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GRAPHICAL ABSTRACT 
 
 

 
 
IN BRIEF 
 
Seal et al. used machine learning models and feature selection approaches to group cell 
morphological features from Cell Painting assays and to describe the shared role of these 
morphological features in various cell health phenotypes. The resulting BioMorph space 
improves the ability to understand the mechanism of action and toxicity of compounds and to 
generate hypotheses to guide future experiments.  
 
 
HIGHLIGHTS 
 

 
• Combining Cell Painting and Cell Health imaging data defines the BioMorph space. 

 
• BioMorph space allows detecting less common mechanisms for bioactive compounds. 

 
• BioMorph space can generate MOA hypotheses to guide experimental validation. 

 
• BioMorph space is more biologically relevant and interpretable than Cell Painting 

features.  
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 3 

SUMMARY  

Cell Painting assays generate morphological profiles that are versatile descriptors of 

biological systems and have been used to predict in vitro and in vivo drug effects. However, 

Cell Painting features are based on image statistics, and are, therefore, often not readily 

biologically interpretable. In this study, we introduce an approach that maps specific Cell 

Painting features into the BioMorph space using readouts from comprehensive Cell Health 

assays. We validated that the resulting BioMorph space effectively connected compounds not 

only with the morphological features associated with their bioactivity but with deeper insights 

into phenotypic characteristics and cellular processes associated with the given bioactivity. 

The BioMorph space revealed the mechanism of action for individual compounds, including 

dual-acting compounds such as emetine, an inhibitor of both protein synthesis and DNA 

replication. In summary, BioMorph space offers a more biologically relevant way to interpret 

cell morphological features from the Cell Painting assays and to generate hypotheses for 

experimental validation.  
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INTRODUCTION 

Cell Painting profiles1 can be used to study the morphological characteristics of cells 

treated with chemical or genetic perturbations and provide valuable information about the 

function of a biological system.2,3 The Cell Painting assay involves labelling eight relevant 

cellular components or organelles with six fluorescent dyes, imaging them in five channels,4 

and analysing images5 to provide thousands of morphological features such as shape, area, 

intensity, texture, correlation, etc. Cell Painting data have been used to successfully predict 

drug effects on many aspects of cell health6, such as cytotoxicity7, mitochondrial toxicity8, 

proteolysis targeting chimera (PROTAC) phenotypic signatures9, and other types of 

bioactivities10,11. Further, Cell Painting data can be used to cluster together compounds with 

various mechanisms of action based on the similarity of resulting morphological features they 

induce.12,13 Thus, Cell Painting features serve as a tool for investigating the chemical space 

and enabling the prediction of a compound’s biological activities.14,15 

In general, Cell Painting features are obtained using classical image processing software, 

such as CellProfiler.5 After establishing the threshold for distinguishing signal from the 

background noise, classical image processing software identifies all signal-containing pixels 

and their intensity, and groups neighbouring pixels into objects using object-based 

correlations.16 The measured morphological features are then extracted from each object (cell 

or subcellular structure). Given this image processing pipeline, Cell Painting features 

primarily represent numerical data from image analysis (often aggregated to the treatment 

level for machine learning tasks), rather than directly reflecting the underlying biological 

processes or molecular interactions.17 Therefore, interpreting the Cell Painting data and 

making informed decisions about drug safety, toxicity, efficacy, or the underlying 

mechanisms and cellular processes based on such data remains challenging. This suggests 
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that integrating Cell Painting features with some a priori knowledge about the biological 

effects of different chemical or genetic perturbations may result in improved predictive power 

of models derived from Cell Painting data. 

An orthogonal strategy that considers a priori knowledge about the biological effects is the 

Cell Health assay, a set of two image-based assays18 that collectively capture a broad range of 

biological pathways. The Cell Health assay thus records measurable characteristics from 

cellular responses to different treatments (or environmental conditions, pathological states 

etc.)19,20 which determine the overall condition, functionality, and viability of cells21, 

including the different stages of the cell cycle. Following a similar premise, a study by Way 

et al used the Cell Health assay and CRISPR/Cas9 to genetically perturb a small subset of 

118 gene perturbations across three cell lines.6  Recording the effects of these genetic 

perturbations using carefully chosen reagents for specific cellular processes (e.g. apoptosis, 

DNA damage, etc.) allowed them to define 70 Cell Health readouts that can be used to 

quantify and model cellular responses to different treatments.6 The Cell Health readouts are 

directly related to mechanisms and cellular function and can be used to predict the 

mechanism of action (MOA) of the perturbation and derive functional conclusions. However, 

unlike the hypothesis-free Cell Painting assay, the Cell Health assay requires specifically 

targeted reagents focused on individual measurement and is difficult to scale for high 

throughput applications.  

Here, we address the limitations of both Cell Painting and Cell Heath assays by integrating 

their capabilities to define a new BioMorph space that provides a function-informed 

framework for interpreting Cell Painting features in the cell biology context. We used 

publicly available Cell Painting data6 and Cell Health data6 to define this BioMorph space. 

