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The electrostatic properties of proteins arise from the number and distribution of polar and charged
residues. Due to their long-ranged nature, electrostatic interactions in proteins play a critical role
in numerous processes, such as molecular recognition, protein solubility, viscosity, and antibody
developability. Thus, characterizing and quantifying electrostatic properties of a protein is a pre-
requisite for understanding these processes. Here, we present PEP-Patch, a tool to visualize and
quantify the electrostatic potential on the protein surface and showcase its applicability to elucidate
protease substrate specificity, antibody-antigen recognition and predict heparin column retention

times of antibodies as an indicator of pharmacokinetics.

INTRODUCTION

Every protein consists of a unique combination of amino acids, which exhibit distinct
biophysical properties and therefore determine the life cycle of a protein, from folding to biological
function and degradation.!™

Electrostatic forces are central in molecular biology, co-determining protein folding, protein-
protein interactions, protein-DNA/RNA interactions, ion binding, dimerization, and protein
stability.!>* Additionally, they affect the pKa values of ionizable groups in proteins and
DNA/RNA > The complex multi-step process of molecular recognition requires a balance of
entropic and enthalpic components.”® Enthalpic and entropic contributions to binding vary
between the different steps from unbound to the fully bound state. Electrostatics are a critical
component of the enthalpic contributions, dominating and guiding the recognition process,
especially when the binding partners are still distant from one another.’ Proteases in particular
have been shown to have an electrostatics-driven recognition process, as the substrate preferences

can be predicted from charge complementarity in the binding interface.®!°
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Electrostatic forces affect molecular binding not only through interactions between the binding
partners, but also through interactions with the solvent. This is because solvent molecules must be
displaced from the binding interface, which introduces a large desolvation penalty that needs to be
overcome by an interplay of attractive electrostatic and hydrophobic interactions upon protein-
protein or protein-ligand association. Additionally, it has been reported that higher electrostatics
due to their long-range interaction network can increase specificity and at the same time restrict
flexibility.!! On the other hand, weak electrostatics can be associated with conformational
variability and, consequently, cross-reactivity.!! Protein folding and thermal stability are also
influenced by electrostatics. In particular, polar interactions are a major contributor to hydrogen
bonding, and hydration of charged and polar amino acids has a profound impact on correct protein
folding.">* Due to protonation state changes, pH can influence protein stability and
function.®!? Thus, understanding the role of electrostatics in protein function is crucial to advance,
guide and facilitate protein engineering and design.

The high therapeutic potential of antibodies in combination with their versatility makes them
excellent candidates to study.!*!# Biophysical properties of antibodies such as surface charges or
hydrophobicity and the isoelectric point are thought to be responsible for changes in
pharmacokinetics, efficacy, dose intervals and application route.!>'® One common measure of an
important biophysical property is Heparin retention chromatography. Heparin retention
chromatography for antibodies has been shown to separate antibodies with different serum half-
life.!” Heparin is a negatively charged polysaccharide, that resembles the glycocalyx, a saccharide
layer on the inside of epithelial cells. Interaction with the glycocalyx is believed to increase the

propensity of a compound to be taken up into the cell by pinocytosis, followed by digestion and


https://doi.org/10.1101/2023.07.14.547811
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.14.547811; this version posted July 15, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

thus the retention time in heparin chromatography correlates with serum-half-life of monoclonal
antibodies.!’

Surface patches

Macromolecular interactions are often mediated through a single dominant interaction surface.
In the case of primarily electrostatic interactions, this implies that continuous surface patches with
a high charge density are likely candidates for interaction surfaces. Similar arguments hold for
hydrophobic interactions, which might also be mediated by a single hydrophobic patch.'®

The electrostatic potential around a protein in solution is routinely calculated using Poisson-
Boltzmann or Generalized Born calculations.!*?! For visualization of the resulting potential, iso-
surfaces can be displayed in standard molecular visualization packages such as PyMOL?? or
VMD.? However, this visualization is not optimal for quantification of the results, since the
potential in the first hydration shell, which is an important indicator of interaction strength, is not
visible.

