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From Image to Features to Phenotypes

IN BRIEF

Sed et al. used machine learning models and feature selection approaches to group cell
morphological features from Cell Painting assays and to describe the shared role of these
morphological features in various cell health phenotypes. The resulting BioMorph space

improves the ability to understand the mechanism of action and toxicity of compounds and to
generate hypotheses to guide future experiments.

HIGHLIGHTS

e Combining Cell Painting and Cell Health imaging data defines the BioMorph space.
e BioMorph space allows detecting less common mechanisms for bioactive compounds.
e BioMorph space can generate MOA hypotheses to guide experimental validation.

e BioMorph space is more biologically relevant and interpretable than Cell Painting
features.
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SUMMARY

Cell Painting assays generate morphological profiles that are versatile descriptors of
biological systems and have been used to predict in vitro and in vivo drug effects. However,
Cell Painting features are based on image dtatistics, and are, therefore, often not readily
biologically interpretable. In this study, we introduce an approach that maps specific Cell
Painting features into the BioMorph space using readouts from comprehensive Cell Health
assays. We validated that the resulting BioM orph space effectively connected compounds not
only with the morphological features associated with their bioactivity but with deeper insights
into phenotypic characteristics and cellular processes associated with the given bioactivity.
The BioMorph space revealed the mechanism of action for individual compounds, including
dual-acting compounds such as emetine, an inhibitor of both protein synthesis and DNA
replication. In summary, BioMorph space offers a more biologically relevant way to interpret
cell morphological features from the Cell Painting assays and to generate hypotheses for

experimental validation.
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INTRODUCTION

Cell Painting profiles' can be used to study the morphological characteristics of cells
treated with chemical or genetic perturbations and provide valuable information about the
function of a biological system.?® The Cell Painting assay involves labelling eight relevant
cellular components or organelles with six fluorescent dyes, imaging them in five channels,*
and analysing images’ to provide thousands of morphological features such as shape, area,
intensity, texture, correlation, etc. Cell Painting data have been used to successfully predict
drug effects on many aspects of cell health®, such as cytotoxicity’, mitochondrial toxicity?,
proteolysis targeting chimera (PROTAC) phenotypic signatures’, and other types of
bioactivities™*!. Further, Cell Painting data can be used to cluster together compounds with
various mechanisms of action based on the similarity of resulting morphological features they
induce** Thus, Cell Painting features serve as a tool for investigating the chemical space

and enabling the prediction of a compound’s biological activities.***°

In general, Cell Painting features are obtained using classical image processing software,
such as CellProfiler.®> After establishing the threshold for distinguishing signal from the
background noise, classical image processing software identifies all signal-containing pixels
and their intensity, and groups neighbouring pixels into objects using object-based
correlations.*® The measured morphological features are then extracted from each object (cell
or subcellular structure). Given this image processing pipeline, Cell Painting features
primarily represent numerical data from image analysis (often aggregated to the treatment
level for machine learning tasks), rather than directly reflecting the underlying biological
processes or molecular interactions.'” Therefore, interpreting the Cell Painting data and
making informed decisions about drug safety, toxicity, efficacy, or the underlying

mechanisms and cellular processes based on such data remains challenging. This suggests
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that integrating Cell Painting features with some a priori knowledge about the biological
effects of different chemical or genetic perturbations may result in improved predictive power

of models derived from Cell Painting data.

An orthogonal strategy that considers a priori knowledge about the biological effectsis the
Cell Health assay, a set of two image-based assays™® that collectively capture a broad range of
biological pathways. The Cell Health assay thus records measurable characteristics from
cellular responses to different treatments (or environmental conditions, pathological states
etc.)’®?® which determine the overall condition, functionality, and viability of cells?,
including the different stages of the cell cycle. Following a similar premise, a study by Way
et a used the Cell Health assay and CRISPR/Cas9 to genetically perturb a small subset of
118 gene perturbations across three cell lines.® Recording the effects of these genetic
perturbations using carefully chosen reagents for specific cellular processes (e.g. apoptosis,
DNA damage, etc.) allowed them to define 70 Cell Health readouts that can be used to
quantify and model cellular responses to different treatments.® The Cell Health readouts are
directly related to mechanisms and cellular function and can be used to predict the
mechanism of action (MOA) of the perturbation and derive functional conclusions. However,
unlike the hypothesis-free Cell Painting assay, the Cell Health assay requires specifically
targeted reagents focused on individual measurement and is difficult to scale for high

throughput applications.

Here, we address the limitations of both Cell Painting and Cell Heath assays by integrating
their capabilities to define a new BioMorph space that provides a function-informed
framework for interpreting Cell Painting features in the cell biology context. We used
publicly available Cell Painting data® and Cell Health data® to define this BioMorph space.

