

1 **Serpine1 negatively regulates Th1 cell responses in experimental autoimmune
2 encephalomyelitis.**

3 (*Running title: Serpine1 negatively regulates Th1 cell responses in EAE*)

4

5 Irshad Akbar^{*, #}, Ruihan Tang[†], Joanie Baillargeon^{*}, Andrée-Pascale Roy^{*}, Prenitha Mercy
6 Ignatius Arokia Doss^{*}, Chen Zhu[†], Vijay K. Kuchroo^{†,‡,§,||}, Manu Rangachari^{*, ¶, ||, **, ††, ¶¶}

7

8 ^{*} axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec QC
9 Canada

10 [†] Evergrande Center for Immunologic Diseases, Harvard Medical School, Brigham and
11 Women's Hospital, Boston MA USA

12 [‡] Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's
13 Hospital, Boston MA USA

14 [§] Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge MA USA

15 [¶] Department of Molecular Medicine, Université Laval, Québec, QC, Canada

16 ^{||} Address correspondence and reprint request to Dr. Manu Rangachari or Dr. Vijay K. Kuchroo.

17 Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705 boul
18 Laurier, Québec QC G1V 4G2 (M.R) or Brigham and Women's Hospital, Hale Building for
19 Transformative Research, 60 Fenwood Rd, HBTM 10016F, Boston MA 02115. Email addresses:
20 manu.rangachari@crchudequebec.ulaval.ca, vkuchroo@rics.bwh.harvard.edu

21 [#] funding to I.A., MS Society of Canada Doctoral Studentship

22 ^{**} funding to M.R., MS Society of Canada Discovery Grant #3781

23 ^{††} funding to M.R., Canadian Institutes of Health Research (CIHR) Project Grant #159713

24 ^{††} funding to M.R., Senior scholar award, Fonds de recherche de Québec – Santé #313330

25

26 Phone (M.R) : ++1-418-525-4444 x 46461

27 Fax (M.R) : ++1-418-654-2298

28

29 **Abstract**

30 Th1 cells are critical in experimental autoimmune encephalomyelitis (EAE). Serpine1 has been
31 posited as an inhibitor of IFN γ from T cells though its role in autoimmunity remains unclear.
32 Here, we show that Serpine1 knockout (KO) mice develop EAE of enhanced severity relative to
33 wild-type (WT) controls. Serpine1 overexpression represses Th1 cell cytokine production and
34 pathogenicity, while Serpine1-KO:2D2 Th1 cells transfer EAE of increased severity in
35 comparison to WT 2D2 Th1 cells. Notably, polarized Serpine1-KO Th1 cells display delayed
36 expression of the Th1-specific inhibitory receptor, Tim-3. Serpine1-KO:Tim-3-Tg Th1 cells,
37 which transgenically over-express Tim-3, showed increased expression of IFN γ and reduced
38 expression of the checkpoint molecules Lag-3 and PD-1 relative to WT Tim-3-Tg counterparts.
39 Further, Serpine1 deficiency restored the EAE phenotype of Tim-3-Tg mice that normally
40 develop mild disease. Together, we identify Serpine1 as a negative regulator of Th1 cells.

41

42 **Key points**

43 • Serpine1 inhibits EAE in a T cell-dependent manner.
44 • Serpine1 is upregulated in Th1 cells and inhibits their pathogenicity.
45 • Serpine1 promotes expression and function of Th1-specific inhibitory receptor Tim-3.

46

47

48

49

50 **Introduction**

51 Effector CD4⁺ Th1 cells are potent initiators and propagators of autoimmune diseases
52 such as in the T cell-driven EAE¹ model of MS² (1). Th1 cells express a lineage-specific
53 inhibitory receptor, Tim-3³, that resolves inflammatory responses when triggered at sites of
54 inflammation (2-4). The Tim-3 pathway is crucial to repressing EAE pathology (2, 5, 6).
55 Understanding the processes regulating Tim-3 expression and function might permit us to
56 develop strategies to curb Th1-mediated inflammation in self-tissue.

57 Serpine1⁴, or PAI-1⁵, represses the conversion of the plasminogen proenzyme into mature
58 plasmin and was previously suggested to regulate IFN γ -driven T cell responses (7, 8). Here, we
59 show that Serpine1 restrains EAE pathogenicity via its inhibitory effects on Th1 cells, and that
60 Serpine1 is required for optimal expression of Tim-3 by Th1 cells.

61

62

63

64 **Materials and Methods**

65

66 *Mice*

67 Tim-3-Tg (5) are described. B6⁶ WT⁷ (stock #000664), Serpine1-KO⁸ (B6.129S2-

68 *Serpine1*^{tm1Mlg}/J; #002507), 2D2-Tg (C57BL/6-Tg (Tcra2D2,Tcrb2D2)1KuchJ; #006912) and

69 *Rag1*^{-/-} (B6.129S7-*Rag1*^{tm1Mmom}/J; #002216) mice were obtained from Jackson Labs.

70 Experimental and control animals were co-housed at the animal facilities of CRCHU de Québec-
71 Université Laval or Brigham & Women's Hospital. All procedures were authorized by the
72 Animal Care Committee of Université Laval or the Institutional Animal Care and Use
73 Committee of Harvard University.

74

75 *Helper cell differentiation*

76 CD4⁺ T cells were enriched from B6 spleens using anti-CD4 Microbeads (Miltenyi), purified as
77 CD4+CD62L^{hi} using a FACSaria (BD) high-speed cell sorter and cultured in supplemented T
78 cell media as described (3). They were differentiated (9) for 2 days with plate bound anti-CD3
79 and anti-CD28 (2 μ g mL⁻¹ each; BioXcell) into Th1 cells – 10 ng mL⁻¹ rmIL-12 (R&D
80 Biosystems) plus anti-IL-4 (10 μ g mL⁻¹, BioXcell), or Th17 – rhTGF β (3 ng mL⁻¹, Miltenyi) +
81 rmIL-6 (20 ng mL⁻¹, Miltenyi) + anti-IFN γ (10 μ g mL⁻¹, BioXcell). Cells were then transferred
82 to uncoated tissue culture plates and cultured for an additional 3 days, with rmIL-2 (10 ng mL⁻¹,
83 Miltenyi) added to Th1, and rmIL-23 (20 ng mL⁻¹, R&D Biosystems) added to Th17. For
84 multiple rounds of polarization, cells were collected at d5 and then restimulated for a subsequent
85 5-day period as above. Tiplaxtinin (25 μ M, Tocris) or equivalent volume of DMSO were
86 maintained for 5 days of culture where indicated. Serpine1 cDNA was cloned into pMIG⁹ vector

87 and RV¹⁰ gene transduction of Th1 or Th17 cells was conducted using our described spin-
88 infection protocol (10).

