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available at the end of the article These algorithms take as input a collection of genomics datasets, partition the

genome, and assign a label to each segment such that positions with the same
label have similar patterns in the input data. SAGA methods output an
human-interpretable summary of the genome by labeling every genomic position
with its annotated activity such as Enhancer, Transcribed, etc. Chromatin state
annotations are essential for many genomic tasks, including identifying active
regulatory elements and interpreting disease-associated genetic variation.
However, despite the widespread applications of SAGA methods, no principled
approach exists to evaluate the statistical significance of SAGA state assignments.

Results: Towards the goal of producing robust chromatin state annotations, we
performed a comprehensive evaluation of the reproducibility of SAGA methods.
We show that SAGA annotations exhibit a large degree of disagreement, even
when run with the same method on replicated data sets. This finding suggests
that there is significant risk to using SAGA chromatin state annotations.

To remedy this problem, we introduce SAGAconf, a method for assigning a
measure of confidence (r-value) to SAGA annotations. This r-value is assigned to
each genomic bin of a SAGA annotation and represents the probability that the
label of this bin will be reproduced in a replicated experiment. This process is
analogous to irreproducible discovery rate (IDR) analysis that is commonly used
for ChlP-seq peak calling and related tasks. Thus SAGAconf allows a researcher
to select only the reliable parts of a SAGA annotation for use in downstream
analyses.

SAGAconf r-values provide accurate confidence estimates of SAGA annotations,
allowing researchers to filter out unreliable elements and remove doubt in those
that stand up to this scrutiny.
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1 Background

Annotating regulatory elements in the genome is fundamental to answering key
questions including the molecular basis of disease, evolution, cellular differentia-
tion, and development. To this end, international mapping projects have recently
measured epigenetic activity in hundreds of cell and tissue types using genome-wide
assays such as ChIP-seq [1, 2].

Chromatin state annotations produced by segmentation and genome annotation
(SAGA) methods have emerged as the predominant way to summarize epigenomic
data sets in order to annotate the genome. SAGA methods include Segway [3] and
ChromHMM [4] and others [5, 6, 7, 8] (reviewed in [9]). They take a collection
epigenomic assay data sets from a given cell type or tissue as input and partition
the genome into segments with similar patterns in the input data sets. The output
is an annotation that assigns a label to each genomic position. These algorithms use
probabilistic graphical models such as Hidden Markov Models. They are unsuper-
vised in the sense that the model identifies patterns in the data and the researcher
later maps each patterns to a putative biological functions such as enhancer, pro-
moter or transcribed gene. Thus, SAGA algorithms are used to distill complex data
into an interpretable summary of genomic activity. SAGA algorithms have been
broadly applied. Large-scale epigenome mapping projects such as ENCODE [1] and
Roadmap [2] produced them as their primary output, and researchers have now
produced reference SAGA annotations for hundreds of cell types [10, 11, 12, 13]

Previous efforts to evaluate the reliability of SAGA chromatin state annotations
have found mixed results. On one hand, SAGA annotations recapitulate known
genome biology and the annotations accurately represent many genomic phenom-
ena including transcription [7, 10, 9]. However, results are often dissimilar between
SAGA methods and hyper-parameter settings of a given method [14, 10, 7, 9]. This
suggests that some aspects of SAGA annotations do not reflect true biology.

Thus, there is a great need for a way to produce robust chromatin state annota-
tions. Unfortunately, currently there is no principled way to evaluate the statistical
significance of SAGA label assignments. SAGA annotations are not the result of
a statistical test, so they do not carry a p-value. SAGA methods use probabilistic
graphical models which output posterior probabilities; however, in practice these
posterior probabilities are vastly overconfident, resulting in most positions receiv-
ing posterior probability >99% [15, 9].

Here, we propose the first method for assigning reliable confidence scores to SAGA
annotations. We base our approach on evaluating the reproducibility of annotations
across replicates [16]. We are motivated by methods for ChIP-seq peak calling, for
which researchers generally use irreproducible discovery rate (IDR) analysis to as-
sign confidence scores to peaks [17, 18, 19, 20]. In IDR analysis, researchers score
putative peaks according to their reproducibility in two or more experimental repli-
cates, with the expectation that peaks findings are expected to consistently rank
highly in both experiments. Note that, although several methods have been devel-
oped for the related task of comparing sets of SAGA annotations to one another,
to our knowledge no existing method can assign confidence estimates to a single
chromatin state annotation. In particular, ChromDiff [21], SCIDDO [22] and Epi-
Compare [23] perform the task of group-wise comparative analysis, in which they
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take as input two sets of annotations and identify differential labels between the
two sets. Related method EpiAlign [24] and Chromswitch [25] similarly perform
group-wise comparative analysis but are primarily designed to compare chromatin
state patterns within a query region. CSREP [26] performs the task of group sum-
marization, taking annotations for a group of samples as input and probabilistically
estimating the state at each genomic position to derive a representative chromatin
state map for the group. Because all of these existing studies analyze patterns
across annotations of many cell types, they cannot estimate the confidence in the
annotation of a single target cell type.

Towards the goal of understanding robustness of SAGA annotations, here we
perform a comprehensive evaluation of the reproducibility of SAGA methods. As
described below, we show that SAGA annotations exhibit a large degree of disagree-
ment, even when run with the same method on replicated data sets. Much of this
disagreement can be attributed to unimportant factors such as the granularity of
label definitions and mismatch in the boundaries of annotated elements. Yet, much
disagreement remains, suggesting that a substantial fraction of element annotations
produced by SAGA cannot be relied upon as they are not reproduced by a replicate
analysis.

To remedy this problem, we introduce SAGAconf, a method for assigning a mea-
sure of confidence (r-value) to SAGA annotations. This r-value is assigned to each
genomic bin of a SAGA annotation and represents the probability that the label of
this bin will be reproduced in a replicated experiment. Thus, SAGAconf allows a
researcher to select only the reliable parts of a SAGA annotation for use in down-

stream analyses.
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2 Results
2.1 Comprehensive evaluation of chromatin state reproducibility

We performed comprehensive evaluation of reproducibility of SAGA annotations
(Methods). We collected replicated pairs of epigenomic data sets in five cell types.
In each replicate pair, we applied a SAGA pipeline to produce two replicate annota-
tions, which we term the “base” and “verification” annotation, respectively. For the
purposes of exposition, we focus our analysis on a running example: ChromHMM
run on GM12878 (under setting 1 described below: different data, different models).

