

1      **Structural insights into dual-antagonize mechanism of AB928 on adenosine A<sub>2</sub> receptors**

2  
3  
4      Yuan Weng<sup>1#</sup>, Xinyu Yang<sup>1#</sup>, Qiansen Zhang<sup>1#</sup>, Ying Chen<sup>1</sup>, Yueming Xu<sup>1</sup>, Chenyu Zhu<sup>2</sup>, Qiong  
5      Xie<sup>2</sup>, Yonghui Wang<sup>2</sup>, Huaiyu Yang<sup>1</sup>, Mingyao Liu<sup>1</sup>, Weiqiang Lu<sup>1</sup> and Gaojie Song<sup>1</sup>

6  
7  
8      <sup>1</sup> Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School  
9      of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.

10     <sup>2</sup> Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng  
11     Road, Shanghai 201203, China.

12     <sup>#</sup>equal contribution

13  
14

15

16 **Abstract**

17

18 **The adenosine subfamily G protein-coupled receptors A<sub>2A</sub>R and A<sub>2B</sub>R were identified as**  
19 **promising candidates for cancer immunotherapy within recent years. One of the A<sub>2A</sub>R/A<sub>2B</sub>R**  
20 **dual antagonist, AB928, has progressed to phase II clinic trial for the treatment of rectal**  
21 **cancer. However, the precise mechanism underlying its dual-antagonistic properties remains**  
22 **elusive. Herein, we report crystal structures of A<sub>2A</sub>R in complex with AB928 and a selective**  
23 **A<sub>2A</sub>R antagonist, 2-118. The structures reveal a common binding mode on A<sub>2A</sub>R, wherein the**  
24 **ligands establish extensive interactions with residues from both the orthosteric pocket and**  
25 **the secondary pocket. Conversely, the cAMP assay together with molecular dynamics**  
26 **simulations conducted on both A<sub>2A</sub>R and A<sub>2B</sub>R indicate that the ligands adopt distinct**  
27 **binding modes on A<sub>2B</sub>R. Detailed analysis of their chemical structures suggests that AB928**  
28 **can readily adapt to the A<sub>2B</sub>R pocket, while 2-118 cannot due to its intrinsic differences. This**  
29 **disparity potentially accounts for their divergent inhibitory efficacies between A<sub>2B</sub>R and**  
30 **A<sub>2A</sub>R. The findings from this study can serve as valuable structural templates for future**  
31 **development of selective or dual inhibitors targeting A<sub>2A</sub>R/A<sub>2B</sub>R in the context of cancer**  
32 **therapy.**

33

### 34 **Introduction**

35     Cancer immunotherapy has emerged as a potent strategy in the fight against neoplastic diseases,  
36 drawing significant attention from both academia and industry. One of the most promising  
37 approaches in this field involves the development of inhibitors for immune checkpoints, such as  
38 programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1) and cytotoxic T-  
39 lymphocyte-associated protein 4 (CTLA-4) (Marin-Acevedo et al., 2018). These inhibitors have  
40 demonstrated significant success in treating related cancers. Recently, the CD39/CD73/adenosine  
41 axis has been identified as a crucial factor in suppressing immune responses and promoting tumor  
42 growth. This axis works by hydrolyzing extracellular ATP to AMP using CD39, and then further  
43 hydrolyzing AMP to adenosine with CD73. Adenosine then activates A<sub>2A</sub>R and A<sub>2B</sub>R receptors  
44 found on tumor cells, leading to enhanced tumor growth and proliferation. Consequently,  
45 inhibiting either hydrolase or antagonizing the adenosine receptors have been shown to be effective  
46 anti-tumor strategies (Saini et al., 2022; Yu et al., 2020).

47     The adenosine receptor family includes four members, A<sub>1</sub>R, A<sub>2A</sub>R, A<sub>2B</sub>R, and A<sub>3</sub>R, which can  
48 sense adenosine (Fredholm et al., 2001). Among these, A<sub>2A</sub>R and A<sub>2B</sub>R activate adenylyl cyclase  
49 (AC) and produce cyclic AMP (cAMP) by recruiting downstream stimulatory G protein (G<sub>s</sub>). In  
50 contrast, A<sub>1</sub>R and A<sub>3</sub>R trigger the opposite function by recruiting inhibitory G protein (G<sub>i</sub>).  
51 Although A<sub>2B</sub>R is less sensitive to adenosine than A<sub>2A</sub>R, it is activated along with A<sub>2A</sub>R in the  
52 tumor microenvironment (TME), where the concentration of adenosine is much higher than in  
53 normal tissue (Borea et al., 2018). Elevated intracellular cAMP in immune cells can lead to anergy  
54 of several immune cells, including natural killer cells, dendritic cells, and T cells (Beavis et al.,  
55 2015; Dziedzic et al., 2021; Hofer et al., 2021). Therefore, dual-antagonism of both A<sub>2A</sub>R and  
56 A<sub>2B</sub>R has been shown to be a promising strategy compared to selective antagonism.

57     Several small molecular antagonists against individual A<sub>2A</sub>R or A<sub>2B</sub>R have entered clinical trials  
58 to treat different cancers, such as CPI-444 (Iacovelli et al., 2022), AZD4635 (Lim et al., 2022),  
59 and PBF-509 (Chiappori et al., 2022) against A<sub>2A</sub>R, and PBF-1129 (Evans et al., 2023) and TT-4  
60 (Pastore et al., 2021) against A<sub>2B</sub>R. Dual-antagonists, such as AB928 (Seitz et al., 2019) and  
61 M1069 (Zaynagetdinov et al., 2022), are also under clinical evaluation for the treatment of rectal  
62 cancer or solid tumors. The A<sub>2A</sub>R/A<sub>2B</sub>R dual-antagonist AB928 has been reported to outperform  
63 its competitors in preclinical tests (Walters et al., 2017), suggesting potential advantages for dual-  
64 antagonism. While the binding modes of ~40 antagonists have been determined experimentally,

65 there is no complex structure available for dual-antagonists like AB928, hence the molecular  
66 mechanism for dual-antagonism remains elusive. Here, we present high-resolution structures of  
67 A<sub>2A</sub>R in complex with the dual-antagonist AB928 and a close analogue of AB928 that selectively  
68 antagonizes A<sub>2A</sub>R. Our structures, together with molecular dynamics simulations and cell-based  
69 assay, reveal the mechanism for dual-antagonism and the potentially unique binding features on  
70 A<sub>2B</sub>R by these ligands.

71

## 72 **Results**

### 73 **Crystal structures**

74 To elucidate the molecular mechanism underlying the dual-antagonism of AB928, our  
75 investigation commenced with the crystallization of A<sub>2A</sub>R in complex with AB928 (3-[2-amino-  
76 6-[1-[[6-(2-hydroxypropan-2-yl)pyridin-2-yl]methyl]triazol-4-yl]pyrimidin-4-yl]-2-  
77 methylbenzonitrile). The crystallization construct of A<sub>2A</sub>R resembled that of the first inactive  
78 A<sub>2A</sub>R–ZM241385 structure (Jaakola et al., 2008), featuring a T4 lysozyme at intracellular loop 3  
79 (ICL3). The A<sub>2A</sub>R–AB928 complex shared comparable thermal-stability to the A<sub>2A</sub>R–ZM241385  
80 complex and crystallized into an identical lattice (Figure S1). The A<sub>2A</sub>R–AB928 complex crystals  
81 diffracted to 2.37 Å, permitting unambiguous modelling of the ligand (Figure 1A). The solved  
82 complex structure revealed that the AB928 not only inserted deep within the orthosteric pocket  
83 but also extended into the so-called secondary pocket composed of transmembrane helices 1, 2,  
84 and 7 (TM1/2/7) (Figure 1B) (Chen et al., 2022). Most strikingly, the methylbenzonitrile moiety  
85 at the head of AB928 formed hydrophobic contacts with residues V84<sup>3.32</sup>, L85<sup>3.33</sup>, M177<sup>5.38</sup>,  
86 W246<sup>6.48</sup> and H250<sup>6.52</sup>, while its cyano group established a hydrogen bond with T88<sup>3.36</sup>. The central  
87 2-aminopyrimidine moiety engaged in a π-π stacking interaction with the conserved F168 at  
88 extracellular loop 2 (ECL2) and formed hydrogen bonds with E169<sup>ECL2</sup> and N253<sup>6.55</sup>, reminiscent  
89 of other A<sub>2A</sub>R antagonists or agonists of A<sub>2A</sub>R. The adjacent triazole moiety of AB928 exhibited  
90 minimal contact with the receptor, except for indirect hydrogen bonds with S277<sup>7.42</sup> and H278<sup>7.43</sup>  
91 via a water network (Figure 1B). The position of this triazole moiety is likely stabilized by the  
92 pyridine ring at the tail of AB928, which makes extensive non-polar interactions with residues  
93 Y9<sup>1.35</sup>, A63<sup>2.61</sup>, S67<sup>2.65</sup>, Y271<sup>7.36</sup> and I274<sup>7.39</sup> in the secondary pocket. Furthermore, a 2-  
94 hydroxyisopropyl moiety attached to the 2-position of the pyridine ring interacted with L267<sup>7.32</sup>,

95 M270<sup>7.35</sup> and Y271<sup>7.36</sup>, with its hydroxyl group exposed to the solvent environment at the edge of  
96 the orthosteric pocket (Figure 1B).