89

90 *EAE*

91 Active immunization was induced by s.c. injection of MOG_[35-55]¹¹ (CHU de Québec) in
92 incomplete Freund's adjuvant (Difco) supplemented with 5 mg mL⁻¹ *Mycobacterium*
93 *tuberculosis* extract (Fisher). A dose of 25 µg MOG_[35-55] per mouse was used to compare WT to
94 Serpine1-KO mice, while 100 µg per mouse was used in EAE experiments involving Tim-3-Tg
95 mice. In Figure 1D, passive EAE was induced by first immunizing Serpine1-WT 2D2 and
96 Serpine1-KO 2D2 mice with MOG_[35-55]. Nine days later, splenocytes were collected and
97 stimulated *ex vivo* for 48 hours with MOG_[35-55] (20 µg mL⁻¹), rmIL-12 and rmIL-23. Next,
98 20x10⁶ splenocytes were injected i.p. into unimmunized B6 recipients. Adoptive transfer of WT
99 2D2, Serpine1-KO:2D2 or RV-transduced 2D2 Th1 cells entailed i.v. injection (2x10⁶) into
100 *Rag1*^{-/-} recipients at d5 of culture. In all EAE experiments, mice received 200 ng pertussis toxin
101 (List Biological Labs) i.p. at d0 and d2. Mice were assessed for clinical symptoms daily as
102 previously described (9).

103

104 *Flow cytometry*

105 Cell surface and intracellular flow cytometry were conducted as previously described (10). The
106 following Abs and dyes were used: *CD4*, clone RM4-5, ThermoFisher (TF) cats #45-0042-82,
107 48-0042-82; *CD62L*, MEL-14, TF #47-0621-82, *Tim-3*, RMT3-23, Biolegend #119706; *PD-1*,
108 J43, TF #25-9985-82; *Lag-3*, eBioC9B7W, TF #12-2231-82; *IFNγ*, XMG1.2, TF # 48-7311-82;
109 *TNFα*, MP6-XT22, TF #11-7321-82, 12-7321-41, 17-7321-82; *IL-2*, JES6-5H4, BD Biosciences

110 #560547; IL-17, TC11-18H10.1, Biolegend #506922; Fixable Viability Dye, TF #65-0865-14; 7-
111 aminoactinomycin D, TF #A1310. Data were collected using an LSRII flow cytometer (BD
112 Biosciences) and were analyzed with FlowJo (BD). Gates were set on fluorescence minus one
113 controls and the following global strategy was used: *i*) singlets were selected based on FSC-H vs
114 FSC-A; *ii*) live CD4⁺ T cells based on CD4⁺ Viability Dye^{neg} events, or on CD4⁺7-
115 aminoactinomycin D^{neg} events. RV-transduced CD4⁺ T cells were further gated on GFP
116 positivity as indicated in Figure legends. In Figures 4CD, live CD4⁺ T cells were gated as
117 CD4⁺Tim-3^{pos} or CD4⁺Tim-3^{neg}.

118

119 *Ex vivo assessment of T cell function*

120 Splenocyte cultures from EAE mice were stimulated, or not, with 10 µg mL⁻¹ MOG_[35-55] for 48
121 hours. For proliferation studies, 1.25 µCi [³H]-thymidine (Perkin-Elmer) was added to each
122 culture well for the last 16 hours. Cytokine supernatant ELISA were conducted using the
123 following capture/detection sets: *IFN* γ , clones RA-6A2/XMG1.2; *IL*-2, JES6-1412/JES6-5H4;
124 *IL*-17, TC11-18H10.1/TC11-8H4. Serpine1 protein was measured using Serpin E1/PAI-1
125 DuoSet ELISA (R&D Biosystems).

126

127 *Statistics*

128 Two-tailed parametric tests were conducted using Prism (GraphPad). Comparisons of 2 groups
129 were made by *t*-test while comparisons of >2 groups were made by ANOVA followed by post-
130 hoc test. In EAE studies, linear regression (6, 10) or area under curve (10) analyses were
131 conducted on mice with symptoms.

132

134 **Results and Discussion**

135

136 *Serpine1 inhibits the severity of EAE.*

137 Upon immunization with MOG_[35-55], Serpine1-KO mice developed EAE of significantly
138 greater severity than WT controls (Figure 1A). When the data were sex-disaggregated, Serpine1-
139 KO females showed a significantly worsened disease burden as compared to WT females, while
140 Serpine1-KO males showed a trend towards exacerbated disease relative to WT males
141 (Supplementary Figure 1). Notably, antigen-specific proliferation responses to MOG_[35-55] were
142 enhanced in peripheral Serpine1-KO CD4⁺ T cells prior to clinical onset (Figure 1B), as was
143 secretion of IFN γ and IL-2, but not IL-17 (Figure 1C).

144 Serpine1 regulates CNS fibrinolysis (11) and thus heightened EAE severity in Serpine1-
145 KO mice might be due to its absence in a non-T cell compartment. We thus crossed Serpine1-
146 KO mice to the 2D2-Tg strain, which bear a MOG_[35-55] -specific TCR (12), and immunized WT
147 2D2 and Serpine1-KO:2D2 mice. Prior to disease onset, we isolated splenocytes and
148 restimulated them with Ag plus IL-12 and IL-23. Serpine1-KO:2D2 Ag-restimulated blasts
149 induced EAE of significantly greater severity relative to WT 2D2 blasts upon adoptive transfer
150 (Figure 1D).

151 Previous EAE studies that directly targeted Serpine1 *in vivo* revealed conflicting results
152 possibly due to opposing effects on T cells and CNS repair (13, 14). Notably, in the
153 chronic/relapsing Biozzi model of EAE, Serpine1-KO mice developed EAE of delayed onset and
154 milder severity, due to superior CNS fibrinolytic capacity compared to controls (11); it is
155 possible that the fibrogenic, pathogenic, properties of Serpine1 outweigh its anti-inflammatory

156 function in this model. Here, we show that Serpine1 represses antigen-specific T cell-driven
157 CNS autoimmunity in a T cell-intrinsic manner.