To demonstrate the use of the BioMorph space, we used the Cell Painting features from
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chemical perturbations® to predict a range of nine broad biological activities from ToxCast,
such as apoptosis, cytotoxicity, oxidative stress, and ER stress. We then mapped important
Cell Painting features from these models into BioMorph terms. Identifying the BioMorph
terms that contribute most strongly to model performance helped generate MOA hypotheses,
some in agreement with the existing literature and some novel. Taken together, our proposed
method offers several potential advantages, including improved interpretability of cell
morphology features, enhanced understanding of cellular mechanisms and MOA, and more

interpretable predictions of drug toxicity and efficacy.
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RESULTSAND DISCUSSI ON

We developed a structured framework for mapping Cell Painting features to a more
biologically synthesized BioMorph space. We used feature selection, linear regression, and
Random Forest classifiers on the publicly available Cell Painting and Cell Health datasets®
for a set of 119 CRISPR perturbations (for further details see Methods). This mapping was
then used to interpret models predicting biological activity using a dataset containing
morphological profiles of 30,000 small molecules produced using the Cell Painting assay®.
Mapping those Cell Painting features that contribute the most to the performance to the
BioMorph space led to an improvement in interpretability and alowed us to generate

hypotheses on the cause of cellular effects.

Development of the BioMor ph space through the integration of Cell Painting and Cell

Health assays

We mapped the groups of Cell Painting features into five levels within the BioM orph space
as shown in Figure 1 (see Methods for technical details and Supplementary Table S1 and
Figure S1 for al terms). These levels were chosen to leverage the maximum information
from the Cell Health assay and include the Cell Health assay type (Level 1), Cell Health
measurement type (Level 2), specific Cell Health phenotypes (Level 3), Cell process affected
(Level 4), and the subset of Cell Painting features (Level 5). The first level, the Cell Health
assay type, represents results from one of the two screening assays used to measure the Cell
Health parameters, e.g. the viability assay or the cell cycle assay. The second level, Cell
Health measurement type, describes the various aspects of Cell Health measured in that
assay, such as cell death, apoptosis, reactive oxygen species (ROS), and shape for viability

assays, and cell viability, DNA damage, S phase, G; phase, G, phase, early mitosis, mitosis,
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late mitosis, and cell cycle count for cell cycle and DNA damage assays. The third level,
specific Cell Heath phenotypes, describes specific assay readouts that capture different
aspects of the phenotype, such as the fraction of cells in G;, G, or S-phase cells. The fourth
level, the Cell process affected, contains information on the type of Cell process affected that
caused the change in morphological characteristics, e.g., effects of chromatin modifier, DNA
damage, metabolism, etc. Finally, the fifth level, Cell Painting features, is the subset of Cell
Painting image-based features that map to the combination of the previous four levels. These

five levels formed the basis of the BioMorph space.

To build the BioMorph space we focused on the overlap of perturbations between Cell
Painting and Cell Health assay containing 827 Cell Painting features and 70 continuous Cell
Health endpoints. We used an all-relevant feature selection method Borutapy® (Figure 2, step
A) to detect a subset of Cell Painting image features that contain information important for
predicting each of the 70 Cell Health labels. Further, we trained a baseline Linear Regression
model (Figure 2, step B) and determined which subsets of Cell Paintings features are
relatively better predictors for each of the 70 Cell Health labels. Meaningful models were
built for 34 Cell Health labels which resulted in corresponding 34 subsets of Cell Painting
features. Next, for each of the Cell Health labels, we used Borutapy to select subsets of Cell
Painting features that could distinguish a particular CRISPR perturbation from the negative
controls (Figure 2, step C). Lastly, we trained a baseline Random Forest Classifier (Figure 2,
step D) to predict which these sets of selected Cell Painting features perform better at
differentiating negative controls from respective CRISPR perturbations (MCC>0.50). This
led to 412 subsets (combinations of the various levels above) of informative Cell Painting
features which were used to define 412 BioMorph terms (Figure S1 and Supplementary Table

Sl lists al the terms and their description; Figure 2, step E). Thus, each BioMorph term
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integrates a unigue combination of information derived from the perturbations and Cell

Health labels in the Cell Health assay and a subset of Cell Painting features.

For example, the BioMorph term “viability apoptosis vb_percent dead only Chromatin
Modifiers’ records a morphological change that includes information about the “fraction of
caspase negative in dead cells” (level 3) associated with apoptosis (level 1), measurement
type (level 2), and the effect of CRISPR knockout of a gene associated with a chromatin
modifier benchmarked against the negative control (level 4) for which a particular set of Cell
Painting features (level 5) contained asignal to distinguish from negative control. This multi-
level approach allows for a more nuanced understanding of cellular health and its relation to
specific biologica mechanisms. In the example given above, the caspase-negative dead cells
are a readout for cells that have undergone non-apoptotic cell death.** Furthermore, the term
associates this form of cell death with the effects of the CRISPR knockout of a gene
associated with a chromatin modifier, which is consistent with existing evidence that certain
inhibitors that affect chromatin modifications, such as histone deacetylase (HDAC)
inhibitors, can initiate non-apoptotic cell death mechanisms.® Therefore, this specific

BioMorph term captures signals associated with these biological characteristics and MOA.

