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Summary 

Tumorigenesis for most high-grade serous ovarian cancers (HGSCs) likely initiates from fallopian 

tube (FT) epithelia. While epithelial subtypes have been characterized using single-cell RNA-

sequencing (scRNA-Seq), heterogeneity of other cellular compartments and their involvement in 

tumor progression are poorly defined. Integrated analysis of human FT scRNA-Seq data and 

other relevant tissues, including HGSC tumors, revealed greater transcriptional diversity of 

immune and stromal cells. We identify an unprecedented abundance of monocytes in human FT 

myeloid cells across two independent donor cohorts. The ratio of macrophages to monocytes are 

relatively similar between benign FTs, ovaries, and adjacent normal tissues, but is significantly 

greater in tumor. FT-defined monocyte and macrophage signatures, cell-cell communication, and 

gene set enrichment analysis identified monocyte- and macrophage-specific ligand-receptor 

interactions and functional pathways in tumors and adjacent normal tissue. Further reanalysis of 

tumor scRNA-Seq from HGSC patients suggested different monocyte and macrophage subsets 

associated with neoadjuvant chemotherapy treatment. Taken together, our work provides 

evidence that an altered FT immune composition could inform early detection markers in HGSCs. 
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Introduction 

A lack of early detection markers for high-grade serous ovarian cancers (HGSCs) has contributed 

to patients’ poor clinical outcomes and stagnant survival rates over several decades (Lisio et al. 

2019). Emerging molecular data show that the majority of these cancers likely arise from secretory 

cells at the fimbriated end of the fallopian tube (FT) (Labidi-Galy et al. 2017; Ducie et al. 2017; 

Eckert et al. 2016; Y. Lee et al. 2007; Lawrenson et al. 2019), emphasizing the importance of 

characterizing the FT tissue microenvironment to gain insight into the earliest stages of HGSC 

development. While significant efforts have been made to characterize the tumor 

microenvironment (TME) of HGSCs (Qian et al. 2020; Binnewies et al. 2021; Olalekan et al. 2021; 

Olbrecht et al. 2021; Xu et al. 2022; Hornburg et al. 2021) and benign FT epithelia (Dinh, Lin, et 

al. 2021; Hu et al. 2020; Ulrich et al. 2022) using single-cell transcriptomics (scRNA-Seq), there 

remains a critical need to connect the single-cell landscape of stromal and immune subsets of 

human FT to HGSC. 

Limited data have been reported on the extended heterogeneity of human FT immune cell subsets 

and their cell-cell interactions. Previous studies used protein-panel-based technologies such as 

immunohistochemistry (IHC) (George, Milea, and Shaw 2012) and flow cytometry (Shaw et al. 

2011; Ardighieri et al. 2014; S. K. Lee et al. 2015) to profile human FT immune subsets with limited 

markers for phenotyping beyond those for cell type identification (e.g. macrophages, DCs, and 

T/NK cells). The heterogeneity of T/NK, myeloid, and stromal cells and their cell-cell interactions 

in FT remain incomplete in published scRNA-Seq analyses (Dinh, Lin, et al. 2021; Ulrich et al. 

2022). We therefore analyzed immune and stromal cell heterogeneity from scRNA-Seq of benign 

human FTs (Dinh, Lin, et al. 2021; Ulrich et al. 2022) and HGSC tumors and adjacent normal 

samples from >80 in-house and publicly available sources (Ulrich et al. 2022; Binnewies et al. 

2021; Olalekan et al. 2021; Xu et al. 2022; Yu et al. 2022; Zhang et al. 2022; Qian et al. 2020), 

identifying 7 fibroblast/stromal, 6 T/NK and 7 myeloid cell subsets with distinct gene, pathway, 
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and regulatory network signatures. Further examination of single-cell derived transcriptomic 

signatures revealed associations with molecular subtypes in bulk transcriptome data from The 

Cancer Genome Atlas (TCGA). Lastly, we show a significant macrophage-to-monocyte ratio shift 

in tumor compared to benign FT and transcriptional changes in FTs from women with BRCA1/2 

mutations and HGSC patients treated with chemotherapy. These results provide a better 

understanding of human FT heterogeneity and its implications for HGSC outcomes.  

 

Results 

ScRNA-Seq analysis of non-epithelial cell compartment in human fallopian tubes 

To characterize the cellular and molecular characteristics of the human FT tissue 

microenvironment, we reanalyzed the non-epithelial cell compartment from our previously 

published scRNA-Seq (Dinh, Lin, et al. 2021), which included 45,654 non-epithelial cells. Here, 

we focus on immune and stromal heterogeneity and compare our subsets to a recently published, 

independent scRNA-Seq study (Ulrich et al. 2022). In addition, we generated in-house and utilized 

additional publicly available scRNA-Seq data from adjacent non-malignant tissues and tumors 

from patients with HGSCs (total: n = 88 samples across 58 donors, Fig 1A, Suppl. Table 1). We 

further clustered 9,759 stromal cells, 32,598 T/NK cells, and 1,850 myeloid cells from 12 FT 

samples (Dinh, Lin, et al. 2021) (Fig 1B, Suppl. Fig 1A-B) and identified 7 myeloid, 4 T cell, 2 

NK cell, 4 fibroblast, 2 pericyte, and 1 smooth muscle cell subsets (Methods). In addition, using 

label transfer (Stuart et al. 2019), we were able to identify all annotated cell subsets in an 

independent scRNA-Seq dataset from 4 benign FT donors (Ulrich et al. 2022) (Suppl. Fig 1C-D). 

Our analysis identifies greater myeloid diversity measured by an entropy-based scoring method, 

Rogue (Liu et al. 2020) compared to T/NK cell clusters despite being just 5% as frequent as T/NK 

cells in our scRNA-Seq (Suppl. Fig 1E) samples. Additionally, we calculated the number of 

unique statistically differentially expressed (DE) genes  (Suppl. Fig 1F), showing that myeloid 

cells had consistently more DE genes per cluster and justified the decision to maintain more 
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myeloid clusters compared to T/NK cells. In our stromal subsets, we identify 3 fibroblast subsets 

and a small cluster with a myeloid-like gene signature, with potential antigen-presenting functions 

as recently identified in multiple tissue types (Elyada et al. 2019; Dinh, Pan, et al. 2021). Due to 

the limited number of captured cells in the scRNA-Seq, we did not further cluster other cell types, 

such as B and endothelial cells. 

