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Inference from immunological data on cells in the adaptive immune sys-
tem may benefit from modeling specifications that describe variation in the
sizes of various clonal sub-populations. We develop one such specification
in order to quantify the effects of surrogate selection assays, which we con-
firm may lead to an enrichment for amplified, potentially disease-relevant T
cell clones. Our specification couples within-clonotype birth-death processes
with an exchangeable model across clonotypes. Beyond enrichment ques-
tions about the surrogate selection design, our framework enables a study of
sampling properties of elementary sample diversity statistics; it also points to
new statistics that may usefully measure the burden of somatic genomic al-
terations associated with clonal expansion. We examine statistical properties
of immunological samples governed by the coupled model specification, and
we illustrate calculations in surrogate selection studies of melanoma and in
single-cell genomic studies of T cell repertoires.
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1. Introduction.

1.1. Overview. With thymic-derived lymphocytes (i.e., T cells) sampled from periph-
eral blood or some other tissue compartment (e.g., tumor-infiltrating lymphocytes), any tech-
niques that would enrich the sample for disease-relevant cells could be useful, considering
the complexity of a typical T cell population and the potential for an improved understanding
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of the immune response to disease. For example, at writing we have no effective biomark-
ers to predict how a melanoma patient will respond to immune checkpoint inhibition therapy,
though responses among similar patients may vary from morbid toxicity to full recovery (e.g.,
Ganesan and Mehnert, 2020; Shum, Larkin and Turajlic, 2022).

Surrogate selection restricts a lymphocyte sample in vitro to cells whose somatic ancestors
had acquired and thus transmitted to them specific, selectable mutations. Selection assays
based on mutations of the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene
are most well studied, though the approach applies to any mutations that are neutral with
respect to the immune response (Kaitz et al., 2022). As an immune-system probe, HPRT
surrogate selection has been used to study a variety of environmental effects and disease
processes (Albertini, Castle and Borcherding, 1982; Albertini, 2001; Kaitz et al., 2022). With
continued focus on disease studies, we examine the sampling effects of surrogate selection;
selected cells may represent in vivo amplified clones that are more likely to be disease relevant
than clones of randomly sampled cells, and we seek a more thorough understanding of this
enrichment phenomenon for the sake of improved experimental design and data analysis.

The idea that surrogate selection can enrich for clonally amplified T cells has provided a
rationale in many studies, though quantitative treatments of this experimental-design strategy
remain very limited. Statistical procedures have been deployed to test from sequence data the
null hypothesis that enrichment is absent, and the mounting evidence supports the alternative
(e.g., Pei et al., 2014; Zuleger et al., 2020). Considering cell growth dynamics, one would
predict an increased prevalence of various somatic mutations in cells within an actively pro-
liferating clone compared to a relatively quiescent one. Then conditioning on the presence of
some such mutation in a sampled cell, Bayes’s rule would imply that the cell is more likely to
be from the proliferating than the quiescent clone. Surrogate selection thus relies on the bio-
logical consequences of in vivo clonal proliferation to enrich for activated T cells in individu-
als with ongoing immunological response to disease. Understanding this enrichment effect is
complicated by the enormous complexity of T cell population and properties of the distribu-
tion of clone sizes, but resolving these complications will inform investigations of surrogate
selection as a mechanistic probe for fundamental biological/immunological processes. The
main contribution of the present work is to quantify the enrichment effect of surrogate selec-
tion in an idealized but structurally relevant setting, and to leverage basic stochastic-process
theory to confirm and characterize the enrichment phenomenon in this model. Our formu-
lation also enables a study of distributional properties of elementary diversity statistics, of
the type often used in experimental studies. We show that samples identified using surrogate
selection have lower expected sample diversity, in agreement with empirical studies.

Our theoretical analysis exposes an interesting statistical prediction concerning somatic
mutations that are unrelated to any selection assay. From contemporary single-cell genomic
studies, we associate T cell clone sizes with estimates of somatic mutation burden, and
thereby provide a new measure of somatic burden of a T cell receptor.

1.2. Immunological setting. Consider a person’s T cell repertoire, comprised of perhaps
1011 or more CD4+ and CD8+ naive, effector, and memory T cells, and partitioned into
clonotypes within each of which the T cell receptor (TCR) sequence of the cells is con-
stant (e.g., Nikolich-Žugich, Slifka and Messaoudi, 2004; Pennock et al., 2013; van den
Broek, Borghans and van Wijk, 2018). The number of T cells in each clonotype fluctuates
over time and usefully may be viewed as a stochastic process (Currie et al., 2012; Hodgkin,
Dowling and Duffy, 2014; Desponds, Mora and Walczak, 2016; Gaimann et al., 2020; Smith
et al., 2020; Molina-París and Lythe, 2021). Notably, a T cell receptor’s cognate antigen may
induce cell division and expansion of the associated clonotype when appropriate costimu-
latory molecules are present. Complexity of the adaptive immune response warrants highly
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SURROGATE SELECTION 3

detailed stochastic-model dynamics, perhaps accounting for clonal competition or adaptation
(e.g., Stirk, Molina-París and van den Berg, 2008; Lythe and Molina-París, 2018; Rane et al.,
2018; Duque et al., 2020). However, even structurally simple models can support certain
lines of investigation and can guide statistical analysis in the growing number of empirical
studies. T cell receptor repertoire analysis has been critical in studies investigating antitumor
responses as well as immune-related toxicity following treatment with immune-checkpoint
blockade (e.g., Fairfax et al., 2020; Valpione et al., 2020; Lozano et al., 2022; Valpione et al.,
2021).

1.3. Surrogate selection. In the absence of an assay to measure the proliferation history
of a sampled T cell, surrogate selection provides an indirect measurement through the lens of
neutral somatic mutation. The most well-studied case leverages an assay to score somatic mu-
tations of hypoxanthine-guanine phosphoribosyltransferase (HPRT) (Albertini et al., 1990;
Albertini, 2001). Other assays rely on an efficient approach to screen mutations in phos-
phoinositolglycan class A (PIG-A) genes (Peruzzi et al., 2010; Dobrovolsky et al., 2017).
Coding an enzyme within the purine salvage pathway, HPRT normally helps to recycle nu-
cleotide bases from degraded DNA. Its post-translational modifications also confer cytotoxi-
city to purine analogs, including 6-thioguanine (6TG). Cultured lymphocytes are thus unable
to grow in the presence of 6TG unless they have incurred an inactivating HPRT mutation.
Each surviving T cell in an HPRT assay reports that an HPRT mutation occurred in that T
cell or in one of its somatic ancestors. The assay has been used to monitor somatic muta-
tions in many settings, including, for example, in Chernobyl liquidators (Jones et al., 2002),
in Iraq war veterans (Nicklas et al., 2015), and in studies of environmental exposures. Kaitz
et al. (2022) reviews the implicit model for surrogate selection and the literature using HPRT
surrogate selection in autoimmune diseases, cardiac transplantation, infectious diseases, a
hematological disease, and cancer.

1.4. Summary of findings. The rationale for surrogate selection in disease studies is that
it provides an enrichment for relevant T cell clonotypes. Some care is required in this ar-
gument, since while a large, expanded clonotype has higher sampling probability than any
smaller clonotype, the vast diversity within a typical T-cell repertoire means that even large
clonotypes remain a small fraction of the total population; indeed, most sampled cells come
from small clonotypes. Basic stochastic process theory guides our effort to balance these fac-
tors. We find that if at any time point the vector of clonotype sizes in a repertoire is exchange-
able, and if the temporal development of any one clonotype follows a sufficiently regular
birth-death process, then surrogate selection via neutral somatic mutation enriches the sam-
pled cells for those of larger clonotypes. We examine the impact of surrogate-selection on the
expected value of sample diversity statistics. In empirical validations, we re-examine single-
cell data from publicly available T cell repertoire samples that were obtained via 10x Ge-
nomics sequencing; in doing so we compute cell-level somatic burden statistics and associate
this burden with clonotype size. We also review sample diversity statistics from available
surrogate-selection studies.

2. One developing clonotype.

2.1. Model set up. Our calculations begin by considering one clonotype of the many
within an individual subject’s T cell repertoire. For definiteness, we label this clonotype σ,
recognizing that σ resides in a large finite label set S , which we associate with the set of
possible T cell receptor sequences. At time t≥ 0 relative to some reference time point t= 0
(e.g., birth), clonotype σ consists of Nσ(t) cells. If clonotype σ is ever non-empty, then
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there is some origin time, say τσ , such that Nσ(t) = 0 for t < τσ and Nσ(t) > 0 only at
times t≥ τσ . We suppose that Nσ(τσ) = 1; that is, the clonotype originates upon successful
completion of receptor-forming recombination events (Elhanati et al., 2018). After positive
and negative selection induce thymocyte maturation, clonotype cells egress from the thymus
and distribute themselves throughout the body; we expect this all occurs on a short time
scale compared to the timing of typical observations, which might be from a mature subject’s
peripheral blood or tumor-infiltrating lymphocytes, for example.

The stochastic process {Nσ(t) : t≥ 0} fluctuates in response to all sorts of cell-biological
factors affecting cells in the clonotype, and must reflect a complex birth-death process (e.g.,
den Braber et al., 2012; Desponds, Mora and Walczak, 2016; Zhan et al., 2017). For example,
in the presence of appropriate cytokines, T cell receptor interaction with cognate antigen
triggers cell proliferation, while apoptotic signals can induce cell death. Our understanding
of repertoire maintenance further supports the notion that if Nσ(s) = 0 at time s > τσ , then
Nσ(t) = 0 for all t ≥ s. This is analogous to the infinite-alleles assumption in population
genetics; here it means that a clonotype can only emerge once.

2.2. The branching tree. Following clonotype σ over time from τσ , there is a series of
event times at which cells in the clonotype either divide or die. Were we able to trace σ’s
complete history, we would record a binary tree, such as in Figure 1. At some observation

FIG 1. Binary tree formed by a developing clonotype, showing examples of cell division, cell death and mutation,
and noting the number d of cell divisions experienced by each extant cell at time tobs. Green circles (extant cells
5 and 6) denote mutant T cells. Empty circles (1, 2, 3, 4 and 7) denote wild type T cells. Green lines denote
evolution of mutant cells. Short vertical lines denote cell death.

time tobs, each leaf of the tree is an extant cell that has experienced a number of cell divisions
since τσ . This division number is also called the depth of the leaf node. For a cell randomly
sampled from the clonotype, let Dσ denote this division number; it has a probability dis-
tribution induced both by the stochastic development of σ and by the random selection of
the extant cell. Fortunately, this distribution has been the subject of extensive study in the
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SURROGATE SELECTION 5

context of random binary trees (e.g., Lynch, 1965; Mahmoud, 1992; Aldous, 1996; Steel and
McKenzie, 2001; Mahmoud and Neininger, 2003).

In the Yule model for trees, each cell division acts on a random cell, as if by a pure-
birth process without cell death. This symmetry over cell identity allows various explicit
computations. In fact, the probability generating function (p.g.f.) of Dσ is

Gn(z) =E
{
zDσ

∣∣Nσ(tobs) = n
}

=
〈2z〉n−1
n!

,(1)

which is the formulation presented in (Mahmoud, 1992, Page 71-74), Eq. (2.4).1 Here 〈x〉n =
x(x+1)(x+2) · · · (x+n−1) is the rising factorial, which is conveniently expressed in terms
of Gamma and Beta functions Γ and B as:

〈x〉n−1
n!