BioMorph space retains all information for biological activity from the original Cell

Painting features

We first ensured that BioMorph space contains all information from the original Cell
Painting readouts, which we found to be the case as shown in Supplementary Figure S2. We
used Random Forest classifiers using 398 BioMorph terms directly as features (p-values from
ay_2 test on the groups of Cell Painting features; although there were 412 terms defined, only
398 terms out of these were non-infinite and continuous and used for modelling). We

compared these classifiers to the models trained on all 827 Cell Painting features.
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Supplementary Table S2 shows the mean AUC-ROC and mean balanced accuracy from the
20 internal test sets of the repeated nested cross-validation for all 9 biological activities.
Overdl, models using Cell Painting features (mean AUC=0.60) achieved a similar
performance compared with models using BioMorph terms (mean AUC=0.61) (as shown in
Supplementary Figure S2 with a paired t-test). Thus, transforming important Cell Painting
features from models into the BioMorph space made these models more interpretable without

any loss in performance compared to models using BioMorph terms directly.

Incor porating information about phenotypic characteristics (Cell Health phenotype;
level 3) enhances the ability to connect Cell Painting features (level 5) to biological

activity from ToxCast

To compare the ability of Cell Painting features alone, or when integrated with Cell Health
phenotypes (level 3), to predict biological activity, we used 56 cytotoxicity and cell stress
response assays from a public dataset called ToxCast %. We generated predictions for nine
biological activities (see Judson et a*® for mapping 56 assays into nine activity labels): (1)
upregulation of apoptosis (apoptosis up); (2) cytotoxicity as measured using beta-lactamase
activity as a viability reporter®” (cytotoxicity BLA); (3) cytotoxicity measured using
SulfoRhodamine B assays that quantify cellular density based on the protein content®’
(cytotoxicity SRB); (4) ER stress; (5) heat shock; (6) microtubule upregulation; (7)
upregulation of mitochondrial disruption; (8) upregulation of oxidative stress; and (9)
decrease in proliferation. We cross-referenced these nine biological activities with public Cell
Painting profiles to focus on a dataset of 658 structurally unique compounds. For each of the
nine biological activities, we trained Random Forest classifiers using 827 Cell Painting
features to build predictive models and calculated feature importance for each Cell Painting

feature. For eight out of nine biological activities (mitochondrial disruption was excluded
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because its models recorded AUC<0.50 and were not interpreted), the Cell Painting features
most contributing to the eight models was mapped into BioM orph terms revealing interesting
details about the associations between morphological features, phenotypic characteristics and
cellular processes, as shown for the endpoint “ER stress’ in Figure 3 for illustrative purposes.
In this example, the BioMorph space terms that contain the highest percentage overlap with
the Cell Painting features associated with the ER stress revealed potential secondary
mechanisms of “ER stress’ biological activity, such as G, cell cycle arrest (level 3) and the
JAK/STAT signalling pathway (level 4), both in agreement with the literature.**

At the level of phenotypic characteristics, the five most-contributing Cell Heath
phenotypes (level 3) for the eight biological processes are shown in Figure 4 (with a
comprehensive analysis across various levels of BioMorph terms given in Supplementary
Table S3). For the biological process of apoptosis, the most-contributing Cell Heath
phenotype (level 3) was the fraction of cells containing more than three YH2AX spots per
cell, indicating DNA damage (Figure 4). This finding is consistent with our understanding of
apoptosis as a coordinated response to DNA damage.?® In terms of cytotoxicity predictions,
we observed that the performance of predicting results of BLA assays was improved when
the BioMorph terms that incorporate Cell Health phenotypes (level 3) related to DNA
damage for cellsin S and G, phases (Figure 4), in agreement with the well-established effect
of DNA damage on cell cycle arrest. On the other hand, SRB assays measure protein
content, which is affected by overall cell death, including non-apoptotic cell death, and we
observed that Cell Painting features contributing to model performance here incorporated
caspase-negative death Cell Health phenotypes (Figure 4). The Cell Health phenotypes (level
3) that contributed the most to the biological activities of ER stress, heat shock, and
proliferation decrease were related to high yH2A X activity (based on the feature related to the