97 We recently reported structure-activity relationship study of a series of A<sub>2A</sub>R antagonists (Zhu  
98 et al., 2023), in which we described a close analogue of AB928, compound 40 (hereinafter referred  
99 to as 2-118). 2-118 (3-[2-amino-6-[1-[[6-(2-hydroxypropan-2-yl)pyridin-2-yl]methyl]-2-oxo-1,2-  
100 dihydropyridin-4-yl]pyrimidin-4-yl]-2-methylbenzonitrile) has a structure almost identical to that  
101 of AB928, except for the replacement of the triazole moiety in AB928 with a pyridinone ring.  
102 However, compared to AB928, although 2-118 shows comparable antagonism towards A<sub>2A</sub>R, its  
103 activity on A<sub>2B</sub>R is greatly compromised (Zhu et al., 2023). To further explore the distinctions  
104 between these two ligands, we resolved the A<sub>2A</sub>R structure bound to 2-118 using a similar approach  
105 (Figure 1C).

106 The binding model of 2-118 closely resembles that of AB928, with the methylbenzonitrile and  
107 pyridine rings in 2-118 aligning perfectly with the corresponding head and tail moieties of AB928  
108 (Figure 1D). The pyridinone ring of 2-118 partially occupies the position held by the triazole ring  
109 in AB928, with its carbonyl group oriented into the pocket, forming indirect hydrogen bonds with  
110 residues in TM7 (Figure 1D). The water molecules beneath the pyridinone/triazole rings are  
111 conserved in both structures, suggesting their involvement in the interactions between the  
112 antagonists and A<sub>2A</sub>R. Notably, the altered connection introduced by the pyridinone moiety in 2-  
113 118 induces a ~1 Å movement of its pyrimidine moiety, resulting in a similar shift in the side  
114 chains of F168<sup>ECL2</sup>, E169<sup>ECL2</sup>, and N253<sup>6.55</sup>. Nevertheless, despite these minor movements within  
115 the pocket, the overall structures of the 2-118- and AB928-bound A<sub>2A</sub>Rs are highly similar to each  
116 other (C $\alpha$  RMSD 0.18 Å) and exhibit an essentially identical conformation with previous inactive  
117 A<sub>2A</sub>R structures (Figure 2).

118 The AB928- or 2-118-bound A<sub>2A</sub>R structures provide insights into why AB928 outperforms  
119 other antagonists (Walters et al., 2017) (Figure 2, S2). Comparing the locations of two landmark  
120 residues, T88<sup>3.36</sup> and Y271<sup>7.36</sup>, revealed that AB928 or 2-118 occupies the broadest and deepest  
121 position in the pocket of A<sub>2A</sub>R and makes contacts with all helices except TM4 (Figure 2A and B).  
122 In contrast, adenosine derivatives, which are agonists for adenosine receptors, occupy only a  
123 partial space in the horizontal direction but insert even deeper in the vertical direction (Figure 2C).  
124 The association of agonists with deep positions like 3.40 and 6.48 was suggested to be key in  
125 triggering the conformational change for receptor activation (Zhou et al., 2019). Figure 2D showed

126 that the surface areas buried by AB928/2-118 are among the highest of all buried surfaces of  
127 different antagonists. Therefore, it is speculated that AB928/2-118 may have made the best use of  
128 the space within the pockets to antagonize receptor activation.

129

### 130 **Determinants in the secondary pocket**

131 Previous studies have highlighted the importance of specific residues within the orthosteric  
132 pocket for A<sub>2A</sub>AR function (Borodovsky et al., 2020; Doré et al., 2011; Liu et al., 2012; Sun et al.,  
133 2017), including F168<sup>ECL2</sup>, N253<sup>6.55</sup> and W246<sup>6.48</sup>. However, fewer studies have explored the  
134 secondary pocket. AB928/2-118 packed tightly against Y271<sup>7.36</sup> in the secondary pocket (Figure  
135 3A); however, this position is not conserved in A<sub>2B</sub>R, where an equivalent position is occupied by  
136 a glutamine. To validate the function of Y271 in AB928/2-118 recognition we introduced a  
137 Y271<sup>7.36</sup>N mutation in A<sub>2A</sub>AR and measured the inhibitory potency of AB928/2-118. The results  
138 demonstrated that the mutation indeed decreased the potency of AB928 and 2-118 by ~20- and  
139 ~30-fold, respectively (Figure 3B and C). This outcome is aligned with the observation that  
140 Y271<sup>7.36</sup> was displaced away from the core of the helices by 1.6-4.3 Å compared to other A<sub>2A</sub>AR  
141 structures (Figure 3D), suggesting an essential role for Y271 in A<sub>2A</sub>AR's recognition of AB928 and  
142 2-118. In each structure, the side-chain of Y9 points towards the base of the pyridine ring (Figure  
143 3A), while its hydroxyl group at the tip appears to be incompatible with the hydrophobic pyridine  
144 ring in the ligand. Consistently, removal of the hydroxyl group by the Y9<sup>1.35</sup>F mutation slightly  
145 increased the potency of AB928 (1.8-fold) and 2-118 (2.7-fold) (Figure 3B and C).

146 Our cAMP assay confirmed that AB928 can antagonize A<sub>2B</sub>R to a similar single-digit nanomolar  
147 level as A<sub>2A</sub>AR (Figure 3B and E), in contrast to the ~20-fold reduction by the Y271<sup>7.36</sup>N mutant of  
148 A<sub>2A</sub>AR (Figure 3C and F). Interestingly, the corresponding N273<sup>7.36</sup>Y mutation on A<sub>2B</sub>R did not  
149 significantly enhance the potency (IC<sub>50</sub>=7.46 nM), unlike the ~6-fold increase in potency observed  
150 with the Y10<sup>1.35</sup>F mutation on A<sub>2B</sub>AR. These findings suggested that although AB928 may bind to  
151 the pocket of A<sub>2B</sub>AR in a similar manner, the pyridine ring likely adopts a slightly different  
152 orientation that makes little contact with position 7.36. This analysis is also in line with the  
153 incompatible feature between the hydrophobic pyridine ring and the polar N273<sup>7.36</sup> residue.  
154 Meanwhile, compared to AB928, the potency of 2-118 decreased by three orders of magnitude on  
155 A<sub>2B</sub>AR (IC<sub>50</sub>=2.63 uM), and the N273<sup>7.36</sup>Y and Y10<sup>1.35</sup>F mutations on A<sub>2B</sub>AR only partially rescued  
156 the potency by ~2- and ~6-fold, respectively (Figure 3E and F). Together, these results indicated

157 that, although the AB928 and 2-118 adopt similar binding poses in A<sub>2A</sub>R, they probably adopt  
158 different binding poses in A<sub>2B</sub>R, resulting in distinct pharmacological effects. Moreover, the  
159 determinate residue(s) controlling the binding capacity and potency of these two ligands differ  
160 between A<sub>2B</sub>R and A<sub>2A</sub>R.

161

## 162 **MD simulations on AB928/2-118-bound A<sub>2A</sub>R and A<sub>2B</sub>R**

163 To further gain insights into the effects of AB928/2-118, we performed molecular dynamics  
164 (MD) simulations on both adenosine receptors. Firstly, we conducted side-by-side MD simulation  
165 for the A<sub>2A</sub>R-AB928 and A<sub>2A</sub>R-2-118 structures, each lasting ~ 500 ns. The root mean square  
166 deviation (RMSD) of ~1 Å for each A<sub>2A</sub>R ligand suggested a stable orientation for the ligands, and  
167 the receptor remained in an inactive conformation (Figure 4A and B). Quantitatively, T88  
168 preserved hydrogen-bond interactions with AB928 and 2-118 to average percentages of 91.1% and  
169 90.9%, respectively (Figure 4C and D). Despite minor fluctuations, the Y271<sup>7,36</sup> was mostly  
170 stabilized in its original position due to hydrophobic interactions with the pyridine ring of each  
171 ligand. These features aligned well with their strong antagonistic activities.