 

Myeloid cell heterogeneity and plasticity in human FTs 

Myeloid cell diversity in high-grade serous ovarian cancers was recently described with 

multifaceted, functional gene signatures in distinct tumor microenvironments (TME) (Hornburg et 

al. 2021). We reasoned that an in-depth transcriptional characterization of FT myeloid cells would 

help us identify a link between the myeloid microenvironment of HGSC and FTs, the tissue of 

origin for most HGSC tumors. Our clustering analysis (Methods) defined 4 classical CD14+ 

monocyte subsets, 1 nonclassical CD16+ monocyte subset, 1 dendritic cell, and 1 macrophage 

subset (Fig 2A) that were shared across FT samples (Suppl. Fig 1B). Downstream analysis 

including differential gene expression, gene set enrichment analysis using JASMINE (Noureen et 

al. 2022), and gene regulatory network analysis from SCENIC (Aibar et al. 2017) (Methods) 

defined distinct gene signatures (Fig 2B-D) in the 7 myeloid subsets and supported our cell type 

annotations. We used representative markers to annotate myeloid subsets, including 4 classical 

monocyte subsets with variable expression levels of CCL4, a chemoattractant of T and myeloid 

cells that was found to correlate with CD8+ and FOXP3+ T cell infiltration in HGSCs (Zsiros et al. 

2015). Other markers include the proteoglycan versican (VCAN) and heat shock proteins (HSPs) 

describing stress-responsive monocytes (Mujal et al. 2022). Macrophages, which expressed 

complement complex genes C1QA/B as well as TREM2 were transcriptionally distinct from 

monocytes by their lack of FCN1 and S100A8/9 expression as well as chemoattractant and 

inflammatory molecules such as IL1B, CXCL2/3/8, and CCL20. JASMINE pathway analysis using 

Gene Ontology Biological Process (GO: BP) revealed gene sets enriched for classical monocytes 
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(inflammatory response, leukocyte chemotaxis), HSP+ monocytes (protein folding), non-classical 

CD16+ monocytes (interferon-inducible pathways), antigen-presenting pathways in macrophages 

and DCs and lipid metabolism pathways unique to macrophages (Fig 2C). Gene regulatory 

network analysis performed with SCENIC (Aibar et al. 2017; Van de Sande et al. 2020) showed 

BHLHE41 and MAF regulons enriched within macrophages; both negative regulators of 

macrophage proliferation and activation (Aziz et al. 2009; Rauschmeier et al. 2019). EHF and 

ETV3 regulons were also active, likely reflecting dendritic cell differentiation programs (Appel et 

al. 2006; Villar et al. 2023), and IRF4, a DC-lineage transcription factor that promotes TH2 

polarization (Williams et al. 2013) (Fig 2D).  

To test how potential monocytic developmental trajectories in human FT correlates with our 

defined regulatory networks, we paired SCENIC results with diffusion maps (Angerer et al. 2016) 

and Monocle’s graph-based pseudotime (Cao et al. 2019). Diffusion map analysis suggested two 

distinct diffusion components, one associated with MHC-II antigen presenting genes and the 

second with inflammatory cytokine expression (Fig. 2E, Suppl. Fig 2A). Monocle supported the 

inferred pseudotime trajectory from classical CD14+ monocytes to more matured monocytic cell 

types (dendritic cells, macrophages) or distinct monocyte states (HSP/VCAN monocytes and non-

classical CD16+ monocytes) supported by the enrichment score of SCENIC regulons. The top 

correlated genes with each diffusion component indicated how monocytic cells might function 

differently during their maturation. We ranked the top 10 correlating genes with each diffusion 

component (Suppl. Fig 2A) to indicate how monocytic cells might function distinctly during their 

maturation. For instance, enrichment scores derived from the average expression in single-cell 

clusters suggested cytokine/interleukin genes were enriched with monocytes while HLA gene sets 

were enriched within macrophages and DCs.  

Next, we used FT-defined myeloid cell signatures to evaluate their enrichment in 394 HGSC 

samples from TCGA (Cancer Genome Atlas Research Network 2011) and found that signatures 

of more mature monocytic subsets such as VCAN+ monocytes and macrophages were most 
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enriched for immunoreactive and mesenchymal HGSC subtypes (Suppl. Fig 2B, Methods). 

Together, our analysis revealed extensive heterogeneity of myeloid cells in human FTs and 

suggested a phenotypic change in myeloid cells that may be relevant in HGSCs. 

 

Macrophage-to-monocyte ratio is distinct in the FT, adjacent normal tissues, and HGSC 

tumors 

Previous flow cytometry and scRNA-Seq analyses did not annotate monocyte subset in FTs 

(Ardighieri et al. 2014; Ulrich et al. 2022); however their signatures were identified in HGSC 

scRNA-Seq (Hornburg et al. 2021) that correlated with T/NK cell phenotypes. Since monocyte 

signatures (S100A8/9, FCN1, VCAN) from circulating blood (Villani et al. 2017) and HGSC tumor 

(Hornburg et al. 2021) are consistent with our FT-defined monocytes, we asked if we could identify 

monocytes in independent samples of healthy FT scRNA-Seq (Ulrich et al. 2022) (Suppl. Fig 3A-

B). Our clustering analysis recovers abundant monocytes with similar marker genes as identified 

in our FT samples (S100A8/9, FCN1, TREM2, CD1C) and consistently differentiated 

macrophages, monocytes, and DCs from each other. Using label transfer (Stuart et al. 2019), we 

show that monocyte subsets are retained in other previously published data (Ulrich et al. 2022) 

(Suppl. Fig 3C-D). We observed that S100A9 and FCN1 consistently separate monocytes from 

dendritic cells and TREM2+ C1QA/B macrophages. The comparatively low abundance of 

macrophages relative to monocytes in benign FT scRNA-Seq datasets led us to evaluate their 

proportions in adjacent normal tissues compared to HGSC tumors from the same patients. We 

reanalyzed two independent scRNA-Seq datasets, one with paired adjacent normal and tumor 

from (Qian et al. 2020) and another with 5 benign ovarian tissues and 7 HGSCs from (Xu et al. 

2022). We found a significantly elevated macrophage-to-monocyte ratio in HGSC tumors 

compared to benign FT tissues (3.40 fold increase, FDR adjusted p-value =  3.6x10-6) (Fig 3A-

B), while the difference between adjacent, non-malignant tissue, or benign ovary compared to 

healthy FT tissue are less pronounced (1.90, and 1.94 fold increase, respectively) and were not 
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found to be statistically significant (FDR adjusted p-values = 0.19, 0.50). The macrophage-to-

monocyte ratio was not significantly different between adjacent normal tissues compared to that 

in low-grade ovarian cancer in our newly generated scRNA-Seq (Fig 3B). Taking advantage of 

the recent availability of published scRNA-Seq datasets, we reanalyzed additional HGSC tumor 

scRNA-Seq (Xu et al. 2022; Binnewies et al. 2021; Olalekan et al. 2021) and, on average, found 

a higher macrophage-to-monocyte ratio in HGSC TME from different datasets (total n = 26 HGSC 

samples). 