158

159 *Serpine1 suppresses Th1 cell function in vitro and in vivo*

160 We next found that Serpine1 secretion was sharply upregulated in both Th1 (Figure 2A)
161 and Th17 (Figure 2B) cells upon a second round of *in vitro* differentiation. Serpine1-deficient T
162 cells can produce increased levels of IFN γ relative *in vivo* (7, 8); however, the functional role of
163 Serpine1 in differentiated *bona fide* Th1 and Th17 cells has never been directly assessed. Upon
164 RV OE¹² of Serpine1 in Th1 cells, we observed a downregulation in expression of IFN γ and a
165 trend towards reduced TNF α relative to control transduced cells. By contrast, overexpression of
166 Serpine1 in Th17 cells did not impact expression of either IL-17 or TNF α (Figure 2C).

167 To determine whether enforced expression of Serpine1 altered Th1 cell pathogenicity, we
168 transduced 2D2 Th1 cells with Serpine1-OE or control RV and adoptively transferred these cells
169 to *Rag1*^{-/-} mice (6). Interestingly, Serpine1-OE 2D2 Th1 cells induced disease of lessened
170 severity compared to control cells (Figure 2D), characterized by a reduced frequency of
171 inflammatory IFN γ ⁺IL-2⁺ T cells *in vivo* (Figure 2E).

172 We next treated Th1 cells with tiplaxtinin, a small molecule that inhibits the
173 antiproteolytic activity of Serpine1 towards the plasminogen activators urokinase and tissue
174 plasminogen activator (15, 16). Tiplaxtinin enhanced IFN γ and IL-2 production from Th1 cells
175 (Figure 3A), suggesting that the Serpine1 may downregulate Th1 responses by repressing the
176 activation of mature plasmin. We then generated Th1 cells from WT 2D2 and Serpine1-KO:2D2
177 mice and found that the latter induced EAE of significantly greater severity upon adoptive
178 transfer (Figure 3B).

179 Increased IFN γ was previously observed from Serpine1-KO CD4 $^{+}$ and CD8 $^{+}$ T cells upon
180 LPS or staphylococcal enterotoxin B treatment *in vivo* (7). Further, Serpine1-KO mice are
181 resistant to nasal allergy in a Th2-mediated OVA sensitization model, with IFN γ production
182 upregulated by Serpine1-KO splenocytes upon Ag recall (8). Here, we show that while Serpine1
183 is expressed by both Th1 and Th17 cells, it impacts Th1 cells specifically by downregulating
184 their inflammatory cytokine production and autoimmune potential.

185

186 *Serpine1 promotes Tim-3 expression and inhibits Tim-3 $^{+}$ Th1 cell inflammatory responses.*

187 As Serpine1 inhibits Th1-driven inflammation, we next asked whether it could augment
188 the expression of inhibitory Tim-3. Repeatedly polarized Serpine1-KO Th1 cells expressed lower
189 Tim-3, and with delayed kinetics, relative to S1-WT controls (Figure 4A). Loss of Serpine1
190 signaling did not increase expression of IFN γ ; however, the frequency of IFN γ^{+} Tim-3 $^{+}$ Th1 cells
191 was strikingly lower in its absence (Figure 4B).

192 Tim-3-Tg mice ectopically overexpress Tim-3 cDNA in a T cell-restricted manner,
193 without the need for multiple rounds of polarization under Th1 conditions (17). Reasoning that
194 this might help us uncover Serpine1-dependent differences in IFN γ expression, we crossed
195 Serpine1-KO mice to the Tim-3-Tg strain and generated Th1 cells from these and Tim-3-Tg
196 control mice. Tim-3 $^{\text{pos}}$ Th1 cells derived from Serpine1-KO:Tim-3-Tg mice were strikingly more
197 positive for IFN γ than Tim-3-Tg counterparts; notably, no differences were observed with Tim-
198 3 $^{\text{neg}}$ Th1 cells between the strains (Figure 4C). This indicated that Serpine1 represses IFN γ
199 expression in a Tim-3-dependent manner. Interestingly, there was a concomitant reduction in the
200 expression of the T cell negative regulatory receptors PD-1 and Lag-3 in Serpine1-KO:Tim-3-Tg
201 Th1 cells when compared to Tim-3-Tg controls (Figure 4D).

202 Tim-3-Tg mice develop EAE of attenuated severity (5). To examine whether loss of
203 Serpine1 expression could reverse this phenotype, we actively immunized WT, Tim-3-Tg and
204 Serpine1:KO Tim-3-Tg mice. While Tim-3-Tg mice developed disease of only mild severity as
205 expected, Serpine1-KO:Tim-3-Tg mice displayed EAE that was of comparable severity to that
206 seen in WT animals (Fig 4E). Our data thus demonstrate that Serpine1 is required for Tim-3-
207 mediated repression of T cell inflammation and pathogenicity in EAE.

208 Tim-3 marks exhausted T cells in chronic viral infections and cancers (18-20) and is
209 functionally tractable, as concomitant blockade of Tim-3 and PD-1 causes tumor regression
210 greater degree than that with anti-PD-1 alone (20). Further, depletion of Bat3, an intracellular
211 repressor of Tim-3 signaling, causes Th1 cells to adopt an exhausted-like phenotype *in vivo* (6,
212 21). While Serpine1-mediated upregulation of Tim-3 may be desirable in the context of
213 autoimmunity, it remains to be seen what role, if any, Serpine1 plays in T cell exhaustion.

214 Altogether, our data identify a novel Th1 cell-intrinsic regulatory mechanism. Serpine1
215 represses Th1 cell pathogenicity by inhibiting their production of inflammatory cytokines and by
216 restraining them from adopting a highly differentiated Tim-3⁺ phenotype. Strategies to augment
217 Serpine1 expression and function in Th1 cells could present an attractive therapeutic option in
218 autoimmune disease.

219

220 **Acknowledgements**

221 We thank Vincent Desrosiers for technical assistance, Kim Larose-Labrecque and Andréa
222 Brisson for animal care, and Ryder Whittaker Hawkins for critical reading of the manuscript.

223

224 **Author Contributions**¹³

225

226 **Data availability statement¹⁴**

227 **Conflicts of interest¹⁵**

228

229

230

231 References

232 1. Jäger, A., V. Dardalhon, R. A. Sobel, E. Bettelli, and V. K. Kuchroo. 2009. Th1, Th17, and
233 Th9 effector cells induce experimental autoimmune encephalomyelitis with different
234 pathological phenotypes. *J. Immunol.* 183: 7169–7177.

