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Abstract

Background: Segmentation and genome annotations (SAGA) methods such as
ChromHMM and Segway are widely to annotate chromatin states in the genome.
These algorithms take as input a collection of genomics datasets, partition the
genome, and assign a label to each segment such that positions with the same
label have similar patterns in the input data. SAGA methods output an
human-interpretable summary of the genome by labeling every genomic position
with its annotated activity such as Enhancer, Transcribed, etc. Chromatin state
annotations are essential for many genomic tasks, including identifying active
regulatory elements and interpreting disease-associated genetic variation.
However, despite the widespread applications of SAGA methods, no principled
approach exists to evaluate the statistical significance of SAGA state assignments.

Results: Towards the goal of producing robust chromatin state annotations, we
performed a comprehensive evaluation of the reproducibility of SAGA methods.
We show that SAGA annotations exhibit a large degree of disagreement, even
when run with the same method on replicated data sets. This finding suggests
that there is significant risk to using SAGA chromatin state annotations.
To remedy this problem, we introduce SAGAconf, a method for assigning a

measure of confidence (r-value) to SAGA annotations. This r-value is assigned to
each genomic bin of a SAGA annotation and represents the probability that the
label of this bin will be reproduced in a replicated experiment. This process is
analogous to irreproducible discovery rate (IDR) analysis that is commonly used
for ChIP-seq peak calling and related tasks. Thus SAGAconf allows a researcher
to select only the reliable parts of a SAGA annotation for use in downstream
analyses.
SAGAconf r-values provide accurate confidence estimates of SAGA annotations,

allowing researchers to filter out unreliable elements and remove doubt in those
that stand up to this scrutiny.
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1 Background
Annotating regulatory elements in the genome is fundamental to answering key

questions including the molecular basis of disease, evolution, cellular differentia-

tion, and development. To this end, international mapping projects have recently

measured epigenetic activity in hundreds of cell and tissue types using genome-wide

assays such as ChIP-seq [1, 2].

Chromatin state annotations produced by segmentation and genome annotation

(SAGA) methods have emerged as the predominant way to summarize epigenomic

data sets in order to annotate the genome. SAGA methods include Segway [3] and

ChromHMM [4] and others [5, 6, 7, 8] (reviewed in [9]). They take a collection

epigenomic assay data sets from a given cell type or tissue as input and partition

the genome into segments with similar patterns in the input data sets. The output

is an annotation that assigns a label to each genomic position. These algorithms use

probabilistic graphical models such as Hidden Markov Models. They are unsuper-

vised in the sense that the model identifies patterns in the data and the researcher

later maps each patterns to a putative biological functions such as enhancer, pro-

moter or transcribed gene. Thus, SAGA algorithms are used to distill complex data

into an interpretable summary of genomic activity. SAGA algorithms have been

broadly applied. Large-scale epigenome mapping projects such as ENCODE [1] and

Roadmap [2] produced them as their primary output, and researchers have now

produced reference SAGA annotations for hundreds of cell types [10, 11, 12, 13]

Previous efforts to evaluate the reliability of SAGA chromatin state annotations

have found mixed results. On one hand, SAGA annotations recapitulate known

genome biology and the annotations accurately represent many genomic phenom-

ena including transcription [7, 10, 9]. However, results are often dissimilar between

SAGA methods and hyper-parameter settings of a given method [14, 10, 7, 9]. This

suggests that some aspects of SAGA annotations do not reflect true biology.

Thus, there is a great need for a way to produce robust chromatin state annota-

tions. Unfortunately, currently there is no principled way to evaluate the statistical

significance of SAGA label assignments. SAGA annotations are not the result of

a statistical test, so they do not carry a p-value. SAGA methods use probabilistic

graphical models which output posterior probabilities; however, in practice these

posterior probabilities are vastly overconfident, resulting in most positions receiv-

ing posterior probability >99% [15, 9].

Here, we propose the first method for assigning reliable confidence scores to SAGA

annotations. We base our approach on evaluating the reproducibility of annotations

across replicates [16]. We are motivated by methods for ChIP-seq peak calling, for

which researchers generally use irreproducible discovery rate (IDR) analysis to as-

sign confidence scores to peaks [17, 18, 19, 20]. In IDR analysis, researchers score

putative peaks according to their reproducibility in two or more experimental repli-

cates, with the expectation that peaks findings are expected to consistently rank

highly in both experiments. Note that, although several methods have been devel-

oped for the related task of comparing sets of SAGA annotations to one another,

to our knowledge no existing method can assign confidence estimates to a single

chromatin state annotation. In particular, ChromDiff [21], SCIDDO [22] and Epi-

Compare [23] perform the task of group-wise comparative analysis, in which they
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take as input two sets of annotations and identify differential labels between the

two sets. Related method EpiAlign [24] and Chromswitch [25] similarly perform

group-wise comparative analysis but are primarily designed to compare chromatin

state patterns within a query region. CSREP [26] performs the task of group sum-

marization, taking annotations for a group of samples as input and probabilistically

estimating the state at each genomic position to derive a representative chromatin

state map for the group. Because all of these existing studies analyze patterns

across annotations of many cell types, they cannot estimate the confidence in the

annotation of a single target cell type.

Towards the goal of understanding robustness of SAGA annotations, here we

perform a comprehensive evaluation of the reproducibility of SAGA methods. As

described below, we show that SAGA annotations exhibit a large degree of disagree-

ment, even when run with the same method on replicated data sets. Much of this

disagreement can be attributed to unimportant factors such as the granularity of

label definitions and mismatch in the boundaries of annotated elements. Yet, much

disagreement remains, suggesting that a substantial fraction of element annotations

produced by SAGA cannot be relied upon as they are not reproduced by a replicate

analysis.

To remedy this problem, we introduce SAGAconf, a method for assigning a mea-

sure of confidence (r-value) to SAGA annotations. This r-value is assigned to each

genomic bin of a SAGA annotation and represents the probability that the label of

this bin will be reproduced in a replicated experiment. Thus, SAGAconf allows a

researcher to select only the reliable parts of a SAGA annotation for use in down-

stream analyses.
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2 Results
2.1 Comprehensive evaluation of chromatin state reproducibility

We performed comprehensive evaluation of reproducibility of SAGA annotations

(Methods). We collected replicated pairs of epigenomic data sets in five cell types.

In each replicate pair, we applied a SAGA pipeline to produce two replicate annota-

tions, which we term the “base” and “verification” annotation, respectively. For the

purposes of exposition, we focus our analysis on a running example: ChromHMM

run on GM12878 (under setting 1 described below: different data, different models).