To identify the potential difference in myeloid cells’ functions in adjacent normal and benign tissue, 

we used scRNA-Seq of adjacent normal (n = 3) and HGSC tumors (n = 7) (Qian et al. 2020). 

JASMINE GO: BP pathway analysis showed marked differences in monocytes in adjacent tissues 

compared to tumors, including enrichment of anti-angiogenic pathways in adjacent monocytes 

compared to tumors (negative regulation of endothelial cell chemotaxis FDR adjusted p-value = 

1.58 x10-25 and positive regulation of endothelial cell apoptotic process FDR adjusted p-value = 

4.10x10-21) (Fig 3D). In contrast, tumor-associated monocytes were significantly enriched in 

metabolic-related pathways (High-density lipoprotein particle remodeling FDR adjusted p-value = 

4.20 x10-14 and NAD metabolic process FDR adjusted p-value = 1.33 x10-9) compared to adjacent 

normal monocytes, and similar to tumor-associated macrophages (TAMs). We also observed 

shifted metabolic pathways in TAMs, supporting their change in energy demands compared to 

adjacent tissue. Notably, we see a reduced reliance on oxygen for metabolism demonstrated with 

a significantly lower JASMINE score for the ‘oxygen transport’ pathway (FDR adjusted p-value = 

5.11 x10-265) and 'acetyl coenzyme-A biosynthesis’ pathway (FDR adjusted p-value = 9.03x10-

211), which is an essential precursor for oxidative phosphorylation. 

 

FT-defined cell-cell interactions of monocytes and macrophages are correlated in adjacent 

normal and matched HGSC tumors 
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Since the phenotypes of monocytes and macrophages are associated with different types of 

HGSC TMEs (Hornburg et al. 2021), we asked if the cell-cell interactions of monocytes and 

macrophages with other cell types in FTs are altered in tumor compared to benign tissue (FT and 

adjacent normal) (Fig 3B). To test this, we further identified 6 T/NK cell subsets, including 3 CD8+ 

cell subsets, 2 NK cell subsets, and 1 CD4 subset with distinct gene signatures (Suppl. Fig 4A-

B). Among those, scRNA-Seq-derived signature scores identified T/NK subsets were highest in 

immunoreactive subtypes in most subsets, but particularly in NK cells. (Suppl. Fig 4C). Further 

sub-clustering did not obtain more subsets with sufficient DE genes for T cell subset annotation 

with conventional phenotypic markers, including T memory and helper subtypes (Suppl. Fig 4D).  

To evaluate the cell-cell interaction (CCI) signals from scRNA-Seq, we used Cellchat (Jin 

et al. 2021). ligand-receptor database and quantified the significant interactions across major 

subtypes in our defined human FT atlas (Fig 4A). CellChat’s permutation test identified 121 

significant ligand-receptor pairs with monocytes/macrophages as a sender cell type, in which 83 

(68.6%) were shared between macrophages and monocytes, while 22 (18.2%) and 16 (13.2%) 

specifically identified from either macrophages or monocytes, respectively (Fig 4B-C). The 

dominant signaling pathways of macrophage CCIs were CLEC2B and TNF signaling, which 

engages the KLRB1 and TNFR receptors, known for self-recognition and negative regulation of 

T/NK cell activation (Iizuka et al. 2003; Mathewson et al. 2021) and inflammation, respectively. 

Other macrophage CCIs, including PDGFB-PDGFRA/B between macrophages and stromal cells, 

were reported in HGSC tumors with reactive stroma and poor prognosis (Li et al. 2022). On the 

other hand, monocyte CCIs included epiregulin (EREG), which has potential interactions with 

stromal cells through EGFR, or ciliated epithelial cells through HER family receptors ERBB2 and 

ERBB4, reported in low-grade serous ovarian cancers (Luo et al. 2018). Another relevant 

monocyte interaction, THBS1-CD47, showed a reduction in angiogenesis and increased tumor 

rejection in a xenotransplant model, suggesting its pro-tumoral effects (Jeanne et al. 2021). Next, 

we performed the same CCI analysis using macrophages and monocytes as receiving 
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populations (Suppl. Fig 4E-F), which highlighted the increased diversity in macrophage receptor 

use such as with LRP1, AXL, CSF1R, HAVCR2, C3AR1 when compared to monocytes.  

Since we observed the difference in the macrophage-to-monocyte ratio in samples compared to 

tumors, we asked if the FT-defined CCIs expressed differently in adjacent normal and tumors. To 

do so, we compared co-expression CCI scores (Methods) of the FT-defined monocyte- and 

macrophage-specific and shared CCIs in adjacent normal and tumor samples from two 

independent scRNA-Seq datasets (Xu et al. 2022; Qian et al. 2020). The co-expression of our 

CCI scores positively correlated with CellChat’s communication probabilities (Suppl. Fig 4G), 

which allowed us to identify cross-tissue CCIs between benign, adjacent normal, and tumor 

tissues. We observed that interactions with monocytes as senders were enriched in the benign 

ovary (Xu et al. 2022), with 11 monocyte-specific positive scored interactions in benign ovary and 

2 in tumors, whereas most interactions with macrophages as senders were similar between 

normal and tumor (Fig 4D). In a second data set we observed a high correlation between these 

interactions, but not in a cell type-specific manner (Qian et al. 2020). The receiving signals were 

also consistently correlated between these datasets (Suppl. Fig 4H-I), indicating that tumor 

microenvironment and cell-cell interactions may be intrinsic to their cell identities based on their 

high correlation across different tissues. 

 

Monocyte and macrophage diversity in patients with germline BRCA1 mutations and 

HGSC patients treated with chemotherapy 

We identified the macrophage-to-monocyte ratio changes potentially linked with disease 

progression. Next, we wanted to evaluate this ratio using FT scRNA-Seq from patients with 

BRCA1 germline mutations (Yu et al. 2022), who are high risk of developing HGSCs. We used 

marker genes consistent with our 12 sample FT reference to identify myeloid cell types (Suppl. 

Fig 5A-B). We observed an increase in macrophage-to-monocyte ratio in FT of BRCA1 germline 

mutation (p-value = 0.7, two-sided Wilcox test, n = 3 vs 3). (Fig 5A). Differential gene expression 
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showed an increased in the chemokines CCL3 and CXCL2/8, first identified from our FT monocyte 

subsets, in macrophages and monocytes of BRCA1 FT samples, and decreased expression of 

heat shock protein (HSP) genes in BRCA samples (Fig 5B).  The data indicated a potential of 

change in macrophage-to-monocyte ratio in FT of HGSC high-risk patients compared to healthy 

FT but remains limited due to small sample size.  