=
Γ(x+ n− 1)

Γ(x)Γ(n+ 1)
=

1

(x+ n)(x+ n− 1)
· 1

B(x,n+ 1)
.

The p.g.f. Gn helps us connect the T cell repertoire with surrogate-selection dynamics.
Before pursuing that calculation, we note that the expectation and variance of Dσ are also
available, with both well approximated by twice the natural logarithm of n, and that as n
increases, {Dσ − 2 log(n)}/

√
2 log(n) converges in distribution to a standard normal variate

(Brown and Shubert, 1984; Mahmoud and Neininger, 2003). Roughly, a randomly sampled
cell from a randomly proliferating clonotype of current size n (and ignoring cell death) has
experienced about 2 log(n) cell divisions since receptor formation in the thymus. Sampling
from the conditional distribution of Dσ|Nσ(tobs) = n is reported in Figure 2, revealing this
proliferation effect for a handful of clonotype sizes. For completeness, we note the p.m.f. of
Dσ is, as derived in Lynch (1965),

(2) P {Dσ = d |Nσ(tobs) = n}=
2d

n!
S(n− 1, d), d= 0,1, · · · , n− 1,

where S(n− 1, d) is the unsigned Stirling number of first kind.

2.3. Neutral mutations. Surrogate selection aims to use neutral genomic mutations –
mutations that do not affect clonotype growth dynamics – as probes to report on these very
same dynamics. Uncorrected mitotic errors or other mutagenic effects are expected to oc-
cur at some rate throughout the developing repertoire. We focus on mitotic mutations that
affect a single daughter cell, that are irreversible, and that occur independently across cell
divisions. Less prevalent mechanisms may induce mutations in both daughter cells (e.g.,
double-stranded breaks) or separately from mitosis (e.g., ionizing radiation), and statistical
formulations may be adapted to these cases (e.g., Kendall, 1960; Roshan, Jones and Green-
man, 2014). We use θ ∈ (0,1/2) to denote the relative frequency of mutations at a given locus
(e.g., HPRT) per daughter cell; i.e., 2θ is the mutation frequency per cell division.

Consider the thought experiment to sample a single cell uniformly at random from the
extant clonotype σ at time tobs, and let Mσ be the binary (0/1) indicator that the sampled
cell harbors a mutation at the locus in question. We recognize that Mσ really indicates that a
mutation event occurred somewhere in the ancestral lineage of the cell, and thus

P {Mσ = 1|Dσ = d,Nσ(tobs) = n}= 1− (1− θ)d(3)

1In Mahmoud (1992), a binary tree is assumed to contain n internal nodes, and Eq. (2.4) cares about the
n+1 external nodes (leaves) of the corresponding extended binary tree. In Steel and McKenzie (2001), following
Mahmoud (1992), the Yule tree is said to contain n+ 1 leaves. Our notation is slightly different as we use n to
denote leaf numbers. In our setting n≥ 1 and Dσ ≥ 0.
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FIG 2. Proliferation effect: Shown are violin plots of the division number Dσ for cells in randomly developed
binary trees, having various sizes, n, at observation time. We used R packages ape, to simulate Yule trees, and
adephylo, to count divisions (Paradis and Schliep, 2019; Jombart, Balloux and Dray, 2010). Each plot summa-
rizes 100,000 simulated Dσ values. Empirical medians (white) and asymptotic means 2 log(n) (grey) are shown.

where Dσ is the division number for this random cell. (The cell is not mutant if none of the
d opportunities for mutation yield such.) Incidentally, (3) implies that Mσ and Nσ(tobs) are
conditionally independent given Dσ . Our first finding concerns the rate of mutant genotype
in clonotypes of a given size, and is obtained by marginalizing the distribution of Dσ . With
neutral mutations in a Yule tree model, define ψn := P {Mσ = 1|Nσ(tobs) = n}, and note,

ψn =

∞∑
d=0

P (Mσ = 1|Dσ = d)P {Dσ = d|Nσ(tobs) = n}

=

∞∑
d=0

{
1− (1− θ)d

}
P {Dσ = d|Nσ(tobs) = n}

= 1−Gn(1− θ)

= 1− Γ(n+ 1− 2θ)

Γ(n+ 1)Γ(2− 2θ)
≈ 1− 1

n2θ Γ(2− 2θ)
,(4)

with the approximation on the last line improving for increasing n. Result (4) quantifies
the intuition that proliferating clonotypes provide a greater number of chances for mutation.
With θ > 0, limn→∞ψn = 1, and so an ever-proliferating clonotype is eventually dominated
by mutant cells. This matches limit theory for birth-death processes in which the growth rate
of mutant cells is no less than that of wild-type cells (e.g., Cheek and Antal, 2018).

We are not too concerned with the total number of mutant cells in the clonotype, whose
expected value is n time the per cell rate in (4), though our diversity calculations in Sec-
tion 3.5 rely on this distribution. That total mutant count is interesting in other settings, and
is governed by the Luria-Delbrück distribution; see Angerer (2001) or Roshan, Jones and
Greenman (2014) for the exact, non-asymptotic formulation. The reader may check that our
formula (4) matches the first-moment formula from Roshan, Jones and Greenman (2014),
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SURROGATE SELECTION 7

Theorem 3.3, taking n= k and µ1 = 1− µ0 = 2θ; interestingly, a quite different approach is
taken in that paper.

2.4. Enrichment and Bayes rule. The development so far has emphasized probabili-
ties that condition in some way on clonotype size. Next we layer in a distribution on that
size itself; the stochastic evolution of a specific clonotype σ induces a distribution on the
size Nσ(tobs) at observation time. For example, the linear pure-birth model leads to the
Geometric{exp(−λσtobs)} distribution,

(5) P {Nσ(tobs) = n}= e−λσtobs
(

1− e−λσtobs
)n−1

, n≥ 1

where λσ is the birth rate (rate of cell division). Further, compounding over λσ gives the
Yule-Simon law, with parameter ρ > 0,

P {Nσ(tobs) = n}= ρB(n,ρ+ 1) =
ρΓ(ρ+ 1)Γ(n)

Γ(n+ ρ+ 1)
≈ ρΓ(ρ+ 1)

nρ+1
,(6)

where the approximation improves with increasing n. This is approximately a power-law, or
Zipf distribution, which has been found to fit many T-cell repertoires (e.g., Bolkhovskaya,
Zorin and Ivanchenko, 2014; Desponds, Mora and Walczak, 2016; Koch et al., 2018;
Gaimann et al., 2020; de Greef et al., 2020), with exponents ρ in the range 0.05 to 0.2. Other
marginal distributions on Nσ(tobs) may be induced by more complex stochastic dynamics,
such those modeling competition and thymic pressure (Lythe and Molina-París, 2018).

Combining the forward, mutant-genotype model (4) with a size model P {Nσ(tobs) = n},
we have by conditioning:

P {Nσ(tobs) = n|Mσ = 1}=
P {Mσ = 1|Nσ(tobs) = n} P {Nσ(tobs) = n}

P (Mσ = 1)
(7)

=
P {Nσ(tobs) = n}
P (Mσ = 1)

{
1− Γ(n+ 1− 2θ)

Γ(n+ 1)Γ(2− 2θ)

}
.

This Bayesian inversion of (4) quantifies surrogate selection’s enrichment effect in the pure-
birth case. One setting is shown in Figure 3, which illustrates the suppression of probability
on small clonotypes and inflation for larger ones. In that example, the median of the uncondi-
tional Geometric distribution is 6931 cells, while after conditioning on Mσ = 1, the median
clonotype size shifts up to 8139 cells. This effect is not limited to the marginal Geometric
law. Figures 4 show the result for a Logarithmic distribution (p.m.f. proportional to pn/n)
and a Yule-Simon law (6), respectively. Summarizing the findings for a single, developing
clonotype, we have:

PROPOSITION 1. Suppose that, regardless of the marginal distribution ofNσ(tobs), each
cell division in the developing clonotype σ increases the clonotype size by 1 and occurs on
a random extant cell, that a non-mutant dividing cell produces one mutant descendant (w.p.
2θ) or no mutant descendants (w.p. 1− 2θ), that descendants of a mutant dividing cell are
both mutants, that there are no cell deaths, and that σ began with a single non-mutant cell. If
Mσ indicates that a randomly sampled cell from σ at time tobs is mutant, then the enrichment
ratio φn := P {Nσ(tobs) = n|Mσ = 1}/P {Nσ(tobs) = n} is:

φn =
1

P (Mσ = 1)

{
1− Γ(n+ 1− 2θ)

Γ(n+ 1)Γ(2− 2θ)

}
.

Further, φn is strictly increasing and approaches 1/P (Mσ = 1)> 1 as n−→∞.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.548950doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.548950
http://creativecommons.org/licenses/by-nc/4.0/


8

Two immediate corollaries assure that: (1) there exists a crossover point ncross with φn < 1
when n < ncross and φn > 1 when n > ncross, and (2) the conditional distribution is stochas-
tically larger than the marginal distribution, which is another perspective on the notion that
mass is pushed towards larger clonotypes. In fact, monotonicity of φn amounts to saying
that the marginal and conditional distributions satisfy the monotone likelihood ratio or-
dering, which is stronger than stochastic ordering of c.d.f.’s: P{Nσ(tobs) ≥ n|Mσ = 1} ≥
P{Nσ(tobs) ≥ n} (see Pfanzagl, 1964). Among other things, it also follows that the con-
ditional distribution of Nσ(tobs) given Mσ = 1 has larger expected value than the marginal
distribution. Conceptually, learning that the sampled cell is mutant tells us that the clonotype
is probably larger than we would have guessed otherwise.

FIG 3. P {Nσ(tobs) = n|Mσ = 1} (red) when the marginal distribution (blue) is a Geometric distribution with
parameter e−λtobs = 10−4 and the mutation frequency θ = 10−6. The crossover point ncross is 5624 cells.

2.5. Beyond pure birth. Relaxing the no-cell-death assumption makes quantifying en-
richment more difficult. Explicit calculations in one example (Appendix A) show that con-
ditioning on Mσ = 1 does not necessarily enrich for larger clonotypes. That highly stylized
example captures features of clonal expansion followed by rapid clonal decline. The intu-
ition is that having sampled a mutant cell, we may only know that its containing clonotype is
relatively old, rather than knowing this clonotype is relatively large. These two features are
equivalent in the pure-birth model. To develop this intuition further, we pursue calculations
in a well-behaved but general class of birth-death processes, and we find conditions within
this class which assure the enrichment-for-larger-clonotypes phenomena.