A SAGA model assigns an integer ID (1..k) to each genomic bin. These IDs repre-

sent different chromatin states, also known as “states” (Figure 1A). The relationship

of a pair of annotations can be characterized by a k×k matrix representing the fre-

quency of overlap of each base state with each verification state (Figure 1B). Since

SAGA methods are unsupervised, the output integer state IDs do not directly cor-

respond across two SAGA models. Thus, we must first detect corresponding states

across annotations to enable comparison (Figure 1C and Section 4.4). To establish

a correspondence between chromatin states while accounting for varying genomic

coverages, we calculate intersection over union (IoU) of overlap (Methods 4.4, Fig-

ure 1C) and, for each base state, we define the corresponding verification state to

be the one with highest IoU (Figure 1A,C).

Irreproducibility between annotations may be caused either by differences in input

data replicates or differences in model training. To delineate among these sources

of irreproducibility, we assess pairs of experiments in three different settings of vari-

ability (Figure 1A, Section 4.11). In setting 1 (different data, different models) we

trained two separate SAGA models using data from separate biological replicates,

simulating the case where independent researchers each perform a SAGA analysis.

In setting 2 (different data, same model), we train a single SAGA model and use it

to annotate each replicate (known as “concatenated” annotation). This setting iso-

lates irreproducibility due to differences in input data replicates. In setting 3 (same

data, different models), the same dataset from one of the biological replicates is

used to train two different SAGA models, but with a different random parameter

initialization in each model. This setting isolates irreproducibility due to model

training.

Since SAGA methods are unsupervised, each integer state label must be assigned a

putative biological interpretation such as “Promoter” or “Enhancer”. To avoid bias

stemming from manual interpretation, we used a previously-described automatic

process to assign a vocabulary of human-readable chromatin state categories [10]

(Supplementary Section 1.3). Note that interpretations are for exposition only and

all analysis was performed at the level of states, not interpreted chromatin state

categories. Because it is automated, the interpretation process may be imperfect;

for example, in our running example, base state 6 Enha overlaps with verification

state 10 Prom fla; the mismatch in chromatin state category likely results from an

error in the interpreter, not the annotations themselves.
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Figure 1 Schematic workflow. (A) We obtained histone modification assays from biological
replicates via ENCODE DCC [1] and used these data sets to train SAGA models (Segway or
ChromHMM) to generate chromatin state annotations. The SAGA model outputs a matrix
representing the posterior probability P (Q|X) values of assigning each chromatin state to each
genomic position and a vector of state labels assigned to the position with the highest posterior
probability argmaxP (Q|X) (Methods). One set of replicated data is chosen as the base and the
other as the verification. SAGA training and genome annotation are performed according to three
settings of variability: S1 (different Data, different models), where two separate SAGA models are
trained independently using data from each biological replicate; S2 (different Data, same model),
where data from both replicates are concatenated to train a single SAGA model that provides
separate annotations for each replicate; and S3 (same Data, different models), where the same
dataset (base replicate) is used to train two different SAGA models with different parameter
initializations. Both the base and verification annotations, generated by any variability setting, are
inputs to SAGAconf. The SAGAconf evaluation pipeline begins by forming a pairwise overlap
frequency distribution matrix between the two annotations and calculating the intersection over
union (IoU) overlap to determine correspondence between state pairs across the annotations.
SAGAconf performs a comprehensive reproducibility analysis and outputs a subset of the base
annotation that it identifies as confident (Methods). (B) The raw overlap frequency distribution
from our running example annotation (setting 1, ChromHMM, GM12878). Rows and columns
correspond to states in base and verification annotations, respectively. Color indicates frequency of
overlap (log scale). (C) Same as (B), but color indicates the intersection over Union (IoU) of
overlap is derived from raw overlap matrix (Methods, linear scale). For each chromatin state of
the base annotation, its corresponding state in the verification annotation is defined as the one
with the maximum IoU (marked with red square). (D) Fraction of overlap (Naive overlap) of
various chromatin states categories identified in the ChromHMM annotations according to S1
(different Data, different models) for all five cell types. Each dot represents a chromatin state,
with color denoting cell type and size proportional to genome coverage.
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2.2 Pairwise overlap does not fully capture the reproducibility profile of SAGA

annotations

We found substantial differences between annotations of the two replicates (Fig-

ure 1 B,C,D). Overall, in our running example, only ∼80% of genomic bins are

annotated with the corresponding label in the verification annotation (Figure 3 H).

Overlap is poorest for punctate chromatin states such as Promoter, Enhancer and

Bivalent (∼50% overlap, Figure 1 D). Overlap for broad chromatin states such as

Transcribed, Facultative and Constitutive Heterochromatin is higher (∼70% over-

lap, Figure 1 D) and best for Quiescent (∼80% overlap, Figure 1 D). These results

are generally consistent across the five cell types we tested (Figure 3 H). Overlap is

significantly lower for Segway, which achieves just 30-40% average overlap (Figure

3 H). These results are concerning for the application of SAGA annotations, as

reproducibility is far lower than the 95% standard used for most genomic predic-

tions. Results are similar in other cell types and settings (Supplementary Section

2). In setting 2 (different data, same model), we observe a slight improvement in

the naive overlap, over setting 1 (different model, different data), for ChromHMM

annotations, but not for Segway (Figure 3H). However, in setting 3, where we used

the same data with different models, we observed a significant improvement in the

average overlap, especially for Segway annotations (Figure 3H). This suggests that

the quality of data plays a more significant role in the poor naive overlap observed

in settings 1 and 2 than the model training.

However, as we describe below, measuring reproducibility according to the naive

overlap with the corresponding states may be too conservative, as doing so counts

two types of variation that may not be important to practitioners.

2.3 Granularity of chromatin states affect reproducibility.

Each base state generally overlaps with multiple verification states, yet this overlap

usually occurs among a small number of related states (Figure 1C). For example,

in our running example, base state 7 Enha frequently overlaps verification states

6 Enha, 11 Enha and 15 Enha. A similar issue occurs across related chromatin

state types: base state 10 Biva overlaps a mixture of verification states 12 Biva and

13 Prom fla. This suggests that irreproducibility may stem from excessive granu-

larity of states. That is, dividing the genome among 16 labels as done by existing

SAGA pipelines (section 4.2) requires a resolution in chromatin states that is too

fine to achieve robust results. There is a trade-off between reproducibility and the

number of states; a two-state annotation is likely to have near-perfect reproducibil-

ity, but carries little information (Figure 2 F,G).