172 The starting model of A<sub>2B</sub>R was built based on the A<sub>2A</sub>R structures, and the ligands were docked  
173 in a similar manner. Nevertheless, the subsequent MD simulations of modelled AB928 or 2-118  
174 in A<sub>2B</sub>R exhibited larger fluctuations for both ligands (Figure 4E and F). Consistently, the T89<sup>3,36</sup>–  
175 AB928 and T89<sup>3,36</sup>–2-118 hydrogen bonds were only partially maintained in the A<sub>2B</sub>R models  
176 (Figure 4G and H). In contrast to the cyano group that inserted deep into the orthosteric pocket,  
177 the pyridine ring displayed greater dynamic behavior during the simulation, and in later stage, it  
178 even moved out of the secondary pocket (Figure 4F, simulation 3). It is worth to mention that  
179 AB928 performed relatively better than 2-118 in the simulations, as indicated by lower RMSD  
180 values and higher percentages of hydrogen bonding (average 60% vs 33.2%).

181

## 182 **AB928/2-118 adopt distinct binding modes in A<sub>2B</sub>R**

183 The relatively dynamic feature of AB928 on A<sub>2B</sub>R over A<sub>2A</sub>R seems contradictory to the  
184 pharmacological data, which showed a similar level of potency on both receptors. However, the  
185 MD simulations have nevertheless provided potential hints into the docking model of AB928 in  
186 the A<sub>2B</sub>R pocket (Figure 3 and 4). In many snapshots, the ligand exhibited a slight clockwise  
187 rotation from a top view, and the pyridine moiety at the tail of AB928 twisted towards ECL3,

188 forming interactions with two residues, K267<sup>ECL3</sup> and K269<sup>7.32</sup> (Figure S3). These two basic  
189 residues in A<sub>2B</sub>R are not conserved within the adenosine receptor subfamily and correspond to  
190 A<sub>2A</sub>R residues A265<sup>ECL3</sup> and L267<sup>7.32</sup>, respectively. Hence, to explore the role of these residues  
191 we individually mutated them to alanine and test their functional consequences. The cAMP assay  
192 results on A<sub>2B</sub>R showed that the K267<sup>ECL3</sup>A and K269<sup>7.32</sup>A mutations reduced the potency of  
193 AB928 by 3.8- and 4.2-fold, respectively (Figure 5A). Remarkably, the same mutations conversely  
194 increased the potency of 2-118 on A<sub>2B</sub>R by 4-5-fold (Figure 5B). These results suggest that the  
195 K267<sup>ECL3</sup> and K269<sup>7.32</sup> are indeed involved in the interaction with AB928, potentially  
196 compensating for the absence of a bulky side-chain at position 7.36 in A<sub>2B</sub>R. On the contrary, the  
197 bulky side-chains on K267<sup>ECL3</sup> and K269<sup>7.32</sup> may impede the docking of 2-118, thus removal of  
198 these side-chains are beneficial for the inhibitory function of 2-118. Hence, these results further  
199 suggested that although the AB928 and 2-118 adopt similar binding poses in A<sub>2A</sub>R, they may adopt  
200 different binding poses in A<sub>2B</sub>R according to the simulations and mutagenesis results.

201 Previous references have identified a key position (6.51) within the orthosteric pocket (Chen et  
202 al., 2022; Wang et al., 2021), which is a leucine in A<sub>2A</sub>R but occupied by a smaller residue,  
203 V250<sup>6.51</sup>, in A<sub>2B</sub>R. The active structures of A<sub>2A</sub>R/A<sub>2B</sub>R bound to 5'-N-ethylcarboxamidoadenosine  
204 (NECA) revealed that the ribose moiety of NECA undergoes a rotation and moves toward the  
205 V250<sup>6.51</sup> in A<sub>2B</sub>R to establish hydrophobic contacts (Figure S4A). Combining this knowledge with  
206 our results strongly supports a specific snapshot, in which the methylbenzonitrile moiety of AB928  
207 adopts a similar position as in A<sub>2A</sub>R and hydrogen bonds to the T89<sup>3.36</sup>, while the pyrimidine  
208 moiety rotates and establishes similar contacts with V250<sup>6.51</sup> in A<sub>2B</sub>R (Figure S4B). Fine-tuning  
209 of the pyrimidine moiety further results in a slant upward movement of the pyridine ring by 2.5 Å,  
210 with one of the methyl groups at the tail being flanked by the bulky side-chains of K267<sup>ECL3</sup> and  
211 K269<sup>7.32</sup> (Figure 5C).

212 In contrast to a plausible model for the AB928–A<sub>2B</sub>R complex and the high potency of AB928,  
213 2-118 exhibits significantly weaker inhibition, suggesting a similar binding model may not  
214 applicable to 2-118. The only difference between 2-118 and AB928 lies in the pyridinone ring,  
215 with the 2-aminopyrimidine and pyridine moieties connected to the para-positions of the  
216 pyridinone ring in 2-118. In AB928, the same moieties are connected to the triazole ring through  
217 the 4' and 1' positions, resulting in an angle of ~144° between the 2-aminopyrimidine and pyridine  
218 moieties (Figure 5D). This 36° angle difference leads to a lift of the pyridine tail by ~2 Å in AB928

219 compared to 2-118 when their 2-aminopyrimidine moieties are superimposed (Figure 5D). The  
220 lower position of the pyridine ring in 2-118 may cause steric incompatible between the pyridine  
221 moiety and the extracellular tip of TM7 when the pyrimidine moiety rotates towards TM6 to  
222 accommodate the shorter side-chain of V250<sup>6,51</sup> (Figure 5E). The mutagenesis data showing that  
223 the K267<sup>ECL3</sup>A and K269<sup>7,32</sup>A significantly improve the efficacy of 2-118 are supportive of this  
224 hypothesis. Nevertheless, we cannot rule out that other residues from ECLs of A<sub>2B</sub>R may also  
225 played critical roles in the recognition of AB928 and 2-118. The detailed mechanism may rely on  
226 determination of the high-resolution inactive structure of A<sub>2B</sub>R in complex with AB928 and 2-118.  
227

## 228 **Discussion**

229 Here we determined crystal structures of A<sub>2B</sub>R in complex with the A<sub>2A</sub>R/A<sub>2B</sub>R dual antagonist  
230 AB928 and a A<sub>2A</sub>R-selective antagonist 2-118. The structures revealed a common binding mode  
231 on A<sub>2A</sub>R in which the ligands form extensive interactions with residues from the orthosteric and  
232 secondary pockets. The complex structures can explain many pharmacological data on AB928 or  
233 2-118 derivatives. For example, the hydrogen bond contributed by the cyano group explained why  
234 the methylbenzonitrile moiety is better than a furan moiety in the corresponding position of many  
235 antagonists, and the interactions contributed by the 2-hydroxyisopropyl moiety account for why it  
236 is superior to other substituents, and why the substitution should be located at the 2' position (Zhu  
237 et al., 2023).

238 Notably, an unprecedent hydrogen bond interaction occurs between T88 of A<sub>2A</sub>R and the cyano  
239 group of AB928/2-118. Such a polar contact is commonly observed between A<sub>2A</sub>R and its agonists,  
240 such as NECA, but has never been seen in previous antagonist-bound A<sub>2A</sub>R structures. Since T88  
241 is conserved throughout the adenosine receptor subfamily, this feature may be utilized in future  
242 design of antagonists for adenosine receptors. Additionally, the insertion of the pyridine ring of  
243 AB928 into the secondary pocket may further explain why AB928 outperforms other antagonists,  
244 as extending the ligand from orthosteric pocket to the secondary pocket also displaces several  
245 water molecules within the ligand binding pocket. In comparison to high-resolution structures of  
246 A<sub>2A</sub>R in complex with ZM241385 (PDB: 4EIY) (Liu et al., 2012) and PSB-2113 (PDB: 7PX4)  
247 (Claff et al., 2022), AB928 displaces 4 and 3 water molecules in the ligand binding pocket,  
248 respectively (Figure S5). These waters within the pocket are referred to as “unhappy water”, and  
249 their displacement by ligands is considered energetically favorable (Mason et al., 2013). It is worth

250 noting that another clinical investigational drug, AZD4635, also extends toward the secondary  
251 pocket and displaces several waters within the pocket, despite having one of the smallest receptor-  
252 binding interfaces among typical antagonists (Figure 2D) (Borodovsky et al., 2020).