At times τ1 < τ2 < · · · after τσ , changes A1,A2, · · · occur that either increase the clono-
type size (Ai = 1) or decrease the clonotype size (Ai = −1), in the first case by division
of a random cell, and in the latter by death of a random cell. Then at time t, the clonotype
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SURROGATE SELECTION 9

FIG 4. P {Nσ(tobs) = n|Mσ = 1} (red) when the marginal clonotype size distribution (blue) is a Logarithmic
distribution (left) or a Yule-Simon distribution (right), with parameters p= 1−10−5 for Logarithmic distribution
and ρ= 0.1 for Yule-Simon distribution. Mutation frequency θ = 10−6 in both cases. The crossover point ncross
equals to 326 cells under Logarithmic distribution, and ncross = 14270 under Yule-Simon distribution.

size Nσ(t) = 1 +
∑I(t)

i=1Ai where τI(t) ≤ t < τI(t)+1. We suppose this size process Nσ(t) is
not explosive, and thus only a finite number of τj’s can occur in any finite time interval. We
ask that {Ai} be independent of event times τ1 < τ2 < · · · so that the discrete clonal history
may be treated separately from questions of temporal rates of change. Further, we do not
require a Markov condition, though we are mindful that having Ai conditionally independent
of past changes given νi−1 = 1 +

∑i−1
j=1Aj provides for a Markovian jump chain ν1, ν2, · · · ,

with Nσ(t) = νI(t) (e.g., Grimmett and Stirzaker, 2001, pg 265). Considering mutation status
along the jump chain, we introduce

Ψ(a1, a2, · · · , ai) := P [Mσ = 1 | Ai, I (tobs) = i]

where Ai = ∩ij=1(Aj = aj) tracks the specific birth-death steps; thus Ψ is the conditional
mutant frequency of a cell sampled from σ just after the i birth-death steps indicated by Ai.
Obviously we cannot sample a cell from an empty clonotype, so we furthermore condition on
non-extinction, i.e. νi ≥ 1 for all i. The Ψ function generalizes the pure-birth ψn sequence (4),
which we recover with i= (n− 1) and all aj = 1, for example.

PROPOSITION 2. In a birth-death process as defined above, Zi := Ψ(A1,A2, · · · ,Ai) is
non-decreasing in i. If with probability one

∑i
j=1 1[Aj = 1]/(j+ 1) diverges as i→∞, then

Zi converges almost surely to the limit 1, and alsoE(Zi) = P [Mσ = 1|I(tobs) = i] converges
to 1. Additionally, if ξn,i :=E(Zi|νi = n) is non-decreasing in i ∈ {n− 1, n+ 1, n+ 3, · · · }
for each n, then P [Mσ = 1|Nσ(tobs) = n]≥ ψn.

In a linear birth-death process for example, and ignoring extinction for the moment, the
Ai’s are i.i.d., with P (Ai = 1) = λ/(λ+µ) for birth rate λ > 0 and death rate µ≥ 0. It is well
known that extinction is almost sure when λ≤ µ, but also that extinction occurs with proba-
bility µ/λ as long as λ > µ (e.g., Grimmett and Stirzaker, 2001, pg 272). We would meet the
requirements of Proposition 2 in this case; conditioning on non-extinction conditions on an
event of positive probability. Note too that the divergence requirement follows immediately
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from the three-series theorem (e.g., Billingsley, 1995, pg 290). We have a recursive formula
for ξn,i =E(Zi|νi = n); namely under the Markov condition for ν1, ν2, · · · ,

ξn,i = P {Mσ = 1|N(tobs) = n, I(tobs) = i}

= wn,iξn+1,i−1 + (1−wn,i)
{
ξn−1,i−1

(
1− 2θ

n

)
+

2θ

n

}
where wn,i = P (Ai = −1|νi = n). We have not identified conditions assuring this ξn,i se-
quence is non-decreasing in i for each n (a requirement for Proposition 2); but numerical
experiments in the linear birth-death model (Figure S1) give us confidence that this condition
holds in relevant settings. The final lower-bound result in Proposition 2 means that condition-
ing on mutant status does enrich for larger clonotypes, thus extending Proposition 1. In any
case, the monotonicity of E(Zi) indicates that such conditioning enriches for older clono-
types regardless of properties of ξn,i.

3. Sampling from the repertoire.

3.1. Model set up and size bias. Calculations so far refer to the random development
of a single clonotype and its internal mutation rate. More relevant to experimental data are
calculations that allow for sampling from the full repertoire, and thus the simultaneous devel-
opment of many clonotypes. We eschew detailed, cell-biological considerations, though we
do provide necessary structural elements to allow for a distributional comparison of diversity
statistics computed either from wild type or mutant T cell fractions. First we address a curi-
ous size-biased sampling effect that emerges in considering the full repertoire, in contrast to
the single clonotype from Sections 2.4 and 2.5.

We focus on a single observation time tobs, at which point the repertoire S is com-
prised of non-empty clonotypes σ1, σ2, · · · , σℵclo , of sizes N =

(
Nσ1

,Nσ2
, · · ·Nσℵclo

)
, with

ℵcel =
∑ℵclo

j=1Nσj equal to the overall number of cells in the repertoire. We treat ℵclo and ℵcel
as large constants, and, considering this snapshot of the repertoire, here we appreciate but
do not emphasize with notation anything about the temporal, stochastic development of the
clonotypes; for instance we ignore the multitude of receptors that are not extant at tobs, and
we therefore have Nσj > 0 for all j. We allow that some more primitive generative stochastic
process may underlie the clonotype counts, but we focus on their conditional joint distri-
bution given the total number of cells ℵcel and the total number of extant clonotypes ℵclo,
which in adult humans may be on the order of 1011 and 108, respectively. The same techni-
cal device was used by Rothman and Templeton (1980) in studying statistical properties of
other assemblages, where additionally the assumption of finite exchangeability is helpful in
revealing interesting system properties. We also adopt the finite exchangeability assumption
for the joint mass function,

fjoint (n1, n2, · · · , nℵclo) = P
(
Nσ1

= n1,Nσ2
= n2, · · · ,Nσℵclo

= nℵclo
)

(8)

for counts nj ≥ 1, which not only simplifies the specification, but also means that joint
probability masses depend on the frequency spectrum holding the counts-of-counts: C(k) =∑

σ 1[Nσ = k]. Figure 5 realizes a small synthetic example.
To appreciate the size-bias issue, consider sampling a single cell uniformly from the reper-

toire, and let S ∈ S denote its clonotype identifier. We recognize that NS , the size of the
clonotype holding the sampled cell, is random owing to both the random development of the
repertoire, as governed at least at the observation time by (8), and owing to the sampling of a
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SURROGATE SELECTION 11

FIG 5. Simulated repertoire of ℵcel = 1000 cells comprising ℵclo = 100 non-empty clonotypes (encasing cir-
cles). The 287 mutant cells are orange/rust, and the remaining 713 wild-type cells are grey, giving a realized mu-
tant frequency 0.287. As predicted mathematically, the larger clonotypes have an over-representation of mutant
cells. Sampling uniformly among clonotypes, the average extant clonotype size is 10.0 cells; given the sampled
clonotype contains a mutant cell, the average clonotype size is 16.0 cells. On the other hand, sampling uniformly
among cells, the average clonotype size of the sampled cell (i.e., with size bias) is 23.0 cells. The average clono-
type size when sampling mutant cells, however, is even larger, at 27.7 cells. This synthetic data was simulated
from a Bose-Einstein clone-size model and a Luria-Delbrück mutation model, with mutation frequency θ = 0.05.

cell from the repertoire. Under exchangeability, for n≥ 1:

P (NS = n) =
∑
σ∈S

P (NS = n,S = σ) =
∑
σ∈S

P (Nσ = n,S = σ)

=
∑
σ∈S

P (S = σ|Nσ = n)P (Nσ = n) =
∑
σ∈S

(
n

ℵcel

)
P (Nσ = n)

= nP (Nσ1
= n)

(
ℵclo
ℵcel

)
.(9)

Size bias is reflected in the multiplication by n in (9). It conveys the fact that sampling a
cell uniformly at random from a randomly developing repertoire is different (i.e., is biased
towards larger clonotypes) than sampling a cell uniformly at random from a randomly devel-

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.548950doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.548950
http://creativecommons.org/licenses/by-nc/4.0/


12

oping clonotype. In any case, surrogate selection aims to further bias distributions towards
larger clonotypes than would be obtained marginally. Before studying this enrichment, it
is helpful to investigate a few exchangeable models and their relationship to well-known
marginal distributions.

3.2. Joint assemblages and limiting margins: examples. By various compounding and
conditioning operations applied to a collection of independent Poisson variates, Rothman
and Templeton (1980) obtained an interesting exchangeable specification that we reconsider
for (8):

fjoint(n1, n2, · · · , nℵclo)∝
ℵclo∏
j=1

Γ(nj + α)

Γ(nj + 1)
,(10)

where the system-defining parameter α > 0 reflects dynamics of the assemblage. By mod-
ifying limiting regimes for ℵcel, ℵclo, and α, Rothman and Templeton (1980), inter alia,
recovered reference marginal distributions distinguished especially by tail behavior. For ex-
ample, setting α = 1 is the Bose-Einstein case. Sending ℵclo/ℵcel→ γ0 ∈ (0,1) as both the
numerator and denominator diverge in this case, the marginal limiting distribution of any one
clonotype size is Geometric(γ0), as in (5), which matches the pure-birth Yule tree model, with
γ0 = e−λσtobs . Similarly, if α→ 0, the limiting margin is the Logarithmic distribution, with
p.m.f. proportional to γn0 /n; and if the limit of ℵclo/ℵcel itself has a Beta(ρ,1) distribution,
then the limiting margin is the Yule-Simon power law (6). Empirical size distributions from
the Bose-Einstein simulation conform nicely to these theoretical predictions (Figure S3).
These intriguing relationships provide a modeling framework allowing us to elaborate single-
clonotype calculations (Section 2) into the context of full-repertoire sampling. In particular,
where various conditions on the joint assemblage give rise to different limiting marginal dis-
tributions for a given clonotype’s Nσ , we can similarly deduce the size-biased distribution of
NS . Details are provided in Appendix B; summarizing here, the size-biased version of the
Geometric (5) has p.m.f. nγ20(1− γ0)n−1, and the size-biased version of the Yule-Simon (6)
has the p.m.f. ρnB(n,ρ+ 2); see also Fig S2. We are not using these distributions for any
sort of model-based inference from data; rather, we are exercising them primarily to explore
implications of single versus multi-clonal analysis.

3.3. Enrichment. Size bias attributable to repertoire versus single-clonotype sampling
does not alter the basic enrichment properties revealed in Propositions 1 and 2, except for a
slight change in constants. For example, with the mutation model as in Section 2.4, and such
that within each clonotype the stochastic process meets the conditions of Proposition 1, we
have:

P (NS = n|MS = 1)

P (NS = n)
=

1

P (MS = 1)

{
1− Γ(n+ 1− 2θ)

Γ(n+ 1)Γ(2− 2θ)

}
which is also a strictly increasing function of n that approaches limit 1/P (MS = 1). The
result follows from the single-clonotype sampling result (4), Bayes’s rule, and the equality:

P (MS = 1|NS = n) =
∑
σ∈S

P (MS = 1, S = σ |NS = n)(11)

=
∑
σ∈S

P (Mσ = 1 |Nσ = n,S = σ)P (S = σ|NS = n)

= P (Mσ = 1 |Nσ = n) for any σ ∈ S.
By analogy, Proposition 2 may also be extended to sampling from the full repertoire. In
summary,
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SURROGATE SELECTION 13

PROPOSITION 3. If clonotype sizes at observation time tobs are exchangeable, as in (8),
and if each individual clonotype evolves to its size at tobs according to the dynamics in Propo-
sition 1 or Proposition 2, then conditional on mutationMS = 1 of a cell randomly drawn from
the full repertoire, the enrichment ratio P (NS = n|MS = 1)/P (NS = n) eventually exceeds
1 for sufficiently large n.

