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ABSTRACT  
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The electrostatic properties of proteins arise from the number and distribution of polar and charged 

residues. Due to their long-ranged nature, electrostatic interactions in proteins play a critical role 

in numerous processes, such as molecular recognition, protein solubility, viscosity, and antibody 

developability. Thus, characterizing and quantifying electrostatic properties of a protein is a pre-

requisite for understanding these processes. Here, we present PEP-Patch, a tool to visualize and 

quantify the electrostatic potential on the protein surface and showcase its applicability to elucidate 

protease substrate specificity, antibody-antigen recognition and predict heparin column retention 

times of antibodies as an indicator of pharmacokinetics.  

INTRODUCTION 

Every protein consists of a unique combination of amino acids, which exhibit distinct 

biophysical properties and therefore determine the life cycle of a protein, from folding to biological 

function and degradation.1–4  

Electrostatic forces are central in molecular biology, co-determining protein folding, protein-

protein interactions, protein-DNA/RNA interactions, ion binding, dimerization, and protein 

stability.1,2,4 Additionally, they affect the pKa values of ionizable groups in proteins and 

DNA/RNA.5,6 The complex multi-step process of molecular recognition requires a balance of 

entropic and enthalpic components.7,8 Enthalpic and entropic contributions to binding vary 

between the different steps from unbound to the fully bound state. Electrostatics are a critical 

component of the enthalpic contributions, dominating and guiding the recognition process, 

especially when the binding partners are still distant from one another.9 Proteases in particular 

have been shown to have an electrostatics-driven recognition process, as the substrate preferences 

can be predicted from charge complementarity in the binding interface.9,10  
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Electrostatic forces affect molecular binding not only through interactions between the binding 

partners, but also through interactions with the solvent. This is because solvent molecules must be 

displaced from the binding interface, which introduces a large desolvation penalty that needs to be 

overcome by an interplay of attractive electrostatic and hydrophobic interactions upon protein-

protein or protein-ligand association. Additionally, it has been reported that higher electrostatics 

due to their long-range interaction network can increase specificity and at the same time restrict 

flexibility.11 On the other hand, weak electrostatics can be associated with conformational 

variability and, consequently, cross-reactivity.11 Protein folding and thermal stability are also 

influenced by electrostatics. In particular, polar interactions are a major contributor to hydrogen 

bonding, and hydration of charged and polar amino acids has a profound impact on correct protein 

folding.1,2,4 Due to protonation state changes,  pH can influence protein stability and 

function.6,12 Thus, understanding the role of electrostatics in protein function is crucial to advance, 

guide and facilitate protein engineering and design.  

The high therapeutic potential of antibodies in combination with their versatility makes them 

excellent candidates to study.13,14 Biophysical properties of antibodies such as surface charges or 

hydrophobicity and the isoelectric point are thought to be responsible for changes in 

pharmacokinetics, efficacy, dose intervals and application route.15,16 One common measure of an 

important biophysical property is Heparin retention chromatography. Heparin retention 

chromatography for antibodies has been shown to separate antibodies with different serum half-

life.17 Heparin is a negatively charged polysaccharide, that resembles the glycocalyx, a saccharide 

layer on the inside of epithelial cells. Interaction with the glycocalyx is believed to increase the 

propensity of a compound to be taken up into the cell by pinocytosis, followed by digestion and 
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thus the retention time in heparin chromatography correlates with serum-half-life of monoclonal 

antibodies.17   

Surface patches 

Macromolecular interactions are often mediated through a single dominant interaction surface. 

In the case of primarily electrostatic interactions, this implies that continuous surface patches with 

a high charge density are likely candidates for interaction surfaces. Similar arguments hold for 

hydrophobic interactions, which might also be mediated by a single hydrophobic patch.18  

The electrostatic potential around a protein in solution is routinely calculated using Poisson-

Boltzmann or Generalized Born calculations.19–21 For visualization of the resulting potential, iso-

surfaces can be displayed in standard molecular visualization packages such as PyMOL22 or 

VMD.23 However, this visualization is not optimal for quantification of the results, since the 

potential in the first hydration shell, which is an important indicator of interaction strength, is not 

visible.  

