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Summary

Tumorigenesis for most high-grade serous ovarian cancers (HGSCs) likely initiates from fallopian
tube (FT) epithelia. While epithelial subtypes have been characterized using single-cell RNA-
sequencing (sScCRNA-Seq), heterogeneity of other cellular compartments and their involvement in
tumor progression are poorly defined. Integrated analysis of human FT scRNA-Seq data and
other relevant tissues, including HGSC tumors, revealed greater transcriptional diversity of
immune and stromal cells. We identify an unprecedented abundance of monocytes in human FT
myeloid cells across two independent donor cohorts. The ratio of macrophages to monocytes are
relatively similar between benign FTs, ovaries, and adjacent normal tissues, but is significantly
greater in tumor. FT-defined monocyte and macrophage signatures, cell-cell communication, and
gene set enrichment analysis identified monocyte- and macrophage-specific ligand-receptor
interactions and functional pathways in tumors and adjacent normal tissue. Further reanalysis of
tumor scRNA-Seq from HGSC patients suggested different monocyte and macrophage subsets
associated with neoadjuvant chemotherapy treatment. Taken together, our work provides

evidence that an altered FT immune composition could inform early detection markers in HGSCs.
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Introduction

A lack of early detection markers for high-grade serous ovarian cancers (HGSCs) has contributed
to patients’ poor clinical outcomes and stagnant survival rates over several decades (Lisio et al.
2019). Emerging molecular data show that the majority of these cancers likely arise from secretory
cells at the fimbriated end of the fallopian tube (FT) (Labidi-Galy et al. 2017; Ducie et al. 2017,
Eckert et al. 2016; Y. Lee et al. 2007; Lawrenson et al. 2019), emphasizing the importance of
characterizing the FT tissue microenvironment to gain insight into the earliest stages of HGSC
development. While significant efforts have been made to characterize the tumor
microenvironment (TME) of HGSCs (Qian et al. 2020; Binnewies et al. 2021; Olalekan et al. 2021,
Olbrecht et al. 2021; Xu et al. 2022; Hornburg et al. 2021) and benign FT epithelia (Dinh, Lin, et
al. 2021; Hu et al. 2020; Ulrich et al. 2022) using single-cell transcriptomics (scRNA-Seq), there
remains a critical need to connect the single-cell landscape of stromal and immune subsets of
human FT to HGSC.

Limited data have been reported on the extended heterogeneity of human FT immune cell subsets
and their cell-cell interactions. Previous studies used protein-panel-based technologies such as
immunohistochemistry (IHC) (George, Milea, and Shaw 2012) and flow cytometry (Shaw et al.
2011; Ardighierietal. 2014; S. K. Lee et al. 2015) to profile human FT immune subsets with limited
markers for phenotyping beyond those for cell type identification (e.g. macrophages, DCs, and
TINK cells). The heterogeneity of T/NK, myeloid, and stromal cells and their cell-cell interactions
in FT remain incomplete in published scRNA-Seq analyses (Dinh, Lin, et al. 2021; Ulrich et al.
2022). We therefore analyzed immune and stromal cell heterogeneity from scRNA-Seq of benign
human FTs (Dinh, Lin, et al. 2021; Ulrich et al. 2022) and HGSC tumors and adjacent normal
samples from >80 in-house and publicly available sources (Ulrich et al. 2022; Binnewies et al.
2021; Olalekan et al. 2021; Xu et al. 2022; Yu et al. 2022; Zhang et al. 2022; Qian et al. 2020),

identifying 7 fibroblast/stromal, 6 T/NK and 7 myeloid cell subsets with distinct gene, pathway,
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and regulatory network signatures. Further examination of single-cell derived transcriptomic
signatures revealed associations with molecular subtypes in bulk transcriptome data from The
Cancer Genome Atlas (TCGA). Lastly, we show a significant macrophage-to-monocyte ratio shift
in tumor compared to benign FT and transcriptional changes in FTs from women with BRCA1/2
mutations and HGSC patients treated with chemotherapy. These results provide a better

understanding of human FT heterogeneity and its implications for HGSC outcomes.

Results

ScRNA-Seq analysis of non-epithelial cell compartment in human fallopian tubes

To characterize the cellular and molecular characteristics of the human FT tissue
microenvironment, we reanalyzed the non-epithelial cell compartment from our previously
published scRNA-Seq (Dinh, Lin, et al. 2021), which included 45,654 non-epithelial cells. Here,
we focus on immune and stromal heterogeneity and compare our subsets to a recently published,
independent scRNA-Seq study (Ulrich et al. 2022). In addition, we generated in-house and utilized
additional publicly available scRNA-Seq data from adjacent hon-malignant tissues and tumors
from patients with HGSCs (total: n = 88 samples across 58 donors, Fig 1A, Suppl. Table 1). We
further clustered 9,759 stromal cells, 32,598 T/NK cells, and 1,850 myeloid cells from 12 FT
samples (Dinh, Lin, et al. 2021) (Fig 1B, Suppl. Fig 1A-B) and identified 7 myeloid, 4 T cell, 2
NK cell, 4 fibroblast, 2 pericyte, and 1 smooth muscle cell subsets (Methods). In addition, using
label transfer (Stuart et al. 2019), we were able to identify all annotated cell subsets in an
independent scRNA-Seq dataset from 4 benign FT donors (Ulrich et al. 2022) (Suppl. Fig 1C-D).
Our analysis identifies greater myeloid diversity measured by an entropy-based scoring method,
Rogue (Liu et al. 2020) compared to T/NK cell clusters despite being just 5% as frequent as T/NK
cells in our scRNA-Seq (Suppl. Fig 1E) samples. Additionally, we calculated the number of
unique statistically differentially expressed (DE) genes (Suppl. Fig 1F), showing that myeloid

cells had consistently more DE genes per cluster and justified the decision to maintain more
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myeloid clusters compared to T/NK cells. In our stromal subsets, we identify 3 fibroblast subsets
and a small cluster with a myeloid-like gene signature, with potential antigen-presenting functions
as recently identified in multiple tissue types (Elyada et al. 2019; Dinh, Pan, et al. 2021). Due to
the limited number of captured cells in the scRNA-Seq, we did not further cluster other cell types,

such as B and endothelial cells.