fraction of G2 cells with >3 [TH2AXx spots within nuclei, Figure 4), indicating DNA damage.
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This is consistent with previously reported observations that ER stress and heat shock cause
cell cycle arrest at both Gi/S and Go/M phases?®®3' For the biological activity of
microtubule upregulation, the most-contributing Cell Health phenotypes (level 3) were the
overall DNA damage and the fraction of caspase-negative dead cells, in agreement with their
roles in cell death.*” Finaly, for the biological activity of oxidative stress, the most-
contributing Cell Health phenotype (level 3) was the average nucleus roundness, which is
consistent with the significant crosstalk between DNA damage, oxidative stress, and nuclear
shape alterations.® Taken together, we found that the BioMorph space (level 3 Cell Hedlth
phenotypes) effectively captured biologically relevant information, alowing for a more
nuanced understanding of how biological processes overall affect specific cellular processes.
This is particularly advantageous compared to using Cell Painting features directly where no

measurements on cell cycle phase or cell processes are made directly.

I ntegrating information about the Cell process affected (level 4) enhances insights into

mechanisms of biological activity

In addition to the information about phenotypic characteristics, the BioMorph space aso
includes information about specific cellular processes responsible for the alterations in cell
morphology, which in turn can help to identify potential targets and biological pathways that,
when modulated, could lead to desired phenotypic changes. Therefore, we examined
information from affected cellular processes (level 4 of the BioMorph Space) for each of the
eight biological activities. The top five enriched Cell processes associated with each of the
eight biological activities are shown in Figure 5, with a comprehensive analysis across
various levels of BioMorph terms given in Supplementary Table S3. For each of the eight
endpoints, we found consistent agreement between the top enriched Cell processes and the

existing literature. For example, in the case of apoptosis endpoint, the top three enriched
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processes were ROS, receptor tyrosine kinase (RTK) and mitogen-activated protein kinase
(MAPK) pathways (Figure 5), which agrees with the existing literature®** The
JAK/STAT signalling pathway was the most enriched Cell process for ER stress (Figure 5),
aigning with its role in ER stress-induced inflammation.*” Similarly, the most enriched
processes for the other endpoints (Figure 5), i.e. Cytotoxicity BLA (Hippo signaling
pathway), Cytotoxicity SRB (cyclosporine binding protein), heat shock response (DNA
damage), oxidative stress (apoptosis and hypoxia), and proliferation (Hippo pathways), are
al in agreement with expectations based on the prior knowledge3**4% Collectively,
these findings illustrate the high level of agreement between BioMorph terms and well-
established biological knowledge. They aso highlight how integrating information about
biological processes (level 4 in BioMorph space) allows for more mechanistic interpretations

and predictions.

BioMor ph terms can be used to gener ate hypotheses for a compound’s mechanisms of

action

We next investigated how BioMorph terms can reveal more specific mechanisms of action
of a compound causing a particular biological activity. To this end, we analysed 56 predicted
true positive compounds across nine biological activities and analysed the SHapley Additive
exPlanations (SHAP*) values of Cell Painting features (a positive SHAP value for a feature
indicates a positive impact on prediction, leading the model to predict toxicity in this case).
These contributing Cell Painting features were mapped to the BioMorph terms, along with
the two most-contributing Cell Health phenotypes (level 3 of the BioMorph) and Cell process
affected (level 4 of the BioMorph). We were able to identify relationships between specific
compounds and their impact on cellular health (see Table 1 for a selection of illustrative

compounds discussed below; and Supplementary Table $4 for the complete set of 54
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compounds analysed). For example, for melatonin, an “apoptosis up” compound, we noted
that the most contributing Cell Painting features were related to BioMorph terms for DNA
damage (as indicated by the presence of more than three yH2AX spots within the cells) and
the fraction of cells arrested in the S phase, which is most likely due to increased ROS. In the
case of melatonin, the effects on the cell cycle via ROS generation have been previously
reported.” In general, we observed that BioMorph space can help generate hypotheses to
uncover secondary effects that might otherwise be overlooked, and exampleslisted in Table 1
and shown in Figure 6 speak to the granularity of the BioMorph space information. In the
case of ER stressors, piromidic acid, clozapine, bisphenol A diglycidyl ether, and emetine,
the top 2 most contributing Cell Health phenotypes and top 2 Cell processes affected were
mostly different. This highlights that each compound may exhibit the same bioactivity (e.g.
“ER stress’), but cause it by affecting different targets/pathways and having distinct MOAsS.
The most contributing BioMorph terms for piromidic acid are related to cell viability (such as
the number of cells and roundness of living cells); whereas emetine, a protein synthesis
inhibitor, was linked to the fraction of cellsin the S-phase of the cell cycle, which agrees with
the secondary activity in early S-phase related to inhibition of DNA replication.* On the
other hand, compounds linked to heat shock responses (alfadolone acetate, suxibuzone, and
diflorasone) exhibited the same features and were associated with Hippo pathway-related
terms, the roundness of the nucleus, and DNA damage in the S phase. This agrees with the
established role of the Hippo pathway in promoting cell survival in response to various
stressors® while the shape of the nucleus (senescent cells can be characterized by flattened,