To demonstrate the use of the BioMorph space, we used the Cell Painting features from 
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chemical perturbations4 to predict a range of nine broad biological activities from ToxCast, 

such as apoptosis, cytotoxicity, oxidative stress, and ER stress. We then mapped important 

Cell Painting features from these models into BioMorph terms. Identifying the BioMorph 

terms that contribute most strongly to model performance helped generate MOA hypotheses, 

some in agreement with the existing literature and some novel. Taken together, our proposed 

method offers several potential advantages, including improved interpretability of cell 

morphology features, enhanced understanding of cellular mechanisms and MOA, and more 

interpretable predictions of drug toxicity and efficacy. 
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RESULTS AND DISCUSSION 

We developed a structured framework for mapping Cell Painting features to a more 

biologically synthesized BioMorph space. We used feature selection, linear regression, and 

Random Forest classifiers on the publicly available Cell Painting and Cell Health datasets6 

for a set of 119 CRISPR perturbations (for further details see Methods). This mapping was 

then used to interpret models predicting biological activity using a dataset containing 

morphological profiles of 30,000 small molecules produced using the Cell Painting assay22. 

Mapping those Cell Painting features that contribute the most to the performance to the 

BioMorph space led to an improvement in interpretability and allowed us to generate 

hypotheses on the cause of cellular effects.  

Development of the BioMorph space through the integration of Cell Painting and Cell 

Health assays  

We mapped the groups of Cell Painting features into five levels within the BioMorph space 

as shown in Figure 1 (see Methods for technical details and Supplementary Table S1 and 

Figure S1 for all terms). These levels were chosen to leverage the maximum information 

from the Cell Health assay and include the Cell Health assay type (Level 1), Cell Health 

measurement type (Level 2), specific Cell Health phenotypes (Level 3), Cell process affected 

(Level 4), and the subset of Cell Painting features (Level 5). The first level, the Cell Health 

assay type, represents results from one of the two screening assays used to measure the Cell 

Health parameters, e.g. the viability assay or the cell cycle assay. The second level, Cell 

Health measurement type, describes the various aspects of Cell Health measured in that 

assay, such as cell death, apoptosis, reactive oxygen species (ROS), and shape for viability 

assays, and cell viability, DNA damage, S phase, G1 phase, G2 phase, early mitosis, mitosis, 
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late mitosis, and cell cycle count for cell cycle and DNA damage assays. The third level, 

specific Cell Health phenotypes, describes specific assay readouts that capture different 

aspects of the phenotype, such as the fraction of cells in G1, G2 or S-phase cells. The fourth 

level, the Cell process affected, contains information on the type of Cell process affected that 

caused the change in morphological characteristics, e.g., effects of chromatin modifier, DNA 

damage, metabolism, etc. Finally, the fifth level, Cell Painting features, is the subset of Cell 

Painting image-based features that map to the combination of the previous four levels. These 

five levels formed the basis of the BioMorph space. 

To build the BioMorph space we focused on the overlap of perturbations between Cell 

Painting and Cell Health assay containing 827 Cell Painting features and 70 continuous Cell 

Health endpoints. We used an all-relevant feature selection method Borutapy23 (Figure 2, step 

A) to detect a subset of Cell Painting image features that contain information important for 

predicting each of the 70 Cell Health labels. Further, we trained a baseline Linear Regression 

model (Figure 2, step B) and determined which subsets of Cell Paintings features are 

relatively better predictors for each of the 70 Cell Health labels. Meaningful models were 

built for 34 Cell Health labels which resulted in corresponding 34 subsets of Cell Painting 

features. Next, for each of the Cell Health labels, we used Borutapy to select subsets of Cell 

Painting features that could distinguish a particular CRISPR perturbation from the negative 

controls (Figure 2, step C). Lastly, we trained a baseline Random Forest Classifier (Figure 2, 

step D) to predict which these sets of selected Cell Painting features perform better at 

differentiating negative controls from respective CRISPR perturbations (MCC>0.50). This 

led to 412 subsets (combinations of the various levels above) of informative Cell Painting 

features which were used to define 412 BioMorph terms (Figure S1 and Supplementary Table 

S1 lists all the terms and their description; Figure 2, step E). Thus, each BioMorph term 
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integrates a unique combination of information derived from the perturbations and Cell 

Health labels in the Cell Health assay and a subset of Cell Painting features.  

For example, the BioMorph term “viability_apoptosis_vb_percent_dead_only_Chromatin 

Modifiers” records a morphological change that includes information about the “fraction of 

caspase negative in dead cells” (level 3) associated with apoptosis (level 1), measurement 

type (level 2), and the effect of CRISPR knockout of a gene associated with a chromatin 

modifier benchmarked against the negative control (level 4) for which a particular set of Cell 

Painting features (level 5) contained a signal to distinguish from negative control. This multi-

level approach allows for a more nuanced understanding of cellular health and its relation to 

specific biological mechanisms. In the example given above, the caspase-negative dead cells 

are a readout for cells that have undergone non-apoptotic cell death.24 Furthermore, the term 

associates this form of cell death with the effects of the CRISPR knockout of a gene 

associated with a chromatin modifier, which is consistent with existing evidence that certain 

inhibitors that affect chromatin modifications, such as histone deacetylase (HDAC) 

inhibitors, can initiate non-apoptotic cell death mechanisms.25 Therefore, this specific 

BioMorph term captures signals associated with these biological characteristics and MOA.  