A SAGA model assigns an integer ID (1..k) to each genomic bin. These IDs repre-
sent different chromatin states, also known as “states” (Figure 1A). The relationship
of a pair of annotations can be characterized by a k x k matrix representing the fre-
quency of overlap of each base state with each verification state (Figure 1B). Since
SAGA methods are unsupervised, the output integer state IDs do not directly cor-
respond across two SAGA models. Thus, we must first detect corresponding states
across annotations to enable comparison (Figure 1C and Section 4.4). To establish
a correspondence between chromatin states while accounting for varying genomic
coverages, we calculate intersection over union (IoU) of overlap (Methods 4.4, Fig-
ure 1C) and, for each base state, we define the corresponding verification state to
be the one with highest IoU (Figure 1A,C).

Irreproducibility between annotations may be caused either by differences in input
data replicates or differences in model training. To delineate among these sources
of irreproducibility, we assess pairs of experiments in three different settings of vari-
ability (Figure 1A, Section 4.11). In setting 1 (different data, different models) we
trained two separate SAGA models using data from separate biological replicates,
simulating the case where independent researchers each perform a SAGA analysis.
In setting 2 (different data, same model), we train a single SAGA model and use it
to annotate each replicate (known as “concatenated” annotation). This setting iso-
lates irreproducibility due to differences in input data replicates. In setting 3 (same
data, different models), the same dataset from one of the biological replicates is
used to train two different SAGA models, but with a different random parameter
initialization in each model. This setting isolates irreproducibility due to model
training.

Since SAGA methods are unsupervised, each integer state label must be assigned a
putative biological interpretation such as “Promoter” or “Enhancer”. To avoid bias
stemming from manual interpretation, we used a previously-described automatic
process to assign a vocabulary of human-readable chromatin state categories [10]
(Supplementary Section 1.3). Note that interpretations are for exposition only and
all analysis was performed at the level of states, not interpreted chromatin state
categories. Because it is automated, the interpretation process may be imperfect;
for example, in our running example, base state 6_Enha overlaps with verification
state 10_Prom_fla; the mismatch in chromatin state category likely results from an

error in the interpreter, not the annotations themselves.
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Figure 1 Schematic workflow. (A) We obtained histone modification assays from biological
replicates via ENCODE DCC [1] and used these data sets to train SAGA models (Segway or
ChromHMM) to generate chromatin state annotations. The SAGA model outputs a matrix
representing the posterior probability P(Q|X) values of assigning each chromatin state to each
genomic position and a vector of state labels assigned to the position with the highest posterior
probability argmaxP(Q|X) (Methods). One set of replicated data is chosen as the base and the
other as the verification. SAGA training and genome annotation are performed according to three
settings of variability: S1 (different Data, different models), where two separate SAGA models are
trained independently using data from each biological replicate; S2 (different Data, same model),
where data from both replicates are concatenated to train a single SAGA model that provides
separate annotations for each replicate; and S3 (same Data, different models), where the same
dataset (base replicate) is used to train two different SAGA models with different parameter
initializations. Both the base and verification annotations, generated by any variability setting, are
inputs to SAGAconf. The SAGAconf evaluation pipeline begins by forming a pairwise overlap
frequency distribution matrix between the two annotations and calculating the intersection over
union (loU) overlap to determine correspondence between state pairs across the annotations.
SAGAconf performs a comprehensive reproducibility analysis and outputs a subset of the base
annotation that it identifies as confident (Methods). (B) The raw overlap frequency distribution
from our running example annotation (setting 1, ChromHMM, GM12878). Rows and columns
correspond to states in base and verification annotations, respectively. Color indicates frequency of
overlap (log scale). (C) Same as (B), but color indicates the intersection over Union (loU) of
overlap is derived from raw overlap matrix (Methods, linear scale). For each chromatin state of
the base annotation, its corresponding state in the verification annotation is defined as the one
with the maximum loU (marked with red square). (D) Fraction of overlap (Naive overlap) of
various chromatin states categories identified in the ChromHMM annotations according to S1
(different Data, different models) for all five cell types. Each dot represents a chromatin state,
with color denoting cell type and size proportional to genome coverage.
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2.2 Pairwise overlap does not fully capture the reproducibility profile of SAGA
annotations

We found substantial differences between annotations of the two replicates (Fig-
ure 1 B,C,D). Overall, in our running example, only ~80% of genomic bins are
annotated with the corresponding label in the verification annotation (Figure 3 H).
Overlap is poorest for punctate chromatin states such as Promoter, Enhancer and
Bivalent (~50% overlap, Figure 1 D). Overlap for broad chromatin states such as
Transcribed, Facultative and Constitutive Heterochromatin is higher (~70% over-
lap, Figure 1 D) and best for Quiescent (~80% overlap, Figure 1 D). These results
are generally consistent across the five cell types we tested (Figure 3 H). Overlap is
significantly lower for Segway, which achieves just 30-40% average overlap (Figure
3 H). These results are concerning for the application of SAGA annotations, as
reproducibility is far lower than the 95% standard used for most genomic predic-
tions. Results are similar in other cell types and settings (Supplementary Section
2). In setting 2 (different data, same model), we observe a slight improvement in
the naive overlap, over setting 1 (different model, different data), for ChromHMM
annotations, but not for Segway (Figure 3H). However, in setting 3, where we used
the same data with different models, we observed a significant improvement in the
average overlap, especially for Segway annotations (Figure 3H). This suggests that
the quality of data plays a more significant role in the poor naive overlap observed
in settings 1 and 2 than the model training.

However, as we describe below, measuring reproducibility according to the naive
overlap with the corresponding states may be too conservative, as doing so counts
two types of variation that may not be important to practitioners.

2.3 Granularity of chromatin states affect reproducibility.

Each base state generally overlaps with multiple verification states, yet this overlap
usually occurs among a small number of related states (Figure 1C). For example,
in our running example, base state 7_Enha frequently overlaps verification states
6_Enha, 11_Enha and 15_Enha. A similar issue occurs across related chromatin
state types: base state 10_Biva overlaps a mixture of verification states 12_Biva and
13_Prom_fla. This suggests that irreproducibility may stem from excessive granu-
larity of states. That is, dividing the genome among 16 labels as done by existing
SAGA pipelines (section 4.2) requires a resolution in chromatin states that is too
fine to achieve robust results. There is a trade-off between reproducibility and the
number of states; a two-state annotation is likely to have near-perfect reproducibil-
ity, but carries little information (Figure 2 F,G).