Myeloid cell heterogeneity and plasticity in human FTs

Myeloid cell diversity in high-grade serous ovarian cancers was recently described with
multifaceted, functional gene signatures in distinct tumor microenvironments (TME) (Hornburg et
al. 2021). We reasoned that an in-depth transcriptional characterization of FT myeloid cells would
help us identify a link between the myeloid microenvironment of HGSC and FTs, the tissue of
origin for most HGSC tumors. Our clustering analysis (Methods) defined 4 classical CD14+
monocyte subsets, 1 nonclassical CD16+ monocyte subset, 1 dendritic cell, and 1 macrophage
subset (Fig 2A) that were shared across FT samples (Suppl. Fig 1B). Downstream analysis
including differential gene expression, gene set enrichment analysis using JASMINE (Noureen et
al. 2022), and gene regulatory network analysis from SCENIC (Aibar et al. 2017) (Methods)
defined distinct gene signatures (Fig 2B-D) in the 7 myeloid subsets and supported our cell type
annotations. We used representative markers to annotate myeloid subsets, including 4 classical
monocyte subsets with variable expression levels of CCL4, a chemoattractant of T and myeloid
cells that was found to correlate with CD8+ and FOXP3+ T cell infiltration in HGSCs (Zsiros et al.
2015). Other markers include the proteoglycan versican (VCAN) and heat shock proteins (HSPs)
describing stress-responsive monocytes (Mujal et al. 2022). Macrophages, which expressed
complement complex genes C1QA/B as well as TREM2 were transcriptionally distinct from
monocytes by their lack of FCN1 and S100A8/9 expression as well as chemoattractant and
inflammatory molecules such as IL1B, CXCL2/3/8, and CCL20. JASMINE pathway analysis using

Gene Ontology Biological Process (GO: BP) revealed gene sets enriched for classical monocytes
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(inflammatory response, leukocyte chemotaxis), HSP+ monocytes (protein folding), non-classical
CD16+ monocytes (interferon-inducible pathways), antigen-presenting pathways in macrophages
and DCs and lipid metabolism pathways unique to macrophages (Fig 2C). Gene regulatory

network analysis performed with SCENIC (Aibar et al. 2017; Van de Sande et al. 2020) showed

BHLHE41 and MAF regulons enriched within macrophages; both negative regulators of
macrophage proliferation and activation (Aziz et al. 2009; Rauschmeier et al. 2019). EHF and
ETV3 regulons were also active, likely reflecting dendritic cell differentiation programs (Appel et
al. 2006; Villar et al. 2023), and IRF4, a DC-lineage transcription factor that promotes TH2
polarization (Williams et al. 2013) (Fig 2D).

To test how potential monocytic developmental trajectories in human FT correlates with our

defined regulatory networks, we paired SCENIC results with diffusion maps (Angerer et al. 2016)

and Monocle’s graph-based pseudotime (Cao et al. 2019). Diffusion map analysis suggested two

distinct diffusion components, one associated with MHC-II antigen presenting genes and the
second with inflammatory cytokine expression (Fig. 2E, Suppl. Fig 2A). Monocle supported the
inferred pseudotime trajectory from classical CD14+ monocytes to more matured monocytic cell
types (dendritic cells, macrophages) or distinct monocyte states (HSP/VCAN monocytes and non-
classical CD16+ monocytes) supported by the enrichment score of SCENIC regulons. The top
correlated genes with each diffusion component indicated how monocytic cells might function
differently during their maturation. We ranked the top 10 correlating genes with each diffusion
component (Suppl. Fig 2A) to indicate how monocytic cells might function distinctly during their
maturation. For instance, enrichment scores derived from the average expression in single-cell
clusters suggested cytokine/interleukin genes were enriched with monocytes while HLA gene sets
were enriched within macrophages and DCs.

Next, we used FT-defined myeloid cell signatures to evaluate their enrichment in 394 HGSC
samples from TCGA (Cancer Genome Atlas Research Network 2011) and found that signatures

of more mature monocytic subsets such as VCAN+ monocytes and macrophages were most
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enriched for immunoreactive and mesenchymal HGSC subtypes (Suppl. Fig 2B, Methods).
Together, our analysis revealed extensive heterogeneity of myeloid cells in human FTs and

suggested a phenotypic change in myeloid cells that may be relevant in HGSCs.

Macrophage-to-monocyte ratio is distinct in the FT, adjacent normal tissues, and HGSC
tumors

Previous flow cytometry and scRNA-Seq analyses did not annotate monocyte subset in FTs
(Ardighieri et al. 2014; Ulrich et al. 2022); however their signatures were identified in HGSC
ScRNA-Seq (Hornburg et al. 2021) that correlated with T/NK cell phenotypes. Since monocyte
signatures (S100A8/9, FCN1, VCAN) from circulating blood (Villani et al. 2017) and HGSC tumor
(Hornburg et al. 2021) are consistent with our FT-defined monocytes, we asked if we could identify
monocytes in independent samples of healthy FT scRNA-Seq (Ulrich et al. 2022) (Suppl. Fig 3A-
B). Our clustering analysis recovers abundant monocytes with similar marker genes as identified
in our FT samples (S100A8/9, FCN1, TREMZ2, CD1C) and consistently differentiated
macrophages, monocytes, and DCs from each other. Using label transfer (Stuart et al. 2019), we
show that monocyte subsets are retained in other previously published data (Ulrich et al. 2022)
(Suppl. Fig 3C-D). We observed that S1I00A9 and FCN1 consistently separate monocytes from
dendritic cells and TREM2+ C1QA/B macrophages. The comparatively low abundance of
macrophages relative to monocytes in benign FT scRNA-Seq datasets led us to evaluate their
proportions in adjacent normal tissues compared to HGSC tumors from the same patients. We
reanalyzed two independent scRNA-Seq datasets, one with paired adjacent normal and tumor

from (Qian et al. 2020) and another with 5 benign ovarian tissues and 7 HGSCs from (Xu et al.

2022). We found a significantly elevated macrophage-to-monocyte ratio in HGSC tumors
compared to benign FT tissues (3.40 fold increase, FDR adjusted p-value = 3.6x10°) (Fig 3A-
B), while the difference between adjacent, non-malignant tissue, or benign ovary compared to

healthy FT tissue are less pronounced (1.90, and 1.94 fold increase, respectively) and were not
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found to be statistically significant (FDR adjusted p-values = 0.19, 0.50). The macrophage-to-
monocyte ratio was not significantly different between adjacent normal tissues compared to that
in low-grade ovarian cancer in our newly generated scRNA-Seq (Fig 3B). Taking advantage of
the recent availability of published scRNA-Seq datasets, we reanalyzed additional HGSC tumor

scRNA-Seq (Xu et al. 2022; Binnewies et al. 2021; Olalekan et al. 2021) and, on average, found

a higher macrophage-to-monocyte ratio in HGSC TME from different datasets (total n = 26 HGSC
samples).