BioMorph space retains all information for biological activity from the original Cell 

Painting features 

We first ensured that BioMorph space contains all information from the original Cell 

Painting readouts, which we found to be the case as shown in Supplementary Figure S2. We 

used Random Forest classifiers using 398 BioMorph terms directly as features (p-values from 

a χ2 test on the groups of Cell Painting features; although there were 412 terms defined, only 

398 terms out of these were non-infinite and continuous and used for modelling). We 

compared these classifiers to the models trained on all 827 Cell Painting features. 
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Supplementary Table S2 shows the mean AUC-ROC and mean balanced accuracy from the 

20 internal test sets of the repeated nested cross-validation for all 9 biological activities. 

Overall, models using Cell Painting features (mean AUC=0.60) achieved a similar 

performance compared with models using BioMorph terms (mean AUC=0.61) (as shown in 

Supplementary Figure S2 with a paired t-test). Thus, transforming important Cell Painting 

features from models into the BioMorph space made these models more interpretable without 

any loss in performance compared to models using BioMorph terms directly. 

Incorporating information about phenotypic characteristics (Cell Health phenotype; 

level 3) enhances the ability to connect Cell Painting features (level 5) to biological 

activity from ToxCast 

To compare the ability of Cell Painting features alone, or when integrated with Cell Health 

phenotypes (level 3), to predict biological activity, we used 56 cytotoxicity and cell stress 

response assays from a public dataset called ToxCast 26. We generated predictions for nine 

biological activities (see Judson et al56 for mapping 56 assays into nine activity labels): (1) 

upregulation of apoptosis (apoptosis up); (2) cytotoxicity as measured using beta-lactamase 

activity as a viability reporter27 (cytotoxicity BLA); (3) cytotoxicity measured using 

SulfoRhodamine B assays that quantify cellular density based on the protein content27 

(cytotoxicity SRB); (4) ER stress; (5) heat shock; (6) microtubule upregulation; (7) 

upregulation of mitochondrial disruption; (8) upregulation of oxidative stress; and (9) 

decrease in proliferation. We cross-referenced these nine biological activities with public Cell 

Painting profiles to focus on a dataset of 658 structurally unique compounds. For each of the 

nine biological activities, we trained Random Forest classifiers using 827 Cell Painting 

features to build predictive models and calculated feature importance for each Cell Painting 

feature. For eight out of nine biological activities (mitochondrial disruption was excluded 
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because its models recorded AUC<0.50 and were not interpreted), the Cell Painting features 

most contributing to the eight models was mapped into BioMorph terms revealing interesting 

details about the associations between morphological features, phenotypic characteristics and 

cellular processes, as shown for the endpoint “ER stress” in Figure 3 for illustrative purposes. 

In this example, the BioMorph space terms that contain the highest percentage overlap with 

the Cell Painting features associated with the ER stress revealed potential secondary 

mechanisms of “ER stress” biological activity, such as G2 cell cycle arrest (level 3) and the 

JAK/STAT signalling pathway (level 4), both in agreement with the literature.30,37 

At the level of phenotypic characteristics, the five most-contributing Cell Health 

phenotypes (level 3) for the eight biological processes are shown in Figure 4 (with a 

comprehensive analysis across various levels of BioMorph terms given in Supplementary 

Table S3). For the biological process of apoptosis, the most-contributing Cell Health 

phenotype (level 3) was the fraction of cells containing more than three γH2AX spots per 

cell, indicating DNA damage (Figure 4). This finding is consistent with our understanding of 

apoptosis as a coordinated response to DNA damage.28 In terms of cytotoxicity predictions, 

we observed that the performance of predicting results of BLA assays was improved when 

the BioMorph terms that incorporate Cell Health phenotypes (level 3) related to DNA 

damage for cells in S and G2 phases (Figure 4), in agreement with the well-established effect 

of DNA damage on cell cycle arrest.  On the other hand, SRB assays measure protein 

content, which is affected by overall cell death, including non-apoptotic cell death, and we 

observed that Cell Painting features contributing to model performance here incorporated 

caspase-negative death Cell Health phenotypes (Figure 4). The Cell Health phenotypes (level 

3) that contributed the most to the biological activities of ER stress, heat shock, and 

proliferation decrease were related to high γH2AX activity (based on the feature related to the 

fraction of G2 cells with >3 �H2Ax spots within nuclei, Figure 4), indicating DNA damage. 
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This is consistent with previously reported observations that ER stress and heat shock cause 

cell cycle arrest at both G1/S and G2/M phases.29,30,31 For the biological activity of 

microtubule upregulation, the most-contributing Cell Health phenotypes (level 3) were the 

overall DNA damage and the fraction of caspase-negative dead cells, in agreement with their 

roles in cell death.32 Finally, for the biological activity of oxidative stress, the most-

contributing Cell Health phenotype (level 3) was the average nucleus roundness, which is 

consistent with the significant crosstalk between DNA damage, oxidative stress, and nuclear 

shape alterations.33 Taken together, we found that the BioMorph space (level 3 Cell Health 

phenotypes) effectively captured biologically relevant information, allowing for a more 

nuanced understanding of how biological processes overall affect specific cellular processes. 