Thus, we evaluated whether each base annotation state can be recovered using
multiple verification annotation states. To accomplish this, for each base state, we
ordered verification states according to their intersection over union (IoU) over-
lap then iteratively merged the top two states in terms of intersection over union
(IoU) overlap to create a “super-state” in the verification annotation that eventually
covers the entire genome. This process produces an ROC-like (receiver-operating
characteristic-like) curve showing the fraction of overlap versus genomic coverage
of each state. The area under this state merging curve (auSMC) is a measure of a
state’s reproducibility when taking into account such merges, calculated according
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the ratio of the observed area under the curve (shaded green in Figure 2A, B) to
the the area under the curve pertaining to the perfect reproducibility (shaded red).

We found that, indeed, base chromatin states can often be recovered using a com-
bination of verification states. For example, although only 80% of base state 3_Prom
is overlapped by its corresponding verification state 9_Prom, a further 10% over-
laps related label 8_Prom_fla, resulting in auSMC>0.99 (Figure 2A). Both SAGA
models are almost always able to identify Enhancer chromatin states with auSMC
> 0.8 (Supplementary Section 3.2). However, Promoter chromatin states identi-
fied by ChromHMM generally show strong auSMC (Figure 2D), while for Segway
they often show a poor auSMC, even in S3 (same Data, different models) (Supple-
mentary Section 3.2) However, some base states are not reproducible even when
accounting for multiple verification states. For example, although 68% of base state
14_Facu is overlapped by its corresponding verification state 0_Facu, one must merge
both other repressive states (2.Cons and 1_Quies), covering most of the rest of the
genome, in order for the merged state to cover more than 90% of 14_Facu, result-
ing in aucSMC = 0.87. Facultative heterochromatin has the largest variation in
terms of auSMC, likely due to differing thresholds dividing Quiescent and Faculta-
tive Heterochromatin states (Supplementary Section 3.3.3). As with naive overlap,
settings 1 and 2 (different data, different models and different data, same model,
respectively) have similar performance but setting 3 (same data, different model)
performs much better, especially for Segway, indicating that most differences are
cause by differences in the input data (Figure 2 E).

Information theory provides a more general way of evaluating reproducibility while
accounting for the lack of one-to-one correspondence (Section 4.5). We found that,
for our running example, the base annotation conveys 0.95 bits of mutual informa-
tion about the verification annotation, out of 1.56 total bits of entropy replicate (Fig
2 H). In general, for both ChromHMM and Segway annotations, the base annota-
tion usually conveys about 1 bit of information about the verification annotation
(Figs 2 G,H).

These results suggest that reducing the number of states may give more robust
annotations. Running SAGA with all possible numbers of states would be computa-
tionally infeasible and analysis likely would suffer from noise due to model training,
so instead we simulated annotations with fewer states by merging states in the base
and verification replicates, respectively. Thus, we created annotations with fewer
states by merging states in the base and verification annotation, respectively. We
iteratively merged pairs of state in each annotation base and validation until we
were left with two states in each annotation, where at each iteration we merged the
pairs resulting in the smallest loss of mutual information (Section 4.10, Figure 2
F,G,H)). As merging low-coverage labels has a smaller impact than merging high-
coverage labels, throughout our analysis below we use the bits of entropy to estimate
the complexity of an annotation instead of the raw number of labels (Figure 2 G)
. We found that SAGA annotations with fewer labels have greatly improved repro-
ducibility. In our running example, moving from a 16-state to a 10-state annotation
improves naive overlap from 87% to 91% while only reducing the entropy of the
annotation from 1.56 to 1.37 bits (Figure 2 F).
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Figure 2 Evaluation of reproducibility as a function of granularity of chromatin state. (A) For a
given chromatin state in the base annotation B;, we ordered the chromatin states in the
verification annotation V' according to their intersection over union overlap. The leftmost dot
indicates the most-overlapped verification chromatin state Vj; the horizontal axis indicates Vj's
genomic coverage and vertical axis indicates the fraction of B; overlapping with V;. The second
point corresponds the the union of V; with the second-most enriched verification chromatin state,
and so on for subsequent points. This forms an ROC-like curve, with the green area representing
the AUC for the observed overlap versus genomic coverage of each state, and the red area
indicating deviation from perfect reproducibility where the first verification chromatin state covers
all positions of target chromatin state in base annotation B;. The area under the state merging
curve (auSMC) ratio is a numerical representation of chromatin state reproducibility as a function
of chromatin state granularity which is calculated by dividing the observed area under the curve by
the area under the curve pertaining to the perfect reproducibility case. In other words, larger red
area corresponds to lower auSMC. Results are shown for the Promoter (3_Prom) chromatin state
in the base annotation obtained from our running example (setting 1, ChromHMM, GM12878)
Lists of chromatin state names on the right of A and B represent chromatin states in the
verification annotation sorted according to their intersection over union (loU) overlap with the
target chromatin state in the base annotation. (B) Same as (A), but for Facultative
Heterochromatin (14_Facu) (C) auSMC ratio of chromatin states in the base ChromHMM
annotation according to S1 (different Data, different models) from GM12878 cell type. (D)
auSMC ratio of various chromatin states categories identified in the ChromHMM annotation
according to S1 (different Data, different models) for five cell types. Each dot represents a
chromatin state, with color denoting cell type and size proportional to genome coverage. (E)
Average auSMC ratio (weighted by the genome coverage) across two SAGA models, five cell
types, and three settings. Color denotes the SAGA model and shapes represent cell types. (F)
Mutual information (left) and naive overlap (right) as a function of the number of chromatin
states, for our running example (ChromHMM, GM12878, setting 1). Horizontal axis indicates the
number of states; the default 16-label model is on the far right, and each dot to the left
represents an annotation after merging two labels in the annotation to its right. Mutual
information indicates the number of bits of information about the verification state that is gained
by observing the base state (Methods). (G) Mutual information between base and verification
replicates after merging labels, as a function of the entropy of the base annotation. In a
perfectly-reproducible cases, the amount of mutual information would the entropy. Color denotes
SAGA model (Segway or ChromHMM). (H) Mutual information between base and verification
annotations across two SAGA models, five cell types, and three settings as a fraction of the base
annotation entropy. (I) Same as (H), but evaluating the mutual information when observing both
the label and posterior probability (Methods).
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2.4 Spatial misalignment of corresponding chromatin states leads to irreproducibility.
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Figure 3 Spatial misalignment of corresponding chromatin states. (A) Schematic depicting the
types of state misalignment and the influence of the tolerance window w. The horizontal axis
depicts a genomic window. Yellow rectangles indicate a base state and its corresponding
verification state. Red/green rectangles indicate whether the given position in the base annotation
would be counted as overlapping the verification replicate. (B) Given that a position g is
annotated as base state 5_Prom, the probability that a nearby position is annotated as the
corresponding verification state (13_Prom_fla) as a function of distance from g. (C) Same as (B),
but for 15_Trans. (D) Given that a position g is annotated with base label 5_Prom, the probability
(vertical axis) that the corresponding label occurs within a window g + w, as a function of w
(horizontal axis). (E) Same as (D), but for 15_Trans. (F,G) The overall overlap of the base
annotation from Segway and ChromHMM, respectively as a function of w (GM12878, setting 1).
(H) Naive overlap across two SAGA models, five cell types, and three settings. Color denotes the
SAGA model and shape represents cell type. (1) Same as (H), but allowing for a spatial tolerance
window of w = 1000.