enlarged or irregular-shape nuclei*’*®)

and vulnerability of early S-phase cells to mild
genotoxic stress are common mechanisms of heat stress effects.***° We also noted similarities
among the level 3 and level 4 BioMorph space terms associated with compounds that cause

proliferation decrease (raclopride, nimodipine and ketanserin). These compounds are
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associated with hypoxia and apoptosis, suggesting that these compounds may act via
increasing levels of ROS, which leads to oxidative stress.** For the compounds causing an
upregulation of microtubules, bifemelane was linked to BioMorph terms related to cell death
as well as chromatin modifiers and DNA damage in the S phase consistent with its known
role in enhancing the synthesis of cytoskeletal proteins® and regulating dynamic
chromosome organization.>® Taken together, we showcase how identifying the BioMorph
terms having the greatest contribution to predicting a compound's biological activity, we can
gain insights into not only primary but secondary biological processes affected by the
compounds as well. These predictions can then be used to formulate mechanistic hypotheses

and inform drug discovery and development efforts.
Limitations of mapping Cell Painting into BioM or ph terms

This proof-of-concept study demonstrates the potential benefits of mapping Cell Painting
features into BioMorph terms to address a serious challenge for the field of image-based
profiling: making sense of complex combinations of image-based features that are not readily
interpretable. We find that BioMorph does provide a more interpretable and biologically
relevant representation of data. However, there are several limitations relevant to this
iteration of BioMorph space. BioMorph space was built using robust but limited data;
therefore, using larger datasets of CRISPR perturbations and Cell Painting / Cell Health
datasets would improve the organization of BioMorph space. Additionally, the associations
between Cell Painting features and BioMorph terms are not absolute; these would need to be
updated if alternative feature extraction strategies are used (e.g., updated versions from
CellProfiler or deep learning-based feature extraction such as in the JUMP-Cell Painting
dataset>), and we advise caution against using these groupings directly if the datasets differ

from the current study. Finally, we evaluated our BioMorph space for nine broad biological
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activities; generalization to other cellular mechanisms and biological processes would require
assays that are focused on other readouts, such as those related to particular types of toxicity,
or tailored to particular cell types like neurons or cardiomyocytes. Despite these limitations,
the study introduces an algorithm to map Cell Painting features into BioMorph terms and
explores the application of this new BioMorph space in interpreting predictive models,

generating hypotheses for small molecule biological activity, MOA, and toxicity.
SIGNIFICANCE

In this work, we demonstrated a strategy to map Cell Painting features into BioMorph
terms to enable a better understanding of the relationships between compound-induced
cellular perturbations and nine different biological activities. We could correctly identify
potential secondary mechanisms of biological activities such as ER stress and cell cycle arrest
a the G, phase® as well as mechanisms of action of dua-function compounds such as
emetine, which is a well-known protein synthesis inhibitor, but also acts at an early S-phase
to inhibit DNA replication®. These are biological effects that can often be overlooked;
however, the BioMorph space allows for a more comprehensive understanding of these
mechanisms, for uncovering hidden relationships and generating new hypotheses by

connecting them to specific phenotypes and cellular processes.

Mapping Cell Painting features into BioMorph terms offers several advantages over using
Cell Painting features directly. First, we improved interpretability by using a more
biologically interpretable feature space; we identified relationships between compound
mechanisms of action and their impact on cell morphology. For example, the use of
BioMorph space identified relevant pathways such as the JAK/STAT signaling pathway's
prominence in ER stress.®’ These insights are not possible with Cell Painting features alone,

which have no information on biological pathways. Second, we could pinpoint the specific
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cell processes and stages of the cell cycle affected by a compound, a task not possible with
the Cell Painting features, which do not contain direct information on which cell cycle stage
is impacted. Finally, we could facilitate hypothesis generation by identifying the BioMorph
terms that contribute most significantly to compound activity. These targeted hypotheses can
guide the future validation of compounds. Taken together, the BioM orph space represents a
more integrative and comprehensive method for analysing cellular MOA and can enable the

development of more effective strategies for identifying and mitigating toxic effects.
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METHODS
Cell Painting Dataset for CRISPR Perturbations

We used the Cell Painting pilot dataset of (CRISPR) knockout perturbations from the Broad
Institute, 65/ 7or! Bookmark not defined. peare  the athors used a Cell Painting assay for three
different cell lines (A549, ES2, and HCC44) and each cell line used 357 perturbations
representing 119 clustered regularly interspersed short palindromic repeats (CRISPR)
knockout perturbations (further details in Supplementary Table S5). They further generated
median consensus signatures for each of the 357 perturbations. This led to a dataset of 949
morphology features (and metadata annotations) for 357 consensus profiles (119 CRISPR
perturbations x 3 cell lines). Among these, only 827 Cell Painting features were in
intersection with the Cell Painting dataset for compound perturbations (described below)
used in this proof-of-concept study. The Cell Painting dataset for CRISPR Perturbations is

released publicly at https://zenodo.org/record/8147310.
Cell Health assaysfor CRISPR Pertur bations