The enrichment phenomenon is illustrated in the synthetic repertoire in Figure 5, which
shows mutant and wild-type subclones of various clonotypes, and highlights how sampling
the mutant fraction would bias towards larger clonotypes.

3.4. Mutant Frequency. A random cell from the repertoire is more likely to be mu-
tant than a random cell from any specific, randomly developing clonotype: P (MS = 1) >
P (Mσ = 1), which we confirm in the Appendix C by a calculation similar to (9). This mutant
frequency P (MS = 1) is of independent interest, and can be estimated by various dilution as-
says. As reviewed in Kaitz et al. (2022), the mutant frequency is different from the mutation
frequency θ. The former considers the rate at which mutant cells are found in a sample from
the repertoire; the latter is the rate that mutations emerge among cell divisions in a developing
clonotype. Table S2 offers some numerical results for the Bose-Einstein assemblage.

3.5. Diversity statistics. An important motivation for the preceding theoretical calcula-
tions is to understand the impact of surrogate selection on statistics from a random sample
from a repertoire. Suppose the amount of sampled material from one subject is a fraction
ε= nsamp/ℵcel of the entire repertoire, and let Xσ record the number of cells within the sam-
ple of nsamp cells that have receptor σ. Conditional upon the clonotype sizes, we treat this
empirical frequency as Poisson distributed, considering typical experimental settings and the
relative rarity of individual clonotypes (e.g., Sepúlveda, Paulino and Carneiro, 2010). Thus,

Xσ|N ∼ Poisson{εNσ} .(12)

The number of clonotypes represented by k cells in the sample is Yk =
∑

σ 1[Xσ = k];
most diversity statistics are computed from these occupancy counts, {Yk} (e.g., Lande, 1996;
Zhang and Zhou, 2010; Chiffelle et al., 2020). The most simple one isD =

∑nsamp

k=1 Yk, which
is the number of distinct clonotypes observed in the sample. Note also nsamp =

∑
k kYk. Rec-

ognizing D =
∑

σ 1[Xσ > 0], it is immediate from exchangeability that:

E(D) = ℵclo

1−
∑
n≥1

e−nεP (Nσ = n)

 , for any one σ.(13)

Using characteristic functions, we may compute expected diversity directly for the reference
marginals. For example, taking the limiting Geometric margin for P (Nσ = n) noted in Sec-
tion 3.2,

E(D) = ℵclo
{

1− γ0
eε − (1− γ0)

}
.(14)

If Nσ ∼ Log(p), then,

(15) E(D) = ℵclo
{

1− log(1− pe−ε)
log(1− p)

}
.

For Yule-Simon marginal distribution with parameter ρ, we get,

(16) E(D) = ℵclo
{

1− ρe−ε

ρ+ 1
2F1

(
1,1;ρ+ 2;e−ε

)}
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where 2F1(a, b; c;z) is the Gaussian hypergeometric function. In typical repertoires, we ex-
pect parameter settings assuring high diversity, such that E(D) is relatively close to nsamp.

Surrogate selection enables direct sampling from the mutant fraction, and our formalism
allows a quantitative assessment of the selection effect on expected sample properties. By
enriching for larger clonotypes, surrogate selection would seem to lead to fewer cells from
very small clonotypes, and thus less diverse samples. Here we confirm that property. Set
ε̃= nsamp/ [ℵcelP (MS = 1)], which is an amount larger than ε that is sufficient to produce,
in expectation, nsamp mutant cells from the repertoire. These cells arise from the clonotypes
according to sample counts X̃σ , which, given the total numbers of mutant counts across the
repertoire, Ñ =

{
Ñσ

}
, then satisfy

X̃σ

∣∣∣ Ñ ∼ Poisson
{
ε̃Ñσ

}
.(17)

The mutant sample, which in expectation has the same number of mutant cells as the total
number of cells in the full-repertoire sample, has its own diversity, D̃ =

∑
σ 1[X̃σ > 0]. By

manipulating the probability generating function of the Luria-Delbrück distribution, and also
leveraging results in Roshan, Jones and Greenman (2014), we find explicit formulas for the
expected diversity among mutant-sampled cells.

PROPOSITION 4. In the pure-birth, Yule tree model for clonotype development, with a
Geometric(γ0) distribution for each clonotype size at observation time, and with mutation
frequency θ as in Proposition 1, the mutant sample has expected diversity:

E(D̃) = ℵclo
{

1− γ0
(1− eε̃){1− e−ε̃(1− γ0)}2θ + eε̃{1− e−ε̃(1− γ0)}

}
.

Alternatively, in case the clonotype-size distribution is Logarithmic(p), then the expected
diversity is:

E(D̃) = ℵclo

{
1−

2θ log(1− pe−ε̃)− log
[
(1− eε̃)(1− pe−ε̃)2θ + eε̃ − p

]
−(1− 2θ) log(1− p)

}
.

In either case, E(D̃)<E(D) as long as θ ∈ (0, ε/2).

Thus in two reference models, Proposition 4 expresses the precise effect of surrogate se-
lection on repertoire sample diversity; Figure 6 provides a numerical illustration. The result
extends to more general distributions by mixing. For example, if conditional upon γ0 the
clonotype sizes are Geometric(γ0), and if γ0 = exp(−W ) for W ∼ Exp(ρ), then marginally
the clonotype size is Yule-Simon distributed with parameter ρ, and the expected diversity
bound carries through the expectation: E

{
E
(
D− D̃ | γ0

)}
> 0.

3.6. Somatic burden. Our calculations emphasize mutation status at some special locus
(like HPRT) for which experimental assays provide for ready sampling of cells within that
mutant fraction of the repertoire. Yet the calculations also inform an analysis of more general
mutational signatures carried by sampled T cells. Intuitively, there may be a lot of informa-
tion, for example about prior antigen exposure, that is recorded in present genomic state of
sampled T cells, whether or not we consider mutations for an in vitro selection assay.

A T cell sampled randomly from the repertoire resides in a random clonotype S of size
NS . At any genomic locus g within a host of measurable sites G, this cell has mutation status
MS,g relative to its prethymic state. We are thinking

MS,g = 1 [locus g in sampled cell has incurred a somatic mutation] ,
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SURROGATE SELECTION 15

FIG 6. Comparison of expected diversity scores between sampling from whole repertoire or just the mutant frac-
tion, under various Geometric (left) and Logarithmic (right) distributions. The range of Geometric parameter γ0
and logarithmic parameter p is determined to match a clonotype of approximately 102 to 105 cells, in expecta-
tion. Other parameters are fixed as sampling fraction ε = 10−4, overall number of clonotypes ℵclo = 107 and
mutation probability in each division θ = 10−6. Expected diversity is always lower in the mutant fraction, in line
with Proposition 4

which opens us up to a genome-wide spectrum of mutations, rather than changes at a single,
surrogate-selection-driving locus. To this end, we define a sampled cell’s somatic burden L
to be the summation of MS,g over all g ∈ G. We find it convenient to consider a sequence of
collections G1,G2, · · · , approaching G, with Gm containing m loci, and for which at step m,
P
(
Mm
S,g = 1|NS = n

)
= ψn(θmg ) for locus-specific mutation frequency θmg , and with ψn as

in (3) but now highlighting its dependence on mutation frequency. This formula works in the
pure-birth model structure thanks to Proposition 1 and the exchangeability in (8). Within this
framework, we have the step-m burden Lm =

∑
g∈GmM

m
S,g .

PROPOSITION 5. If clonotypes satisfy the regularity conditions in Proposition 1, if clono-
type sizes are exchangeable as in (8), and if λm =

∑
g∈Gm θ

m
g −→ λ as m−→∞ for some

λ > 0, then

lim
m→∞

E(Lm |NS = n) = 2λ(Hn − 1) = λψ′n(0)(18)

where Hn is the nth harmonic number and ψ′n(θ) = dψn(θ)/dθ.

Put another way, the expected number of post-thymic somatic mutations in a T cell is
approximately proportional to the logarithm of that cell’s clonotype size, at least under the
stated regularity conditions. Single-cell sequencing studies provide a means to measure L on
sampled cells, and also to associate that somatic burden with clonotype size, as we investigate
next.

4. Empirical studies.

4.1. Somatic burden. Single-cell sequencing technologies provide an exciting window
into the dynamics of the T cell repertoire. Here we reanalyze publicly available data reported
by 10x Genomics on samples from 7 different T cell repertoires, including 5 peripheral blood
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mononuclear cell (PMBC) samples from healthy human donors, a melanoma patient and a
lung cancer patient. Supplementary Material, Appendix F, summarizes the data resources
and provides additional details on our analysis pipeline. In every case, the repertoire sam-
pling and prior analysis provided both the T cell receptor (TCR) sequence and single cell
whole-transcriptome RNA-seq on thousands of cells. The TCR sequence information allows
us to cluster cells into clonotypes. Our interest in somatic burden puts quite different de-
mands on the RNA-seq data than the original studies. Rather than derive transcript abun-
dance, we repurpose the RNA-seq reads to report on underlying somatic mutations that must
have emerged in the genomic DNA. Following the workflow in Edwards et al. (2022), and
using the GATK pipeline for genomic-variant calling (McKenna et al., 2010; Auwera and
O’Connor, 2020), we computed single-cell-expressed single-nucleotide-variant calls (sce-
SNVs) from the aligned read data using Mutect2 (Cibulskis et al., 2013; DePristo et al.,
2011), applied consistently across the different repertoires. Details for SNV calling are in
Appendix F, but we note here that to focus better on post-thymic somatic variants, we filtered
any calls that would have appeared in more than one clonotype. In total over the 7 repertoires,
we measured 30257 cells that resided in 27758 clonotypes, and which altogether presented
1609 post-thymic sce-SNVs.

Figure 7 summarizes average somatic burden as a function of clonotype size for one reper-
toire. Though not statistically significant, it shows an intriguing increase in estimated mean
burden with increasing clonotype size, just as predicted by Proposition 5. Not all data sets
show as clear a trend (Table 1), though in a meta-analysis which combines the 7 repertoires,
we see stronger evidence of an increase in expected burden with clonotype size. We ap-
plied a linear model to cell-level data, with response the measured burden, and with an ad-
justed clonotype size predictor, where the adjustment accounts for the different sampling rates
across the repertoires. We estimate β̂ = 0.6 SNVs per unit increase in logarithm of clonotype
size. A stratified permutation, which shuffles cells between clonotypes within repertoires,
gives a modest p-value of 0.02 on this clonotype-size effect. Further details are in Figure S5.

4.2. Melanoma case studies. We reconsider surrogate selection data presented in Zuleger
et al. (2020), and we focus here (Table 2) on a metastatic melanoma patient for whom reper-
toire sampling was performed repeatedly over the course of what turned out to be a success-
ful immunotherapy treatment. As the table shows, the HPRT wild-type (WT) samples have
greater sample diversity than the HPRT mutant (MT) samples, which have passed in vitro
selection.

The mass culture conditions and cDNA sequencing approach used by Zuleger et al. (2020)
affect the distribution of counts in Table 2, making them over-dispersed compared to ideal
cell counts. Assays based upon single-cell-derived isolates precisely count wild-type and
HPRT mutant cells, rather than cDNAs, and are not subject to additional variance caused
by in-vitro growth effects. However they are more labor intensive than mass cultures and
provide less overall sequencing data. Table 3 summarizes such data from the peripheral blood
of 11 subjects studied in Zuleger et al. (2011). In all cases the HPRT surrogate selected
samples are less diverse than the wild-type cells, as predicted by the enrichment calculations
in Section 3.5.