235 2. Monney, L., C. A. Sabatos, J. L. Gaglia, A. Ryu, H. Waldner, T. Chernova, S. Manning, E. A.
236 Greenfield, A. J. Coyle, R. A. Sobel, G. J. Freeman, and V. K. Kuchroo. 2002. Th1-specific cell
237 surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease.
238 *Nature* 415: 536–541.

239 3. Sabatos, C. A., S. Chakravarti, E. Cha, A. Schubart, A. Sánchez-Fueyo, X. X. Zheng, A. J.
240 Coyle, T. B. Strom, G. J. Freeman, and V. K. Kuchroo. 2003. Interaction of Tim-3 and Tim-3
241 ligand regulates T helper type 1 responses and induction of peripheral tolerance. *Nat. Immunol.*
242 4: 1102–1110.

243 4. Sánchez-Fueyo, A., J. Tian, D. Picarella, C. Domenig, X. X. Zheng, C. A. Sabatos, N.
244 Manlongat, O. Bender, T. Kamradt, V. K. Kuchroo, J.-C. Gutiérrez-Ramos, A. J. Coyle, and T.
245 B. Strom. 2003. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and
246 promotes immunological tolerance. *Nat. Immunol.* 4: 1093–1101.

247 5. Dardalhon, V., A. C. Anderson, J. Karman, L. Apetoh, R. Chandwaskar, D. H. Lee, M.
248 Cornejo, N. Nishi, A. Yamauchi, F. J. Quintana, R. A. Sobel, M. Hirashima, and V. K. Kuchroo.
249 2010. Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-
250 6G+ myeloid cells. *J. Immunol.* 185: 1383–1392.

251 6. Rangachari, M., C. Zhu, K. Sakuishi, S. Xiao, J. Karman, A. Chen, M. Angin, A. Wakeham,
252 E. A. Greenfield, R. A. Sobel, H. Okada, P. J. McKinnon, T. W. Mak, M. M. Addo, A. C.

253 Anderson, and V. K. Kuchroo. 2012. Bat3 promotes T cell responses and autoimmunity by
254 repressing Tim-3-mediated cell death and exhaustion. *Nat. Med.* 18: 1394–1400.

255 7. Renckens, R., J. M. Pater, and T. van der Poll. 2006. Plasminogen activator inhibitor type-1-
256 deficient mice have an enhanced IFN-gamma response to lipopolysaccharide and staphylococcal
257 enterotoxin B. *J. Immunol.* 177: 8171–8176.

258 8. Sejima, T., S. Madoiwa, J. Mimuro, T. Sugo, K. Okada, S. Ueshima, O. Matsuo, T. Ishida, K.
259 Ichimura, and Y. Sakata. 2005. Protection of plasminogen activator inhibitor-1-deficient mice
260 from nasal allergy. *J. Immunol.* 174: 8135–8143.

261 9. Pradeep Yeola, A., I. Akbar, J. Baillargeon, P. Mercy Ignatius Arokia Doss, V. O. Paavilainen,
262 and M. Rangachari. 2020. Protein translocation and retro-translocation across the endoplasmic
263 reticulum are crucial to inflammatory effector CD4+ T cell function. *Cytokine* 129: 154944.

264 10. Doss, P. M. I. A., M. Umair, J. Baillargeon, R. Fazazi, N. Fudge, I. Akbar, A. P. Yeola, J. B.
265 Williams, M. Leclercq, C. Joly Beauparlant, P. Beauchemin, G. F. Ruda, M. Alpaugh, A. C.
266 Anderson, P. E. Brennan, A. Droit, H. Lassmann, C. S. Moore, and M. Rangachari. 2021. Male
267 sex chromosomal complement exacerbates the pathogenicity of Th17 cells in a chronic model of
268 central nervous system autoimmunity. *Cell Rep* 34: 108833.

269 11. East, E., D. Gveric, D. Baker, G. Pryce, H. R. Lijnen, and M. L. Cuzner. 2008. Chronic
270 relapsing experimental allergic encephalomyelitis (CREAE) in plasminogen activator inhibitor-1
271 knockout mice: the effect of fibrinolysis during neuroinflammation. *Neuropathol. Appl.*
272 *Neurobiol.* 34: 216–230.

273 12. Bettelli, E., M. Pagany, H. L. Weiner, C. Linington, R. A. Sobel, and V. K. Kuchroo. 2003.
274 Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop
275 spontaneous autoimmune optic neuritis. *J. Exp. Med.* 197: 1073–1081.

276 13. Gur-Wahnon, D., T. Mizrachi, F.-Y. Maaravi-Pinto, A. Lourbopoulos, N. Grigoriadis, A.-A.
277 R. Higazi, and T. Brenner. 2013. The plasminogen activator system: involvement in central
278 nervous system inflammation and a potential site for therapeutic intervention. *J
279 Neuroinflammation* 10: 124.

280 14. Pelisch, N., T. Dan, A. Ichimura, H. Sekiguchi, D. E. Vaughan, C. van Ypersele de Strihou,
281 and T. Miyata. 2015. Plasminogen Activator Inhibitor-1 Antagonist TM5484 Attenuates
282 Demyelination and Axonal Degeneration in a Mice Model of Multiple Sclerosis. *PLoS ONE* 10:
283 e0124510.

284 15. Elokdah, H., M. Abou-Gharbia, J. K. Hennan, G. McFarlane, C. P. Mugford, G.
285 Krishnamurthy, and D. L. Crandall. 2004. Tiplaxtinin, a novel, orally efficacious inhibitor of
286 plasminogen activator inhibitor-1: design, synthesis, and preclinical characterization. *J. Med.
287 Chem.* 47: 3491–3494.

288 16. Gorlatova, N. V., J. M. Cale, H. Elokdah, D. Li, K. Fan, M. Warnock, D. L. Crandall, and D.
289 A. Lawrence. 2007. Mechanism of inactivation of plasminogen activator inhibitor-1 by a small
290 molecule inhibitor. *J. Biol. Chem.* 282: 9288–9296.

291 17. Dardalhon, V., A. S. Schubart, J. Reddy, J. H. Meyers, L. Monney, C. A. Sabatos, R. Ahuja,
292 K. Nguyen, G. J. Freeman, E. A. Greenfield, R. A. Sobel, and V. K. Kuchroo. 2005. CD226 is
293 specifically expressed on the surface of Th1 cells and regulates their expansion and effector
294 functions. *J. Immunol.* 175: 1558–1565.