This is particularly advantageous compared to using Cell Painting features directly where no 

measurements on cell cycle phase or cell processes are made directly.  

Integrating information about the Cell process affected (level 4) enhances insights into 

mechanisms of biological activity 

In addition to the information about phenotypic characteristics, the BioMorph space also 

includes information about specific cellular processes responsible for the alterations in cell 

morphology, which in turn can help to identify potential targets and biological pathways that, 

when modulated, could lead to desired phenotypic changes. Therefore, we examined 

information from affected cellular processes (level 4 of the BioMorph Space) for each of the 

eight biological activities. The top five enriched Cell processes associated with each of the 

eight biological activities are shown in Figure 5, with a comprehensive analysis across 

various levels of BioMorph terms given in Supplementary Table S3. For each of the eight 

endpoints, we found consistent agreement between the top enriched Cell processes and the 

existing literature. For example, in the case of apoptosis endpoint, the top three enriched 
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processes were ROS, receptor tyrosine kinase (RTK) and mitogen-activated protein kinase 

(MAPK) pathways (Figure 5), which agrees with the existing literature.34,35,36 The 

JAK/STAT signalling pathway was the most enriched Cell process for ER stress (Figure 5), 

aligning with its role in ER stress-induced inflammation.37 Similarly, the most enriched 

processes for the other endpoints (Figure 5), i.e. Cytotoxicity BLA (Hippo signalling 

pathway), Cytotoxicity SRB (cyclosporine binding protein), heat shock response (DNA 

damage),  oxidative stress (apoptosis and hypoxia), and proliferation (Hippo pathways), are 

all in agreement with expectations based on the prior knowledge.38,39,40,41,42 Collectively, 

these findings illustrate the high level of agreement between BioMorph terms and well-

established biological knowledge. They also highlight how integrating information about 

biological processes (level 4 in BioMorph space) allows for more mechanistic interpretations 

and predictions.  

BioMorph terms can be used to generate hypotheses for a compound’s mechanisms of 

action 

We next investigated how BioMorph terms can reveal more specific mechanisms of action 

of a compound causing a particular biological activity. To this end, we analysed 56 predicted 

true positive compounds across nine biological activities and analysed the SHapley Additive 

exPlanations (SHAP43) values of Cell Painting features  (a positive SHAP value for a feature 

indicates a positive impact on prediction, leading the model to predict toxicity in this case). 

These contributing Cell Painting features were mapped to the BioMorph terms, along with 

the two most-contributing Cell Health phenotypes (level 3 of the BioMorph) and Cell process 

affected (level 4 of the BioMorph). We were able to identify relationships between specific 

compounds and their impact on cellular health (see Table 1 for a selection of illustrative 

compounds discussed below; and Supplementary Table S4 for the complete set of 54 
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compounds analysed). For example, for melatonin, an “apoptosis up” compound, we noted 

that the most contributing Cell Painting features were related to BioMorph terms for DNA 

damage (as indicated by the presence of more than three γH2AX spots within the cells) and 

the fraction of cells arrested in the S phase, which is most likely due to increased ROS. In the 

case of melatonin, the effects on the cell cycle via ROS generation have been previously 

reported.44 In general, we observed that BioMorph space can help generate hypotheses to 

uncover secondary effects that might otherwise be overlooked, and examples listed in Table 1 

and shown in Figure 6 speak to the granularity of the BioMorph space information. In the 

case of ER stressors, piromidic acid, clozapine, bisphenol A diglycidyl ether, and emetine, 

the top 2 most contributing Cell Health phenotypes and top 2 Cell processes affected were 

mostly different. This highlights that each compound may exhibit the same bioactivity (e.g. 

“ER stress”), but cause it by affecting different targets/pathways and having distinct MOAs. 

The most contributing BioMorph terms for piromidic acid are related to cell viability (such as 

the number of cells and roundness of living cells); whereas emetine, a protein synthesis 

inhibitor, was linked to the fraction of cells in the S-phase of the cell cycle, which agrees with 

the secondary activity in early S-phase related to inhibition of DNA replication.45 On the 

other hand, compounds linked to heat shock responses (alfadolone acetate, suxibuzone, and 

diflorasone) exhibited the same features and were associated with Hippo pathway-related 

terms, the roundness of the nucleus, and DNA damage in the S phase. This agrees with the 

established role of the Hippo pathway in promoting cell survival in response to various 

stressors46 while the shape of the nucleus (senescent cells can be characterized by flattened, 

enlarged or irregular-shape nuclei47,48) and vulnerability of early S-phase cells to mild 

genotoxic stress are common mechanisms of heat stress effects.49,50 We also noted similarities 

among the level 3 and level 4 BioMorph space terms associated with compounds that cause 