On the other hand, when developing quantitative scores of electrostatics of hydrophobicity 

surface patches have often been used. A patch is usually defined as a continuous surface that fulfills 

a certain criterion. For instance, a positive surface patch might be defined as having an electrostatic 

potential exceeding a given threshold value. Software to search for continuous patches has been 

developed since the 90s24,25 and is implemented in molecular visualization software, e.g., such as 

MOE26. However, those implementations are usually tied to a single use case and not broadly 

applicable. 

Here, we present the Python tool PEP-Patch, which allows a user to search for continuous surface 

patches. While our tool uses an electrostatic potential from APBS by default, it can be used with 
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any combination of a surface representation and a 3-dimensional potential, thus providing a 

versatile building block for biomolecular analysis. 

 

METHODS 

Antibody structure models 

We used heparin data from Kraft et al.17 for a set of 137 antibodies described in the dataset by Jain 

et al.27 

To compare the influence of different antibody conformations on the respective electrostatic 

potential, we used three antibody structure prediction tools, namely DeepAb28, ImmuneBuilder29 

and MOE26, using the default settings, to predict Fv structures. In addition, for 49 of these 137 

antibodies27 crystal structures were available. 

 

Electrostatic surfaces 

Our PEP-Patch tool (v1) is freely available on Github 

(https://github.com/liedllab/surface_analyses) under an MIT license. 

Our tool uses the Advanced Poisson-Boltzmann Solver (APBS) software to compute the 

electrostatic potential using the Poisson-Boltzmann equation19,30,31. A NaCl-concentration of 0.1 

M is used by default, without titrating residues. Smooth molecular surfaces can be defined using a 

Gaussian surface, a solvent-accessible surface, or a Conolly-type surface. The electrostatic 

potential is evaluated at every surface vertex using linear interpolation between the neighboring 

grid voxels. Positive and negative surface patches are defined using an isolevel, by searching for 

connected components in the graph defined by the triangulated surface. Similar procedures are 

commonly used to find protein surface patches.  
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The output of our tool includes the surface and interpolated values in the numpy storage format 

(npz), as well as a color-coded surface in ply format for visualization in molecular viewers such 

as PyMol or VMD.32 

Quantitative scores for electrostatics 

We define five different quantitative scores for the electrostatic properties of a molecule. To do 

so, we start from the electrostatic potential map obtained from a Poisson-Boltzmann calculation. 

We then select grid voxels that are solvent accessible, but within a defined distance cutoff from 

the protein. By default, this distance cutoff is defined to be 10 Å of the protein surface. 

The total score is defined simply as the integral of the electrostatic potential over that region. In 

a very simplified view, it can be thought of as the interaction strength with a positively charged 

substance, given that this substance is evenly distributed in the selected volume. 

We also define positive and negative scores, which only include contributions of the positive 

and negative regions in the electrostatic potential. Again, they can be roughly understood as an 

interaction strength with a charged substance, this time imagining that the substance is distributed 

only in the respective part of the volume.  

Finally, we define high and low scores, which are defined in the same way as the positive and 

negative ones, except that they include only regions above and below a given electrostatic potential 

cutoff. Additionally, the tool provides the residues that contribute the most area to an electrostatic 

patch. 

APPLICATION AND ILLUSTRATIVE EXAMPLES 

In this study, we present a tool to quantify/characterize electrostatic surface properties of 

proteins to elucidate determinants of molecular recognition and identify descriptors that govern 

pharmacokinetics. Here, we apply our tool to three different case studies, elucidating substrate 
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specificity of proteases based on their surface properties, characterizing molecular recognition 

upon antibody affinity maturation, and predicting biophysical properties to distinguish and 

optimize pharmacokinetics of antibodies.   