295 18. Jones, R. B., L. C. Ndhlovu, J. D. Barbour, P. M. Sheth, A. R. Jha, B. R. Long, J. C. Wong,
296 M. Satkunarajah, M. Schwenecker, J. M. Chapman, G. Gyenes, B. Vali, M. D. Hyrcza, F. Y. Yue,
297 C. Kovacs, A. Sassi, M. Loutfy, R. Halpenny, D. Persad, G. Spotts, F. M. Hecht, T.-W. Chun, J.
298 M. McCune, R. Kaul, J. M. Rini, D. F. Nixon, and M. A. Ostrowski. 2008. Tim-3 expression

299 defines a novel population of dysfunctional T cells with highly elevated frequencies in
300 progressive HIV-1 infection. *J. Exp. Med.* 205: 2763–2779.

301 19. Jin, H.-T., A. C. Anderson, W. G. Tan, E. E. West, S.-J. Ha, K. Araki, G. J. Freeman, V. K.
302 Kuchroo, and R. Ahmed. 2010. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during
303 chronic viral infection. *Proc. Natl. Acad. Sci. U.S.A.* 107: 14733–14738.

304 20. Sakuishi, K., L. Apetoh, J. M. Sullivan, B. R. Blazar, V. K. Kuchroo, and A. C. Anderson.
305 2010. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor
306 immunity. *J. Exp. Med.* 207: 2187–2194.

307 21. Zhu, C., K. O. Dixon, K. Newcomer, G. Gu, S. Xiao, S. Zaghouani, M. A. Schramm, C.
308 Wang, H. Zhang, K. Goto, E. Christian, M. Rangachari, O. Rosenblatt-Rosen, H. Okada, T. Mak,
309 M. Singer, A. Regev, and V. Kuchroo. 2021. Tim-3 adaptor protein Bat3 is a molecular
310 checkpoint of T cell terminal differentiation and exhaustion. *Sci Adv* 7.

311

312

313

¹ Experimental autoimmune encephalomyelitis

² Multiple sclerosis

³ T cell immunoglobulin and mucin domain-containing-3

⁴ Serine protease inhibitor clade E1

⁵ plasminogen activation inhibitor 1

⁶ C57BL6/J

⁷ Serpine1-WT

⁸ Serpine1-KO

⁹ pMSCV-IRES-GFP

¹⁰ retroviral

¹¹ Myelin oligodendrocyte glycoprotein, amino acids 35-55

¹² overexpression

¹³ I.A. conducted experiments and managed the project. R.T., J.B., A-P.R., P.M.I.A.D and C.Z. conducted experiments. V.K.K. co-supervised the project. M.R. conducted experiments, supervised the project and wrote the manuscript.

¹⁴ The datasets generated for this study are available from the corresponding authors upon reasonable request.

¹⁵ V.K.K. has an ownership stake and is a member of the Scientific Advisory Board for Tizona Therapeutics. Further, he is a co-founder of, and has an ownership stake in, Celsius Therapeutics. In addition, he is an inventor on patents related to Th17 cell function. His interests are reviewed and managed by Brigham & Women's Hospital and Partners Healthcare in accordance with their conflict of interest policies.

314

315 **Figure Legends**

316

317 **Figure 1. Serpine1 inhibits the severity of EAE. A.** *Left*, Representative EAE curve of
318 MOG_[35-55]-immunized WT (n=9) and Serpine1-KO (n=7; abbreviated S1-KO) female mice.
319 *Middle*, linear regression curves of the representative disease courses. The dashed lines indicate
320 the 95% confidence intervals for each curve. *Right*, area-under-curve (AUC) comparison of mice
321 pooled from 3 experiments. Filled circles, female mice (n=14, WT; n=12, Serpine1-KO); open
322 circles, male mice (n=10, WT, n=10, Serpine1-KO). **, p<0.01; two way-ANOVA analysis of
323 genotype as a variable. Incidence of EAE over all experiments was 24/25 WT, 22/24 Serpine1-
324 KO. **B.** MOG_[35-55]-immunized female WT and Serpine1-KO mice (n=3 each) were sacrificed 10
325 days post-immunization, and lymph node cells were stimulated, or not, with 10 µg mL⁻¹ MOG<sub>[35-
326 55]</sub>. Proliferation was assessed at 48 hours. cpm, counts per minute. **, p<0.01, *t*-test. **C.**
327 Splenocytes from immunized female WT and Serpine1-KO mice (n=3 each) were restimulated,
328 or not, with 10 µg mL⁻¹ MOG_[35-55] for 48 (IL-2) or 72 (IFN γ , IL-17) hours, and secretion of the
329 indicated cytokines was measured by ELISA. *, p<0.05; **, p<0.01, *t*-test. **D.** Splenocytes from
330 female 2D2 and Serpine1-KO:2D2 mice were restimulated with MOG_[35-55] in the presence of
331 IL-12 and IL-23, prior to adoptive transfer to WT mice (n=5 each condition) that were monitored
332 for signs of EAE. Right graph, linear regression analysis with 95% confidence intervals. ****,
333 p<0.0001.