We were also curious how macrophage-to-monocyte ratio may change in HGSC patients upon 

treatment. We reanalyzed a publicly available treatment-naïve scRNA-Seq dataset from 11 

patients taken before and after neoadjuvant chemotherapy treatment (Zhang et al. 2022) (Suppl. 

Fig 5C). Our myeloid cell clustering identified 2 populations of monocytes, 5 populations of 

macrophages, and 2 dendritic cell subsets (Fig 5C-D) with distinct gene signatures resembling 

those defined in our FT analysis (CCL3/4, CXCL3, HSPA1, FCN1, CCL20, C1QA). Overall, 

chemotherapy’s effect on the macrophage-to-monocyte ratio is uncertain. There is no significance 

when using all samples, including those with poor cell recovery, which are likely more variable (p-

value = 0.456). However, after removing samples with fewer than 50 total myeloid cells combined 

(n = 2), we see a 1.45-fold increase in the log2 ratio (p-value = 0.0485). More samples are needed 

to determine the reproducibility of this effect. Additionally, we observed three subsets that 

significantly increased in proportion after treatment, including macrophages expressing APOE, 

APOC1, and complement components (C1Qs) (cluster 1, FDR adjusted p-value = 0.045), HSP+ 

stress-related macrophages (cluster 6, FDR adjusted p-value = 0.041),  and classical monocytes 

(cluster 8, FDR adjusted p-value = 0.011), that were most similar to the early FT-defined monocyte 

subsets (Fig 5E). Several subsets of monocyte and macrophage subpopulations are changed in 

HGSC as expected (Suppl. Fig 5D), despite the uncertain impact on the ratio of macrophage-to-

monocytes. We also note the increased complexity of myeloid cell diversity in the TME, especially 

within macrophages relative to benign tissue.  

 

Stromal-immune cell interactions in human FTs 
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Since stromal cell-cell interactions were predicted to be the most frequent sending cell types 

inferred in FT scRNA-Seq, (Fig 4A), we asked to what extent their interactions with immune cells 

differ between normal FTs and HGSC tumors. To do so, we sub-clustered the stromal cell 

compartment and identified three fibroblast subsets, two pericyte populations, and one smooth 

muscle cell (SMC) subset (Fig 6A) with distinct gene expression signatures, including 

complement genes (C7, C3, CFD) and cytokine/chemokine expression (CXL8, IL6) (Fig 6B). We 

named the subsets with representative markers except for SMCs, which was comprised of one 

subset. F_RASD1 fibroblasts were suspected to be less differentiated/activated with high regulon 

activity of stemness markers SOX4 and TWIST2 from SCENIC (Suppl. Fig 6A) (Yang et al. 

2020). Smooth muscle and pericyte populations could be characterized by differential expression 

of cell adhesion molecules (MCAM), RGS5 (pericyte markers), MYH11, and ZCCHC12 as smooth 

muscle cell markers (Suppl. Fig 6B). Among those subsets, we found that F_C7 fibroblasts, 

marked by high expression of complement C7 and SMC signature scores, were enriched in the 

TCGA HGSC mesenchymal subtype, known to have the worst survival outcomes (Fig 6C). Next, 

we used cancer-associated fibroblast (CAF) signatures from HGSC scRNA-Seq (Hornburg et al. 

2021; Olbrecht et al. 2021) to evaluate FT stromal subsets. We find complement expression 

(CFD) and other genes (DPT, MGP, and CXCL12) similar to inflammatory fibroblasts described 

in HGSCs (Hornburg et al. 2021) were enriched in our F_C7 subset relative to other stromal cells. 

(Suppl. Fig 6C). CCI analysis using CellChat identified interactions between stromal subsets and 

immune receiver cells, particularly through CD44, CD47 and integrins (Suppl. Fig 6D). Most CCIs 

from fibroblast to immune cells were shared between our three fibroblast subsets (80%), though 

F_C7 fibroblasts have 22 CCIs not shared with other fibroblast subsets (12% of all stromal to 

immune interactions) (Fig 6D). Notably, fibroblast to myeloid signaling, including C3 to C3AR1, 

associated with immunosuppression and cancer cell proliferation (Huang, Zhou, and Deng 2023), 

and C3 to ITGAX and ITGB2, were among these (Suppl. Fig 5D). FN1 interactions, which were 

defined from our C7 expressing fibroblasts show interactions with diverse immune cell subsets 
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and were predicted to have higher ligand-receptor co-expression in tumor relative to benign tissue 

from 2 independent cohorts (Fig 5E-F). Altogether, we reported a diversity of stromal cell subsets 

in human FTs, with distinct gene expression profiles and subsets that may contribute to distinct 

interactions enriched in HGSCs.  

 

Discussion 

This study characterizes the diversity of non-epithelial compartments in benign FTs, especially 

immune cells and cell-cell interactions which was not fully described from recent scRNA-Seq. The 

defined single-cell transcriptional landscape of FT immune cells showed a greater extent of 

heterogeneity compared to the previous characterization using flow cytometry (Ardighieri et al. 

2014). An independent, human scRNA-Seq dataset (Ulrich et al. 2022) shows the cell types 

identified here were reproducible. Specifically, we identified 5 fibroblast and smooth muscle cell 

subsets and 2 pericyte subsets, including a rare subset expressing antigen-presenting markers 

recently found in several tissues and cancer types. A fibroblast subset expressing C7 was 

transcriptionally similar to an inflammatory CAF signature found in scRNA-Seq of HGSCs 

(Hornburg et al. 2021) and was most enriched in mesenchymal subtypes of TCGA compared to 

our other stromal subsets. CCI analysis predicted stromal cells as having the most frequent 

interactions in human FT with unique ligand-receptor interactions defined in C7 fibroblasts. These 

interactions included fibronectin (FN1) which correlates with reactive stroma and recurrence after 

chemotherapy treatment (Ryner et al. 2015). The FN1 interactions (FN1-CD44) from fibroblasts 

to immune cells were also increased in tumors relative to non-malignant tissues.  

We identified high monocyte diversity in FT with similar gene expression profiles to those 

observed in circulation (S100A8/9, FCN1, VCAN, CD14) (Mulder et al. 2021; Villani et al. 2017). 