proliferation decrease (raclopride, nimodipine and ketanserin). These compounds are 
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associated with hypoxia and apoptosis, suggesting that these compounds may act via 

increasing levels of ROS, which leads to oxidative stress.41 For the compounds causing an 

upregulation of microtubules, bifemelane was linked to BioMorph terms related to cell death 

as well as chromatin modifiers and DNA damage in the S phase consistent with its known 

role in enhancing the synthesis of cytoskeletal proteins51 and regulating dynamic 

chromosome organization.52 Taken together, we showcase how identifying the BioMorph 

terms having the greatest contribution to predicting a compound's biological activity, we can 

gain insights into not only primary but secondary biological processes affected by the 

compounds as well. These predictions can then be used to formulate mechanistic hypotheses 

and inform drug discovery and development efforts.  

Limitations of mapping Cell Painting into BioMorph terms 

This proof-of-concept study demonstrates the potential benefits of mapping Cell Painting 

features into BioMorph terms to address a serious challenge for the field of image-based 

profiling: making sense of complex combinations of image-based features that are not readily 

interpretable. We find that BioMorph does provide a more interpretable and biologically 

relevant representation of data. However, there are several limitations relevant to this 

iteration of BioMorph space. BioMorph space was built using robust but limited data; 

therefore, using larger datasets of CRISPR perturbations and Cell Painting / Cell Health 

datasets would improve the organization of BioMorph space. Additionally, the associations 

between Cell Painting features and BioMorph terms are not absolute; these would need to be 

updated if alternative feature extraction strategies are used (e.g., updated versions from 

CellProfiler or deep learning-based feature extraction such as in the JUMP-Cell Painting 

dataset53), and we advise caution against using these groupings directly if the datasets differ 

from the current study. Finally, we evaluated our BioMorph space for nine broad biological 
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activities; generalization to other cellular mechanisms and biological processes would require 

assays that are focused on other readouts, such as those related to particular types of toxicity, 

or tailored to particular cell types like neurons or cardiomyocytes. Despite these limitations, 

the study introduces an algorithm to map Cell Painting features into BioMorph terms and 

explores the application of this new BioMorph space in interpreting predictive models, 

generating hypotheses for small molecule biological activity, MOA, and toxicity. 

SIGNIFICANCE 

In this work, we demonstrated a strategy to map Cell Painting features into BioMorph 

terms to enable a better understanding of the relationships between compound-induced 

cellular perturbations and nine different biological activities. We could correctly identify 

potential secondary mechanisms of biological activities such as ER stress and cell cycle arrest 

at the G2 phase30 as well as mechanisms of action of dual-function compounds such as 

emetine, which is a well-known protein synthesis inhibitor, but also acts at an early S-phase 

to inhibit DNA replication45. These are biological effects that can often be overlooked; 

however, the BioMorph space allows for a more comprehensive understanding of these 

mechanisms, for uncovering hidden relationships and generating new hypotheses by 

connecting them to specific phenotypes and cellular processes.  

Mapping Cell Painting features into BioMorph terms offers several advantages over using 

Cell Painting features directly. First, we improved interpretability by using a more 

biologically interpretable feature space; we identified relationships between compound 

mechanisms of action and their impact on cell morphology. For example, the use of 

BioMorph space identified relevant pathways such as the JAK/STAT signalling pathway's 

prominence in ER stress.37 These insights are not possible with Cell Painting features alone, 

which have no information on biological pathways. Second, we could pinpoint the specific 
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cell processes and stages of the cell cycle affected by a compound, a task not possible with 

the Cell Painting features, which do not contain direct information on which cell cycle stage 

is impacted. Finally, we could facilitate hypothesis generation by identifying the BioMorph 

terms that contribute most significantly to compound activity. These targeted hypotheses can 

guide the future validation of compounds. Taken together, the BioMorph space represents a 

more integrative and comprehensive method for analysing cellular MOA and can enable the 

development of more effective strategies for identifying and mitigating toxic effects.  
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METHODS 

Cell Painting Dataset for CRISPR Perturbations 

We used the Cell Painting pilot dataset of (CRISPR) knockout perturbations from the Broad 

Institute.6Error! Bookmark not defined. Here, the authors used a Cell Painting assay for three 

different cell lines (A549, ES2, and HCC44) and each cell line used 357 perturbations 

representing 119 clustered regularly interspersed short palindromic repeats (CRISPR) 

knockout perturbations (further details in Supplementary Table S5). They further generated 

median consensus signatures for each of the 357 perturbations. This led to a dataset of 949 

morphology features (and  metadata annotations) for 357 consensus profiles (119 CRISPR 

perturbations × 3 cell lines). Among these, only 827 Cell Painting features were in 

intersection with the Cell Painting dataset for compound perturbations (described below) 

used in this proof-of-concept study. The Cell Painting dataset for CRISPR Perturbations is 

released publicly at https://zenodo.org/record/8147310. 