On the other hand, when developing quantitative scores of electrostatics of hydrophobicity
surface patches have often been used. A patch is usually defined as a continuous surface that fulfills
a certain criterion. For instance, a positive surface patch might be defined as having an electrostatic
potential exceeding a given threshold value. Software to search for continuous patches has been
developed since the 90s**?° and is implemented in molecular visualization software, e.g., such as
MOE?. However, those implementations are usually tied to a single use case and not broadly
applicable.

Here, we present the Python tool PEP-Patch, which allows a user to search for continuous surface

patches. While our tool uses an electrostatic potential from APBS by default, it can be used with
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any combination of a surface representation and a 3-dimensional potential, thus providing a

versatile building block for biomolecular analysis.

METHODS

Antibody structure models
We used heparin data from Kraft et al.!” for a set of 137 antibodies described in the dataset by Jain
et al.?’

To compare the influence of different antibody conformations on the respective electrostatic
potential, we used three antibody structure prediction tools, namely DeepAb?8, ImmuneBuilder®
and MOE?®, using the default settings, to predict Fv structures. In addition, for 49 of these 137

antibodies?’ crystal structures were available.

Electrostatic surfaces
Our PEP-Patch tool (vl) 18 freely available on Github

(https://github.com/liedllab/surface analyses) under an MIT license.

Our tool uses the Advanced Poisson-Boltzmann Solver (APBS) software to compute the
electrostatic potential using the Poisson-Boltzmann equation'®3%3!, A NaCl-concentration of 0.1
M is used by default, without titrating residues. Smooth molecular surfaces can be defined using a
Gaussian surface, a solvent-accessible surface, or a Conolly-type surface. The electrostatic
potential is evaluated at every surface vertex using linear interpolation between the neighboring
grid voxels. Positive and negative surface patches are defined using an isolevel, by searching for
connected components in the graph defined by the triangulated surface. Similar procedures are

commonly used to find protein surface patches.
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The output of our tool includes the surface and interpolated values in the numpy storage format
(npz), as well as a color-coded surface in ply format for visualization in molecular viewers such
as PyMol or VMD.3?

Quantitative scores for electrostatics

We define five different quantitative scores for the electrostatic properties of a molecule. To do
so, we start from the electrostatic potential map obtained from a Poisson-Boltzmann calculation.
We then select grid voxels that are solvent accessible, but within a defined distance cutoff from
the protein. By default, this distance cutoff is defined to be 10 A of the protein surface.

The total score is defined simply as the integral of the electrostatic potential over that region. In
a very simplified view, it can be thought of as the interaction strength with a positively charged
substance, given that this substance is evenly distributed in the selected volume.

We also define positive and negative scores, which only include contributions of the positive
and negative regions in the electrostatic potential. Again, they can be roughly understood as an
interaction strength with a charged substance, this time imagining that the substance is distributed
only in the respective part of the volume.

Finally, we define high and low scores, which are defined in the same way as the positive and
negative ones, except that they include only regions above and below a given electrostatic potential
cutoff. Additionally, the tool provides the residues that contribute the most area to an electrostatic
patch.

APPLICATION AND ILLUSTRATIVE EXAMPLES

In this study, we present a tool to quantify/characterize electrostatic surface properties of
proteins to elucidate determinants of molecular recognition and identify descriptors that govern

pharmacokinetics. Here, we apply our tool to three different case studies, elucidating substrate
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specificity of proteases based on their surface properties, characterizing molecular recognition
upon antibody affinity maturation, and predicting biophysical properties to distinguish and
optimize pharmacokinetics of antibodies.