Five monocyte subsets were identified along with DCs and macrophages with distinct 

transcriptional signatures of chemokines, antigen-presentation, transcription factor usage 

(SCENIC), and pseudotime trajectories. We provided a comprehensive analysis of monocyte 
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heterogeneity which has yet to be reported in human FT tissues, highlighting the importance of 

single-cell profiling technology. When compared to benign tissue, we observed a significant 

increase in the macrophage-to-monocyte ratio in HGSC tumors. Furthermore, monocytes and 

macrophages have specific ligand-receptor interactions with other cell types, along with many 

shared interactions defined by scRNA-Seq. Monocytes with EREG expression were predicted to 

interact with epithelial expressing ERBB2/4, a growth factor that might play a role in tumor 

progression, and macrophages expressing PDGF, associated with aggressive HGSC stroma (Li 

et al. 2022), that may interact with fibroblasts could indicate a role in cancer-associated fibroblast 

formation in the tumor microenvironment. Interestingly, monocyte-specific interactions are found 

more frequently in benign tissues, while sone macrophage-specific were higher in HGSC tumors 

in recent scRNA-Seq data of 12 patients (Xu et al. 2022). However, most ligand-receptor pairs 

defined in monocyte and macrophage interactions were positively correlated in benign and tumor 

tissues and in another scRNA-Seq dataset of 2 patients with matched tissues (Qian et al. 2020). 

Further work is needed to evaluate the mechanisms of monocytic maturation and recruitment in 

HGSC progression. We suspect that early changes in tumor development may differentiate 

monocytes in a tissue-specific manner. Others have shown that the co-culture of PBMC-derived 

monocytes with ovarian cancer cell lines was sufficient for alternative macrophage development 

through TGF-alpha (Fogg et al. 2020). We hypothesize that the macrophage-to-monocyte ratio 

could be an indicator of HGSC progression. This concept was recently applied within a melanoma 

and renal cell carcinoma context (Mujal et al. 2022), showing that the macrophage-to-monocyte 

ratio positively correlated with tumor Treg infiltration. Recently published scRNA-Seq of HGSCs 

also showed a correlation between FCN1 expressing monocytes and “immunological desert” 

phenotypes compared to HGSCs with T-cell infiltrated or excluded tumors (Hornburg et al. 2021). 

Lastly, we evaluated monocyte and macrophage heterogeneity in two publicly available datasets: 

scRNA-Seq of 3 women with germline BRCA1 mutations with 3 age-matched samples (Yu et al. 

2022) and 11 HGSC patients with pre and post-neoadjuvant samples (Zhang et al. 2022). We 
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observed the trend of macrophage-to-monocyte ratio in BRCA1 samples, but the low sample size 

(n = 3 per condition) limited this analysis. However, we found that BRCA1 samples had higher 

pro-inflammatory markers, including chemokine expression in their monocytes (CCL3/4, 

CXCL2/8) and EREG signaling, also found in our CCI analysis. Similarly, only when excluding 

low abundant samples in the chemotherapy response data (Zhang et al. 2022), we observed a 

statistically significant change in the macrophage-to-monocyte ratio between pre- and post-

treatment samples, with 2 macrophage and 1 classical CD14+ monocyte subsets that were 

increased after treatment. This data indicates the important but less explored roles of monocytes 

and macrophages in HGSC progression and response to treatment. 

With poor survival outcomes and a lack of early markers for detection, we consider the possibility 

of immune or stromal signatures as candidates for early disease progression. This work 

contributes to characterizing the phenotypic changes of non-epithelial cell types in human FT and 

their impacts on HGSC development that promote further studies that lead to immune-based 

biomarkers of early cancer. We defined the extent of monocyte diversity in FTs, previously 

overlooked in tissue as they’re typically considered circulating cell types. Emerging data has 

supported their correlation with tumor phenotypes and potential functions (Mujal et al. 2022; 

Mulder et al. 2021; Cheng et al. 2021).  The observed transcriptomic differences of monocytes 

and macrophages in adjacent and tumor tissue and the change in their proportion support their 

importance in HGSC and potentially other tumors.  

Our work has several limitations. The lack of clinical data, such as survival from publicly available 

HGSC scRNA-Seq data, limits the correlation analysis of immune and stromal cell diversity 

inferred from FT scRNA-Seq. The limitation of other data modalities, like high-dimensional flow 

cytometry, prevents the current findings from further exploration and validation. Additionally, the 

ability to power these analyses and independently validate the gene expression profiles of the 

diverse cell subsets was aided by publicly available data; however, we note some the limitations 

to this approach. We analyzed these datasets independently as we expect cell type diversity to 
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be lost through a computational dataset integration (CCA, harmony, or similar). We expect 

dataset-specific biases to be present and cannot verify how differences in sample preparation 

may have influenced the recovery of cell type proportions. Additionally, multiple samples were 

derived from different regions within a single patient but were treated as independent in our 

framework. In total, we had 58 unique patients and 88 total scRNA-Seq samples. The calculation 

of cell type ratios will be inherently noisy relative to other cell types (stromal cells, T cells), as 

myeloid cells were less abundant. Finally, others have also shown a significant correlation of 

CD68+ cells in normal fallopian tube epithelia during the luteal phase (George, Milea, and Shaw 

2012), and lack the clinical metadata of our samples to identify and account for this trend.  
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Figure Legends 
 
Figure 1. Integrated scRNA-Seq analysis of human fallopian tubes to identify immune 
features of HGSC progression.  

A. Bioinformatics analysis of 88 scRNA-Seq samples, including in-house and publicly 
available data, identifies heterogeneity and interactions of immune and stromal cells in 
FTs and their alterations across adjacent normal tumor, benign ovary, and HGSCs. 
(Created with Biorender.com) 

B. Transcriptional heterogeneity of stromal, T/NK, and myeloid cell subsets from 12 FT 
samples (Dinh, et al. 2021) served as a reference for further analysis across relevant 
tissue and sample types. 

 
Suppl. Figure 1. 

A. Sample overlay on UMAPs of CCA-integrated scRNA-seq of benign FT samples for 
stromal, T/NK, and myeloid cell compartments. 

B. Proportions of cell clusters across donors in stromal, T/NK, and myeloid cell 
compartments. 

C. Reclustering and label transfer predictions of Ulrich et al. scRNA-Seq data based on 12-
FT-sample reference using SCT normalization and harmony integration. 

D. Pairwise correlation of the top variable genes (n = 2000) from FT reference and the 
predicted cell annotations in benign FT (Ulrich et al. 2022). 

E. Entropy-based ‘Rogue’ scores measure the heterogeneity of individual scRNA-seq FT 
samples across clusters. 

F. Differential expression calculated at increasing clustering resolutions for myeloid, stromal, 
and T/NK cells. The number of unique differentially expressed genes (adjusted p-values 
< 0.01) calculated with MAST, were normalized by the number of clusters per clustering 
resolution.  