Cell Health assays for CRISPR Perturbations 

We used the Cell Health assay developed by the Broad Institute containing 70 specific Cell 

Health phenotypes.6 The authors used seven reagents in two Cell Health panels to stain cells 

for the same 119 CRISPR perturbations for three different cell lines (A549, ES2, and 

HCC44). We used median consensus signatures for the 357 consensus profiles (119 CRISPR 

perturbations × 3 cell lines) as above. This dataset is released publicly at 

https://zenodo.org/record/8147310. 

Cell Painting Dataset for Compound Perturbations 

The Cell Painting assay used in this proof-of-concept study, from the Broad Institute, 

contains cellular morphological profiles of more than 30,000 small molecule perturbations.22 
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The morphological profiles in this dataset are composed of a wide range of feature 

measurements (share, area, size, correlation, texture etc). The authors in this study 

normalized morphological features to compensate for variations across plates and further 

excluded features having a zero median absolute deviation (MAD) for all reference cells in 

any plate. Following the procedure from Lapins et al54, we subtracted the average feature 

value of the neutral DMSO control from the compound perturbation average feature value on 

a plate-by-plate basis. We standardised the InChI using RDKit57 and for each compound and 

drug combination, we calculated a median feature value. Where the same compound was 

replicated for different doses, we used the median feature value across all doses that were 

within one standard deviation of the mean dose. Finally, we obtained 1,783 median Cell 

Painting features for 30,404 unique compounds. Among these, only 827 Cell Painting 

features were common with the dataset for CRISPR Perturbations which were used in this 

proof-of-concept study.  

Biological activity from ToxCast assay with Cell Painting annotations 

Toxicity and biological activity-related data were collected from 56 cytotoxicity and cell 

stress response assays from 56 ToxCast26,55 for nine broad biological processes(for the 

mapping between 56 ToxCast assays and 9 biological processes see Judson et al56): apoptosis 

up, cytotoxicity BLA, cytotoxicity SRB, ER stress, heat shock, microtubule upregulation, 

mitochondrial disruption up, oxidative stress up and proliferation decrease.56 Compound 

SMILES were converted to standardised InChI using RDKit.57 To generate consensus 

endpoint labels, the presence of positive activity (toxicity) in at least one assay related to the 

biological activity was considered sufficient to mark the compound active in the consensus 

endpoint. Thus, consensus endpoints for each of the 9 biological activities were generated 

from the 56 ToxCast assays. We calculated the intersection of the Cell Painting profiles for 
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compound perturbations (above) and 9 biological activity (ToxCast) assays using the 

standardised InChI. Cell Painting features were standardised by removing the mean and 

scaling to unit variance. This resulted in a complete dataset of 658 structurally unique 

compounds with 827 Cell Painting features and 9 biological activity consensus hit calls that 

were used in this proof-of-concept study. The dataset, referred to as containing biological 

activities in this study, is publicly released in https://zenodo.org/record/8147310. 

Mapping Cell Painting terms into BioMorph space 

The overlap of Cell Painting and Cell Health assay for gene perturbations from Way et al6 

contained 827 Cell Painting features (that were also present in the Cell Painting experiments 

on compound perturbations from Bray et al4) and 70 continuous Cell Health endpoints (e.g., 

the number of late polynuclear cells, which measures the shape in a cell cycle assay) for 354 

consensus profiles (118 CRISPR perturbations × 3 cell lines, the empty well was removed). 

As shown in Figure 2 step A, for feature selection, we used an all-relevant feature selection 

method, Borutapy58 (implemented using the Python package Boruta59) with a Random Forest 

Classifier estimator of maximum depth 5 and the number of estimators determined 

automatically based on the size of the dataset using ‘auto’. Using Borutapy, we detected a 

subset of Cell Painting features that contain information for each of the 70 Cell Health 

regression labels. Further, we trained a baseline Linear Regression model as implemented in 

scikit-learn60 (Figure 2 step B) with an 80-20 random train-test split to predict which subsets 

of Cell Paintings features are relatively better predictors of Cell Health phenotype. 37 of the 

70 Cell Health models (with R2>0.25) were selected for further analysis. This results in 34 

subsets of Cell Painting features (one set for each of the 34 Cell Health labels). Next, for each 

of the 34 Cell Health labels and the 354 consensus profiles, we separated subsets of Cell 

Painting data for the negative control CRISPR Perturbation (which consisted of 30 datapoints 
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of LacZ, Luc, Chr2 CRISPR perturbations) and other CRISPR perturbations affecting various 

known cell processes (such as chromatin modifiers, ER Stress/UPR, metabolism etc). For 

each of these pairs (negative control and CRISPR perturbations), we used Borutapy58 (Figure 

2 step C) to detect a further subset from the subset of Cell Painting features which contained 

a signal on whether the datapoint is a negative control or the CRISPR Perturbation. We train 

a baseline Random Forest Classifier (Figure 2 step D), as implemented in scikit-learn60, with 

an 80-20 random train test split to predict which sets of selected Cell Painting features 

perform relatively better at differentiating negative controls from the CRISPR perturbation 

(MCC>0.50). This led to 412 subsets of informative Cell Painting features which are then 

indicators of 412 BioMorph terms. We used a χ2 test to determine the BioMorph term p-

value for each of the 412 combinations (Figure 2 step E) from standard scaled subsets of Cell 

Painting features.  