253 We propose potential binding models for AB928/2-118 on A<sub>2</sub>BR. AB928 may undergo a subtle  
254 rotation towards V250<sup>6.51</sup> to occupy the space left by the L/V<sup>6.51</sup> variation, and its pyridine ring  
255 moves slightly out of the secondary pocket and makes contacts with the basic residues at ECL3.  
256 In contrast, the pyridine ring in 2-118 may collide with TM6 during rotation due to its different  
257 linkage. While both AB928 and 2-118 can rotate around the C-C and C-N bonds between the  
258 pyridine and the triazole/pyridinone rings when dock to their pockets, the rotations in 2-118 are  
259 evidently more restricted because of its larger pyridinone ring (Figure 4D). Therefore, 2-118 may  
260 need to make further adjustments in other directions, potentially disrupting interactions in the  
261 orthosteric pocket (e.g., the hydrogen bond contributed by the cyano group), this is probably the  
262 reason why, despite its similarity to AB928, its inhibitory potency is greatly compromised. These  
263 models on A<sub>2</sub>BR reveal both similar and distinct features compared to the binding modes observed  
264 in A<sub>2</sub>AR crystal structures, and effectively explain our mutagenesis data on A<sub>2</sub>BR.

265 While we were preparing our manuscript, Claff *et al.* reported crystal structures of A<sub>2</sub>AR-AB928  
266 with thermostabilized mutations (Claff et al., 2023). The binding mode revealed in that structures  
267 is largely similar with our AB928-bound WT A<sub>2</sub>AR structure with only tiny vibrations. However,  
268 that study did not investigate into the ligand's potential binding mode on A<sub>2</sub>BR, thus advanced  
269 little on the dual-antagonism mechanism on A<sub>2</sub>AR/A<sub>2</sub>BR.

270 In conclusion, the crystal structures of A<sub>2</sub>AR in complex with AB928/2-118, along with the  
271 cAMP assay and MD simulations performed on both A<sub>2</sub>AR and A<sub>2</sub>BR, provide evidence that each  
272 ligand adopts a unique binding model on A<sub>2</sub>BR, which potentially explain their different inhibitory  
273 efficacies between A<sub>2</sub>BR and A<sub>2</sub>AR. This study can be used as structural templates for future  
274 development of selective or dual inhibitors against A<sub>2</sub>AR/A<sub>2</sub>BR for the treatment of related cancers.  
275  
276  
277  
278  
279

280 **MATERIALS AND METHODS**

281

282 **A<sub>2</sub>AR construct design, expression and purification**

283 Human A<sub>2</sub>AR (residues 2-316) was cloned into a modified pFastBac1 vector containing a  
284 hemagglutinin (HA) signal peptide and a FLAG tag at the N-terminus, 10 $\times$ His-tag at the C-  
285 terminus. In order to facilitate protein crystallization, the ICL3 of A<sub>2</sub>AR (residues K209–A221)  
286 was replaced with bacteriophage T4 lysozyme (T4L). Recombinant baculovirus expressing A<sub>2</sub>AR  
287 was prepared using Bac-to-Bac system (Invitrogen). *Spodoptera frugiperda* 9 (Sf9) insect cells  
288 were cultured in ESF921 medium and infected by 1%(v/v) high-titter baculoviruses at the density  
289 of 2–3 $\times$ 10<sup>6</sup> cells/ml. 1 L of Sf9 cells expressing A<sub>2</sub>AR were harvested 60 hours post infection by  
290 centrifugation, flash-frozen in liquid nitrogen and stored at –80°C for purification.

291 Cell pellets were thawed and resuspended using dounce tissue grinder in a hypotonic buffer  
292 containing 10 mM HEPES pH 7.5, 10 mM MgCl<sub>2</sub>, 20 mM KCl and EDTA-free protease-inhibitor  
293 cocktail (Bimake) twice, followed by three washes of a high salt buffer containing 10 mM HEPES  
294 pH 7.5, 10 mM MgCl<sub>2</sub>, 20 mM KCl, 1 M NaCl with EDTA-free protease-inhibitor cocktail. The  
295 membrane was collected by centrifugation at 150,000  $\times$ g during each procedure above, then  
296 resuspended by the hypotonic buffer described above with an addition of 4 mM theophylline  
297 (Sigma), 2.0 mg/ml iodoacetamide (Sigma) and EDTA-free protease-inhibitor cocktail. After a 30-  
298 min incubation at 4°C in the dark, the membranes were solubilized by incubating with an addition  
299 of 1% (w/v) n-dodecyl- $\beta$ -D-maltoside (DDM, Anatrace) and 0.2% (w/v) cholesterol hemisuccinate  
300 (CHS, Sigma) for 3.5 h at 4°C. Insoluble materials were removed by centrifugation at 150,000  $\times$ g  
301 and the supernatant was isolated, added with 0.8 ml pure TALON IMAC (Clontech) resin and 20  
302 mM imidazole, left to rock gently at 4°C overnight. The resin was washed with 2 $\times$ 10 column  
303 volumes (CV) of wash buffer 1 (25 mM HEPES pH 7.5, 500 mM NaCl, 5% (v/v) glycerol, 0.05%  
304 DDM, 0.01% CHS, 30 mM imidazole and 20  $\mu$ M AB928 or 2-118), followed by another 10 CV  
305 of wash buffer 2 (25 mM HEPES pH 7.5, 500 mM NaCl, 5% glycerol, 0.025% DDM, 0.005%  
306 CHS, 30 mM imidazole and 20  $\mu$ M AB928 or 2-118) and then eluted with 3 CV of elution buffer  
307 (25 mM HEPES pH 7.5, 500 mM NaCl, 5% glycerol, 0.025% DDM, 0.005% CHS, 300 mM  
308 imidazole and 100  $\mu$ M AB928 or 2-118). The elution was concentrated with an Amicon centrifugal  
309 ultrafiltration unit (Millipore) with 100 kDa molecular-weight cut-off (MWCO). The concentrated  
310 samples were checked using high-performance liquid chromatography (HPLC) and gel  
311 electrophoresis.

312

### 313 **Thermal-shift assay**

314 N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide (CPM, Sigma) was dissolved  
315 in DMSO at 4 mg/ml as stock solution and diluted 20 times using a buffer containing 25 mM  
316 HEPES, pH 7.5, 500 mM NaCl, 5% glycerol, 0.01% DDM, 0.002% CHS before use. 0.5–1.0 µg  
317 purified A<sub>2A</sub>R diluted in the same buffer above at a final volume of 49 µl was incubated with 1 µl  
318 diluted CPM. For A<sub>2A</sub>R prepared for thermal-shift assay, no antagonists were added during  
319 purification and each antagonist was added only to each sample at a final concentration of 80 µM.  
320 The thermal-shift assay was performed by a Cary Eclipse fluorescence spectrophotometer (Agilent)  
321 with an excitation wavelength set to 365 nm and an emission wavelength detected at 460 nm. All  
322 assays were performed over temperature ranging from 25 to 90°C. Data were processed with  
323 GraphPad Prism 8.0 (GraphPad Software) and nonlinear curve-fitting was performed using  
324 Boltzmann sigmoidal.

325

### 326 **Crystallization**

327 Purified A<sub>2A</sub>R was co-crystallized with AB928 or 2-118 using lipid cubic phase (LCP)  
328 technology. Concentrated A<sub>2A</sub>R (>15mg/ml) was mixed with lipid [10% (w/w) cholesterol, 90%  
329 (w/w) monoolein] at a ratio of 2:3 (v:v, protein:lipid) in a custom 2×100 µl model 1700 Gastight  
330 glass syringe mixer (Hamilton) to prepare an LCP mixture. Then each well on a 96-well LCP  
331 sandwich plate (FAstal BioTech) was loaded with 50 nl of this mixture, followed by an overlay  
332 with 0.8 µl of different precipitant solution using NT8 automatic dispenser (Formulatrix), sealed  
333 with glass cover and stored at 18°C for crystal growth. Diffracting-quality A<sub>2A</sub>R–AB928 crystals  
334 were obtained in the condition containing 100 mM sodium cacodylate trihydrate, 120 mM  
335 ammonium tartrate dibasic and 32% PEG 400. Diffracting-quality A<sub>2A</sub>R–2-118 crystals were  
336 obtained in the condition containing 100 mM sodium cacodylate trihydrate, 200 mM sodium  
337 tartrate dibasic dihydrate and 30% PEG 400. Crystals were harvested using Dual-Thickness  
338 MicroMounts (MiTeGen) loops and kept in cryo-pucks stored in liquid nitrogen before diffraction  
339 study.