We used the Cell Health assay developed by the Broad Institute containing 70 specific Cell
Health phenotypes.® The authors used seven reagents in two Cell Health panels to stain cells
for the same 119 CRISPR perturbations for three different cell lines (A549, ES2, and
HCC44). We used median consensus signatures for the 357 consensus profiles (119 CRISPR
perturbations x 3 cell lines) as above. This dataset is released publicly at

https://zenodo.org/record/8147310.
Cell Painting Dataset for Compound Pertur bations

The Cell Painting assay used in this proof-of-concept study, from the Broad Institute,

contains cellular morphological profiles of more than 30,000 small molecule perturbations.??
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The morphological profiles in this dataset are composed of a wide range of feature
measurements (share, area, Size, correlation, texture etc). The authors in this study
normalized morphological features to compensate for variations across plates and further
excluded features having a zero median absolute deviation (MAD) for all reference cellsin
any plate. Following the procedure from Lapins et a*, we subtracted the average feature
value of the neutral DM SO control from the compound perturbation average feature value on
a plate-by-plate basis. We standardised the InChl using RDKit>" and for each compound and
drug combination, we calculated a median feature value. Where the same compound was
replicated for different doses, we used the median feature value across all doses that were
within one standard deviation of the mean dose. Finally, we obtained 1,783 median Cell
Painting features for 30,404 unique compounds. Among these, only 827 Cell Painting
features were common with the dataset for CRISPR Perturbations which were used in this

proof-of-concept study.
Biological activity from ToxCast assay with Cell Painting annotations

Toxicity and biological activity-related data were collected from 56 cytotoxicity and cell
stress response assays from 56 ToxCast®®* for nine broad biological processes(for the
mapping between 56 ToxCast assays and 9 biological processes see Judson et al*°): apoptosis
up, cytotoxicity BLA, cytotoxicity SRB, ER stress, heat shock, microtubule upregulation,
mitochondrial disruption up, oxidative stress up and proliferation decrease.®® Compound
SMILES were converted to standardised InChl using RDKit.>’ To generate consensus
endpoint labels, the presence of positive activity (toxicity) in at least one assay related to the
biological activity was considered sufficient to mark the compound active in the consensus
endpoint. Thus, consensus endpoints for each of the 9 biological activities were generated

from the 56 ToxCast assays. We calculated the intersection of the Cell Painting profiles for
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compound perturbations (above) and 9 biological activity (ToxCast) assays using the
standardised InChl. Cell Painting features were standardised by removing the mean and
scaling to unit variance. This resulted in a complete dataset of 658 structurally unique
compounds with 827 Cell Painting features and 9 biological activity consensus hit calls that
were used in this proof-of-concept study. The dataset, referred to as containing biological

activitiesin this study, is publicly released in https://zenodo.org/record/8147310.
Mapping Cell Painting termsinto BioM or ph space

The overlap of Cell Painting and Cell Health assay for gene perturbations from Way et al®
contained 827 Cell Painting features (that were also present in the Cell Painting experiments
on compound perturbations from Bray et a*) and 70 continuous Cell Health endpoints (e.g.,
the number of late polynuclear cells, which measures the shape in a cell cycle assay) for 354
consensus profiles (118 CRISPR perturbations x 3 cell lines, the empty well was removed).
As shown in Figure 2 step A, for feature selection, we used an all-relevant feature selection
method, Borutapy>® (implemented using the Python package Boruta™) with a Random Forest
Classifier estimator of maximum depth 5 and the number of estimators determined
automatically based on the size of the dataset using ‘auto’. Using Borutapy, we detected a
subset of Cell Painting features that contain information for each of the 70 Cell Health
regression labels. Further, we trained a baseline Linear Regression model as implemented in
scikit-learn® (Figure 2 step B) with an 80-20 random train-test split to predict which subsets
of Cell Paintings features are relatively better predictors of Cell Health phenotype. 37 of the
70 Cell Health models (with R*>>0.25) were selected for further analysis. This results in 34
subsets of Cell Painting features (one set for each of the 34 Cell Health labels). Next, for each
of the 34 Cell Health labels and the 354 consensus profiles, we separated subsets of Cell

Painting data for the negative control CRISPR Perturbation (which consisted of 30 datapoints
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of LacZ, Luc, Chr2 CRISPR perturbations) and other CRISPR perturbations affecting various
known cell processes (such as chromatin modifiers, ER Stress’lUPR, metabolism etc). For
each of these pairs (negative control and CRISPR perturbations), we used Borutapy™® (Figure
2 step C) to detect a further subset from the subset of Cell Painting features which contained
asignal on whether the datapoint is a negative control or the CRISPR Perturbation. We train
a baseline Random Forest Classifier (Figure 2 step D), as implemented in scikit-learn®, with
an 80-20 random train test split to predict which sets of selected Cell Painting features
perform relatively better at differentiating negative controls from the CRISPR perturbation
(MCC>0.50). This led to 412 subsets of informative Cell Painting features which are then
indicators of 412 BioMorph terms. We used a 42 test to determine the BioMorph term p-
value for each of the 412 combinations (Figure 2 step E) from standard scaled subsets of Cell

Painting features.