Thus, we evaluated whether each base annotation state can be recovered using

multiple verification annotation states. To accomplish this, for each base state, we

ordered verification states according to their intersection over union (IoU) over-

lap then iteratively merged the top two states in terms of intersection over union

(IoU) overlap to create a “super-state” in the verification annotation that eventually

covers the entire genome. This process produces an ROC-like (receiver-operating

characteristic-like) curve showing the fraction of overlap versus genomic coverage

of each state. The area under this state merging curve (auSMC) is a measure of a

state’s reproducibility when taking into account such merges, calculated according
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the ratio of the observed area under the curve (shaded green in Figure 2A, B) to

the the area under the curve pertaining to the perfect reproducibility (shaded red).

We found that, indeed, base chromatin states can often be recovered using a com-

bination of verification states. For example, although only 80% of base state 3 Prom

is overlapped by its corresponding verification state 9 Prom, a further 10% over-

laps related label 8 Prom fla, resulting in auSMC>0.99 (Figure 2A). Both SAGA

models are almost always able to identify Enhancer chromatin states with auSMC

> 0.8 (Supplementary Section 3.2). However, Promoter chromatin states identi-

fied by ChromHMM generally show strong auSMC (Figure 2D), while for Segway

they often show a poor auSMC, even in S3 (same Data, different models) (Supple-

mentary Section 3.2) However, some base states are not reproducible even when

accounting for multiple verification states. For example, although 68% of base state

14 Facu is overlapped by its corresponding verification state 0 Facu, one must merge

both other repressive states (2 Cons and 1 Quies), covering most of the rest of the

genome, in order for the merged state to cover more than 90% of 14 Facu, result-

ing in aucSMC = 0.87. Facultative heterochromatin has the largest variation in

terms of auSMC, likely due to differing thresholds dividing Quiescent and Faculta-

tive Heterochromatin states (Supplementary Section 3.3.3). As with naive overlap,

settings 1 and 2 (different data, different models and different data, same model,

respectively) have similar performance but setting 3 (same data, different model)

performs much better, especially for Segway, indicating that most differences are

cause by differences in the input data (Figure 2 E).

Information theory provides a more general way of evaluating reproducibility while

accounting for the lack of one-to-one correspondence (Section 4.5). We found that,

for our running example, the base annotation conveys 0.95 bits of mutual informa-

tion about the verification annotation, out of 1.56 total bits of entropy replicate (Fig

2 H). In general, for both ChromHMM and Segway annotations, the base annota-

tion usually conveys about 1 bit of information about the verification annotation

(Figs 2 G,H).

These results suggest that reducing the number of states may give more robust

annotations. Running SAGA with all possible numbers of states would be computa-

tionally infeasible and analysis likely would suffer from noise due to model training,

so instead we simulated annotations with fewer states by merging states in the base

and verification replicates, respectively. Thus, we created annotations with fewer

states by merging states in the base and verification annotation, respectively. We

iteratively merged pairs of state in each annotation base and validation until we

were left with two states in each annotation, where at each iteration we merged the

pairs resulting in the smallest loss of mutual information (Section 4.10, Figure 2

F,G,H)). As merging low-coverage labels has a smaller impact than merging high-

coverage labels, throughout our analysis below we use the bits of entropy to estimate

the complexity of an annotation instead of the raw number of labels (Figure 2 G)

. We found that SAGA annotations with fewer labels have greatly improved repro-

ducibility. In our running example, moving from a 16-state to a 10-state annotation

improves naive overlap from 87% to 91% while only reducing the entropy of the

annotation from 1.56 to 1.37 bits (Figure 2 F).
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Figure 2 Evaluation of reproducibility as a function of granularity of chromatin state. (A) For a
given chromatin state in the base annotation Bi, we ordered the chromatin states in the
verification annotation V according to their intersection over union overlap. The leftmost dot
indicates the most-overlapped verification chromatin state Vj ; the horizontal axis indicates Vj ’s
genomic coverage and vertical axis indicates the fraction of Bi overlapping with Vj . The second
point corresponds the the union of Vj with the second-most enriched verification chromatin state,
and so on for subsequent points. This forms an ROC-like curve, with the green area representing
the AUC for the observed overlap versus genomic coverage of each state, and the red area
indicating deviation from perfect reproducibility where the first verification chromatin state covers
all positions of target chromatin state in base annotation Bi. The area under the state merging
curve (auSMC) ratio is a numerical representation of chromatin state reproducibility as a function
of chromatin state granularity which is calculated by dividing the observed area under the curve by
the area under the curve pertaining to the perfect reproducibility case. In other words, larger red
area corresponds to lower auSMC. Results are shown for the Promoter (3 Prom) chromatin state
in the base annotation obtained from our running example (setting 1, ChromHMM, GM12878)
Lists of chromatin state names on the right of A and B represent chromatin states in the
verification annotation sorted according to their intersection over union (IoU) overlap with the
target chromatin state in the base annotation. (B) Same as (A), but for Facultative
Heterochromatin (14 Facu) (C) auSMC ratio of chromatin states in the base ChromHMM
annotation according to S1 (different Data, different models) from GM12878 cell type. (D)
auSMC ratio of various chromatin states categories identified in the ChromHMM annotation
according to S1 (different Data, different models) for five cell types. Each dot represents a
chromatin state, with color denoting cell type and size proportional to genome coverage. (E)
Average auSMC ratio (weighted by the genome coverage) across two SAGA models, five cell
types, and three settings. Color denotes the SAGA model and shapes represent cell types. (F)
Mutual information (left) and naive overlap (right) as a function of the number of chromatin
states, for our running example (ChromHMM, GM12878, setting 1). Horizontal axis indicates the
number of states; the default 16-label model is on the far right, and each dot to the left
represents an annotation after merging two labels in the annotation to its right. Mutual
information indicates the number of bits of information about the verification state that is gained
by observing the base state (Methods). (G) Mutual information between base and verification
replicates after merging labels, as a function of the entropy of the base annotation. In a
perfectly-reproducible cases, the amount of mutual information would the entropy. Color denotes
SAGA model (Segway or ChromHMM). (H) Mutual information between base and verification
annotations across two SAGA models, five cell types, and three settings as a fraction of the base
annotation entropy. (I) Same as (H), but evaluating the mutual information when observing both
the label and posterior probability (Methods).
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2.4 Spatial misalignment of corresponding chromatin states leads to irreproducibility.