Protease substrate recognition

Proteases are enzymes that proteolytically cleave peptide bonds and play a key role in a variety
of different physiological processes, ranging from complex signaling cascades, blood coagulation,
and food digestion, to key aspects of the immune system such as programmed cell death and
digestions of cells.?3** These very distinct and broad biological functions require vast differences
in specificity and promiscuity.!'%*>3¢ While some proteases reveal a high specificity for substrate
sequences, others are more promiscuous, cleaving a variety of different substrates. An example
would be digestive proteases that cleave food proteins, and thus need to function on many different
substrates. Substrate specificity of proteases is conveyed by molecular interactions occurring at
the protein-protein interface (protease and substrate) in the binding cleft of the protease.!? Here,
we use our tool to compare proteins based on their electrostatics and demonstrate its applicability

on proteases.
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Figure 1. Electrostatic potential around three proteases differing in their substrate preferences. A)
The electrostatic potential on the protein surface shows that Trypsin favors positively charged
substrates, Chymotrypsin favors rather uncharged substrates and Granzyme B recognizes negatively
charged substrates in line with the cleavage site sequences logos obtained from the MEROPS
database. B) Summary of the total electrostatic potential around the proteins. C) Positive (blue to
green, from biggest to smallest patch) and negative (red to yellow, from biggest to smallest patch)

protein surface patches.

Figure 1A shows the comparison of three proteases differing in their substrate preferences. We
calculated the electrostatic potential (Figure 1B) based on the available X-ray structures for all
three proteases (PDB accession codes: 1PQ7 for Trypsin, 4CHA for Chymotrypsin and 1FQ3 for
Granzyme B) and show that by considering the electrostatic potential around each protease (red
represents negatively charged patches, blue positively charged patches), the substrate preference?’
can be inferred, i.e., Granzyme B shows a preference for negatively charged substrates, Trypsin
prefers more positively charged substrates and Chymotrypsin rather uncharged substrates. The
positive and negative protein surface patches are illustrated in Figure 1C and the residues
contributing most to the absolute value ascribed to an electrostatic patch are provided in SI Table

1.
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Antibody-antigen recognition
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Figure 2. Electrostatic potential in antibody recognition. A) Antibody-antigen binding mode,
derived from the available X-ray structure (PDB accession code: SCBE), showing the antibody
in grey and the antigen in cyan. B) Summary of the total electrostatic potential around the
proteins. C) Electrostatic potential around the antibodies 3B4 and E10 (both sides) and the

CXCL13 antigen.
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Biomolecular recognition between proteins follows complex mechanisms. Understanding
protein-protein interfaces and their interactions is crucial to advance the development of
biotherapeutics. Here, we focus on the interface of two different antibodies binding to the same
chemokine CXCL13 antigen.?® Structurally, the antigen-binding fragment of an antibody (Fab) is
composed of a heavy and light chain, which form the antigen-binding site, the paratope. The
paratope is primarily found within six hypervariable loops, the complementarity determining
region (CDR) loops.!? In addition to the CDR loops, residues in the framework as well as the
relative interdomain orientation (between the heavy and light chain) can strongly influence antigen
recognition.’**? It is well established that for antibodies single-point mutations can result in
changes in the binding site conformations and thereby affect biophysical properties.*** The
antibody variants investigated here, the parental 3B4 and the optimized E10, have substantial
differences in affinity and stability resulting from four point-mutations located in the CDR-L3
loop.*® To calculate the electrostatic potential, we used the available crystal structures (PDB
accession codes: SCBA for 3B4 and 5CBE for E10) and find that these four-point mutations
contribute to an improved electrostatic complementarity of the E10 variant with CXCL13. This is

reflected in the results presented in Figure 2.

Antibody developability — predicting differences in pharmacokinetics
Another critical aspect in developing antibodies apart from antibody-antigen recognition is
understanding factors that are responsible for changes in pharmacokinetics. One experimental

technique for examining pharmacokinetics are heparin retention chromatography times.!”
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Here, we compared our results to experimentally available relative heparin column retention
times and show that the electrostatic potential calculated for the different antibody variable
fragments (Fv) is a key determinant for changes in pharmacokinetics, reflected in a compelling
correlation with the experiment. We chose to compare three antibody structure prediction tools to
understand the conformation dependence of the electrostatic patch prediction. Independent of the
structure models or X-ray structures used as starting points of our calculations, we find similar
correlations. This is a strong indication that the electrostatic potential, due to its long-ranged
nature, may be less conformation dependent than other biophysical properties such as

hydrophobicity.
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Figure 3. A) Scatter plot of relative Heparin retention time correlated with the integral of the

positive electrostatic potential over the solvent-accessible volume, for the investigated 137

antibodies using the DeepAb models, ImmuneBuilder models, MOE models and the available