Further using this mapping, any dataset with Cell Painting features can be mapped into
BioMorph terms. The dataset of biological activities with 827 Cell Painting features were
grouped into these 412 combinations and their BioMorph term p-value was calculated. We
then standardised these BioMorph terms using a standard scalar (as implemented in scikit
learn), and only columns with non-infinite continuous p-values were retained (with other
columns dropped). This resulted in 398 BioMorph terms for the biological activity dataset.

The dataset is now publicly released in https.//zenodo.org/record/8147310.
Comparing models using Cell Painting and BioM or ph terms as features

To ensure that the BioMorph terms contain all information from the original Cell Painting
readouts, we compared models using only 827 Cell Painting features and models using the
398 BioMorph terms directly as features (although there were 412 terms defined, only 398

terms out of these were non-infinite and continuous and used for modelling). For each of the
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9 biological activities, we used 5 times repeated 4-fold nested cross-validation and a Random
Forest Classifier (as implemented in scikit-learn®). First, the data was split into four folds
using a stratified split on biological activity labels where 25% of the data was reserved for the
test set and 75% remaining used for training. Using this training data, we trained two models,
one using the 827 Cell Painting features, and the other using 398 BioMorph terms (p-values
from subsets of Cell Painting features; although there were 412 terms defined, only 398 terms
out of these were non-infinite and continuous and used for modelling). We optimised these
models using a 5-fold cross-validation with stratified splits and a random halving search
algorithm (with hyperparameter space given in Supplementary Table S6 and as implemented
in scikit-learn®). The optimised model was fit on the entire training data and cross-validation
predictions are used to determine the optimal threshold using the J statistic value. We then
used this threshold to determine the predictions for the test set predictions. A single loop of
nested cross-validation results in 4 test sets, which are repeated 5 times thus giving 20

individual test set predictions.
Mode training with Cell Painting features

To evaluate the use of BioMorph space, we now used a fixed held-out test set. For each of
the 9 biological activities, we used a stratified split on biological activity labels such that 75%
of the data was used in cross-validation training and 25% as held-out test data. We trained
Random Forest classifiers (as implemented in scikit-learn™) using 827 Cell Painting features
and a random halving search algorithm (as implemented in scikit-learn®) to optimise the
hyperparameters (with the hyperparameter space given in Supplementary Table S6). Similar
to above, the optimised model was fit on the entire training data and cross-validation
predictions are used to determine the optimal threshold using the J dtatistic value that

considers both true and false positive rates. This optimal threshold is then used on the
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predicted probabilities of the held-out test data to obtain the final held-out test data

predictions.
Featureimportance and inter pretation in BioM or ph terms

First, we next used feature importance from the Random Forest classifier (as implemented
in scikit-learn®®) to determine the features that contributed the most to model importance.
This gave us important features per biological activity (at an endpoint/biological activity
level). Second, we evaluated SHAP* values (as implemented in the shap®* python package)
for each compound predicted as true positive in the held-out test set. We used true positives
only, as these are the predictions for which the feature importance value (from SHAP) is
valid. This gave us the important features per toxic compounds in the held-out test set for
each biological activity (at a compound level). We then selected the Cell Painting features
(from model importance values at the endpoint level or SHAP values at a compound level)
that were greater than two standard deviations of all features as the most important or
contributing features. These features were mapped into the BioM orph space by determining if
the features related to the individual levels of the BioMorph term were present among the
important features selected above. At the level of Cell process affected (level 4), the
percentage enrichment was determined as the percentage of Cell Painting features that were
present among the defined subset of Cell Painting features (level 5). For an overall
enrichment value (used for Figure 3 and Figure 4) for each specific Cell Health phenotypes
term (level 4) or Cell process affected (level 5), we used the mean of enrichment of all
BioMorph terms where the corresponding level 3 or level 4 term appeared. For detailed
enrichment analysis, we determined enrichment of the level (Ivx) to be the percentage of the

immediate lower level (Ivx.1) with enrichment > 10% progressively from specific Cell Health
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phenotypes (level 3) to Cell Hedth assay type (level 1). This is released per biological

activity in Supplementary Table S3.