340

### 341 **Data collection and model building**

342 X-ray diffraction data were collected on beamline 45XU with an automatic data collection  
343 program at the Japan synchrotron radiation SPring-8 facility with the 10 $\mu$ m beam with 0.1 s  
344 exposures and an oscillation of 0.1° per frame. For each crystal we collected totally 10° of  
345 diffraction data, and all data were then automatically processed with the program KAMO  
346 (Yamashita et al., 2018), and indexed, integrated and scaled using XDS (Kabsch, 2010). The  
347 structure was solved by molecular replacement with Phaser (McCoy et al., 2007) using the  
348 ZM241385-bound A<sub>2</sub>AR structure (PDB ID 3EML) as the search model. Resulting model  
349 refinement and rebuilding were performed using Phenix (Adams et al., 2010) and Coot (Emsley et  
350 al., 2010). Statistics are provided in Table S1. The 3D figures in this article were prepared with  
351 PyMOL Version 2.3 (PyMOL Molecular Graphics System, Schrödinger, LLC).

352

### 353 **Cell culture**

354 HEK293 human embryonic kidney cells were purchased from the Cell Bank of the Chinese  
355 Academy of Sciences (Shanghai, China). HEK293 cells were maintained in DMEM medium  
356 (Gibco, USA) supplemented with 1% penicillin-streptomycin solution (Gibco, USA) and 10%  
357 fetal bovine serum (FBS, Gibco, USA) in a 37 °C humidified incubator with 5% CO<sub>2</sub>.

358

### 359 **GloSensor cAMP Assay**

360 GloSensor cAMP Assay was conducted as described in our previously studies (He et al., 2022;  
361 Kumar et al., 2017). In brief, HEK293 cells in a 6-cm dish were transiently transfected with 1  $\mu$ g  
362 of pGloSensor-22F cAMP plasmid (Promega, USA) and 1  $\mu$ g of human wild-type or mutated A<sub>2</sub>AR  
363 or A<sub>2B</sub>R overexpression plasmid using polyethyleneglycol (6  $\mu$ l, Yeasen, China). After 24-h  
364 incubation, transfected cells were harvested and re-seeded into 384-well white plates (Costar, USA)  
365 at a density of 20,000 cells per well in equilibration with CO<sub>2</sub>-independent medium (Gibco,  
366 USA) supplemented with 1% (v/v) GloSensor™ cAMP reagent (Promega, USA). Then, cells were  
367 pre-treated for 30 min with a series of concentrations of compounds and subsequently stimulated  
368 with NECA (MCE, USA). The bioluminescence intensity was acquired continuously for 30 min  
369 by a Cyvation 5 imaging reader (BioTek, USA).

370

### 371 **MD simulations**

372 For A<sub>2A</sub>R simulation systems, the simulations were initiated using the 2-118-bound and AB928-  
373 bound A<sub>2A</sub>R crystal structures with the T4L removed. For A<sub>2B</sub>R simulation systems, A<sub>2B</sub>R  
374 structures were modelled from 2-118-bound and AB928-bound A<sub>2A</sub>R crystal structures, and  
375 ligands were directly aligned to A<sub>2B</sub>R. Next, the CHARMM-GUI server (Wu et al., 2014) was  
376 used to insert them into POPC (palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane. And  
377 TIP3P waters were added on the top and bottom of these simulation systems. In all, 0.15 mol/L  
378 NaCl ions and counterions were finally added to solvent. Neutral acetyl and methylamide groups  
379 were added to cap the N- and C-termini of protein chains, respectively. For each of these four  
380 simulation conditions, we performed 3 independent simulations in which initial atom velocities  
381 were assigned randomly and independently.

382 All MD simulations were performed using the GROMACS2020.2 package with the  
383 CHARMM36m forcefield (Huang et al., 2017). Parameters for ligands with high penalty scores  
384 were generated with CGenFF program (Vanommeslaeghe and MacKerell, 2012). Before the final  
385 production run of 500-ns simulations, 50,000 steps of energy minimization were performed for  
386 each system followed by equilibration in the NPT ensembles for 20-ns, with positional restraints  
387 (1,000 kJ mol<sup>-1</sup> nm<sup>-2</sup>) placed on heavy atoms of protein and ligands. System temperature was  
388 maintained at 300 K using the v-rescale method with a coupling time of 0.1 ps and pressure was  
389 maintained at 1 bar using the Berendsen barostat with a coupling time of 1.0 ps and compressibility  
390 of  $4.5 \times 10^{-5}$  bar<sup>-1</sup> with semi-isotropic coupling. A 2-fs timestep and LINCS constrained bond  
391 lengths were set during these simulations. Electrostatic interactions were computed using the  
392 particle mesh Ewald (PME) method with non-bonded interactions cut at 1.2 nm. The results of the  
393 MD simulations were analyzed by GROMACS tools.

394

395

396

## 397 **References**

398 Adams, P.D., Afonine, P.V., Bunkóczki, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W.,  
399 Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based  
400 system for macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* 66: 213-221  
401 Beavis, P.A., Milenkovski, N., Henderson, M.A., John, L.B., Allard, B., Loi, S., Kershaw, M.H., Stagg,  
402 J., Darcy, P.K. (2015). Adenosine Receptor 2A Blockade Increases the Efficacy of Anti-PD-1  
403 through Enhanced Antitumor T-cell Responses. *Cancer Immunol Res* 3: 506-517

404 Borea, P.A., Gessi, S., Merighi, S., Vincenzi, F., Varani, K. (2018). Pharmacology of Adenosine  
405 Receptors: The State of the Art. *Physiol Rev* 98: 1591-1625

406 Borodovsky, A., Barbon, C.M., Wang, Y., Ye, M., Prickett, L., Chandra, D., Shaw, J., Deng, N.,  
407 Sachsenmeier, K., Clarke, J.D., et al. (2020). Small molecule AZD4635 inhibitor of A(2A)R  
408 signaling rescues immune cell function including CD103(+) dendritic cells enhancing anti-tumor  
409 immunity. *J Immunother Cancer* 8:

410 Chen, Y., Zhang, J., Weng, Y., Xu, Y., Lu, W., Liu, W., Liu, M., Hua, T., Song, G. (2022). Cryo-EM  
411 structure of the human adenosine A(2B) receptor-G(s) signaling complex. *Sci Adv* 8: eadd3709

412 Chiappori, A.A., Creelan, B., Tanvetyanon, T., Gray, J.E., Haura, E.B., Thapa, R., Barlow, M.L., Chen,  
413 Z., Chen, D.T., Beg, A.A., et al. (2022). Phase I Study of Taminadenant (PBF509/NIR178), an  
414 Adenosine 2A Receptor Antagonist, with or without Spatalizumab (PDR001), in Patients with  
415 Advanced Non-Small Cell Lung Cancer. *Clin Cancer Res* 28: 2313-2320

416 Claff, T., Klapschinski, T.A., Tiruttani Subhramanyam, U.K., Vaaßen, V.J., Schlegel, J.G., Vielmuth,  
417 C., Voß, J.H., Labahn, J., Müller, C.E. (2022). Single Stabilizing Point Mutation Enables High-  
418 Resolution Co-Crystal Structures of the Adenosine A(2A) Receptor with Preladenant Conjugates.  
419 *Angew Chem Int Ed Engl* 61: e202115545

420 Claff, T., Schlegel, J.G., Voss, J.H., Vaaßen, V.J., Weiße, R.H., Cheng, R.K.Y., Markovic-Mueller, S.,  
421 Bucher, D., Sträter, N., Müller, C.E. (2023). Crystal structure of adenosine A2A receptor in  
422 complex with clinical candidate Etrumadenant reveals unprecedented antagonist interaction.  
423 *Communications Chemistry* 6: 106