 
Figure 2. Myeloid cell heterogeneity in human FTs shows higher diversity of monocytes 
compared to macrophages and dendritic cells.  

A. UMAP and clustering of integrated myeloid cells identify 4 classical monocyte subsets 
(CD14, FCGR3A-), 1 subset of non-classical monocytes (CD14, FCGR3A+), a subset of 
type 2 dendritic cells (CD1C, CLEC10A), and macrophages (APOE, TREM2). 

B. Representative gene signatures of myeloid subsets presented by DotPlot; values show 
scaled RNA expression across clusters. 

C. Gene set enrichment analysis of top scoring Biological Processes Gene Ontology (GO: 
BP) for myeloid subsets. Values shown are z-scores of Jasmine’s odds-ratio test across 
clusters.  

D. Gene regulatory network analysis using SCENIC shows regulon scores enriched for each 
myeloid subset. Values plotted are derived from linear models using one cluster vs. the 
remaining and extracting the t-values for each model (Methods). 

E. Diffusion map of myeloid cells calculated using the top 2000 variable features. Monocle3 
pseudotime, gene set scores, and SCENIC AUC scores were overlaid on the 1st two 
diffusion components.  

 
Suppl. Figure 2. 

A. Spearman’s rho of the top 10 positively and negatively correlated genes for the first 2 
diffusion components show enrichment for cytokine and antigen presentation genes. 

B. ScRNA-Seq gene signature analysis of bulk RNA sequencing samples from 4 molecular 
subtypes of TCGA HGSC samples (n=394) (Methods).  
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Figure 3. Analysis of macrophage-to-monocyte ratio across tissue types and conditions.  
A. UMAP and clustering of myeloid cells from publicly available data (Qian et al. 2020) shows 

the enrichment of macrophages relative to monocytes. (n = 3 samples per group, 2 
patients). 

B. The log2 macrophage-to-monocyte ratio across benign FT, benign ovary, adjacent normal 
tumor, low-grade, and HGSC tumor (FDR-adjusted p-value, two-sided pairwise Wilcox 
test). 

C. Jasmine scores (GO:BP)  calculated for macrophages and monocytes across tumor 
adjacent and tumor microenvironments from Qian et al. scRNA-Seq (panel A). Significant 
pathways (two-sided t.test, FDR-adjusted p-value < 0.01) were ranked by fold change 
between microenvironments and the Jasmine scores plotted. 

 
Suppl. Figure 3. 

A. Reclustering and annotating myeloid cells from benign FT from 4 cancer-free patients 
(Ulrich et al. 2022). 

B. Myeloid gene signatures support gene expression specificity between 12 FT sample 
reference data and data from Ulrich et al. for identifying macrophages, monocytes, and 
DCs.  

C. Further clustering of myeloid cells identifies heterogeneity and guided cell type annotation, 
normalized gene expression shown.  

D. Label transfer predictions for myeloid clusters in independent data (Ulrich et al., 2022) 
using 12 sample FT reference. Gene signatures of the predicted clusters presented in a 
DotPlot, with z-scaled expression values. 

  
Figure 4. Cell-cell interaction analysis of monocytes and macrophages in FTs with other 
cell types. 

A. Frequency of significant CCIs in human FTs (12-samples, Dinh et al. 2021) identified by 
CellChat’s permutation test. 

B. Comparison of monocyte- and  macrophage-specific sending CCIs in human FTs. 
C. Circos plot of monocyte- and macrophage-specific CCIs. Arrow width represents 

Cellchat’s scaled interaction scores. 
D. CCI coexpression scores of monocyte- and macrophage-specific CCIs in tumor and 

benign ovary (Xu et al. 2022). Each point represents a CCI score. 
E. CCI coexpression scores of monocyte- and macrophage-specific CCIs in in tumor and 

adjacent tumor samples (Qian et al. 2020). 
 
Suppl. Figure 4. 

A. Clustering of T/NK cells identifies 3 CD8, 1 CD4, and 2 NK cell subsets projected on the 
UMAP. 

B. Gene signatures for T/NK cell clusters presented by DotPlot, values shown are z-scaled 
expression.  

C. Signature enrichment analysis of T/NK cell subsets for TCGA-OV samples (n=394). 
D. T cell memory and activation gene signatures in FT T/NK cell subsets. 
E. CCI with macrophages and monocytes as receiver cells in benign FT. 
F. Circos plot presentation of monocyte- and macrophage-specific interactions (as 

receivers). 
G. Comparison of CellChat CCI score and co-expression score. Values shown are from each 

possible ligand-receptor, sender-receiver pair using Cellchat’s human interaction 
database.  

H. Macrophage and monocyte receiving CCIs across benign ovary, HGSC, and adjacent 
tumor (Xu et al. 2022).  
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I. Macrophage and monocyte receiving CCIs across adjacent tumor and HGSC tumors 
(Qian et al. 2020). 

 
Figure 5. Macrophage and monocyte heterogeneity analysis shows the altered gene 
expression in high-risk patients with germline BRCA mutations and response to 
chemotherapy. 

A. The log2 macrophage-to-monocyte ratio in benign FT compared with FT in germline 
BRCA1 carriers (data from Yu et al. 2022.). 

B. Examples of monocytic genes defined in human FTs are differentially expressed in FTs of 
BRCA1 carriers. Values shown are normalized RNA counts.  

C. UMAP and clustering reanalysis of myeloid cell subsets from 11 donors pre- and post- 
neoadjuvant chemotherapy (Zhang et al. 2022). 

D. Differential expression analysis of myeloid subsets, values shown are z-scored expression 
across clusters. 

E. Evaluation of macrophage-to-monocyte ratios, and abundance of myeloid subsets from 
paired pre-and post-chemotherapy treated samples. Clusters 1 and 6 (macrophages) and 
cluster 8 (monocytes) were significantly enriched post-treatment (two-sided paired t.test, 
FDR-adjusted p-values < 0.05). 

 
Suppl. Figure 5. 

A. ScRNA-Seq analysis of myeloid cells, clusters 5 and 8 expressing LYZ, FCN1, and C1QB, 
were selected for further clustering analysis.  

B. Gene signatures of myeloid subsets (z-scored expression) identifies DCs, macrophages, 
non-classical, and classical monocytes.   

C. Integrated analysis of pre- and post-chemotherapy treated patients (Zhang et al. 2022). 
Myeloid cells (LYZ+) were selected for further clustering analysis. 