Evaluation Metrics

To evaluate models in this proof-of-concept study we used Balanced Accuracy which
considers both sensitivity and specificity, the Area Under Curve-Receiver Operating
Characteristic (AUC-ROC) and Mathew’s correlation constant (MCC) as implemented in

scikit-learn®.

Statistics and Reproducibility
We have released the datasets used in this proof-of-concept study which are publicly
available at https://zenodo.org/record/8147310. We released the Python code for the models

which are publicly available at https://github.com/srijitseal/BioM orph_Space.
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Table 1: Top two contributing Cell Health phenotypes (level 3) and Cell process affected
(level 4) from BioMorph space for a selection of illustrative true positives predicted by the
models for biological activity. See Supplementary Table S4 for the complete set of 54

compounds.
Common Biological | Specific Cell Specific Cell Health Cell process | Cell
name Process Health phenotypes (2nd affected process
phenotypes (most | most impacted) (most) affected
impacted) (2nd most)
Melatonin apoptosis The fraction of Fraction of EdU ROS MAPK
up cells containing positive cells (S-phase
more than 3 of the cell cycle)
gH2AX spots
within all cells:
Piromidic ER stress Total number of Cell Roundness RTK ER
acid cells Stress/UPR
Clozapine ER stress Fraction of G1 Fraction of caspase Chromatin ER
cells negative in dead cells | Modifiers Stress/UPR
Bisphenol A | ER stress Fraction of G2 Total number of cells | JAK/STAT WNT
diglycidyl cells
ether
Emetine ER stress Fraction of EdU The fraction of cells ROS Chromatin
positive cells (S- containing more than Modifiers
phase of the cell 3 gH2AX spots within
cycle) all cells
Alfadolone heat shock | Average nucleus The fraction of >3 Hippo Chromatin
acetate roundness gH2Ax spotsin S Modifiers
phase cells
Suxibuzone | heat shock | Average nucleus The fraction of >3 Hippo Chromatin
roundness gH2Ax spotsin S Modifiers
phase cells
Diflorasone | heat shock | Average nucleus The fraction of >3 Hippo Chromatin
diacetate roundness gH2Ax spotsin S Modifiers
phase cells
Bifemelane | microtubul | Fraction of EdU incorporated Hippo Chromatin
eup caspase negative (average intensity per Modifiers
in dead cells cell) in S phase cells
Raclopride proliferatio | Fraction of Width/Length Hypoxia Apoptosis
n decrease | caspase negative
in dead cells

37



https://doi.org/10.1101/2023.07.14.549031
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.14.549031; this version posted July 16, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Nimodipine | proliferatio | Fraction of Width/Length Hypoxia Apoptosis
n decrease | caspase negative
in dead cells
Ketanserin proliferatio | Number of G1 Fraction of caspase Hypoxia Apoptosis
n decrease | cells negative in dead cells
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Figure 1. A map of the BioMorph space. A genera representation of the hierarchy of levels
is shown (with examples) for each BioMorph term that is organised from Cell Painting
features (level 5) and containing information on Cell Health (level 3) associated with

measurement type (level 2) under an assay type (level 1) associated with Cell process
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affected (level 4). Further terms in Supplementary Figure S1 with all terms listed in

Supplementary Table S1
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Figure 2. Schematic representation of methodology to generate BioMorph terms mapped

from CRISPR perturbations measured by the Cell Painting assay and Cell Health assay.

Further details on all terms terms in Supplementary Figure S1 with all BioMorph Space listed

in Supplementary Table S1
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Figure 3. The subset of most-contributing Cell Painting features (level 5) for the model
predicting ER stress and the BioMorph terms enriched from this subset (BioMorph terms that
contain the highest percentage overlap with these Cell Painting features). This revealed
potential secondary mechanisms of biological activity such as G, cell cycle arrest the
JAK/STAT signalling pathway was the most enriched Cell Health phenotype (level 3) and

Cell process (level 4) respectively for ER stress.
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Figure 4. Top five specific Cell Health phenotypes (level 3) enriched by contributing Cell
Painting features (as per feature importance) for each Random Forest model for eight
different biological activities (a) apoptosis up, (b) cytotoxicity BLA, (c) cytotoxicity SRB, (d)
ER stress, (e) heat shock, (f) microtubule upregulation, (g) oxidative stress, and (h)
proliferation decrease. Models for mitochondrial disruption recorded AUC<0.50 and were not

interpreted.
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Figure 5. Top five Cell process affected (level 4) terms enriched by contributing Cell
Painting features (as per feature importance) for each Random Forest model for eight
different biological activities (a) apoptosis up, (b) cytotoxicity BLA, (c) cytotoxicity SRB, (d)

ER stress, (e) heat shock, (f) microtubule upregulation, (g) oxidative stress, and (h)
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