334

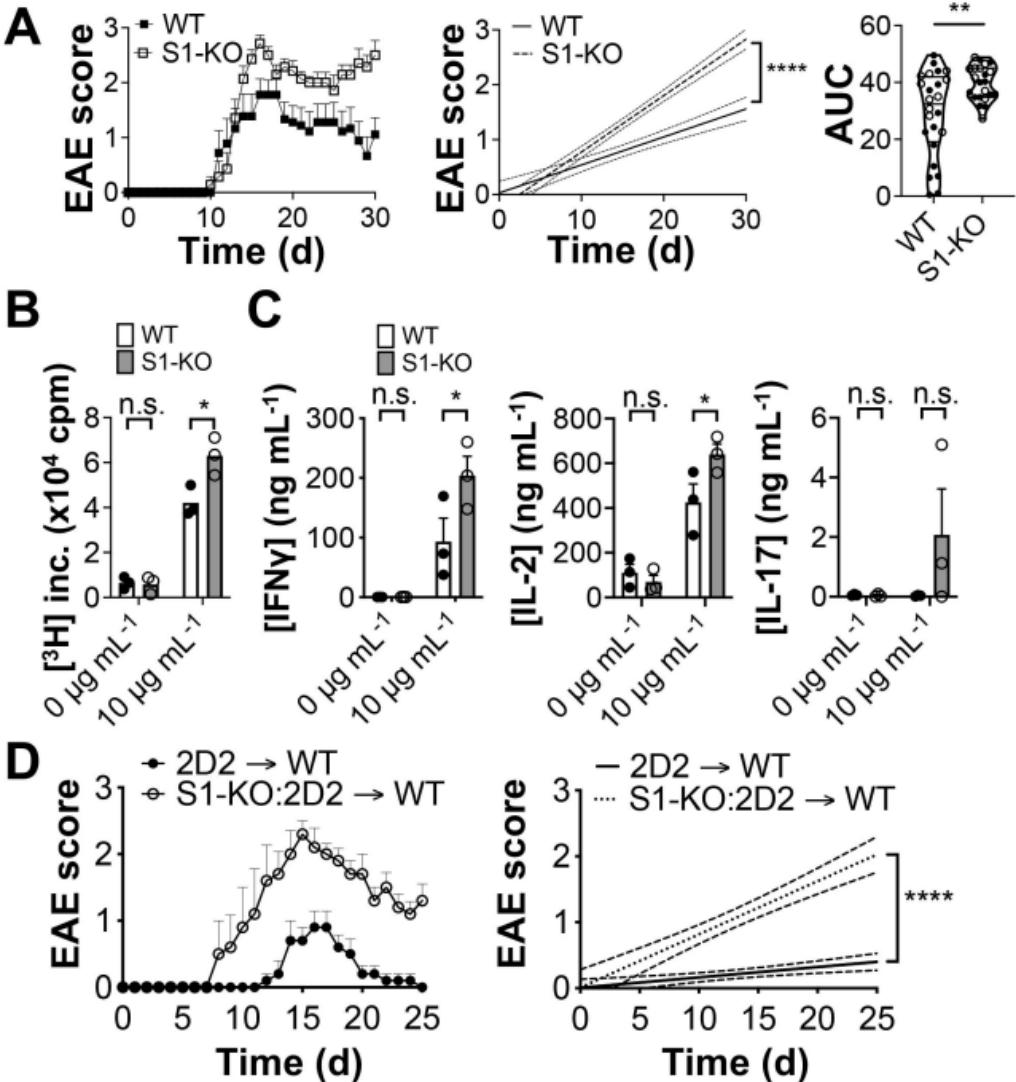
335 **Figure 2. Serpine1 is expressed in Th1 cells and suppresses Th1-driven EAE. A, B.** Naïve
336 CD4⁺CD62L^{hi} T cells were isolated from female B6 mouse spleen and were differentiated under
337 Th1 or Th17 conditions for 2 rounds of polarization. Secretion of Serpine1 protein was measured

338 by ELISA in supernatant from Th1 (**A**) or Th17 (**B**) by ELISA. *, p<0.05; ***, p<0.001, one
339 way ANOVA. Cultures derived from 4 independent mice. **C.** Female B6 Th1 or Th17 cells were
340 transduced with control or Serpine1-OE RV. Cells were analyzed for production of the indicated
341 cytokines after 5 days. Gated on GFP-positive live events. Quantitation represents paired *t*-test
342 analysis of 3 independent cultures each. *, p<0.05. **D.** Female 2D2 Th1 cells were transduced
343 with control- (n=5) or Serpine1-OE (n=4) RV. After 5 days of stimulation, cells were adoptively
344 transferred to *Rag1*^{-/-} recipients who were monitored for signs of EAE. *Bottom*, linear regression
345 curves and 95% confidence intervals, for the disease courses. **E.** At disease endpoint (d35),
346 splenic CD4⁺ T cells from mice in (**D**) were assessed for production of IFN γ and IL-2 by flow
347 cytometry. Gated on live CD4⁺ events. **, p<0.01, *t*-test.

348

349 **Figure 3. Loss of Serpine1 function or expression exacerbates Th1 responses.** **A.** Female B6
350 Th1 cells were treated with DMSO (control) or 25 μ M tiplaxtinin for 5 days, at which point IFN γ
351 and IL-2 were measured by flow cytometry. *, p<0.05, *t*-test; 3 independent observations. **B.**
352 Female 2D2 and Serpine1-KO:2D2 CD4⁺ Th1 cells were transferred i.v. to *Rag1*^{-/-} recipients
353 (2x10⁶ cells/mouse). n=4, 2D2; n=5, Serpine1-KO:2D2. Mice were subsequently assessed for
354 signs of EAE. Left graph, linear regression curves of the disease courses.

355


356 **Figure 4. Serpine1 promotes Tim-3 expression and inhibits Tim-3⁺ Th1 cell inflammatory**
357 **responses.** **A, B.** Female WT and Serpine1-KO:T cells were subjected to 4 successive rounds of
358 Th1 polarization, and Tim-3 (**A,B**) and IFN γ (**B**) were assessed by flow cytometry. (**A**)
359 Quantification of Tim-3 expression at the end of each round. **, p<0.01, one-way ANOVA. **B.**
360 Expression of Tim-3 versus IFN γ after 20 days of total culture (end of round 4). Gated on live

361 CD4⁺ events. Representative of 4 experiments. **C.** Splenic T CD4⁺ T cells from male Tim-3-Tg
362 and Serpine1-KO:Tim-3-Tg mice (n=6 independent cultures from each) were differentiated
363 under Th1 conditions for 5 days. CD4, Tim-3 and IFN γ expression were assessed by flow
364 cytometry, with cells first gated on live CD4⁺Tim-3^{pos} or live CD4⁺Tim-3^{neg}. ***, p<0.001; t-
365 test. **D.** Splenic T CD4⁺ T cells from male Tim-3-Tg and Serpine1-KO:Tim-3-Tg mice (n=3
366 independent cultures from each) were differentiated under Th1 conditions for 5 days. Lag-3 and
367 PD-1 expression were assessed by flow cytometry. *, p<0.05; t-test. Gated on live CD4⁺Tim-3⁺
368 events. **E.** Female WT (n=4), WT Tim-3-Tg (n=5) and Serpine1-KO:Tim-3-Tg (n=14) and mice
369 were immunized with MOG_[35-55] and were monitored for signs of EAE. *Right graph*, linear
370 regression analysis of the disease curves with Bonferroni's correction applied. Representative of
371 3 immunizations.

