, and enriched pathways. For nodes in 

the network, triangular nodes represent gut microbes, circular nodes represent host genes, hexagon 
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nodes represent pathways. The colors of the nodes indicate different CMSs. The colors of the edges 

indicate positive(blue), negative(red), or gene-pathway(grey) associations while edge thickness 

represents Spearman rho coefficient. 

Inspired by the distinct status of ferroptosis among CMSs, we then focused on 

ferroptosis-related gene-microbe associations, namely associations involving 

ferroptosis-related genes. We identified 35 ferroptosis-related gene-microbiota 

associations in CMS1, 7 associations in CMS2, 13 associations in CMS3, and 49 

associations in CMS4(Figure 6). In CMS1, one-to-one associations were identified 

between ferroptosis-related genes and microbial genera. Among these, the most 

differentially enriched genus in CMS1, Flammeovirga, was positively correlated with 

ferroptosis driver gene DDR2(Figure 6a). In CMS2, Apibacter positively correlated 

with driver gene PGRMC1 and negatively correlated with suppressor gene 

SRC(Figure 6b). On the contrary, in CMS3, a positive correlation between 

Ruminococcus with suppressor gene RARRES2 and negative correlations between 

Chamaesiphon with driver genes ACSL4 as well as IDH1 were identified(Figure 6c). 

In CMS4(Figure 6d), the majority of the associations were between Sutterella, 

including driver genes DDR2, WWTR1, and TIMP1, suggesting the vital role of 

Sutterella in ferroptosis dysregulation in CMS4. 
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Figure 6. Ferroptosis-related gene-microbe associations in the CMSs. The gene-microbe 

associations involving ferroptosis-related genes in CMS1(a), CMS2(b), CMS3(c) and CMS4(d). 

Triangular nodes represent gut microbes; circular nodes represent host genes. Colors of the triangles 

represent different phyla. The colors of the circles represent different functions: driver, suppressor or 

genes with multiple functions. The edge colors represent positive(blue) or negative(red) associations 

while edge thickness represents Spearman rho coefficient. 
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For a better understanding of the intratumoral microbes associated with host genes 

across CMSs, we examined the common genera mediating gene-microbiota 

associations in all CMSs. We identified six genera that appeared in all CMSs, that is 

Sutterella, Paenarthrobacter, Luteibacter, Sphaerochaeta, Ignicoccus, and 

Halolamina(Figure 7). These genera correlated with different genes. Among these 

correlations, Sutterella, Luteibacter, Sphaerochaeta, and Halolamina exhibited 

increased abundances in immune-high subtypes compared to immunosuppressive 

subtypes. Sutterella positively associated with different genes across CMSs, including 

COL6A3 in CMS1, GFPT2 in CMS2, COL1A2 in CMS3 and BGN, SERPING1 in 

CMS4. Luteibacter showed positive correlations with genes in immunosuppressive 

subtypes, such as heparinase(HPSE) in CMS2 and B4GALNT2 in CMS3. 

Paenarthrobacter showed increased abundances in CMS2, with positive correlations 

with genes including AHCY in CMS1, RAE1 in CMS2, and RPL13A in CMS3. Some 

negative associations were also identified. For example, Luteibacter negatively 

correlated with ZBTB10 in CMS1 and NEU1 in CMS4. Paenarthrobacter exhibited 

negative correlations with genes such as TBRG4 and WDR7 in CMS4. 

 

Figure 7. Heatmap of the gene-microbe associations of the genera common for all CMSs. Top 
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associated genes of six common are plotted. Genes were clustered within each CMS. 

Discussion 

In this proof-of-concept study, we systematically profiled the landscapes of the 

TME of each CMSs in CRC. We depicted the distinctions of host genes and immune 

environments, especially the ferroptosis-related genes. Host transcriptomes, 

intratumoral microbial compositions, and ecological communities across all CMSs 

were characterized. Notably, CMS-specific host gene-microbiota association patterns 

were profiled for the first time. 