Protease substrate recognition 

Proteases are enzymes that proteolytically cleave peptide bonds and play a key role in a variety 

of different physiological processes, ranging from complex signaling cascades, blood coagulation, 

and food digestion, to key aspects of the immune system such as programmed cell death and 

digestions of cells.33,34 These very distinct and broad biological functions require vast differences 

in specificity and promiscuity.10,35,36 While some proteases reveal a high specificity for substrate 

sequences, others are more promiscuous, cleaving a variety of different substrates. An example 

would be digestive proteases that cleave food proteins, and thus need to function on many different 

substrates. Substrate specificity of proteases is conveyed by molecular interactions occurring at 

the protein-protein interface (protease and substrate) in the binding cleft of the protease.10 Here, 

we use our tool to compare proteins based on their electrostatics and demonstrate its applicability 

on proteases.  
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Figure 1A shows the comparison of three proteases differing in their substrate preferences. We 

calculated the electrostatic potential (Figure 1B) based on the available X-ray structures for all 

three proteases (PDB accession codes: 1PQ7 for Trypsin, 4CHA for Chymotrypsin and 1FQ3 for 

Granzyme B) and show that by considering the electrostatic potential around each protease (red 

represents negatively charged patches, blue positively charged patches), the substrate preference37 

can be inferred, i.e., Granzyme B shows a preference for negatively charged substrates, Trypsin 

prefers more positively charged substrates and Chymotrypsin rather uncharged substrates.  The 

positive and negative protein surface patches are illustrated in Figure 1C and the residues 

contributing most to the absolute value ascribed to an electrostatic patch are provided in SI Table 

1.  

 

Figure 1. Electrostatic potential around three proteases differing in their substrate preferences. A) 

The electrostatic potential on the protein surface shows that Trypsin favors positively charged 

substrates, Chymotrypsin favors rather uncharged substrates and Granzyme B recognizes negatively 

charged substrates in line with the cleavage site sequences logos obtained from the MEROPS 

database.  B) Summary of the total electrostatic potential around the proteins. C) Positive (blue to 

green, from biggest to smallest patch) and negative (red to yellow, from biggest to smallest patch) 

protein surface patches. 
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Antibody-antigen recognition 

Figure 2. Electrostatic potential in antibody recognition. A) Antibody-antigen binding mode, 

derived from the available X-ray structure (PDB accession code: 5CBE), showing the antibody 

in grey and the antigen in cyan. B) Summary of the total electrostatic potential around the 

proteins. C) Electrostatic potential around the antibodies 3B4 and E10 (both sides) and the 

CXCL13 antigen.  
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Biomolecular recognition between proteins follows complex mechanisms. Understanding 

protein-protein interfaces and their interactions is crucial to advance the development of 

biotherapeutics. Here, we focus on the interface of two different antibodies binding to the same 

chemokine CXCL13 antigen.38 Structurally, the antigen-binding fragment of an antibody (Fab) is 

composed of a heavy and light chain, which form the antigen-binding site, the paratope. The 

paratope is primarily found within six hypervariable loops, the complementarity determining 

region (CDR) loops.13 In addition to the CDR loops, residues in the framework as well as the 

relative interdomain orientation (between the heavy and light chain) can strongly influence antigen 

recognition.39–42 It is well established that for antibodies single-point mutations can result in 

changes in the binding site conformations and thereby affect biophysical properties.43–45 The 

antibody variants investigated here, the parental 3B4 and the optimized E10, have substantial 

differences in affinity and stability resulting from four point-mutations located in the CDR-L3 

loop.38 To calculate the electrostatic potential, we used the available crystal structures (PDB 

accession codes: 5CBA for 3B4 and 5CBE for E10) and find that these four-point mutations 

contribute to an improved electrostatic complementarity of the E10 variant with CXCL13. This is 

reflected in the results presented in Figure 2.  

 

Antibody developability – predicting differences in pharmacokinetics 

Another critical aspect in developing antibodies apart from antibody-antigen recognition is 

understanding factors that are responsible for changes in pharmacokinetics. One experimental 

technique for examining pharmacokinetics are heparin retention chromatography times.17  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.14.547811doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.14.547811
http://creativecommons.org/licenses/by/4.0/