49 PDB structures. B) Electrostatic potential around the DeepAb models of lenzilumab

(depicted as red dot) and the sirukumab (shown as blue dot), which are the antibodies with the

highest and lowest Heparin retention time, respectively. C) Mesh isopotential surface around

the two DeepAb models of lenzilumab and the sirukumab.
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At a low positive electrostatic potential score (roughly below 20 ksTe*nm?) there appears to
be no correlation with the heparin retention time. This is probably due to very weak interactions
with the column. The highlighted points in Figure 3A represent the antibodies with the highest and
lowest heparin column retention times. These differences in the experimental retention times are
also reflected by the electrostatic potential around the antibodies, i.e., lenzilumab a higher positive
electrostatic potential, compared to sirukumab, which is substantially more negative (Figure 3B).

To demonstrate the usefulness of our results, we compare our tool to other commonly used
scores for protein charges. We compute the average net charge of each model using the Protein
Properties tool in MOE, with the conformational sampling option turned on, and plot the resulting
values against the same heparin data (Figure S1). Furthermore, we produce an analogous plot using
the total area of positive patches, calculated using the same procedure in MOE (Figure S2). While
all three tools perform well in general, we note that the correlation between our tool and the heparin
retention times are slightly higher, while the computation is drastically faster, since only a single
structure is used for our scores. To make it easier for users to match patch data to protein residues,
PEP-patch tool provides the residues that contribute the most area to each patch. This makes it
easier to assign patches to protein residues, even without looking at the three-dimensional
representation. Furthermore, if the input structure is an antibody fragment, it can detect which

patches contain atoms of the complementarity determining regions (CDRs) using ANARCI.#6

Other use-cases
To demonstrate the wide applicability of our tool to calculate patches for any user-provided density

map, we also show results based on the localized hydration free energy from a grid inhomogeneous
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solvation theory (GIST)*# calculation in Figure 4, first presented in Waibl et.al.>® Using a
solvent-accessible surface at a probe radius of 1.4 A to approximate the shape of the first hydration
shell, we calculate patches for the free energy of hydration around the paratope of bevacizumab
(PDB code 1BJ1). We find a larger number of patches showing negative free energy in Figure 4B
when compared to the positive patches in Figure 4C, which are rather small in number and size.
This is in line with our previous findings that hydrophobicity and IgG antibodies are mainly being
found in the serum. For rugged densities such as the free energy on hydration shown here,
calculating patches may result in a large number of small-sized patches. For visualization, it is
advisable to choose a continuous color map in such cases as the standard qualitative colormap does

not provide enough colors to show all patches.

Figure 4. A) Surface of bevacizumab colored by GIST free energy of hydration around the Fv
ranging from negative values in red to positive values in blue. B) Patches based on surface vertices
with negative free energy of solvation. C) Patches based on surface vertices with positive free
energy of solvation. 4 B-C) Patches are colored based on their patch size (from large to small

patches colored in red-yellow-green-blue).
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CONCLUSION
We present the PEP-Patch tool, which allows calculating the electrostatic potential of proteins.
Here, we show that the electrostatic potential can explain biomolecular recognition, substrate
specificity and even pharmacokinetics of antibodies. Additionally, it allows to directly visualize
and quantify the electrostatic potential around different proteins, that can guide the design of
biotherapeutic proteins. Furthermore, the tool identifies the residues that contribute the most to an

electrostatic patch, which can inform rational protein design.
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ABBREVIATIONS

PB, Poisson-Boltzmann; Fab, antigen-binding fragment; CDR, complementarity determining

region.
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