To identify the potential difference in myeloid cells’ functions in adjacent normal and benign tissue,
we used scRNA-Seq of adjacent normal (n = 3) and HGSC tumors (n = 7) (Qian et al. 2020).
JASMINE GO: BP pathway analysis showed marked differences in monocytes in adjacent tissues
compared to tumors, including enrichment of anti-angiogenic pathways in adjacent monocytes
compared to tumors (negative regulation of endothelial cell chemotaxis FDR adjusted p-value =
1.58 x10%° and positive regulation of endothelial cell apoptotic process FDR adjusted p-value =
4.10x102Y) (Fig 3D). In contrast, tumor-associated monocytes were significantly enriched in
metabolic-related pathways (High-density lipoprotein particle remodeling FDR adjusted p-value =
4.20 x10** and NAD metabolic process FDR adjusted p-value = 1.33 x10°) compared to adjacent
normal monocytes, and similar to tumor-associated macrophages (TAMs). We also observed
shifted metabolic pathways in TAMs, supporting their change in energy demands compared to
adjacent tissue. Notably, we see a reduced reliance on oxygen for metabolism demonstrated with
a significantly lower JASMINE score for the ‘oxygen transport’ pathway (FDR adjusted p-value =
5.11 x102%%) and 'acetyl coenzyme-A biosynthesis’ pathway (FDR adjusted p-value = 9.03x10"

211 'which is an essential precursor for oxidative phosphorylation.

FT-defined cell-cell interactions of monocytes and macrophages are correlated in adjacent

normal and matched HGSC tumors
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Since the phenotypes of monocytes and macrophages are associated with different types of

HGSC TMEs (Hornburg et al. 2021), we asked if the cell-cell interactions of monocytes and

macrophages with other cell types in FTs are altered in tumor compared to benign tissue (FT and
adjacent normal) (Fig 3B). To test this, we further identified 6 T/NK cell subsets, including 3 CD8+
cell subsets, 2 NK cell subsets, and 1 CD4 subset with distinct gene signatures (Suppl. Fig 4A-
B). Among those, scRNA-Seqg-derived signature scores identified T/NK subsets were highest in
immunoreactive subtypes in most subsets, but particularly in NK cells. (Suppl. Fig 4C). Further
sub-clustering did not obtain more subsets with sufficient DE genes for T cell subset annotation
with conventional phenotypic markers, including T memory and helper subtypes (Suppl. Fig 4D).

To evaluate the cell-cell interaction (CCI) signals from scRNA-Seq, we used Cellchat (Jin
et al. 2021). ligand-receptor database and quantified the significant interactions across major
subtypes in our defined human FT atlas (Fig 4A). CellChat's permutation test identified 121
significant ligand-receptor pairs with monocytes/macrophages as a sender cell type, in which 83
(68.6%) were shared between macrophages and monocytes, while 22 (18.2%) and 16 (13.2%)
specifically identified from either macrophages or monocytes, respectively (Fig 4B-C). The
dominant signaling pathways of macrophage CCls were CLEC2B and TNF signaling, which
engages the KLRB1 and TNFR receptors, known for self-recognition and negative regulation of
T/NK cell activation (lizuka et al. 2003; Mathewson et al. 2021) and inflammation, respectively.
Other macrophage CCls, including PDGFB-PDGFRA/B between macrophages and stromal cells,
were reported in HGSC tumors with reactive stroma and poor prognosis (Li et al. 2022). On the
other hand, monocyte CCls included epiregulin (EREG), which has potential interactions with
stromal cells through EGFR, or ciliated epithelial cells through HER family receptors ERBB2 and
ERBB4, reported in low-grade serous ovarian cancers (Luo et al. 2018). Another relevant
monocyte interaction, THBS1-CD47, showed a reduction in angiogenesis and increased tumor
rejection in a xenotransplant model, suggesting its pro-tumoral effects (Jeanne et al. 2021). Next,

we performed the same CCI analysis using macrophages and monocytes as receiving
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populations (Suppl. Fig 4E-F), which highlighted the increased diversity in macrophage receptor
use such as with LRP1, AXL, CSF1R, HAVCR2, C3AR1 when compared to monocytes.

Since we observed the difference in the macrophage-to-monocyte ratio in samples compared to
tumors, we asked if the FT-defined CCls expressed differently in adjacent normal and tumors. To
do so, we compared co-expression CCIl scores (Methods) of the FT-defined monocyte- and
macrophage-specific and shared CClIs in adjacent normal and tumor samples from two
independent scRNA-Seq datasets (Xu et al. 2022; Qian et al. 2020). The co-expression of our
CCI scores positively correlated with CellChat's communication probabilities (Suppl. Fig 4G),
which allowed us to identify cross-tissue CCls between benign, adjacent normal, and tumor
tissues. We observed that interactions with monocytes as senders were enriched in the benign
ovary (Xu et al. 2022), with 11 monocyte-specific positive scored interactions in benign ovary and
2 in tumors, whereas most interactions with macrophages as senders were similar between
normal and tumor (Fig 4D). In a second data set we observed a high correlation between these
interactions, but not in a cell type-specific manner (Qian et al. 2020). The receiving signals were
also consistently correlated between these datasets (Suppl. Fig 4H-I), indicating that tumor
microenvironment and cell-cell interactions may be intrinsic to their cell identities based on their

high correlation across different tissues.

Monocyte and macrophage diversity in patients with germline BRCA1 mutations and
HGSC patients treated with chemotherapy

We identified the macrophage-to-monocyte ratio changes potentially linked with disease
progression. Next, we wanted to evaluate this ratio using FT scRNA-Seq from patients with
BRCAL germline mutations (Yu et al. 2022), who are high risk of developing HGSCs. We used
marker genes consistent with our 12 sample FT reference to identify myeloid cell types (Suppl.
Fig 5A-B). We observed an increase in macrophage-to-monocyte ratio in FT of BRCAL germline

mutation (p-value = 0.7, two-sided Wilcox test, n = 3 vs 3). (Fig 5A). Differential gene expression
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showed an increased in the chemokines CCL3 and CXCL2/8, first identified from our FT monocyte
subsets, in macrophages and monocytes of BRCA1 FT samples, and decreased expression of
heat shock protein (HSP) genes in BRCA samples (Fig 5B). The data indicated a potential of
change in macrophage-to-monocyte ratio in FT of HGSC high-risk patients compared to healthy
FT but remains limited due to small sample size.