424 Doré, A.S., Robertson, N., Errey, J.C., Ng, I., Hollenstein, K., Tehan, B., Hurrell, E., Bennett, K.,  
425 Congreve, M., Magnani, F., et al. (2011). Structure of the adenosine A(2A) receptor in complex  
426 with ZM241385 and the xanthines XAC and caffeine. *Structure* 19: 1283-1293

427 Dziedzic, K., Węgrzyn, P., Gałęzowski, M., Bońkowska, M., Grycuk, K., Satała, G., Wiatrowska, K.,  
428 Wiklik, K., Brzózka, K., Nowak, M. (2021). Release of adenosine-induced immunosuppression:  
429 Comprehensive characterization of dual A(2A)/A(2B) receptor antagonist. *Int  
430 Immunopharmacol* 96: 107645

431 Emsley, P., Lohkamp, B., Scott, W.G., Cowtan, K. (2010). Features and development of Coot. *Acta  
432 Crystallogr D Biol Crystallogr* 66: 486-501

433 Evans, J.V., Suman, S., Goruganthu, M.U.L., Tchekneva, E.E., Guan, S., Arasada, R.R., Antonucci,  
434 A., Piao, L., Ilgisonis, I., Bobko, A.A., et al. (2023). Improving combination therapies: Targeting  
435 A2B adenosine receptor to modulate metabolic tumor microenvironment and  
436 immunosuppression. *J Natl Cancer Inst*

437 Fredholm, B.B., Ap, I.J., Jacobson, K.A., Klotz, K.N., Linden, J. (2001). International Union of  
438 Pharmacology. XXV. Nomenclature and classification of adenosine receptors. *Pharmacol Rev* 53:  
439 527-552

440 He, J., Lin, X., Meng, F., Zhao, Y., Wang, W., Zhang, Y., Chai, X., Zhang, Y., Yu, W., Yang, J., et al.  
441 (2022). A Novel Small Molecular Prostaglandin Receptor EP4 Antagonist, L001, Suppresses  
442 Pancreatic Cancer Metastasis. *Molecules* 27:

443 Hofer, F., Di Sario, G., Musiu, C., Sartoris, S., De Sanctis, F., Ugel, S. (2021). A Complex Metabolic  
444 Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs)  
445 within the Tumour Microenvironment. *Cells* 10:

446 Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B.L., Grubmüller, H., Mackerell,  
447 A.D., Jr. (2017). CHARMM36m: an improved force field for folded and intrinsically disordered  
448 proteins. *Nat Methods* 14: 71-73

449 Iacovelli, R., Ciccarese, C., Procopio, G., Astore, S., Cannella, M.A., Maratta, M.G., Rizzo, M.,  
450 Verzoni, E., Porta, C., Tortora, G. (2022). Current evidence for second-line treatment in  
451 metastatic renal cell carcinoma after progression to immune-based combinations. *Cancer Treat  
452 Rev* 105: 102379

453 Jaakola, V.P., Griffith, M.T., Hanson, M.A., Cherezov, V., Chien, E.Y., Lane, J.R., Ijzerman, A.P.,  
454 Stevens, R.C. (2008). The 2.6 angstrom crystal structure of a human A2A adenosine receptor  
455 bound to an antagonist. *Science* 322: 1211-1217

456 Kabsch, W. (2010). XDS. *Acta Crystallogr D Biol Crystallogr* 66: 125-132

457 Kumar, B.A., Kumari, P., Sona, C., Yadav, P.N. (2017). GloSensor assay for discovery of GPCR-  
458 selective ligands. *Methods Cell Biol* 142: 27-50

459 Lim, E.A., Bendell, J.C., Falchook, G.S., Bauer, T.M., Drake, C.G., Choe, J.H., George, D.J., Karlix,  
460 J.L., Ulahannan, S., Sachsenmeier, K.F., et al. (2022). Phase Ia/b, Open-Label, Multicenter Study  
461 of AZD4635 (an Adenosine A2A Receptor Antagonist) as Monotherapy or Combined with  
462 Durvalumab, in Patients with Solid Tumors. *Clin Cancer Res* 28: 4871-4884

463 Liu, W., Chun, E., Thompson, A.A., Chubukov, P., Xu, F., Katritch, V., Han, G.W., Roth, C.B.,  
464 Heitman, L.H., Ap, I.J., et al. (2012). Structural basis for allosteric regulation of GPCRs by sodium  
465 ions. *Science* 337: 232-236

466 Marin-Acevedo, J.A., Dholaria, B., Soyano, A.E., Knutson, K.L., Chumsri, S., Lou, Y. (2018). Next  
467 generation of immune checkpoint therapy in cancer: new developments and challenges. *J  
468 Hematol Oncol* 11: 39

469 Mason, J.S., Bortolato, A., Weiss, D.R., Deflorian, F., Tehan, B., Marshall, F.H. (2013). High end  
470 GPCR design: crafted ligand design and druggability analysis using protein structure, lipophilic  
471 hotspots and explicit water networks. *In Silico Pharmacology* 1: 23

472 Mccoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J. (2007).  
473 Phaser crystallographic software. *J Appl Crystallogr* 40: 658-674

474 Pastore, D.R., Kumar, S., Schwartz, B., Mookhtiar, K., Reddy, V. (2021). 257 Combination of  
475 adenosine antagonists A2AR (TT-10) and A2BR (TT-4) with checkpoint inhibitors demonstrate  
476 anti-tumor activity in CT-26 murine colon tumor allograft model. *Journal for ImmunoTherapy of  
477 Cancer* 9: A279-A279

478 Saini, A., Patel, R., Gaba, S., Singh, G., Gupta, G.D., Monga, V. (2022). Adenosine receptor  
479 antagonists: Recent advances and therapeutic perspective. *Eur J Med Chem* 227: 113907

480 Seitz, L., Jin, L., Leleti, M., Ashok, D., Jeffrey, J., Rieger, A., Tiessen, R.G., Arold, G., Tan, J.B.L.,  
481 Powers, J.P., et al. (2019). Safety, tolerability, and pharmacology of AB928, a novel dual  
482 adenosine receptor antagonist, in a randomized, phase 1 study in healthy volunteers. *Invest  
483 New Drugs* 37: 711-721

484 Sun, B., Bachhawat, P., Chu, M.L.-H., Wood, M., Ceska, T., Sands, Z.A., Mercier, J., Lebon, F.,  
485 Kobilka, T.S., Kobilka, B.K. (2017). Crystal structure of the adenosine A<sub>2A</sub> receptor  
486 bound to an antagonist reveals a potential allosteric pocket. *Proceedings of the National  
487 Academy of Sciences* 114: 2066-2071

488 Vanommeslaeghe, K., Mackerell, A.D., Jr. (2012). Automation of the CHARMM General Force  
489 Field (CGenFF) I: bond perception and atom typing. *J Chem Inf Model* 52: 3144-3154

490 Walters, M.J., Tan, J.B., Becker, A., Yi, F., Powers, J.P. (2017). Abstract 4572: Characterization of  
491 the potent and selective A2aR antagonist AB928 for the treatment of cancer. *Cancer Research*  
492 77: 4572-4572

493 Wang, X., Jespers, W., Prieto-Díaz, R., Majellaro, M., Ap, I.J., Van Westen, G.J.P., Sotelo, E.,  
494 Heitman, L.H., Gutiérrez-De-Terán, H. (2021). Identification of V6.51L as a selectivity hotspot in  
495 stereoselective A(2B) adenosine receptor antagonist recognition. *Sci Rep* 11: 14171

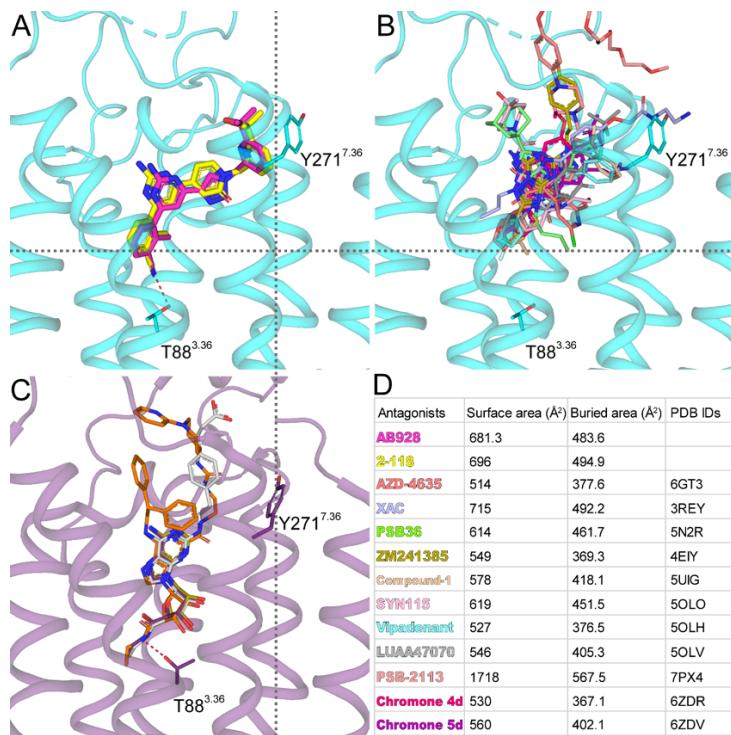
496 Wu, E.L., Cheng, X., Jo, S., Rui, H., Song, K.C., Dávila-Contreras, E.M., Qi, Y., Lee, J., Monje-Galvan,  
497 V., Venable, R.M., et al. (2014). CHARMM-GUI Membrane Builder toward realistic biological  
498 membrane simulations. *J Comput Chem* 35: 1997-2004