Figure 3 Spatial misalignment of corresponding chromatin states. (A) Schematic depicting the
types of state misalignment and the influence of the tolerance window w. The horizontal axis
depicts a genomic window. Yellow rectangles indicate a base state and its corresponding
verification state. Red/green rectangles indicate whether the given position in the base annotation
would be counted as overlapping the verification replicate. (B) Given that a position g is
annotated as base state 5 Prom, the probability that a nearby position is annotated as the
corresponding verification state (13 Prom fla) as a function of distance from g. (C) Same as (B),
but for 15 Trans. (D) Given that a position g is annotated with base label 5 Prom, the probability
(vertical axis) that the corresponding label occurs within a window g ± w, as a function of w
(horizontal axis). (E) Same as (D), but for 15 Trans. (F,G) The overall overlap of the base
annotation from Segway and ChromHMM, respectively as a function of w (GM12878, setting 1).
(H) Naive overlap across two SAGA models, five cell types, and three settings. Color denotes the
SAGA model and shape represents cell type. (I) Same as (H), but allowing for a spatial tolerance
window of w = 1000.

We found that a substantial fraction of mismatch between replicates results from

spatial misalignment of segment boundaries. This may occur when two segments

with corresponding chromatin states from base and verification annotations par-

tially overlap, but their borders do not fully align, or when two non-overlapping

segments with corresponding states occur in close proximity (Fig. 3A). Such im-

precision in segment boundaries may be unimportant to practitioners since it may

not meaningfully hinder downstream applications, such as in identifying putative

regulatory elements or localizing disease-associated variation.
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Therefore, to evaluate the reproducibility of annotations, we investigated the over-

lap between analogous chromatin states while considering a window of size w=1000

base-pairs upstream and downstream of any given genomic positions. In other word,

in this refined definition of overlap, each annotation at position g in base annotation

is considered overlapped if its corresponding state is observed within the window of

g ± w in the verification annotation.

We found that a large fraction of irreproducibility in SAGA annotations can be

be attributed to spatial misalignment (Figure 3). Corresponding states frequently

occur upstream and downstream of a target position (Figure 3 B, C). When mea-

suring overlap while considering a window around each position, we observe that

for the majority of chromatin state types, a window of size w=1000 bp significantly

increases the overlap by capturing most of the misalignments, especially for chro-

matin states with short segments. For instance, in our running example, ∼0.6 of

regions labeled as 5 Prom exactly overlap (w = 0) their corresponding state in ver-

ification annotation (Figure 3 D). However, by slightly increasing the window size,

the fraction of overlapping regions increases to ∼0.9. This implies that for roughly

∼0.3 of positions that are labelled as 5 Prom in base annotation, we can find a cor-

responding state in verification annotation within close proximity (1kbp). However,

states such as 15 Tran are less affected by spatial misalignment.

Segway annotations are particularly susceptible to misalignment. Allowing for

misalignment up to w=1000 increases overlap in Segway annotations from 47% to

85% (Figure 3F). In contrast, we do not observe a similar pattern for ChromHMM

(Figure 3G). This pattern occurs because Segway uses signal values rather than

binarized data and thus is sensitive to variation in the scale of input signals across

replicates. This can be attributed to hyper-segmentation in Segway annotations

due to its sensitivity to variation in input signals [3, 15]. Segway also tends to

hyper-segment the genome into small segments that are inherently more prone to

misalignment than longer segments.

Notably, without accounting for misalignments, in settings S1 (different data,

different models) and S2 (different data, same model), we can observe a distinct

gap between ChromHMM and Segway in terms of overall overlap (Figure 3H).

However, S3 (same data, different models) essentially removes this gap and results in

overall overlap values that are roughly in the same range for both ChromHMM and

Segway. In S3 (same data, different models), we do not observe severe misalignment

issues for Segway, which confirms Segway’s sensitivity to noise in the input data.

Moreover, ChromHMM’s overall overlap is significantly less dependent on window-

size, suggesting less susceptibility to misalignment due to data binarization and

removal of fine details in the input data. After accounting for misalignment, Segway

annotations significantly improve in terms of reproducibility and slightly outperform

ChromHMM annotations(Fig. 3 I).

2.5 Posterior probability indicates robustness of annotations.

SAGA methods generate posterior probabilities that indicate the model’s confi-

dence about the state assignment at every genomic position. We hypothesized that

these posterior probabilities indicate reliability, such that confidently-annotated po-

sitions are robust. Unfortunately, these probability values are often vastly too con-

fident; most positions receive > 99% posterior [9].
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Figure 4 Posterior probability is associated with reproducibility. (A) The frequency of overlap
with a corresponding state as a function of posterior probability for all states in the base
annotation in running example (ChromHMM, GM12878, setting 1). In each sub-panel of (A), the
horizontal axis corresponds to the posterior probability and the vertical axis corresponds to the
observed overlap. The red dotted horizontal line in each sub-panel represents the genome
coverage of the corresponding state in the verification state, indicating the overlap expected from
random overlap. The intersection of the calibration curve and the red dotted-line corresponds to
the posterior threshold from which any larger probability would exceed the probability of random
overlap. R2 score represents how well the isotonic regression curve fits the data. (B) shows the
mean expression level (TPM) as a function of posterior of 15 Tran. The horizontal axis represents
rank of posterior probability, while the vertical axis shows TPM. (C) Same as (B) but for 13 Quie.
Similarly, (D) shows the enrichment around TSS regions as a function of posterior of a 3 Prom.
The horizontal axis shows the rank of posterior probability and the vertical axis shows enrichment
around TSS. (E) Same as (D) but for 13 Quie. confirming that the posterior contains
biologically-relevant information about transcription start sites. In (B-E), green bars represent
genomic loci for which the maximum-a-posterior is the target chromatin state in the base
annotation and red bars correspond to the loci where the maximum-a-posterior is another
chromatin state.

We found that, although rates of reproducibility are much lower than model pos-

terior probabilities, there is a strong increasing relationship between posterior prob-

ability and reproducibility. Specifically, for each chromatin state in the base anno-

tation, we evaluated the frequency with which it overlaps its corresponding state in

verification annotation as a function of the model’s posterior probability, using an

isotonic regression (Section 4.8). For Segway, doing this analysis required modifying

the underlying model to artificially weaken model predictions to avoid posteriors be-

ing rounded up to exactly 1.0 due to floating point under/overflow (Supplementary

Section 1).

The results showed a positive trend between posterior probability and repro-

ducibility, indicating that higher posterior probabilities are associated with higher

levels of reproducibility (Figure 4A). This means that despite being over-confident,

posterior probability of SAGA methods contain information about their repro-

ducibility.