We were also curious how macrophage-to-monocyte ratio may change in HGSC patients upon
treatment. We reanalyzed a publicly available treatment-naive scRNA-Seq dataset from 11
patients taken before and after neoadjuvant chemotherapy treatment (Zhang et al. 2022) (Suppl.
Fig 5C). Our myeloid cell clustering identified 2 populations of monocytes, 5 populations of
macrophages, and 2 dendritic cell subsets (Fig 5C-D) with distinct gene signatures resembling
those defined in our FT analysis (CCL3/4, CXCL3, HSPA1, FCN1, CCL20, C1QA). Overall,
chemotherapy’s effect on the macrophage-to-monocyte ratio is uncertain. There is no significance
when using all samples, including those with poor cell recovery, which are likely more variable (p-
value = 0.456). However, after removing samples with fewer than 50 total myeloid cells combined
(n=2), we see a 1.45-fold increase in the log2 ratio (p-value = 0.0485). More samples are needed
to determine the reproducibility of this effect. Additionally, we observed three subsets that
significantly increased in proportion after treatment, including macrophages expressing APOE,
APOC1, and complement components (C1Qs) (cluster 1, FDR adjusted p-value = 0.045), HSP+
stress-related macrophages (cluster 6, FDR adjusted p-value = 0.041), and classical monocytes
(cluster 8, FDR adjusted p-value = 0.011), that were most similar to the early FT-defined monocyte
subsets (Fig 5E). Several subsets of monocyte and macrophage subpopulations are changed in
HGSC as expected (Suppl. Fig 5D), despite the uncertain impact on the ratio of macrophage-to-
monocytes. We also note the increased complexity of myeloid cell diversity in the TME, especially

within macrophages relative to benign tissue.

Stromal-immune cell interactions in human FTs
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Since stromal cell-cell interactions were predicted to be the most frequent sending cell types
inferred in FT scRNA-Seq, (Fig 4A), we asked to what extent their interactions with immune cells
differ between normal FTs and HGSC tumors. To do so, we sub-clustered the stromal cell
compartment and identified three fibroblast subsets, two pericyte populations, and one smooth
muscle cell (SMC) subset (Fig 6A) with distinct gene expression signatures, including
complement genes (C7, C3, CFD) and cytokine/chemokine expression (CXL8, IL6) (Fig 6B). We
named the subsets with representative markers except for SMCs, which was comprised of one
subset. F_RASD1 fibroblasts were suspected to be less differentiated/activated with high regulon
activity of stemness markers SOX4 and TWIST2 from SCENIC (Suppl. Fig 6A) (Yang et al.
2020). Smooth muscle and pericyte populations could be characterized by differential expression
of cell adhesion molecules (MCAM), RGS5 (pericyte markers), MYH11, and ZCCHC12 as smooth
muscle cell markers (Suppl. Fig 6B). Among those subsets, we found that F_C7 fibroblasts,
marked by high expression of complement C7 and SMC signature scores, were enriched in the
TCGA HGSC mesenchymal subtype, known to have the worst survival outcomes (Fig 6C). Next,
we used cancer-associated fibroblast (CAF) signatures from HGSC scRNA-Seq (Hornburg et al.
2021; Olbrecht et al. 2021) to evaluate FT stromal subsets. We find complement expression
(CFD) and other genes (DPT, MGP, and CXCL12) similar to inflammatory fibroblasts described
in HGSCs (Hornburg et al. 2021) were enriched in our F_C7 subset relative to other stromal cells.
(Suppl. Fig 6C). CCl analysis using CellChat identified interactions between stromal subsets and
immune receiver cells, particularly through CD44, CD47 and integrins (Suppl. Fig 6D). Most CCls
from fibroblast to immune cells were shared between our three fibroblast subsets (80%), though
F_C7 fibroblasts have 22 CCls not shared with other fibroblast subsets (12% of all stromal to
immune interactions) (Fig 6D). Notably, fibroblast to myeloid signaling, including C3 to C3AR1,
associated with immunosuppression and cancer cell proliferation (Huang, Zhou, and Deng 2023),
and C3 to ITGAX and ITGB2, were among these (Suppl. Fig 5D). FN1 interactions, which were

defined from our C7 expressing fibroblasts show interactions with diverse immune cell subsets
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and were predicted to have higher ligand-receptor co-expression in tumor relative to benign tissue
from 2 independent cohorts (Fig 5E-F). Altogether, we reported a diversity of stromal cell subsets
in human FTs, with distinct gene expression profiles and subsets that may contribute to distinct

interactions enriched in HGSCs.

Discussion

This study characterizes the diversity of non-epithelial compartments in benign FTs, especially
immune cells and cell-cell interactions which was not fully described from recent scRNA-Seq. The
defined single-cell transcriptional landscape of FT immune cells showed a greater extent of
heterogeneity compared to the previous characterization using flow cytometry (Ardighieri et al.
2014). An independent, human scRNA-Seq dataset (Ulrich et al. 2022) shows the cell types
identified here were reproducible. Specifically, we identified 5 fibroblast and smooth muscle cell
subsets and 2 pericyte subsets, including a rare subset expressing antigen-presenting markers
recently found in several tissues and cancer types. A fibroblast subset expressing C7 was
transcriptionally similar to an inflammatory CAF signature found in scRNA-Seq of HGSCs
(Hornburg et al. 2021) and was most enriched in mesenchymal subtypes of TCGA compared to
our other stromal subsets. CCI analysis predicted stromal cells as having the most frequent
interactions in human FT with unique ligand-receptor interactions defined in C7 fibroblasts. These
interactions included fibronectin (FN1) which correlates with reactive stroma and recurrence after
chemotherapy treatment (Ryner et al. 2015). The FNL1 interactions (FN1-CD44) from fibroblasts
to immune cells were also increased in tumors relative to non-malignant tissues.