We found that a substantial fraction of mismatch between replicates results from
spatial misalignment of segment boundaries. This may occur when two segments
with corresponding chromatin states from base and verification annotations par-
tially overlap, but their borders do not fully align, or when two non-overlapping
segments with corresponding states occur in close proximity (Fig. 3A). Such im-
precision in segment boundaries may be unimportant to practitioners since it may
not meaningfully hinder downstream applications, such as in identifying putative

regulatory elements or localizing disease-associated variation.
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Therefore, to evaluate the reproducibility of annotations, we investigated the over-
lap between analogous chromatin states while considering a window of size w=1000
base-pairs upstream and downstream of any given genomic positions. In other word,
in this refined definition of overlap, each annotation at position g in base annotation
is considered overlapped if its corresponding state is observed within the window of
g £+ w in the verification annotation.

We found that a large fraction of irreproducibility in SAGA annotations can be
be attributed to spatial misalignment (Figure 3). Corresponding states frequently
occur upstream and downstream of a target position (Figure 3 B, C). When mea-
suring overlap while considering a window around each position, we observe that
for the majority of chromatin state types, a window of size w=1000 bp significantly
increases the overlap by capturing most of the misalignments, especially for chro-
matin states with short segments. For instance, in our running example, ~0.6 of
regions labeled as 5_Prom exactly overlap (w = 0) their corresponding state in ver-
ification annotation (Figure 3 D). However, by slightly increasing the window size,
the fraction of overlapping regions increases to ~0.9. This implies that for roughly
~(0.3 of positions that are labelled as 5_Prom in base annotation, we can find a cor-
responding state in verification annotation within close proximity (1kbp). However,
states such as 15_Tran are less affected by spatial misalignment.

Segway annotations are particularly susceptible to misalignment. Allowing for
misalignment up to w=1000 increases overlap in Segway annotations from 47% to
85% (Figure 3F). In contrast, we do not observe a similar pattern for ChromHMM
(Figure 3G). This pattern occurs because Segway uses signal values rather than
binarized data and thus is sensitive to variation in the scale of input signals across
replicates. This can be attributed to hyper-segmentation in Segway annotations
due to its sensitivity to variation in input signals [3, 15]. Segway also tends to
hyper-segment the genome into small segments that are inherently more prone to
misalignment than longer segments.

Notably, without accounting for misalignments, in settings S1 (different data,
different models) and S2 (different data, same model), we can observe a distinct
gap between ChromHMM and Segway in terms of overall overlap (Figure 3H).
However, S3 (same data, different models) essentially removes this gap and results in
overall overlap values that are roughly in the same range for both ChromHMM and
Segway. In S3 (same data, different models), we do not observe severe misalignment
issues for Segway, which confirms Segway’s sensitivity to noise in the input data.
Moreover, ChromHMM'’s overall overlap is significantly less dependent on window-
size, suggesting less susceptibility to misalignment due to data binarization and
removal of fine details in the input data. After accounting for misalignment, Segway
annotations significantly improve in terms of reproducibility and slightly outperform
ChromHMM annotations(Fig. 3 I).

2.5 Posterior probability indicates robustness of annotations.

SAGA methods generate posterior probabilities that indicate the model’s confi-
dence about the state assignment at every genomic position. We hypothesized that
these posterior probabilities indicate reliability, such that confidently-annotated po-
sitions are robust. Unfortunately, these probability values are often vastly too con-
fident; most positions receive > 99% posterior [9].
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Figure 4 Posterior probability is associated with reproducibility. (A) The frequency of overlap
with a corresponding state as a function of posterior probability for all states in the base
annotation in running example (ChromHMM, GM12878, setting 1). In each sub-panel of (A), the
horizontal axis corresponds to the posterior probability and the vertical axis corresponds to the
observed overlap. The red dotted horizontal line in each sub-panel represents the genome
coverage of the corresponding state in the verification state, indicating the overlap expected from
random overlap. The intersection of the calibration curve and the red dotted-line corresponds to
the posterior threshold from which any larger probability would exceed the probability of random
overlap. R? score represents how well the isotonic regression curve fits the data. (B) shows the
mean expression level (TPM) as a function of posterior of 15_Tran. The horizontal axis represents
rank of posterior probability, while the vertical axis shows TPM. (C) Same as (B) but for 13_Quie.
Similarly, (D) shows the enrichment around TSS regions as a function of posterior of a 3_Prom.
The horizontal axis shows the rank of posterior probability and the vertical axis shows enrichment
around TSS. (E) Same as (D) but for 13_Quie. confirming that the posterior contains
biologically-relevant information about transcription start sites. In (B-E), green bars represent
genomic loci for which the maximum-a-posterior is the target chromatin state in the base
annotation and red bars correspond to the loci where the maximum-a-posterior is another
chromatin state.

We found that, although rates of reproducibility are much lower than model pos-
terior probabilities, there is a strong increasing relationship between posterior prob-
ability and reproducibility. Specifically, for each chromatin state in the base anno-
tation, we evaluated the frequency with which it overlaps its corresponding state in
verification annotation as a function of the model’s posterior probability, using an
isotonic regression (Section 4.8). For Segway, doing this analysis required modifying
the underlying model to artificially weaken model predictions to avoid posteriors be-
ing rounded up to exactly 1.0 due to floating point under/overflow (Supplementary
Section 1).