Posterior probabilities also contains biologically-relevant information about gene

expression and transcription start sites, further confirming their usefulness. We

found that there is a strong correlation between posterior probability of the Tran-

scribed state within a gene body and expression of that gene (Figure 4B). That is,

as the posterior of transcribed chromatin state increases, the average expression as

measured by RNA-seq increases as well. Conversely, the posterior of the Quiescent

state is negatively correlated (Figure 4C). Notably, even for positions that did not
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ultimately receive a label of Quiescent, a small but non-zero posterior probability

of Quiescent at the gene body is associated with low expression.

Similarly to the result on gene bodies, posterior of Promoter states is positively

correlated with occurrence of annotated transcription start sites (TSSs), and the

converse is true of Quiescent states (Figure 4D,E).

We found that the posterior of the state assignment to the base annotation con-

veys a great deal of information about what state is assigned to the verification

annotation (Methods). As mentioned above, knowing only the identity of the state

assigned to the base annotation removes 51% of the uncertainty in the verification

state, as measured by the mutual information/entropy ratio (Figure 2H). However,

knowing both the state and its posterior probability increases the mutual informa-

tion to 85%, suggesting that the posterior probability strongly indicates whether

the annotation of a given genomic bin is reliable. This increase is even more dra-

matic for Segway, increasing the fraction of mutual information from 0.20-0.35 to

0.64-0.72 (Figure 2I).

2.6 SAGAconf yields robust annotations

Figure 5 SAGAconf identifies confident state annotations. SAGAconf integrates sources of
reproducibility information such as granularity, alignment, and posterior to derive an r-value for
each genomic position. The r-value estimates the probability of reproducing the annotation at a
specific location. (A) Density histogram of r-values for each chromatin state in the running
example (setting 1, ChromHMM, GM12878). A threshold of α = 0.9 is applied to label positions
with r-value ≥ α as reproducible and irreproducible otherwise. The horizontal axis represents
r-value, the vertical axis represents density, the red dotted line represents the threshold, and the
green-shaded area show confident annotations. (B) Fraction of chromatin states called confident
by SAGAconf for ChromHMM annotations according to S1 (different Data, different models) in
five cell types. Each dot represents a chromatin state, with color denoting cell type and size
proportional to genome coverage. (C) Fraction of genome called confident across two SAGA
models, five cell types, and three settings. Color denotes SAGA model and shapes represent cell
types. (E) We measured the fraction of the genome called as confident by SAGAconf during the
process of post-clustering; that is, we measure the fraction of confident positions in the genome as
a function of the base annotation’s entropy as we merged similar chromatin states in the base
annotation. The horizontal axis represents base annotation entropy, the vertical axis represents the
fraction of genome identified as confident, sub-panels correspond to different SAGA models and
settings, and colors represent cell types.

As described above, even when allowing for variability in granularity of state

definitions and in spatial positioning, the reproducibility of SAGA annotations falls
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below the 90-95% threshold sought in most applications. Fortunately, as describe

in the previous section, the posterior probability output by the SAGA probabilistic

model indicates the reliability of the annotation of each genomic position.

In order to produce reliable chromatin state annotations, we propose SAGAconf,

a method for producing robust chromatin state annotations. SAGAconf infers the

probability that the annotation to a given genomic position will be reproduced in

a replicate experiment (within a spatial tolerance of w = 1000 bp), according to

the SAGA model’s output state and posterior probability, which we term the r-

value (Section 4.12). SAGAconf outputs the annotation to a subset of the genome

passing a user-defined r-value threshold (usually 90% or 95%). Thus SAGAconf is

analogous to the IDR pipeline used for ChIP-seq peak calling and related tasks [18].

SAGAconf is independent of SAGA methodology, as it takes as input only a SAGA

annotation and its posterior probability matrix.

We found that r-values are distributed differently across chromatin states (Fig

5 A). In our running example, nearly all positions labeled with 3 Prom achieve

r > 0.9, meaning that this state is reproduced independent of model posterior.

Conversely, all positions with state 4 Prom have r < 0.9, indicating that this state

can never be confidently annotated. However, most states show a range of r-values,

indicating that the reliability depends on the posterior; for example, 52% of state

0 Enha low have sufficiently-high posterior to pass the r > 0.9 threshold. Thus

applying SAGAconf is critical to knowing whether the annotation to any given

locus can be relied upon.

Overall, 10%-50% of positions are annotated confidently according to SAGAconf

(Figure 5C). Most enhancer states from ChromHMM are irreproducible (Figure

5B), while Segway identifies more-reproducible enhancers (Supplementary Section

6). After applying SAGAconf, Segway and ChromHMM both show roughly similar

reproducibility in terms of fraction of the genome which is identified as confident

(Figure 5 C).

SAGA models with fewer states can confidently annotate a much larger fraction

of the genome. In our running example, the default 16-label annotation has 2.1

bits of entropy and confidently annotates 43% of the genome, but merging down to

an annotation with 1.7 bits (10 labels) yields 55% of the being being confidently

annotated. This difference is more extreme for Segway. Although the default 16-

label annotation can confidently annotate only a small fraction (< 10%), a 1.7 bit

annotation confidently annotates 64% of the genome.

3 Discussion
Chromatin state annotations are essential for various downstream tasks, including

identifying regulatory regions and cell type-specific activity patterns, interpreting

disease-association studies, studying gene regulation, and analyzing cellular differ-

entiation [1, 2, 14, 10, 9]. Therefore, it is paramount to ensure their reliability,

else all subsequent analysis may be inaccurate. Yet, despite the fact that statistical

guarantees (such as p-values, q-values or IDR) are used ubiquitously in genomics

and in science in general, no such statistical guarantee previously existed for SAGA.

Here, we provide a comprehensive evaluation of genome annotations in terms of

their reproducibility and confidence. Using replicated data, we delineate different
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sources of irreproducibility stemming from the data and the SAGA models. We

found that SAGA chromatin state annotations are frequently irreplicable, meaning

that they often disagree when run on two replicated data sets. A substantial fraction

of this disagreement remains after accounting for mismatch in chromatin states

across models and for spatial misalignment between segments. This finding suggests

that there is significant risk to using SAGA annotations without any filtering.

To mitigate this risk, we introduce a framework SAGAconf that identifies a con-

fident subset of the genome that is annotated reliably. SAGAconf does so by lever-

aging the posterior probability of the underlying probabilistic graphical model used

by the SAGA method, which we demonstrated to be informative of reproducibility.