Further using this mapping, any dataset with Cell Painting features can be mapped into 

BioMorph terms. The dataset of biological activities with 827 Cell Painting features were 

grouped into these 412 combinations and their BioMorph term p-value was calculated. We 

then standardised these BioMorph terms using a standard scalar (as implemented in scikit 

learn), and only columns with non-infinite continuous p-values were retained (with other 

columns dropped). This resulted in 398 BioMorph terms for the biological activity dataset. 

The dataset is now publicly released in https://zenodo.org/record/8147310. 

Comparing models using Cell Painting and BioMorph terms as features 

To ensure that the BioMorph terms contain all information from the original Cell Painting 

readouts, we compared models using only 827 Cell Painting features and models using the 

398 BioMorph terms directly as features (although there were 412 terms defined, only 398 

terms out of these were non-infinite and continuous and used for modelling). For each of the 
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9 biological activities, we used 5 times repeated 4-fold nested cross-validation and a Random 

Forest Classifier (as implemented in scikit-learn60). First, the data was split into four folds 

using a stratified split on biological activity labels where 25% of the data was reserved for the 

test set and 75% remaining used for training. Using this training data, we trained two models, 

one using the 827 Cell Painting features, and the other using 398 BioMorph terms (p-values 

from subsets of Cell Painting features; although there were 412 terms defined, only 398 terms 

out of these were non-infinite and continuous and used for modelling). We optimised these 

models using a 5-fold cross-validation with stratified splits and a random halving search 

algorithm (with hyperparameter space given in Supplementary Table S6 and as implemented 

in scikit-learn60). The optimised model was fit on the entire training data and cross-validation 

predictions are used to determine the optimal threshold using the J statistic value. We then 

used this threshold to determine the predictions for the test set predictions. A single loop of 

nested cross-validation results in 4 test sets, which are repeated 5 times thus giving 20 

individual test set predictions.  

Model training with Cell Painting features  

To evaluate the use of BioMorph space, we now used a fixed held-out test set. For each of 

the 9 biological activities, we used a stratified split on biological activity labels such that 75% 

of the data was used in cross-validation training and 25% as held-out test data. We trained 

Random Forest classifiers (as implemented in scikit-learn60) using 827 Cell Painting features 

and a random halving search algorithm (as implemented in scikit-learn60) to optimise the 

hyperparameters (with the hyperparameter space given in Supplementary Table S6). Similar 

to above, the optimised model was fit on the entire training data and cross-validation 

predictions are used to determine the optimal threshold using the J statistic value that 

considers both true and false positive rates. This optimal threshold is then used on the 
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predicted probabilities of the held-out test data to obtain the final held-out test data 

predictions. 

Feature importance and interpretation in BioMorph terms 

First, we next used feature importance from the Random Forest classifier (as implemented 

in scikit-learn60) to determine the features that contributed the most to model importance. 

This gave us important features per biological activity (at an endpoint/biological activity 

level). Second, we evaluated SHAP43 values (as implemented in the shap61 python package) 

for each compound predicted as true positive in the held-out test set. We used true positives 

only, as these are the predictions for which the feature importance value (from SHAP) is 

valid. This gave us the important features per toxic compounds in the held-out test set for 

each biological activity (at a compound level). We then selected the Cell Painting features 

(from model importance values at the endpoint level or SHAP values at a compound level) 

that were greater than two standard deviations of all features as the most important or 

contributing features. These features were mapped into the BioMorph space by determining if 

the features related to the individual levels of the BioMorph term were present among the 

important features selected above. At the level of Cell process affected (level 4), the 

percentage enrichment was determined as the percentage of Cell Painting features that were 

present among the defined subset of Cell Painting features (level 5). For an overall 

enrichment value (used for Figure 3 and Figure 4) for each specific Cell Health phenotypes 

term (level 4) or Cell process affected (level 5), we used the mean of enrichment of all 

BioMorph terms where the corresponding level 3 or level 4 term appeared. For detailed 

enrichment analysis, we determined enrichment of the level (lvX) to be the percentage of the 

immediate lower level (lvX-1) with enrichment ≥ 10% progressively from specific Cell Health 
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phenotypes (level 3) to Cell Health assay type (level 1). This is released per biological 

activity in Supplementary Table S3. 

Evaluation Metrics 

To evaluate models in this proof-of-concept study we used Balanced Accuracy which 

considers both sensitivity and specificity, the Area Under Curve-Receiver Operating 

Characteristic (AUC-ROC) and Mathew’s correlation constant (MCC) as implemented in 

scikit-learn60. 

Statistics and Reproducibility  

We have released the datasets used in this proof-of-concept study which are publicly 

available at https://zenodo.org/record/8147310. We released the Python code for the models 

which are publicly available at https://github.com/srijitseal/BioMorph_Space.  
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TABLES 

Table 1: Top two contributing Cell Health phenotypes (level 3) and Cell process affected 
(level 4) from BioMorph space for a selection of illustrative true positives predicted by the 
models for biological activity. See Supplementary Table S4 for the complete set of 54 
compounds. 