The results showed a positive trend between posterior probability and repro-
ducibility, indicating that higher posterior probabilities are associated with higher
levels of reproducibility (Figure 4A). This means that despite being over-confident,
posterior probability of SAGA methods contain information about their repro-
ducibility.

Posterior probabilities also contains biologically-relevant information about gene
expression and transcription start sites, further confirming their usefulness. We
found that there is a strong correlation between posterior probability of the Tran-
scribed state within a gene body and expression of that gene (Figure 4B). That is,
as the posterior of transcribed chromatin state increases, the average expression as
measured by RNA-seq increases as well. Conversely, the posterior of the Quiescent

state is negatively correlated (Figure 4C). Notably, even for positions that did not
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ultimately receive a label of Quiescent, a small but non-zero posterior probability
of Quiescent at the gene body is associated with low expression.

Similarly to the result on gene bodies, posterior of Promoter states is positively
correlated with occurrence of annotated transcription start sites (T'SSs), and the
converse is true of Quiescent states (Figure 4D,E).

We found that the posterior of the state assignment to the base annotation con-
veys a great deal of information about what state is assigned to the verification
annotation (Methods). As mentioned above, knowing only the identity of the state
assigned to the base annotation removes 51% of the uncertainty in the verification
state, as measured by the mutual information/entropy ratio (Figure 2H). However,
knowing both the state and its posterior probability increases the mutual informa-
tion to 85%, suggesting that the posterior probability strongly indicates whether
the annotation of a given genomic bin is reliable. This increase is even more dra-
matic for Segway, increasing the fraction of mutual information from 0.20-0.35 to
0.64-0.72 (Figure 2I).

2.6 SAGAconf yields robust annotations

-
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Figure 5 SAGAconf identifies confident state annotations. SAGAconf integrates sources of
reproducibility information such as granularity, alignment, and posterior to derive an r-value for
each genomic position. The r-value estimates the probability of reproducing the annotation at a
specific location. (A) Density histogram of r-values for each chromatin state in the running
example (setting 1, ChromHMM, GM12878). A threshold of a = 0.9 is applied to label positions
with r-value > « as reproducible and irreproducible otherwise. The horizontal axis represents
r-value, the vertical axis represents density, the red dotted line represents the threshold, and the
green-shaded area show confident annotations. (B) Fraction of chromatin states called confident
by SAGAconf for ChromHMM annotations according to S1 (different Data, different models) in
five cell types. Each dot represents a chromatin state, with color denoting cell type and size
proportional to genome coverage. (C) Fraction of genome called confident across two SAGA
models, five cell types, and three settings. Color denotes SAGA model and shapes represent cell
types. (E) We measured the fraction of the genome called as confident by SAGAconf during the
process of post-clustering; that is, we measure the fraction of confident positions in the genome as
a function of the base annotation’s entropy as we merged similar chromatin states in the base
annotation. The horizontal axis represents base annotation entropy, the vertical axis represents the
fraction of genome identified as confident, sub-panels correspond to different SAGA models and
settings, and colors represent cell types.

As described above, even when allowing for variability in granularity of state
definitions and in spatial positioning, the reproducibility of SAGA annotations falls
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below the 90-95% threshold sought in most applications. Fortunately, as describe
in the previous section, the posterior probability output by the SAGA probabilistic
model indicates the reliability of the annotation of each genomic position.

In order to produce reliable chromatin state annotations, we propose SAGAconf,
a method for producing robust chromatin state annotations. SAGAconf infers the
probability that the annotation to a given genomic position will be reproduced in
a replicate experiment (within a spatial tolerance of w = 1000 bp), according to
the SAGA model’s output state and posterior probability, which we term the r-
value (Section 4.12). SAGAconf outputs the annotation to a subset of the genome
passing a user-defined r-value threshold (usually 90% or 95%). Thus SAGAconf is
analogous to the IDR pipeline used for ChIP-seq peak calling and related tasks [18].
SAGAconf is independent of SAGA methodology, as it takes as input only a SAGA
annotation and its posterior probability matrix.

We found that r-values are distributed differently across chromatin states (Fig
5 A). In our running example, nearly all positions labeled with 3_Prom achieve
r > 0.9, meaning that this state is reproduced independent of model posterior.
Conversely, all positions with state 4_ Prom have r < 0.9, indicating that this state
can never be confidently annotated. However, most states show a range of r-values,
indicating that the reliability depends on the posterior; for example, 52% of state
0_Enha_low have sufficiently-high posterior to pass the » > 0.9 threshold. Thus
applying SAGAconf is critical to knowing whether the annotation to any given
locus can be relied upon.

Overall, 10%-50% of positions are annotated confidently according to SAGAconf
(Figure 5C). Most enhancer states from ChromHMM are irreproducible (Figure
5B), while Segway identifies more-reproducible enhancers (Supplementary Section
6). After applying SAGAconf, Segway and ChromHMM both show roughly similar
reproducibility in terms of fraction of the genome which is identified as confident
(Figure 5 C).

SAGA models with fewer states can confidently annotate a much larger fraction
of the genome. In our running example, the default 16-label annotation has 2.1
bits of entropy and confidently annotates 43% of the genome, but merging down to
an annotation with 1.7 bits (10 labels) yields 55% of the being being confidently
annotated. This difference is more extreme for Segway. Although the default 16-
label annotation can confidently annotate only a small fraction (< 10%), a 1.7 bit
annotation confidently annotates 64% of the genome.

3 Discussion
Chromatin state annotations are essential for various downstream tasks, including
identifying regulatory regions and cell type-specific activity patterns, interpreting
disease-association studies, studying gene regulation, and analyzing cellular differ-
entiation [1, 2, 14, 10, 9]. Therefore, it is paramount to ensure their reliability,
else all subsequent analysis may be inaccurate. Yet, despite the fact that statistical
guarantees (such as p-values, g-values or IDR) are used ubiquitously in genomics
and in science in general, no such statistical guarantee previously existed for SAGA.
Here, we provide a comprehensive evaluation of genome annotations in terms of

their reproducibility and confidence. Using replicated data, we delineate different
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sources of irreproducibility stemming from the data and the SAGA models. We
found that SAGA chromatin state annotations are frequently irreplicable, meaning
that they often disagree when run on two replicated data sets. A substantial fraction
of this disagreement remains after accounting for mismatch in chromatin states
across models and for spatial misalignment between segments. This finding suggests
that there is significant risk to using SAGA annotations without any filtering.