372

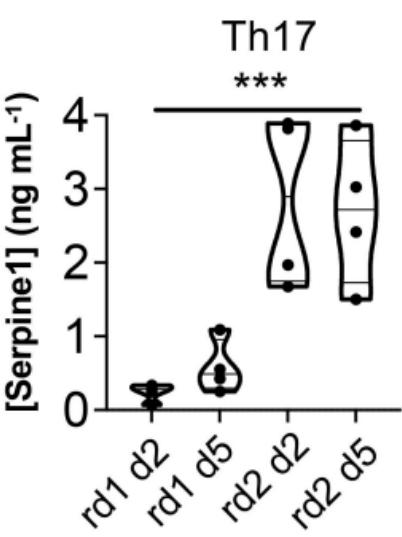
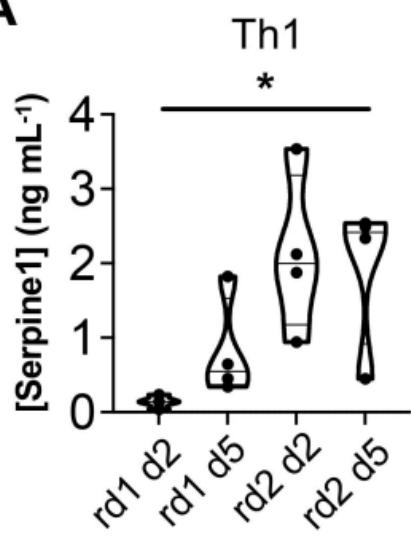


373

Figure 1

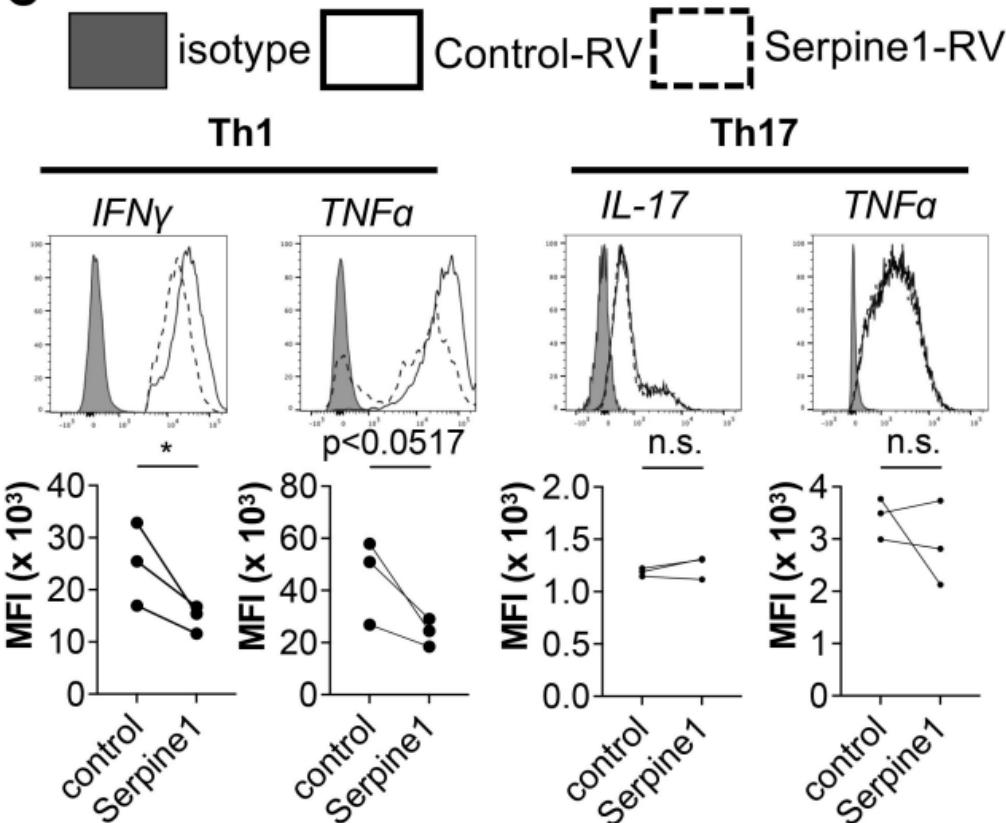
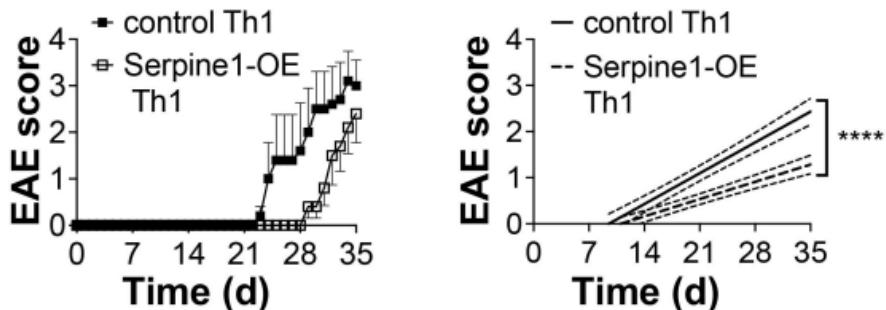
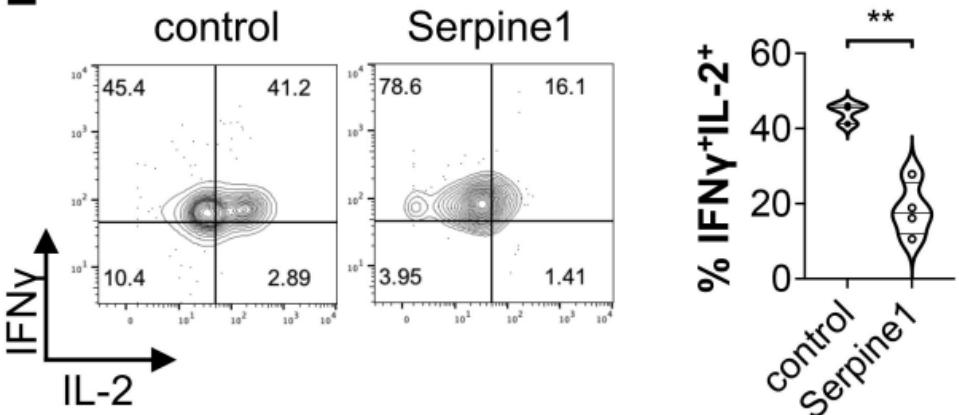
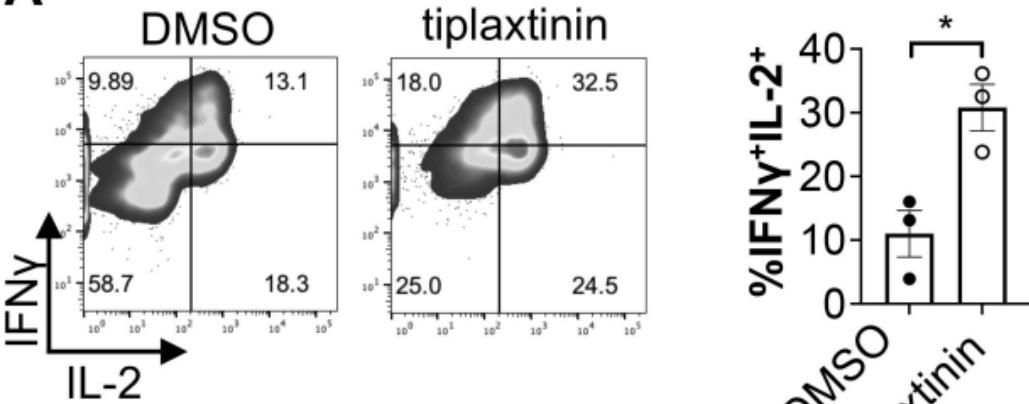