We showed that SAGAconf correctly distinguishes reliable versus unreliable SAGA

annotations within the genome. Thus downstream applications of SAGA annota-

tions would be improved by applying SAGAconf to filter out genomic positions

with unreliable labels. This filtering step is analogous to the use of irreproducible

discovery rate (IDR) analysis for ChIP-seq peak calling.

This study tackles a repeatedly-encountered problem in the field that is the lack

of comprehensive and principled approaches for evaluation of SAGA genome anno-

tations. Conventionally, SAGA genome annotations are evaluated using qualitative

and quantitative methods [9]. Qualitative methods involve examining various statis-

tics of an annotation to determine whether it reflects expected features of genome

biology [27]. However, currently, there are no generally agreed upon statistics that

hold for all high-quality annotations. Quantitative methods on the other hand, in-

volve prediction problems such as predicting RNA-seq expression given only the

annotation label at the gene’s promoter [28] [10], [7]. But, such prediction tasks

are useful for the purpose of comparing different annotations but do not serve as a

realistic evaluation of the annotations themselves. This study introduces SAGAconf

as a comprehensive and principled alternative for this task that addresses various

shortcomings of previous evaluation approaches.

The findings of this study suggest that reproducibility of chromatin states depends

greatly on the quality of data; that is, estimations of confidence are affected by the

replicate with inferior data quality. In addition to obtaining better replicated data,

and effective pre-processing methods [29, 30, 19], future endeavors can tackle this

problem by designing SAGA models that are more robust to data quality.

Future studies should enhance our understanding of genome annotation confidence

by evaluating the effect on reproducibility of the choice of SAGA methods (e.g.

Segway [3], ChromHMM [4], IDEAS [12] and others), model hyper-parameters,

resolution (e.g., by using coarse resolution to annotate domains), and data types

(e.g., conservation via ConsHMM) [31]. Additionally, factors such as data quality

and the availability of epigenomic assays should be considered. These measurements

can be potentially valuable for inferring developmental and lineage-specific changes

in the epigenome.

Currently, SAGAconf treats the base and verification replicates separately. Com-

bining these replicates to obtain a unified representation of reproducibility across

experiments is a potential area for future research. A naive approach to combining

replicates would be to run SAGAconf twice, with each of the two possible assign-

ments to base and verification, then output the intersection of the confident regions.
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Many epigenomic assays on public databases such as [1] are not performed on

replicated experiments, so a version of SAGAconf that does not require replicated

data would be valuable. One naive option would to use data from a similar cell type

the produce a verification replicate. Such a confidence estimate will be conservative,

meaning that a smaller fraction of the genome will be deemed reproducible by

SAGAconf. There is a need for future work to develop a model that can generalize

statistics from a replicated cell types to unreplicated cell types.
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4 Methods
4.1 Data collection

We retrieved sets of replicated histone modification ChIP-seq data for five cell types

from the ENCODE DCC [1][1]. These cell types are all among ENCODE’s tier-1

and tier-2 cell types and have the most number of ChIP-seq assays with isogenic

replicate data (Supplementary Section 1). Isogenic replication, also referred to as

biological replication, is a process in which two biosamples are derived from the

same human donor or model organism but treated separately [2].

Consequently, we collected pairs of replicated histone modification ChIP-seq data

for the following cell types.

1 GM12878 with 11 histone modification assays

2 K562 with 11 histone modification assays

3 HeLa-S3 with 11 histone modification assays

4 CD14-positive-monocyte with 11 histone modification assays

5 MCF-7 with 13 histone modification assays

For each cell type, we assembled two data sets each consisting of all of the as-

says belonging to one replicate. These datasets consist of a feature vector for each

genomic position in which each element corresponds to a particular histone mod-

ification measurement. With d histone modification assays, the dataset is a RG×d

matrix, where G denotes genomic positions. For instance, for cell type GM12878,

we have two replicated datasets, and in each dataset, we have an 11-dimensional

feature vector per genomic position. These feature vectors are considered by SAGA

models as observed events Xg, and are used as training data. All of the ChIP-seq

data are aligned with hg38 (GRCh38) reference human genome.

4.2 Model training and annotation

Using the collected data, we trained ChromHMM and Segway models with a fixed

set of hyper-parameters and obtained chromatin state annotations from them.

Specifically, for both methods, to specify the number of chromatin states, we

used the formula (10 + 2
√
number of assays) as suggested by [10] to scale with

the amount of available data (11 histone modification assays for GM12878, K562,

HeLa-S3, CD14-positive-monocyte, and 13 assays for MCF-7). For specifying hyper-

parameter settings of both ChromHMM and Segway, we followed standard practice

as previously performed by [14, 3, 32, 10, 4]. Details of hyper-parameter settings that

were used for model training and annotation are explained in the Supplementary

Section.

As a post-processing step, to enable comparison between two replicates, we divided

the genome into resolution-sized positions and assigned the posterior P (Qg = q|X)

and annotation results to each genomic position. This additional parsing step pro-

vides us with a unified format which is readily comparable, independent of datasets,

parameters, or even the SAGA algorithm that generated the annotations. Parsed

annotation results are matrices of size G × K where K denotes the number of

chromatin states, and G corresponds to the number of genomic positions; that is,

the whole genome size divided by --resolution and each element in the matrix

corresponds to the posterior probability of each state at each position.

[1]http://encodeproject.org/
[2]https://www.encodeproject.org/data-standards/terms/
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4.3 Biological state interpretation

As the raw annotation results of SAGA algorithms are states named with the inte-

ger ID of their clusters, we need an additional interpretation step in which cluster

IDs are translated to obtain human-readable results into functional biological roles

(also known as “mnemonics”). To avoid bias from manual interpretation, we used

an automated interpretation procedure introduced in [10]. Specifically, we used a

pre-trained random forest classifier which, using the enrichment of states around

conserved regions and enrichment of different histone modification marks for each

state, assigns a predicted biological interpretation to each state. This classifier is

trained on Segway annotations and might not be as accurate on ChromHMM an-

notations. These interpretation terms are solely for the interpretability of results,

and every step of the reproducibility evaluation pipeline is independent of the in-

terpretation terms [33].

4.4 Pairwise overlap of chromatin states

SAGAmethods output integer state IDs for each identified chromatin state. Because

they are unsupervised, the state IDs are not consistent across two different models.

Therefore, to enable comparison among chromatin states of the two annotations,

the first step is to identify states that correspond to related genomic functions across

the two annotations by measuring the pairwise overlap between them.