 12 

Here, we compared our results to experimentally available relative heparin column retention 

times and show that the electrostatic potential calculated for the different antibody variable 

fragments (Fv) is a key determinant for changes in pharmacokinetics, reflected in a compelling 

correlation with the experiment. We chose to compare three antibody structure prediction tools to 

understand the conformation dependence of the electrostatic patch prediction. Independent of the 

structure models or X-ray structures used as starting points of our calculations, we find similar 

correlations. This is a strong indication that the electrostatic potential, due to its long-ranged 

nature, may be less conformation dependent than other biophysical properties such as 

hydrophobicity.  
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Figure 3. A) Scatter plot of relative Heparin retention time correlated with the integral of the 

positive electrostatic potential over the solvent-accessible volume, for the investigated 137 

antibodies using the DeepAb models, ImmuneBuilder models, MOE models and the available 

49 PDB structures. B) Electrostatic potential around the DeepAb models of lenzilumab 

(depicted as red dot) and the sirukumab (shown as blue dot), which are the antibodies with the 

highest and lowest Heparin retention time, respectively. C) Mesh isopotential surface around 

the two DeepAb models of lenzilumab and the sirukumab.  
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 At a low positive electrostatic potential score (roughly below 20 kBTe-1nm-1) there appears to 

be no correlation with the heparin retention time. This is probably due to very weak interactions 

with the column. The highlighted points in Figure 3A represent the antibodies with the highest and 

lowest heparin column retention times. These differences in the experimental retention times are 

also reflected by the electrostatic potential around the antibodies, i.e., lenzilumab a higher positive 

electrostatic potential, compared to sirukumab, which is substantially more negative (Figure 3B).   

To demonstrate the usefulness of our results, we compare our tool to other commonly used 

scores for protein charges. We compute the average net charge of each model using the Protein 

Properties tool in MOE, with the conformational sampling option turned on, and plot the resulting 

values against the same heparin data (Figure S1). Furthermore, we produce an analogous plot using 

the total area of positive patches, calculated using the same procedure in MOE (Figure S2). While 

all three tools perform well in general, we note that the correlation between our tool and the heparin 

retention times are slightly higher, while the computation is drastically faster, since only a single 

structure is used for our scores. To make it easier for users to match patch data to protein residues, 

PEP-patch tool provides the residues that contribute the most area to each patch. This makes it 

easier to assign patches to protein residues, even without looking at the three-dimensional 

representation. Furthermore, if the input structure is an antibody fragment, it can detect which 

patches contain atoms of the complementarity determining regions (CDRs) using ANARCI.46 

 

Other use-cases 

To demonstrate the wide applicability of our tool to calculate patches for any user-provided density 

map, we also show results based on the localized hydration free energy from a grid inhomogeneous 
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solvation theory (GIST)47–49 calculation in Figure 4, first presented in Waibl et.al.50 Using a 

solvent-accessible surface at a probe radius of 1.4 Å to approximate the shape of the first hydration 

shell, we calculate patches for the free energy of hydration around the paratope of bevacizumab 

(PDB code 1BJ1). We find a larger number of patches showing negative free energy in Figure 4B 

when compared to the positive patches in Figure 4C, which are rather small in number and size. 

This is in line with our previous findings that hydrophobicity and IgG antibodies are mainly being 

found in the serum. For rugged densities such as the free energy on hydration shown here, 

calculating patches may result in a large number of small-sized patches. For visualization, it is 

advisable to choose a continuous color map in such cases as the standard qualitative colormap does 

not provide enough colors to show all patches. 

  

 

 

Figure 4. A) Surface of bevacizumab colored by GIST free energy of hydration around the Fv 

ranging from negative values in red to positive values in blue. B) Patches based on surface vertices 

with negative free energy of solvation. C) Patches based on surface vertices with positive free 

energy of solvation. 4 B-C) Patches are colored based on their patch size (from large to small 

patches colored in red-yellow-green-blue). 
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CONCLUSION 

We present the PEP-Patch tool, which allows calculating the electrostatic potential of proteins. 

Here, we show that the electrostatic potential can explain biomolecular recognition, substrate 

specificity and even pharmacokinetics of antibodies. Additionally, it allows to directly visualize 

and quantify the electrostatic potential around different proteins, that can guide the design of 

biotherapeutic proteins. Furthermore, the tool identifies the residues that contribute the most to an 

electrostatic patch, which can inform rational protein design.  
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ABBREVIATIONS 

PB, Poisson-Boltzmann; Fab, antigen-binding fragment; CDR, complementarity determining 

region.  
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