5. Concluding Remarks. Gaining a better understanding of the adaptive immune sys-
tem is a central focus of contemporary biomedical research, considering that system’s role
in health and disease. We seek clinically useful methods to identify T cells that may be re-
sponding to antigens presented by melanoma, but it is challenging to recognize a patient’s
disease-specific antigens, and it is also difficult predict the antigens to which a given T cell
receptor will bind. Research on both these frontiers is important and will capitalize on ad-
vances in the data sciences (e.g., Lu et al., 2021; Li et al., 2021). In any case, techniques that
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TABLE 1
Somatic burden of cells by clonotype size (rows), derived from seven T cell repertoire samples (columns)
made publicly available by 10x Genomics. Details of the data resources are in Supplementary Table S3. We

repurposed the single-cell RNA-seq reads to infer somatic variants and compute somatic burden counts per cell
(average burden in upper table, SNVs/cell); and we used the reported TCR sequences to partition cells into

clonotypes (numbers of clonotypes in bottom table).

Clonotype size 20K 10K SC5K PBMC3 Controller Melanoma Lung
1 0.018 0.017 0.076 0.042 0.019 0.057 0.390
2 0.002 0.005 0.103 0.043 0.029 0.121 0.245
3 0 0 0 0 0 0.035 0.407
4 0 0 - 0.042 0 0.278 0.667
5 0 0 0 0 0 0 0.400
6 0 0 0 2.167 0 - 0.292
7 0 - 0 0 0 - 0.429
8 0 0 3.000 0 - - 0.875
9 0 - 0 - - 0 0.444

10 0 - - 0 0 - 0.200
11 0 - 0 - 0 0 0.455
12 - 0 - - 0 0 0.292
13 - - - - - 0 -
14 0 - 0.429 - - 0 -
17 - - - 0 - - 0.588
19 0 - - - - 0 -

[20,40] 0.100 0 - - 0 - 1.283
> 40 0 - 0.170 0.171 - - -

Clonotype size 20K 10K SC5K PBMC3 Controller Melanoma Lung
1 8395 4211 1643 5659 4118 1097 1315
2 239 111 39 278 123 66 108
3 39 35 8 33 23 19 27
4 13 6 - 6 6 9 12
5 15 5 1 4 5 3 3
6 7 2 2 1 1 - 4
7 5 - 2 2 2 - 2
8 6 1 1 4 - - 1
9 2 - 1 - - 1 2

10 1 - - 2 1 - 2
11 2 - 1 - 1 1 1
12 - 1 - - 1 1 2
13 - - - - - 1 -
14 1 - 1 - - 1 -
17 - - - 2 - - 1
19 1 - - - - 2 -

[20,40] 1 1 - - 1 - 2
> 40 1 - 1 1 - - -

TABLE 2
Empirical repertoire diversity in wild-type and HPRT mutant fractions, derived from sequencing TCR

cDNAs from mass cultures obtained at 5 time-points on one melanoma patient
Time point Total reads WT unique / reads MT unique / reads

1 108722 2840 / 58896 158 / 49826
2 111652 4587 / 53435 182 / 58217
3 98834 2709 / 49799 156 / 49035
4 87804 2091 / 52277 84 / 35527
5 98286 2209 / 51711 133 / 46575
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FIG 7. Association of average somatic burden with clonotype size, in the PBMC3 repertoire. There are 5659
singleton clonotypes, 278 duplexes, and a total of 22 clonotypes with sizes greater than 2. The largest clonotype
contains 41 cells. Clonotypes of size 3 to 20 cells are combined together as a single class considering the small
sample size. Pointwise 95% confidence intervals are computed from a quasi-Poisson generalized linear model.

TABLE 3
Empirical repertoire diversity in wild-type and HPRT mutant fractions, derived from single-cell isolate

data on seven melanoma patients and four healthy donors. Subjects 1, 2, 3, 5, 6, 9, 13 are melanoma patiens;
Subjects 26, 29, 30, 32 are healthy donors. Subjects are sorted by the number sequenced T cell receptors.

Subject # T cells WT unique / cells MT unique / cells
5 122 19 / 19 102 / 103
2 114 49 / 49 61 / 65
1 101 31 / 32 45 / 69

32 95 54 / 54 30 / 41
26 81 36 / 36 44 / 45

3 79 17 / 17 55 / 62
30 69 39 / 39 29 / 30
13 69 23 / 23 43 / 46
29 56 36 / 36 19 / 20

9 50 11 / 11 23 / 39
6 26 18 / 18 8 / 8

could readily enrich a lymphocyte sample for T cells responsive to disease-relevant antigens
would have a variety of practical applications. The present work provides a statistical basis to
the use of surrogate selection, which aims to enrich lymphocyte samples for disease-relevant
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cells by recognizing that prior clonal expansions may be associated with the accumulation
of neutral somatic alterations. Relatively straightforward assays, like HPRT and PIG-A, are
available to filter cells having incurred some convenient somatic alteration. Earlier studies
have compared selected and unselected cell populations, using both standard and novel sta-
tistical tools to account for sources of variation affecting cell phenotypes (e.g., Pei et al.,
2014; Zuleger et al., 2020). No prior studies have considered the stochastic basis of surrogate
selection itself, and this problem has been the central focus of the present paper.

We treat the stochastic development of a single clonotype and demonstrate that condi-
tioning on a mutant sampled cell enriches for larger clonotypes in a class of birth-death
processes (Propositions 1 and 2). We extend the development to exchangeable collections of
clonotypes (Proposition 3), accounting for the size bias and complexity of real repertoires.
We study the effects of selection on the sampling distribution of a commonly computed di-
versity statistic (Proposition 4). Looking beyond selection, we investigate the accumulation
of neutral somatic mutations across the genome, and show how the same modeling calcu-
lations demonstrate that cells in older, expanded clonotypes are expected to carry a greater
mutation burden. All these theoretical predictions are accompanied by empirical results both
from surrogate selection studies and recent single-cell sequencing projects. If there would
be a single take-home message it would be that we have resolved the sampling phenomenon
exemplified in the simulated data of Figure 5. Interestingly, cells sampled from this synthetic
repertoire are associated with larger clonotypes when we condition on them being mutant,
even though mutation events are completely neutral. Moreover, we hope that the quantitative
characterizations developed here will provide a basis for more informed statistical analysis
of T cell data sets and the planning of immunological experiments.
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SUPPLEMENTARY MATERIAL
We provide derivations, proofs, and additional modeling elements in support of findings

presented in the main manuscript, "Surrogate selection oversamples expanded T cell clono-
types", by Yu, Lian, Zuleger, Albertini, Albertini, and Newton. We also provide further details
regarding data preparation and analysis from Section 4 of that work. Supplementary material
is organized in seven appendices indicated below; the section in parentheses refers to the
numbering within the main manuscript.

APPENDICES:

A: Enrichment in single clonotype case (Sections 2.4 and 2.5)
B: Poisson induced assemblages (Section 3.2)
C: Mutant Frequency (Section 3.4)
D: Expected Diversity (Section 3.5)
E: Burden Statistics (Section 3.6)
F: Variant calling (Section 4.1)
G: Additional Figures and Tables

APPENDIX A: ENRICHMENT IN SINGLE CLONOTYPE CASE (SECTIONS 2.4; 2.5)

Pure birth case. Proposition 1 is established by the arguments in and leading up to
Section 2.4. Recall the mutant frequency among cells in a pure-birth clonotype of a given
size:

ψn = P{Mσ = 1 |Nσ(tobs) = n}(19)

= 1− Γ(n+ 1− 2θ)

Γ(n+ 1)Γ(2− 2θ)
n= 1,2, · · ·

as in Eq (4).

Birth-death cases.

Counter example. There are birth-death processes for which surrogate selection fails to
enrich the sample for larger clones. Suppose a clonotype σ develops by a linear pure birth
process up to some time t0, and consider some fixed threshold K ≥ 3. Suppose also that for
t > t0, Nσ(t) =Nσ(t0) with probability one if Nσ(t0)<K , and Nσ(t) = 1 with probability
one if Nσ(t0)≥K . In other words, the birth rate drops to 0 and the death rate remains 0 after
t0 if the clone size is less than K; otherwise the death rate becomes∞ until exactly one cell
survives. This is a highly stylized model in which a clonotype of size less than K at time
t0 is essentially naïve; and then after t0 it is more like a post-activation T cell clone where
only one memory T cell remains. Here, the mutant frequency may not increase along with
the clone size. For example, at tobs > t0,

P {Mσ = 1 |Nσ(tobs) = 1} ≥ P {Mσ = 1, Nσ(t0)≥K |Nσ(tobs) = 1}

=

∞∑
k=K

P {Mσ = 1 |Nσ(t0) = k} P {Nσ(t0) = k |Nσ(tobs) = 1} .

The first factor in each summand does not involve Nσ(tobs) explicitly, since in this event
the sampled cell yielding Mσ = 1 is the same as the single surviving cell after the spate of
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S.M.-2

cell deaths. And this factor is exactly the conditional mutant frequency ψk for a pure-birth
process, which we recall is strictly increasing in its argument. Furthermore, by the structure
of the process after t0, and for k ≥K ,

P {Nσ(t0) = k |Nσ(tobs) = 1}=
P {Nσ(t0) = k,Nσ(tobs) = 1}

P {Nσ(t0)>K}+ P {Nσ(t0) = 1}

=
P {Nσ(t0) = k}

P {Nσ(t0)>K}+ P {Nσ(t0) = 1}
> P {Nσ(t0) = k} .

Taking K = 3 as a simple case and combining the results above, we get,

P {Mσ = 1 |Nσ(tobs) = 1} ≥
∞∑
k=3

ψk P {Nσ(t0) = k}

> ψ3 · P {Nσ(t0)> 3}

=
5θ− 2θ2

3
· (1− p)2,

which at θ = 0.1 and for Geometric parameter p= 0.1 gives the bound 0.1296, for example.
On the other hand, given Nσ(tobs) = 2, the mutant frequency is:

P{Mσ = 1 |Nσ(tobs) = 2}= ψ2 = θ,

which equals to 0.1 under that parameter setting. Therefore, P{Mσ = 1 | Nσ(tobs) = 1} >
P{Mσ = 1 |Nσ(tobs) = 2} in this toy example. Furthermore, the enrichment ratio φn could
be less than 1 for any feasible clone sizes, as the largest possible clone size is K when
observation time tobs > t0, and all φn < 1 as long as the threshold is less than the crossover
point, i.e. K <ncross.

PROOF OF PROPOSITION 2. For the mutation frequency

Ψ(a1, a2, · · · , ai) = P [Mσ = 1|A1 = a1,A2 = a2, · · · ,Ai = ai, I(tobs) = i] ,

we first establish the useful recursion:

Ψ(a1, · · · , ai, ai+1) =

{
Ψ(a1, · · · , ai) if ai+1 =−1

Ψ(a1, · · · , ai)
(

1− 2θ
νi+1

)
+ 2θ

νi+1 if ai+1 = 1
(20)

where νi = 1 +
∑i

j=1 aj is the clonotype size after i steps. To prove (20), it is helpful to
introduce Xi recording the number of mutant cells among the νi cells in the clonotype just
after step i: so, 0≤Xi ≤ νi−1, recalling that the originating cell is non-mutant in our model,
and new mutants appear as at most one of the two daughter cells. Owing to the sampling of a
cell at random to determine Mσ ,

Ψ(a1, a2, · · · , ai) =
1

νi
E (Xi|A1 = a1,A2 = a2, · · · ,Ai = ai) .