Common 

name 

Biological 

Process   

Specific Cell 

Health 

phenotypes (most 

impacted) 

Specific Cell Health 

phenotypes (2nd 

most impacted) 

Cell process 

affected 

(most) 

Cell 

process 

affected 

(2nd most) 

Melatonin apoptosis 

up 

The fraction of 

cells containing 

more than 3 

gH2AX spots 

within all cells: 

Fraction of EdU 

positive cells (S-phase 

of the cell cycle) 

 

ROS MAPK 

Piromidic 

acid 

ER stress Total number of 

cells 

 

Cell Roundness 

 

RTK ER 

Stress/UPR 

Clozapine ER stress Fraction of G1 

cells 

 

Fraction of caspase 

negative in dead cells 

 

Chromatin 

Modifiers 

ER 

Stress/UPR 

Bisphenol A 

diglycidyl 

ether 

ER stress Fraction of G2 

cells 

 

Total number of cells 

 

JAK/STAT WNT 

Emetine ER stress Fraction of EdU 

positive cells (S-

phase of the cell 

cycle) 

 

The fraction of cells 

containing more than 

3 gH2AX spots within 

all cells 

 

ROS Chromatin 

Modifiers 

Alfadolone 

acetate 

heat shock Average nucleus 

roundness 

 

The fraction of >3 

gH2Ax spots in S 

phase cells 

 

Hippo Chromatin 

Modifiers 

Suxibuzone heat shock Average nucleus 

roundness 

 

The fraction of >3 

gH2Ax spots in S 

phase cells 

 

Hippo Chromatin 

Modifiers 

Diflorasone 

diacetate 

heat shock Average nucleus 

roundness 

 

The fraction of >3 

gH2Ax spots in S 

phase cells 

 

Hippo Chromatin 

Modifiers 

Bifemelane microtubul

e up 

Fraction of 

caspase negative 

in dead cells 

 

EdU incorporated 

(average intensity per 

cell) in S phase cells 

 

Hippo Chromatin 

Modifiers 

Raclopride proliferatio

n decrease 

Fraction of 

caspase negative 

in dead cells 

 

Width/Length 

 

Hypoxia Apoptosis 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.14.549031doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.14.549031
http://creativecommons.org/licenses/by/4.0/


 38

Nimodipine proliferatio

n decrease 

Fraction of 

caspase negative 

in dead cells 

 

Width/Length 

 

Hypoxia Apoptosis 

Ketanserin proliferatio

n decrease 

Number of G1 

cells 

 

Fraction of caspase 

negative in dead cells 

 

Hypoxia Apoptosis 
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FIGURES 

 
 
Figure 1. A map of the BioMorph space. A general representation of the hierarchy of levels 

is shown (with examples) for each BioMorph term that is organised from Cell Painting 

features (level 5) and containing information on Cell Health (level 3) associated with 

measurement type (level 2) under an assay type (level 1) associated with Cell process 
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affected (level 4). Further terms in Supplementary Figure S1 with all terms listed in 

Supplementary Table S1 

 

 

Figure 2. Schematic representation of methodology to generate BioMorph terms mapped 

from CRISPR perturbations measured by the Cell Painting assay and Cell Health assay. 

Further details on all terms terms in Supplementary Figure S1 with all BioMorph Space listed 

in Supplementary Table S1 
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Figure 3. The subset of most-contributing Cell Painting features (level 5) for the model 

predicting ER stress and the BioMorph terms enriched from this subset (BioMorph terms that 

contain the highest percentage overlap with these Cell Painting features). This revealed 

potential secondary mechanisms of biological activity such as G2 cell cycle arrest the 

JAK/STAT signalling pathway was the most enriched Cell Health phenotype (level 3) and 

Cell process (level 4) respectively for ER stress. 
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Figure 4. Top five specific Cell Health phenotypes (level 3) enriched by contributing Cell 

Painting features (as per feature importance) for each Random Forest model for eight 

different biological activities (a) apoptosis up, (b) cytotoxicity BLA, (c) cytotoxicity SRB, (d) 

ER stress, (e) heat shock, (f) microtubule upregulation, (g) oxidative stress, and (h) 

proliferation decrease. Models for mitochondrial disruption recorded AUC<0.50 and were not 

interpreted. 
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Figure 5. Top five Cell process affected (level 4) terms enriched by contributing Cell 

Painting features (as per feature importance) for each Random Forest model for eight 

different biological activities (a) apoptosis up, (b) cytotoxicity BLA, (c) cytotoxicity SRB, (d) 

ER stress, (e) heat shock, (f) microtubule upregulation, (g) oxidative stress, and (h) 
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proliferation decrease. Models for mitochondrial disruption recorded AUC<0.50 and were not 

interpreted.
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Figure 6. For the compound clozapine, which is an ER stressor, SHAP values indicate a list 

of the most-contributing Cell Painting features (Level 5) to model performance for ER stress. 

Organising this to BioMorph terms allows interpretation: clozapine can induce cell cycle 

arrest in the G0/G1 phase. 
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