D. UMAP projection of myeloid cells for pre- and post-treatment HGSC patients and 
comparison of cluster frequencies (two-sided paired t.test, FDR-adjusted p-values 
shown). 

 
Figure 6. Stromal heterogeneity analysis of human FTs shows enrichment of complement-
expressing fibroblasts and smooth muscle cells in mesenchymal HGSC subtype. 

A. UMAP projection of 3 fibroblast subsets, 1 smooth muscle cell subset, and 2 pericyte 
subsets.  

B. Top 10 DE genes of stromal subsets presented by DotPlot; expression values are z-scaled 
across clusters. 

C. Stromal subset signature enrichment analysis on TCGA-OV samples (n=394). 
D. Upset plot shows overlapping ligand-receptor interaction numbers from fibroblast subsets 

to immune cells, values derived from Cellchat’s permutation test.  
E. Stromal CCI co-expression analysis in HGSCs vs. benign ovary (Xu et al. 2022). 
F. Stromal CCI co-expression analysis in HGSCs vs. tumor adjacent (Qian et al. 2020). 

 
 
Suppl. Figure 6. 

A. Linear modes of SCENIC’s AUC regulon scores by stromal subset, values plotted are 
extracted t-values from each model. 

B. Gene signatures of smooth muscle cell and pericyte subsets, values shown are 
normalized expression values.  

C. Inflammatory cancer-associated fibroblast gene signatures (Hornburg et al. 2021) in 
stromal subsets of benign human FTs, normalized gene expression.  
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D. CCIs of fibroblast subsets to immune cells not shared between F_IL6, F_RASD1, and 
F_C7 clusters. The width of the arrows represents scaled CellChat probability scores.  
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Materials and Methods 
 
Biological sample handling and processing for scRNA-Seq 
In-house scRNA-Seq data was generated from high-grade or low-grade serous ovarian tumor 
patients with informed consent and approval of the Institutional Review Board at Cedars-Sinai 
Medical Center (Suppl. Table 1). Fresh human primary tissues were placed in sterile serum-free 
MEM at 4 °C and transferred to a tissue culture laboratory. Tissues were minced into ~1–2 mm 
pieces before digesting with 1 × Collagenase/Hyaluronidase (STEMCELL Technologies, Catalog 
#: 07912) and 100 μg/mL DNase I (Sigma Aldrich, SKU: 10104159001) in 7 mL of serum-free 
MEM. The samples were incubated at 37 °C with constant rotation for 90 min. The supernatants 
were collected and the cell suspensions were spun down at 300 g for 10 min at 4 °C. To lyse red 
blood cells, the cell pellets were resuspended in red blood cell lysis buffer (0.8% NH4Cl, 0.1% 
KHCO3, pH7.2) and incubated for 10 min at room temperature. Cell suspensions were spun again 
at 300 g for 10 min at 4 °C and the cell pellets were resuspended in PBS. If >5% dead cells were 
observed by trypan blue staining, dead cell removal was performed using dead cell removal kit 
(Miltenyi Biotec, Catalog #: 130-090-101) according to the manufacturer’s instructions. Remaining 
cells were directly used for single cell RNA sequencing (scRNA-Seq) or frozen in 90% fetal bovine 
serum supplied with 10% dimethyl sulfoxide in a Mr. Frosty freezing container placed at −80 °C. 
Frozen cell vials were transferred to gas phase of liquid nitrogen for long-term storage. Cells were 
thawed and transferred into a 15 mL conical tube with 7 mL of serum-free medium and then spun 
down at 300 g for 10 min at 4 °C. The cell pellets were resuspended in 100 µL of PBS. Cells were 
counted using a hemocytometer and the sample volume was adjusted to achieve a cell 
concentration within 100-2,000/µL. 
 
Single-cell capture, library preparation, and next-generation sequencing 
Single cells were captured and barcoded using the 10X Chromium platform (10X Genomics). 
scRNA-seq libraries were prepared following the instructions from the Chromium Single Cell 3ʹ 
Reagent Kits User Guide (v3). Briefly, Gel Bead-In EMulsions (GEMs) were generated using 
single-cell preparations. After GEM-RT and cleanup, the complementary DNAs (cDNAs) from 
barcoded single-cell RNAs were amplified before quantification using Agilent Bioanalyzer High 
Sensitivity DNA chips. The single-cell 3′ gene expression libraries were constructed and cDNA 
corresponding to an insertion size of ~ 350-400 bp were selected. Libraries were quantified using 
Agilent Bioanalyzer High Sensitivity DNA chips and pooled together to get similar numbers of 
reads from each single cell before sequencing on the NovaSeq S4 (Novogene). 
 
 
ScRNA-Seq pre-processing of publicly available data and in-house HGSC samples 
We downloaded single-cell RNA-seq data from publicly available sources through the NCBI 
GEO, Zenodo, or like resources (Suppl. Table 1). Depending on the origin of the source (either 
gene count matrix or processed data in the Seurat objects), we reanalyzed publicly available 
data using count matrices for consistent processing. We performed QC and filtered out the low-
quality cells with >15% mitochondrial UMIs or fewer than 800 transcripts. Then, we used the 
single-cell transform (SCTransform) method (Hafemeister and Satija 2019) for expression 
normalization and regressed out the percent mitochondrial reads and cell cycle scores. Principal 
components analysis (PCA) was performed from the “SCT” assay prior to integration analysis to 
remove unwanted technical variance using the Harmony method (Korsunsky et al. 2019) with 
default settings. The corrected PCA (Harmony components) were used to generate UMAP 
embeddings and clusters. 
 
Single-cell integration analysis of benign FT samples  
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Non-epithelial compartments (stromal, myeloid, and T/NK cells) were subset from our previously 
published dataset (Dinh, Lin, et al. 2021) to generate new Seurat objects. Each cell subset was 
used further integrated analysis across different donors using default 2000 features Integration 
anchors were calculated using “SCT” as normalization method. The k.filter parameter was 
manually set for myeloid cells and fibroblasts to maintain more donors, but kept to default in 
T/NK subsets where cells were most abundant. Four samples were excluded for myeloid cell 
analysis due to the low number of captured cells (Suppl. Table 1).  
 
To validate the presence of cell subsets, we used Label Transfer from Seurat to identify our 
annotated cluster in an independent cohort of benign FT samples (Ulrich et al. 2022). The two 
datasets were normalized using SCT and the top 3000 most variable genes were used for PCA. 
Predicted annotations using the FindTransferAnchors and TransferData functions. To quantify 
the similarity between two datasets, the top 3000 variable features were used for pairwise 
correlation analysis of our clusters with the predicted cluster labels and plotted using the 
Pheatmap package (Kolde, R. 2012.).  
 