Let k be a chromatin state in the base annotation B and l be a chromatin state

in verification annotation V . Their joint frequency of overlap P̂ (B = k, V = l) is

defined as:

P̂ (B = k, V = l) =
1

G

G∑
g=1

1(qBg = k, qVg = l) (1)

Where g corresponds to genomic positions and qBg and qVg denote assigned states to

the genomic position g in base and verification annotations, respectively. Similarly,

P̂ (B = k) =
1

G

G∑
g=1

1(qBg = k) (2)

is the marginal frequency (i.e. genomic coverage) of state k in the base annotation

B.

The joint distribution of overlap P̂ (B = k, V = l) is greatly influenced by the

states’ genome coverage. For example, pairs of Quiescent states that cover most of

the genome, will have a very high probability while highly corresponding promoter

pairs might get small overlap probabilities. To identify correspondence of states

regardless of their genome coverage, we use intersection over union (IoU), also known

as Jaccard’s similarity coefficient, which is formulated as follows.

IoU(B = k, V = l) =
P̂ (B = k, V = l)

P̂ (B = k) + P̂ (V = l)− P̂ (B = k, V = l)
(3)
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4.5 Mutual information between annotations

The mutual information of base and verification annotations I(B;V ) can quantify

the shared information of two annotations and it is calculated as follows:

I(B;V ) =
∑
k∈B

∑
l∈V

P̂ (B = k, V = l) log2

(
P̂ (B = k, V = l)

P̂ (B = k)P̂ (V = l)

)
(4)

Mutual information can have values ranging from 0 for total independence and

+∞. However, MI I(B;V ) is always upper bounded by both entropies of the base

annotation H(B) and the verification annotation H(V ) which quantify the total

amount information that can be contained within these annotations. Entropy of

each set of annotation is calculated as follows:

H(B) = −
∑
k∈B

P̂ (B = k) log2 P̂ (B = k) (5)

Therefore, we normalize the mutual information into values that reflect the frac-

tion of information in the base annotation that is shared with the verification an-

notation.

The posterior of the base replicate provides information into the replicability of the

annotation. We compute the information as follows. We make 10 equally distanced

bins based on the posterior values of the base annotation chromatin states. Let i

be a bin index, where 1 ≤ i ≤ 10, the mutual information between the base and

verification annotations I(B;V ) with respect to posterior probabilities of the base

annotation is calculated as follows:

I(B;V ) =

10∑
i=1

∑
k∈B

∑
l∈V

P̂ (B = ki, V = l) log2

(
P̂ (B = ki, V = l)

P̂ (B = ki)P̂ (V = l)

)
(6)

4.6 Overlap and spatial alignment

We hypothesized that due to a variety of noises, corresponding chromatin states

might not locate at the exact same position across the two annotations. To investi-

gate the impact of misalignment of corresponding segments, we relaxed the criteria

for considering an annotation as overlapped by allowing a window of size w up-

stream and downstream of any given position g to look for corresponding states.

Therefore, we consider proximal positions in the overlap calculations:

P̂ (B = k, V = l) =
1

G

G∑
g=1

1(q1g = k, q2g±w = l) (7)

Where P̂ (B = k, V = l) is the updated probability of overlap which considers a

window of size w around segments of the verification annotation.
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4.7 Granularity of genomic functions

In a perfect case of reproducibility, one would expect that for each state k in base

annotation, one state should exist in the verification annotation that exactly covers

the same genomic positions. However, in practice, positions with state k in B are

distributed over two or more states in V and vice versa.

To understand the effect of genomic functional granularity (i.e. the number of

chromatin states) on reproducibility, we measure the overlap while iteratively ver-

ification state. To that end, for a given target state of base annotation, we sorted

all of the states of verification annotation according to their intersection over union

(IoU) of overlap. Based on this order, we start merging the states in V iteratively

until all of the genome is covered with one “super-state” in V . We evaluate what

fraction of the genome needs to be covered by V states in order to cover most of the

positions of the target state in B. We term this the “state merging curve” (SMC).

The area under the SMC in case of perfect reproducibility, is when = the first V

state covers all of the positions of target state in B. We define the ratio between

these two curves as the area under the SMC (auSMC), which is a simple numerical

representation of the state’s reproducibility as a function of its chromatin state

granularity.

4.8 Calibration of posterior probability

The posterior probabilities produced by SAGA tend to be overly confident, with the

majority of positions receiving a probability >99%, which does not accurately reflect

the reliability of the annotations. However, we investigated if there is any correlation

between reproducibility and posterior probability. By examining the relationship

between posterior probability and reproducibility, as measured by pairwise overlap,

we can improve confidence estimates by creating a calibration curve. This allows us

to transform raw posteriors into more accurate and robust confidence scores that

better represent the actual likelihood of reproducibility for a given annotation.

Initially, we establish pairs of corresponding chromatin states. For each state k in

B, the state with the greatest IoU overlap score in V is considered as the matching

state. To carry out calibration, we computed the ratio of overlap as a function of

the model’s posterior. Specifically, let q
(B)
1...G ∈ {1..k}G and q

(V )
1...G ∈ {1..l}G represent

vectors of base and verification annotations respectively. In base annotation, for

each state k, we first arrange the vector of posterior probabilities of all genomic

positions pk1...G ∈ RG based on the posterior value. Then, we divide the sorted array

into b sub-arrays (bins) of equal size such that bi ⊂ {1 . . . G}. For each bin, we

compute the fraction of the target state in the base annotation that overlap with

its corresponding state in the verification annotation. It is expected that for first

bins with lower posterior value, the overlap is lower than that of high posterior bins.

By performing the binning step, we can quantitatively compare two variables with

different natures, namely the overlap and posterior probability.

We assume that the pairwise agreement and posterior probability of corresponding

chromatin states are not negatively correlated. Thus, assuming a monotonic and

non-decreasing trend, we fit an isotonic regression model to create a calibration

curve [34, 35, 36]. Isotonic regression is a non-negative piece-wise regression model

in which we aim to learn a curve ŷ to solve a problem formulated as follows:
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min
N∑
i=1

(ŷi − yi)
2, subject to ŷi ≤ ŷj whenever bi ≤ bj (8)

To further explain, the model attempts to fit a curve ŷ to the sequence of “pos-

terior vs. overlap ratio” bins b such that for all bi ≤ bj , the curve ŷi ≤ ŷj will

be produced, resulting in a non-negative trend. We selected the isotonic regression

model for this calibration task because, unlike linear regressions that impose lin-

earity, these models are not limited by any functional form and can fit any form

in the observed data as long as it is monotonically increasing. The Pool-Adjacent-

Violators Algorithm (PAVA) is commonly used to fit the isotonic regression model

[34, 35, 36]. We utilized isotonic regression from Python’s Scikit-learn package [37].