Microbiota dysregulation in CRC hasbeen broadly acknowledged based on fecal 

16S rRNA and whole metagenome sequencing. Microbial biomarkers, including 

bacterial species and multi-kingdom species, are now emerging as potential 

non-invasive diagnostic and prognostic tools(15, 16, 19).Recently, tissue microbiota 

hasbeen detectedin tumors and implicated in regulating TME, including inflammatory 

mediators, resident and recruited immune cells(52, 53). As for CRC, Younginger et al 

has highlight that the associations between the intratumoral microbiota and host gene 

among CMSs were both species- and tumor-context-specific, for example, 

collagen-related pathways were associated with P. dorei in CMS2 and F.animalisin 

CMS4, respectively(54). However, the explorations of whole landscape of 

intratumoral microbiota are still in infancy, and the pan-cancer intratumoral 

microbiome data generated by Poore et al from RNA-Seq studies(20) provided an 

essential resource for tumor researches. We found that the intratumoral microbiota in 
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CRC was dominated by Proteobacteria accounting for 38.7-38.8%. Besides, archaea 

and viruses were also observed in CRC tissues(Figure 4b). Considerable differences 

were identified among CMSs in intratumoral microbial composition. SCFA-producing 

genera were increased in CMS1 but decreased in CMS2, such as Akkermansia, 

Lachnoclostridium, and Ruminococcus(See Supplementary Table 3a and 3b). 

Alterations in SCFA levels could impact colonic health and predispose colonocytes to 

aberrant metabolism and tumor transformation(55). Therefore, such contrast in 

SCFA-producers in different CMSs highlighted the heterogeneity of intratumoral 

microbiota and indicates distinct host-microbiota crosstalk in different CMSs. Besides, 

the immune-high subtypes exhibited an opposing abundance pattern in intratumoral 

microbiota against immunosuppressive subtypes, with top differentially enriched 

genera in immune-high subtypes such as Flammeovirga, Sutterella and Collimonas 

depleted in CMS2 and CMS3(See Supplementary Table 3b and 3c). Among these 

genera, Flammeovirga was positively associated with the infiltrated CD8+ T cells(56), 

in line with the higher fraction of CD8+ T cells in CMS1 in our study. Sutterella was 

found to be the most abundant genus in colon adenocarcinomas(57, 58). Although it 

induced mild or even negligible inflammatory responses, Sutterella could serve as an 

IgA-degrading bacteriathat results in homeostasis disruption and a TME conducive 

topathobiont invasion(59). Furthermore, the intratumoral microbial co-abundance 

associations in each CMS exhibited disparate patterns. The networks of CMS1 and 

CM4 were dominated by Firmicutes and Proteobacteria genera compared to the other 

CMSs. Enterococcus from Firmicutes, a hub genus in CMS4, could stimulate 
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CXCL10 and thus lead to inflammation and take part in CRC development(60). The 

strain of Enterococcus, E. faecalis, a double-edged sword in CRC, attenuates 

inflammation via T helper(Th)-1 and Th17 suppression while accelerates EMT via 

macrophage MMP9 activation(61). Consistently, a higher expression of in CXCL10 

and MMP9 was observed in immune-high subtypes(See Supplementary Table 2a and 

2d). The infection of Helicobacter in phylum Proteobacteria, a hub genus ranked sixth 

in CMS1, could induce pro-inflammatory responses in the intestine of mouse models, 

accompanied by a reduction of Treg cells(62). Similarly, our study revealed that the 

amount of Treg cells was decreased in CMS1(Figure 3b). 

We identified gene-microbe associations through LASSO panelized regression 

model and performed pathway enrichment based on genes in these associations in 

each CMS. The interactions between host genes, tissue microbiota, and biological 

pathway collectively revealed discordant biological mechanisms in each CMS. At the 

pathway level, CMS1 interaction network was featured with inflammation related 

pathways while CMS2 exhibited suppression of integrins pathways. CMS3 and CMS4 

interaction networks were populated by biosynthesis and metabolism pathways and 

ECM-related pathways, respectively. Likewise, we also identified CMS-specific 

gene-microbe associations. Although some genera appeared in multiple CMS 

interaction networks, they were associated with different host genes in each CMS. For 

example, the abundance of Sutterella was correlated with host genes in integrin 

signaling in CMS2 but with collagen-related genes in CMS4(8). Similarly, the 

abundance of Sphaerochaeta, which was reported to have notable enrichment in CRC 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2023. ; https://doi.org/10.1101/2023.07.17.549261doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.17.549261
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

and inflammatory bowel diseases(IBD)(63, 64), correlated with P4HB in CMS1 but 

with OSBPL2 in CMS3. 