To mitigate this risk, we introduce a framework SAGAconf that identifies a con-
fident subset of the genome that is annotated reliably. SAGAconf does so by lever-
aging the posterior probability of the underlying probabilistic graphical model used
by the SAGA method, which we demonstrated to be informative of reproducibility.
We showed that SAGAconf correctly distinguishes reliable versus unreliable SAGA
annotations within the genome. Thus downstream applications of SAGA annota-
tions would be improved by applying SAGAconf to filter out genomic positions
with unreliable labels. This filtering step is analogous to the use of irreproducible
discovery rate (IDR) analysis for ChIP-seq peak calling.

This study tackles a repeatedly-encountered problem in the field that is the lack
of comprehensive and principled approaches for evaluation of SAGA genome anno-
tations. Conventionally, SAGA genome annotations are evaluated using qualitative
and quantitative methods [9]. Qualitative methods involve examining various statis-
tics of an annotation to determine whether it reflects expected features of genome
biology [27]. However, currently, there are no generally agreed upon statistics that
hold for all high-quality annotations. Quantitative methods on the other hand, in-
volve prediction problems such as predicting RNA-seq expression given only the
annotation label at the gene’s promoter [28] [10], [7]. But, such prediction tasks
are useful for the purpose of comparing different annotations but do not serve as a
realistic evaluation of the annotations themselves. This study introduces SAGAconf
as a comprehensive and principled alternative for this task that addresses various
shortcomings of previous evaluation approaches.

The findings of this study suggest that reproducibility of chromatin states depends
greatly on the quality of data; that is, estimations of confidence are affected by the
replicate with inferior data quality. In addition to obtaining better replicated data,
and effective pre-processing methods [29, 30, 19], future endeavors can tackle this
problem by designing SAGA models that are more robust to data quality.

Future studies should enhance our understanding of genome annotation confidence
by evaluating the effect on reproducibility of the choice of SAGA methods (e.g.
Segway [3], ChromHMM [4], IDEAS [12] and others), model hyper-parameters,
resolution (e.g., by using coarse resolution to annotate domains), and data types
(e.g., conservation via ConsHMM) [31]. Additionally, factors such as data quality
and the availability of epigenomic assays should be considered. These measurements
can be potentially valuable for inferring developmental and lineage-specific changes
in the epigenome.

Currently, SAGAconf treats the base and verification replicates separately. Com-
bining these replicates to obtain a unified representation of reproducibility across
experiments is a potential area for future research. A naive approach to combining
replicates would be to run SAGAconf twice, with each of the two possible assign-
ments to base and verification, then output the intersection of the confident regions.
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Many epigenomic assays on public databases such as [1] are not performed on
replicated experiments, so a version of SAGAconf that does not require replicated
data would be valuable. One naive option would to use data from a similar cell type
the produce a verification replicate. Such a confidence estimate will be conservative,
meaning that a smaller fraction of the genome will be deemed reproducible by
SAGAconf. There is a need for future work to develop a model that can generalize
statistics from a replicated cell types to unreplicated cell types.
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4 Methods
4.1 Data collection
We retrieved sets of replicated histone modification ChIP-seq data for five cell types
from the ENCODE DCC [1]!Y. These cell types are all among ENCODE’s tier-1
and tier-2 cell types and have the most number of ChIP-seq assays with isogenic
replicate data (Supplementary Section 1). Isogenic replication, also referred to as
biological replication, is a process in which two biosamples are derived from the
same human donor or model organism but treated separately 2.

Consequently, we collected pairs of replicated histone modification ChIP-seq data
for the following cell types.

1 GM12878 with 11 histone modification assays
K562 with 11 histone modification assays
HeLa-S3 with 11 histone modification assays
CD14-positive-monocyte with 11 histone modification assays
MCF-7 with 13 histone modification assays
For each cell type, we assembled two data sets each consisting of all of the as-

T = W N

says belonging to one replicate. These datasets consist of a feature vector for each
genomic position in which each element corresponds to a particular histone mod-
ification measurement. With d histone modification assays, the dataset is a RE*¢
matrix, where G denotes genomic positions. For instance, for cell type GM12878,
we have two replicated datasets, and in each dataset, we have an 11-dimensional
feature vector per genomic position. These feature vectors are considered by SAGA
models as observed events X, and are used as training data. All of the ChIP-seq
data are aligned with hg38 (GRCh38) reference human genome.

4.2 Model training and annotation

Using the collected data, we trained ChromHMM and Segway models with a fixed
set of hyper-parameters and obtained chromatin state annotations from them.
Specifically, for both methods, to specify the number of chromatin states, we

used the formula (10 + 2y/number of assays) as suggested by [10] to scale with
the amount of available data (11 histone modification assays for GM12878, K562,
HeLa-S3, CD14-positive-monocyte, and 13 assays for MCF-7). For specifying hyper-
parameter settings of both ChromHMM and Segway, we followed standard practice
as previously performed by [14, 3, 32, 10, 4]. Details of hyper-parameter settings that
were used for model training and annotation are explained in the Supplementary
Section.

As a post-processing step, to enable comparison between two replicates, we divided
the genome into resolution-sized positions and assigned the posterior P(Qq, = ¢|X)
and annotation results to each genomic position. This additional parsing step pro-
vides us with a unified format which is readily comparable, independent of datasets,
parameters, or even the SAGA algorithm that generated the annotations. Parsed
annotation results are matrices of size G X K where K denotes the number of
chromatin states, and G corresponds to the number of genomic positions; that is,
the whole genome size divided by --resolution and each element in the matrix
corresponds to the posterior probability of each state at each position.

11 http://encodeproject.org/
[2] https://wuw.encodeproject.org/data-standards/terms/
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4.3 Biological state interpretation

As the raw annotation results of SAGA algorithms are states named with the inte-
ger ID of their clusters, we need an additional interpretation step in which cluster
IDs are translated to obtain human-readable results into functional biological roles
(also known as “mnemonics”). To avoid bias from manual interpretation, we used
an automated interpretation procedure introduced in [10]. Specifically, we used a
pre-trained random forest classifier which, using the enrichment of states around
conserved regions and enrichment of different histone modification marks for each
state, assigns a predicted biological interpretation to each state. This classifier is
trained on Segway annotations and might not be as accurate on ChromHMM an-
notations. These interpretation terms are solely for the interpretability of results,
and every step of the reproducibility evaluation pipeline is independent of the in-
terpretation terms [33].