Moving to step i + 1, the distribution of Xi+1 given past steps and Ai+1 depends on the
whether Ai+1 is a birth (ai+1 = 1) or a death (ai+1 = −1). In the case ai+1 = 1, νi+1 =
νi + 1, and Xi+1 =Xi +Ci+1 where Ci+1 is a Bernoulli trial taking value 1 if the dividing
cell is mutant or if the dividing cell is non-mutant but a new mutation emerges from the
division. Thus, conditional on Xi and the past sequence of birth-death steps,

P (Ci+1 = 1|Xi,A1 = a1, · · · ,Ai = ai) =
Xi

νi
+

(
1− Xi

νi

)
2θ.
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SURROGATE SELECTION S.M.-3

Taking conditional expectations to average over Xi,

Ψ(a1, a2, · · · , ai,1) =
1

νi+1
E(Xi +Ci|A1 = a1,A2 = a2, · · · ,Ai = ai,Ai+1 = 1)

=
1

νi + 1
{νiΨ(a1, · · · , ai) + Ψ(a1, · · · , ai) + 2θ [1−Ψ(a1, · · · , ai)]}

= Ψ(a1, · · · , ai)
(

1− 2θ

νi + 1

)
+

2θ

νi + 1

For the death event ai+1 =−1, νi+1 = νi− 1; also Xi+1 is Xi if the death is of a non-mutant
cell and equals Xi − 1 if the death is of a mutant cell. Taking expectations confirms that
Ψ(a1, · · · , ai,−1) = Ψ(a1, · · · , ai), and so (20) is established. Intuitively, the removal of a
random cell does not change features of the remaining cells.

By convexity of combinations in recursion (20), the random sequenceZi := Ψ(A1,A2, · · · ,Ai)
is almost surely non-decreasing in i. In fact, Zi+1 = Zi + 1[Ai+1 = 1](1−Zi)(2θ)/(νi + 1),
and so

Zi = Z1 +

i−1∑
j=1

(Zj+1 −Zj)

= Z1 +

i−1∑
j=1

1[Aj+1 = 1]2θ(1−Zj)/(νj + 1)

≥ Z1 + 2θ

i−1∑
j=1

1[Aj+1 = 1](1−Zj)/(j + 2)

because the clone size νj ≤ j + 1. Monotonicity also implies that E(Zi+1|Zi) ≥ Zi, which
means the sequence forms a submartingale. By the martingale convergence theorem (e.g.,
Billingsley, 1995, pg 468), Zi converges almost surely to some limit Z ∈ [0,1], approaching
the limit from below, and so for all j, 1−Zj ≥ 1−Z . Thus

Zi ≥ Z1 + 2θ(1−Z)

i−1∑
j=1

1[Aj+1 = 1]/(j + 2)

= Z1 + 2θ(1−Z)

i∑
j=2

1[Aj = 1]/(j + 1),

where the second line just invokes a change of variables in the sum. If the limit Z is less
than 1 on some realization, then 1− Z does not eliminate the subsequent sum. But we had
assumed divergence of this sum with probability one, which would create an impossible lower
bound for Zi. The only option is for Z = 1 with probability one. In other words, the mutation
frequency converges to 1 in the general birth-death process as long as there are sufficiently
many births.

Convergence of E(Zi) is the monotone convergence theorem (e.g., Billingsley, 1995, pg
208).

On the conditional mutant frequency, and with I = I(tobs) for shorthand,

P [Mσ = 1|Nσ(tobs) = n] = P [Mσ = 1|νI = n]

=

∞∑
i=n−1

P [Mσ = 1, I = i|νI = n]
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S.M.-4

=

∞∑
i=n−1

ξn,iP (I = i|νI = n)

≥ ξn,n−1
∞∑

i=n−1
P (I = i|νI = n)

= ξn,n−1 = ψn.

The inequality comes from the assumption that ξn,i is non-decreasing in i for each n (e.g. see
Fig S1).

We note for clarity that the increasingness of ξn,i in i for each n must refer to the values
i that are allowable in the birth-death formalism. For example, if n = 3, then i must be in
2,4,6, · · · ; in general i can range in {n− 1, n+ 1, n+ 3, · · · }.

FIG S1. ξn,i for a linear birth-death process with λ= 19, µ= 1, and θ = 0.01. Numerically, the probabilities
increase from left to right over i ∈ {n− 1, n+ 1, n+ 3, · · · } for each value n, as required by Prop 2.

APPENDIX B: POISSON-INDUCED ASSEMBLAGES (SECTION 3.2)

There are several ways in modeling the allocation of ℵcel T cells among ℵclo < ℵcel TCR
clonotypes. The general assemblage specifications in Rothman and Templeton (1980) are
informative and still relatively simple, so we develop them in the present immunological
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SURROGATE SELECTION S.M.-5

context for completeness. We refer to this class of exchangeable models as Poisson-induced
assemblages.

Unconditionally on clonotype sizes or the repertoire size, suppose the whole repertoire is
generated from independent Poisson variates, with the Poisson means themselves drawn as
i.i.d. from a Gamma mixture distribution. Prior to any conditioning, the resulting clonotype
sizes Nk, for k = 1,2, · · · ,ℵclo, are i.i.d. from a Negative Binomial distribution NB(α,p),
with p.m.f.:

P (Nk = n) =

(
n+ α− 1

α− 1

)
(1− p)npα, n= 0,1, · · · .(21)

Here, p ∈ (0,1), α > 0, and the notation follows Rothman and Templeton (1980),
(
a
b

)
=

Γ(a + 1)/ [Γ(a− b+ 1)Γ(b+ 1)]. For valid allocations, we condition both on clonotypes
being extant and on achieving a certain total repertoire size. That is, with ℵ = (ℵclo,ℵcel)
fixed (think of them as very large constants), we will condition on the event

Aℵ =

(ℵclo⋂
k=1

{Nk > 0}

)
∩

([ℵclo∑
k=1

Nk

]
= ℵcel

)
,

and we consider the induced exchangeable distribution:

(22) P (N1 = n1,N2 = n2, · · ·Nℵclo = nℵclo |Aℵ)
The key to (22) is the probability P (Aℵ), which can be calculated through inclusion-
exclusion principle:

P (Aℵ) =

ℵclo∑
j=1

(−1)ℵclo−j
(
ℵclo
j

)
P

(
j∑

k=1

Nk = ℵcel,Nj+1 = · · ·=Nℵclo = 0

)

=

ℵclo∑
j=1

(−1)ℵclo−j
(
ℵclo
j

)(
ℵcel + jα− 1

jα− 1

)
(1− p)ℵcelpjα · p(ℵclo−j)α

=

ℵclo∑
j=1

(−1)ℵclo−j
(
ℵclo
j

)(
ℵcel + jα− 1

jα− 1

)
(1− p)ℵcelpℵcloα

where the second equality is due to the sum of Negative Binomial random variables with same
p also having a Negative Binomial distribution. Therefore, (22) can be calculated explicitly
as:

P (N1 = n1,N2 = n2, · · · |Aℵ) =

∏ℵclo
j=1

(
nj+α−1
α−1

)
(1− p)njpα∑ℵclo

j=1(−1)ℵclo−j
(ℵclo
j

)(ℵcel+jα−1
jα−1

)
(1− p)ℵcelpℵcloα

=

∏ℵclo
j=1

(
nj+α−1
α−1

)∑ℵclo
j=1(−1)ℵclo−j

(ℵclo
j

)(ℵcel+jα−1
jα−1

)(23)

The important special case α = 1 is the Bose-Einstein allocation; the distribution in (23)
simplifies to

(24) P (N1 = n1,N2 = n2, · · · |Aℵ) =
1(ℵcel−1

ℵclo−1
) .

This is because,
ℵclo∑
j=1

(−1)ℵclo−j
(
ℵclo
j

)(
ℵcel + j − 1

j − 1

)
=

(
ℵcel − 1

ℵclo − 1

)
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S.M.-6

where both sides of the equation count how many ways there are to put ℵcel indistinguish-
able balls into ℵclo distinguishable bins, such that each bin is non-empty. The Bose-Einstein
distribution assigns equal probability to all allocations of ℵcel cells among ℵclo non-empty
clonotypes.

Introducing C(n) =
∑ℵclo

j=1 1[Nj = n] to denote the number of clonotypes comprised of n
cells, the vector

C(1),C(2), · · · ,C(ℵcel −ℵclo + 1)

is called the frequency spectrum of the repertoire. These counts-of-counts are sufficient in ex-
changeable models since (8) depends on the clonotype sizes {nk} only through the frequency
spectrum. In the Poisson-induced assemblages considered here,

P (N1 = n1,N2 = n2, · · · |Aℵ)∝
ℵcel−ℵclo+1∏

n=1

(
n+ α− 1

α− 1

)cn
.

where cn =
∑

j 1[nj = n]. By this sufficiency, the probability distribution of the frequency
spectrum itself is also proportional to the above. For example, under the Bose-Einstein allo-
cation:

(25) P {C(1) = c1,C(2) = c2, · · · |Aℵ}=
ℵclo!∏
n cn!

· 1(ℵcel−1
ℵclo−1

)
where

∑
n cn = ℵclo and

∑
ncn = ℵcel.

Using these facts about the joint distribution, the size Nσ of any single clonotype follows
a Pólya-Eggenberger distribution, PE(1,ℵclo − 1), if α= 1:

P (Nσ = n |Aℵ) =E

{
C(n)

ℵclo

∣∣∣∣Aℵ}

=

(ℵcel−n−1
ℵclo−2

)(ℵcel−1
ℵclo−1

) .

Our interest is on the limiting probability of P (Nσ = n |Aℵ) when ℵcel→∞ but ℵclo/ℵcel
converges. In the simplest scenario, the limiting ratio is a constant 0 < γ0 < 1, and so by
applying Stirling’s formula:

lim
ℵcel→∞

P (Nσ = n |Aℵ) = γ0(1− γ0)n−1

i.e. the distribution of sampled clonotype size converges to a Geometric distribution (on the
support n= 1,2, · · · ). Noting the original formulation (21) is Geometric when α= 1, and on
the support n= 0,1,2, · · · (i.e., including zero), we also see a clear connection between the
Bose-Einstein specification (24) and the Geometric margin with non-zero support, and when
ℵclo and ℵcel are large.

More generally, we may treat ℵclo/ℵcel as random, and suppose it converges in distribution
to Θ as ℵcel diverges. For this case, Hill (1970) proved that under Bose-Einstein allocation,

C(n)

ℵclo
d.−→Θ(1−Θ)n−1

as ℵcel→∞. Therefore, the limiting distribution

(26) lim
ℵcel→∞

P (Nσ = n |Aℵ) =E{Θ(1−Θ)n−1}.
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SURROGATE SELECTION S.M.-7

Different cases arise depending on the distribution of Θ in (26). If Θ∼Beta(ρ,1), we arrive
at the Yule-Simon limit:

lim
ℵcel→∞

P (Nσ = n |Aℵ) = ρB(n,ρ+ 1).