We identified high monocyte diversity in FT with similar gene expression profiles to those
observed in circulation (S100A8/9, FCN1, VCAN, CD14) (Mulder et al. 2021; Villani et al. 2017).
Five monocyte subsets were identified along with DCs and macrophages with distinct
transcriptional signatures of chemokines, antigen-presentation, transcription factor usage

(SCENIC), and pseudotime trajectories. We provided a comprehensive analysis of monocyte
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heterogeneity which has yet to be reported in human FT tissues, highlighting the importance of
single-cell profiling technology. When compared to benign tissue, we observed a significant
increase in the macrophage-to-monocyte ratio in HGSC tumors. Furthermore, monocytes and
macrophages have specific ligand-receptor interactions with other cell types, along with many
shared interactions defined by scRNA-Seq. Monocytes with EREG expression were predicted to
interact with epithelial expressing ERBB2/4, a growth factor that might play a role in tumor
progression, and macrophages expressing PDGF, associated with aggressive HGSC stroma (Li
et al. 2022), that may interact with fibroblasts could indicate a role in cancer-associated fibroblast
formation in the tumor microenvironment. Interestingly, monocyte-specific interactions are found
more frequently in benign tissues, while sone macrophage-specific were higher in HGSC tumors
in recent sScCRNA-Seq data of 12 patients (Xu et al. 2022). However, most ligand-receptor pairs
defined in monocyte and macrophage interactions were positively correlated in benign and tumor
tissues and in another scRNA-Seq dataset of 2 patients with matched tissues (Qian et al. 2020).
Further work is needed to evaluate the mechanisms of monocytic maturation and recruitment in
HGSC progression. We suspect that early changes in tumor development may differentiate
monocytes in a tissue-specific manner. Others have shown that the co-culture of PBMC-derived
monocytes with ovarian cancer cell lines was sufficient for alternative macrophage development
through TGF-alpha (Fogg et al. 2020). We hypothesize that the macrophage-to-monocyte ratio
could be an indicator of HGSC progression. This concept was recently applied within a melanoma
and renal cell carcinoma context (Mujal et al. 2022), showing that the macrophage-to-monocyte
ratio positively correlated with tumor Treg infiltration. Recently published scRNA-Seq of HGSCs
also showed a correlation between FCN1 expressing monocytes and “immunological desert”
phenotypes compared to HGSCs with T-cell infiltrated or excluded tumors (Hornburg et al. 2021).
Lastly, we evaluated monocyte and macrophage heterogeneity in two publicly available datasets:
scRNA-Seq of 3 women with germline BRCAL mutations with 3 age-matched samples (Yu et al.

2022) and 11 HGSC patients with pre and post-neoadjuvant samples (Zhang et al. 2022). We
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observed the trend of macrophage-to-monocyte ratio in BRCAL samples, but the low sample size
(n = 3 per condition) limited this analysis. However, we found that BRCA1 samples had higher
pro-inflammatory markers, including chemokine expression in their monocytes (CCL3/4,
CXCL2/8) and EREG signaling, also found in our CCI analysis. Similarly, only when excluding
low abundant samples in the chemotherapy response data (Zhang et al. 2022), we observed a
statistically significant change in the macrophage-to-monocyte ratio between pre- and post-
treatment samples, with 2 macrophage and 1 classical CD14+ monocyte subsets that were
increased after treatment. This data indicates the important but less explored roles of monocytes
and macrophages in HGSC progression and response to treatment.

With poor survival outcomes and a lack of early markers for detection, we consider the possibility
of immune or stromal signatures as candidates for early disease progression. This work
contributes to characterizing the phenotypic changes of non-epithelial cell types in human FT and
their impacts on HGSC development that promote further studies that lead to immune-based
biomarkers of early cancer. We defined the extent of monocyte diversity in FTs, previously
overlooked in tissue as they’re typically considered circulating cell types. Emerging data has
supported their correlation with tumor phenotypes and potential functions (Mujal et al. 2022;
Mulder et al. 2021; Cheng et al. 2021). The observed transcriptomic differences of monocytes
and macrophages in adjacent and tumor tissue and the change in their proportion support their
importance in HGSC and potentially other tumors.

Our work has several limitations. The lack of clinical data, such as survival from publicly available
HGSC scRNA-Seq data, limits the correlation analysis of immune and stromal cell diversity
inferred from FT scRNA-Seq. The limitation of other data modalities, like high-dimensional flow
cytometry, prevents the current findings from further exploration and validation. Additionally, the
ability to power these analyses and independently validate the gene expression profiles of the
diverse cell subsets was aided by publicly available data; however, we note some the limitations

to this approach. We analyzed these datasets independently as we expect cell type diversity to
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be lost through a computational dataset integration (CCA, harmony, or similar). We expect
dataset-specific biases to be present and cannot verify how differences in sample preparation
may have influenced the recovery of cell type proportions. Additionally, multiple samples were
derived from different regions within a single patient but were treated as independent in our
framework. In total, we had 58 unigue patients and 88 total SCRNA-Seq samples. The calculation
of cell type ratios will be inherently noisy relative to other cell types (stromal cells, T cells), as
myeloid cells were less abundant. Finally, others have also shown a significant correlation of
CD68+ cells in normal fallopian tube epithelia during the luteal phase (George, Milea, and Shaw

2012), and lack the clinical metadata of our samples to identify and account for this trend.
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Figure Legends

Figure 1. Integrated scRNA-Seq analysis of human fallopian tubes to identify immune
features of HGSC progression.
A. Bioinformatics analysis of 88 scRNA-Seq samples, including in-house and publicly
available data, identifies heterogeneity and interactions of immune and stromal cells in
FTs and their alterations across adjacent normal tumor, benign ovary, and HGSCs.
(Created with Biorender.com)
B. Transcriptional heterogeneity of stromal, T/NK, and myeloid cell subsets from 12 FT
samples (Dinh, et al. 2021) served as a reference for further analysis across relevant
tissue and sample types.

Suppl. Figure 1.

A. Sample overlay on UMAPs of CCA-integrated scRNA-seq of benign FT samples for
stromal, T/NK, and myeloid cell compartments.

B. Proportions of cell clusters across donors in stromal, T/NK, and myeloid cell
compartments.

C. Reclustering and label transfer predictions of Ulrich et al. sScRNA-Seq data based on 12-
FT-sample reference using SCT normalization and harmony integration.

D. Pairwise correlation of the top variable genes (n = 2000) from FT reference and the
predicted cell annotations in benign FT (Ulrich et al. 2022).

E. Entropy-based ‘Rogue’ scores measure the heterogeneity of individual scRNA-seq FT
samples across clusters.

F. Differential expression calculated at increasing clustering resolutions for myeloid, stromal,
and T/NK cells. The number of unique differentially expressed genes (adjusted p-values
< 0.01) calculated with MAST, were normalized by the number of clusters per clustering
resolution.