4.9 Validation against known phenomena

In contrast to supervised learning problems, where the predictions of models can

be validated against a labeled test set, chromatin states lack a gold standard. One

common method to validate annotations is to analyze the enrichment of promoter-

like states around conserved positions such as transcription start sites (TSS) from

reference annotations [38, 10, 24, 12]. Another method is to check if the transcribed

regions predicted by SAGA models overlap with experimentally-validated expressed

regions obtained from RNA-seq data [28].

We used this approach to evaluate whether the posterior probability of annota-

tions can confidently predict known regulatory regions. Firstly, similar to calibra-

tion of posterior probability, for each state k, we rank the posterior probabilities

pk1...G ∈ RG in ascending order. Then, we split the sorted array into b equal size

sub-arrays (bins) such that bi ⊂ {1 . . . G}. For each bin of posterior probability, we

calculate the enrichment of regions with the posterior of state k in this bin range

around transcription start sites. Enrichment is calculated as log( observedexpected ). In this

case, observed is the number of regions with the posterior of state k in a given

bin range around TSS while expected is the number of positions with the posterior

of state k in that bin range across the whole genome. Similarly, for each bin, we

investigate the mean RNA-seq expression level (TPM or transcripts per million) of

genomic positions within that posterior range [39].

4.10 Merging chromatin state to produce lower-granularity annotations

Determining the optimal number of chromatin states to specify as a hyper-

parameter to the SAGA model is not straightforward. However, it is evident that

increasing the number of chromatin states (i.e., increasing granularity) leads to de-

creased reproducibility, as it becomes more difficult for the model to distinguish

between different states. In other words, more granularity in the annotations leads

to higher entropy which naturally leads to irreproducibility. This presents a trade-off

between the granularity of chromatin states learned from the data and the repro-

ducibility of those annotations.

To investigate this trade-off, we iteratively merge pairs of the most similar chro-

matin states in both the base and validation annotations. To do this, we need to
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define a metric S that measures the pairwise similarity of different chromatin states

within one annotation based on their overlap behavior with the other annotation.

We measure this pairwise similarity as follows:

Sk,k′ = 1− ∆I(B;V )

∆H(B)
(9)

Where ∆I(B;V ) and ∆H(B) represent the change in mutual information and

entropy of base annotation, respectively, resulting from merging states k and k′ in

the base annotation annotation. The verification annotation goes through the exact

same process at each iteration.

After calculating metric S for both base and validation annotation, at each it-

eration we merge two pairs with maximum S as the most similar pairs for which

merging results in the least change in mutual information and the greatest change

in entropy. By merging any two chromatin states, both entropy and mutual infor-

mation decrease however, merging similar chromatin states (with similar pattern of

overlap) should ideally result in minimum change in mutual information. This pro-

cess is repeated until all pairs of chromatin states have been considered for merging.

By analyzing how the mutual information and entropy change as pairs of chromatin

states are merged, we can determine the optimal number of chromatin states that

balances granularity and reproducibility.

4.11 Delineating different sources of variability

To obtain a comprehensive insight into how the variability of models and data

can affect reproducibility, we assessed the reproducibility of annotations in sev-

eral settings and different levels of technical and biological variability. Therefore,

we selected pairs of experiments in the three following scenarios to evaluate their

reproducibility.

Setting 1 (Different data, Different model): We trained two separate SAGA

models using the collected data from each isogenic replicate. Two trained

models were then used to annotate the genome. Finally, the annotations were

compared to uncover the reproducibility from various sources, including the

data, the model training process, parameter initialization, etc.

Setting 2 (Different data, Same model): We concatenated data from both

isogenic replicates to form a single extended dataset which we used to train a

single model. The model provided separate annotations for each of the repli-

cates. In contrast to setting 1, concatenated runs remove elements of variabil-

ity in training and state matching and can uncover the irreproducible elements

that are only attributed to the data from replicated experiments.

Setting 3 (Same data, Different model): We also used the same dataset

(from replicate 1) to separately train two different models while only changing

the random seed used for parameter initialization. This setting uncovers the

irreproducibility that is to be attributed to the initialization and training of

models.
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4.12 SAGAconf

Our analysis suggest that there are various aspects to the problem of reproducibility

of SAGA annotations including the granularity of chromatin states, proximity and

spatial alignment, and the information embedded within models’ posterior probabil-

ity. Therefore, we designed SAGAconf, an integrative approach that combines these

sources of information to derive an reproducibility score (r-value) at each genomic

position which can then be used to filter out irreproducible state assignments and

thus obtain robust chromatin state annotations.

The SAGAconf reproducibility assessment pipeline starts by defining correspond-

ing states across the two annotations. We compute a IoU overlap matrix while

considering a window of size w upstream and downstream of each position accord-

ing to equations 3 and 7. Then, by setting a threshold c on the IoU of overlap, for

each chromatin state k in the base annotation, its corresponding states in verifi-

cation annotation should either have a IoU ≥ c or have the maximum IoU with

k among all verification annotation states. Note SAGAconf allows for more than

one chromatin states in verification annotation to count as corresponding as long

as they have IoU ≥ c which can mitigate the issues associated with chromatin state

granularity. Then, we calibrate posterior values into reproducibility score according

to section 4.8. Here, at each bin bi ⊂ {1 . . . G}, we calculate the ratio of genomic

position in base annotation within bi that have one of the corresponding states in a

window of size w around that position in verification annotation. Using the isogenic

regression obtained from last step, we get a reproducibility score for each position

in the genome. The resulting reproducibility score r-value ranges from 0 to 1 and

it represents the probability of that position or its proximity being labeled with a

related genomic function in the other annotation.

Lastly, using a hard threshold α on the r-value, we assign a Boolean label of “re-

produced” for r ≥ α or “not-reproduced” r < α to every position in the genome.

Using these Boolean labels of reproducibility, we can robustly identify a confident

and reliable subset from genome annotation while removing the irreproducible pre-

dictions.
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Abbreviations
• SAGA: Segmentation and genome annotation.

• IDR: Irreproducible discovery rate.

• IoU: Intersection over union.

• auSMC: Area under the state merging curve.

• TSS: Transcription start site.

• TPM: Transcript per milion.

• PAVA: Pool-Adjacent-Violators Algorithm.
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