499 Yamashita, K., Hirata, K., Yamamoto, M. (2018). KAMO: towards automated data processing for  
500 microcrystals. *Acta Crystallogr D Struct Biol* 74: 441-449


501 Yu, F., Zhu, C., Xie, Q., Wang, Y. (2020). Adenosine A(2A) Receptor Antagonists for Cancer  
502 Immunotherapy. *J Med Chem* 63: 12196-12212

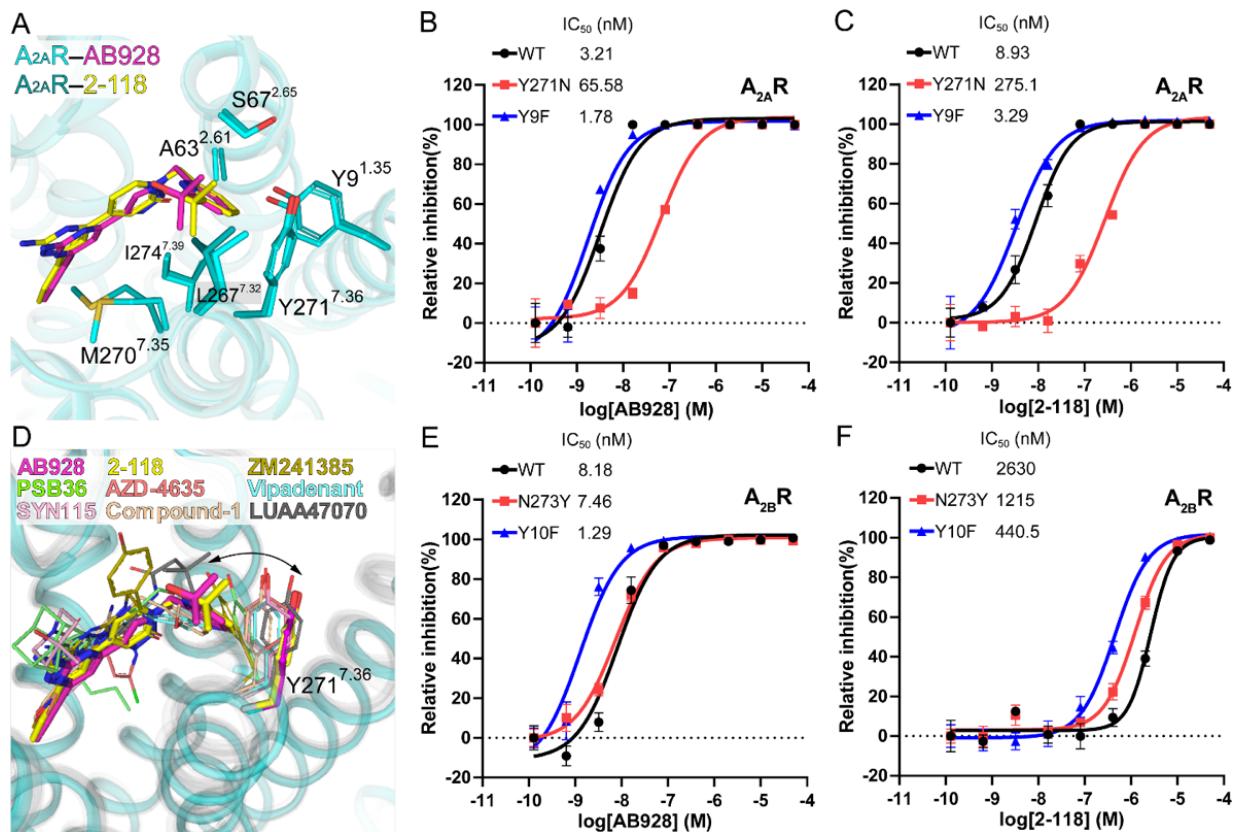
503 Zaynagetdinov, R., Schiemann, K., Nallaparaju, K., Belousova, N., Matevossian, A., Chen, Z.,  
504 Kradjian, G., Pandya, M., Dawra, N., Krauel, E.-M., et al. (2022). Abstract 3499: M1069 as dual  
505 A2A/A2B adenosine receptor antagonist counteracts immune-suppressive mechanisms of  
506 adenosine and reduces tumor growth in vivo. *Cancer Research* 82: 3499-3499

507 Zhou, Q., Yang, D., Wu, M., Guo, Y., Guo, W., Zhong, L., Cai, X., Dai, A., Jang, W., Shakhnovich, E.I.,  
508 et al. (2019). Common activation mechanism of class A GPCRs. *Elife* 8:


509 Zhu, C., Ze, S., Zhou, R., Yang, X., Wang, H., Chai, X., Fang, M., Liu, M., Wang, Y., Lu, W., et al.  
510 (2023). Discovery of Pyridinone Derivatives as Potent, Selective, and Orally Bioavailable  
511 Adenosine A(2A) Receptor Antagonists for Cancer Immunotherapy. *J Med Chem* 66: 4734-4754