Figure 2. Myeloid cell heterogeneity in human FTs shows higher diversity of monocytes
compared to macrophages and dendritic cells.

A. UMAP and clustering of integrated myeloid cells identify 4 classical monocyte subsets
(CD14, FCGR3A-), 1 subset of non-classical monocytes (CD14, FCGR3A+), a subset of
type 2 dendritic cells (CD1C, CLEC10A), and macrophages (APOE, TREM2).

B. Representative gene signatures of myeloid subsets presented by DotPlot; values show
scaled RNA expression across clusters.

C. Gene set enrichment analysis of top scoring Biological Processes Gene Ontology (GO:
BP) for myeloid subsets. Values shown are z-scores of Jasmine’s odds-ratio test across
clusters.

D. Gene regulatory network analysis using SCENIC shows regulon scores enriched for each
myeloid subset. Values plotted are derived from linear models using one cluster vs. the
remaining and extracting the t-values for each model (Methods).

E. Diffusion map of myeloid cells calculated using the top 2000 variable features. Monocle3
pseudotime, gene set scores, and SCENIC AUC scores were overlaid on the 15 two
diffusion components.

Suppl. Figure 2.
A. Spearman’s rho of the top 10 positively and negatively correlated genes for the first 2
diffusion components show enrichment for cytokine and antigen presentation genes.
B. ScRNA-Seq gene signature analysis of bulk RNA sequencing samples from 4 molecular
subtypes of TCGA HGSC samples (n=394) (Methods).
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Figure 3. Analysis of macrophage-to-monocyte ratio across tissue types and conditions.

A. UMAP and clustering of myeloid cells from publicly available data (Qian et al. 2020) shows
the enrichment of macrophages relative to monocytes. (n = 3 samples per group, 2
patients).

B. The log2 macrophage-to-monocyte ratio across benign FT, benign ovary, adjacent normal
tumor, low-grade, and HGSC tumor (FDR-adjusted p-value, two-sided pairwise Wilcox
test).

C. Jasmine scores (GO:BP) calculated for macrophages and monocytes across tumor
adjacent and tumor microenvironments from Qian et al. ScCRNA-Seq (panel A). Significant
pathways (two-sided t.test, FDR-adjusted p-value < 0.01) were ranked by fold change
between microenvironments and the Jasmine scores plotted.

Suppl. Figure 3.

A. Reclustering and annotating myeloid cells from benign FT from 4 cancer-free patients
(Ulrich et al. 2022).

B. Myeloid gene signatures support gene expression specificity between 12 FT sample
reference data and data from Ulrich et al. for identifying macrophages, monocytes, and
DCs.

C. Further clustering of myeloid cells identifies heterogeneity and guided cell type annotation,
normalized gene expression shown.

D. Label transfer predictions for myeloid clusters in independent data (Ulrich et al., 2022)
using 12 sample FT reference. Gene signatures of the predicted clusters presented in a
DotPlot, with z-scaled expression values.

Figure 4. Cell-cell interaction analysis of monocytes and macrophages in FTs with other
cell types.

A. Frequency of significant CCls in human FTs (12-samples, Dinh et al. 2021) identified by
CellChat’s permutation test.
Comparison of monocyte- and macrophage-specific sending CCls in human FTs.
Circos plot of monocyte- and macrophage-specific CCls. Arrow width represents
Cellchat’s scaled interaction scores.
CCI coexpression scores of monocyte- and macrophage-specific CCls in tumor and
benign ovary (Xu et al. 2022). Each point represents a CCl score.
CCI coexpression scores of monocyte- and macrophage-specific CCls in in tumor and
adjacent tumor samples (Qian et al. 2020).
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Suppl. Figure 4.
A. Clustering of T/NK cells identifies 3 CD8, 1 CD4, and 2 NK cell subsets projected on the
UMAP.
Gene signatures for T/NK cell clusters presented by DotPlot, values shown are z-scaled
expression.
Signature enrichment analysis of T/NK cell subsets for TCGA-OV samples (n=394).
T cell memory and activation gene signatures in FT T/NK cell subsets.
CCI with macrophages and monocytes as receiver cells in benign FT.
Circos plot presentation of monocyte- and macrophage-specific interactions (as
receivers).
Comparison of CellChat CCl score and co-expression score. Values shown are from each
possible ligand-receptor, sender-receiver pair using Cellchat's human interaction
database.
H. Macrophage and monocyte receiving CCls across benign ovary, HGSC, and adjacent
tumor (Xu et al. 2022).
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I. Macrophage and monocyte receiving CCls across adjacent tumor and HGSC tumors
(Qian et al. 2020).

Figure 5. Macrophage and monocyte heterogeneity analysis shows the altered gene
expression in high-risk patients with germline BRCA mutations and response to
chemotherapy.

A. The log2 macrophage-to-monocyte ratio in benign FT compared with FT in germline
BRCAL carriers (data from Yu et al. 2022.).

B. Examples of monocytic genes defined in human FTs are differentially expressed in FTs of
BRCAL1 carriers. Values shown are normalized RNA counts.

C. UMAP and clustering reanalysis of myeloid cell subsets from 11 donors pre- and post-
neoadjuvant chemotherapy (Zhang et al. 2022).

D. Differential expression analysis of myeloid subsets, values shown are z-scored expression
across clusters.

E. Evaluation of macrophage-to-monocyte ratios, and abundance of myeloid subsets from
paired pre-and post-chemotherapy treated samples. Clusters 1 and 6 (macrophages) and
cluster 8 (monocytes) were significantly enriched post-treatment (two-sided paired t.test,
FDR-adjusted p-values < 0.05).

Suppl. Figure 5.

A. ScRNA-Seq analysis of myeloid cells, clusters 5 and 8 expressing LYZ, FCN1, and C1QB,
were selected for further clustering analysis.

B. Gene signatures of myeloid subsets (z-scored expression) identifies DCs, macrophages,
non-classical, and classical monocytes.

C. Integrated analysis of pre- and post-chemotherapy treated patients (Zhang et al. 2022).
Myeloid cells (LYZ+) were selected for further clustering analysis.

D. UMAP projection of myeloid cells for pre- and post-treatment HGSC patients and
comparison of cluster frequencies (two-sided paired t.test, FDR-adjusted p-values
shown).