Recently, Luo et al provided a comprehensive TME landscape mediated by 

ferroptosis in CRC, revealing that ferroptosis was positively correlated with CMS1 

and CMS4 characteristics and might affect CRC through immune activation and 

stromal pathways activation(44). Consistently, our study also found that immune-high 

subtypes showed ferroptosis activation compared to the other CMSs(See 

Supplementary Figure 2-5). Moreover, we examined the ferroptosis relevant 

gene-microbe associations and discovered more complex association networks in 

immune-high subtypes(Figure 6), which suggests that tissue microbes might be 

significant contributors to ferroptosis dysregulation in CMS1 and CMS4. For example, 

ferroptosis related genes CISD2 and GCH1 are involved in immune activation and 

CD8+ T inflitration(44). Correspondingly, we observed the highest level of CD8+ T 

cells and associations between CISD2 and Sphaerochaeta, and between GCH1 and 

Alphapapillomaviru in CMS1 (Figure 6a). Other ferroptosis related genes such as 

PLIN4 and HIC1 are involved in stromal infiltration(44), and in CMS4, PLIN4 was 

associated with Bibersteinia, while HIC1 was associated with Sutterella, Haliangium, 

and Mannheimia(Figure 6d). Besides, Sutterella served as the key genus in 

ferroptosis-related gene-microbes network in CMS4(Figure 6d), suggesting that it 

might affect CRC through ferroptosis dysregulation. 

In conclusion, we systematically described the CMS-specific landscapes of TMEs 

encompassing multiple aspects, including the expression of host genes, immune 
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infiltrations, tissue microbiota, and biological pathways based on TCGA-CRC 

RNA-Seq studies. Especially, we first profiled the CMS-specific gene-microbe 

associations, revealing distinct interaction patterns in each CMS and further 

exploredthe potential functional relevance in CRC pathophysiology. The growing 

understanding of heterogeneity in gene-microbe associations across CMSs could shed 

light on novel mechanisms in CRC development and potential therapeutic targets. 
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Figure Titles and Legends 

Figure 1. Workflow of the study. Paired host gene expression data and gut microbial 

abundance data of 594 CRC samples from TCGA were classified into four CMSs 

based on gene expression profiles. Characteristics of the host gene expression and gut 

microbiota were examined in each CMS, followed by host-microbiota interaction 

analysis with the integrated data. 

Figure 2. CMS-specific characteristics of host gene expression. (a)Heatmap 

displaying the top 100 up-regulated differential genes among CMSs. Samples and 

genes were clustered within CMS, indicated by the colors. The clinical characteristics 

of samples were indicated on the top. Genes ranked in the top 100 according to the 

maximum differences between any specific CMS and the others were selected. 

(b)Venn diagram of the ferroptosis related drivers and suppressors across CMSs, 
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significant ferroptosis related genes were annotated. For genes in one specific CMS, 

up-regulated genes were colored in red while down-regulated genes were colored in 

blue. Genes that appeared in multiple CMSs were colored in black. 

Figure 3. Immune characteristics of CMSs. (a)Differences in immune scores, 

stromal scores, and tumor purity calculated by ESTIMATE among CMSs. 

(b)Differences in immune cell infiltration were calculated by CIBERSORTx among 

CMSs. See the differences in the infiltration of the remaining 14 immune cells in 

Supplementary Figure 6. 

Figure 4.CMS-specific characteristics of intratumoral microbiota. (a)Alpha 

diversities(Shannon index) in the CMSs. See the Gini Simpson indices and beta 

diversities in the CMSs in Supplementary Figure 7. (b)The top 10 abundant phyla 

varied among CMSs. (c)Venn diagram of the CMS-specific genera counts among 

CMSs. (d)CMS-specific co-abundance networks. Only significant 

correlations(absolute correlations rho> 0.7) are shown, each node indicates one genus. 

The colors of nodes represent the phyla to which the genus belongs. The colors of the 

edges represent the positive(orange) or negative(blue) correlation between genera. 

Figure 5. Interaction networks of host genes, gut microbiota, and enriched 

pathways of CMSs. (a)Boxplot of the pathways enriched with host genes that were 

significantly associated with microbes. Analyses were performed individually in each 

CMS(color coded). (b)The corresponding interaction network of (a), consisting of 

relevant host genes, gut microbiota, and enriched pathways. For nodes in the network, 

triangular nodes represent gut microbes, circular nodes represent host genes, hexagon 
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nodes represent pathways. The colors of the nodes indicate different CMSs. The 

colors of the edges indicate positive (blue), negative (red), or gene-pathway(grey) 

associations while edge thickness represents Spearman rho coefficient. 

Figure 6. Ferroptosis-related gene-microbe associations in the CMSs. The 

gene-microbe associations involving ferroptosis-related genes in CMS1(a), CMS2(b), 

CMS3(c) and CMS4(d). Triangular nodes represent gut microbes; circular nodes 

represent host genes. Colors of the triangles represent different phyla. The colors of 

the circles represent different functions: driver, suppressor or genes with multiple 

functions. The edge colors represent positive(blue) or negative(red) associations while 

edge thickness represents Spearman rho coefficient. 