Figure 2


A **B**


C

D



E

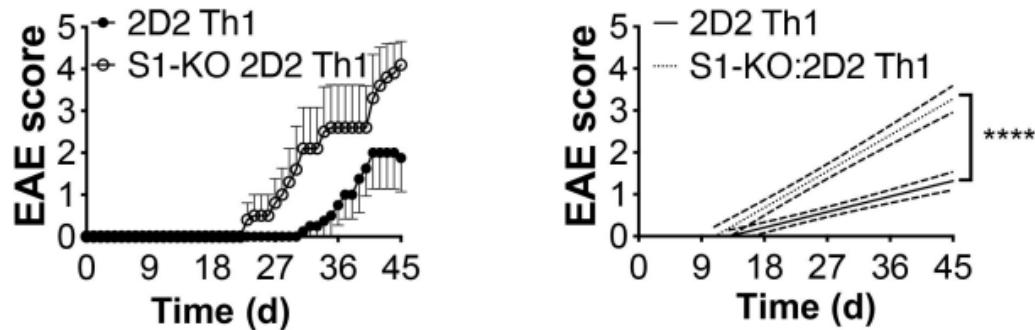
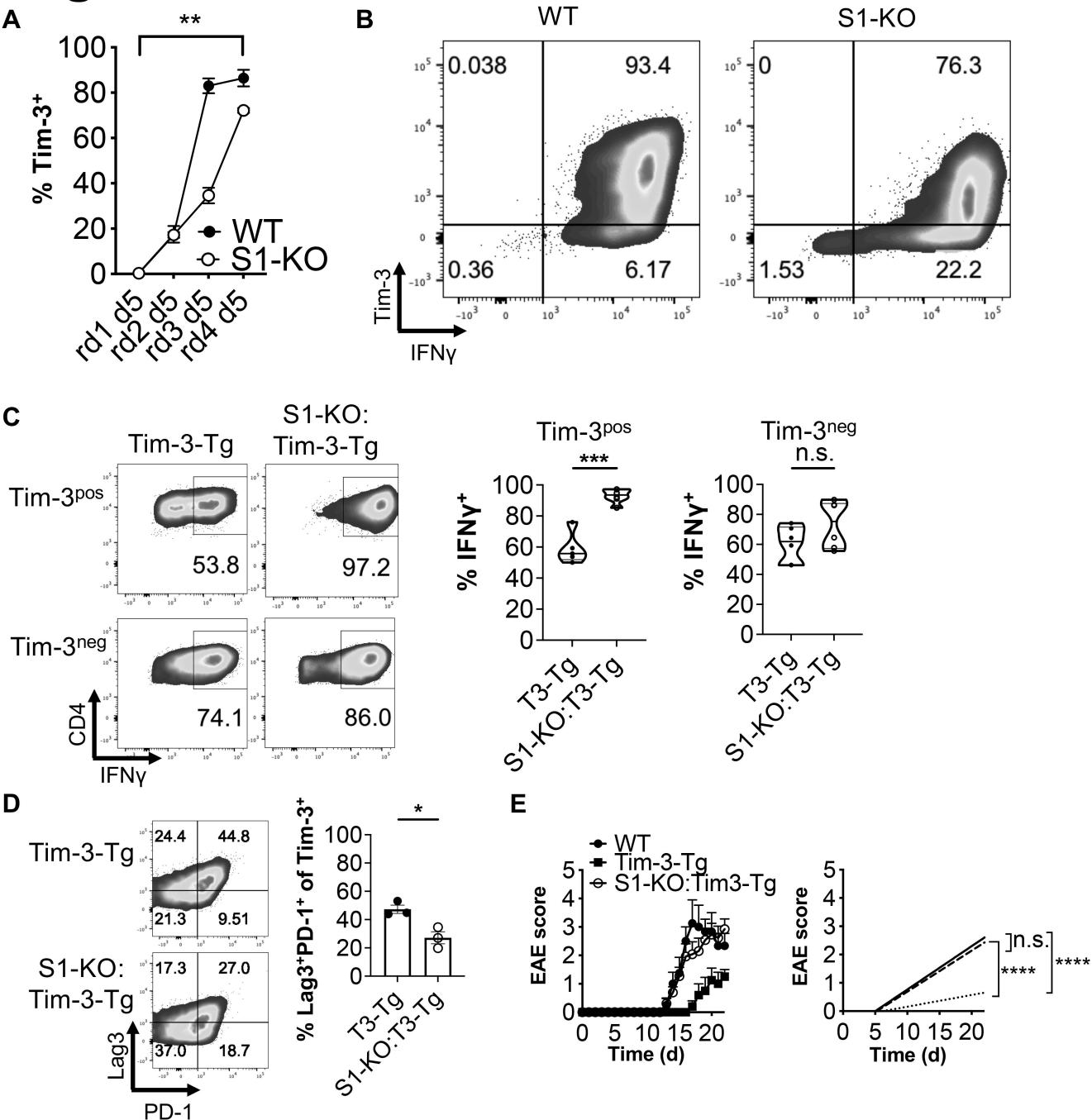


Figure 3


A

B

Figure 4