Single-cell clustering, markers, and subset identification  
We identified cell clusters using Seurat graph-based clustering methods at increasing 
resolutions from 0.1 to 1 to identify major cell types (T/NK, stromal, B, myeloid cells) within a 
scRNA-Seq dataset. We used marker genes - LYZ, CD14, CD68, FCN1, CLEC10A, CD1C - to 
identify myeloid cells, which were subset and converted into a new Seurat object for further 
clustering. We re-performed normalization and integration as described on the subset data to 
identify macrophages and monocytes. Macrophages were characterized by C1QA/B/C, TREM2, 
APOE, and HLA-DRA high expression and monocytes by FCN1, S100A8/9, and FCGR3A for 
non-classical monocytes. We required a cluster with a minimum of 5% percent of cells from the 
total cell population. We use the Clustree package (Zappia and Oshlack 2018) to visualize and 
guide splitting or merging clusters with the following criteria: a minimum of 5 differentially 
expressed genes using MAST (Finak et al. 2015),  with a Bonferroni-corrected p-value < 0.01, 
log2FC > 0.25, and a percent expression difference greater than 25% from the new cluster and 
its parent in previous clustering resolutions. If these criteria were not met at a clustering 
resolution, we would merge the cluster back into its parent population and leave the remaining 
clusters unchanged.  
 
 
Quantifying heterogeneity of myeloid and T/NK cells with differential gene expression 
and entropy 
We used the Rogue method (Liu et al. 2020) to quantify the proportion of genes with significant 
entropy from all expressed genes in a scRNA-Seq sample. We used the RNA counts for 
myeloid and T/NK cell subsets for entropy scoring and performed initial filtering to require a 
minimum of 10 cells expressing a gene to be considered for the entropy scoring. Entropy for all 
donors per cell cluster were calculated using the SE_fun function. Rogue scores represent the 
number of genes determined to have a significant entropy divided by the total number of genes 
expressed and ranges from 0 to 1. Rogue values were not estimated for samples with fewer 
than 10 cells per cluster. 
 
In addition, we used DE analysis (adjusted p-value < 0.01, gene expressed in >20% of cells) for 
all resolutions from 0.1 to 1 using FindAllMarkers function in Seurat package. At that given 
clustering resolution, we sum the unique DE genes of the given subset (myeloid, T/NK, or 
stromal cells) while excluding mitochondrial and ribosomal genes (MT-, RPS, RPL), divided by 
the number of unique clusters at that clustering resolution. 
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ScRNA-Seq signature enrichment analysis in TCGA data 
Using the top 10 DE genes per cluster from scRNA-Seq, we computed the average expression 
(Log normalized counts of transcript per million expression) in TCGA bulk RNA-Seq samples. 
Two-sided pairwise Wilcox tests were computed for each cluster across the 4 molecular 
subtypes, using Benjamini-Hochberg FDR p-value correction for multiple comparisons.  

JASMINE pathway analysis 
Gene set enrichment analysis was performed using Jasmine’s odds ratio test (Noureen et al. 
2022). The input data took in the RNA count matrices and used GO:BP genesets from the Gene 
Ontology database through MsigDB (https://www.gsea-msigdb.org/gsea/msigdb). This method 
was robust against dropouts relative to other gene set scoring methods. We ranked genesets by 
significance using general linear models and linear contrasts to identify gene sets that were 
most significant for a given cluster compared to the mean of other clusters. We selected the top 
5 pathways per cluster by highest t-value, then z-scaled Jasmine enrichment scores for 
heatmap visualization after filtering out non-relevant pathways. Enrichment score comparisons 
were performed using t-test with FDR p-value correction using the Benjamini-Hochberg method. 
We ranked the pathways by the absolute change by average Jasmine score. 

Gene regulatory network analysis (SCENIC) 
We applied SCENIC (Aibar et al. 2017) to infer gene regulatory networks in stromal, T/NK, and 
myeloid cells in benign FT. We used the human hg38 reference with 10kb upstream and 
downstream from the transcription start sites to search for DNA motifs. AUC scores generated 
for each regulon were used to create linear models with linear factors with the Multcomp 
package (v1.4-16; Hothorn et al., 2008). for hypothesis testing. Linear contrasts were 
constructed using cluster against the mean of the remaining clusters and selected those with 
the highest t-values. We selected the top regulons for each cell cluster and extracted the T 
values, representing the cluster-specific enrichment for each regulon that and plotted using 
ComplexHeatmap (Gu Z, 2022) in R.   

Pseudotime/trajectory inference analysis 
We used the diffusion map method in the “Destiny” R package (Angerer et al. 2016), from log-
normalized RNA counts from the top variable genes. Spearman’s correlation test identified 
genes associated with the two diffusion map dimensions representing the potential cellular 
trajectories. We also used Monocle3 (Cao et al. 2019) to infer the pseudotime of single cells to 
independently support the gene expression patterns observed in diffusion map analysis.  
Antigen presentation scores were calculated by taking the averaged log expression of all HLA 
genes, and CD74 expressed in a minimum of 10% of cells from any given myeloid cell cluster. 
Similarly, cytokine scores were calculated using cytokine genes (CXCL-, CCL-, IL-) expressed 
in 10% of any myeloid cluster. The scores were then overlaid in the inferred trajectories. 

Cell-cell communication and co-expression ligand-receptor score  
To identify potentially interacting cell types, we applied the CellChat method (Jin et al. 2021) to 
predict ligand-receptor interactions with default parameters (FDR adjusted p-value < 0.05). We 
filtered out interactions with CD4 as receptors (with MHCII) on myeloid cell types. We used the 
predicted macrophage- and monocyte-specific interactions to quantify how ligand-receptor pairs 
may be co-expressed in different tissues using a similar scoring scheme using the geometric 
mean from robust means (½ median + ¼*(first + third quartiles)) of each ligand and receptor 
expression for each cell cluster.  
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Macrophage-to-monocyte ratio across datasets 
The macrophage-to-monocyte ratio was calculated by the sum of macrophage clusters divided 
by monocytes per sample in each dataset. We add 1 as a pseudo-count and log2-transform to 
prevent negative values. Significance was tested using a two-sided Wilcox rank test and 
corrected using the Benjamini-Hochberg method. In datasets with paired pre- and post- 
treatment (Zhang et al. 2022), we used a two-sided paired t.test.  

Data & Code availability  
All source code generated in this study has been uploaded to a Zenodo repository 
and will be made available at time of peer-reviewd publication. Raw FASTQ files and h5 files 
(count matrices) of in-house scRNA-Seq data has been uploaded to NCBI GEO and will be 
made available at time of peer-reviewed publication.
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