512



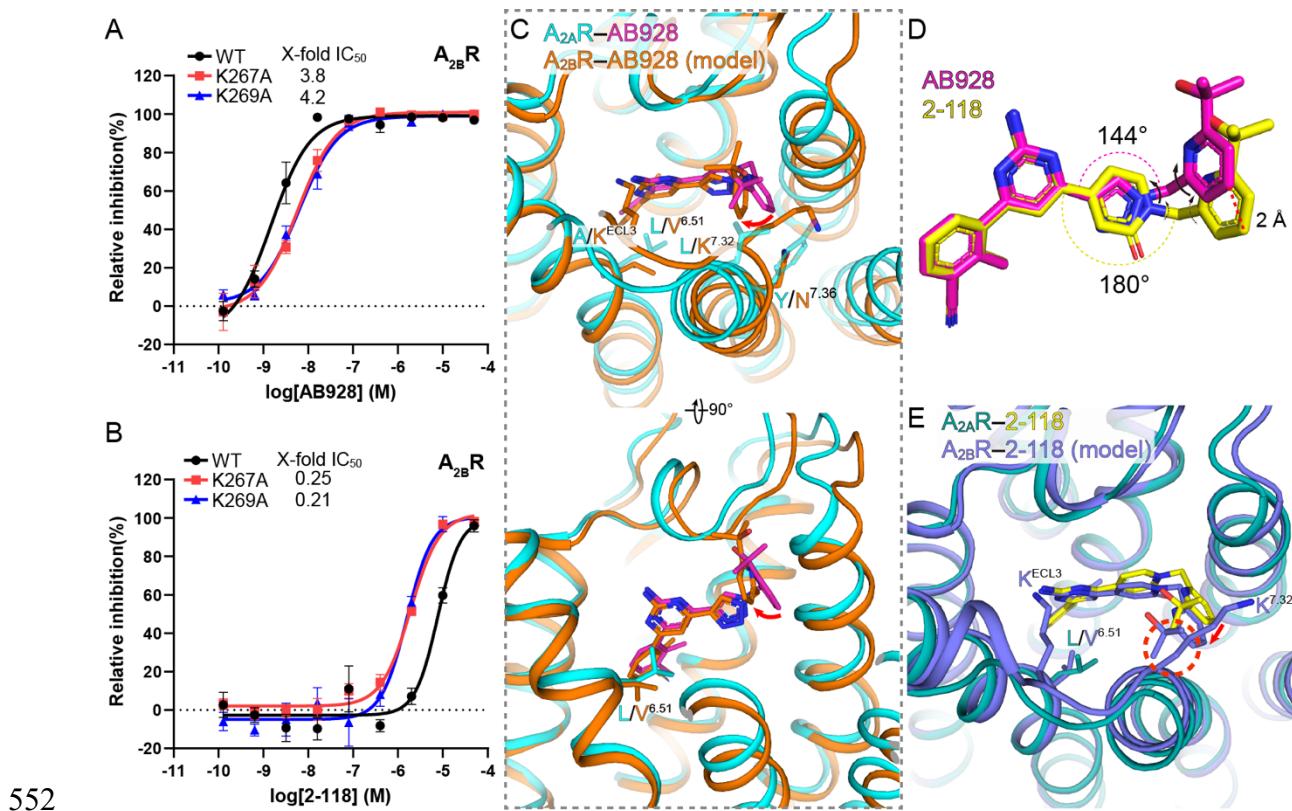

513

514 Figure 1 The binding modes of AB928 and 2-118 on A<sub>2</sub>AR. A, overall structure of A<sub>2</sub>AR (cartoon, cyan) binding AB928 (sticks, magenta). B, detailed binding pocket of AB928, sidechains of the interacting residues are shown as sticks, water molecules are shown as red spheres, hydrogen bonds are shown as red dashes. Density of AB928 is shown below as red meshes. C, overall structure of A<sub>2</sub>AR (cartoon, teal) binding 2-118 (sticks, yellow) superimposed with that of A<sub>2</sub>AR–AB928. D, detailed binding pocket of 2-118 superimposed with that of AB928, sidechains of the interacting residues are shown as sticks, water molecules are shown as pink spheres. Density of 2-118 within the pocket is shown below as blue meshes.




522

523 Figure 2 Comparison of the AB928/2-118-bound A<sub>2</sub>AR structures with other antagonist or agonist-  
524 bound A<sub>2</sub>AR structures. A-C, sideview of the pockets of A<sub>2</sub>AR binding AB928/2-118 (A), other  
525 representative antagonists (B), and agonists (C). Locations of landmark residues T88<sup>3.36</sup> and  
526 Y271<sup>7.36</sup> are shown as sticks. In (C) representative antagonist-bound structures are: AZD-4635  
527 (6GT3, deep salmon), XAC (3REY, light blue), PSB36 (5N2R, green), ZM241385 (4EIY, light  
528 olive), Compound-1 (5UIG, wheat), SYN115 (5OLO, pink), Vipadenant (5OLH, cyan),  
529 LUAA47070 (5OLV, deep grey), PSB-2113 (7PX4, salmon), Chromone 4d (6ZDR, hot pink) and  
530 Chromone 5d (6ZDV, purple). In (D) structures of CGS21680 (4UHR, light grey), UK-432097  
531 (3QAK, orange), adenosine (2YDO, deep olive) binding A<sub>2</sub>AR are superimposed with that of  
532 NECA (PDB ID 2YDV, deep purple). D, comparison of the surface areas buried by different  
533 antagonists.




534

535 Figure 3 Signaling profiles of key residues in the secondary pocket of A<sub>2A</sub>R and A<sub>2B</sub>R. A, Close-  
 536 up view of the secondary pocket. Color codes are same as Figure 1. Secondary pocket residues are  
 537 shown as sticks. B-C, mutagenesis analysis of key residues in the secondary pocket of A<sub>2A</sub>R on  
 538 the potency of AB928 (B) and 2-118 (C). D. Close-up view of the superimposed secondary pocket  
 539 of different antagonist-bound A<sub>2A</sub>R structures. Color codes are shown on the top. Y271<sup>7.36</sup> in each  
 540 structure is shown as sticks and colored the same as the antagonist. AB928-bound A<sub>2A</sub>R is colored  
 541 cyan and all other A<sub>2A</sub>R are colored grey. dynamics of Y271<sup>7.36</sup> is marked by a double-headed  
 542 arrow. E-F, mutagenesis analysis of key residues in the secondary pocket of A<sub>2B</sub>R on the potency  
 543 of AB928 (E) and 2-118 (F). Data are shown as means  $\pm$  SEM from at least 3 independent  
 544 experiments.



545  
546 Figure 4 MD simulations of the A<sub>2</sub>AR/A<sub>2</sub>BR in complex with AB928/2-118. A-B, RMSD of AB928  
547 (A) or 2-118 (B) from 500 ns MD simulation with A<sub>2</sub>AR (crystal structures as the starting models).  
548 C-D, statistics of hydrogen bond interaction between T88 of A<sub>2</sub>AR and AB928 (C) and 2-118 (D).  
549 E-F, RMSD of AB928 (E) or 2-118 (F) from 500 ns MD simulation with modelled A<sub>2</sub>BR. G-H,  
550 statistics of hydrogen bond interaction between T89 of A<sub>2</sub>BR and AB928 (G) and 2-118 (H).  
551 Experiments are performed with triple trajectories, abbreviated with sim1-3 respectively.



552 Figure 5 The AB928/2-118 adopt diverse binding poses on A<sub>2B</sub>R. A-B, mutagenesis analysis of  
 553 residues K267<sup>ECL3</sup> and K269<sup>7,32</sup> of A<sub>2B</sub>R on the potency of AB928 (A) and 2-118 (B). Data are  
 554 shown as means  $\pm$  SEM from at least 3 independent experiments. C. superposition of the plausible  
 555 model of A<sub>2B</sub>R-AB928 (based on a snapshot during simulations) onto the A<sub>2A</sub>R-AB928 crystal  
 556 structure. Key sidechains are shown as sticks, rotation of the ligand is marked by a bent red arrow.  
 557 D. Comparison of the chemical structures of AB928 and 2-118. These compounds are  
 558 superimposed on the 2-aminopyrimidine moiety. The arrows indicate the groups can rotate around  
 559 the single bonds, and the thin arrows on 2-118 mean restricted rotation. E. Extracellular view of  
 560 a similar binding model of 2-118 on A<sub>2B</sub>R as in C. Rotation of the ligand is marked by a straight  
 561 red arrow. Potential steric clash is marked by a dashed red circle.

562

563

564

565

566

567

568

569 **Acknowledgments**

570 This work was supported by the National Key Research and Development Program of China  
571 (2018YFA0507001), the basic research program of Science and Technology Commission of  
572 Shanghai Municipality (21JC1402400), the National Natural Science Foundation of China  
573 (32171215, 81972828, 82172644, 82273857 and 81830083), and the National Key Scientific  
574 Infrastructure for Translational Medicine (Shanghai) (TMSK-2021-120). We thank the  
575 Instruments Sharing Platform of School of Life Sciences, East China Normal University. We also  
576 thank the support of ECNU Multifunctional Platform for Innovation (001) and National Super  
577 Computing Center in Zhengzhou for providing computational resources for this study. The  
578 synchrotron radiation experiments were performed at the BL45XU of Spring-8, Japan.

579

580 **Author Contributions:** W.Y. optimized constructs, expressed and purified the complex proteins  
581 for crystallization studies, and edited the initial manuscript; Y.X. did the cAMP inhibition assay.  
582 Z.Q. did the MD simulations and analysis; C.Y. assisted molecular cloning and mutagenesis, X.Y.  
583 helped cell culture and expression; Z.C. synthesized the compounds for crystallization and assay;  
584 X. Q. and W.Y. guided the chemical synthesis; Y. H. oversaw the simulation and modelling; L.M.  
585 conceived the project and supported the research; L.W. guided and analysed the assay data, and  
586 edited the manuscript. S.G. supervised the project, determined the structures, analysed the data,  
587 and wrote the manuscript.

588

589 **Competing interests:** All authors declare no competing financial interests.

590

591 **Data availability**

592 Atomic coordinates and structure factors for the A<sub>2</sub>B<sub>1</sub>R-AB928 and A<sub>2</sub>B<sub>1</sub>R-2-118 structures have  
593 been deposited in the Protein Data Bank with identification code 8JWZ and 8JWY, respectively.  
594 To whom correspondence should be addressed: [gjsong@bio.ecnu.edu.cn](mailto:gjsong@bio.ecnu.edu.cn); [wqlu@bio.ecnu.edu.cn](mailto:wqlu@bio.ecnu.edu.cn);  
595 [qszhang@bio.ecnu.edu.cn](mailto:qszhang@bio.ecnu.edu.cn)

596

597 **Supplementary Information for**

598 Figures and tables

599