Figure 7.Heatmap of the gene-microbe associations of the genera common for all 

CMSs. Top associated genes of six common are plotted. Genes were clustered within 

each CMS. 

 

Supplementary Figure Titles and Legends: 

Supplementary Figure 1. Principal component analysis(PCA) across sequencing 

platforms. (a) PCA of host gene expression data before ComBat correction. (b) PCA 

of host gene expression after ComBat correction. (c) PCA of gut microbial abundance 

data before Voom-SNM correction. (d) PCA of gut microbial abundance data after 

Voom-SNM correction. 

Supplementary Figure 2. Heatmap displaying the co-expression of 

ferroptosis-related CMS1-specific genes. Genes in row(column) were classified as 
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driver(red), suppressor(green), unclassified(grey). Genes that were assigned to 

multiple groups were colored in blue. 

Supplementary Figure 3. Heatmap displaying the co-expression of 

ferroptosis-related CMS2-specific genes. Genes in row(column) were classified as 

driver(red), suppressor(green), unclassified(grey). Genes that were assigned to 

multiple groups were colored in blue. 

Supplementary Figure 4. Heatmap displaying the co-expression of 

ferroptosis-related CMS3-specific genes. Genes in row(column) were classified as 

driver(red), suppressor(green), unclassified(grey). Genes that were assigned to 

multiple groups were colored in blue. 

Supplementary Figure 5. Heatmap displaying the co-expression of 

ferroptosis-related CMS4-specific genes. Genes in row(column) were classified as 

driver(red), suppressor(green), unclassified(grey). Genes that were assigned to 

multiple groups were colored in blue. 

Supplementary Figure 6. Differences in the infiltration of the remaining 14 immune 

cells calculated by CIBERSORTx among CMSs. 

Supplementary Figure 7. The microbial diversity among CMSs. (a)Comparison of 

alpha diversity (Gini Simpson index) among CMSs. (b) Principal coordinate analysis 

(PCoA) of all samples based on Bray–Curtis distance, estimating the beta diversity of 

CMSs. 

Supplementary Figure 8. Procrustes analysis and mantel test between host gene 

expression and gut microbial abundance data. Aitchison’s distance was used for host 
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gene expression data and Bray-Curtis distance was used for gut microbial abundance 

data (green, triangles). 

 

Supplementary Table with Titles and Legends: 

Supplementary Table 1: The Distribution of CMS Cohorts by Clinical 

Characteristics. 

Supplementary Table 2: Differential and KEGG enrichment analysis of host gene 

expression. Related to Figure 2. (a)Differential Genes of CMS1. (b)Differential Genes 

of CMS2.(c)Differential Genes of CMS3. (d)Differential Genes of CMS4. (e)The 

Enriched KEGG Pathways of Differential Genes of CMS1(P value<0.05). (f)The 

Enriched KEGG Pathways of Differential Genes of CMS2(P value<0.05). (g)The 

Enriched KEGG Pathways of Differential Genes of CMS3(P value<0.05). (h)The 

Enriched KEGG Pathways of Differential Genes of CMS4(P value<0.05). 

Supplementary Table 3: Differential and co-abundance analysis of gut microbiome. 

Related to Figure 4.(a)Differential Genera of CMS1. (b)Differential Genera of CMS2. 

(c) Differential Genera of CMS3. (d) Differential Genera of CMS4. (e)CMS1-specific 

Co-abundance Network Nodes. (f)CMS2-specific Co-abundance Network Nodes. 

(g)CMS3-specific Co-abundance Network Nodes. (h)CMS4-specific Co-abundance 

Network Nodes. 

Supplementary Table 4: Gene-microbe associations and the enriched pathways of 

host genes from gene-microbe associations. (a)CMS1-specific Gene-Microbe 

Associations. (b)CMS2-specific Gene-Microbe Associations. (c)CMS3-specific 
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Gene-Microbe Associations. (d)CMS4-specific Gene-Microbe Associations. (e)The 

Enriched Pathways of Host Genes from CMS1-specific Gene-Microbe Associations. 

(f)The Enriched Pathways of Host Genes from CMS2-specific Gene-Microbe 

Associations. (g)The Enriched Pathways of Host Genes from CMS3-specific 

Gene-Microbe Associations. (h)The Enriched Pathways of Host Genes from 

CMS4-specific Gene-Microbe Associations. 
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