4.4 Pairwise overlap of chromatin states
SAGA methods output integer state IDs for each identified chromatin state. Because
they are unsupervised, the state IDs are not consistent across two different models.
Therefore, to enable comparison among chromatin states of the two annotations,
the first step is to identify states that correspond to related genomic functions across
the two annotations by measuring the pairwise overlap between them.

Let k& be a chromatin state in the base annotation B and [ be a chromatin state
in verification annotation V. Their joint frequency of overlap p(B =kV=1I)is
defined as:

G

N 1

PB=kV=0)=25> 1 =kaq =1) (1)
g=1

Where g corresponds to genomic positions and qf and q;/ denote assigned states to
the genomic position g in base and verification annotations, respectively. Similarly,

1 G
PB=H) ==Y 1 =) (2)

is the marginal frequency (i.e. genomic coverage) of state k in the base annotation
B.

The joint distribution of overlap P(B = k,V = 1) is greatly influenced by the
states’ genome coverage. For example, pairs of Quiescent states that cover most of
the genome, will have a very high probability while highly corresponding promoter
pairs might get small overlap probabilities. To identify correspondence of states
regardless of their genome coverage, we use intersection over union (IoU), also known

as Jaccard’s similarity coefficient, which is formulated as follows.

P(B=kV =1)
P(B=k)+P(V=1)—P(B=FkV=I)
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4.5 Mutual information between annotations
The mutual information of base and verification annotations I(B; V) can quantify

the shared information of two annotations and it is calculated as follows:

V)= 3 Y PB =k V = 1)log, ( s ”l)> (W
kEBIlEV

Mutual information can have values ranging from 0 for total independence and

+o0. However, MI I(B;V) is always upper bounded by both entropies of the base

annotation H(B) and the verification annotation H (V') which quantify the total

amount information that can be contained within these annotations. Entropy of

each set of annotation is calculated as follows:

— Y P(B=k)log, P(B =k) (5)

keB

Therefore, we normalize the mutual information into values that reflect the frac-
tion of information in the base annotation that is shared with the verification an-
notation.

The posterior of the base replicate provides information into the replicability of the
annotation. We compute the information as follows. We make 10 equally distanced
bins based on the posterior values of the base annotation chromatin states. Let ¢
be a bin index, where 1 < ¢ < 10, the mutual information between the base and
verification annotations I(B;V') with respect to posterior probabilities of the base

annotation is calculated as follows:

10

P(B=ki, V=1
ZZZP _kZ,V—l)10g2<A(B:ki)A(Vzl)> (6)

i=1 keBleV

4.6 Overlap and spatial alignment

We hypothesized that due to a variety of noises, corresponding chromatin states
might not locate at the exact same position across the two annotations. To investi-
gate the impact of misalignment of corresponding segments, we relaxed the criteria
for considering an annotation as overlapped by allowing a window of size w up-
stream and downstream of any given position g to look for corresponding states.

Therefore, we consider proximal positions in the overlap calculations:

G

Where P(B = k,V =) is the updated probability of overlap which considers a

window of size w around segments of the verification annotation.
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4.7 Granularity of genomic functions

In a perfect case of reproducibility, one would expect that for each state k in base
annotation, one state should exist in the verification annotation that exactly covers
the same genomic positions. However, in practice, positions with state k in B are
distributed over two or more states in V' and vice versa.

To understand the effect of genomic functional granularity (i.e. the number of
chromatin states) on reproducibility, we measure the overlap while iteratively ver-
ification state. To that end, for a given target state of base annotation, we sorted
all of the states of verification annotation according to their intersection over union
(IoU) of overlap. Based on this order, we start merging the states in V iteratively
until all of the genome is covered with one “super-state” in V. We evaluate what
fraction of the genome needs to be covered by V states in order to cover most of the
positions of the target state in B. We term this the “state merging curve” (SMC).

The area under the SMC in case of perfect reproducibility, is when = the first V'
state covers all of the positions of target state in B. We define the ratio between
these two curves as the area under the SMC (auSMC), which is a simple numerical
representation of the state’s reproducibility as a function of its chromatin state
granularity.

4.8 Calibration of posterior probability

The posterior probabilities produced by SAGA tend to be overly confident, with the
majority of positions receiving a probability >99%, which does not accurately reflect
the reliability of the annotations. However, we investigated if there is any correlation
between reproducibility and posterior probability. By examining the relationship
between posterior probability and reproducibility, as measured by pairwise overlap,
we can improve confidence estimates by creating a calibration curve. This allows us
to transform raw posteriors into more accurate and robust confidence scores that
better represent the actual likelihood of reproducibility for a given annotation.

Initially, we establish pairs of corresponding chromatin states. For each state k in
B, the state with the greatest IoU overlap score in V is considered as the matching
state. To carry out calibration, we computed the ratio of overlap as a function of
the model’s posterior. Specifically, let qié.)c € {1..k}¢ and ng)G € {1..1}¢ represent
vectors of base and verification annotations respectively. In base annotation, for
each state k, we first arrange the vector of posterior probabilities of all genomic
positions p’f__'G € RY based on the posterior value. Then, we divide the sorted array
into b sub-arrays (bins) of equal size such that b, C {1...G}. For each bin, we
compute the fraction of the target state in the base annotation that overlap with
its corresponding state in the verification annotation. It is expected that for first
bins with lower posterior value, the overlap is lower than that of high posterior bins.
By performing the binning step, we can quantitatively compare two variables with
different natures, namely the overlap and posterior probability.

We assume that the pairwise agreement and posterior probability of corresponding
chromatin states are not negatively correlated. Thus, assuming a monotonic and
non-decreasing trend, we fit an isotonic regression model to create a calibration
curve [34, 35, 36]. Isotonic regression is a non-negative piece-wise regression model
in which we aim to learn a curve ¢ to solve a problem formulated as follows:
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N
minz (9; — yi)?, subject to §; < §; whenever b; < b; (8)
i=1

To further explain, the model attempts to fit a curve g to the sequence of “pos-
terior vs. overlap ratio” bins b such that for all b; < b;, the curve g; < g; will
be produced, resulting in a non-negative trend. We selected the isotonic regression
model for this calibration task because, unlike linear regressions that impose lin-
earity, these models are not limited by any functional form and can fit any form
in the observed data as long as it is monotonically increasing. The Pool-Adjacent-
Violators Algorithm (PAVA) is commonly used to fit the isotonic regression model
[34, 35, 36]. We utilized isotonic regression from Python’s Scikit-learn package [37].