Figure 6. Stromal heterogeneity analysis of human FTs shows enrichment of complement-
expressing fibroblasts and smooth muscle cells in mesenchymal HGSC subtype.
A. UMAP projection of 3 fibroblast subsets, 1 smooth muscle cell subset, and 2 pericyte
subsets.
B. Top 10 DE genes of stromal subsets presented by DotPlot; expression values are z-scaled
across clusters.
C. Stromal subset signature enrichment analysis on TCGA-OV samples (n=394).
D. Upset plot shows overlapping ligand-receptor interaction numbers from fibroblast subsets
to immune cells, values derived from Cellchat's permutation test.
Stromal CCI co-expression analysis in HGSCs vs. benign ovary (Xu et al. 2022).
Stromal CCI co-expression analysis in HGSCs vs. tumor adjacent (Qian et al. 2020).

am

Suppl. Figure 6.
A. Linear modes of SCENIC’s AUC regulon scores by stromal subset, values plotted are
extracted t-values from each model.
B. Gene signatures of smooth muscle cell and pericyte subsets, values shown are
normalized expression values.
C. Inflammatory cancer-associated fibroblast gene signatures (Hornburg et al. 2021) in
stromal subsets of benign human FTs, normalized gene expression.
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D. CCis of fibroblast subsets to immune cells not shared between F_IL6, F_RASD1, and
F_C7 clusters. The width of the arrows represents scaled CellChat probability scores.
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Materials and Methods

Biological sample handling and processing for scRNA-Seq

In-house scRNA-Seq data was generated from high-grade or low-grade serous ovarian tumor
patients with informed consent and approval of the Institutional Review Board at Cedars-Sinai
Medical Center (Suppl. Table 1). Fresh human primary tissues were placed in sterile serum-free
MEM at 4 °C and transferred to a tissue culture laboratory. Tissues were minced into ~1-2 mm
pieces before digesting with 1 x Collagenase/Hyaluronidase (STEMCELL Technologies, Catalog
#: 07912) and 100 pyg/mL DNase | (Sigma Aldrich, SKU: 10104159001) in 7 mL of serum-free
MEM. The samples were incubated at 37 °C with constant rotation for 90 min. The supernatants
were collected and the cell suspensions were spun down at 300 g for 10 min at 4 °C. To lyse red
blood cells, the cell pellets were resuspended in red blood cell lysis buffer (0.8% NH4CI, 0.1%
KHCOs3, pH7.2) and incubated for 10 min at room temperature. Cell suspensions were spun again
at 300 g for 10 min at 4 °C and the cell pellets were resuspended in PBS. If >5% dead cells were
observed by trypan blue staining, dead cell removal was performed using dead cell removal kit
(Miltenyi Biotec, Catalog #: 130-090-101) according to the manufacturer’s instructions. Remaining
cells were directly used for single cell RNA sequencing (ScCRNA-Seq) or frozen in 90% fetal bovine
serum supplied with 10% dimethyl sulfoxide in a Mr. Frosty freezing container placed at —80 °C.
Frozen cell vials were transferred to gas phase of liquid nitrogen for long-term storage. Cells were
thawed and transferred into a 15 mL conical tube with 7 mL of serum-free medium and then spun
down at 300 g for 10 min at 4 °C. The cell pellets were resuspended in 100 pL of PBS. Cells were
counted using a hemocytometer and the sample volume was adjusted to achieve a cell
concentration within 100-2,000/pL.

Single-cell capture, library preparation, and next-generation sequencing

Single cells were captured and barcoded using the 10X Chromium platform (10X Genomics).
scRNA-seq libraries were prepared following the instructions from the Chromium Single Cell 3'
Reagent Kits User Guide (v3). Briefly, Gel Bead-In EMulsions (GEMs) were generated using
single-cell preparations. After GEM-RT and cleanup, the complementary DNAs (cDNAs) from
barcoded single-cell RNAs were amplified before quantification using Agilent Bioanalyzer High
Sensitivity DNA chips. The single-cell 3' gene expression libraries were constructed and cDNA
corresponding to an insertion size of ~ 350-400 bp were selected. Libraries were quantified using
Agilent Bioanalyzer High Sensitivity DNA chips and pooled together to get similar numbers of
reads from each single cell before sequencing on the NovaSeq S4 (Novogene).

ScRNA-Seq pre-processing of publicly available data and in-house HGSC samples

We downloaded single-cell RNA-seq data from publicly available sources through the NCBI
GEO, Zenodo, or like resources (Suppl. Table 1). Depending on the origin of the source (either
gene count matrix or processed data in the Seurat objects), we reanalyzed publicly available
data using count matrices for consistent processing. We performed QC and filtered out the low-
quality cells with >15% mitochondrial UMIs or fewer than 800 transcripts. Then, we used the
single-cell transform (SCTransform) method (Hafemeister and Satija 2019) for expression
normalization and regressed out the percent mitochondrial reads and cell cycle scores. Principal
components analysis (PCA) was performed from the “SCT” assay prior to integration analysis to
remove unwanted technical variance using the Harmony method (Korsunsky et al. 2019) with
default settings. The corrected PCA (Harmony components) were used to generate UMAP
embeddings and clusters.

Single-cell integration analysis of benign FT samples
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Non-epithelial compartments (stromal, myeloid, and T/NK cells) were subset from our previously
published dataset (Dinh, Lin, et al. 2021) to generate new Seurat objects. Each cell subset was
used further integrated analysis across different donors using default 2000 features Integration
anchors were calculated using “SCT” as normalization method. The k.filter parameter was
manually set for myeloid cells and fibroblasts to maintain more donors, but kept to default in
TINK subsets where cells were most abundant. Four samples were excluded for myeloid cell
analysis due to the low number of captured cells (Suppl. Table 1).

To validate the presence of cell subsets, we used Label Transfer from Seurat to identify our
annotated cluster in an independent cohort of benign FT samples (Ulrich et al. 2022). The two
datasets were normalized using SCT and the top 3000 most variable genes were used for PCA.
Predicted annotations using the FindTransferAnchors and TransferData functions. To quantify
the similarity between two datasets, the top 3000 variable features were used for pairwise
correlation analysis of our clusters with the predicted cluster labels and plotted using the
Pheatmap package (Kolde, R. 2012.).