In other words, with Bose-Einstein allocation of ℵcel cells among ℵclo clonotypes, if the ratio
ℵclo/ℵcel converges to a Beta random variable, then the distribution of sampled clonotype
size converges to a Yule-Simon distribution.

The current development allows us to directly calculate the implications of size bias caused
by sampling cells from the repertoire. Suppose we sample one T cell uniformly at random
from the whole repertoire, and it happens to be from random clonotype S. The size NS of
this clonotype satisfies:

P (NS = n |Aℵ) =E

{
nC(n)

ℵcel

∣∣∣∣Aℵ}

=
n
(ℵcel−n−1
ℵclo−2

)(ℵcel
ℵclo

) .

If limℵcel→∞ ℵclo/ℵcel = γ0 for a positive constant γ0, then

lim
ℵcel→∞

P (NS = n |Aℵ) = nγ20(1− γ0)n−1, n= 1,2, · · · .(27)

i.e., the limiting distribution of size-biased clonotype size is no longer Geometric, but instead
is a Negative Binomial distribution, shifted by 1, that is: 1 + NB(2, γ0), with support on pos-
itive integers. Similarly, if ℵ−1celℵclo converges in distribution to Θ∼ Beta(ρ,1) distribution,
we find,

lim
ℵcel→∞

P (NS = n |Aℵ) =E{Θ2(1−Θ)n−1}(28)

= ρnB(n,ρ+ 2).

This limit is also a power-law distribution, with

ρnB(n,ρ+ 2)≈ ρΓ(ρ+ 2)
1

nρ+1

for large n. Notice that Yule-Simon distribution p.m.f. ρB(n,ρ+1) is approximately ρΓ(ρ+
1)n−ρ−1 for large n; the size bias effect curiously does not change the tail weight in this case.
Figure S2 shows the size-bias effect on Yule-Simon distribution.

Our last comment on Bose-Einstein allocation is its equivalency to Dirichlet-Multinomial
distribution DirMult(n,a), where a = (a1, · · · , aℵclo) are the (positive) shape parameters
of Dirichlet distribution. The DirMult distribution is applied in simulation of Fig 5 (main
manuscript). The Bose-Einstein allocation and Dirichlet-Multinomial distribution can both
be realized by Pólya-Eggenberger’s urn model: suppose an urn contains ℵclo balls of distinct
colors, at each time a random ball is drawn form the urn and replaced with two balls of the
same color. Repeating the sampling and replacement procedure ℵcel−ℵclo times will lead to
Bose-Einstein allocation with ℵcel balls in ℵclo colors. In the mean time, this Pólya urn model
also realizes the DirMult(ℵcel −ℵclo,1) distribution with ℵcel −ℵclo trials and all shapes ai
equal to 1. Therefore, the Dirichlet-Multinomial simulation of repertoire in Fig 5 is the same
as Bose-Einstein allocation of 1000 cells among 100 clonotypes, which is also the mixture
of 100 marginally Geometric-sized clonotypes with 1000 cells in total, as noted previously.

The limiting cases considered above do not handle the case of the Logarithmic marginal.
However, we note that taking a limit α→ 0 in (21), and conditioning on Nk ≥ 1, then the
NB distribution converges to the Logarithmic distribution, with p.m.f. proportional to pn/n,
as in (Kendall and Stuart, 1977, page 139). Further, the joint distribution of the frequency
spectrum becomes the Ewens sampling formula (Tavaré, 2021).
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FIG S2. Comparison of limiting distributions of clonotype sizes between size-biased sampling and uniform sam-
pling. Here uniform sampling means uniformly sample a clonotype from the repertoire, while size-biased sampling
means uniformly sample a cell from the repertoire.

APPENDIX C: MUTANT FREQUENCY (SECTION 3.4)

First we show that size bias inflates P (MS = 1) over P (Mσ = 1) for any clonotype σ.
We work with a finitely exchangeable joint assemblage, such as in Appendix B. Recall that
ψn = P (Mσ = 1 |Nσ = n) is the mutant frequency defined by Luria-Delbrück distribution,
as in (19). Expanding the marginal probability and using exchangeability,

P (MS = 1 |Aℵ) =
∑
n

P (MS = 1 |NS = n,Aℵ) P (NS = n |Aℵ)

=
∑
n

ψnE

{
nC(n)

ℵcel

∣∣∣∣Aℵ}

=
∑
n

nψn
ℵclo
ℵcel

E

{
C(n)

ℵclo

∣∣∣∣Aℵ} .
The inflation of mutant frequency is reflected in the term nψn in the last equation, as surrogate
selection will further enrich the mutants in larger clonotypes. In the Bose-Einstein case, for
example,

P (MS = 1 | ℵcel,ℵclo) =
∑
n

nψn
ℵclo
ℵcel

E

{
C(n)

ℵclo

∣∣∣∣ℵcel,ℵclo}

=
∑
n

n

(
1− Γ(n+ 1− 2θ)

Γ(n+ 1)Γ(2− 2θ)

)
ℵclo
ℵcel

(ℵcel−n−1
ℵclo−2

)(ℵcel−1
ℵclo−1

)
= 1−

∑
n

Γ(n+ 1− 2θ)Γ(ℵcel − n)Γ(ℵclo + 1)Γ(ℵcel −ℵclo + 1)

Γ(n)Γ(2− 2θ)Γ(ℵcel + 1)Γ(ℵclo − 1)Γ(ℵcel −ℵclo − n+ 2)
(29)
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SURROGATE SELECTION S.M.-9

where the second equation is from the Bose-Einstein allocation of ℵcel cells among ℵclo
clonotypes. The summation in (29) is finite from 1 to ℵcel − ℵclo + 1, and hence we can
directly calculate the mutant frequency of the repertoire condition on ℵcel and ℵclo. In reality,
ℵcel ranges from 109 to 1010 in the blood, and ℵclo ranges from 106 to 108. Table S2 compares
the marginal mutant frequency for various mutation probability θ and number of clonotypes
ℵclo, with total number of T cells fixed at ℵcel = 109. The calculated mutant frequency will
decrease as θ decreases or average clonotype size ℵcel/ℵclo decreases.

APPENDIX D: EXPECTED DIVERSITY FOR LOGARITHMIC AND YULE-SIMON
(SECTION 3.5)

The expected diversity can be derived directly from the characteristic function of marginal
distributions, noting (13). For Logarithmic marginal distribution, Nσ ∼ Log(p), we find:

E(D) = ℵclo
{

1− log(1− pe−ε)
log(1− p)

}
.

For Yule-Simon marginal distribution with parameter ρ, the expected diversity is more com-
plicated. We calculate:

E(D) = ℵclo
{

1− ρe−ε

ρ+ 1
2F1

(
1,1;ρ+ 2;e−ε

)}
where 2F1(a, b; c;z) is the Gaussian hypergeometric function.

PROOF OF PROPOSITION 4. From definition of diversity statistic D,

E(D) = ℵclo
{

1−E(e−εNσ)
}

When marginally P (Nσ = n) = (1− γ0)n−1γ0, we have

E(e−εNσ) =
γ0

eε − (1− γ0)
from the characteristic function of the Geometric distribution, and hence

E(D) = ℵclo
{

1− γ0
eε − (1− γ0)

}
.

Similarly, the key to E(D̃) is the expectation E(e−ε̃Ñσ). We refer to Theorem 3.2 in
Roshan, Jones and Greenman (2014) to derive this expectation by conditioning on Nσ . That
paper derives an explicit formula for the generating function of (Nσ,Wσ), where Nσ is the
size of the entire clonotype and Wσ is the number of wild type cells. These sizes are defined
for extant clonotypes, i.e. Nσ ≥ 1. The generating function used is:

(30) G(x, y) =

∞∑
k=1

∞∑
n=1

P (Wσ = n |Nσ = k)xk−1yn−1

If we let x= te−ε̃ and y = eε̃ in Eq. (30), we have:

H(t) =G(te−ε̃, eε̃) =

∞∑
k=1

∞∑
n=1

P (Wσ = n |Nσ = k)tk−1e−ε̃(k−n)

=

∞∑
k=1

E
(
e−ε̃(Nσ−Wσ) |Nσ = k

)
tk−1

=

∞∑
k=1

E
(
e−ε̃Ñσ |Nσ = k

)
tk−1.
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The last equation is because of equality Ñσ = Nσ −Wσ . If Nσ ∼ Geom(γ0), we can let
t= 1− γ0 for H(t) to get the explicit formula for E{exp(−ε̃Ñσ)}:

γ0H(1− γ0) =

∞∑
k=1

γ0(1− γ0)k−1E
(
e−ε̃Ñσ |Nσ = k

)

=

∞∑
k=0

E
(
e−ε̃Ñσ |Nσ = k

)
P (Nσ = k)

=E{e−ε̃Ñσ}

From Theorem 3.2 in Roshan, Jones and Greenman (2014), there is an explicit formula under
Luria-Delbrück distribution:

G(x, y) = (1− x)−2θ
[
1− y{1− (1− x)1−2θ}

]−1
,

which leads to the formula of H(t):

H(t) = (1− te−ε̃)−2θ
[
1− eε̃{1− (1− te−ε̃)1−2θ}

]−1
and hence we can get E(e−ε̃Ñσ):

E
(
e−ε̃Ñσ

)
=

γ0

(1− eε̃){1− e−ε̃(1− γ0)}2θ + eε̃{1− e−ε̃(1− γ0)}
.

For the second part of Proposition 4, the diversity calculation depends on a comparison of
drop-out probabilities. Define

δ := P (X̃σ = 0)− P (Xσ = 0),

which we see from the definition of our simple diversity statistic satisfies E(D)−E(D̃) =
ℵcloφ, and so it suffices to show that δ > 0. From Poisson sampling,

δ =E
(
e−ε̃Ñσ

)
−E

(
e−εNσ

)
,

To prove δ > 0 for Nσ ∼Geom(γ0), we need to show that:

(31) eε − eε̃ + (eε̃ − 1){1− e−ε̃(1− γ0)}2θ > 0

Since γ0 ∈ (0,1) and the left-hand-side of (31) is increasing as γ0 increases, Eq. (31) is
equivalent to:

(32) eε − eε̃ + (eε̃ − 1)
(
1− e−ε̃

)2θ
> 0.

Since function f(x) = −x+ (x− 1)(1− 1/x)2θ is a decreasing function on x ∈ (1, e) and
ε̃ ∈ (0,1), it can be shown that:

eε − eε̃ +
(
eε̃ − 1

) (
1− e−ε̃

)2θ ≥ eε − e+ (e− 1)
(
1− e−1

)2θ
≥ eε − e+ (e− 1)(1− e−1)ε

> 0.

where the second inequality is from the condition θ < ε/2 and the last inequality is due to the
infimum is achieved at ε= 0. Therefore, we have proved that δ > 0 and hence E(D̃)<E(D)
when Nσ ∼Geom(γ0).
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SURROGATE SELECTION S.M.-11

In another case, if Nσ follows a Logarithmic distribution instead, with p.m.f.