4.9 Validation against known phenomena

In contrast to supervised learning problems, where the predictions of models can
be validated against a labeled test set, chromatin states lack a gold standard. One
common method to validate annotations is to analyze the enrichment of promoter-
like states around conserved positions such as transcription start sites (T'SS) from
reference annotations [38, 10, 24, 12]. Another method is to check if the transcribed
regions predicted by SAGA models overlap with experimentally-validated expressed
regions obtained from RNA-seq data [28].

We used this approach to evaluate whether the posterior probability of annota-
tions can confidently predict known regulatory regions. Firstly, similar to calibra-
tion of posterior probability, for each state k, we rank the posterior probabilities
p’fmG € R% in ascending order. Then, we split the sorted array into b equal size
sub-arrays (bins) such that b; C {1...G}. For each bin of posterior probability, we
calculate the enrichment of regions with the posterior of state k£ in this bin range

around transcription start sites. Enrichment is calculated as log(g)'jf)zrc‘t";g). In this
case, observed is the number of regions with the posterior of state k£ in a given
bin range around TSS while expected is the number of positions with the posterior
of state k in that bin range across the whole genome. Similarly, for each bin, we
investigate the mean RNA-seq expression level (TPM or transcripts per million) of

genomic positions within that posterior range [39].

4.10 Merging chromatin state to produce lower-granularity annotations
Determining the optimal number of chromatin states to specify as a hyper-
parameter to the SAGA model is not straightforward. However, it is evident that
increasing the number of chromatin states (i.e., increasing granularity) leads to de-
creased reproducibility, as it becomes more difficult for the model to distinguish
between different states. In other words, more granularity in the annotations leads
to higher entropy which naturally leads to irreproducibility. This presents a trade-off
between the granularity of chromatin states learned from the data and the repro-
ducibility of those annotations.

To investigate this trade-off, we iteratively merge pairs of the most similar chro-
matin states in both the base and validation annotations. To do this, we need to
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define a metric S that measures the pairwise similarity of different chromatin states
within one annotation based on their overlap behavior with the other annotation.

We measure this pairwise similarity as follows:

Sk =1— %m 9)
(B)

Where AI(B;V) and AH(B) represent the change in mutual information and
entropy of base annotation, respectively, resulting from merging states k and &’ in
the base annotation annotation. The verification annotation goes through the exact
same process at each iteration.

After calculating metric S for both base and validation annotation, at each it-
eration we merge two pairs with maximum S as the most similar pairs for which
merging results in the least change in mutual information and the greatest change
in entropy. By merging any two chromatin states, both entropy and mutual infor-
mation decrease however, merging similar chromatin states (with similar pattern of
overlap) should ideally result in minimum change in mutual information. This pro-
cess is repeated until all pairs of chromatin states have been considered for merging.
By analyzing how the mutual information and entropy change as pairs of chromatin
states are merged, we can determine the optimal number of chromatin states that

balances granularity and reproducibility.

4.11 Delineating different sources of variability

To obtain a comprehensive insight into how the variability of models and data
can affect reproducibility, we assessed the reproducibility of annotations in sev-
eral settings and different levels of technical and biological variability. Therefore,
we selected pairs of experiments in the three following scenarios to evaluate their
reproducibility.

Setting 1 (Different data, Different model): We trained two separate SAGA
models using the collected data from each isogenic replicate. Two trained
models were then used to annotate the genome. Finally, the annotations were
compared to uncover the reproducibility from various sources, including the
data, the model training process, parameter initialization, etc.

Setting 2 (Different data, Same model): We concatenated data from both
isogenic replicates to form a single extended dataset which we used to train a
single model. The model provided separate annotations for each of the repli-
cates. In contrast to setting 1, concatenated runs remove elements of variabil-
ity in training and state matching and can uncover the irreproducible elements
that are only attributed to the data from replicated experiments.

Setting 3 (Same data, Different model): We also used the same dataset
(from replicate 1) to separately train two different models while only changing
the random seed used for parameter initialization. This setting uncovers the
irreproducibility that is to be attributed to the initialization and training of

models.
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4.12 SAGAconf

Our analysis suggest that there are various aspects to the problem of reproducibility
of SAGA annotations including the granularity of chromatin states, proximity and
spatial alignment, and the information embedded within models’ posterior probabil-
ity. Therefore, we designed SAGAconf, an integrative approach that combines these
sources of information to derive an reproducibility score (r-value) at each genomic
position which can then be used to filter out irreproducible state assignments and
thus obtain robust chromatin state annotations.

The SAGAconf reproducibility assessment pipeline starts by defining correspond-
ing states across the two annotations. We compute a IoU overlap matrix while
considering a window of size w upstream and downstream of each position accord-
ing to equations 3 and 7. Then, by setting a threshold ¢ on the IoU of overlap, for
each chromatin state k in the base annotation, its corresponding states in verifi-
cation annotation should either have a IoU > ¢ or have the maximum IoU with
k among all verification annotation states. Note SAGAconf allows for more than
one chromatin states in verification annotation to count as corresponding as long
as they have IoU > ¢ which can mitigate the issues associated with chromatin state
granularity. Then, we calibrate posterior values into reproducibility score according
to section 4.8. Here, at each bin b; C {1...G}, we calculate the ratio of genomic
position in base annotation within b; that have one of the corresponding states in a
window of size w around that position in verification annotation. Using the isogenic
regression obtained from last step, we get a reproducibility score for each position
in the genome. The resulting reproducibility score r-value ranges from 0 to 1 and
it represents the probability of that position or its proximity being labeled with a
related genomic function in the other annotation.

Lastly, using a hard threshold « on the r-value, we assign a Boolean label of “re-
produced” for r > a or “not-reproduced” r < « to every position in the genome.
Using these Boolean labels of reproducibility, we can robustly identify a confident
and reliable subset from genome annotation while removing the irreproducible pre-
dictions.
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Abbreviations
e SAGA: Segmentation and genome annotation.
e IDR: Irreproducible discovery rate.
e IoU: Intersection over union.
e auSMC: Area under the state merging curve.
e TSS: Transcription start site.
e TPM: Transcript per milion.
e PAVA: Pool-Adjacent-Violators Algorithm.
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