Single-cell clustering, markers, and subset identification

We identified cell clusters using Seurat graph-based clustering methods at increasing
resolutions from 0.1 to 1 to identify major cell types (T/NK, stromal, B, myeloid cells) within a
SCRNA-Seq dataset. We used marker genes - LYZ, CD14, CD68, FCN1, CLEC10A, CD1C - to
identify myeloid cells, which were subset and converted into a new Seurat object for further
clustering. We re-performed normalization and integration as described on the subset data to
identify macrophages and monocytes. Macrophages were characterized by C1QA/B/C, TREM2,
APOE, and HLA-DRA high expression and monocytes by FCN1, S100A8/9, and FCGR3A for
non-classical monocytes. We required a cluster with a minimum of 5% percent of cells from the
total cell population. We use the Clustree package (Zappia and Oshlack 2018) to visualize and
guide splitting or merging clusters with the following criteria: a minimum of 5 differentially
expressed genes using MAST (Finak et al. 2015), with a Bonferroni-corrected p-value < 0.01,
log2FC > 0.25, and a percent expression difference greater than 25% from the new cluster and
its parent in previous clustering resolutions. If these criteria were not met at a clustering
resolution, we would merge the cluster back into its parent population and leave the remaining
clusters unchanged.

Quantifying heterogeneity of myeloid and T/NK cells with differential gene expression
and entropy

We used the Rogue method (Liu et al. 2020) to quantify the proportion of genes with significant
entropy from all expressed genes in a sScCRNA-Seq sample. We used the RNA counts for
myeloid and T/NK cell subsets for entropy scoring and performed initial filtering to require a
minimum of 10 cells expressing a gene to be considered for the entropy scoring. Entropy for all
donors per cell cluster were calculated using the SE_fun function. Rogue scores represent the
number of genes determined to have a significant entropy divided by the total number of genes
expressed and ranges from 0 to 1. Rogue values were not estimated for samples with fewer
than 10 cells per cluster.

In addition, we used DE analysis (adjusted p-value < 0.01, gene expressed in >20% of cells) for
all resolutions from 0.1 to 1 using FindAllIMarkers function in Seurat package. At that given
clustering resolution, we sum the unique DE genes of the given subset (myeloid, T/NK, or
stromal cells) while excluding mitochondrial and ribosomal genes (MT-, RPS, RPL), divided by
the number of unique clusters at that clustering resolution.
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ScRNA-Seq signature enrichment analysis in TCGA data

Using the top 10 DE genes per cluster from scRNA-Seq, we computed the average expression
(Log normalized counts of transcript per million expression) in TCGA bulk RNA-Seq samples.
Two-sided pairwise Wilcox tests were computed for each cluster across the 4 molecular
subtypes, using Benjamini-Hochberg FDR p-value correction for multiple comparisons.

JASMINE pathway analysis

Gene set enrichment analysis was performed using Jasmine’s odds ratio test (Noureen et al.
2022). The input data took in the RNA count matrices and used GO:BP genesets from the Gene
Ontology database through MsigDB (https://www.gsea-msigdb.org/gsea/msigdb). This method
was robust against dropouts relative to other gene set scoring methods. We ranked genesets by
significance using general linear models and linear contrasts to identify gene sets that were
most significant for a given cluster compared to the mean of other clusters. We selected the top
5 pathways per cluster by highest t-value, then z-scaled Jasmine enrichment scores for
heatmap visualization after filtering out non-relevant pathways. Enrichment score comparisons
were performed using t-test with FDR p-value correction using the Benjamini-Hochberg method.
We ranked the pathways by the absolute change by average Jasmine score.

Gene regulatory network analysis (SCENIC)

We applied SCENIC (Aibar et al. 2017) to infer gene regulatory networks in stromal, T/NK, and
myeloid cells in benign FT. We used the human hg38 reference with 10kb upstream and
downstream from the transcription start sites to search for DNA motifs. AUC scores generated
for each regulon were used to create linear models with linear factors with the Multcomp
package (v1.4-16; Hothorn et al., 2008). for hypothesis testing. Linear contrasts were
constructed using cluster against the mean of the remaining clusters and selected those with
the highest t-values. We selected the top regulons for each cell cluster and extracted the T
values, representing the cluster-specific enrichment for each regulon that and plotted using
ComplexHeatmap (Gu Z, 2022) in R.

Pseudotimel/trajectory inference analysis

We used the diffusion map method in the “Destiny” R package (Angerer et al. 2016), from log-
normalized RNA counts from the top variable genes. Spearman’s correlation test identified
genes associated with the two diffusion map dimensions representing the potential cellular
trajectories. We also used Monocle3 (Cao et al. 2019) to infer the pseudotime of single cells to
independently support the gene expression patterns observed in diffusion map analysis.
Antigen presentation scores were calculated by taking the averaged log expression of all HLA
genes, and CD74 expressed in a minimum of 10% of cells from any given myeloid cell cluster.
Similarly, cytokine scores were calculated using cytokine genes (CXCL-, CCL-, IL-) expressed
in 10% of any myeloid cluster. The scores were then overlaid in the inferred trajectories.

Cell-cell communication and co-expression ligand-receptor score

To identify potentially interacting cell types, we applied the CellChat method (Jin et al. 2021) to
predict ligand-receptor interactions with default parameters (FDR adjusted p-value < 0.05). We
filtered out interactions with CD4 as receptors (with MHCII) on myeloid cell types. We used the
predicted macrophage- and monocyte-specific interactions to quantify how ligand-receptor pairs
may be co-expressed in different tissues using a similar scoring scheme using the geometric
mean from robust means (¥2 median + ¥2*(first + third quartiles)) of each ligand and receptor
expression for each cell cluster.



https://www.gsea-msigdb.org/gsea/msigdb
https://doi.org/10.1101/2023.07.14.549073
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.14.549073; this version posted July 16, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Macrophage-to-monocyte ratio across datasets

The macrophage-to-monocyte ratio was calculated by the sum of macrophage clusters divided
by monocytes per sample in each dataset. We add 1 as a pseudo-count and log2-transform to
prevent negative values. Significance was tested using a two-sided Wilcox rank test and
corrected using the Benjamini-Hochberg method. In datasets with paired pre- and post-
treatment (Zhang et al. 2022), we used a two-sided paired t.test.

Data & Code availability

All source code generated in this study has been uploaded to a Zenodo repository

and will be made available at time of peer-reviewd publication. Raw FASTQ files and h5 files
(count matrices) of in-house scRNA-Seq data has been uploaded to NCBI GEO and will be
made available at time of peer-reviewed publication.
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