P (Nσ = k) =
−1

log(1− p)
pk

k

for parameter p ∈ (0,1), then the desired expectation E(e−ε̃Ñσ) is:

E{e−ε̃Ñσ}=

∞∑
k=1

E
(
e−ε̃Ñσ |Nσ = k

)
P (Nσ = k)

=
−1

log(1− p)

∞∑
k=1

∞∑
n=1

P (Wσ = n |Nσ = k)
pk

k
e−(k−n)ε̃

=
−1

log(1− p)

∫ p

0
H(t)dt

where H(t) = G(te−ε̃, eε̃) is previously defined. The integral in last equality is valid since
the singularity of H(t) is at:

t∗ = eε̃{1− (1− e−ε̃)
1

1−2θ }

which satisfies t∗ > 1 > p for 0 < θ < ε/2 and ε < ε̃ < 1. Therefore, the expectation under
Logarithmic distribution is:

E(e−ε̃Ñσ) =
2θ log(1− pe−ε̃)− log

[
(1− eε̃)(1− pe−ε̃)2θ + eε̃ − p

]
−(1− 2θ) log(1− p)

We now show that inequality E(D)>E(D̃) also holds for logarithmic distribution, i.e.,

δ =
2θ log(1− pe−ε̃)− log

[
(1− eε̃)(1− pe−ε̃)2θ + eε̃ − p

]
−(1− 2θ) log(1− p)

− log(1− pe−ε)
log(1− p)

> 0

It is equivalent to:

(33) (1− 2θ) log(1− pe−ε) + 2θ log(1− pe−ε̃)> log
[
(1− eε̃)(1− pe−ε̃)2θ + eε̃ − p

]
Since ε < ε̃ < 1, log(1− pe−ε̃)> log(1− pe−ε), and hence (33) is true if we prove:

(eε̃ − 1)
{

1− (1− pe−ε̃)2θ
}
− p(1− e−ε)≤ 0

Notice that function f(x) = (x−1){1− (1−q/x)2θ} is an increasing function for 1< x< e,
therefore above inequality is equivalent to:

g(p) = (e− 1)
{

1− (1− pe−1)2θ
}
− p(1− e−ε)≤ 0

With condition 0< θ < ε/2, the second order partial derivative d2

dp2 g(p)> 0 for any 0< p <

1, therefore the supremum of g(p) is achieved at p= 0 or 1. Since g(0) = 0 and g(1)≤ 0, it
is guaranteed that g(p)≤ 0 for 0< p < 1. Therefore, our desired inequality (33) is true, and
hence E(D̃)<E(D).
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APPENDIX E: BURDEN STATISTICS (SECTION 3.6)

PROOF OF PROPOSITION 5. With Lm =
∑

g∈GmM
m
g,σ (and within one clonotype σ,

since we are fixing clonotype size at n), we know that E(Lm|Nσ = n) =
∑

g∈Gm ψn(θmg ),
by the findings in Section 2, where θmg is the mutation frequency associated with locus g,
among the multitude in Gm. These θmg ’s must be fairly small, considering the convergence of
λm =

∑
g∈Gm θ

m
g to λ > 0. Thus by a Taylor expansion around θ = 0,

E(Lm|Nσ = n) =
∑
g∈Gm

ψn
(
θmg
)

=
∑
g∈Gm

{
ψn(0) + θmg ψ

′
n(0) + o(θmg )

}
= ψ′n(0)

∑
g∈Gm

[
θmg + o

(
θmg
)]

= 2λ(Hn − 1) + o(1)

noting ψ′n(0) = 2(Hn − 1) is the derivative of ψn(θ) at θ = 0.

APPENDIX F: SOMATIC VARIANTS IN T CELLS FROM SCRNA-SEQ DATA

Our numerical experiments used seven publicly available 10x Genomics data sets obtained
from https://www.10xgenomics.com/resources/datasets; the basic charac-
teristics of these data are in Table S3. The 10x Genomics workflow generates scRNA and
TCR sequencing reads by capturing and lysing single cells in Gel Beads-in-emulsion which
contain a unique oligonucleotide barcode in each bead. According to the reported protocol,
mRNA from lysed cells was reverse transcribed to barcoded cDNA. The cDNA was then
PCR amplified to construct 5’ Gene Expression library and TCR library. The TCR library
consists of V(D)J segments amplified using TCR region specific primers. Sequences were
then obtained from the two libraries by Illumina sequencing. Further, the clonotypes of T
cells were identified by 10x Genomics by the expressed TRA and TRB genes from TCR-seq.
The clonotype information of the T cells from the ’VDJ TCR - all contig annotations’ CSV
files in the online database were imported for our calculations.

For variant calling, we re-processed the single-cell RNA-seq data. The genome-aligned
gene expression BAM files downloaded from the 10x Genomics database are used to call
somatic variants by Mutect2 with a workflow adapted from Edwards et al. (2022). The
BAM files were first processed by the GATK (v.4.2.6.1) module AddOrReplaceReadGroups
(McKenna et al., 2010; Auwera and O’Connor, 2020). The module SplitNCigarReads then
split the aligned RNA reads which include N elements because of the RNA splicing events.
The reference sequences input in GATK modules are the same as versions used for alignment
by the Cell Ranger pipeline, available on 10x Genomics and the Ensemble database. After
that, somatic variants were called by Mutect2 (Cibulskis et al., 2013; DePristo et al., 2011)
using the processed sequencing reads from all cells. We ran Mutect2 under the tumor-only
mode. The public Panel of Normal was input to correct for technical artifacts. A population
germline resource was also provided for Mutect2 so that the same alleles as in germline re-
source were not called somatic variants. The variants in the output VCF files were filtered
to only keep the confident single nucleotide variants using BCFtools (v.1.15.1) from SAM-
tools (Danecek et al., 2021) with parameters TYPE=“snp", INFO/DP (read depth) > 20 and
MMQ (median mapping quality by allele)> 50. The filtered variants called from all RNA-seq
data were then assigned to each single cell with the program vartrix (v.1.1.22) by re-aligning
single-cell barcoded reads to each variant locus. Two matrices, each of numbers of reference
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SURROGATE SELECTION S.M.-13

genotype reads and alternative genotype reads corresponding to cell barcodes, are generated
by setting the “scoring-method" to “coverage" mode. These data were post-processed in R to
associate somatic burden with clonotype sizes.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.548950doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.548950
http://creativecommons.org/licenses/by-nc/4.0/


S.M.-14

APPENDIX G: ADDITIONAL FIGURES AND TABLES

FIG S3. Comparison of empirical and theoretical cumulative distribution functions (c.d.f.) for simulated reper-
toire in Fig 5. The theoretical c.d.f is calculated from geometric marginal distribution on clonotype sizes, with
parameter p = 0.1 and mutant frequency θ = 0.05. These parameters match the repertoire in Fig 5. The solid
dark blue lines are empirical c.d.f’s, while dashed red lines are theoretical c.d.f’s. Dashed light blue lines are
three quantiles, on which clonotypes with mutant cells are 1.5 to 2 times greater than clonotypes sampled from
the whole repertoire.
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TABLE S1
Median clonotype size in the entire repertoire, P (Nσ = n), compared to the selected repertoire,

P (Nσ = n|Mσ = 1), for several parametric settings, when θ = 10−4

Yule-Simon power-law parameter ρ
0.05 0.1 0.15 0.2

median: P (N = n) 6.13× 105 622 64 21

median: P (N = n|M = 1) > 108 2.80× 107 1.04× 105 6276

TABLE S2
Mutant frequency P (MS = 1 | ℵcel,ℵclo) in blood samples computed for hypothetical repertoires with various

ℵclo and θ settings. Total cells in the repertoire ℵcel is fixed at 109.

mutation frequency θ
ℵclo 5× 10−7 10−6 5× 10−6

106 7.88× 10−6 1.41× 10−5 6.93× 10−5

5× 106 7.05× 10−6 1.33× 10−5 5.56× 10−5

107 2.71× 10−6 7.42× 10−6 4.41× 10−5

TABLE S3
Repertoire sample characteristics. All samples are from human tissue; PBMC=peripheral blood mononuclear

cells; data were downloaded from https://www.10xgenomics.com/resources/datasets between
June and November, 2022.

Data set Source Date published Cell Ranger
PBMC3 healthy human PBMC 2019-07-24 3.1.0

SC5k healthy human PBMC 2021-05-25 6.0.1
20k healthy human PBMC 2021-08-09 6.1.0

(male, age 30-35)
10k healthy human PBMC 2022-03-29 6.1.2

(female, age 25-30)
Controller healthy human PBMC 2021-08-09 6.1.0

(male, age 30-35)
Melanoma dissociated tumor cells from 2021-05-25 6.0.1

primary human melanoma sample
Lung fresh surgical resection of squamous 2021-01-07 5.0.0

non-small cell lung carcinoma

Dataset Genome-aligned gene expression BAM file names
PBMC3 vdj_nextgem_hs_pbmc3_possorted_genome_bam.bam

SC5K SC5v2_humanPBMCs_5Kcells_Connect_single_channel_SC5v2_humanPBMCs_5Kcells_Connect_single_channel_count_sample_alignments.bam

20K 20k_PBMC_5pv2_HT_nextgem_Chromium_X_20k_PBMC_5pv2_HT_nextgem_Chromium_X_count_sample_alignments.bam

10K 10k_PBMC_5pv2_nextgem_Chromium_X_intron_10k_PBMC_5pv2_nextgem_Chromium_X_intron_count_sample_alignments.bam

Controller 10k_PBMC_5pv2_nextgem_Chromium_Controller_10k_PBMC_5pv2_nextgem_Chromium_Controller_count_sample_alignments.bam

Melanoma SC5v2_Melanoma_5Kcells_Connect_single_channel_SC5v2_Melanoma_5Kcells_Connect_single_channel_count_sample_alignments.bam

Lung vdj_v1_hs_nsclc_multi_5gex_t_b_count_possorted_genome_bam.bam

Data set # cells # T cells RNA-seq coverage # SNVs # clonotypes
mean sd primary filtered

PBMC3 11715 6505 24.21 205.72 178456 282 5992
SC5K 4190 1865 13.57 137.83 96942 171 1700

20K 18470 9392 17.98 175.18 121414 157 8728
10K 9780 4642 12.88 151.69 44482 74 4373

Controller 9302 4562 13.46 146.05 69942 85 4282
Melanoma 4680 1434 14.56 159.87 66110 90 1201

Lung 7092 1857 33.13 260.68 319879 750 1482
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FIG S4. P (Nσ = n|Mσ = 1) (red) for various power laws P (Nσ = n) (blue), on the double log scale.
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SURROGATE SELECTION S.M.-17

FIG S5. Each of 30257 T cells from 7 repertoires is associated with a somatic burden (vertical) and also a clono-
type size (horizontal), the latter of which is adjusted in an effort to normalize repertoire samples. The red curve
shows the estimated effect on expected burden of the logarithm of clonotype size, as determined by a linear model
fit (β̂ = 0.6 SNVs per unit increase in log clonotype size). Statistical significance of the estimated slope was as-
sessed by a stratified randomization, which shuffled cells between clonotypes but within repertoires (permutation
p-value 0.02 with B = 104 shuffles). Though statistically significant, the result is not fully resistant; for example
the cells in large clonotypes have very high leverage; dropping the cells with adjusted clonotype size greater than
100, for example, leads to an insignificant permutation p-value. The adjusted log size is log clonotype size minus
log of repertoire size plus log of largest repertoire size.
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